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Mitigating non-Lambertian surfaces issues in

Stereo Matching with Neural Radiance Fields

Abstract

Depth estimation from images has long been regarded as a preferable alter-
native compared to expensive and intrusive active sensors, such as LiDAR
and ToF. The topic has attracted the attention of an increasingly wide audi-
ence thanks to the great amount of application domains, such as autonomous
driving, robotic navigation and 3D reconstruction.

Among the various techniques employed for depth estimation, stereo match-
ing is one of the most widespread, owing to its robustness, speed and sim-
plicity in setup. Recent developments has been aided by the abundance of
annotated stereo images, which granted to deep learning the opportunity
to thrive in a research area where deep networks can reach state-of-the-art
sub-pixel precision in most cases.

Despite the recent findings, stereo matching still begets many open chal-
lenges, two among them being finding pixel correspondences in presence
of objects that exhibits a non-Lambertian behaviour and processing high-
resolution images.

Recently, a novel dataset named Booster, which contains high-resolution
stereo pairs featuring a large collection of labeled non-Lambertian objects,
has been released. The work shown that training state-of-the-art deep neural
network on such data improves the generalization capabilities of these net-
works also in presence of non-Lambertian surfaces. Regardless being a further
step to tackle the aforementioned challenge, Booster includes a rather small
number of annotated images, and thus cannot satisfy the intensive training
requirements of deep learning.

This thesis work aims to investigate novel view synthesis techniques to aug-
ment the Booster dataset, with ultimate goal of improving stereo matching
reliability in presence of high-resolution images that displays non-Lambertian
surfaces.
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Introduction

Nowadays, depth estimation from images is a preferred alternative with re-
spect to active sensors, thanks to its favourable performance-vs-cost trade-off,
shown in Figure 1.

Figure 1: Performances comparison between different depth estimation technolo-
gies.

Inferring depth from an image means measuring the distance of each pixel of
such image, relative to the camera that acquired it. There are several setups
to estimate depth from images. Among them:

• Multi-view setup, in which multiple cameras acquire the scene from
different points of view, or a single camera moves in the space while
acquiring the scene;

• Two-view setup, in which a pair of cameras, usually aligned, fronto-
parallel and co-planar to mimic stereoptic human vision, acquire the
scene from a single point of view, with a left and right perspective;

• Mono-view setup, in which a single camera acquires the scene from a
single point of view, with a single perspective.
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The main focus of this thesis work is to mitigate issues that may arise in
two-views setups. The focus is on this kind of setup since it has a better
operability with respect to multi-view systems, with autonomous driving
systems being a clear case, as depicted in Figure 2.

Figure 2: Two-view setups can quickly acquire a scene and, depending on the
underlying algorithm, perform real-time inference.

Moreover, the two-view setup tends to be more precise with respect to the
monocular depth estimation one, since the former is based on a geometric
formulation.

The fundamental algorithm to infer depth from images is the so called stereo
matching algorithm, that consists into finding pixels in the two images that
correspond to the same 3D point in the scene, to triangulate its position. Tra-
ditional stereo algorithms have been developed following a common pipeline.
With the advent of deep learning the steps of such pipeline have been refor-
mulated as stand-alone learnable neural networks, that required intermediate
supervised data, which was difficult to collect and often imprecise. Nowa-
days, there exist end-to-end architectures that can reach sub-pixel precision,
which only require input stereo pairs with the associated ground-truth as
supervision.

Despite the outstanding results, stereo matching still presents two major
issues:

(i) Finding pixel correspondences in presence of non-Lambertian surfaces,
since, due to inconsistencies in the left and right view, it may not be
always possible to find satisfying matches;
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(ii) Processing high-resolution images, since larger disparity ranges leads
to a greater number of occluded and untextured pixels, in which once
again it may not be always possible to find matches. Furthermore,
processing high-resolution images generates computational complexity
issues, in particular when deep networks are concerned.

Recently, a novel dataset named Booster, which contains high-resolution
stereo pairs featuring a large collection of labeled non-Lambertian objects,
has been released. The work also shown that training state-of-the-art deep
neural network on such data improves the generalization capabilities of these
networks, also in presence of non-Lambertian surfaces. However, since Booster
is acquired with a space-time framework, followed by manual cleaning and
filtering, the process to generate high-quality data can be long and cumber-
some. Indeed, the Booster dataset includes a rather small number of anno-
tated images, and thus cannot satisfy the intensive training requirements of
deep learning.

To overcome this issue it is possible to extend Booster with synthetic but re-
alistic images, generated by means of novel view synthesis techniques. Such
techniques takes as input a set of sparse views of a scene, along with the re-
spective camera poses, and generates new views of the scene, unseen during
the training. At this time, one of the most widespread novel view synthe-
sis technique is without any doubt represented by Neural Radiance Fields
(NeRF). NeRF represents a scene as a continuous volumetric function, pa-
rameterized by multi-layer perceptrons, optimized to represent this mapping
by regressing from a single 5D coordinate to a single volume density and
view-dependent RGB color, which are later accumulated into a 2D image by
means of traditional rendering techniques.

Although NeRF has demonstrated impressive results, the model presents
some flaws. However, thanks to its outstanding success a long series of iter-
ations has been proposed. Such iterations aim to:

(i) Improve scene representation capabilities by applying input encodings
to the networks;

(ii) Speed-up training and inference by employing efficient hash encoding
of input, output and weights or by means of knowledge distillation;

(iii) Endow the models with relighting and material editing capabilities by
scene factorization.

The thesis work is organized as follows:
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• Chapter 1 provides the required background on depth estimation with
a literature review on stereo matching, benchmarks and novel view
synthesis techniques;

• Chapter 2 presents the space-time framework along with RAFT-Stereo,
a state-of-the-art stereo matching deep neural network employed to
produce the Booster dataset;

• Chapter 3 depicts the main novel view synthesis techniques based on
NeRF, later employed to perform experiments to augment the Booster
dataset;

• Chapter 4 shows the performed experiments within the relevant results
and considerations about them. Also a methodology to augment the
Booster dataset with high-quality data is devised.

4



Chapter 1

Background and Related Works

In Computer Vision (CV) and Computer Graphics (CG), the 3D reconstruc-
tion task consists in capturing the shape and appearance of real-world ob-
jects. When such reconstruction is based on images, the fundamental ques-
tion is: given that all points in the scene that fall along a ray to the pinhole
are projected to the same point in the image, how is possible to recover depth
information?

There is no single unified theory for scene reconstruction yet [29]. Various
techniques uses disparate visual cues, such as motion, binocular stereopsis,
multiple views or texture.

1.1 Depth estimation

Depth estimation is the task of measuring the distance of each pixel of an
image relative to the camera [50]. Traditional methods employs multi-view
geometry to find matches between images, while newer approaches directly
estimate depth by minimizing a regression loss or by learning to generate a
novel view from a sequence of images.

Extracting depth information from images has always been a challenging
task. Due to technological constraints, such as hardware accuracy and rudi-
mental algorithms, earlier solutions required expensive equipment as well as
unavoidable human intervention, resulting in inaccuracy in the majority of
situations nonetheless. Recently, as a result of technology advancements,
many approaches for estimating accurate depth information from single or
multiple images have been developed.
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Currently there are two main methods for depth estimation based on Com-
puter Vision [18]:

• Active methods, in which a controlled energy beam is transmitted
towards the target and then the reflected echo is captured through a
receiving device;

• Passive methods, in which the object is exposed to natural light and
captured by a camera.

Active methods can achieve an higher accuracy at a correspondingly higher
cost, also with several restrictions on the use scenario. On the other hand,
passive methods have lower accuracy, but contained cost and better oper-
ability.

1.1.1 Active methods

The fundamental idea behind active methods is to generate a controlled
energy beam, then, receive and process the reflected energy. A receiving
and sensing device, as well as subsequent processing, are required in addition
to the imaging equipment. Active methods provide are more accurate than
passive methods, which use imaging equipment directly for depth information
processing, but they also have the drawbacks of sophisticated technological
implementation and a higher cost.

1.1.1.1 Structured Light

A Structured Light (SL) setup consists in the employment of infrared lasers
to project light with certain structural characteristics onto the subject, as
depicted in Figure 1.1, while an infrared camera collects and reflects the
structured light pattern, extracting depth information according to the prin-
ciple of triangulation [32, 11].

Such technique does not depend on the color and texture of the object itself.
Actively projecting a known pattern leads to fast and robust matching of
feature points, which can achieve higher accuracy. However, it also has its
shortcomings, such as being difficult to use in strong light environments, short
measurement distances, and being susceptible to reflections from smooth flat
surfaces.

Alex Costanzino 6 Chapter 1



Figure 1.1: A Structured Light setup.

1.1.1.2 Time of Flight

A Time of Flight (ToF) setup works by illuminating the scene with a modu-
lated light source and capturing the reflected light. The phase shift between
the illumination and the reflection is then measured and translated to dis-
tance [6, 18]. A rudimental scheme1 is depicted in Figure 1.2.

Figure 1.2: A Time of Flight setup.

Usually, the illumination is generated by a solid-state laser or a LED operat-
ing in the near-infrared range, invisible to the human eyes, while an imaging
sensor, devised to operate in the same spectrum, capture the light and con-
verts the photonic energy into electrical current. The light entering the sensor
has an ambient component and a reflected component. Depth information is
only embedded in the reflected component, hence, the main drawback of ToF
sensors is that an high ambient component may reduces the signal-to-noise
ratio.

1By RCraig09 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/

index.php?curid=89646954.
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However, in contrast to stereo vision or triangulation systems, ToF systems
are very compact, since the illumination is placed just next to the lens,
whereas other systems need a certain minimum baseline. Moreover, in con-
trast to laser scanning systems, no mechanical moving parts are needed.
Besides, since the distance information is extracted directly from the output
signals of the ToF sensor, the process requires little computational resources,
in contrast to stereo vision, which utilizes complex algorithms. Furthermore,
ToF cameras are able to measure the distances within a complete scene with
a single shot.

1.1.1.3 Laser scanning

Light Detection and Ranging (LiDAR) is a sensing technique that uses light
in the form of a pulsed laser to measure ranges of a scene. These light
pulses generate precise 3D information about the shape of the scene and its
surface characteristics. This method is based on the same principle of Time
of Flight methods. However, ToF emits light signals, while LiDAR emits
laser beams. Moreover, ToF signals are easier to interfere and the accuracy
and speed will decrease as the distance is farther, while LiDAR laser beam
has anti-interference properties and is suitable for long-distance ranging.

The functional difference between LiDAR and other kinds of ToF techniques
is that LiDAR uses pulsed lasers to generate a point cloud, which is then used
to construct a 3D map, while ToF methods generate depth maps using light
detection, which is typically accomplished with a standard RGB camera [55].
ToF advantage over LiDAR is that the former requires less specialized equip-
ment and can thus be used with smaller and less expensive devices, while the
advantage of LiDAR stems from the ease with which a computer can process
a point cloud as opposed to a depth map.

1.1.2 Stereo matching

Stereo matching is the process of acquiring two or more images and building a
3D model of the scene by finding matching pixels in the images and converting
their 2D positions into 3D depths [42].

There exists a variety of search techniques that can be used to match pixels,
either based on their local appearance as well as the appearance of neigh-
bouring pixels. In the case of stereo matching there are some additional infor-
mation available, namely, the positions and calibration data for the cameras
that took the pictures of the same static scene. Such information can be

Alex Costanzino 8 Chapter 1



exploited to reduce the number of potential correspondences, speeding up
the matching and increasing its reliability.

1.1.2.1 Epipolar geometry

A pixel in one image x0 projects to an epipolar line segment in the other
image, as shown is Figure 1.3a. Such line segment is bounded (i) at one end
by the projection of the original viewing ray at infinity p∞; (ii) at the other
end by the projection of the original camera center c0 into the second camera,
which is known as the epipole e1.

If the epipolar line in the second image is projected back into the first, another
line is obtained, this time bounded by the other corresponding epipole e0.
Extending both line segments to infinity, a pair of corresponding epipolar
lines are obtained, as depicted in Figure 1.3b. Such epipolar lines are the
intersection of the two image planes with the epipolar plane that passes
through both camera centers c0 and c1 as well as the point of interest p [42,
25].

(a) Epipolar line corresponding to one
ray.

(b) Corresponding set of epipolar lines
and their epipolar plane.

Figure 1.3: A scheme of an epipolar geometry setup.

The epipolar geometry for a pair of cameras is implicit in the relative pose
and calibrations of the cameras [25]. Once such geometry has been computed,
the epipolar line corresponding to a pixel in one image can be exploited to
constrain the search for corresponding pixels in the other image. This search
is usually devised by means of a general correspondence algorithm, such as
optical flow, considering only locations along the epipolar line [42].

Alex Costanzino 9 Chapter 1



1.1.2.2 Rectification

A more efficient algorithm can be obtained by rectifying in prior the input
images so that corresponding horizontal scanlines are epipolar lines [42, 19,
13], making possible to match horizontal scanlines independently.

A simple way to rectify the two images is to [10]:

(i) Rotate both cameras so that they are looking perpendicular to the line
joining the camera centers c0 and c1;

(ii) Determine the desired twist around the optical axes that makes the
up vector perpendicular to the camera center line, ensuring that corre-
sponding epipolar lines are horizontal and that the disparity2 for points
at infinity is null;

(iii) If necessary, rescale the images to account for different focal lengths,
magnifying the smaller image to avoid aliasing.

Image rectification is an equivalent alternative to perfect camera co-planarity.
Even with high-precision equipment, it is usually performed since it may be
impractical to maintain perfect co-planarity between cameras.

1.1.2.3 Standard rectified geometry

When additional information about the imaging process is available, for in-
stance if the images were acquired on co-planar photographic plates, more
specialized and accurate algorithms can be devised. The aforementioned
setup is denominated standard rectified geometry and is employed in a lot
of stereo camera setups and stereo algorithms, leading to a simple inverse
relationship between 3D depths z and disparities d,

d = f
b

z
(1.1)

where f is the focal length measured in pixels and b is the baseline [42, 13].

The equations
x

′
= x+ d(x, y), y

′
= y (1.2)

2The concept of disparity was first introduced in the context of human vision to describe
the difference in location of corresponding features perceived by the eyes.
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describe the relationship between corresponding pixel coordinates in the left
and right images [42]. In this manner, the task of extracting depth from a
set of images becomes estimating the disparity map d(x, y).

After rectification, it is easy to compare the similarity of pixels at corre-
sponding locations (x, y) and (x′, y′) = (x+ d, y), derived from Equation 1.1
and Equation 1.2, to store them in a disparity space image (DSI) C(x, y, d)
for further processing [42].

1.1.2.4 Sparse correspondence

Earlier stereo matching algorithms were feature-based: at first a set of po-
tentially matchable locations were extracted by means of interest operators,
then a search for corresponding location was performed by means of window-
based metrics.

Such limitation was due to: (i) computational resource limitations; (ii) neces-
sity to limit the response of stereo algorithm to obtain more reliable matches.

Recent works focus on the extraction of highly reliable features to use them as
seed to grow additional matches or as input to dense depth solvers. Similar
approaches have also been employed to wide-baseline multi-view problems
for 3D surface reconstruction [42].

1.1.2.5 Dense correspondence

Nowadays, sparse matching algorithms are seldom employed since the focus
is directed towards dense correspondence, better suited for applications such
as image-based rendering and modelling [42].

These algorithms have been developed following a common pipeline that
involves: (i) matching cost computation and aggregation; (ii) disparity com-
putation and optimization; (iii) disparity refinement [31, 42].

It is possible to distinguish two main categories [31, 42]:

• Local methods, in which disparity computation at a given point de-
pends only on intensity values within a finite window. These algorithms
usually make implicit smoothness assumptions by aggregating support.

• Global methods, which make explicit smoothness assumptions and
then solve a global optimization problem. These algorithms normally
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do not perform an aggregation step, since they rather seek for a dis-
parity assignment that minimizes a global cost function consisting of
data and smoothness terms.

The main difference among these algorithms is the minimization procedure
adopted. Between these two classes, there are certain iterative algorithms
that do not explicitly specify a global function to minimize, but whose be-
havior mimics closely the ones of iterative optimization algorithms, such as
hierarchical coarse-to-fine algorithm, which operate on an image pyramid
where results from coarser levels are used to constrain a more local search
at finer levels [53]. Situated between local and global methods there is also
the famous Semi-Global matching (SGM), which approximates a 2D cost
function via 1D optimization [39].

1.1.2.6 Similarity measures

The first step of any dense stereo matching algorithm is a similarity measure
that compares pixel values in order to determine how likely they are to be
in correspondence. The use of similarity measures is quite widespread in
Computer Vision, hence, a lot of functions have been devised; however, few
others have been developed specifically for stereo matching [31].

Given a patch from the left image IL(x) sampled at discrete pixel locations
xi = (xi, yi), we wish to find where it is located in right image IR(x), sliding
the patch of the left image on the right image.

The most common pixel-based matching costs include:

• Sum of Squared Differences (SSD), defined as

SSD(u) =
∑
i

[
IR(xi + u)− IL(xi)

]2
where u = (u, v) is the pixel displacement;

• Sum of Absolute Differences (SAD), defined as

SAD(u) =
∑
i

∣∣IR(xi + u)− IL(xi)
∣∣

There is also a class of function based on the cross-correlation between
patches, that includes:
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• Cross-Correlation (CC), defined as

CC(u) =
∑
i

IR(xi + u) · IL(xi)

• Normalized Cross-Correlation (NCC), defined as

NCC(u) =

∑
i IR(xi + u) · IL(xi)√∑

i IR(xi + u)2 ·
√∑

i IL(xi)2

• Zero-Mean Normalized Cross-Correlation (ZNCC), defined as

ZNCC(u) =

∑
i

[
IR(xi + u)− µ(IR)

]
·
[
IL(xi)− µ(IL)

]√∑
i

[
IR(xi + u)− µ(IR)

]2 ·√∑i

[
IL(xi)− µ(IL)

]2
where µ represents the mean function.

The latter turns out a similarity function very robust to intensity changes,
which is a good feature if significant exposure or appearance variation be-
tween images to be matched are expected. However, such function is also
computationally expensive.

Recently, robust measures, such as contamined Gaussians and truncated
quadratics, have been proposed [42]. These measures are based on a gen-
eral function3,

SRD(u) =
∑
i

ρ
(
IR(xi + u)− IL(xi)

)
(1.3)

where ρ is a robust norm, a function that grows less quickly than the quadratic
penalty associated with least squares [41, 49]. These measures are useful since
they limit the influence of mismatches during aggregation.

Interestingly, color information does not appear to be helpful when employed
in matching costs [3], even though it is important for aggregation. When
matching more than pairs of images, more sophisticated variants of similarity
measures, based on photoconsistency, can be used [42].

One of the first successes of deep learning in stereo matching was the learning
of matching costs functions. Such approach is the most widespread nowadays.

3SRD stands for Sum of Robust Differences.
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1.1.2.7 Local methods

Local methods aggregate the matching cost by summing or averaging over a
support region in the DSI. Such support region can be either two-dimensional
at a fixed disparity, favoring fronto-parallel surfaces, or three-dimensional in
xyd space, supporting slanted surfaces [42].

Aggregation with a fixed support region can be performed using 2D or 3D
convolution, while in case of rectangular windows, using efficient moving
average box-filters. Shiftable windows can be implemented efficiently using
separable sliding min-filters. Selecting the right window is fundamental, since
windows must be large enough to contain sufficient texture and yet small
enough so that they do not pass over depth discontinuities [31, 42].

Among these local aggregation methods the fast variable window approach
and the locally weighting approach developed consistently stood out having
the best performance-vs-speed trade-off [47].

The emphasis for local methods is on matching cost computation and cost
aggregation. The final disparities are easy to compute since it suffice to
select the disparity associated with the lowest cost value for each pixel. As
a result, for each pixel, these algorithms execute a local Winner-Take-All
(WTA) optimization. A shortcoming of this approach is that the uniqueness
of matches is only enforced for one image, whereas points in the other image
may match various points unless cross-checking and subsequent hole filling
are utilized [47, 42].

Sub-pixel refinement Most stereo correspondence algorithms compute a
set of disparity estimates in a discretized space. For certain applications
such as robot navigation and tracking, these approaches may be perfectly
adequate. Instead, for image-based rendering, such quantized maps begets
very degraded view synthesis results, causing scene appearance to be made
up of many thin shearing layers. To amend, many algorithms employ a sub-
pixel refinement stage after the initial discrete correspondence.

1.1.2.8 Global methods

Global methods perform some optimization steps after the disparity compu-
tation phase, often skipping the aggregation step altogether since the global
smoothness constraints perform a similar function [31]. Most global methods
are formulated as an energy-minimization framework, where the goal is to
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find a solution d that minimizes a global energy,

E(d) = ED(d) + λES(d). (1.4)

In the Equation 1.4 ED(d) is referred as data term and it measures how well
the disparity function d adhere with the input image pair. Such energy is
defined as

ED(d) =
∑
(x,y)

C
(
x, y, d(x, y)

)
, (1.5)

where C is the matching cost.

ES(d) is referred as smoothness term and it encodes the smoothness assump-
tions made by the algorithm. To make the optimization computationally
tractable, such term is usually restricted to measure only the differences be-
tween neighboring pixels disparities,

ES(d) =
∑
(x,y)

ρ
(
d(x, y)− d(x+ 1, y)

)
+ ρ
(
d(x, y)− d(x, y + 1)

)
, (1.6)

where ρ is a monotonically increasing function of disparity difference. It is
also possible to use larger neighborhoods, which can lead to better bound-
aries, or to use second-order smoothness terms, although such terms require
more complex optimization techniques [42].

Once the global energy has been defined, various algorithms may be employed
to seek for a local minima.

1.1.2.9 Semi-Global Matching

The Semi-Global Matching (SGM) method seeks to approximate a global
regularized cost function by following one dimensional paths L in several
directions r through the image [14]. According to the method it is sufficient
to use eight or sixteen paths, as shown in Figure 1.4, to cover the entire
structure of an image. Along each path, the minimum cost is calculated by
means of dynamic programming

Lr(p, d) = C(p, d) + min
[
Lr(p− r, d), Lr(p− r, d− 1) + P1,

Lr(p− r, d+ 1) + P1,min
i

Lr(p− r, i) + P2

]
For every pixel p and disparity d the cost is calculated as the sum of the
matching cost C(p, d) and the minimum path cost to the previous pixel,

Alex Costanzino 15 Chapter 1



Figure 1.4: Path directions in Semi-Global matching with eight directions.

with the penalties P1 and P2. P1 penalizes slanted surfaces while P2 penalizes
discontinuities [39].

The information from all paths is then summed for all pixels and disparities,
building the accumulated costs defined as

Ca(p, d) =
∑
r

Lr(p, d)

The disparity for each pixel is chosen by a Winner-Takes-All strategy on
S. In contrast to other dynamic programming solutions, explicit occlusion
handling is not possible, hence a left-right consistency check is applied, either
using (i) the disparities of the right image calculated with the same process;
(ii) by diagonal search in S.

1.1.3 Deep stereo matching

While early work focused on designing better matching cost formulations
and efficient inference algorithms [16], with the predominant advent of deep
learning, the subsequent research efforts were directed towards the reformu-
lation of the stereo matching pipeline’s steps as stand-alone learnable neural
networks [56].

1.1.3.1 Semantic depth estimation

Recent developments have shown that semantic cues from image segmenta-
tion can be used to improve the results of stereo matching [52]. Semantic
labels improve the accuracy of stereo matching in untextured, occluded and
reflective regions, while depth information obtained by stereo matching can
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be used to solve possible confusions between similar semantic categories.
Thus, segmentation information and depth maps complement each other,
representing high-level information of the scene. The general scheme of such
networks is depicted in Figure 1.5.

Figure 1.5: Generic features are extracted from the stereo pairs in the Joint Feature
Extraction stage. The output of such stage is fed into two neural networks that take
care for Disparity Estimation and Semantic Segmentation. The initial disparity
obtained is then refined using semantic cues in Disparity Refinement stage.

Semantic depth estimation networks can be either:

• Supervised, in which datasets with stereo images and disparity ground
truth are required, since the network loss is reduced by comparing the
output of the network with the ground truth;

• Unsupervised, in which no ground truth is required, as they mainly
rely on warping error.

The overall loss function of such networks is given by:

L = αLdisp + βLseg + γLref

where Ldisp is the initial disparity loss, Lseg is the segmentation loss and Lref

is the refined disparity loss [52]. Such loss functions depend on the approach
employed. α, β and γ are empirically determined constraints.

1.1.3.2 End-to-end deep networks

End-to-end approaches paved the way for the most popular architectures
nowadays, such as HSM-Net [54], LEAStereo [8], CFNet [38] and RAFT-
Stereo [16]. These networks differ in architecture and thus in problems that
address.
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HSM-Net HSM-Net is based on a widely employed encoder-decoder archi-
tecture and addresses the issues of memory occupancy and speed limitation,
related to the processing high-resolution images. Its approach allows to con-
trol the performance-vs-speed trade-off, addressing sensing needs for time-
critical applications such as autonomous driving. The net leverages on its
hierarchical architecture to retrieve on-demand reports of disparity by cap-
ping intermediate coarse results, allowing accurate prediction disparity for
near-range structures with low latency. An idea of the general architecture
and an example of on-demand report [54] is shown in Figure 1.6.

Figure 1.6: Given a rectified stereo pair of high-resolution images, multiscale de-
scriptors are computed with a residual butterfly encoder-decoder neural network.
Such descriptors are employed to construct 4D feature volumes at each scale by
taking the difference of potentially matching features extracted from epipolar scan-
lines. The decoded output is used to predict 3D cost volumes that generates
on-demand disparity estimates at a given scale and upsampled so that it can be
combined with the next feature volume in the pyramid.

This approach allows to control the performance-vs-speed trade-off, address-
ing sensing needs for time-critical applications such as autonomous driving.

LEAStereo LEAStereo relies on Neural Architecture Search (NAS), a tech-
nique that enables the network to choose among a set of operations, such as
convolution with different filter sizes or multi-layer perceptron with different
numbers of hidden layers, to find an optimal architecture that is better suited
for the task. Before LEAStereo, capabilities of NAS had not been exploited
by low-level geometric vision tasks such as stereo matching, mainly due to
the fact that state-of-the-art deep stereo matching networks are already sheer
in size. Indeed, directly applying a NAS to such massive structures is com-
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putationally prohibitive, based on most of the currently available computing
resources.

Figure 1.7: Stereo matching pipeline employing Neural Architecture Search.

LEAStereo applies NAS separately in each sub-module [8], as depicted in
Figure 1.7, jointly optimizing the architecture.

CFNet CFNet aims to improve the robustness of the stereo matching net-
work by employing a fused cost volume representation to mitigate the large
domain differences present across a variety of datasets, that leads to poor
generalization capabilities. By fusing multiple low-resolution dense cost vol-
umes, an enlarged receptive field can be achieved in order to extract robust
structural representations for initial disparity estimation. Furthermore, a
cascade cost volume representation is devised to alleviate the unbalanced
disparity distribution, that elicits distorted and noisy learned features. In
particular, a variance-based uncertainty estimation which adaptively adjust
the next stage disparity search space is employed, driving the network to
progressively prune out the space of unlikely correspondences. The architec-
ture [38] of such neural network is shown in Figure 1.8.

Figure 1.8: The network consists of three components: pyramid feature extraction,
fused cost volume, cascade cost volume.
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RAFT-Stereo RAFT-Stereo is based on a popular deep neural architec-
ture for optical flow estimation, re-adapted for stereo matching. Optical
flow and rectified stereo are closely related tasks. In optical flow, the aim
is to predict a pixel-wise displacement field, such that for every pixel in the
first frame, it is possible to estimate its correspondence in the second frame.
In stereo matching, the task is the similar, except for the additional con-
straints that the x-displacement is always positive and the corresponding
points lie on a horizontal line. Despite the similarities between stereo and
flow, the architectures for the two tasks are vastly different. The architecture
of RAFT-Stereo [16] is depicted in Figure 1.9.

Figure 1.9: Correlation features are extracted from each image and are used to
construct the correlation pyramid. Context image features and an initial hidden
state are also extracted from the context encoder. The disparity field is initialized
to zero everywhere. At each iteration, the GRUs use the current disparity estimate
to sample from the correlation pyramid. The resulting correlation features, initial
image features and current hidden states are employed by the GRUs to generate
a new hidden state and an update to the disparity.

In stereo, the predominant approach has been the use of 3D convolutional
neural networks, while optical flow is approached using iterative refinement.
In particular, RAFT shows that iterative refinement can be performed en-
tirely at high resolution, allowing also to control the accuracy-vs-efficiency
trade-off with early stopping.

Although the aforementioned networks delivers impressive results in stereo
matching, they still falters in presence of non-Lambertian surfaces. However,
the various approaches used by these different networks can be combined
to achieve a more robust model in terms of speed, precision and ability to
generalize.
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1.2 Novel View Synthesis

Novel View Synthesis (NVS) is another long-standing problem at the intersec-
tion between Computer Graphics and Computer Vision [24]. NVS techniques
aim to generate novel views of a target scene, with an arbitrary camera pose,
from one or more given source images and their camera poses.

1.2.1 Classical methods

Earlier works either exploit inter-image correspondences to estimate depth
maps or use voxel grids to represent shapes. The former methods fuse depth
maps into point clouds, relying heavily on the quality of matching and often
producing errors which are hard to rectify during post-processing. The lat-
ter methods estimate occupancy and color for each voxel, though, they are
usually limited by cubic memory requirements.

1.2.2 Explicit surface representations

Following works proposed explicit surface representations to estimate 3D
mesh from images. First approaches assumed a fixed mesh topology, while
several newer methods directly optimizes the surface mesh by means of dif-
ferentiable marching tetrahedral layers [37]. Although such methods usually
requires training with 3D supervision, approaches that leverage on 2D super-
vision — which also support inverse rendering — are being explored [24].

1.2.3 Implicit neural representations

Once again, deep learning allowed tremendous improvements in term of qual-
ity of the results, bringing renewed popularity to the field. Implicit neural
representations leverage on differentiable rendering to reconstruct 3D geom-
etry with appearance from image collections with different viewpoints.

1.2.3.1 Neural Radiance Fields

The core of this approach is represented by Neural Radiance Fields (NeRF).
NeRF is a popular view synthesis technique that represents a scene as a
continuous volumetric function, parameterized by multi-layer perceptrons

Alex Costanzino 21 Chapter 1



that provide the volume density and view-dependent emitted radiance at
each location [22].

This model represents a static scene as a continuous 5D function that outputs
the radiance emitted in each direction at each point in space, and a density
at each point, which acts like a differential opacity controlling how much
radiance is accumulated by a ray passing through the point [22]. The method
optimizes a multi-layer perceptron to represent this mapping by regressing
from a single 5D coordinate to a single volume density and view-dependent
RGB color. Then, classical volume rendering techniques are employed to
accumulate colors and densities into a 2D image. Such process is depicted in
Figure 1.10.

Figure 1.10: The main idea behind a NeRF-based model pipeline.

Thanks to the outstanding success of this technique a long series of iterations
has been proposed.

Quality-related enhancements Although NeRF has demonstrated im-
pressive results in view synthesis, the rendering model is flawed in a manner
that may cause excessive blurring and aliasing [2]. The first research efforts
were directed towards the enhancing of scene representation capabilities of
NeRF.

Fully-connected deep neural networks are biased to learn low-frequency fea-
tures, missing the opportunity to represents more detailed features. To over-
come this spectral bias a simple mapping to the network input is able to
mitigate this issue [22, 44, 51].

Another line of improvement, concerning aliasing, has been provided by
mip-NeRF, which extends NeRF capabilities to represent the scene at a
continuously-valued scale by efficiently rendering anti-aliased conical frus-
tums instead of rays [2]. The benefit is even greater in situations where scene
content is observed at different resolutions, for example in setups where the
camera moves closer and farther from the scene.
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Training and inference speed-up Beyond quality-related improvements,
also strategies to speed-up training and inference have been explored.

The adoption of a multi-resolution hash encoding of the input permits the use
of a smaller network without sacrificing quality, thus significantly reducing
the number of floating point and memory access operations, enabling training
of high-quality neural graphics primitives in a matter of seconds [23].

While training can be also sped up with a multi-GPU cluster, usually render-
ing must happen in real-time on smaller devices for interactive applications.
KiloNeRF address such problem by using a large number of independent
and small networks, letting each network represent only a fraction of the
scene [27]. First a regular NeRF is trained as teacher model, then KiloNeRF
is trained such that its outputs match those of the teacher model for any
position and view direction and, at last, is fine-tuned on the original train-
ing images. This three-stage strategy allows the model to reach the same
visual fidelity of original NeRF, while being able to synthesize novel views
significantly faster.

Material editing capabilities Current research efforts point towards a
common thread, namely relighting and material editing capabilities [17, 12,
24, 5, 57, 40, 51].

NeRF’s view dependency can only handle simple reflections effects such as
highlights, but cannot deal with complex reflections like those from glass and
mirrors. NeRFReN splits the scene into transmitted and reflected compo-
nents, modelling the two components with separate neural radiance fields,
ensuring a better representation and enabling scene editing applications [12].
Since this decomposition is highly under-constrained, geometric priors and
training strategies are exploited to ensure reasonable and physically sound
decomposition results, enabling scene editing applications.

NeRV includes simulation of light transport, allowing rendering under arbi-
trary novel illumination conditions [40]. Instead of modeling a scene as a
continuous 3D field of particles that absorb and emit light, NeRV represent
a scene as a 3D field of oriented particles that absorb and reflect the light
emitted by external light sources.

NeRF often fails to accurately capture and reproduce the appearance of
glossy surfaces. This limitation is addressed by Ref-NeRF, which replaces
NeRF’s parameterization of view-dependent outgoing radiance with a repre-
sentation of reflected radiance [51]. Such representation is structured using a
collection of spatially-varying scene properties. With the aid of a regularizer
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on normal vectors, the model significantly improves the realism and accuracy
of specular reflections. Besides, model’s internal representation of outgoing
radiance is interpretable and useful for scene editing purposes.

NeRFactor distills the volumetric geometry of NeRF representation of the ob-
ject into a surface representation and then jointly refine the geometry while
solving for the spatially-varying reflectance and environment lighting [57].
The model recovers a 3D neural fields of surface normals, light visibility,
albedo, and Bidirectional Reflectance Distribution Functions (BRDFs) with-
out any supervision, by means of a re-rendering loss, smoothness priors, and
a data-driven BRDF prior learned from real-world BRDF measurements [20].
Since it explicitly model light visibility, NeRFactor is able to separate shad-
ows from albedo and synthesize realistic soft or hard shadows under arbi-
trary lighting conditions. It is possible to edit the albedo and the non-diffuse
BRDF, then re-render the edited object under an arbitrary lighting condition
from any viewpoint.

To sum up, NeRFactor factorizes images of an object under an unknown
lighting condition into shape, reflectance, and illumination, hence supporting
free-viewpoint relighting with shadows and material editing [57], as shown in
Figure 1.11.

Figure 1.11: Example of a NeRFactor decomposition with subsequent editing.

1.3 Benchmarks

Objects with specular and transparent surfaces are almost absent or unla-
beled in most stereo benchmarks.

In KITTI 2015 [21] cars have been replaced with CAD models providing
supervision on some specular or transparent surfaces, however, such dataset
is not enough to address the problem with deep learning.
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ClearGrasp [30] includes several images featuring transparent elements. How-
ever, such dataset is (i) almost entirely synthetic, with the real-world segment
consisting of very specific scenes; (ii) acquired employing a RGB-D mono
setup. For the aforementioned reasons, such dataset is out of the scope.

ClearPose [7] is another large-scale dataset that includes transparent objects.
Unlike the previous, it is exclusively based on real-world images. Nonetheless,
it is acquired using a comparable mono setup and so falls out of the scope.

A recent work produced Booster [56], a novel dataset consisting in high-
resolution stereo pairs featuring a large collection of labeled non-Lambertian
objects. An example is depicted in Figure 1.12. The dataset is annotated
in a semi-automatic fashion by employing a space-time framework [9] based
on RAFT-Stereo [16] and subsequent manual filtering. However, Booster
includes a rather small number of annotated images, and thus cannot be
considered a large-scale dataset, needed for deep learning training.

Figure 1.12: A scene from the Booster testing split.
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Chapter 2

Frameworks for deep stereo
matching

2.1 Multilevel Recurrent Field Transforms for

Stereo Matching

As mentioned in Section 1.1.3.2, optical flow and stereo matching are strictly
related tasks. Indeed, it is possible to translate the stereo matching problem
formulation into the optical flow one and solve it with approaches adopted
for the latter task.

RAFT-Stereo [16] is an example of end-to-end deep neural network for stereo
matching based on RAFT [45], a network for optical flow.

Given a pair of rectified images (IL, IR), RAFT-Stereo aims to estimate a
disparity field d representing the horizontal displacement for every pixel in
IL, with respect to IR.

2.1.1 Architecture

Both networks are composed by (i) a feature extractor; (ii) a correlation
pyramid; (iii) a GRU-based update operator. The architecture of RAFT-
Stereo [16] is depicted in Figure 1.9.
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2.1.1.1 Feature extractor

Two separate feature extractors are devised [16]:

• Feature encoder, applied to both images, maps each image to a dense
feature map employed to construct the correlation volume. It consists
in a sequence of residual blocks and downsampling layers with instance
normalization;

• Context encoder, applied only on the left image, shares identical
architecture but exploits batch normalization instead. Context features
are employed to initialize the hidden state of the update operator and
are also injected into the GRU during each iteration.

2.1.1.2 Correlation Pyramid

Similar to other neural stereo matching approaches, the dot product between
feature vectors is utilized as a measure of visual similarity [16]. Given the
feature maps f , g ∈ RH×W×D extracted, by means of the aforementioned
feature encoder, from IL and IR, the 3D correlation volume can be computed
as follows:

Cijk =
∑
h

fijh · gikh, C ∈ RH×W×W (2.1)

The computation of such 3D volume can be efficiently implemented using a
single matrix multiplication, easily computed on GPUs.

Then, a four level pyramid of correlation volumes is constructed through
repeated average pooling of the last dimension. The k-th level of the pyramid
is built from the volume at level k employing 1D average pooling with a
kernel and stride of size two, producing a new volume Ck+1 with dimension
H×W ×W/2k. With this method each level of the pyramid has an increased
receptive field by only pooling the last dimension, maintaining high resolution
information of the original image, allowing to recover very fine structures.

At last, a correlation lookup operator LC is defined to index into the cor-
relation pyramid. Given an estimate of disparity d, a 1D grid with integer
offsets around the current disparity estimate is built. Afterwards, such grid
is used to index from each level in the correlation pyramid. Since these grid
values are real numbers, a linear interpolation is employed when indexing
each volume. Retrieved values are then concatenated into a single feature
map. The whole process is depicted in Figure 2.1.
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Figure 2.1: The current estimate of disparity is used to retrieve values from the
each level of the correlation pyramid. Indexing from each level in the pyramid is
performed by means of linear interpolation at the current disparity estimate and
at integer offsets, whose size depends on the pyramid level.

2.1.1.3 Multi-Level Update Operator

The aim is to predict a series of disparity fields d1, . . . ,dN from an initial
disparity field d0 = 0 [16, 45].

At each iteration, the current estimate of disparity is used to index the cor-
relation volume, producing a set of correlation features. These features are
passed through a couple of convolutional layers, while similarly also the cur-
rent disparity estimate is passed through a couple convolutional layers. The
correlation volume C with its features f , the current disparity di−1, and
context features c are then concatenated and injected into the GRU Θ, that
updates its hidden state [56, 16, 45]:

di = Θ(f , c,di−1,C) (2.2)

Finaly, the new hidden state is used to predict a new disparity update di.

2.1.2 Supervision

The supervision is based on the ℓ1 distance between the predicted and ground
truth disparity over the full sequence of predictions, d1, . . . ,dN , with expo-
nentially increasing weights, to give more importance to more recent, hence
finer, predictions [16, 45]. Given the ground truth disparity dgt, the loss is
defined as follows:

L =
N∑
i=1

γN−1||dgt − di||1

where γ is a hyperparameter, usually empirically fixed at γ = 0.9.
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2.1.3 Main advantages

The main advantages of this architecture are:

(i) State-of-the-art cross-dataset generalization;

(ii) Efficient high-resolution processing;

(iii) Possibility to perform accurate real-time inference.

2.2 Space-time stereo framework

In Section 1.1.1 a primary classification of active and passive methods has
been depicted. Active techniques, such as laser scanning and structured light,
project illumination into the scene in order to construct easily identifiable fea-
tures to mitigate the difficulty involved in determining correspondence, while
passive stereo algorithms attempt to find matching image features between
a pair of general images with no prior information.

However, there exists another popular taxonomy of algorithms for depth
from triangulation, based on the domain in which corresponding features are
located [9]:

• Spatial domain, in which correspondence is found by determining
similarity of pixels in the image plane, such as in traditional laser scan-
ning and passive stereo;

• Temporal domain, in which features with similar appearance over
time are likely to correspond, such as in coded structured light and
temporal laser scanning.

Most methods locate features entirely within either the spatial or temporal
domains. Nonetheless, it is possible to locate features within both the space
and time domains, by means of the general framework of space-time stereo,
that grants greater flexibility, accuracy and robustness.

2.2.1 Spatial stereo

The space-time stereo framework can be seen as a generalization of tradi-
tional passive stereo methods, which operate exclusively within the spatial

Alex Costanzino 29 Chapter 2



domain. Such method considers two viewpoints in known positions, and at-
tempts to find corresponding pixels in each of the two images. This search
for correspondence can performed either by (i) searching for specific features
in each of the images; (ii) matching of arbitrary spatial windows in the first
image to corresponding regions along the epipolar line in the second image.

More specifically, spatial stereo minimizes a generic matching function [9]:

Φs =
∣∣∣∣IL(Ns(xL)

)
− IR

(
Ns(xR)

)∣∣∣∣2 (2.3)

where IL is the intensity in the left image, IR is the intensity in the right,
and Ns is a vector of pixels in a spatial neighbourhood close to x.

As already mentioned in Section 1.1.2.7, there is a trade-off in determining
the size of the neighbourhood to use:

• If the window is too small there could be many pixels along the epipolar
line that match the pixel in the left image equally well;

• If the window is too large more information is not guaranteed, since
there could be texture less regions. Moreover, depth discontinuities
may be encountered.

Due to this trade-off, traditional stereo methods may lack robustness and
return low quality dense depth estimates.

2.2.2 Temporal stereo

In temporal stereo, a scene with static geometry viewed for multiple frames
across time is considered. In this setup, once again, pixels from the left im-
age are matched against pixels on the right image. However, rather than
considering a neighbourhood in the spatial direction, it is possible to con-
sider a neighbourhood in the temporal direction, hence considering the same
windows in different time frames [9].

Analogously to the spatial case, temporal stereo minimizes a similar generic
matching function:

Φt =
∣∣∣∣IL(Nt(xL, t0)

)
− IR

(
Nt(xR, t0)

)∣∣∣∣2 (2.4)

where Nt is a vector of pixels in a temporal neighbourhood close to x, around
a central time t0. Such vector could potentially contain more disambiguating
information than a spatial matching vector, since the previously mentioned
trade-off is no longer involved.

The differences between these two approaches are illustrated in Figure 2.2.
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Figure 2.2: In spatial stereo the epipolar line is searched through similar spatial
neighborhoods, while in temporal stereo the search is performed for similar tem-
poral variation.

2.2.3 Space-time stereo

It is possible combine space and time frameworks by matching features along
both spatial and temporal axes [9]. Considering a rectangular patch as neigh-
bourhood Nst, a window of size N ×M × T can be chosen, where N and M
are the spatial sizes of the window and T is the dimension along the time
axis, namely the number of frames considered.

Space-time stereo minimizes a generic matching function, based on Equa-
tion 2.3 and Equation 2.4:

Φst =
∣∣∣∣IL(Nst(xL, t0)

)
− IR

(
Nst(xR, t0)

)∣∣∣∣2 (2.5)

There is no mathematical distinction between the spatial and temporal axes
in Equation 2.5.

2.2.4 Spatial and temporal domain errors

Matching errors may arise in both spatial and temporal domains, and there
is once again a trade-off in determining the size of the neighbourhood to
use [9].

In spatial stereo matching, untextured regions create ambiguities, since in-
creasing the size of the matching vector does not introduce new information
to disambiguate potential matches. In temporal stereo matching, scenes
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with constant illumination over time do not introduce any new information
as well. Thus, spatial matching performs best on objects textured with high
spatial frequency, while temporal matching performs best when the scene
illumination has high temporal frequency.

In spatial stereo matching, depth discontinuities between objects create match-
ing neighbourhoods with separate regions which cannot be matched. In tem-
poral stereo matching, moving objects may cause the same sort of disconti-
nuity.

The space-time stereo framework gives rise to the question of optimal spatial-
temporal window size, which is scene and lighting dependent.

2.3 Booster approach

Booster employs a deep space-time stereo pipeline, based on RAFT-Stereo,
to infer a dense and accurate disparity map. The approach is grounded by
the fact that in presence of a distinctive colorful texture projected in the
scene, the deep network can correctly infer a reliable disparity map.

2.3.1 Deep space-time stereo processing

Since T stereo pairs are available, it is possible to build an accumulated
correlation volume C∗, based on Equation 2.1, by averaging the correlation
volumes computed from f t and gt, extracted from a stereo pair t:

C∗
ijk =

1

T

∑
t

∑
h

f t
ijh · gt

ikh, C∗ ∈ RH×W×W

This enriched volume can be exploited, analogously as done with the operator
depicted in Equation 2.2, to estimate a set of disparity maps from any given
stereo pair:

dt
i = Θ(f t, ct,dt

i−1,C
∗) (2.6)

Once the disparity maps dt have been estimated, it is possible to compute
their average to obtain an initial ground-truth disparity map d∗, as well as
an uncertainty guess u∗ as their variance.
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2.3.2 Super-resolution and sharpening

The quality of the disparity labels produced by the aforementioned process
may be dampened by two main causes [56]: (i) the downsampled resolution;
(ii) the presence of over-smoothed depth discontinuities, a common issue in
disparity maps inferred by deep networks. To mitigate these issues a neural
disparity refinement architecture is employed [1]. Various instances of such
network are overfit on each scene, taking the disparity map as both input
and ground-truth, allowing to preserve accurate disparity values at high-
resolution, while sharpening depth boundaries.

Moreover, the sub-pixel prediction mechanism described is replaced by a
Stereo Mixture Density (SMD) head [48], to avoid undesired artifacts ob-
served in the former formulation [1]. Each neural disparity refinement net-
work is optimized to infer a bimodal Laplacian distribution:

p(d) =
π

2b1
e
−d∗−µ1

b1 +
1− π

2b2
e
−d∗−µ2

b2

Once the network is trained, a sharpened disparity map d∗ is obtained at
full resolution by leveraging the continuous representation enabled by the
refinement network, selecting the mode with highest density value [56].

2.3.3 Manual cleaning and filtering

Once a full-resolution disparity map has been obtained, any remaining arte-
fact is manually cleaned [56]. The disparity map is projected into a 3D point
cloud to better visualize structural errors in the geometry of the scene, while
the variance map u∗ is used as a guidance during this operation, to easily
detect most of the artifacts. Points removed from the point cloud are filtered
out from the disparity map as well. At last, a bilateral filter is employed
to smooth objects surfaces and the final map d∗ is obtained. The process
depicted so far is shown in Figure 2.3.

2.3.4 Accuracy assessment

The accuracy of ground-truth annotations are measured by (i) manually se-
lecting planar regions from the images; (ii) fitting a plane to the recovered
disparities over each of them; (iii) measuring the residuals between the fitted
plane equation and the actual disparities [33].
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Figure 2.3: Data annotation pipeline.

2.3.5 Left-right consistency check

The processing pipeline is performed twice for each scene, producing two
disparity maps, d∗

L and d∗
R, for the left and right images respectively. Any

pixel at coordinates (x, y) in d∗
L is filtered out in case the absolute difference

with its match
(
x− dL(x, y), y

)
in d∗

R is larger than a pixel threshold ξ:∣∣dL(x, y)− dR

(
x− dL(x, y), y

)∣∣ > ξ

The same process is repeated on top of dR, removing any pixel at coordinate
(x, y) after comparison with pixel

(
x+dR(x, y), y

)
on the left disparity map.
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Chapter 3

Novel View Synthesis with
Neural Radiance Fields

Quick advancements in implicit neural representations are opening up new
possibilities for Novel View Synthesis tasks. Such techniques can seamlessly
reconstruct real objects, without requiring large amounts of data to learn
from and without being limited to just a few points of view. It does this
by learning a representation of a scene, using a sparse set of combined im-
ages from arbitrary viewpoints. Unlike traditional 3D representations, such
as meshes or point clouds, this newer approach represents objects as a con-
tinuous function, allowing for more accurate reconstruction of shapes with
complex geometries as well as higher colour reconstruction accuracy.

This research area is still in its embryonic stage, with new variants regularly
emerging. Indeed, after the introduction of NeRF, more than fifty variants
of this method have been published in the past year alone.

Most current neural implicit reconstruction methods create real-time photo-
realistic renderings via ray marching. With this method, rays are emitted
from the rendering camera and 3D points are sampled along these rays.
Then, an implicit shape function, which represents the shape and appear-
ance of the scene, evaluates density or distance to the surface at the sampled
ray points. Next, a renderer marches along the ray points to find the first
intersection between the scene’s surface and the ray, in order to render image
pixels. Finally, a loss functions between generated and ground-truth images
is computed, along with other metrics.

35



3.1 Neural Radiance Fields

In Neural Radiance Fields (NeRF) a continuous scene is represented by means
of 5D vector-valued function, whose input are [22]:

• A 3D location x = (x, y, z);

• A 2D viewing direction d = (θ, ϕ)1;

and whose output are;

• An emitted colour c = (r, g, b);

• A volume density σ.

The continuous 5D scene representation is approximated by means of an
multi-layer perceptron (MLP)

FΘ : (x,d) → (c, σ)

whose weights Θ are optimized to map from each input 5D coordinate to its
corresponding volume density and directional emitted color.

To encourage a multi-view consistency in the representation, the network
is restricted to predict the volume density σ exclusively as function of the
location x, while the RGB colour c can be predicted as a function of both
location and viewing direction [22].

An overview of the general pipeline of a Neural Radiance Field scene repre-
sentation with its differentiable rendering procedure [22] is depicted in Fig-
ure 3.1.

3.1.1 Volume rendering

This 5D continuous function represents a scene as the volume density and
directional emitted radiance at any point in space. The colour of any ray
passing through the scene is then rendered using principles from classical
volume rendering.

The volume density σ(x) can be interpreted as the differential probability of
a ray terminating at an infinitesimal particle at location x [22]. The expected

1Actually, for practical implementation this direction is usually expressed as a 3D unit
vector.
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Figure 3.1: Images are synthesized by sampling 5D coordinates, both location and
viewing direction, along camera rays (a). Feeding those locations into an MLP to
produce a colour and volume density (b), and using volume rendering techniques
is possible to composite these values into an image (c). Such rendering function
is differentiable, so it possible to optimize this scene representation by minimizing
the residual between synthesized and ground truth observed images (d).

colour C(r) of camera ray r(t) = o+ td, with near and far bounds tn and tf
such that t ∈ [tn, tf ], is given by:

C(r) =

∫ tf

tn

T (t)σ
(
r(t)

)
c
(
r(t),d

)
dt (3.1)

with

T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
being the accumulated transmittance along the ray, from tn to t. Such func-
tion represents the probability that the ray travels from tn to t without hitting
any other particle.

Rendering a view from this continuous representation requires estimating the
integral in Equation 3.1, for a camera ray traced through each pixel of the
desired virtual camera, using quadrature [22]. A stratified sampling approach
is employed, where [tn, tf ] is partitioned into N evenly-spaced bins and then a
single sample is drawn uniformly at random from within each bin. Although
the set of samples to estimate the integral is discrete, stratified sampling
enables a continuous scene representation since it results in the MLP being
evaluated at continuous positions over the course of optimization.

Using quadrature, the continuous integral in Equation 3.1 is estimated as
follows:

Ĉ(r) =
N∑
i=1

Ti

(
1− exp(−σiδi)

)
ci (3.2)
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with

Ti = exp

(
−

i−1∑
j=1

σjδj

)
and δi = ti+1−ti being the distance between adjacent samples. Such function
is is trivially differentiable and reduces to traditional alpha compositing.

3.1.2 Optimization

A continuous scene representation and a classic rendering technique are not
sufficient to achieve state-of-the-art quality. To enable high-resolution com-
plex scenes representation two further components are needed: (i) a posi-
tional encoding of the input coordinates that assists the MLP in representing
high-frequency functions; (ii) a hierarchical sampling procedure that permits
an efficient sampling of such high-frequency representation.

3.1.2.1 Positional encoding

Neural networks are known as universal function approximators [15], though
deep networks are biased towards learning lower frequency functions [26].
Indeed, having the network FΘ directly operate on xyzθϕ input coordinates
results in renderings that perform poorly at representing high-frequency vari-
ation in color and geometry, making the networks incapable of representing
complex scenes [22].

Mapping the inputs to a higher dimensional space using high frequency func-
tions before passing them to the network enables better fitting of data that
contains high frequency variation [26, 44]. Indeed, it is possible to reformu-
late FΘ as a composition of two functions FΘ = F

′
Θ ◦ γ, one learned and one

not. In particular, γ is a mapping from R into a higher dimensional space
R2L, and F

′
Θ is still a regular MLP. In NeRF, the employed encoding is the

so called positional encoding:

γ(p) =
(
sin(20πp), cos(20πp), . . . , sin(22L−1πp), cos(22L−1πp)

)
however, other encodings may be utilized [26, 44].

3.1.2.2 Hierarchical volume sampling

The rendering strategy of dense evaluation is inefficient since free space and
occluded regions that do not contribute to the rendered image are still sam-
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pled repeatedly. A hierarchical representation, that increase rendering effi-
ciency by allocating samples proportionally to their expected effect on the
final rendering, is employed.

Instead of using a single network, a coarse and a fine network are optimized.
At first, a set of Nc locations is sampled, by means of the before mentioned
stratified sampling, then the coarse network is evaluated at such locations,
as depicted in Equation 3.2. Given the output of this coarse network, more
informed sampling of points along each ray are produced, since these samples
are biased towards the relevant parts of the volume.

To make it so, the alpha composited colour equation from the coarse net-
work Ĉc(r), based on Equation 3.2, is reformulated as a weighted sum of all
sampled colors ci along the ray:

Ĉc(r) =
Nc∑
i=1

wici

with weights wi = Ti

(
1− exp(−σiδi)

)
. Normalizing these weights produces a

piece-wise constant probability distribution function along the ray. A second
set of Nf locations is sampled from this distribution using inverse transform
sampling, then the fine network is evaluated at the union of the first and
second set of samples and, in the end, the final rendered colour is computed
for the ray Ĉf (r), using Equation 3.2, employing all Nc +Nf samples.

Such procedure allocates more samples to regions expected to contain visible
content.

3.1.3 Training and supervision

A separate neural continuous volume representation network is optimized for
each scene. The goal is to overfit the network on the scene data. The training
requires:

(i) A dataset of captured RGB images of the scene;

(ii) The corresponding camera poses;

(iii) The intrinsic parameters of the camera;

(iv) The scene bounds.
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COLMAP [35, 36] is usually employed to obtain (ii), (iii) and (iv) starting
from (i).

At each optimization iteration, a batch of camera rays from the set of all
pixels in the dataset is randomly sampled. Then, the hierarchical sampling
described in Section 3.1.2.2, is employed to query Nc samples from the coarse
network and Nc + Nf samples from the fine network. Next, the volume
rendering procedure described in Section 3.1.1, is employed to render the
color of each ray from both sets of samples. The loss function is simply the
total squared error between the rendered and true pixel colours for both the
coarse and fine renderings:

L =
∑
r∈R

[∣∣∣∣Ĉc(r)− C(r)
∣∣∣∣2
2
+
∣∣∣∣Ĉf (r)− C(r)

∣∣∣∣2
2

]
(3.3)

where R is the set of rays in each batch, and C(r), Ĉc(r), and Ĉf (r) are
respectively the ground truth, coarse volume predicted, and fine volume pre-
dicted RGB colors for a ray r. Even though the final rendering comes from
the fine network with loss based on Ĉf (r), also the loss of Ĉc(r) is minimized
since the weight distribution from the coarse network can be used to allocate
samples into the fine network.

3.2 Neural Radiance Factorization of shape

and reflectance under an unknown illu-

mination

On of the major research direction in Novel View Synthesis with Neural
Radiance Fields points towards granting these neural models editing capa-
bilities [17, 12, 24, 5, 57, 40, 51]. To make it so is necessary to endow such
models with some explainability mechanisms.

NeRFactor [57] is able to recover convincing relightable representations of an
object captured under one unknown natural illumination condition, by (i)
optimizing a Neural Radiance Field, to initialize the model’s surface normals
and light visibility; (ii) jointly optimizing these initial estimates along with
the spatially-varying reflectance and the lighting condition, to best explain
the observed images.

NeRF produces a high-quality geometry estimate for initialization, which
helps to break the inherent ambiguities among shape, reflectance, and light-
ing, recovering a full 3D model for convincing view synthesis and relighting
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using a re-rendering loss, simple spatial smoothness priors for each com-
ponents, and a data-driven Bidirectional Reflectance Distribution Function
(BRDF) prior.

Nevertheless, on its own NeRF suffers of two major issues that prevent it
from being used for relighting [40, 57, 5]:

(i) NeRF models shape as a volumetric field, being computationally ex-
pensive to compute shading and visibility at each point along a camera
ray for a full hemisphere of lighting;

(ii) The geometry estimated by NeRF contains extraneous high-frequency
content that introduces high-frequency artifacts into the surface nor-
mals and light visibility, even though they are unnoticeable in view
synthesis results.

NeRFactor addresses these issues by [57]:

(1) Using a hard surface approximation, performing shading calculations
only at a single point along each ray, corresponding to the expected
termination depth of the volume;

(2) Representing the surface normal and light visibility at any 3D location
on the surface as continuous functions, parameterized by multi-layer
perceptrons, encouraging such functions to be close to the values de-
rived from the pre-trained NeRF and to be spatially smooth.

Neural Radiance Factorization [57] (NeRFactor) factors the observed images
into estimated environment lighting as well as a 3D surface representation of
the object with surface normals, light visibility, albedo, and spatially-varying
BRDFs. Since NeRFactor models light visibility explicitly and efficiently, it
is capable of removing shadows from albedo estimation and synthesizing
realistic soft or hard shadows under arbitrary novel lighting conditions.

The structure of the network is depicted in Figure 3.2

3.2.1 Neural Radiance Factorization

NeRFactor takes as input a set multi-view images, with their camera poses, of
an object lit by one unknown illumination condition. NeRFactor represents
the shape and spatially-varying reflectance of the object as a set of 3D fields,
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Figure 3.2: NeRFactor leverages NeRF’s σ-volume as an initial estimate, to pre-
dict, for each surface location xsurf: (i) surface normal n̂; (ii) light visibility v;
(iii) albedo a; (iv) BRDF latent code zBRDF; (v) lighting condition. x denotes
3D locations, ωi light direction, ωo viewing direction, while (ϕd, θh, θd) are the
Rusinkiewicz coordinates. NeRFactor is an all-MLP architecture that models only
surface points, unlike NeRF which models the entire volume.

each parameterized by multi-layer perceptrons, whose weights are optimized
so as to explain the set of observed images.

After optimization, NeRFactor outputs, at each 3D location x on the object’s
surface: (i) the surface normal n̂; (ii) the light visibility in any direction
v(ωi); (iii) the albedo a; (iv) the reflectance zBRDF [57]. These components
explain the observed appearance, enabling applications such as free-viewpoint
relighting with shadows and material editing.

3.2.1.1 Shape

NeRFactor leverages on NeRF’s estimated geometry by distilling it into a
continuous surface representation, used to initialize NeRFactor’s geometry.
An already optimized NeRF is employed to compute (i) the expected surface
location along any camera ray; (ii) the surface normal at each point on the
object’s surface; (iii) the visibility of light arriving from any direction at each
point on the object’s surface [57].

Before the full optimization of NeRFactor, the visibility and normal MLPs
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are pre-trained independently, to reproduce the visibility and normal val-
ues just from NeRF’σ-volume, without any smoothness regularization or re-
rendering loss. This provides a reasonable initial estimate of the visibility
maps, preventing the albedo MLP or the BRDF MLP from attempting to
explain shadows as being modeled as painted on reflectance variation.

Surface points Given a camera and an already trained NeRF, the location
at which a ray r(t) = o + td from that camera o, along a direction d is
expected to terminate according to NeRF’s optimized volume density σ, is
computed:

xsurf = o+

(∫ ∞

0

T (t)σ
(
r(t)

)
tdt

)
d

with

T (t) = exp

(
−
∫ t

0

σ(r(s))ds

)
being the probability that the ray travels distance t without being blocked.

Instead of maintaining NeRF’s full volumetric representation, NeRFactor fix
the geometry to lie on the surface distilled from the optimized NeRF, enabling
much more efficient relighting during both training and inference, since it is
possible to compute the outgoing radiance just at each camera ray’s expected
termination, instead of every point along each camera ray [57].

Surface normals Analytic surface normals n̂a(x) are computed as the neg-
ative normalized gradient of NeRF’s σ-volume, with respect to x. However,
normals derived from a trained NeRF tend to be noisy and therefore produce
bumpy artifacts when employed for rendering. To mitigate this issue, these
normals are re-parametrized with an MLP fn : xsurf → n, which maps from
any location xsurf, on the surface to a denoised surface normal n̂ [57].

During the joint optimization of NeRFactor’s weights, the output of this
MLP fn is encouraged to:

(i) Stay close to the normals produced from the pre-trained NeRF;

(ii) Vary smoothly in the 3D space;

(iii) Reproduce the observed appearance of the object.

Specifically, (i) and (ii) are enforced by employing the following loss function:

Ln =
∑
xsurf

[
λ1

3

∣∣∣∣fn(xsurf)− na(xsurf)
∣∣∣∣2
2
+

λ2

3

∣∣∣∣fn(xsurf)− fn(xsurf + ϵ)
∣∣∣∣
1

]
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where ϵ is a random 3D displacement from xsurf, sampled from a zero-mean
Gaussian, and λ1 and λ2 are hyperparameters2 [57]. Not restricting x on the
expected surface increases the robustness of the MLP, by providing a safe
margin where the output remains well-behaved even if the input is slightly
displaced from the surface.

Light visibility The visibility va to each light source from any point is
computed by marching through NeRF’s σ-volume from the point to each
light location. As to the estimated surface normals, the visibility estimates
derived are too noisy to be used directly, since they would result in rendering
artifacts. Once again, to mitigate this issue, the visibility is re-parametrized
with an MLP fv : (xsurf,ωi) → n, which maps from a surface location xsurf

and a light direction ωi, on the surface to the light visibility v [57].

The weights of fv are optimized to encourage the recovered visibility field to:

(i) Be close to the visibility traced from the pre-trained NeRF;

(ii) Be spatially smooth;

(iii) Reproduce the observed appearance of the object.

Specifically, (i) and (ii) are enforced by employing the following loss function:

Lv =
∑
xsurf

∑
ωi

[
λ3

(
fv(xsurf,ωi)−va(xsurf,ωi)

)2
+λ4

∣∣fv(xsurf,ωi)−fv(xsurf+ϵ,ωi)
∣∣]

where ϵ is a random 3D displacement from xsurf, sampled from a zero-mean
Gaussian, and λ3 and λ4 are hyperparameters [57]. Smoothness is encouraged
across spatial locations given the same ωi, to avoid the visibility at a certain
location getting blurred over different light locations.

3.2.1.2 Reflectance

The BRDF model R consists of a diffuse Lambertian component fully deter-
mined by albedo a and a specular spatially-varying BRDF fr, defined for any
location on the surface xsurf with incoming light direction ωi and outgoing
direction ωo, learned from real-world reflectance:

R(xsurf,ωi,ωo) =
1

π
a(xsurf) + fr(xsurf,ωi,ωo)

2The hyperparameters and the Gaussian’s standard deviation are scene-dependent.
However, in the original paper some fine-tuned parameters are listed for several types of
scene.
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NeRFactor starts with a learned reflectance function that is pre-trained to
reproduce a wide range of empirically observed real-world BRDFs, while
also learning a latent space for those real-world BRDFs. By doing so, the
learn data-driven priors on real-world BRDFs encourage the optimization to
recover plausible reflectance functions [57]. The use of such priors is crucial
since the observed images are taken under an unknown illumination, making
the problem highly ill-posed. Indeed, priors are necessary to disambiguate the
most likely factorization of the scene from the set of all possible factorizations.

Albedo Also the albedo a is parameterized with an MLP fa : xsurf → a,
that maps any surface location xsurf to the albedo a. Since there is no direct
supervision, the model is only able to observe one illumination condition,
relying on simple spatial smoothness priors and light visibility. In addition,
the reconstruction loss of the observed views also drives the optimization of
fa:

La =
∑
xsurf

λ5

3

∣∣∣∣fa(xsurf)− fa(xsurf + ϵ)
∣∣∣∣
1

where ϵ is a random 3D displacement from xsurf, sampled from a zero-mean
Gaussian, and λ5 is a hyperparameter. The output from fa is employed as
albedo in the Lambertian reflectance but not in the non-diffuse component,
for which the specular highlight color is assumed to be white [57].

Learning priors from real-world BRDFs For the specular components
of the BRDF, a latent space of real-world BRDFs is learned. Such latent
space is paired with decoder that translates each latent code in the learned
space zBRDF to a full 4D BRDF, by means of a Generative Latent Opti-
mization (GLO) approach [4]. The MLP fr is pre-trained using the the
MERL dataset [20], which isotropic materials. Thus, the incoming and out-
going directions for fr are parametrized using Rusinkiewicz coordinates [28]
(ϕd, θh, θd):

g : (n̂,ωi,ωo) → (ϕd, θh, θd)

In the end, an MLP f
′
r that that maps from a concatenation of a latent

code zBRDF, which represents a BRDF identity, and Rusinkiewicz coordinates
(ϕd, θh, θd), to an achromatic reflectance r, is trained:

f
′

r :
(
zBRDF, (ϕd, θh, θd)

)
→ r

Both the weights of the MLP and the set of latent codes are optimized to
reproduce a set of real-world BRDFs. Mean squared errors are computed
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on the log of the High Dynamic Range (HDR) reflectance values to train
f

′
r [57]. Since the colour component of the reflectance model is assumed

to be handled by the albedo MLP, all colour information is discarded from
the MERL dataset, by converting its RGB reflectance values into achromatic
ones. Latent BRDF identity codes zBRDF are parameterized as unconstrained
3D vectors and initialized with a zero-mean isotropic Gaussian.

After the pre-training, the weights of such BRDF MLP are frozen during the
joint optimization. Only latent codes zBRDF are predicted for each xsurf by
training from scratch a BRDF identity MLP fz : xsurf → zBRDF. This can be
thought of as predicting spatially-varying BRDFs for all the surface points
in the plausible space of real-world BRDFs. This identity MLP is optimized
to minimize the re-rendering loss and the same spatial smoothness prior as
in albedo optimization:

Lz =
∑
xsurf

λ6

dim(zBRDF)

∣∣∣∣fz(xsurf)− fz(xsurf + ϵ)
∣∣∣∣
1

where ϵ is a random 3D displacement from xsurf, sampled from a zero-mean
Gaussian, dim(zBRDF) denotes the dimensionality of the latent code, and λ6

is a hyperparameter [57].

The final BRDF model is the sum of the Lambertian component and the
learned non-diffuse reflectance:

R(xsurf,ωi,ωo) =
1

π
fa(xsurf) + f

′

r

(
fz(xsurf), g

(
fn(xsurf),ωi,ωo

))
where the specular highlight color is assumed to be white.

3.2.1.3 Lighting

An HDR light probe image in the latitude-longitude format is employed
as representation of lighting. Such representation permits to the model to
represent detailed high-frequency lighting, hence to support hard cast shad-
ows [57].

However, such representation is limited by a large number of parameters,
which can vary independently of all other pixels. This issue can be mitigated
by the use of the light visibility MLP, which allows a quick evaluation of sur-
face point’s visibility to all pixels of the light probe. To encourage smoother
lighting, a ℓ2 gradient penalty is enforced on the pixels of the light probe L
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along both the horizontal and vertical directions:

Li = λ7

∣∣∣∣∣∣[−1 1
]
∗L
∣∣∣∣∣∣2
2
+ λ7

∣∣∣∣∣
∣∣∣∣∣
[
−1
1

]
∗L
∣∣∣∣∣
∣∣∣∣∣
2

2

where ∗ denotes the convolution operator, and λ7 is a hyperparameter. Dur-
ing the joint optimization, these probe pixels get updated directly by the
final reconstruction loss and the gradient penalty [57].

3.2.1.4 Rendering

Given the surface normal, visibility for all light directions, albedo, BRDF
at each point of the surface and the estimated lighting, the final physically-
based non-learnable renderer renders an image that is compared against the
observed image. The errors in this rendered image are backpropagated up
to, excluding the σ-volume of the pre-trained NeRF, driving the joint esti-
mation of surface normals, light visibility, albedo, BRDFs, and lighting. The
rendering equation in this setup is:

Lo(xsurf,ωo) =

∫
Ω

R(xsurf,ωi,ωo) ·Li(xsurf,ωi) ·
(
ωi · n̂xsurf

)
dωi

=
∑
ωi

R(xsurf,ωi,ωo) ·Li(xsurf,ωi) ·
(
ωi · n̂xsurf

)
∆ωi

=
∑
ωi

[
1

π
fa(xsurf) + f

′

r

(
fz(xsurf), g

(
fn(xsurf),ωi,ωo

)]
·

Li(xsurf,ωi) ·
(
ωi · n̂xsurf

)
∆ωi

where Lo(xsurf,ωo) is the outgoing radiance at xsurf as viewed from ωo,
Li(xsurf,ωi) is the incoming radiance, masked by the visibility fv(xsurf,ωi),
arriving at xsurf along ωi directly from a light probe pixel, and ∆ωi is the
solid angle corresponding to the lighting sample at ωi [57].

The final reconstruction loss Lr is the mean squared error between the ren-
dering and the observed image. The full loss function is the summation of
all the previously defined losses:

L = Lr + Ln + Lv + La + Lz + Li
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3.3 Instant Neural Graphics Primitives

Neural graphics primitives such as Neural Radiance Fields, parameterized by
fully connected neural networks, can be computationally expensive to train
and evaluate. As mentioned in Section 3.1.2.1, it is possible to devise several
different encoding strategies in order to enhance the quality of the internal
representation.

Instant Neural Graphics Primitives (NGP) [23] aims to reduce the compu-
tational cost of both training and inference with a versatile input encoding
that allows the use of a smaller network, without sacrificing quality, thus
significantly reducing the number of floating point and memory access op-
erations. A small neural network is augmented by a multi-resolution hash
table of trainable feature vectors whose values are optimized through gradi-
ent descent. Such structure allows the network to disambiguate hash colli-
sions, making for a simple architecture that is trivial to parallelize on modern
GPUs3.

3.3.1 Multi-resolution Hash Encoding

Given a fully connected neural network FΘ(y), the aim is to find an encod-
ing of its inputs y = encθ(x) that improves the approximation quality of
the representation and training speed of the network across a wide range of
applications, without incurring a notable performance overhead. Such con-
figuration not only has trainable weight parameters Θ, but also trainable
encoding parameters θ. These parameters are arranged into L levels, each
containing up to T feature vectors with dimension F [23].

Each level is independent and conceptually stores feature vectors at the ver-
tices of a grid, which resolution Nl is chosen to be a geometric progression
between the coarsest and finest resolutions [Nmin, Nmax]:

Nl := ⌊Nmin · bl⌋

with

b := exp

(
lnNmax − lnNmin

L− 1

)
and Nmax being chosen to match the finest detail in the training data [23].
Due to the large number of levels L, the growth factor b is usually small.

3Source code available at https://github.com/nvlabs/instant-ngp.
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Considering a single level l, each input coordinate x ∈ Rd is scaled by that
level’s grid resolution before rounding up and down:

⌈xl⌉ := ⌈x ·Nl⌉, ⌊xl⌋ := ⌊x ·Nl⌋

⌈xl⌉ and ⌊xl⌋ span a voxel with 2d integer vertices in Zd. Each corner of
such voxel is then mapped to an entry in the level’s respective feature vector
array, which size is fixed to be at most T .

For coarse levels, in which a dense grid requires fewer than T parameters, this
mapping is 1:1. For finer levels, an hash function h : Zd → ZT is employed to
index into the array, treating it as an hash table with no explicit collision han-
dling. A gradient-based optimization is devised to store appropriate sparse
detail in the array, while the subsequent neural network FΘ(y) takes care of
collision resolution [23]. The number of trainable encoding parameters θ is
therefore O(T ) and bounded by T · L · F .

A spatial hash function is employed [46, 23]:

h(x) =

(
d⊕

i=1

xiπi

)
mod T (3.4)

where ⊕ denotes the bit-wise XOR operation and πi are unique, large prime
numbers.

In Equation 3.4 the product behaves as a per-dimension linear congruential
permutation (LCG), and the subsequent XOR decorrelates the effect of the
dimensions on the hashed value. Notably, to achieve pseudo-independence it
suffices to permute only d− 1 dimensions.

In the end, the feature vectors at each corner are d-linearly interpolated,
according to the relative position of x within its hypercube, with an interpo-
lation weight wl := xl − ⌊xl⌋. The interpolated feature vectors of each level,
as well as auxiliary inputs ξ ∈ RE, such as the encoded viewing direction and
textures in neural radiance caching, are concatenated to produce y ∈ RLF+E,
which is the encoded input encθ(x) to the MLP FΘ(y).

The aforementioned process takes place independently for each of the L levels,
and the general pipeline is depicted in Figure 3.3.

3.3.1.1 Performance-vs-quality trade-off

Choosing an hash table of size T provides a trade-off between performance,
memory and quality. Indeed, higher values of T result in higher quality
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Figure 3.3: For a given input coordinate x, the surrounding voxels at L reso-
lution levels are identified, and indices are assigned to their corners by hashing
their integer coordinates (1). For all resulting corner indices, the corresponding
F -dimensional feature vectors is looked up from the hash tables θl (2) and then
is linearly interpolated according to the relative position of x within the respec-
tive l-th voxel (3). The result of each level, as well as auxiliary inputs ξ ∈ RE

are then concatenated, producing the encoded MLP inputy ∈ RLF+E (4), which
is evaluated last (5). To train the encoding, loss gradients are backpropagated
through the MLP (5), the concatenation (4), the linear interpolation (3), and then
accumulated in the looked-up feature vectors.

and lower performance. The memory footprint is linear in T , while quality
and performance tend to scale sub-linearly. The number of levels L and the
number of feature dimensions F also trade-off quality and performance, for
an approximately constant number of trainable encoding parameters θ.

3.3.1.2 Implicit hash collision resolution

Even though it may appear counter-intuitive, this encoding is able to re-
construct scenes faithfully in the presence of hash collisions, since different
resolution levels have different strengths that complement each other.

Coarser levels, and thus the encoding, are injective, hence they do not suf-
fer from collisions at all. However, they can only represent a low-resolution
version of the scene, since they begets features which are linearly interpo-
lated from a widely spaced grid of points. On the other hand, finer levels
can capture small features due to their grid resolution, but they suffer from
many collisions due to disparate points which hash to the same table entry4.

4Nearby inputs with equal integer coordinates ⌊xl⌋ are not considered a collision. A
collision occurs when different integer coordinates hash to the same index.
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Such collisions are pseudo-randomly scattered across space and statistically
unlikely to occur simultaneously at every level, for a given pair of points [23].

When training samples collide in this manner, their gradients average, but
the importance to the final reconstruction of such samples is rarely equal.
For instance, a point on a visible surface of a radiance field will contribute
strongly to the reconstructed image [23]. Indeed, such point will have an high
visibility and an high density, that multiplicatively affects the magnitude of
gradients, causing large changes to its table entries. At the same time, a
point in empty space that happens to refer to the same entry will have a much
smaller weight. Thus, gradients of the more important samples dominate the
collision average and the aliased table entry will naturally be optimized in
such a way that it reflects the needs of the higher-weighted point.

The multi-resolution aspect of the hash encoding covers the full range from
a coarse resolution Nmin, which is guaranteed to be collision-free, to the
finest resolution Nmax that the task requires. Doing so, it guarantees that all
scales at which meaningful learning could take place are included, regardless
of sparsity. The adopted geometric scaling allows covering these scales with
only O

(
Nmax

Nmin

)
levels, permitting to pick a conservatively large value for Nmax.

3.3.1.3 Online adaptativity

If the distribution of inputs x changes over time during training, for instance
if they become more concentrated in a small region, then finer grid levels
will experience fewer collisions and thus a more accurate function can be
learned. Indeed, the multi-resolution hash encoding automatically adapts
to the training data distribution, inheriting the benefits of tree-based en-
codings [43, 23]. without task-specific data structure maintenance that may
cause discrete leaps during training.

3.3.1.4 Interpolation

Interpolating the queried hash table entries ensures that the encoding encθ(x)
and, by the chain rule, its composition with the neural network FΘ

(
encθ(x)

)
are continuous. Without this d-linear interpolation, grid-aligned discontinu-
ities would be present in the network output, resulting in undesirable blocky
appearances [23].
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Chapter 4

Experiments on data
augmentation

The main objectives of the thesis work are:

(i) Improving the quality of the underlying depth maps associated with
NeRF-based models;

(ii) Exploiting the views synthesis capabilities of these models to generate
novel multi-view datasets, containing challenging objects, associated
with satisfactory depth maps;

(iii) Employing the aforementioned datasets as supervised data to augment
the Booster dataset and, with the ultimate goal of fine-tuning RAFT-
Stereo.

The first objective can be either realized by (i) modifying the underlying
model, for instance by imposing constraints that emphasize the depth recon-
struction; (ii) manipulating the physical scene, augmenting it with informa-
tion that aids the reconstruction, for instance by using projectors to texturize
the scene.

The experiments are mainly performed with Instant NGP thanks to its fast-
ness in training and rendering.
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4.1 Camera setup

To acquire images, the same custom stereo rig of the Booster method is
employed.

The rig is made up of two high resolution cameras featuring a Sony IMX253LQR-
C 12.4 Mpx sensor and a lower resolution camera equipped with a Sony
IMX174LQJ-C 2.3 Mpx sensor mounted between the former two, as depicted
in Figure 4.1.

Figure 4.1: Trinocular stereo rig on a tripod.

From left to right, (L,C,R) denote the three cameras, with L providing the
reference image for both the balanced (L,R) and unbalanced (L,C) stereo
pairs, and the baselines of these two setups being approximately 8 and 4 cen-
timeters, respectively. However, in this application, the central low resolution
camera is disregarded.

4.1.1 Camera calibration

Before the scene acquisitions, the rig has to be calibrated.

Individual cameras calibration At first each camera is calibrated sep-
arately using the pinhole camera model. For this purpose, N images, con-
taining a known chessboard pattern, are acquired using the rig.

The distortion-free projective transformation performed by a pinhole camera
model is given by:

p = A[R|T ]Pw
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where Pw is a 3D point expressed according to the world reference frame,
p is a 2D pixel in the image plane, A is the intrinsic parameters matrix
and R, T are the rotation and translation from the world reference frame
to the camera reference frame, respectively [56]. Following the OpenCV
convention, which models lens distortion by means of a vector of parameters
dist = (k1, k2, k3, p1, p2), k1, k2, k3 denotes the radial distortion parameters
and p1, p2 the tangential distortion parameters.

Given a chessboard, it is possible to find in the images a set of key-points,
such as the inner corners of the chessboard, for which the exact 3D position
in the world reference frame is known and, accordingly, build a set of 2D-
3D correspondences. The 2D coordinates of the corners pL, pR in the L,R
cameras are estimated by using a standard corner detection algorithm. By
calibrating independently each camera of the rig, their intrinsic matrices AL,
AR and the lens distortion parameters distL, distR are estimated [56].

Then images are undistort to perform a calibration of the stereo rigs, esti-
mating also the rotation matrix RLR and the translation vector TLR.

Stereo calibration After the individual camera calibrations, it is possible
to estimate the rectification transformations to be applied to both images of
the stereo rig to produce rectified stereo pairs. Since the L−R stereo system
is balanced, the problem can be addressed as a standard rectification since the
resolution is the same for both images [56]. The OpenCV implementation is
employed to estimate the new intrinsic matrices ALR

L , ALR
R and the rotations

RLR
L , RLR

R of L, R to map the initial image plane into the rectified image
plane. This information is useful to obtain the LLR, RLR rectified stereo pair.

4.2 Depth supervision

On its own, NeRF-based models are unable to provide a good quality depth
map for the whole scene. Indeed, such models tend to provide better results
on areas of interest of the image, namely the objects in the scene, and worse
results on the rest of the image, namely the background. An example is
shown in Figure 4.2. This is probably due to the hierarchical representation
embedded in these models, devised in Section 3.1.2.2, which allocates samples
proportionally to their expected effect on the final rendering, for efficiency’s
sake.

Nonetheless, it is possible to add a further term in the loss function based
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(a) Ground-truth RGB view. (b) Generated disparity view without
depth supervision.

Figure 4.2: Comparison between ground-truth RGB view and generated disparity
view without depth supervision.

on Equation 3.3, presented in Section 3.1.3, that also takes into account a
provided ground-truth, that can be either sparse or dense:

L =
∑
r∈R

[∣∣∣∣Ĉc(r)− C(r)
∣∣∣∣2
2
+
∣∣∣∣Ĉf (r)− C(r)

∣∣∣∣2
2
+
∣∣∣∣D̂(r)−D(r)

∣∣∣∣2
1

]
whereR is the set of rays in each batch, while D(r) and D̂(r) are respectively
the ground-truth and predicted depth maps for a ray r.

Since these scenes are manually acquired during the experiments, ground-
truth depth maps are not available. However, it is possible to feed the stereo
pairs to depth estimation models, such as RAFT-Stereo or SGM, in order to
obtain a depth prior to employ as ground-truth for the supervision.

The process is devised as follows:

(i) Acquire m stereo pairs from different points of view;

(ii) Inferm left depth priors for each stereo pair, by employing a pre-trained
model such as RAFT-Stereo;

(iii) Run COLMAP on the m left images acquired, to estimate the camera
poses;

(iv) Train a model FΘ taking as input the m left images previously acquired
and the m left depth priors previously estimated;

(v) Render the depth maps for the points of view of interest, from the
model FΘ.

Note that the aforementioned process could be also performed by considering
as input for the model both left and right images. However, due to hardware
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limitations, for these experiments only the left images have been considered
for the NeRF reconstruction.

Such method provides evident results for simple scenes that does not exhibits
non-Lambertian effects, as depicted in Figure 4.3.

(a) Generated disparity view without
depth supervision.

(b) Generated disparity with depth su-
pervision.

Figure 4.3: Comparison between generated disparity view without supervision and
with depth supervision.

4.3 Vanishing scanning spray

The same experiment can be replicated for a scene with objects which dis-
plays non-Lambertian behaviours. Nevertheless, the procedure is slightly
different, since such objects must be covered in order to obtain good depth
priors from the aforementioned depth estimation models:

(i) Acquire m stereo pairs from different points of view;

(ii) Run COLMAP on the m left images acquired, to estimate the camera
poses;

(iii) Train a model F
′
Θ taking as input them left images previously acquired;

(iv) Paint the non-Lambertian objects with a vanishing scanning spray;

(v) Acquire n stereo pairs from different points of view;

(vi) Infer n left depth priors for each stereo pair of the painted scene, by
employing a pre-trained model such as RAFT-Stereo;

(vii) Run COLMAP on the m + n left images acquired, to estimate the
camera poses;
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(viii) Train a model F
′′
Θ taking as input the n left images previously acquired

and the n left depth priors previously estimated;

(ix) Render the depth maps for the points of view of interest, namely the
ones associated with the non-painted version of the scene, estimated in
step (ii), from the model F

′′
Θ.

A result of such experiment is presented in Figure 4.4. Once again, it is
self-evident that the disparity maps obtained without supervision are much
worse with respect to the supervised ones. Moreover, there is the possibility
to generate views of the unpainted version of the scene that match the painted
version of the scene, thus the produced disparity maps.

4.4 Scene texturization

The idea is to speed up the process devised by the Booster approach, in Sec-
tion 2.3, to obtain high-quality supervised stereo data. While the Booster
approach infers high-quality depth maps directly from stereo pairs, the follow-
ing approach aims to obtain depth maps from a NeRF-based reconstruction
of multi-view stereo pairs.

Based on the previously performed preliminary experiments, a methodol-
ogy has been devised. Given a scene containing objects which exhibit non-
Lambertian behaviours, a calibrated stereo camera and k projectors, the
general pipeline is the following:

(i) Acquire m passive stereo pairs from different points of view;

(ii) Run COLMAP on the m left images acquired, to estimate the camera
poses;

(iii) Train a model F
′
Θ taking as input them left images previously acquired;

(iv) Paint the non-Lambertian objects with a vanishing scanning spray, to
allow textures to be projected correctly;

(v) Acquire 2n stereo pairs from different point of views, acquiring a passive
pair and an active pair from each point of view, employing all projectors
at once;

(vi) Infer 2n depth priors for each stereo pair of the painted and texturized
scene, by employing a pre-trained model such as RAFT-Stereo;
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(a) Ground-truth RGB view with non-
Lambertian objects painted with the
vanishing scanning spray.

(b) Generated disparity view without
depth supervision.

(c) Generated RGB view with unpainted
non-Lambertian objects.

(d) Generated disparity view with depth
supervision.

Figure 4.4: Results of the second experiment.
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(vii) Run COLMAP on the 2(m + n) left images acquired, to estimate the
camera poses;

(viii) Train a model F
′′
Θ taking as input the 2n images previously acquired

and the 2n depth priors previously estimated;

(ix) Render the depth maps for the points of view of interest, namely the
ones associated with the non-painted version of the scene, estimated in
step (ii), from the model FΘ.

The aforementioned process is performed by considering as input for the
models both left and right images of the stereo pairs, in contrast to the
previous experiment, since few images with texture have been acquired. Such
methodology tends to provide better results.

In Figure 4.5, a stereo pair of the scene with not painted non-Lambertian
objects and their respective depth maps, inferred with RAFT-Stereo, are
shown. It is noticeable that most of non-Lambertian objects are inferred
incorrectly.

In Figure 4.6, a stereo pair of the scene with painted non-Lambertian objects
and their respective disparity maps, generated by training a NeRF model,
without depth supervision, are presented. It is evident that, once again, most
of non-Lambertian objects are inferred incorrectly. Moreover, the disparity
maps generated by NeRF are much more noisy with respect to the ones
inferred by RAFT-Stereo, shown before in Figure 4.5.

In Figure 4.7, a stereo pair of the scene with painted non-Lambertian objects
and the respective stereo pair of the scene with painted and texturized non-
Lambertian objects, are shown. The texturized version of the scene is then
employed to generate, with RAFT-Stereo, a better depth prior for the depth
supervision of the NeRF model.

In Figure 4.8, the pairs of the disparity maps, generated by training a NeRF
model, both without and with depth supervision, are presented. This time
is clear that the non-Lambertian objects are inferred correctly and without
any major artifact.

In the end, it is also possible to generate the RGB views with unpainted
non-Lambertian objects, as shown in Figure 4.9.
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(a) Ground-truth RGB left view with not
painted non-Lambertian objects.

(b) Ground-truth RGB right view with
not painted non-Lambertian objects.

(c) RAFT-Stereo depth left view of not
painted non-Lambertian objects.

(d) RAFT-Stereo depth right view of not
painted non-Lambertian objects.

Figure 4.5: A stereo pair of the scene with not painted non-Lambertian objects
and their respective RAFT-Stereo disparity maps.
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(a) Ground-truth RGB left view with
painted non-Lambertian objects.

(b) Ground-truth RGB right view with
painted non-Lambertian objects.

(c) NeRF disparity left view of painted
non-Lambertian objects, without depth
supervision.

(d) NeRF disparity right view of painted
non-Lambertian objects, without depth
supervision.

Figure 4.6: A stereo pair of the scene with painted non-Lambertian objects and
their respective NeRF disparity maps, without supervision.
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(a) Ground-truth RGB left view with
painted non-Lambertian objects.

(b) Ground-truth RGB right view with
painted non-Lambertian objects.

(c) Ground-truth RGB left view with
painted and texturized non-Lambertian
objects.

(d) Ground-truth RGB right view with
painted and texturized non-Lambertian
objects.

Figure 4.7: A stereo pair of the scene with painted non-Lambertian objects and
the respective scene with texture projection.
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(a) NeRF disparity left view of painted
non-Lambertian objects, without depth
supervision.

(b) NeRF disparity right view of painted
non-Lambertian objects, without depth
supervision.

(c) NeRF disparity left view of painted
non-Lambertian objects, with depth su-
pervision.

(d) NeRF disparity right view of painted
non-Lambertian objects, with depth su-
pervision.

Figure 4.8: Comparison between disparity maps generated by NeRF, without and
with supervision, of a scene with painted non-Lambertian.
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(a) Generated RGB left view with un-
painted non-Lambertian objects.

(b) Generated RGB right view with un-
painted non-Lambertian objects.

(c) NeRF disparity left view of painted
non-Lambertian objects, with depth su-
pervision.

(d) NeRF disparity right view of painted
non-Lambertian objects, with depth su-
pervision.

Figure 4.9: Generated supervised sample.
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4.5 Results

Since the ground-truths of the acquired scenes are not available, the com-
parison between the disparity maps generated by RAFT-Stereo and the ones
generated by NeRF has to be analyzed, in order to understand whether
NeRF’s depth estimation is actually better than the one of RAFT-Stereo.

To evaluate possible discrepancies a set of metrics inspired by Middlebury
2014, made up by the bad-τ percentage and the endpoint error (EPE), has
been employed [34, 56], along with ℓ1 maps between the two disparity maps,
to localize the position of such discrepancies. The lighter areas of these maps
represent points with an higher discrepancy. In general the discrepancies
seems to be higher on the edges, and this is coherent to the fact that RAFT-
Stereo tends to produce smoother transitions between depth levels, with
respect to NeRF. The pairs of disparity maps with an higher EPE have been
checked, finding out that the corresponding ℓ1 maps contain, indeed, wider
lighter areas.

In Figure 4.10 is presented an example where the arm of the Mario action
figure is incorrectly reconstructed by RAFT-Stereo but correctly inferred by
the NeRF model, which was supervised by RAFT-Stereo priors.

In Figure 4.11 is shown an instance in which the glass on the left is erro-
neously predicted by RAFT-Stereo, while the NeRF model is able to infer
it. Moreover, the occlusion present in the raised arm of the frog is better
captured by NeRF.

Even though NeRF seems to be able recover the cases of failure of RAFT-
Stereo, the latter tends to produce smoother disparity maps, as depicted
in Figure 4.12. However, these artifacts introduced by NeRF could be in
principle filtered away or reduced by employing more views for the training.

In Table 4.1, the metrics of the previously presented examples are shown.

Example EPE bad-2 bad-4 bad-6 bad-8
Arm 1.46 0.16 0.06 0.03 0.01
Glass 1.66 0.15 0.05 0.02 0.01

Smoothness 1.66 0.23 0.08 0.03 0.01

Table 4.1: Metrics for examples evaluation.

Essentially, it seems that NeRF is able to provide more informative depth
maps, with respect to the priors on which it was trained, probably due to its
multi-view nature. Nonetheless, these maps are not perfect, hence cleaning,

Alex Costanzino 65 Chapter 4



(a) ℓ1 map.

(b) RAFT-Stereo disparity map. (c) NeRF disparity map.

Figure 4.10: The discontinuity on the arm is localizable on the ℓ1 map by checking
the same bright area also in the disparity maps. It is clear that NeRF has been able
to reconstruct properly the arm of the action figure, contrary to RAFT-Stereo.
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(a) ℓ1 map.

(b) RAFT-Stereo disparity map. (c) NeRF disparity map.

Figure 4.11: Also in this case is evident that NeRF has been able to reconstruct
entirely the glass on the left, while RAFT-Stereo has not.
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(a) ℓ1 map.

(b) RAFT-Stereo disparity map. (c) NeRF disparity map.

Figure 4.12: Even though the ℓ1 map does not exhibit any major bright area it is
noticeable that there are some artifacts on the disparity map generated by NeRF,
especially on the borders of the image.
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filtering and consistency checks are needed in order to enhance the overall
quality. Also, producing more robust priors, by employing for instance a
space-time framework, could aid the depth supervision of the NeRF model.
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Conclusion

This thesis work aimed to mitigate two of the current main problems of
stereo matching, namely finding pixel correspondences in presence of non-
Lambertian surfaces and processing high-resolution images. Based on the
performed experiments, the main objectives of the project have been ad-
dressed.

In particular, the project has improved the quality of the underlying depth
maps associated with NeRF-based models by supervising the training with
depth priors, generated by pre-trained models, achieving more coherent depth
maps with respect to the employed depth priors. As apposed to other ap-
proaches, which exploit depth supervision to enhance the RGB reconstruction
with fewer samples, the proposed methodology maintains an high number of
samples along with the depth priors, during the training, to obtain high
quality and sound depth maps in inference phase.

Furthermore, during the acquisition of the dataset, projectors have been
employed to texturize the scene, in order to aid the matching process, while
non-Lambertian surfaces have been covered with a vanishing scanning spray.

Finally, thanks to the novel view synthesis capabilities of Neural Radiance
Fields, it has been possible to generate some multi-view datasets from the
acquired scenes, which contains high-resolution images that present trans-
parent objects, associated with satisfactory disparity maps.

For the scope of the thesis, these synthesis capabilities have been employed
to infer high quality depth maps from each point of view of the acquired
scene, and, in the case of the vanishing scanning spray, to generate the corre-
sponding RGB view without the spray. In principle, it is possible to exploit
these capabilities also to generate views unseen in the acquisition, along with
the associated depth maps, simulating stereo pairs with different baselines.
Moreover, models endowed with editing material and relighting capabilities,
such as NeRFactor, could be exploited to change the appearance of already
acquired scenes which does not present objects that exhibits non-Lambertian
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behaviours, to insert synthetic but realistic non-Lambertian objects. Also,
in order to make the usage of projectors more efficient, multiple images of
the same view could be acquired in order to perform a space-time inference,
achieving more robust depth priors.

In future, datasets produced with the described methodology could be em-
ployed as supervised data to fine-tune RAFT-Stereo and the other state-
of-the-art deep networks, and, in general, data augmentation by means of
Neural Radiance Fields could become a fundamental tool in Computer Vi-
sion.
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