
Università di Bologna · Universität Bielefeld

School of Science · Faculty of Technology

Computer Science · Intelligent Systems

Deep learning based style transfer

for low altitude aerial imagery

Supervisor:

Prof. Barbara Hammer

Prof. Serena Morigi

Kai Konen, M.Sc.

Candidate:

Federico Pennino, B.Sc.

Second session
Academic year 2021/2022





Abstract

Unmanned Aerial Vehicle (UAVs) equipped with cameras have been fast
deployed to a wide range of applications, such as smart cities, agriculture or
search and rescue applications. Even though UAV datasets exist, the amount
of open and quality UAV datasets is limited. So far we want to overcome this
lack of high quality annotation data by developing a simulation framework for
a parametric generation of synthetic data. The framework accepts input via
a serializable format. The input specifies which environment preset is used,
the objects to be placed in the environment along with their position and
orientation as well as additional information such as object color and size.
The result is an environment that is able to produce UAV typical data: RGB
image from the UAVs camera, altitude, roll, pitch and yawn of the UAV.
Beyond the image generation process, we improve the resulting image data
photorealism by using Synthetic-to-real transfer learning methods. Transfer
learning focuses on storing knowledge gained while solving one problem and
applying it to a different - although related - problem. This approach has
been widely researched in other affine fields and results demonstrate it to be
an interesing area to investigate. Since simulated images are easy to create
and synthetic-to-real translation has shown good quality results, we are able
to generate pseudo-realistic images. Furthermore object labels are inherently
given, so we are capable of extending the already existing UAV datasets with
realistic quality images and high resolution meta-data. During the develop-
ment of this thesis we have been able to produce a result of 68.4% on UAVid.
This can be considered a new state-of-art result on this dataset.





Contents

1 Introduction 9

2 Background 12
2.1 UAVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Image segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Fully Convolutional Network . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 PSPNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 DeepLabV3+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Generative adversarial networks (GANs) . . . . . . . . . . . . . . . . . . 17
2.3.1 GAN Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Fréchet inception distance . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Kernel inception distance . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.4 CycleGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.5 SG-GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Synthetic-To-Real Domain Adaptation . . . . . . . . . . . . . . . . . . . 21

3 Related Work 23
3.1 Synthetic-to-Real state-of-art . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 A review on deep learning in UAV . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Synthetic datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 AirSim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 VALID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Real datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.1 Semantic Drone Dataset . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.2 FloodNet Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.3 LoveDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.4 UAVid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Simulator 32
4.1 Unreal Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2



4.3 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Domain Adaptation 42
5.1 CycleGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 SG-GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Experiments 50
6.1 REAL dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 UAVid semantic segmentation . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Evaluation 55
7.1 REAL dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.2 UAVid Semantic segmentation . . . . . . . . . . . . . . . . . . . . . . . . 58

8 Conclusion 65

3



List of Figures

1.1 Visual representation of the work we made during this thesis. Blue blocks
are the parts where we have focused on. . . . . . . . . . . . . . . . . . . 10

2.1 Example of images taken via UAVs. . . . . . . . . . . . . . . . . . . . . . 12
2.2 A visual example of differences between semantic segmentation, instance

segmentation, and panoptic segmentation. Images are taken from our
simulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Shelhamer et al. in Fully Convolutional Networks for Semantic Segmen-
tation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Pyramid Pooling Module overview. . . . . . . . . . . . . . . . . . . . . . 16
2.5 DeepLabv3+ architecture for segmentic segmentation. . . . . . . . . . . . 17
2.6 Source. Structure of Generative adversarial networks. . . . . . . . . . . 18
2.7 Source. Simplified view of CycleGAN architecture. . . . . . . . . . . . 20
2.8 Illustration of a semantic-aware discriminator which takes either real or

adapted images as inputs and is then optimized with an adversarial objective. 21
2.9 Source.An overview of different settings of domain adaptation. . . . . . 22

3.1 A snapshot from AirSim shows an urban environment in which a UAV is
flying. The depth image stream, the materials property view stream and
the front camera image stream are shown in real time in the inset. . . . . 25

3.2 Example of data from VALID dataset. . . . . . . . . . . . . . . . . . . . 26
3.3 Example of data from Semantic Drone Dataset. . . . . . . . . . . . . . . 27
3.4 Visual comparison on FloodNet test set for Semantic Segmentation. . . . 28
3.5 Overview of the dataset distribution. The images were collected from

Nanjing, Changzhou and Wuhan cities. . . . . . . . . . . . . . . . . . . 29
3.6 Illustration of the scale problem in a UAV image. The green circles mark

the objects in proper scales, while the red circles mark the objects in either
too large or too small scales. . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 An example of a Blueprint. . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 An overview on the simulator architecture. . . . . . . . . . . . . . . . . . 34

4

https://developers.google.com/machine-learning/gan/gan_structure
https://hardikbansal.github.io/CycleGANBlog/
https://arxiv.org/pdf/1802.03601.pdf


4.3 An overview on the provided environments: (a) a metropolitan raining
environment, (b) a urban environment, (c) a nordic island environment,
(d) a debugging environment. . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Simulator output example. In the first row - from left to right - are
shown: original image, instance segmentation, semantic segmentation. In
the second row depth mask and bounding boxes are shown. . . . . . . . . 37

4.5 Code snippet using the Python library. . . . . . . . . . . . . . . . . . . 38
4.6 Example of DefaultMap class inheritance. . . . . . . . . . . . . . . . . . 39
4.7 An input JSON file example. . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Some examples of images generated via CycleGAN at resolution of 256×256. 43
5.2 Fréchet Inception Distance and Kernel Inception Distance during 200

epochs of training. Image source domain X is fixed but target domain
Y changes on each plot. Images resolution is 256× 256. A lower score is
better. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Some examples of images generated via CycleGAN at resolution of 512×512. 45
5.4 Fréchet Inception Distance and Kernel Inception Distance during 200

epochs of training. Image source domain X is fixed but target domain
Y changes on each plot. Images resolution is 512× 512. A lower score is
better. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.5 Visual comparison between the original images and GAN generated im-
ages. As we can see CycleGAN is sensibly changing the look and feel of
the simulation images. Shadows and grass are looking more clued to the
scene. Even water in the swimming pool is acquiring naturalism. . . . . 48

5.6 Some examples of images generated via SG-GAN. . . . . . . . . . . . . . 49

6.1 This plot shows the synthetic pixels distribution and the original pixel
distribution over classes. Full-colored ones are the original, and shaded
ones are synthetic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2 An overview on our label transition pre-processing . . . . . . . . . . . . . 51
6.3 Example of images taken from UAVid. . . . . . . . . . . . . . . . . . . . 52
6.4 This plot show the distribution of the synthetic pixels over classes. These

annotations have been added to the original ones in UAVid dataset. . . . 53

7.1 Visual comparison between the segmentation masks obtained from the
different networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.2 Results on REAL test set during the training. Each networks have been
trained for 80 epochs. On the right side plots are regarding mIoU. R
are the original images from REAL dataset, S are images taken from the
simulator and C are images generated via CycleGAN. . . . . . . . . . . 57

5



7.3 Visual comparison between the segmentation masks obtained from the
different networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.4 Results on test set on UAVid dataset during the training. Each networks
have been trained for 100 epochs. On the right side plots are regardind
mIoU. U are the original images from UAVid, S are images taken from
the simulator and C are images generated via CycleGAN. . . . . . . . . 61

7.5 Results on test set of ResNet-50. Network has been trained for 100 epochs
on each techniques. U are the original images from UAVid, S are images
taken from the simulator and C are images generated via CycleGAN. . . 62

7.6 Visual comparison between the original images, ground truth and the
predicted semantic segmentation. Black is the clutter’s color; red are
buildings; violet is road; static cars are pink; dark blue are moving car;
vegetation is yellow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6



List of Tables

5.1 Best FID value for each class on resolution 256× 256. . . . . . . . . . . . 47
5.2 Best FID value for each class on resolution 512× 512. . . . . . . . . . . 47

7.1 Best result for each category on REAL test set. As we can see FCN trained
over synthetic data is over-performing other tests on almost all the tasks. 56

7.2 Best result for each category on UAVid validation set. As we can see PSP-
Net trained over synthetic data is over-performing other tests on almost
all the tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.3 Comparison with the current state-of-art on UAVid dataset. . . . . . . . 60

7





Chapter 1

Introduction

Nowadays the usage of UAVs is spreading in the Machine Learning community. They
have been used in a wide range of applications showing interesting results in most of
them. Chowdhury et al. showed how UAVs [11] could be applied to improve the existing
methodologies for natural disaster damage assessment. The authors provide images from
both affected and non-affected areas after hurricaneMichael, and tested them with differ-
ent semantic segmentation methods. On the other hand, in [50] UAVs imagery is used in
an agricultural environment. Rahul Raj et al. use UAV-based Precision Agriculture - an
approach to farm management that uses information technology for optimizing health
and productivity - to identify stressed areas, and help to carried out some corrective
measures (e.g., fertilizer and pesticide spraying). However, general purpose open-source
datasets with a good quality of annotations and coherent annotations are missing. This
is a huge limitation because at UAVs altitude the performance of computer vision algo-
rithms is inevitably limited by illumination and visual pollution; so a large amount of
data is needed for training. In [78] there is an example of general purpose UAV dataset.
It is composed of 8k images with more than 540k bounding boxes, but information as
altitude, yaw or pitch - as well as semantic segmentation or instance segmentation -
are not provided. Another example of existing UAV dataset is presented in [41] where
information - as altitude, yaw or pitch - are still missing, but semantic segmentation is
provided. These problems are the reasons why Machine Learning community is shift-
ing its interest on synthetic datasets. Synthetic datasets allow for easily generated high
resolution images with out-of-box good quality annotations. Kiefer, Ott and Zell [30]
provide a synthetic UAV dataset example. They have extended DeepGTAV to work
for UAV scenarios and they capture various synthetic datasets in several domains. In
the same direction, VALID dataset [7] is an example of synthetic dataset made from
scratch. Authors provide the first aerial image dataset that can provide panoptic level
segmentation and complete dense depth maps. It is important to note how usage of
synthetic datasets like VALID for UAVs has shown good improvements on Computer
Vision algorithms. Konen and Hecking [31] worked on the direction of ANN s (Artificial

9



Figure 1.1: Visual representation of the work we made during this thesis. Blue blocks
are the parts where we have focused on.

Neural Networks) training in UAVs context using synthetic data generated with AirSim
[59] for data augmentation. They have shown how synthetic data can help to increase
robustness of object detection model. Nevertheless, the usage of this kind of data is still
limited because only low resolution meta-data are provided. The goal we want to pursue
with this thesis is to overcome this lack of high quality annotation data by developing
a simulation framework for a parametric generation of synthetic data. Beyond the data
generation process, we explore the possibilty to augment image photorealism by using
Synthetic-to-real transfer learning methods. Transfer learning [45] is a research problem
that focuses on storing knowledge gained while solving one problem and applying it to
a different but related problem. We use GANs (Generative Adversarial Networks)[28]
model to improve the realism of generated images. This approach has been widely re-
searched in other affine fields so we translate it to our domain of interest. In Deep
CG2Real[4] the authors improve the visual realism of low-quality synthetic images in
OpenGL renderings. This work shows how the synthetic-to-real translation can improve
the final quality render. Another similar work is [51] where Richter, AlHaija and Koltun
present an approach to enhance the realism of synthetic images. The images are en-
hanced by a convolutional network that leverages intermediate representations produced
by conventional rendering pipelines. It is shown how this approach can impressively
increase the realism of generated images. Since simulated images are easy to create and
synthetic-to-real translation has shown improvements on the image quality, we are able

10



to generate realistic quality images. Furthermore object labels are inherently given, so we
are capable of extending the already existing UAV datasets with realistic quality images
and high resolution meta-data. The result is then a framework able to generate realistic
looking imagery with out of the box label and high resolution metadata. We trained
PSPNet, Fully Convolutional Network and DeepLabV3+ to test our results. The goal
of these networks is semantic segmentation. In a first instance we tested our synthetic
images using a dataset obtained via various other UAV datasets. We called our final
dataset REAL. We used this dataset even to perform domain-adaptation on CycleGAN.
We get an mIoU value of ≈ 70% on it. Then, we used UAVid [38] - a 4K UAVs imagery
dataset - as benchmark. Changing the preprocessing strategy and using synthetic data -
from simulator - we have been able to out-perform the original paper results of approxi-
mately a 20%. This allow us to out-perform the current state-of-art on this dataset. In
general - despite the domain gap - original simulation images have shown to be more
helpful than CycleGAN generated ones. A visual representation of our pipeline is shown
in Figure 1.1. We took images from the simulator and shifted them to the real domain.
Then we combined original images and synthetic ones to train semantic segmentation
networks.
In chapter 2 we discuss some theoretical concepts that are at the basis of this thesis.
Besides, chapter 3 is used to present some works that deserve to be mentioned for a
better understanding in the reading of this thesis. In chapter 4 we present our simulator.
We are going to discuss what is the idea behind it and how we modeled it. This chapter
is the kernel of the thesis. In chapter 5 we are going to present the work we have done to
improve the photo-realism of the simulator images. In chapter 6 we are going to present
some experiments that lead us to the results we are going to show in chapter 7. In
conclusion, in chapter 8 we are going to briefly discuss the future of this work and how
we can improve it.

11



Chapter 2

Background

In this chapter, we will introduce the concepts behind this thesis. First, section 2.1
is used to introduce what UAVs are, and we show their use cases. Following that, we
will discuss the segmentation task and which networks we decided to use to perform it
(section 2.2). In section 2.3 we present what GAN (Genearative Adversarial Network)
are and what the idea behind them is. We are going to give an overview of GAN metrics
in section 2.3.1. Finally, in section 2.4 we give an overview of the current state-of-art on
the task of Synthetic-To-Real Domain Adaptation.

2.1 UAVs

Unmanned aerial vehicles (UAV) are a class of air crafts that can fly without the onboard
presence of pilots [33]. Based on their maximum altitude and maximum range, UAVs
can be classified into three classes: small, medium, and large. The maximum altitude of
small drones is below 300 m, while large ones exceed 5500 m. The altitude of medium
ones is between these ranges. Altitude is not the only necessary information for UAVs;

(a) Semantic drone dataset (b) VisDrone Challenge 2019

Figure 2.1: Example of images taken via UAVs.

12



(a) Semantic (b) Instance (c) Panoptic

Figure 2.2: A visual example of differences between semantic segmentation, instance
segmentation, and panoptic segmentation. Images are taken from our simulator.

others are roll, pitch, yaw, speed, and acceleration.
In the last few years, their usage has spread in several domains because, in civil in-
frastructure, they allow for reduced risks and costs. We focus on those UAVs equipped
with cameras and with the ability to take pictures. Our task is to perform semantic
segmentation and object detection over these kinds of images. We are not focused on
a specific context, but this work can be easily extended to SAR (Search And Rescue)
or real-time monitoring of road traffic. In [58], an extensive introduction to the usage
and research field for UAVs is given. Authors range computer vision compatible tasks
to communications and wireless tasks. An example of images captured from UAVs is
shown in Figure 2.1.

2.2 Image segmentation

Image classification, object detection, and semantic segmentation are all closely related
tasks in Deep Learning. All three tasks involve learning the features of the image and
using the learned features in various other tasks like image captioning and annotation.
Specifically, segmentation is the process of partitioning a digital image into multiple
image segments, also known as image regions or objects (sets of pixels). The goal of
segmentation is to simplify and/or change the representation of an image into something
more meaningful and easier to analyze. Current image segmentation methods can be
classified into three categories:

• Semantic segmentation [40], objects shown in an image are grouped based on de-
fined categories;

• Instance segmentation [23], requires the detection of multiple instances of different
objects present in an image;

13



• Panoptic Segmentation [16], is a hybrid method combining semantic segmentation
and instance segmentation.

A visual comparison is shown in Figure 2.2. These tasks are connected: they are just
representing different levels of semantic annotations. As shown, semantic segmentation
is just a form of pixel-level classification where each pixel in an image is classified accord-
ing to a category. Therefore this segmentation can be at a different level of grouping.
Then our goal is to take an RGB color image and output a segmentation map where
each pixel contains a class label represented as an integer. Applications for semantic
segmentation include road segmentation for autonomous driving and cancer cell segmen-
tation for medical diagnosis. We used MMSegmentation [12] - an open source semantic
segmentation toolbox based on PyTorch - to perform the evaluation. We tried out three
different architectures: Fully Convolutional Network (section 2.2.1), PSPNet (section
2.2.2) and DeepLabv3+ (section 2.2.3).

2.2.1 Fully Convolutional Network

A fully convolution network (FCN) [37] is a neural network that only performs convolu-
tion, subsampling, and upsampling. They are an architecture used mainly for semantic
segmentation. Usually, the network consists of a downsampling path, used to extract and
interpret the context, and an upsampling path, which allows for localization. In this way,
“fully convolutional” networks take input of arbitrary size and produce correspondingly-
sized output with efficient inference and learning.
The typical convolution neural network (CNN) [44] is not fully convolutional because it
often contains fully connected layers. However, fully connected layers can also be viewed
as convolutions with kernels that cover the entire input regions, which is the main idea
behind converting a CNN to an FCN.
Generally, while the fully connected layer of an image classification net (e.g. AlexNet
[32]) completely discards spatial information and delivers only one feature vector for
the entire image, the fully convolutional layer produces a feature vector for every pixel.
Based on this feature map, a pixel-wise classification can be performed; this yields a
probability map for each class. To restore the original image dimensions, this map is
upsampled by so-called deconvolutions. While pooling improves classification accuracy,
it partially neglects spatial information. This is a drawback as it limits the spatial ac-
curacy of the segmentation.
We can then use a so-called “skip” architecture [21] to solve this issue. Skip architecture
- as the name suggests - skips some layer in the neural network and feeds the output of
one layer as input to the next layer, as well as some other layer. What we want to achieve
is to propagate information there was required for reconstruction during the up-sampling
done using the FCN layer.
An example of a fully convolutional network is U-net [54]. One important modification in

14



Figure 2.3: Shelhamer et al. in Fully Convolutional Networks for Semantic Segmentation.

U-Net to classical FCN is that there are many feature channels in the upsampling part,
which allow the network to propagate context information to higher resolution layers.
Consequently, the expansive path is more or less symmetric to the contracting party and
yields a U-shaped architecture.

2.2.2 PSPNet

Pyramid Scene Parsing Network, a.k.a. PSPNet [76], is a semantic segmentation model
that utilizes a pyramid parsing module to exploit global context information by different-
region-based context aggregation. The PSPNet architecture takes into account the global
context of the image to predict at the local level. This gives better performance on bench-
mark datasets like PASCAL VOC 2012 [18] and Cityscapes.
Like most semantic segmentation models, PSPNet is composed of two parts: an Encoder
and a Decoder. The Encoder is characterized by a CNN backbone where the last tradi-
tional convolutional layers are replaced with Dilated convolution layers [74], a technique
that expands the kernel by inserting empty spaces between its consecutive elements.
After the backbone we have the Pyramid Pooling Module (Figure 2.4), the major feature
of PSPNet. This module pools feature map from the backbone to different sizes. Then it
is passed through a convolution layer, after which upsampling takes place on the pooled
features. This operation makes them the same size as the original feature map. Finally,
the upsampled maps are concatenated with the original feature map to be passed to the
decoder.
The PSPNet model is not a complete segmentation model in itself. It is just an encoder.
It means it is just half of what is required for image segmentation. Usually, the most
common decoders that are found in various implementations of PSPNet is a convolution
layer followed by an 8x bilinear-upsampling [75]. However, this is not optimal for high-
resolution output. In this context, it would be better to have a decoder that has learnable
parameters and can take in intermediate features from the Encoder as input. To achieve
this, we pass the feature map output through a feature pyramid network (FPN) decoder

15



Figure 2.4: Pyramid Pooling Module overview.

[36], to improve the capabilities of PSP-Net. This way, we use an architecture close to
U-Net to achieve an improvement on higher resolutions.

2.2.3 DeepLabV3+

DeepLab is a state-of-the-art semantic segmentation model designed and open-sourced by
Google. Over the years, this model has evolved, and DeepLabV3+ [9] is the last version.
Each innovative version brings some new ideas and significantly improves performance.
The first presented version was DeepLab V1, which introduced the Atrous convolution
concept. Unlike the other architectures, the feature maps are not downsampled by
max-pooling. This component uses an algorithm called Atrous Convolution. Atrous
convolution allows us to effectively enlarge the field of view of filters without increasing
the number of parameters or the amount of computation.
DeepLab V2 instead introduced some new features in the field of semantic segmentation,
e.g., Fully Connected Conditional Random Field (CRF), and Atrous Spatial Pyramid
Pooling (ASPP) [8]. Atrous spatial pyramid pooling is an atrous version of spatial
pyramid pooling, in which the concept has been used in PSPNet.
DeepLabv3 improves upon DeepLabv2 with several modifications. To handle the problem
of segmenting objects at multiple scales, modules are designed which employ atrous
convolution in cascade or in parallel to capture multi-scale contexts by adopting multiple
atrous rates. Even ASSP module has been changed: global average pooling is applied,
later it is fed to a 1 × 1 convolution and then bilinearly upsample the feature to the
desired spatial dimension.
The last presented version is DeepLabv3+ extends DeepLabv3 by adding an encoder-
decoder structure. The encoder module processes multi-scale contextual information

16



Figure 2.5: DeepLabv3+ architecture for segmentic segmentation.

by applying dilated convolution at multiple scales, while the decoder module refines
the segmentation results along object boundaries. DeepLabV3 architecture is shown in
Figure 2.5.

2.3 Generative adversarial networks (GANs)

Generative Adversarial Networks [22], or GANs, are a deep-learning-based generative
model. Two models are trained simultaneously: a generative model G that captures
the data distribution and a discriminative model D that estimates the probability that a
sample came from the training data rather than G. The idea is that the generative model
is pitted against an adversary: the discriminative model learns to determine whether a
sample is from the model distribution or the data distribution.
In other words, D and G play the following two-player minimax game with value function
V (G,D):

LGAN = min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.1)

Early in learning, whenG is poor, D can reject samples with high confidence because they
are clearly different from the training data. In this case, log (1 − D(G(z))) saturates.
Rather than training G to minimize log (1 − D(G(z))) we can train G to maximize
log D(G(z)). This objective function results in the same fixed point of the dynamics of
G and D but provides much stronger gradients early in learning. In Figure 2.6 a visual
example of a GAN is shown.

17



Figure 2.6: Source. Structure of Generative adversarial networks.

2.3.1 GAN Metrics

GANs use is spreading in machine learning community. Consequently, the need for robust
metrics has been spreading as well. This being the reason that looking for metrics in this
context has been a hot topic [71]. From the qualitative point of view, no objective loss
function is used when training generative models, which suggests the evaluation should
be done using the quality of the generated synthetic images. On the other side, from
a quantitative point of view, when measuring how well our GAN performs, we need to
evaluate two main properties:

• Fidelity, how realistic they are;

• Diversity, how much high the model output variety is.

With the aim to evaluate these two aspects we decided to use in this thesis Fréchet
Inception Distance (section 2.3.2) and Kernel inception distance (section 2.3.3) as
quantitative metrics. We used clean fid [47] library as implementation.
Furthermore, another good point for GAN evaluation is that synthetic data should be
just as valuable as real data for the subsequent task when used for the same predictive
purposes. Hence we decided to evaluate our images on the semantic segmentation task.
We want that our synthetic images to help augment data in UAVs context.

2.3.2 Fréchet inception distance

The Fréchet inception distance (FID) [25] is a metric used to assess the quality of images
created by a generative model. It is the current standard metric for assessing the quality

18

https://developers.google.com/machine-learning/gan/gan_structure


of generative models.
Rather than directly comparing images pixel by pixel, the FID compares the mean, and
standard deviation of the deepest layer in Inception v3 [63] without its final classification
layer. Specifically, the coding layer of the model (the last pooling layer prior to the output
classification of images) is used to capture computer-vision-specific features of an input
image. These activations are calculated for a collection of real and generated images.
The activations are summarized as a multivariate Gaussian by calculating the mean and
covariance of the images. These statistics are then calculated for the activations across
the collection of real and generated images. At this point, we use Fréchet distance to
calculate the distance between the distribution generated from real images and generated.
The Fréchet distance formula is shown in Equation 2.2.

FID = ||µr − µg||2 + Tr(Σr + Σg − 2(ΣrΣg)
1/2) (2.2)

Lower FID is better, corresponding to more similar real and generated samples as mea-
sured by the distance between their activation distributions.

2.3.3 Kernel inception distance

FID usage has shown some limitations [10] over time: it is statistically biased, in the sense
that on smaller dataset, the calculated value is not their true value, and it is quite slow.
In this way, Kernel inception distance (KID) [5] has been proposed as a replacement for
FID. It does not depend on the number of samples and is faster.
The general idea is close to the one presented on FID. It measures the dissimilarity
between Pr and Pg for some fixed kernel function k. Given two sets of samples from
Pr and Pg, the KID between two distributions can be computed with a finite sample
approximation of the expectation. A lower KID means that Pg is closer to Pr. From a
practical point of view, the KID equation is shown in Equation 2.3.

KID = MMD(Ireal, Ifake)
2 (2.3)

where MMD is the maximum mean discrepancy and Ireal, Ifake are extracted features
from real and fake images. In particular, calculating the MMD requires the evaluation
of a polynomial kernel function k (Equation 2.4), which controls the distance between
two features. In practice, the MMD is calculated over a number of subsets to get both
the mean and standard deviation of KID.

k(x, y) = (γ ∗ xTy + coef)degree (2.4)

2.3.4 CycleGAN

The Cycle Generative Adversarial Network [77], or CycleGAN, is an approach to training
a deep convolutional neural network for image-to-image translation tasks. The idea is

19



to learn how to translate an image from a source domain X to a target domain Y .
Model learns a mapping G : X → Y such that the distribution of images from G(X) is
indistinguishable from the distribution Y using an adversarial loss. CycleGAN model
can be viewed as training two autoencoders [3]: we learn one autoencoder F ◦G : X → X
jointly with another G ◦ F : Y → Y . An example of the network structure is shown
in Figure 2.7. To do that the characteristic of CycleGAN is the introduction of a cycle
consistency loss to enforce F (G(X)) ≈ X (and vice versa). Cycle consistency loss is
defined in Equation 2.5.

Lcyc(G,F ) = Ex∼pdata(x)[∥F (G(x))− x∥1] + Ey∼py(y)[∥G(F (y))− y∥1] (2.5)

This is not enough, so we have to use even the adversarial loss - used for training classical
GANs - with the cycle consistency loss. Our full objective is shown in Equation 2.6.

L(G,F,DX , DY ) = LGAN(G,DY , X, Y ) + LGAN(F,DX , Y,X) + λLcyc(G,F ) (2.6)

With λ that controls the relative importance of the two objectives. The final goal of the
train is then to solve the Equation 2.7.

G∗, F ∗ = min
G,F

max
Dx,DY

L(G,F,DX , DY ) (2.7)

2.3.5 SG-GAN

Recent advances in vision tasks (e.g., segmentation) highly depend on the availabil-
ity of large-scale real-world image annotations obtained by cumbersome human labor.
Semantic-aware Grad-GAN (SG-GAN) [35] add to the classical structure of Cycle-
GAN the ability to retain vital semantic information to virtual-to-real domain adaption.
SG-GAN learns two symmetric mappings GV→R, GR→V along with two corresponding
semantic-aware discriminators SDR, SDV in an adversarial way. SG-GAN successfully

(a) A → B (b) B → A

Figure 2.7: Source. Simplified view of CycleGAN architecture.

20

https://hardikbansal.github.io/CycleGANBlog/


Figure 2.8: Illustration of a semantic-aware discriminator which takes either real or
adapted images as inputs and is then optimized with an adversarial objective.

customizes the appearance adaption for each semantic region in order to preserve their
key characteristic for better recognition. It presents two main contributions to traditional
GANs:

• a soft gradient sensitive objective for keeping semantic boundaries;

• a semantic-aware discriminator for validating the fidelity of customized adaptions
with respect to each semantic region.

To reach the first goal, the introduction of soft gradient-sensitive loss has been needed;
it contributes to smoother textures and clearer semantic boundaries. On the network
side, the discriminator is modified to allow for a better evaluation quality based on
semantic masks. An image of the new discriminator is provided in Figure 2.8. SG-GAN
successfully customizes the appearance adaption for each semantic region in order to
preserve their the key characteristic for better recognition. This technique allows for an
improvement in the final image generation with good accuracy on segmentation mask
generation.

2.4 Synthetic-To-Real Domain Adaptation

Domain adaptation [69] is a field of computer vision where the goal is to train a neural
network on a source dataset and get good accuracy on the target dataset, which is
different from the source dataset. It has emerged as a new learning technique to address
the lack of massive amounts of labeled data. DA can be split into two main categories
based on a different domain divergence:

21



Figure 2.9: Source.An overview of different settings of domain adaptation.

• Homogeneous DA, source and target domains are identical regarding feature space,
but they are generally different in terms of data distributions;

• Heterogeneous DA, the feature spaces between the source and target, domains are
nonequivalent, and dimensions may also generally differ.

If we assume that the source and target domains are directly related we can call it one-
step DA. In one-step DA, the deep approaches can be summarized into three cases:

• Class Criterion: uses the class label information as a guide for transferring knowl-
edge between different domains;

• Statistic Criterion: aligns the statistical distribution shift between the source and
target domains using some mechanisms;

• Architecture Criterion: aims at improving the ability of learning more transferable
features by adjusting the architectures of deep networks.

It is not possible - most of the time - to find a direct correlation between source and
target. In other words, there is a need for some intermediate representation to reach
our goal. In these cases, we call it multi-step (or transitive) DA. In this thesis, we
focus on Synthetic-To-Real translation [42], the domain adaptation task from synthetic
(or virtual) data to real data. We are going to rely on an adversarial-based deep DA
approach [19].

22

https://arxiv.org/pdf/1802.03601.pdf


Chapter 3

Related Work

In this chapter, we are going to give an overview of various topics we have been investi-
gating during this project development. A brief introduction to the current state-of-art
for Synthetic-to-Real Domain Adaptation is given in section 3.1. Furthermore, in sec-
tion 3.2 we are going to give a general overview of the state-of-art in the UAV machine
learning community. The focus will be on Computer Vision and synthetic data tasks; we
are going to ignore arguments such as autonomous UAVs drive. In conclusion, in section
3.3 and section 3.4 we are going to discuss some datasets we have to deal with during
the development of this thesis.

3.1 Synthetic-to-Real state-of-art

Usage of synthetic datasets generated via simulators has already been widely explored
in a large range of fields. In [62] a synthetic driving dataset is presented. The authors
tested SHIFT dataset on a large amount of different computer vision tasks, results show
how this approach helps model robustness and generality in autonomous driving systems.
Regarding the task of synthetic driving dataset and urban segmentation context, there
is already a framework able to generate datasets automatically. In [56], one Example of
a framework to automatically generate datasets. Sekkat et al. presents a framework for
generating omnidirectional images using images that are acquired from a virtual environ-
ment. In [52], GTA5 dataset - one of the most popular synthetic dataset - is presented.
Richter et al. use GTA V as the environment to generate a large dataset containing 25
thousand images synthesized by a photorealistic open-world computer game. These im-
ages are provided with the corresponding semantic segmentation labels. In [55], another
well-known dataset in the synthetic context is presented. The authors use SYNTHIA
with publicly available real-world urban images with manually provided annotations.
Then, they conduct experiments with DCNNs that show how the inclusion of SYNTHIA
in the training stage significantly improves performance on the semantic segmentation

23



task.
In [27] current segmentation performance in Synthetic-to-Real from both SYNTHIA →
Cityscapes and GTA5→ Cityscapes is provided. Authors obtain a multi-resolution train-
ing approach for UDA (Unsupervised domain adaptation). That approach combines the
strengths of small high-resolution crops to preserve fine segmentation details and large
low-resolution crops to capture long-range context dependencies.

3.2 A review on deep learning in UAV

Regarding UAVs, the use of GAN for data augmentation has already been researched. In
[46] they used CycleGAN per data augmentation in the proposed DenseNet-based model.
The experimental results showed how the proposed framework improves high wildfire
detection accuracy. Another context where GAN models have been applied to UAVs
is presented in [66]. The authors proposed a deep learning and generative adversarial
network-based model for UAV low illumination image enhancement. LighterGAN was
6.66 percent higher than CycleGAN in subjective authenticity assessment and 3.84 lower
in PIQE score. In the same direction, in [20], a novel method to generate a dataset for
UAV software testing is proposed. The authors show that even if the dataset is disturbed,
the images generated are still high quality.
Other really interesting techniques in UAVs context are discussed now. In [26], a Patch-
Level augmentation technique is tested. Hong et al. generate multiscale chips to train
object detectors. Next, these chips are used to construct an object pool and perform
data augmentation. The resulting model is ranked 3rd in VisDrone-DET2019 challenge.
On the other hand, in [14] ROI transformer is used for data augmentation. Authors use
RoI Transformer to apply spatial transformations on RoIs and learn the transformation
parameters under the supervision of oriented bounding box (OBB) annotations. This
technique has achieved state-of-the-art performances on two common and challenging
aerial datasets, i.e., DOTA and HRSC2016. In [61], a novel network - called the multiscale
keypoint detection network (MKD-Net) - is proposed to detect multiscale objects in aerial
scenes. MKD-Net fuses multiscale layers to generate multiple feature maps for objects of
different sizes. Experiments on benchmarks PASCAL VOC and DOTA show impressive
performance of MKD-Net compared with the baseline network. In [34], a Density-Map
guided object detection Network (DMNet) for high-resolution aerial images is proposed
by the authors. DMNet has three key components: a density map generation module,
an image cropping module, and an object detector. DMNet achieves state-of-the-art
performance on VisDrone and UAVDT. In [39] a new technique in UAVs preprocessing -
called Adaptive Resizing - is introduced. The Adaptive Resizer is a preprocessing strategy
designed to address bird’s eye view (BEV) object detection, i.e., object detection from
UAVs where the angle of view is pointing downwards at a right angle. Every image

24



Figure 3.1: A snapshot from AirSim shows an urban environment in which a UAV is
flying. The depth image stream, the materials property view stream and the front camera
image stream are shown in real time in the inset.

is scaled in a principled manner to diminish the scale variance problem in BEV object
detection. In [29], an approach based on Domain Bias in Object Detection on UAVs is
shown. Authors demonstrate that domain knowledge is a valuable source of information
and thus propose domain-aware object detectors by using freely accessible sensor data.
This technique achieves a new state-of-the-art performance on UAVDT for embedded
real-time detectors.

3.3 Synthetic datasets

Now we will discuss the current situation regarding UAV datasets and methods to acquire
them. In section 3.3.1, we will give an overview of AirSim, a simulator made by Microsoft
to generate a synthetic dataset on a large range of vehicles. Instead, in section 3.3.2 we
are going to present VALID, a synthetic dataset acquired via AirSim. This dataset has
been used in this thesis for experiment purposes.

3.3.1 AirSim

In 2017 Microsoft Research created Aerial Informatics and Robotics Platform - also called
AirSim - [59] as a simulation platform for AI research and experimentation. AirSim is
a simulator for drones and cars. It has been built on Unreal Engine and experimentally
even on Unity. An example of AirSim running simulation is shown in Figure 3.1.
It is open-source, cross-platform, and supports software-in-the-loop simulation with pop-

25



Figure 3.2: Example of data from VALID dataset.

ular flight controllers. It exposes APIs to retrieve data and control vehicles in a platform-
independent way. This allows AirSim to support a wide range of platforms. The most
significant advantage of this simulator is that it uses recent advances in computation
and graphics to simulate physics and perception such that the environment realistically
reflects the actual world.
The simulator architecture [57] is described as follows: at the highest level, the simulator
contains a model of the vehicle, the environment, and a physics engine to compute the
resulting motions. In addition, AirSim allows support for recording sensor observations
that mimic real-world behaviors. Finally, one of the significant components is photore-
alistic rendering via the Unreal engine, which enables computer vision analysis that is
transferable to the real world. The framework also enables hardware-in-the-loop (HIL)
and software-in-the-loop (SIL).
AirSim’s goal is to develop a platform for AI research to experiment with deep learning,
computer vision, and reinforcement learning algorithms for autonomous vehicles. We
have not used it in this thesis because AirSim focuses on the vehicle’s physics. We are
more interested in easily making the label recording from the UAVs simulator parame-
terizable.

3.3.2 VALID

Virtual AeriaL Image Dataset, also called VALID [7], is a dataset coming from the
implementation of a simulator that can simultaneously acquire diverse visual ground
truth data in the virtual environment. AirSim has been used to deploy it.
VALID consists of 6690 high-resolution images (1024×1024), all annotated with panoptic
segmentation on 30 categories, object detection with the oriented bounding box, and
binocular depth maps. They have been collected in 6 different virtual scenes and five
various ambient conditions (sunny, dusk, night, snow, and fog). It is presented as the

26



(a) Image (b) Label

Figure 3.3: Example of data from Semantic Drone Dataset.

first dataset specifically designed for aerial scenes. An example of images from VALID
is shown in Figure 3.2.
Multiple scenarios have been considered to mimic the real world: crowded airports,
downtown with skyscrapers, the neighborhood with villas, European-style streets, hilly
seaside towns, and primitive snow mountains. Images have been taken at three altitudes:
20m, 50m, and 100m.
On the annotation side, VALID consists of 20 main categories, i.e., tree, plant, road,
pavement, land, water, ice, rock, bridge, sign, vehicle, building, animal, person, common
obstacle, high obstacle, tunnel, ship, plane, and harbor. These categories are then refined
into several categories, e.g., water is further divided into natural water and swimming
pools. In the end, 30 detailed categories are formed. To achieve panoptic segmentation,
17 categories are recognized as ”thing”, and the rest 13 are classified as ”stuff”. Instance
segmentation and object detection tasks are based on ”thing” categories, while semantic
and panoptic segmentation tasks use all 30 detailed categories.

3.4 Real datasets

In this section, we are going to discuss real UAV datasets that have been used during
this project. They have been needed for the transfer learning part and as a benchmark in
the evaluation part. On the transfer learning side we have mainly used Semantic Drone
Dataset (section 3.4.1), FloodNet dataset (section 3.4.2) and LoveDA (section 3.4.3).
LoveDA images have been acquired from satellite, so they are not UAVs taken images.
However, we have been using them because the two fields are really close to each other.
On the benchmark side, we have used UAVid, discussed in section 3.4.4.

27



3.4.1 Semantic Drone Dataset

The Semantic Drone Dataset [43] focuses on the semantic understanding of urban scenes.
The imagery depicts more than 20 houses from a nadir (bird’s eye) view acquired at an
altitude of 5 to 30 meters above the ground. A high-resolution camera was used to
acquire images at a size of 6000 × 4000 px. The training set contains 400 publicly
available images, and the test set is made up of 200 images. An example is shown in
Figure 3.3.
A pixel-accurate annotation for the same training and test set has been provided. The
annotated classes are 20. Annotations range from people to paved areas. They have
also annotated natural objects (such as trees, grass, other vegetation, dirt, gravel, and
rocks) and house objects, e.g., wall, window, fence, door, roof. Water and pool have
been divided. Furthermore, vehicles (car and bicycle) have been annotated too.

3.4.2 FloodNet Dataset

FloodNet [49], is a dataset composed of images captured after hurricane Harvey. Hurri-
cane Harvey made landfall near Texas and Louisiana in August, 2017, as a Category 4
hurricane. The images are labeled pixel-wise for semantic segmentation task and ques-
tions - for question and aswering model - are produced for the task of visual question
answering. FloodNet poses several challenges including detection of flooded roads and
buildings and distinguishing between natural water and flooded water.
As we are primarily interested in semantic segmentation, we will ignore the Visual Ques-
tion Answering. The pixel-wise annotation they have done on the images is essential

Figure 3.4: Visual comparison on FloodNet test set for Semantic Segmentation.

28



for this thesis. In total 3200 images have been annotated with 9 classes which include
building-flooded, building-non-flooded, road-flooded, road-non-flooded, water, tree, ve-
hicle, pool, and grass.
The authors tested the dataset on a semantic segmentation task using three nets: ENet
[48], PSPNet and DeepLabV3+. As evaluation metric they used mean IoU (mIoU). This
test shows us how PSPNet is clearly able to out-perform both the other networks. PSP-
Net is giving the best score (79.69%) on basically each category, and usually it is able to
almost double perform ENet. It is interesting to note that although DeepLabv3+ and
PSPNet collect global contextual information; their performance in detecting flooded
building and flooded roads are still low since distinguishing between flooded and non-
flooded objects heavily depend on the respective contexts of the classes. This work gave
us - as well as an excellent level of annotation data - a direction on which networks could
fit our tasks and which did not.

3.4.3 LoveDA

The LoveDA [67] dataset contains 5.987 HSR (High Spatial Resolution) images with
166.768 annotated objects from three cities: Nanjing, Changzhou, and Wuhan. The
focus has been posed on different geographical environments between Urban and Rural.
The historical images were obtained from the Google Earth platform. As each research
area has its planning strategy, the urban-rural ratio is inconsistent.
There are nine urban areas selected from different economically developed districts, which

Figure 3.5: Overview of the dataset distribution. The images were collected from Nan-
jing, Changzhou and Wuhan cities.

29



are all densely populated (> 1000 people/km2). The other nine rural areas were selected
from undeveloped districts. After geometric registration and preprocessing, each area is
covered by 1024 × 1024 images, without overlap. The joined images cover 536.15 km2.
Annotated data on semantic segmentation are buildings, roads, water, forest, barren,
forest and agriculture.

3.4.4 UAVid

UAVid [38] is a semantic segmentation dataset for UAV Imagery. It proposes a new
challenge: semantic segmentation on the UAV dataset with moving object recognition
and temporal consistency preservation. Furthermore, the proposed dataset works in a
4K resolution. This increases the already high level of the challenge.
The UAV dataset consists of 30 video sequences capturing 4K high-resolution images
in slanted views. In total, 300 images have been densely labeled with 8 classes for the
semantic labeling task. As far as we know, this is one of the most densely annotated
UAV dataset. The classes that have been annotated are: building, tree, clutter, road,
vegetation, static car, moving car and human.
The structure of the annotation introduces some challenges itself. Annotations are un-
balanced: building and tree have more annotations than the rest of the classes. Instead,
static and moving cars - same as humans - are missing annotations. Moreover, it’s im-

Figure 3.6: Illustration of the scale problem in a UAV image. The green circles mark
the objects in proper scales, while the red circles mark the objects in either too large or
too small scales.

30



portant to mention that the clutter class has a relatively large pixel number ratio and
consists of meaningful objects, which is taken as one class for both training and evalua-
tion rather than being ignored.
Using such a larger resolution in a UAV context introduce some interesting side chal-
lenges, for Example the scales of the objects vary greatly from the bottom to the top of
the image. This means the network we train should not just learn from one prospective
and from a defined depth: we need to learn the same object at different scale. This
particularity is given by the particular prospective that is used: oblique images from
UAVs. What we discussed here is better illustrated on Figure 3.6.
In conclusion, in the presentation paper, authors have shown some machine learning net-
works implementation to be trained on this task. The best results they get is a value of
50.1% on mean IoU (mIoU) using a pre-trained MS-Dilation network (even this network
has been presented on the paper). Given the described challenges and the given results
we decided to use this dataset as benchmark for our work. We are interest on understand
if we can over-perform the original results and if synthetic data can help us to do that.

31



Chapter 4

Simulator

In this chapter, we present our simulator. A simulator is a software that artificially
creates the effect of being in a certain environment. In our case, we developed a flight
simulator, a device that artificially re-creates aircraft flight and the environment in which
it flies. We discuss in section 4.1 what Unreal Engine is. We give a brief introduction
to its history and how it is born. Section 4.2 is used to introduce the ideas behind the
simulator’s architecture. In section 4.3 we introduce how the server works and what it
is needed for. The server is the kernel of the simulator: it receives the request from the
client (section 4.5) - via Python library API (section 4.4) - and process them to generate
semantic segmentation mask, instance segmentation mask, bounding boxes and depth
mask.

4.1 Unreal Engine

Unreal Engine [17], or UE5 in its current version, is an open-source, real-time 3D game
engine created initially by Epic Games in 1998.

Figure 4.1: An example of a Blueprint.

32



The main goal of a game engine [2] is to abstract standard video game features, allowing
for code and game asset reuse in different games. Some of those features are input han-
dling, game loop, and memory management. The most recent game engine - and that
of UE - went further and can even simulate physical laws such as gravity and collisions,
as well as game components like audio, video, artificial intelligence, virtual reality, and
many more features. Given the described characteristics, engine usage spread over the
programmers’ community: they easily allow code reuse and give the programmer the
possibility to have thousands of tools just out of the box.
Even though UE was developed for gaming purposes, its use has spread in the simulator
field. There are many more reasons why using Unreal Engine as an engineering simula-
tor is an advantage: usage of the graphical and physics motors and real-time simulation
relieves the user from working on non-essential issues such as collision detection, physical
laws, graphics, etc.
Furthermore, UE allows the programmer to focus on defining at a higher level the idea
he has. The focus is on programming the behaviors that the objects in the world - such
as vehicles - have in relation to it. In fact, UE allows the programming to use two dif-
ferent programming languages: C++ and Blueprint. C++ does not need to be presented.
Instead, Blueprint is a programming language that respects previously described phi-
losophy. It consists of a node-based interface to create gameplay elements from within
the editor. Then, it moves the abstraction to another level. The programmer is not
focused on writing code but on defining a Blueprint for the object via graphical nodes.
A Blueprint example is shown in Figure 4.1.
As a downside, Unreal Engine may feel harder to learn and slower to prototype than
other software. The variety of tools is wide [1], so it is not easy to master the entire
pipeline. Despite that, the availability of already created and programmed assets (such
as the one used in this thesis) and plugins provides a quick way to integrate them and
allows the programmer to ignore some parts of the toolchain.
In conclusion, given the trade-offs previously described, we decided to use UE as the
starting point for this thesis’s development. Although we want to focus on a more ab-
stract level, our goal is to build a pipeline that provides us with well-annotated data in a
parametric way. We can discard topics such as the physical system used on the simulator
or the audio system. For these reasons, UE fits us.

4.2 Architecture

We are not interested in building monolithic software; we would prefer to build a simu-
lator that can be easily adapted to the programmers’ needs. For this reason, we adopted
a server-client architecture for the simulator. In this way, we could decouple as much
as we can the tasks. We mainly focused on the server and the communication system
between server and client.

33



Figure 4.2: An overview on the simulator architecture.

The server is responsible for the image rendering process and the map and object han-
dling. Furthermore, it generates the segmentation, depth, and instance masks. Another
task the server is responsable for is exposing the APIs to communicate with it. We
provide our system as a UE plugin, in this way, it can be installed on every other UE
project leaving the same functionalities.
Handling API calls can generate some difficulties and performing some action can turn
out into a repetitive task. For this reason, we provide a Python Library UAVS2R.py to
handle the communications between server and client easily. We want the user to be
transparent about what is happening under the hood. The programmer should focus on
what kind of parameters the simulator should be instantiated at that moment.
To show the functionality of our software, we built a JSON parsing client that wraps
UAVS2R.py. The user can feed the client a well-formatted JSON file that can give pieces of
information over the simulation status to the server. Detaching UAVS2R.py to the client
allows the programmer to build a custom client with whatever mechanism he wants.

4.3 Server

In this paragraph, we are going to discuss how the server works. The purpose of the
server is to provide out-of-the-box tools to generate segmentation, instance, and depth
mask from rendered scenes in various environments. In order to ease the usability for
users, we provide various environments to work with. They are:

• A urban environment that closely mimics a metropolitan context, a preview is
visible in Figure 4.3a;

34



• An environment that tries to mimic a mixed park and urban context, a preview is
visible in Figure 4.3b;

• An environment based on Nordic island panoramas, Figure 4.3c;

• A debugging environment, the default one, Figure 4.3d.

The urban environments are provided with different weather conditions. The user can
even specify various metadata to each image the simulator takes.
We fork UnrealCV [70] to reach our purposes. This UE plugin allowed us to simulate
semantic/instance segmentation and place and move objects in the scene. However, what
we want at the end is something closer to CARLA Simulator [15]. UnrealCV is quite
limited on the communication part. It allows changing segmentation color at run-time,
for example. Nevertheless, it does not allow us to make it in a structured way. The
user can change color object by object. Instead, we want something like CARLA, where
the user can easily assign the same label to multiple classes. We reached this goal by
allowing the programmer to use a mechanism of label assignment based on a criterion.
We will discuss this deeper in section 4.4.
This plugin was only available on Unreal Engine 4.27, so we worked to implement it

(a) (b)

(c) (d)

Figure 4.3: An overview on the provided environments: (a) a metropolitan raining
environment, (b) a urban environment, (c) a nordic island environment, (d) a debugging
environment.

35



even on UE5. The engine switch has shown some difficulties: we had to modify multiple
classes from the original implementation. Over time, Unreal Engine has changed a lot,
and various classes have been deprecated in the last release (UE5 ). Then part of the
work has been to run on this adaptation of the source code.
We have even tried to go further than the original implementation: we added the possibil-
ity to switch to a different environment at run-time and add a bounding-boxes generation
system. The map switch is particularly convenient. Given that we want to let our sim-
ulator run parametrically we can switch the map we are using at run-time, allowing us
to speed up the image acquisition process.
The basic behavior of the simulator is to always wait for the next operation. The server
is waiting for a client message that says what it should do. Operations could be of two
types:

• vset, used to modify objects and information in the scene;

• vget used to retrieve informations about objects in the scene.

Below is shown the structure of vset command:

vset /{object type}/{id}/{operation} (args1) ... (argsN)

Where the {object type} is the type of object you want the operation is performed on
and {id} is the unique identifier of the object.
Then if we want to perform a camera rotation, the command we should send to the
server is:

vset /camera/0/rotation 20.0 30.0 7.0

Where the three arguments are respectively: yawn, pitch and roll values. Usually, vget
is specular to vset but without arguments. Then, to retrieve the camera rotation what
we have to do is:

vget /camera/0/rotation

It is possible even load objects at run-time. This is important because it allow the user
to update the scene dynamically during the annotation process. An example of how add
an object to the level is:

vset /objects/spawn UClass name

Worth to be mentioned how to switch the map. It can be easily done using the command:

vset /level {map}

where the {map} value is registered in Unreal Engine Assets Registry. So the user can
even use Pak (the assets handler in UE) to load a new map at run-time and then switch
to it. No method to retrieve which map the user is using has been implemented.

36



Figure 4.4: Simulator output example. In the first row - from left to right - are shown:
original image, instance segmentation, semantic segmentation. In the second row depth
mask and bounding boxes are shown.

4.4 APIs

So far, we have discussed the structure of the server. However, we now need to dis-
cuss a way to communicate with it. As said before, we tried to decouple the interactions
between our server and the client as much as possible. We build a standalone Python
library to reach this purpose. We called this library UAVS2R.py.
To start the communication with the server, the server should instantiate an DefaultMap

object. The object constructor takes as input a list of labels and the map’s name (op-
tional). Labels are defined by the user. The object instantiation will perform the con-
nection with the server. By default, a color will be assigned to each label defined in
the constructor. From now the user can interact with the server. The idea is that we
transpose the API call that the server exposes to methods of this class. This means that
the following command:

vset /camera/0/rotation 20.0 30.0 7.0

is simply translated in our Python library as shown in Figure 4.5 on line 7. However,
the user can even add some metadata to the annotation. On line 9 of Figure 4.5 we
are saying to the server to annotate that weather is rainy, and the wind speed is ≈
20km/h. The annotation will be propagated to all the next images in this environment,
even though it can always be overwritten. Bounding boxes are generated on the client
side via the library. Using a criterion - defined via get bb criterion() - the user is

37



1 map = DefaultMap([

2 "Cube",

3 "Wall",

4 "Floor"

5 ])

6

7 map.set_rotation([-20, 30, 7])

8

9 map.set_meta({

10 "weather": "rainy",

11 "wind_speed": "almost 20km/h"

12 })

13

14 map.save("dataset/",[

15 "segmentation",

16 "depth"

17 ])

Figure 4.5: Code snippet using the Python library.

able to acquire the bounding boxes from the defined labels. The default behavior is
to acquire the bounding boxes based on instance segmentation labels. Afterwards, we
performed the operation we want, we can now generate annotations. We can call the
method save(path, annotations) to generate an annotation, as shown on line 14 in
Figure 4.5. This method will create in the required path some folders - one for each
required annotation - where the annotation will be stored. For example - the line that
is shown in the code snippet - will generate inside the folder dataset/ two folders:
segmentation/ and depth/. Where the semantic segmentation mask and the depth
mask are stored. Furthermore, a folder called annotations/ is created. Inside that
folder, the user will find all the general information about the environment, e.g., label
color, metadata, etc.
Semantic and instance segmentation mask are stored as .png file, instead, depth mask
is annotated as .npy file. The file containing the general annotations is a .json file.
The out-of-the-box labeling system we thought is pretty straightforward. Using a regex
all the objects are queried, and if a match is found, we assign the given label to that
specific object. In the same way, the naming file system is pretty simple, an id is
generated for each annotation and each image/annotation is stored with that id as name.
As we said before, we tried to generalize the server-client interaction as much as possible.
For this reason, we defined our communication system as a Python class. In this way, via
inheritance, the programmer can always extend our DefaultMap class to let it behave

38



1 class AdvancedMap(DefaultMap):

2 ...

3 def associate_label_object(self, labels):

4 objects = self.get_objects()

5

6 list_objects = {object: [0, 0, 0] for object in objects}

7

8 for object in objects:

9 for label, color in labels.items():

10 if len(label) > 1:

11 label = label[0]

12 if label in object:

13 list_objects[object] = color

14

15 return list_objects

16 ...

17 def get_filename(self):

18 return "date_" + str(uuid.uuid4())

19 ...

20 def get_bb_criterion(self):

21 return self.get_semantic_mask()

Figure 4.6: Example of DefaultMap class inheritance.

as he wants. With this idea in mind, we defined some methods for defining criteria
over annotation operations. This is the case of associate label object(labels) that
is responsible to associate at each object a label. The user can always redefine the
behavior to match object labels, not via regex but another criterion. The same point
is valid for get bb criterion(), where you can define a criterion for bounding boxes
generation. It’s not always said that the bounding boxes generation should exactly match
the instance mask (default behavior). This system offers the programmer a higher level
of freedom: he can customize the annotation generation as he wants. An example of
class inheritance is shown in Figure 4.6 an example of generated annotations is shown
in Figure 4.4.

4.5 Client

We were not interested in creating just one way to communicate with our server. As
we said, our interest is to build a modular parameterized framework. So the user should
not think this client is the only one possible. The platform is thought that its terminal

39



1 {

2 "map": "FirstPersonExampleMap",

3 "annotations": [

4 "segmentation",

5 "bounding_boxes"

6 ],

7 "labels": [

8 "Circle",

9 "Cube",

10 "Wall"

11 ],

12 "view": {

13 "altitude": 3000.0,

14 "yawn": -35.00,

15 "pitch": 0.00,

16 "roll": 0.00

17 },

18 "trajectory": [

19 {

20 "position": [

21 -370.560,

22 -97.250

23 ]

24 },

25 {

26 "altitude": 900.00

27 },

28 {

29 "rotation": [

30 [

31 -40.0,

32 0.0,

33 0.0

34 ]

35 ]

36 }

37 ]

38 }

Figure 4.7: An input JSON file example.

40



part could permanently be removed and replaced with one that better fits user purposes.
What we provide, then, is closer to proof-of-work.
The implementation we will show now is based on a JSON file. This JSON file should con-
tain a JSON object with five attribute: map, annotations, labels, view and trajectory.
The map attribute is used to define the starting map. Instead, annotations is an at-
tribute used to define which kind of annotations we are looking for. This attribute is
defined as a list, the values that can be passed are: segmentation, depth, instance seg and
bounding boxes. The labels define which labels are the user interested in annotating.
They can be passed as a string, and a match between the object name and passed labels
is done. The last two attribute are view and trajectory. The behaviour of view is
straightforward: it takes an object where yawn, pitch, roll and altitude are defined. They
are the starting position, you can always move them. The kernel of this implementation
is the attribute trajectory: it defines the movements the UAV should do. It is a list of
JSON object, and each object could be seen as a command. The command type list is:
position, rotation, altitude, level and metadata. A fully example on how an input file is
composed is shown in Figure 4.7.
As we said, this implementation is quite näıve. However, it was enough for our purposes
and as proof-of-work. A possible future implementation is in ROS [60], an open-source
framework that helps researchers and developers build and reuse code between robotics
applications. This could allow our simulator to cooperate with other software to improve
the annotation quality and acquisition.

41



Chapter 5

Domain Adaptation

During the development of this thesis, we have been testing multiple solutions for the
part of photo-realism augmentation. In this chapter, our primary focus has been on
CycleGAN. We will discuss our experiments with this network in section 5.1. Although
CycleGAN is not semantically guided: this is the reason we have tested SG-GAN, a
semantic guided network inspired by CycleGAN. We will discuss this network’s results
in section 5.2. In addition, several other methods have been investigated to generate
synthetic images [64]. Nevertheless, we restricted this thesis to explore some preliminary
feedback, and the discussed networks were the ones most fitting our aims. These are the
reasons we are not going further. In the future, our focus could be given to networks
precisely thought for Synthetic to Real Domain Adaptation, as [65].

5.1 CycleGAN

So far, we have a simulator that can produce images with high-quality annotations.
However, images given from the simulator still suffer from classical problems of images
taken via game engines: when the quality of meshes is not too high, the look and feel
are always a little ”plastic”.
Obviously, good quality meshes require considerable effort to be collected. For this
reason, we decide to use CycleGAN. In this way, we should be able to augment realism
without particular effort. This is not an easy task. UAVs are not all equals: the camera
mounted on a UAV is not from just one point of view.
For this reason, we had to test a couple of sources and target dataset combinations. We
have been discussing a couple of datasets in the background (chapter 2).
These datasets have been used for more than one run on CycleGAN with different
combinations to evaluate the best possibilities this network can offer us on this task.
Furthermore, we tested these datasets on different resolutions.
Our first test starts with an image resolution of 256×256. This has been done to reduce

42



the amount of information needed on the first steps of this work. Initially, we selected
two environments from the VALID dataset: urban and metropolitan. These images were
used as source datasets; instead, images from VisDrone were used as the target domain.
This experiment shows us that the path we were pursuing was promising. Despite this,
these results were not enough. Most of the time a strange glitch effect was present. Some
shrouds were visible in the final images. Furthermore, the human feedback we had was
that they looked more natural, but they were not looking realistic enough. From one
side, a lighting improvement was visible. On the other side, shroud and prospective error
were omnipresent.
Firstly we focused ourselves on resolving these prospective errors. We decided to shift
our translation work to a perpendicular point of view. We took this strong decision
because images from VALID are taken from that point of view. This way, all the objects
are visible from the same point of view in the source and target domain. Finding a
dataset with a valid data amount for the training was difficult.
Usually, UAV datasets are not big enough for this kind of data and are not from a
coherent point of view. For this reason, we needed to join multiple datasets into one.
It is now that REAL was born. REAL dataset is how we called the combination of
Semantic Drone Dataset, FloodNet and LoveDA.

(a) (b)

(c) (d)

Figure 5.1: Some examples of images generated via CycleGAN at resolution of 256×256.

43



0 50 10
0

15
0

20
0

50

100

150

M
ag
n
it
u
d
e

0 50 10
0

15
0

20
0

50

100

150

200

0 50 10
0

15
0

20
0

50

100

150

Epoch

M
ag
n
it
u
d
e

0 50 10
0

15
0

20
0

40

60

80

100

120

140

160

Epoch

(a): VALID → REAL (b): VALID → LoveDA

(c): VALID → No flood (d): VALID → REAL + VD

FID KID

Figure 5.2: Fréchet Inception Distance and Kernel Inception Distance during 200 epochs
of training. Image source domain X is fixed but target domain Y changes on each plot.
Images resolution is 256× 256. A lower score is better.

44



We tested them individually and in different combinations. We report the FID and
KID results on Figure 5.2. Furthermore, best results are reported on Table 5.1 and
Table 5.2. We are not reporting all our tests but the ones that we consider interesting
for photo-realism improvement. This means we are not reporting those tests where a clear
loss of information is visible. From a quantitative point of view, our results are coherent
with the ones presented in the original CycleGAN paper. Our FID score is in a range of
values close to the one presented on the original paper [73]. As shown in Figure 5.2a, the
image translation from VALID to REAL is the one proceeding more smoothly. VALID
to LoveDA (Figure 5.2b) has shown a result as good as REAL. However, LoveDA is
composed of images from a high altitude. This is the reason why images from low
altitudes showed a clear loss of information with VALID as a target. Remove images
taken from FloodNet (Figure 5.2c) haven’t generate any visible effect. Farther, the FID
score suffers from a spike augmentation. This shows how this dataset combination is not
that effective.
In conclusion, we thought that it may have been good to reintroduce some images from
VisDrone (Figure 5.2c) intending to augment information transposition. This has not
generated any visible effect. We are still close to REAL from the FID score we get.
The results we discuss so far are a good starting point, however, they are still not

(a) (b)

(c) (d)

Figure 5.3: Some examples of images generated via CycleGAN at resolution of 512×512.

45



0 50 10
0

15
0

20
0

50

100

150

M
ag
n
it
u
d
e

0 50 10
0

15
0

20
0

50

100

150

0 50 10
0

15
0

20
0

20

40

60

80

100

120

140

Epoch

M
ag
n
it
u
d
e

0 50 10
0

15
0

20
0

20

40

60

80

100

120

140

Epoch

(a): VALID → REAL (b): VALID → LoveDA

(c): VALID → No flood (d): VALID → REAL + VD

FID KID

Figure 5.4: Fréchet Inception Distance and Kernel Inception Distance during 200 epochs
of training. Image source domain X is fixed but target domain Y changes on each plot.
Images resolution is 512× 512. A lower score is better.

46



Name FID

V ALID → REAL 102.23
V ALID → LoveDA 102.36
V ALID → NoFlood 100.93
V ALID → REAL+ V D 101.31

Table 5.1: Best FID value for each class
on resolution 256× 256.

Name FID

V ALID → REAL 85.03
V ALID → LoveDA 98.56
V ALID → NoFlood 85.16
V ALID → REAL+ V D 89.44

Table 5.2: Best FID value for each class
on resolution 512× 512.

good enough. We prefer images in a higher resolution. Even though CycleGAN has
some problems going to higher resolutions. Despite this, we found our trade-off on the
resolution of 512×512. This resolution allows us to have a good image resolution without
performance degradation caused by CycleGAN. We tried an even bigger resolution, but
the results were really poor.
We directly started with REAL dataset for tests at 512 × 512 resolution. The average
FID and KID values we got on this resolution are lower than the ones we got on 256×256
resolution. This means images generally look more realistic, and the generalization level
is higher. As we can see from Figure 5.4, FID and KID values we got on translation are
close in all the datasets we tested. The only one it is not in our target range is VALID
to LoveDA. This is not unexpected because, as we said previously, LoveDA imagery is
taken from really high altitude so a loss of information in our translation task is not so
unlikely. Pool and low vegetation are not so visible at that altitude; for this reason, we
could have expected a poorer result. In general, as we can see comparing Figure 5.1
and Figure 5.3, image quality at 512 × 512 is better. The network still tends to get
confused by distinguishing road and water. However, this problem was more present at
256× 256 resolution. Shroud is still present. Even though this is a problem CycleGAN
has. Some domain adaptation networks tried to overwhelm this problem, but the results
we have gotten so far are good for us.
To summarise, we can see an improvement in the lightning and shadowing an all our tests.
The ”plastic” effect is no longer present; for example, cars have a more natural feeling.
We have been able even to get a surprisingly good result on grass quality improvement.
The mesh used in the original image is always the same; however, after GAN usage,
the pattern is always different. We report a visual comparison between before and after
GAN usage in Figure 7.3.

5.2 SG-GAN

As we said, road and water tend easily to get confused by CycleGAN. We prefer avoiding
this. We want to see if it could be possible to use a semantic segmentation mask to guide

47



(a): Original (b): GAN

(c): Original (d): GAN

(e): Original (f): GAN

(g): Original (h): GAN

Figure 5.5: Visual comparison between the original images and GAN generated images.
As we can see CycleGAN is sensibly changing the look and feel of the simulation images.
Shadows and grass are looking more clued to the scene. Even water in the swimming
pool is acquiring naturalism.

48



the network to respect the semantic concept presented in an image. This is the reason
we looked at SG-GAN. It allows us to guide a GAN semantically.
Unfortunately, this approach has not shown any improvement. We tested this network
on a resolution of 256 × 256. Generated images are really confusing, and no semantic
meaning can be found. From a qualitative point of view, they are really far from being
meaningful. Some objects in the scene could be recognized. However, they are not
coherent and not well proportioned. Furthermore, a strange vortex effect is present on
some objects. Something similar was present even in the original paper, even though it
was less evident. We could speculate that one motivation is that, in our case, the amount
of labels per image is significant, and each object is small.
We provide an overview of what we have been saying on Figure 5.6. It is possible to
recognize the original image on some points of the image. On the other hand, no photo-
realism improvements are visible, and no real meaning is visible in the image.
These are the reasons due to we decide not to pursue this path. Anyhow, what we have
been saying does not mean that a semantic-guided approach is a failure in general. In
our specific case, this network does not provide excellent results, but we still consider a
semantic-guided approach something to look for in the future.

(a) Original (b) GAN

(c) Original (d) GAN

Figure 5.6: Some examples of images generated via SG-GAN.

49



Chapter 6

Experiments

Up to this point, we have presented a simulator that can produce UAV images in a
parametric way. We went further using CycleGAN to improve the photo-realism of
the images produced by the simulator. What we are still missing now is an evaluation
strategy. We will now present the strategies we adopt to evaluate our work quantitatively.
We will present the dataset composition and the pre-processing strategies we adopt based
on an experimental REAL dataset. Given that REAL dataset comes up from joining
several datasets, we needed to adapt the label to be coherent. This part will discuss
on section 6.1. We have even been testing our results on UAVid dataset. We did
this because we would like to compare our results with works already presented in the

Figure 6.1: This plot shows the synthetic pixels distribution and the original pixel dis-
tribution over classes. Full-colored ones are the original, and shaded ones are synthetic.

50



(a) Original image (b) Original ground truth (c) Our ground truth

(d) Original image (e) Original ground truth (f) Our ground truth

Figure 6.2: An overview on our label transition pre-processing

literature. We will present in section 6.2 the strategies we adopt to pre-process data from
UAVid. Several changes have been needed to allow UAVid to work with synthetic data.
We conduct most of our experiments on the VALID dataset, as discussed in section 3.3.2.

6.1 REAL dataset

So far, we have seen how the simulator works and how CycleGAN works for synthetic
to real quality augmentation. We now want to understand if simulator labels and Cy-
cleGAN images can improve the training results on semantic segmentation tasks. We
choose this task because it is not easy to collect annotations for it: we are not looking
for a specific image zone; we are classifying images pixel per pixel.
Our first attempt has been made on the dataset we used for training CycleGAN. As we
said, REAL dataset come out from different datasets, so original annotations are quite
incoherent. For this reason, we had to build a coherent annotation format from the
various datasets. We exclude LoveDA from this new task. It gave us an improvement in
lighting and shadowing. However, those images are not coming up from UAV. It would
not make sense to include it in a segmentation task on UAV images.
After an accurate dataset analysis, we decided that the labels could have fit our task:
pavement, land, pool, person, building, car, tree, water, and road. It has not been pos-

51



sible to reuse all the dataset annotations because they were too unbalanced. However,
this label transition has not generated any problem on Semantic Drone Dataset. Labeled
classes on this dataset are pretty straightforward. It means no trade-offs were needed.
Instead, we need to trade something off with FloodNet labels. Some classes - as building
and road - include a flooded sub-annotation. This means that the information was some-
how misleading for our purposes. We decide then to ignore those labeled information
and divide them. Flooded building has been considered buildings rather than wholly
ignored as the other ones. Buildings are the only objects visible even from water. It
could be possible to see some other objects under the water in flooded conditions, even
though this is not always happening. An overview of how labels have been converted
is available on Figure 6.2. In the first row an example from Drone Semantic Dataset is
shown. In the second one is visible an example from FloodNet.
We now want to introduce the set of images we used to make data augmentation. From
tests we performed, we have seen that the number of synthetic images is something that
should be fine-tuned. The motivation is that over a certain threshold, networks are start-
ing to focus on features from synthetic images than on original images. We can see from
Figure 6.1 the pixel distribution over dataset. As we can see land, building, tree and
road gain many annotations. Even pool and person class are doubling their annotations.
The only one that is not gain any annotation is water class. It has been done because
adding water images has shown general under-performing respect to the original images.
This should be caused because water is always quite difficult to replicate on game engines.

(a) (b)

(c) (d)

Figure 6.3: Example of images taken from UAVid.

52



6.2 UAVid semantic segmentation

So far, we have analyzed the pipeline we used to produce synthetic annotated images from
UAVs. We even discussed some experiments we made to evaluate the quality of those
images. We now want a robust pipeline evaluation based on already existing datasets.
We decided then to use UAVid as benchmark. A 4K dataset can provide information at
really high level of detail and - in this case - those pieces of information are provided on
different scales. This allows us to have a good level of challenge. Furthermore, allow us
to test our results on different scales, as shown in Figure 6.3.
Images in the dataset are provided from videos taken at 3840 × 2160. They are taken
from an oblique point of view in various Chinese cities. The annotated information are:
building, road, tree, vegetation and human. Furthermore, a temporality level is intro-
duced: cars are splitted on static and moving. Given the large number of background
information, they have been labeled as clutter.
In full color, the distribution of pixel labels from the original dataset is shown in Fig-

ure 6.4. Instead, the shaded bars are the pixel distribution from synthetic images added.
Synthetic images have been taken from an urban context. This has been done because
that environment was the one best fitting for this dataset. The augmentation of the
clutter label is given by the fact that, for example, if a garbage bin is close to a building

Figure 6.4: This plot show the distribution of the synthetic pixels over classes. These
annotations have been added to the original ones in UAVid dataset.

53



in the original annotation, it will be annotated as a building. Instead, the simulator gave
us a higher level of precision, even single objects are annotated as clutter.
Until now, we have been discussing detail and distribution of the dataset. What we
need to discuss now is the pre-processing strategy. Given that original images were
of size 3840 × 2160, it would be time and memory-consuming a training without any
pre-processing strategy. In the original paper, the 4K image is cropped to 9 evenly
distributed smaller overlapped images before processing. Each cropped image was of
2048 × 1024 size. This size is still too big for us. At really high-resolution CycleGAN
is not good performing. All things considered, we had to reduce the crop window: we
divided original images into sub-images of size 512× 512. CycleGAN could not give us
decent results on higher resolutions. However, the results we got during the training were
still interesting: reduced crop size allows the network to focus on fewer details per image.

54



Chapter 7

Evaluation

In the previous chapter, we discussed the composition of our datasets and the pre-
processing strategies we used. We are going to discuss now the results we get. In chapter
7.1 we showed the performance of our tests on REAL dataset, a dataset we build to
perform domain adaptation. While in chapter 7.2, we want to have a benchmark with
existing datasets. We decided to use for that UAVid, a 4K UAV images dataset. In the
following sections, we will discuss pre-processing strategy and training procedure that
lead us to over-perform the state-of-art on this dataset.

7.1 REAL dataset

In section 6.1 we introduce REAL dataset. We present how we generate coherent masks
and how we pre-process data. We can discuss now about the training part, as presented in
the chapter 2 (Background), we have been training three networks: Fully Convolutional
Network, DeepLabV3+ and PSPNet. ResNet-18 [24] has been used as backbone for all of
the different networks. These networks have been trained for 100 epochs. What we have
done during the training is leave the test set as it is and add images to the train set. For
each network we make 5 stints on: original dataset (REAL), original dataset with images
from the simulator (REAL + Simulator), original dataset with images from CycleGAN
(REAL + CycleGAN ) and original dataset with half images from the simulator and half
images from CycleGAN (REAL + Sim + CycleGAN ).
In Table 7.1 for each stint is reported the mean value for each classes. The training
stint with Synthetic and the stint without synthetic are better performing with Fully
Convolutional Network. Instead, DeepLabV3+ is showing more interesting results with
images taken from CycleGAN and the combination of simulator images and CycleGAN.
Furthermore, as we can see from Figure 7.2, synthetic data from the simulator are over-
performing the other stints during the training phase. The training stint, in general, looks
more robust and well-generalized. Instead, images from CycleGAN and a combination

55



(a): Original

(b): Ground Truth (c): FCN

(d): DeepLabV3+ (e): PSP-Net

Figure 7.1: Visual comparison between the segmentation masks obtained from the dif-
ferent networks.

of simulator and CycleGAN often underperform the initial results.
In general, we can say that Synthetic images are getting the best results on basically
each class. The only exception is on the person classes, but this is more related to the
qualities of DeepLabV3+. An overview of how predictions look from each network is
shown in Figure 7.1. Here we can see how DeepLabV3+ is better at predicting humans,
but FCN scene looks more accurate in general.

Training set Net mIoU pavement land pool person building car tree water road
REAL + Sim + CycleGAN DeepLabV3+ 59.5 84.5 75.5 70.4 34.9 71.0 56.7 50.6 40.3 52.0
REAL + CycleGAN DeepLabV3+ 58.4 83.8 75.9 68.6 33.7 70.2 52.3 51.5 37.7 52.2
REAL FCN 60.9 83.9 79.4 73.6 28.8 71.5 54.5 56.6 41.6 58.0
REAL + Simulator FCN 61.4 84.1 80.1 73.3 29.1 71.8 55.4 58.2 43.7 57.0

Table 7.1: Best result for each category on REAL test set. As we can see FCN trained
over synthetic data is over-performing other tests on almost all the tasks.

56



DeepLabV3+

0 20 40 60 80

0.4

0.5

0.6

0.7

Epoch

m
A
cc

0 20 40 60 80

0.3

0.4

0.5

0.6

Epoch

m
Io
U

FCN

0 20 40 60 80

0.4

0.5

0.6

0.7

Epoch

m
A
cc

0 20 40 60 80

0.3

0.4

0.5

0.6

Epoch

m
Io
U

PSP-Net

0 20 40 60 80

0.4

0.5

0.6

0.7

Epoch

m
A
cc

0 20 40 60 80

0.3

0.4

0.5

0.6

Epoch

m
Io
U

R RSC RC RS

Figure 7.2: Results on REAL test set during the training. Each networks have been
trained for 80 epochs. On the right side plots are regarding mIoU. R are the original
images from REAL dataset, S are images taken from the simulator and C are images
generated via CycleGAN.

57



7.2 UAVid Semantic segmentation

In section 3.4.4 we introduce UAVid dataset and in section 6.2 we showed how data are
distributed over there and how we pre-process data. Now we can discuss the training
phase. It has been split into two parts:

• we evaluate three networks and decided which one was the best for this task, based
on the results on test set;

• we evaluate the best of these three networks using a backbone with more parame-
ters.

As presented in the chapter 2 (Background), we have been training three networks:
Fully Convolutional Network, DeepLabV3+ and PSPNet. ResNet-18 [24] has been used
as backbone for all of the different networks.
These networks have been trained for 100 epochs. What we have done during the training
is leave the test set as it is and add images to the train set. For each network we make 5
stints on: original dataset, original dataset with images from the simulator (Synthetic),
original dataset with images from CycleGAN (CycleGAN ) and original dataset with half
images from the simulator and half images from CycleGAN (All).
Discussing the results from Figure 7.4, we can see how PSPNet is over-performing other
networks. DeepLabV3+ is far from the results of FCN and PSPNet. During all the
training phases, PSPNet shows the best results, and the training looks robust. The
same happens to FCN, even though it cannot reach results as good as PSPNet. What
we can see is that the addition of synthetic images is helping in the detection of humans
and vegetation. We can now speculate on the reasons: vegetation tends to be not always
perfectly coherent in the original annotation tasks. The annotation usually tends to
exceed the borders. Since our annotations are synthetically generated, they perfectly fit
the original image. This could be the reason for vegetation detection. Instead, regard-
ing humans, we can suppose that data augmentation is doing most of the work. In the
original dataset, the number of humans was quite poor.
So far, what we were shown is visible even in Table 7.2. PSPNet is showing the best
performance on basically every dataset combination. As we saw in the experimental
test, synthetic image data augmentation over-performs other techniques on most tasks.

Training set Net mIoU Clutter Building Road Static Car Tree Vegetation Human Moving Car
UAVid + Sim + CycleGAN PSPNet 66.8 61.8 90.2 75.9 61.6 76.4 66.6 34.6 67.4
UAVid + CycleGAN PSPNet 66.5 61.8 90.2 75.8 61.8 76.0 66.2 32.9 67.3
UAVid PSPNet 66.3 61.1 90.1 75.5 61.7 76.0 65.8 33.0 67.1
UAVid + Simulator PSPNet 66.9 61.9 90.5 75.7 61.1 76.5 66.4 34.5 67.5

Table 7.2: Best result for each category on UAVid validation set. As we can see PSP-Net
trained over synthetic data is over-performing other tests on almost all the tasks.

58



(a): Original

(b): Ground Truth (c): FCN

(d): DeepLabV3+ (e): PSP-Net

Figure 7.3: Visual comparison between the segmentation masks obtained from the dif-
ferent networks.

59



Compared with REAL dataset, we can say that the difference between the various com-
binations is not so evident. The addition of synthetic images boosted us around the
1.5% on the human detection tasks. Even though the other tasks just clutter, building,
and vegetation are showing a clear improvement. In REAL dataset we saw that images
from CycleGAN and the combination of simulator images and images from CycleGAN
were not so helpful. Instead, in this case, both over-perform the original dataset results.
The most interesting results are in static and moving car detection. On these two tasks,
images from the simulator gave poor results. However, both CycleGAN and images
combination gave better results than the original dataset and better than images from
the simulator. This could be motivated by the fact that in the original dataset, there is
a huge variety in terms of car models. For this reason, CycleGAN effectively learned a
strategy to give different artifacts to the objects.
Looking at Figure 7.3 we can compare the prediction region for each network. As we can
see, DeepLabV3+ tends to suffer from the combination of the images. In some points,
the concatenation point of the two images is quite clear. This is less present on FCN,
where the big problem tends to be an enlargement of the borders. It is not unlikely, for
example, to find road borders not regular. Although PSPNet is not overwhelming
all those problems, the predicted region tends to have smoother borders and better-fit
ground truth.
So far, we have always discussed using networks with ResNet-18. Now we want to see
how the behavior change with a deeper backbone. We decided then to use ResNet-50 on
PSPNet. The name is given because 50 residual blocks are stacked, whereas in ResNet-
18 there were just 18. We did this because there is empirical evidence that these types
of networks are easier to optimize and can gain accuracy from considerably increased
depth. We decided to use PSPNet as a network because it is the one that has shown
the best results with lower parameters. As we can see from Figure 7.5, the results show
something really interesting. Going deeper reduce the importance of images from the
simulator. UAVid, UAVid + CycleGAN, UAVid + Sim + CycleGAN and UAVid +
Simulator are staying always in the same range. During the training phase, however, we
can see that images from the simulator are still looking more robust. Even though no
great differences are visible. What is quite clear is that images from the simulator are
reducing their good impact on the results. This speculation is supported by [6]. The
authors are showing how - on PACS dataset - methods such as ResNet-50 suffer of a
performance drop in the presence of larger domain gaps.

Method mIoU Building Road Tree Vegetation MovingCar StaticCar Human Clutter

CoaT (Xu et al., 2021) [72] 65.8 88.5 80.0 79.3 62.0 70.0 59.1 18.9 69.0
UNetFormer (Wang et al., 2021) [68] 67.8 87.4 81.5 80.2 63.5 73.6 56.4 31.0 68.4
PSPNet trained on original data + simulator (Our) 68.4 90.7 75.0 64.6 77.5 67.3 69.0 39.5 63.5

Table 7.3: Comparison with the current state-of-art on UAVid dataset.

60



DeepLabV3+

0 20 40 60 80 10
0

0.5

0.6

0.7

0.8

Epoch

m
A
cc

0 20 40 60 80 10
0

0.4

0.5

0.6

Epoch

m
Io
U

FCN

0 20 40 60 80 10
0

0.55

0.6

0.65

0.7

0.75

Epoch

m
A
cc

0 20 40 60 80 10
0

0.4

0.45

0.5

0.55

0.6

0.65

Epoch

m
Io
U

PSP-Net

0 20 40 60 80 10
0

0.55

0.6

0.65

0.7

0.75

Epoch

m
A
cc

0 20 40 60 80 10
0

0.4

0.45

0.5

0.55

0.6

0.65

Epoch

m
Io
U

U USC UC US

Figure 7.4: Results on test set on UAVid dataset during the training. Each networks
have been trained for 100 epochs. On the right side plots are regardind mIoU. U are the
original images from UAVid, S are images taken from the simulator and C are images
generated via CycleGAN.

61



0 20 40 60 80 10
0

0.6

0.65

0.7

Epoch

m
Io
U

U
USC
UC
US

Figure 7.5: Results on test set of ResNet-50. Network has been trained for 100 epochs
on each techniques. U are the original images from UAVid, S are images taken from the
simulator and C are images generated via CycleGAN.

In Table 7.3 is shown a comparison with the state-of-art on this dataset. We reported
the two works that have been able to get the highest mIoU on UAVid. As we can see -
using data from the simulator - we have been able to overperform the current state of
art. Co-Scale Conv-Attentional Image Transformer (CoaT) [72] is a Transformer-based
image classifier equipped with co-scale and conv-attentional mechanisms. It has obtained
a mIoU value of 65.8% on UAVid. Clutter recognition is the field where this network
has best performed. On the other hand, UNetFormer [68] propose a Transformer-based
decoder and construct an UNet-like Transformer (UNetFormer) for real-time urban scene
segmentation. Even though they can get a mIoU value of 67.8% - that is close to the
one we get - results look quite different from ours. It is interesting to note how the two
approaches diverge on detection tasks like tree, vegetation and humans. Our approach
is showing outstanding results in vegetation and humans detection. One reason could
be that a smaller prediction window helps the network focus better on vegetation and
humans artifacts. On the other side, tree are really underperforming respect to [72] and
[68]. One of the reasons for this is that - if a tree falls through two different windows - the
network tends to miss understanding if it is vegetation or a tree. This can be motivated
with the absence of global informations.
From Figure 7.3 and Figure 7.6 we have a visual comparison between the results of the
various networks. We can see how in the PSPNet ResNet-50 the borders are more de-
fined and the shapes are more consistent. Generally, this network tends to over-perform
networks trained on ResNet-18 on small object detection: car, vegetation and humans

62



are showing a big difference. Analyzing the results visually in Figure 7.6, we can see how
the predicted regions are coherent with the one from ground truth. Even though there
are some common errors:

• Borders are not always straight, concerning the original ground truth, they tend
to fit the figure better;

• Some cars are predicted to be half static and half moving, reason is that no temporal
notions are present at training time, so the network is basing the prediction on the
object positioning;

• Trees surrounded by buildings are predicted as a tree, but in the original annota-
tion, they are considered part of the building.

These errors are mostly the fault of the pre-processing strategy and manual annotations
of the ground truth. As we presented before, we are dividing the original image in
windows of 512 × 512; in this way, global information tends to get lost. A solution can
be to use some pyramidal network to rejoin the various windows. On the other side,
given that the ground truth is composed of manually annotated data, it is expected that
some errors are present. The image resolution is high - for this reason - it is hard to have
high precision from manual annotations.

63



(a): Original (b): Ground truth (c): Predicted

(d): Original (e): Ground truth (f): Predicted

(g): Original (h): Ground truth (i): Predicted

(j): Original (k): Ground truth (l): Predicted

Figure 7.6: Visual comparison between the original images, ground truth and the pre-
dicted semantic segmentation. Black is the clutter’s color; red are buildings; violet is
road; static cars are pink; dark blue are moving car; vegetation is yellow.

64



Chapter 8

Conclusion

What we proposed in this thesis is a framework able to produce realistic images with
high-quality annotations. We built a structured pipeline that starts with a UAVs simula-
tor - developed in UE - and pass through synthetic-to-real domain adaptation to improve
the photo-realism of the imagery. Our simulator can produce images from UAVs in a
parametrical way. The user can provide information about the UAV’s state and envi-
ronment. This can be done in several environments that are provided out-of-the-box.
Images from cameras are not the only information the simulator can generate; the user
could even obtain: semantic segmentation, instance segmentation, and bounding boxes.
However, our final goal was not just to have high quality; we wanted to improve the
quality of the generated images. We explored the possibility of performing synthetic-to-
real domain adaptation on the simulator images. This has shown some exciting results
in the final rendering quality. This way, we have improved lighting, shadows, and some
artifacts on cars and houses.
The idea behind the simulator is of a client-server type. In this work, we presented a
client that can use JSON as input for UAV information parametrization. Even though
we want to adapt the project during this time to have more significant support from
other platforms. As we mentioned, we would like to implement a client in ROS. This
could allow our simulator to cooperate with other software to improve the annotation
acquisition.
On the domain adaptation side, this is still a hot topic in the machine learning commu-
nity. We want to test other solutions like the one presented in [65]. CLUDA - presented
by Vayyat et al. - is a simple yet novel method for performing unsupervised domain
adaptation (UDA) for semantic segmentation by incorporating contrastive losses into a
student-teacher learning paradigm. This has been explored in a car driving context, but
given that the two domains are close, it could be interesting to explore it on UAVs, even
though this is not the only path to pursue. Diffusion models are gaining importance. In
[13], the authors show that diffusion models can achieve image sample quality superior to
the current state-of-the-art generative models. Diffusion models can then be an exciting

65



alternative to classical GANs. We would like to explore what kind of possibilities the
offer us using networks such as [53].
On the evaluation side, we tested simulated images on various datasets and with vari-
ous combinations. Using images from simulator, we have obtained state-of-art results of
68.4% on the UAVid dataset. We have explored the possibility of using synthetic im-
ages to augment data in the context of semantic segmentation. In the future, we would
like to explore the possibilities of our strategy in a context such as an object detection
and activity recognition. These tasks are strictly correlated with semantic segmentation.
However, the use of synthetic data can show some even more robust results. Another
interesting point to figure out is the possibility of extending our pipeline in fields such
as unsupervised learning. In the UAV context, most tasks focus on wildfire detection
and flooding. This is because it is not so easy to obtain images of this kind of event.
In this case, our pipeline would fit perfectly; it could help investigate newer solutions to
approach climate change disaster detection via synthetic data.

66



Bibliography

[1] Unreal engine 5 documentation. https://docs.unrealengine.com/5.0/en-US/,
27/09/2022.

[2] A. Andrade, Game engines: a survey, EAI Endorsed Transactions on Game-Based
Learning, 2 (2015), p. 150615.

[3] D. Bank, N. Koenigstein, and R. Giryes, Autoencoders, arXiv e-prints,
(2020), p. arXiv:2003.05991.

[4] S. Bi, K. Sunkavalli, F. Perazzi, E. Shechtman, V. Kim, and R. Ra-
mamoorthi, Deep cg2real: Synthetic-to-real translation via image disentanglement,
2020.

[5] M. Bińkowski, D. J. Sutherland, M. Arbel, and A. Gretton, Demysti-
fying MMD GANs, arXiv e-prints, (2018), p. arXiv:1801.01401.

[6] D. Chang, A. Sain, Z. Ma, Y.-Z. Song, and J. Guo, Mind the Gap: En-
larging the Domain Gap in Open Set Domain Adaptation, arXiv e-prints, (2020),
p. arXiv:2003.03787.

[7] L. Chen, F. Liu, Y. Zhao, W. Wang, X. Yuan, and J. Zhu, Valid: A
comprehensive virtual aerial image dataset, in 2020 IEEE International Conference
on Robotics and Automation (ICRA), 2020, pp. 2009–2016.

[8] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convo-
lution, and fully connected crfs, CoRR, abs/1606.00915 (2016).

[9] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, Encoder-
decoder with atrous separable convolution for semantic image segmentation, in
ECCV, 2018.

[10] M. J. Chong and D. Forsyth, Effectively Unbiased FID and Inception Score
and where to find them, arXiv e-prints, (2019), p. arXiv:1911.07023.

67

https://docs.unrealengine.com/5.0/en-US/


[11] T. Chowdhury, R. Murphy, and M. Rahnemoonfar, RescueNet: A High
Resolution UAV Semantic Segmentation Benchmark Dataset for Natural Disaster
Damage Assessment, arXiv e-prints, (2022), p. arXiv:2202.12361.

[12] M. Contributors, MMSegmentation: Openmmlab semantic segmentation toolbox
and benchmark. https://github.com/open-mmlab/mmsegmentation, 2020.

[13] P. Dhariwal and A. Nichol, Diffusion Models Beat GANs on Image Synthesis,
arXiv e-prints, (2021), p. arXiv:2105.05233.

[14] J. Ding, N. Xue, Y. Long, G.-S. Xia, and Q. Lu, Learning roi transformer
for oriented object detection in aerial images, in 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019, pp. 2844–2853.

[15] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, CARLA:
An open urban driving simulator, in Proceedings of the 1st Annual Conference on
Robot Learning, 2017, pp. 1–16.

[16] O. Elharrouss, S. Al-Maadeed, N. Subramanian, N. Ottakath, N. Al-
maadeed, and Y. Himeur, Panoptic Segmentation: A Review, arXiv e-prints,
(2021), p. arXiv:2111.10250.

[17] Epic Games, Unreal engine. https://www.unrealengine.com/en-US,
27/09/2022.

[18] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zis-
serman, The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results.
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html,
2012.

[19] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Lavi-
olette, M. March, and V. Lempitsky, Domain-adversarial training of neural
networks, Journal of Machine Learning Research, 17 (2016), pp. 1–35.

[20] K. Gao, J. Wang, B. Wang, R. Wang, and J. Jia, Uav test data generation
method based on cyclegan, in 2021 8th International Conference on Dependable
Systems and Their Applications (DSA), 2021, pp. 338–343.

[21] R. Garg, V. K. BG, G. Carneiro, and I. Reid, Unsupervised CNN for
Single View Depth Estimation: Geometry to the Rescue, arXiv e-prints, (2016),
p. arXiv:1603.04992.

[22] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, Generative adversarial
networks, 2014.

68

https://github.com/open-mmlab/mmsegmentation
https://www.unrealengine.com/en-US


[23] A. M. Hafiz and G. M. Bhat, A survey on instance segmentation: state of the
art, International Journal of Multimedia Information Retrieval, 9 (2020), pp. 171–
189.

[24] K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image
Recognition, arXiv e-prints, (2015), p. arXiv:1512.03385.

[25] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochre-
iter, Gans trained by a two time-scale update rule converge to a local nash equi-
librium, in Advances in Neural Information Processing Systems, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.,
vol. 30, Curran Associates, Inc., 2017.

[26] S. Hong, S. Kang, and D. Cho, Patch-level augmentation for object detection
in aerial images, in 2019 IEEE/CVF International Conference on Computer Vision
Workshop (ICCVW), 2019, pp. 127–134.

[27] L. Hoyer, D. Dai, and L. Van Gool, HRDA: Context-Aware High-
Resolution Domain-Adaptive Semantic Segmentation, arXiv e-prints, (2022),
p. arXiv:2204.13132.

[28] A. Jabbar, X. Li, and B. Omar, A Survey on Generative Adversarial Networks:
Variants, Applications, and Training, arXiv e-prints, (2020), p. arXiv:2006.05132.

[29] B. Kiefer, M. Messmer, and A. Zell, Diminishing Domain Bias by Lever-
aging Domain Labels in Object Detection on UAVs, arXiv e-prints, (2021),
p. arXiv:2101.12677.

[30] B. Kiefer, D. Ott, and A. Zell, Leveraging Synthetic Data in Object Detection
on Unmanned Aerial Vehicles, arXiv e-prints, (2021), p. arXiv:2112.12252.

[31] K. Konen and T. Hecking, Increased robustness of object detection on aerial
image datasets using simulated imagery, in 3rd IEEE Conference on Artificial Intel-
ligence and Knowledge Engineering, December 2021.

[32] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with
deep convolutional neural networks, in Advances in Neural Information Processing
Systems, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, eds., vol. 25, Curran
Associates, Inc., 2012.

[33] R. G. Lakshmi Narayanan and O. C. Ibe, 6 - joint network for disaster relief
and search and rescue network operations, in Wireless Public Safety Networks 1,
D. Câmara and N. Nikaein, eds., Elsevier, 2015, pp. 163–193.

69



[34] C. Li, T. Yang, S. Zhu, C. Chen, and S. Guan, Density map guided object
detection in aerial images, in 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), 2020, pp. 737–746.

[35] P. Li, X. Liang, D. Jia, and E. P. Xing, Semantic-aware Grad-GAN for
Virtual-to-Real Urban Scene Adaption, arXiv e-prints, (2018), p. arXiv:1801.01726.

[36] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J.
Belongie, Feature pyramid networks for object detection, CoRR, abs/1612.03144
(2016).

[37] J. Long, E. Shelhamer, and T. Darrell, Fully Convolutional Networks for
Semantic Segmentation, arXiv e-prints, (2014), p. arXiv:1411.4038.

[38] Y. Lyu, G. Vosselman, G.-S. Xia, A. Yilmaz, and M. Y. Yang, Uavid: A
semantic segmentation dataset for uav imagery, ISPRS Journal of Photogrammetry
and Remote Sensing, 165 (2020), pp. 108–119.

[39] M. Messmer, B. Kiefer, and A. Zell, Gaining Scale Invariance in UAV
Bird’s Eye View Object Detection by Adaptive Resizing, arXiv e-prints, (2021),
p. arXiv:2101.12694.

[40] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and
D. Terzopoulos, Image Segmentation Using Deep Learning: A Survey, arXiv
e-prints, (2020), p. arXiv:2001.05566.

[41] C. Mostegel, M. Maurer, N. Heran, J. P. Puerta, and F. Fraundorfer,
Semantic drone dataset, Jan 2019.

[42] S. I. Nikolenko, Synthetic-to-Real Domain Adaptation and Refinement, Springer
International Publishing, Cham, 2021, pp. 235–268.

[43] I. of Engineering Geodesy and G. U. o. T. Measurement Sys-
tems (IGMS), Semantic drone dataset, 2019.

[44] K. O’Shea and R. Nash, An Introduction to Convolutional Neural Networks,
arXiv e-prints, (2015), p. arXiv:1511.08458.

[45] S. J. Pan and Q. Yang, A survey on transfer learning, IEEE Transactions on
Knowledge and Data Engineering, 22 (2010), pp. 1345–1359.

[46] M. Park, D. Q. Tran, D. Jung, and S. Park, Wildfire-detection method using
densenet and cyclegan data augmentation-based remote camera imagery, Remote
Sensing, 12 (2020).

70



[47] G. Parmar, R. Zhang, and J.-Y. Zhu, On Aliased Resizing and Surprising
Subtleties in GAN Evaluation, arXiv e-prints, (2021), p. arXiv:2104.11222.

[48] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, ENet: A Deep
Neural Network Architecture for Real-Time Semantic Segmentation, arXiv e-prints,
(2016), p. arXiv:1606.02147.

[49] M. Rahnemoonfar, T. Chowdhury, A. Sarkar, D. Varshney, M. Yari,
and R. R. Murphy, Floodnet: A high resolution aerial imagery dataset for post
flood scene understanding, IEEE Access, 9 (2021), pp. 89644–89654.

[50] R. Raj, S. Kar, R. Nandan, and A. Jagarlapudi, Precision Agriculture and
Unmanned Aerial Vehicles (UAVs), Springer International Publishing, Cham, 2020,
pp. 7–23.

[51] S. R. Richter, H. Abu AlHaija, and V. Koltun, Enhancing Photorealism
Enhancement, arXiv e-prints, (2021), p. arXiv:2105.04619.

[52] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, Playing for Data:
Ground Truth from Computer Games, arXiv e-prints, (2016), p. arXiv:1608.02192.

[53] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,
High-resolution image synthesis with latent diffusion models, in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June
2022, pp. 10684–10695.

[54] O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutional Networks
for Biomedical Image Segmentation, arXiv e-prints, (2015), p. arXiv:1505.04597.

[55] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, The
synthia dataset: A large collection of synthetic images for semantic segmentation
of urban scenes, in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016.

[56] A. R. Sekkat, Y. Dupuis, P. Vasseur, and P. Honeine, The omnis-
cape dataset, in 2020 IEEE International Conference on Robotics and Automation
(ICRA), 2020, pp. 1603–1608.

[57] S. Shah, D. Dey, C. Lovett, and A. Kapoor, Aerial Informatics and Robotics
platform, Tech. Rep. MSR-TR-2017-9, Microsoft Research, 2017.

[58] H. Shakhatreh, A. H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Almaita,
I. Khalil, N. S. Othman, A. Khreishah, and M. Guizani, Unmanned aerial
vehicles (uavs): A survey on civil applications and key research challenges, IEEE
Access, 7 (2019), pp. 48572–48634.

71



[59] C. L. Shital Shah, Debadeepta Dey and A. Kapoor, Airsim: High-
fidelity visual and physical simulation for autonomous vehicles, in Field and Service
Robotics, 2017.

[60] Stanford Artificial Intelligence Laboratory et al., Robotic operating
system.

[61] J. Su, J. Liao, D. Gu, Z. Wang, and G. Cai, Object detection in aerial images
using a multiscale keypoint detection network, IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 14 (2021), pp. 1389–1398.

[62] T. Sun, M. Segu, J. Postels, Y. Wang, L. Van Gool, B. Schiele,
F. Tombari, and F. Yu, SHIFT: a synthetic driving dataset for continuous multi-
task domain adaptation, in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2022, pp. 21371–21382.

[63] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, Re-
thinking the Inception Architecture for Computer Vision, arXiv e-prints, (2015),
p. arXiv:1512.00567.

[64] A. Tsirikoglou, G. Eilertsen, and J. Unger, A survey of image synthesis
methods for visual machine learning, Computer Graphics Forum, 39 (2020).

[65] M. Vayyat, J. Kasi, A. Bhattacharya, S. Ahmed, and R. Tallamraju,
Cluda : Contrastive learning in unsupervised domain adaptation for semantic seg-
mentation, 2022.

[66] J. Wang, Y. Yang, Y. Chen, and Y. Han, Lightergan: An illumination en-
hancement method for urban uav imagery, Remote. Sens., 13 (2021), p. 1371.

[67] J. Wang, Z. Zheng, A. Ma, X. Lu, and Y. Zhong, LoveDA: A Remote Sensing
Land-Cover Dataset for Domain Adaptive Semantic Segmentation, arXiv e-prints,
(2021), p. arXiv:2110.08733.

[68] L. Wang, R. LI, C. Zhang, S. Fang, C. Duan, X. Meng, and P. Atkinson,
Unetformer: A unet-like transformer for efficient semantic segmentation of remote
sensing urban scene imagery, ISPRS Journal of Photogrammetry and Remote Sens-
ing, 190 (2022), pp. 196–214.

[69] M. Wang and W. Deng, Deep visual domain adaptation: A survey, Neurocom-
puting, 312 (2018), pp. 135–153.

[70] Y. Z. S. Q. Z. X. T. S. K. Y. W. A. Y. Weichao Qiu, Fangwei Zhong, Un-
realcv: Virtual worlds for computer vision, ACM Multimedia Open Source Software
Competition, (2017).

72



[71] Q. Xu, G. Huang, Y. Yuan, C. Guo, Y. Sun, F. Wu, and K. Weinberger,
An empirical study on evaluation metrics of generative adversarial networks, arXiv
e-prints, (2018), p. arXiv:1806.07755.

[72] W. Xu, Y. Xu, T. Chang, and Z. Tu, Co-scale conv-attentional image trans-
formers, in Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), October 2021, pp. 9981–9990.

[73] H. You, Y. Cheng, T. Cheng, C. Li, and P. Zhou, Bayesian Cycle-Consistent
Generative Adversarial Networks via Marginalizing Latent Sampling, arXiv e-prints,
(2018), p. arXiv:1811.07465.

[74] F. Yu and V. Koltun, Multi-scale context aggregation by dilated convolutions, in
4th International Conference on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2-4, 2016, Conference Track Proceedings, Y. Bengio and Y. Le-
Cun, eds., 2016.

[75] F. Yu, V. Koltun, and T. Funkhouser, Dilated Residual Networks, arXiv
e-prints, (2017), p. arXiv:1705.09914.

[76] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, Pyramid Scene Parsing Network,
arXiv e-prints, (2016), p. arXiv:1612.01105.

[77] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, Unpaired image-to-image
translation using cycle-consistent adversarial networks, in 2017 IEEE International
Conference on Computer Vision (ICCV), 2017, pp. 2242–2251.

[78] P. Zhu, L. Wen, D. Du, X. Bian, H. Fan, Q. Hu, and H. Ling, Detection
and tracking meet drones challenge, IEEE Transactions on Pattern Analysis and
Machine Intelligence, (2021), pp. 1–1.

73



Acknowledgements

I would like to express my very great appreciation to Kai Konen for his advices but
also his assistance in keeping my progress on schedule. The time spent working on this
thesis with him has been really inspiring. Furthermore, I would like to express my deep
gratitude to Professor Barbara Hammer and Professor Serena Morigi for their patient
guidance, enthusiastic encouragement and useful critiques of this research work. It was
such an honor work with you.
I would like to adress a special thanks to Bielefeld University and Bologna University.
They offered me an opportunity - the double degree programme - that improved the
person I am. This is an experience I will never forget. I would also like to extend my
thanks to the technicians of the laboratory of the TechFak department for their help
in offering me the resources in running the program. Over the time we had couple of
problems to solve, but we did it.
Finally, I wish to thank my family for their support and encouragement throughout my
studies. You have always trusted my capabilities. I can only appreciate your encourage-
ment. My final thanks go to everyone who has helped and supported me over the years.
The list is very long and I cannot list all of you. But if you are reading this section it
means I have considered you an important person during my personal life project.

74


	Introduction
	Background
	UAVs
	Image segmentation
	Fully Convolutional Network
	PSPNet
	DeepLabV3+

	Generative adversarial networks (GANs)
	GAN Metrics
	Fréchet inception distance
	Kernel inception distance
	CycleGAN
	SG-GAN

	Synthetic-To-Real Domain Adaptation

	Related Work
	Synthetic-to-Real state-of-art
	A review on deep learning in UAV
	Synthetic datasets
	AirSim
	VALID

	Real datasets
	Semantic Drone Dataset
	FloodNet Dataset
	LoveDA
	UAVid


	Simulator
	Unreal Engine
	Architecture
	Server
	APIs
	Client

	Domain Adaptation
	CycleGAN
	SG-GAN

	Experiments
	REAL dataset
	UAVid semantic segmentation

	Evaluation
	REAL dataset
	UAVid Semantic segmentation

	Conclusion

