tecniche di machine learning per la predizione del rating delle applicazioni all’interno di un play store

Perda, Fabio (2022) tecniche di machine learning per la predizione del rating delle applicazioni all’interno di un play store. [Laurea], Università di Bologna, Corso di Studio in Informatica per il management [L-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore. (Contatta l'autore)

Abstract

Il mio progetto di tesi ha come obiettivo quello di creare un modello in grado di predire il rating delle applicazioni presenti all’interno del Play Store, uno dei più grandi servizi di distribuzione digitale Android. A tale scopo ho utilizzato il linguaggio Python, che grazie alle sue librerie, alla sua semplicità e alla sua versatilità è certamen- te uno dei linguaggi più usati nel campo dell’intelligenza artificiale. Il punto di partenza del mio studio è stato il Dataset (Insieme di dati strutturati in forma relazionale) “Google Play Store Apps” reperibile su Kaggle al seguente indirizzo: https://www.kaggle.com/datasets/lava18/google-play-store-apps, contenente 10841 osservazioni e 13 attributi. Dopo una prima parte relativa al caricamen- to, alla visualizzazione e alla preparazione dei dati su cui lavorare, ho applica- to quattro di↵erenti tecniche di Machine Learning per la stima del rating delle applicazioni. In particolare, sono state utilizzate:https://www.kaggle.com/datasets/lava18/google-play-store-apps, contenente 10841 osservazioni e 13 attributi. Dopo una prima parte relativa al caricamento, alla visualizzazione e alla preparazione dei dati su cui lavorare, ho applicato quattro differenti tecniche di Machine Learning per la stima del rating delle applicazioni: Ridje, Regressione Lineare, Random Forest e SVR. Tali algoritmi sono stati applicati attuando due tipi diversi di trasformazioni (Label Encoding e One Hot Encoding) sulla variabile ‘Category’, con lo scopo di analizzare come le suddette trasformazioni riescano a influire sulla bontà del modello. Ho confrontato poi l’errore quadratico medio (MSE), l’errore medio as- soluto (MAE) e l’errore mediano assoluto (MdAE) con il fine di capire quale sia l’algoritmo più efficiente.

Abstract
Tipologia del documento
Tesi di laurea (Laurea)
Autore della tesi
Perda, Fabio
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Machine Learning,statistica,Analisi Dati,Data Science,Python,Regressione
Data di discussione della Tesi
11 Ottobre 2022
URI

Altri metadati

Gestione del documento: Visualizza il documento

^