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”Be thinkers, generate ideas not only data.”
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Abstract

In the industrial environment of steelmaking and steel transformation,

the process of galvanizing is a chemical treatment which is applied to protect

the steel from corrosion. The process consists in coating a steel strip, by

dipping it for few seconds inside a molten zinc bath at 450°C. Then, when
the strip is pulled out, in order to remove the exceeding zinc, two mechanical

nozzles emit a stream of compressed air that hits the surface of the strip.

With the air jet, you can arbitrarily clean the exceeding amount of zinc from

the strip without any direct contact, and get the zinc coating you want. The

effect is commonly known as the air knife effect.

In the scientific literature, the problem of controlling the air knifes is also

referred as wiping process or airknife process. The process can be expressed

in the following way:

Given the physical conditions of the process line such as the temperature

(t) of the zinc bath, the height (h) of the air blades from the bath, the pro-

cessing speed (s) and the target value of the zinc coating (c), find the tuple

of pressure and distance values (p, d) such that, by emitting compressed air

over the steel strip surfaces with such pressure and from that distance, the

air-knife effect attains the target zinc coat (c).

The study, which was conducted in combination with the R&D depart-

ment of Marcegaglia SPA, results in a Deep Learning model that is able to

drive the air-knife effect. We call it controller. The module takes as input
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< t, h, s, c > and generates the expected tuple of values < p, d >.

Accordingly to the requirements we designed the structure of the con-

troller network. We collected the data set and we conducted an Exploratory

Data Analysis on historical data of the smart factory of Ravenna (IT).

Finally, we designed the loss function. The function is the sum of three com-

ponents: (1) the minimization between the coating addressed by the network

and the target value we want to reach; (2) a weighted pressure minimization

component and; (3) a weighted distance minimization component;

Our approach requires the construction of a second module, named coat-

ing net. It predicts the coating of zinc < ĉ > resulting from the wiping

effect when the conditions < t, h, s, p, d > are applied to the production line.

We trained and evaluated five different modules. The structure of the most

accurate model is made by a linear and a deep component. The linear com-

ponent reflects an existing mathematical modeling of the process, adjusted,

in our cases, by a nonlinear ”residual” component learned from empirical

observations.

The predictions made by the coating nets are then used as ground truth

in the loss function of the controller. By tuning the weights of the different

components of the loss function, it is possible to train models with slightly

different optimization purposes.

We validated and tested the model according to two families of metrics:

the first compares the precision of the current model with the standard one

in conditions were the minimum values of pressure and distances were esti-

mations of both modules; the second analyses how the controller modeled the

current solutions with the new optimization logic. Tests showed that the new

logic can optimize of 50% the sub-optimal values of pressure and of the 20%

some distance values; different training strategies can be regularized with a

good level of precision: the overall accuracy of the coating target addressed

by output values is estimated to be in the range of ± 3 g/m2 for all of them;

all the other results are presented in this study.



iii

Keywords

Industry 4.0, Hot-Dip Galvanizing Process, Air-knife process,

Neural Networks, Deep Learning





Sommario

Nell’ambito industriale della produzione e trasformazione dell’acciaio,

il processo di zincatura è un trattamento chimico che serve a proteggere

l’acciaio dalla corrosione. Tale processo consiste nel rivestire un nastro di

acciaio, immergendolo per pochi secondi dentro una vasca di zinco liquido

fuso a 450°C. Quindi, quando il nastro viene tirato fuori dalla vasca un getto

di aria in pressione rimuove l’eccesso di zinco senza alcun diretto contatto

fisico.

Se controllato propriamente, il getto permette di ripulire in modo arbi-

trario dalla superfice del nastro la quantità di zinco voluta. L’assottigliamento

del rivestimento avviene come fosse un coltello d’aria a farlo. Per questo mo-

tivo in gergo tecnico lo si indica come effetto lama d’aria (,in inglese airknife

effect). In questa tesi presentiamo un modo di controllare l’effetto del getto

d’aria in modo ottimale. In letteratura scientifica tale problema è comune-

mente noto anche come wiping process o cone airknife process. L’abbiamo

formalizzato come segue:

Date le condizioni fisiche della linea di processo come la temperatura (t)

del bagno di zinco, l’altezza (h) delle lame d’aria dal bagno, la velocità di

lavorazione (s) e il valore target del rivestimento di zinco (c) , trova la tupla

dei valori di pressione e distanza (p, d) tale che, emittendo dell’aria com-

pressa sul nastro di acciaio con tale pressione e da quella distanza, l’effetto

lama d’aria raggiunga il rivestimento di zinco desiderato (c).

Lo studio, condotto in collaborazione con il dipartimento R&D di Marce-
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gaglia SPA, ha prodotto un modello di Deep Learning in grado di guidare

l’ air-knife effect. Lo abbiamo chiamato controller. Il modulo prende come

input i parametri di < t, h, s, c > e genera la tupla di valori < p, d > di

conseguenza.

Dai requirements abbiamo progettato la struttura della rete. Quindi ab-

biamo raccolto il dataset e condotto una Exploratory Data Analysis sui dati

della smart factory di Ravenna (IT). Infine abbiamo progettato la loss func-

tion come somma di tre elementi: (1) la minimizzazione tra il rivestimento

indirizzato dalla rete e il valore target che si vuole ottenere; (2) una com-

ponente pesata di minimizzazione della pressione e; (3) una componente di

minimizzazione della distanza ponderata;

Il nostro approccio richiede la costruzione di un secondo modulo, chiam-

ato coating net. Essa stima il rivestimento di zinco < ĉ > risultante dal

wiping effect quando le condizioni < t, h, s, p, d > sono applicate alla linea

di produzione. Abbiamo valutato cinque diverse architetture al capitolo 4.

La struttura di quella piu accurata è fatta da un modello lineare e da un

componente deep. Il componente lineare riflette un esistente modellamento

matematico del processo, aggiustato, nel nostro caso, da un componente non-

lineare ”residuale” allenato da osservazioni empiriche.

Le predizioni fatte dalla coating net vengono usate come ground truth

nella funzione di loss del controller. Facendo tuning dei pesi su differenti

componenti della funzione di loss, è possibile addestrare il modello per diverse

logiche di ottimizzazione dell’effetto finale.

La validazione del modello è stata applicata su nuovi dati reali con-

frontando le logiche di tre diversi controllers. I test hanno mostrato che

l’ottimizzazione di certi valori sub-optimali può raggiungere il 50% sulla pres-

sione ed il 20% sui valori di distanza. L’accuracy del target di rivestimento

indirizzato dal controller invece è nel range di ± 3%. Tutti gli altri risultati

e i il comportamento della rete sono stati presentati in questo studio.
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Chapter 1

Introduction

1.1 Marcegaglia Group

Marcegaglia 1 is an Italian industrial group world leader in the transfor-

mation and processing of steel. Today it is the 1st independent operator in

the steel processing sector in the world; and 1st manufacturer of stainless-

steel welded tubes in the world; 1st manufacturer of carbon steel welded

tubes in Europe and; 1st service center in Italy.

The group operates worldwide with 6,600 employees, 60 commercial units

and 29 factories (steel mills). It serves over 15,000 customers and works 6.2

million tons of steel annually. Marcegaglia manufacturing activities include

flat products and welded tubes, stainless products, drawn bars and heavy

plates. The range of products which are made in Marcegaglia, varies from

carbon to stainless, from long to flat products, from commodity to specialty.

The customers choose Marcegaglia for several applications such as mechanical

engineering, industrial plant engineering, construction, automotive and food

industry specializations.

The envisions of ”4.0 Industry” ([17], [11]) aims at the digitalization of

the services and innovation of the processes towards a more ”intelligent” and

sustainable industrial environment. In this scenario, the R&D department of

1https://www.marcegaglia.com/officialwebsite/
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2 1. Introduction

Marcegaglia commitment is constant. In the last 10 years, important tech-

nological investments have transformed the Marcegaglia plants in Ravenna

and Casalmaggiore of one of the largest and futuristic steel service centres in

Europe 2. Ravenna has a plant with a surface area of 540,000 m2, 245,000

of which are covered.

1.2 Thesis outline

This thesis is structured as follows. The first chapter describes the hot-

dip galvanizing process in its main steps; a physical focus is done on the air-

knife effect: the main study object of the process; furthermore, the chapter

presents the formalization of the problem and the related works.

In the chapter 2 the technological background of the concepts concern-

ing Neural Networks and Deep Learning is provided; Residual Networks and

Transfer learning are also discussed; the frameworks used, Keras and Ten-

sorFlow, are introduced as well.

Chapter 3 provides the methodology approach we used to design our solu-

tion; we analyzed the measures, the collected requirements, and the problem

of the current logic of control; then we designed the network and the loss

function; finally, we collected the dataset and did Exploratory Data Analysis

on it.

In chapter 4, we illustrated all the experiments and their results we con-

ducted to project the neural network applied in the the loss: The coating

Net.

In chapter 5 we discussed how we trained the model under three different

training strategies. We showed what the models learned, and then we tested

them in optimization and accuracy. Results are showed in the last section of

the chapter.

Chapter 6 draws conclusions and discuss some idea for possible future

developments.

2https://www.youtube.com/watch?v=dTydGIrowH0&ab channel=MarcegagliaTV



1. Introduction 3

Figure 1.1: Hot-Dip Galvanizing Line.

Source: Marcegaglia R&D.

1.3 Hot-Dip Galvanizing Process

In the industrial scenario of steel modelling and transformation, the pro-

cess of galvanizing is a treatment which is applied to protect the steel from

the corrosion. Several methods have been invented by humans throughout

the history; they differ from each other in the used material, the thickness

and the type of manufacture ([36]). The process, which was studied in this

thesis, is the hot-dip galvanizing process (HDGP) of a production line owned

by Marcegaglia spa. In the figure 1.1 it is showed a typical hot-dip galvaniz-

ing line which is similar to the one we focused. The worked objects are large

strips of raw steel weighing about 15-25 tons: see img. 1.2, fig. (a).

When the raw steel rolls arrive into the factory, they are released in a

dedicated area until they enter in the process line. It is not a matter the

length of the strips because the process line works continuously. When a

new steel sheet is ready to be processed, its front part is welded with the end

of the previous one and the two strips are joined together.

In a typical hot-dip-galvanizing line, at the beginning of the process the

steel strips is washed and cleaned with sponges and water; subsequently,

the product is annealed in a furnace to check the status of its physical and

chemical characteristics.

After the sanity check, the coating process occurs: the raw steel strip is

dipped into a molten zinc bath at the temperature around 449 °C (840 °F)
for few seconds (fig 1.1: galvanizing bath step). The pure zinc (Zn) reacts
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Figure 1.2: (a) Steel strip. (b) Air knife effect.

Source: Marcegaglia R&D.

with oxygen (O2) of the atmosphere and forms zinc oxide (ZnO). This latter

further reacts with carbon dioxide (CO2) and form zinc carbonate (ZnCO3).

The molten zinc that is get is usually dull grey, and can protect the steel

underneath from further corrosion ([13],[31]).

When the strip is pulled out there are always zinc residues on the surface

of the object. In order to remove them, two mechanical nozzles are installed

just above the zinc bath and close to the liquid level. They are positioned

one in front of the other and the strip scrolls upwards in the middle of them.

The arrow in fig 1.1 indicates their exact position in the line. The sides are

technically called Top and Bottom. By emitting a powerful and consistent

stream of air, you can arbitrarily clean with any direct contact, the exceeding

amount of zinc from the surfaces of the strip and get the zinc coating you

want. air-knife effect ([26]): img. 1.2 fig. (b) show it in detail.

The process ends by passing the strip through a series of auxiliary pro-

cesses, for instance: the skin-pass e tension leveler are two steps in the process

that modify the surface structure of the strip to make it suitable for post-

treatment operations such as deformations or painting ([15]). Other steps

are also cooling the product and quality control.

Finally, the galvanized steel strip is cut by shears, re-rolled and placed
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Figure 1.3: Motion of the air stream

Source: Marcegaglia R&D.

through mechanical cranes in the storage area.

1.4 Wiping effect: a physical point of view

This section provides an overview of the physical phenomenon that occurs

during the air knife effect. It is helpful for understanding the requirements

that will be discussed at chapter 3.

In the galvanizing process, the term refers to the effect which is obtained

at the exact step of cleaning the excess zinc from the surface of the steel

strip. It is depicted in the image 1.2 fig (b); the effect is applied to both

sides of the strip and resembles a knife, made of air, that literally cuts grams

of zinc.
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From a physical low-level point of view, like the one that is depicted

in the figure 1.3, the effect is not so stable. When the air is sprayed on the

environment it reaches the surfaces with a trajectory that is chaotic; to better

convey the idea, in the slowest and most controlled case it may be comparable

to a sinusoidal wave. The disorder and confusion of the trajectory increase

with increasing distance and working speed. When this happens, to have a

stable ”knife” and maintain the same weights of zinc in the surfaces, many

more millibars of air pressure are required.

The quality of the final product is strictly related to this phenomenon. If

the pressure is too high, the surfaces can be less uniform and much rougher.

Cracks and wrinkles can arise.

It should be clear now that the problem is about finding the right (suffi-

cient low), pressure level to apply at the minimum distance. The combination

of the two factors reduces the chaos and leads to a better final product and,

in the time, to lower electricity consumption.

1.5 Problem Description

Our research envisions a software solution to control the mechanical noz-

zles of the line and, as a consequence, the air-knives effect applied to the

surface of the steel strip. In the scientific literature, this problem is also

referred as wiping problem or air-knife problem. We formalized it as follows.

Given the physical conditions of the process line such as the temperature

(t) of the zinc bath, the height (h) of the air jets from the bath, the processing

speed (s) and the target value of the zinc coating (c), find the tuple of pressure

and distance values (p, d) such that, by emitting compressed air over the steel

strip surfaces with such pressure and from that distance, the air-knife effect

attains the target zinc coat (c).

The multi-output regression problem presents the following challenges:
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1. All the values are continuous; for the same input, several tuple < p, d >

can satisfy the same coating target; for instance: at the same speed,

temperature and heights, the coating of zinc of 52 g/m2, can be ob-

tained by the tuples:

• < p = 160(mBars), d = 7.5(mm) >

• < p = 250(mBars), d = 10(mm) >.

2. The computation of the results has to take into account the phe-

nomenon of the chaotic motion of the air in some way. We see it

in the previous sections from a phisic point of view.

3. Each strip presents unique unmeasured characteristics such as the ten-

sion and quantity of its alloy components; they influence in some way

the coating of zinc; this consideration is also carried out in [20].

4. The metrics of the process are measured by sensors that are installed

along the components of the production line. Some measurements may

not be perfect; certain measurements must necessarily be taken many

meters ahead of the moment in which the real effect occurs. The reasons

are due to physical impossibilities or because the sensors were designed

for other purposes. For instance: when the coating of zinc is cut out by

the air, it is still very hot in that moment and, it can be measured with

the current technology. So, the activity occurs when the strip is cooled

down. As a consequence, there is always a probability that some bias

in measurements are generated.

The idea, which was proposed by the R&D team, is to apply the neural

network in the controlling logic of the air knives and try to address the

four challenges. We have devised a deep learning model which is able to

drive appropriately the air-knife effect; we call it controller. The module

takes as input the value of < t, h, s, c > and generates the tuple of values

<p, d>accordingly to the requirements and constraints of the process. We
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discussed them, the design and the methodology of our study in the chapter

3.

1.6 Related Works

Increasing the resistance to the corrosion and, providing a better look of

the surface of the end product, are the two general improvements which en-

gineers are looking for in the hot-dip galvanizing process. The two research

fields are commonly accepted by the scientific literature. [57] presented a

review of the development of the anti corrosion processes; the emerging coat-

ing protective systems are duplex-technique based. In their work the authors

concluded also that the research filed needs an unified lifetime evaluation

methods for such coating systems.

Our study focused on the other side of the challenge: to improve the

external surface of steel objects in beauty. The challenges to face are the

look defects which can arise from galvanizing process; i.e.: bare spot, dis-

tortion, dross, touch marks, dents, rough coating, ash deposit, reactive and

non-reactive steels welded together. The remedies can involve the correct

management of the entire process, e.g., the handling of the temperature of

the zinc in the pot; or can also involve a general development of new tech-

nologies ([23]): in [47] advanced multi-slot pumps are presented and in [24]

a feedback-based system to reduce the vibration of speed fluctuations in the

lines.

Furthermore, the correct and accurate application of the tools is another

form of developing of new technologies. It can obviously lead to better sur-

faces as well. The study presented in this final thesis focused on a software

solution which was modelled to control the mechanical pumps of the process

in an optimized way.

In this section, related works are presented.

Machine learning (ML) for process control in industry is a concept that

is gaining popularity ([6]); two questions addressed our research; we asked
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ourselves: (1) Are there machine learning models applied to the hot dip gal-

vanizing process? (2) What are the standard solutions applied today for

controlling the hot dip galvanizing process? Do any of them use deep learn-

ing? We answered in the same order.

Guelto et al.in [20], recognized the utility of ML trying to predict the

weights of the coating; in the work the authors defined this problem non-

linear and they also recognized that there is unknown number of unmeasured

variables which influence in some way the coating of zinc. Such variables re-

duce the prediction of the zinc. A similar analysis was made also in [18]: the

purpose of this article was to apply data mining techniques such as NN 3,

SVM 4, SVM 5, and RT 6, to predict the mechanical properties of the gal-

vanized steel. According to their results neural networks were the much

accurate. Also [12] did a comparative study; It was made between several

types of algorithms of AI for the design of a prediction model that will allow

to determine the strip’s variation in temperature. MLP neural networks over

perform other Data mining Techniques. Then, it pointed also out that the

model are not suitable for predicting the behavior of strips of hot pickled coils

because their surface conditions are substantially different. The authors of

[40] have the same point of view about the utility of neural network models in

the process line context; in their article of last year, they applied the NNs in

combination with a multi-objective genetic algorithm to predict mechanical

properties of a line such as: the yield strength (YS [48]); the ultimate tensile

strength (UTS [9]); and the elongation at fracture (EL [50]).

Finally, examples of application of neural network in the design of online

process control cycles are [42] and [37]: [42] integrated the NNs in the online

temperature management of a continuous annealing furnace on an HDGL.

In the other article, [37], the authors developed a neural network model to

3Neural Networks
4Support Vector Machine ([3])
5Regression Analysis ([4])
6Regression Tree Methods ([10])
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effectively design the process cycles for online control of a battery of batch

annealing furnaces.

Let’s diving deep now into the question number (2). Actually, from our

research, we did not found many different approaches. So far, manual ap-

proach is very used: operators push air for a while and wait for the feedback

of coating.

Three papers are addressing the problem of the coating weights control

with first principle 7 methods; two of them are really old: [49] was pub-

lished in 1976 and [52] in 1996; we decided to let them in this study just as

historical references. A much recent work that use the first principle to de-

rive a mathematical model is [14] (2007): such model describes the pressure

and wall shear stress distribution. It is applied in combination with other

techniques, to predict the coating weights from the process parameters. The

test reported good results but, however, the online control of the weights

looks complex. Conversely, the much used method is definitely Linear Re-

gression([25]): [46] proposes a model of two components (math formulas);

one to predict the pressure and distance of the air knife from the strip; and

the other one, it is used to handle the linear change which occurs in steady

state. [20] is another similar example of linear regression too. Both methods

[20] and [46] are exponential predictors whose parameters were get by differ-

ent optimization algorithm over historical process data. They have the big

advantages that can be easily realized. However, as linear regressions, they

don’t generalize well for the non linear features of the system.

In 2016, the same author of before: Guelton, in [21] published a work for

the ArcelorMittal’s hot dip galvanizing line at Florange; it was the extension

of the previuos one; They improved the system, which before was just a

formula, by adding a new features: the electromagnetic strip stabilization.

However, the same problem: including the flatness of the strip in the

control method, was solved in [43] with no electromagnetic equipment. And

this helped the process line that were not equipped with it.

7https://en.wikipedia.org/wiki/First principle
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Finally, in [16] an advanced linear regression model controller is proposed:

the model checks if the speed proposed by the metallurgical and furnace

models allows to reach the target zinc thickness; according to the target zinc

thickness and line speed, their equation estimates distance, pressure and

height of the air knives. Then they control the pressure and distance using a

PID [2] regulation loop. They showed performance is of the 2% of nominal

target in steady state conditions. The model considers also the tilting of

the strip in its equation by projecting the value in the the linear regression

formula as the angle of the nozzles.

The latest approach for controllers we found are the Neural Networks :

In 2017, [38] used a NN to predict the coating in an optic of developing

an effective coating weight control system. In their results they showed an

accurate model which performed well when the coating as to increase and

lose something in accuracy when the coating have to decrease and there is

a speed decrement too. By the way, the logic of pressure and distance is

embedded in the workflow of the project and, hence, sometimes may not be

optimal.

Another example of a similar application of Neural Network is in [32].

The network and the Genetic Algorithm ([54]) are used to modelling a coat-

ing thickness predictor and put it into the system. However, there is no

controlling logic at all, just prediction.

The work which is much similar to the one of this thesis is a novel neural

networks control system which were proposed by [45]. They used a loss of

minimization that is different of our loss function. They take into account

only the pressure and minimize it by using constant normalized values. Dis-

tance minimization is not considerate at all for what they presented. Sec-

ondly, their application logic is embedded in the process and concerns many

predictors: they distinguish the state of the application between speed and

coating changes. Conversely, our study manages all this changes into one

single module.





Chapter 2

Technological Background

Many subjects of artificial intelligence (AI) mostly concerns functions

that are easy for humans to compute and, at the same time, difficult to de-

scribe in terms of elementary operation. The overall Machine Learning (ML)

idea is to study any set of parameterized functions as function approximation.

We focused on the specific set of composable function called neural networks.

In this section we are going to provide the technological background which

the reader reserves to understand the concept we adopted in this thesis.

2.1 Neural Networks

A Neural Network (NN) is a recipe for computing a function. It is made of

Neurons organized in parallel into layers. Each neuron is itself a very simple

function: signals that income into it are weighted and added together; Then,

the they are fired by comparing the value of that sum against some threshold.

Deep Neural Networks(DNN) are those nets which are composed of multiple

layers in sequence. The parameters of a deep neural network are composed

by the firing thresholds, the weighted connections between the neurons and

their bias. The state-of-the-art neural networks can have over 100 billion

parameters; an example is [8].

13
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A neural network can be seen as a parametrized function:

f(x; θ) (2.1)

It takes in input a vector x of values to compute; and a large vector

of parameters θ which determines its shape. We initialize the network by

randomly sampling the parameter vector θ from a computationally simple

probability distribution,

p(θ) (2.2)

The initialization distribution induces a distribution on the network output.

If it is random at first, the network output must also be random. Then,

we tune the high-dimensional parameter vector as θ → θ̂ , such that the

resulting network function f(x; θ̂) is as close as possible to a desired target

function f(x):

f(x; θ̂) ≈ f(x) (2.3)

This activity is called function approximation. We can tune judiciously

θ̂ by fitting the network function f(x; θ) to a set of many observed pairs of

tuples < x, f(x) >. Such set is called training data; the procedure of making

adjustments to the parameters training procedure; the algorithm used to

perform such procedure learning algorithm ([41]).

The basic unit of a layer, the neuron, is also called perceptron. It’s struc-

ture is showed into the images 2.1. It consists in two operations:

• The preactivation phase zi computes the linear regression formula

zi(x) = (
n∑

i=1

wixi) + b (2.4)

over the incoming input x = (x1, ...., xn).

• Then, the ”evidence” of weights and bias: i.e. the zi value of output,

is applies to a non-linear and derivable activation function : φ .

Examples of activation functions are: sigmoid, tanh, sin, linear, ReLu,

softplus, swish, gelu. The perceptron formula of a single neurons can
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Figure 2.1: Scheme of a perceptron [1].

be rewritten as

yi = φ(zi(x)) (2.5)

and the output of the n-nodes layer ℓ is a vector

zℓ =< yi, . . . , yn > (2.6)

There are two learning algorithms to train a neural network module: one

way is to randomly perturb the network parameters and see if we get better

results; This approach is called evolutionary; It has a high probability of

making worse predictions;An examples is in ([56]). The second way is the

back-propagation algorithm; it provides instantiation of the gradient descent

method to train deep neural networks ([5]).

2.2 Deep Learning Expressiveness

From the point of view of the expressiveness, a Neural Network (NN)

with at least two layers (shallow) and an appropriate number of neurons, can

arbitrarily approximate each function f : R → [0, 1]. Moreover, by adding

hidden layers to the network you can have the same functions approximation

with a lower number of neurons.

Every time a layer is added, is performed a combination of non-linear

functions such as

(g(f(...z(x)..)) (2.7)
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Hence, the NN is a chain of non linear functions. The non linearity introduced

into the network by the function is what allow to approximate arbitrarily

complex functions. In other words, if you use linear activation functions in

the chain, adding layers to the network doesn’t gain computational power

because composing linear functions always results in a linear function. No

matter the network size.

Actually, there is no deep learning without neural network. Hand engi-

neering features are time consuming, brittle, difficult to get and not scalable

in practice. The big advantage of deep learning is the ability to extract

automatically low, mid and high level patterns from texts, images, videos,

sounds, numbers and even graphs and series of data. In particular, the layers

closest to the top of the network topology stack, are able to obtain high view

patterns. For example, in the case of images processing you can recognize

a nose or an eye, or in the case of sound the musical genre (contents taken

from :[19] and [58]).

This is why DL is not only a branch of ML or AI but it is also the hottest

research field for advanced computer science topics such as Natural Language

Processing ([27]), Computer Vision ([34]) or Robotics ([29]).

2.3 Residual Networks

We can modify the deep network architecture so that the hidden layers

only have to learn a residual function. The standard way of the generic non

linear (ℓ+ 1)-th layer equation is

z(ℓ+1) = L(zℓ; θ(ℓ+1)) (2.8)

Where L is the function of the layer ℓ + 1; zℓ is the output of the previous

layer: equation (2.6); the parameters in θ(ℓ+1) define the shape of L.

In place of it, we can design the layer as

z(ℓ+1) = F (zℓ; θ(ℓ+1)) + zℓ (2.9)
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such that the residual block F is the residual mapping of the function we

want our layer to learn. The equation 2.9 doesn’t introduce extra hyper-

parameters compared to 2.8; the residual block F often has two or three

layers; furthermore, for the definition of 2.9 the dimensions of x and F must

be equal.

The approach helps to reduce the vanishing gradient problem 1 which oc-

cur when the parameters of the network are close to zero. The pre-activation

of zℓ in the layer propagates an undegraded copy of the input signal and

importantly, gains in accuracy of the results. This helped in training very

deep models such as ResNet [22]. It has been empirically shown that residual

blocks lead to a significant increase in test performance even for the deepest

networks.(Appendix B of [41] and [22]).

2.4 Transfer Learning

The idea of transfer learning is that a generic representation of non-linear

features can be learned by a network during the training; there is evidence

that the layers of a trained CNN can map the characteristics of an input

with increasing complexity with the level of ”depth”; lower levels can likely

act as predictors of patterns independent of the specific type of activity; such

learned knowledge can be transferred from existing tasks to new one ([51]):

the parameters of the pre-trained network can be injected inside the layer of

another module; this helps the base network to perform the new tasks better.

To transfer the learned knowledge,the input data of the two models must be

the same. Pre-training is often done on a dataset larger than the target one.

With the new initialization the model can train all or part of its layers

by freezing them. This allows to ”fine-tune” the higher-order feature repre-

sentations of the base model ([39]).

Given D a specific domain defined as:

D = {X , P (X)} (2.10)

1https://en.wikipedia.org/wiki/Vanishing gradient problem
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Where X is a feature space2 and P (X) a marginal probability distribution
3, with X = {x1, ..., xn} ∈ X . And given also a task T which consists of two

components too:

T = {Y , f(x)} (2.11)

where Y is the label space and f : X → Y is the objective predictive func-

tion. Such tasks T is learned from pairs of {xi, yi} of the training set where

xi ∈ X; yi ∈ Y and yi = f(xi).

If we define two different domain and tasks, source (s) and target (t);

which differ each other: DS ̸= DT and TS ̸= TT ; transfert learning helps to

improve the learning of the target predictive function fT (·) in DT (see [28]).

2.5 Tensorflow and Keras

We implemented the network by using Tensorflow [55] and Keras [30]

frameworks. TensorFlow is an end-to-end, open-source machine learning

platform which provides also an infrastructure layer for the differentiable

programming. It can compute efficient low-level numeric computation of

tensor object on CPU, GPU, or TPU. To have a better idea of what Ten-

sorFlow is appropriate to do, we can address the reader to the most famous

automatic differentiation algorithms: the computing of the gradient of an

arbitrary differentiable exspression 4.

Furthermore, a TensorFlow program supports the Eager execution (a pro-

gram is described a graph); Distributed and Scalable processing and Cross-

Platform. In TensorFlow Graphs are data structures that contain a set of

Operation and tensor objects : operation are units of computation and ten-

sors are the units of data that flow between operations. Both of them are

defined in a Graph context. Since these graphs are data structures, they can

2The vector space of an n-dimensional vector which is made of numerical features of

an object.
3It is the probability distribution of the random variables contained in the subset.
4https://www.tensorflow.org/guide/autodiff
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be saved, run, and restored all without the original Python code.

Keras is the official high-level API of TensorFlow 2: an interface which

provides abstractions and building blocks for developing and shipping ma-

chine and deep learning solutions. Keras empowers engineers and researchers

to take advantage of the capabilities of Tensorlfow 2: you can run Keras on

TPU or on large clusters of GPUs, and you can export your Keras models

to run in the browser or on a mobile device.





Chapter 3

Methodology

In this chapter the methodology of our work is presented. We analyzed the

measurements of the smart production line and we collected the requirements.

Then, we addressed both into network and loss function designing sections.

The design activity was the guide for all subsequent experiments presented in

Chapters 4 and 5. Finally, we collected training and test sets from historical

data of Marcegaglia production. We explored data and we gained insights

over the features.

3.1 Process measurements

Sensors are installed in the smart process line of Marcegaglia; they con-

stantly measure the steps of the galvanizing process. In this section the

measures of our interest will be described; figure 3.1 gives a 2D view of the

main phase: the emergence of the strip from the zinc bath and the coating

definition. The image also contains the sampled measurements.

Such metrics are:

• (p): The pressure of the air which is streamed by the two nozzles. It

is a measures of millibars.

• (d): The centimeters of distance of the nozzles from the surface of the

21
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Figure 3.1: Galvanizing process measurements

strip. Two values are taken, one for each side. Typically in the process

they are named top and bottom side.

• (c): The parameter represents the quantity of grams of zinc coating

in a squared meter (g/m2) for each face: top and bottom, from the

theoretical center of the steel strip.

• (h): It measures the millimeters of heights of the nozzles from the bath.

• (s): The speed of working is taken as meters of strip scrolling per

minutes (m/m). It changes for instance, when the production in a day

has to be increased.

• (t): It is the temperature in Kelvins of liquid zinc inside the bath.

According to the approach of the problem we addressed, the steel strip

is always in the middle of the nozzles. The jet pressure is the same for each

nozzle and the blowing systems move symmetrically. The same zinc coating
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can be obtained at high speeds by increasing the pressure and reducing the

distance.

3.2 Requirements

In this section we collected the requirements we needed to define the

behavior of the network and which are the reasons they had to be addressed.

The neural network must control the air knife effect ; the context variables

of the production line and the desired galvanization grams are taken as input;

the model must predict in output the distance of the nozzles from the surface

and the pressure they flow to reach the coating target.

We called the network Controller.

Input can be received by both humans or external events: operators can

change the speed of working or the target of the coating; the temperature

of the zinc inside the bath is not always the same in a day; and nozzles can

change heights due to vibrations. All this kinds of changes impact the final

product production and the network should also learn to control them.

Furthermore, the controller should also guide the nozzles in order to

achieve the standard average accuracy of the coating target: ± 3 grams/m2

of zinc on each side of the strip.

Finally, to satisfy the remaining two requirements, the controller must

also behave in the following ways. (1) It must keep both output values

low: the zinc surfaces are uniform when the pressure is lower; small distance

values reduce the chaotic movement of the spreading air. The phenomenon

was described in section 1.4.

(2) There are lower limits for the output values that must be respected;

they are safety limits which come from regulations: the value of the minimum

distance possible is fixed at 7.5 cm; the minimum pressure level of the air jet

is 160 or 250 millibars depending on the processing speed.
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Figure 3.2: Controller Net Structure

3.3 Lacks of the current control system

Before to continue with the design evaluation of the network, we should

briefly explain in what the current control system leaks. The hot dip gal-

vanizing production line is driven by the state of the art of the controlling

systems of the production line. It is able to perform very accurate values

of pressure and distance prediction: we evaluated its accuracy in the latest

experiment we carried in chapter 4.

Despite the good results, the current logic does not take into account

the two requirements that we introduced previously: low values in air jet

and nozzle-stripe gap; and respected safety limits of pressure and distance.

The first one produces general better surfaces; the second guarantees the

safety for the workers and also avoids possible damages of the production

line components.

The controller network we envisioned should provide a new logic of so-

lutions < p̂, d̂ > which can never be met with the current one; they should

handle the non-linear features of the process lines and respect both addition-

ally requirements.
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3.4 Controller Network Design

The structure of the network we evaluated is showed in figure 3.2. The

parameters of input are < t, h, s, c >: the c value is intended to be the target

coating to reach, and the other parameters of the tuple are the working

conditions of the process line at some moment. The output of the network

is the tuple of values < p̂, d̂ >. The topology consists of two dense layers of

64 units each and swish is the activation function we applied.

The network has to be trained to address pressure and distance value

combinations to produce the coating target if applied. Furthermore, to satisfy

the requirement (1): the network should also learn to choose, among all

possible values < p̂, d̂ >, the tuple which minimizes both. The explanation

of the loss function designing is provided in the next section. Finally, we can

meet the requirements (2): respecting the lower bound values, by clipping the

output with the application of the max function. In this way we forced the

network to produce only values inside the allowed range. To cut the pressure

values out of range, we look at the speed input parameter (s). Distance

clipping, on the other hand, occurs with a constant value.

3.5 Loss Design

For addressing the network towards the planned behaviour of the previous

section, we designed our ad-hoc loss.

The function of loss needs a way to address the resulting coating from

the application of the output values in the process line; it may be, for exam-

ple, the prediction of a math formula or another neural network; with such

accurate predictions then, we can guide the network towards appropriate so-

lutions by minimizing the distance between the predicted coating, and the

target coating to be achieved.

In our approach we set out to train from empirical observations another

neural network; and then we evaluate with it the coating resulting from the

application of < p̂, d̂ >; we called it Coating net. The model takes in input
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the values < t, h, s, p, d > and estimates the corresponding coating value

< ĉ >. All the details of such network and how we built it are described in

the next chapter.

In addition, in order to make the controller able of satisfying the other

behavioural requirement, we made also a second observation about the loss;

it was, to reduced each values of the tuple by minimizing the distance of both

outputs from their minimum bounds.

The designed total loss is the sum of three elements: (1) the minimization

between the target coating and the coating which is get by applying the

generated tuple < p̂, d̂ >; (2) a weighted pressure minimization component

and; (3) a weighted distance minimization component;

We reported the math formula below:

Lossε(< p̂, d̂ >) = mse(c, ĉ) +w1 ∗ rmse(p̂, pmin) +w2 ∗ rmse(d̂, dmin) (3.1)

where:

• the tuple < p̂, d̂ > is the output of the network.

• c is the input parameter of to the controller and the target coating to

be achieved.

• ĉ is the output of the coating net.

• pmin is the minimum pressure. It can vary with speed of input.

• dmin is the minimum distance, a constant value (7.5 cm).

• w1, w2 are weights to define the influence of the components in the total

loss. They should be tuned properly. In chapter 5, we explored them.

3.6 Loss computation algorithm

In this section we are going to illustrate the steps of the loss computation

algorithm we used to train the controllers. It occurs in five steps:
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1. Once the < p̂, d̂ > are generated from the network, they are combined

with the input parameters in the tuple < t, h, v, p̂, d̂ >; such tuple is

given in input to the coating net; the obtained output ĉ is a coating

estimation that the target tuple < p̂, d̂ > should get if applied.

2. We measured the means square error (mse) between such estimation

with the coating target c.

3. The second step concerns the computing of the root mean squared error

(rmse) between the generated value of pressure p̂ and the minimum

pressure pmin. This last one changes at runtime according to the speed

of input. The obtained rmse is multiplied by a weight w1 to define the

intensity of the component over the total loss.

4. The rmse between the d̂ and dmin is computed and multiplied by the

weight w2.

5. We sum up the three losses as showed in the formula 3.1.

It is intuitive to add that the designed overall approach can be generalized

for any such multi-output regression problem. We adopted it to model the

network output towards a logic of optimized control solutions.

3.7 The Dataset

According to the problem requirements and the network designing, we

gathered the dataset from the smart process line data of Marcegaglia. In the

table 3.1 we reported the features description and their id; since we faced

the problem as symmetric, we also added two more columns: ”c” and ”d”;

they are calculated by averaging the measurements of the top and bottom

faces for the distance and coating metrics. The size of the training set is

6364 records, the test set contains 1901 samples. Data were pre-processed

into logarithmic scale before to be fed into each networks; the metrics and

error losses were always calculated in normal scale values.
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Features of the Dataset

Features Variable/ID Description Units

Temperature t of the liquid zinc in the bath kelvin(abs)

Height h of the nozzles from the zinc bath millimeters

Speed s sliding of the strip meters/minute

Pressure p is taken in the nozzle millibars

Avg Coating added c (ctop + cbot)/2 grams in m2

Avg Distance added d (dtop + dbot)/2 centimeters

Table 3.1: Dataset Features description

Measures t h s c p d

µ 483 650 91 89 268 14

σ 11.09 0.26 25.56 37.80 120.38 4.7

Table 3.2: Features distribution

3.8 Exploratory Data Analysis

We investigated over the dataset. According to our exploratory data

analysis the collected data are valuable, accurate, complete and consistent;

the probability of get an anomaly or missing data in the values is very low;

the human error probability is also close to zero. In the table 3.2 we described

the data distribution for each features; The following two sections introduce

the Pearson correlation matrix and lead to other final considerations of the

Exploratory Data Analysis ([44]).

3.8.1 Pearson’s correlation matrix

The Pearson’ correlation coefficient is used to measure linear correlation

between two variables. It is the ratio between the covariance of two variables

and the product of their standard deviations; such ratio normalize the mea-

surement of the covariance in a range of [−1, 1]; when a value is close to ±1,

it indicates a perfect degree of association between the two variables; as the
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coefficient goes towards 0, the relationship between the two variables will be

weaker; the direction, positive or negative, of the relationship is indicated by

the sign of the coefficient;

However, the measures can only reflect a linear correlation of variables,

and ignores other types of relationships or correlations. The Pearson’s corre-

lation matrix collects Pearson coefficients for all variable’ pairs that we want

to analyze; we used it in the next section ([53]).

3.8.2 Exploratory Data Analysis Results

A 5D chart is difficult to analyze. We preferred to show the Pearson

coefficient matrix to highlight the linear relationships between the features:

see figure 3.3.

The insights are the following:

• distance and speed are directly proportional to the coating of zinc over

the surface;

• if the pressure increases the zinc decreases;

• height appears to have no linear relationship; the reason is that the

values are fairly constant; This is also shown in the shape of the table

3.2.

However, information can be retrieved from this parameter: to make

an examples, we introduced into the matrix the value H AbsDev ; it

refers to the absolute deviation of the height values from the mean; the

Pearson’s coefficient captured a positive linear correlation with distance

(+0.12) and a negative correlation (-0.12) with speed.

• temperature has no linear correlation with other features too. By the

way, we considered to maintain such features because the parameter

can describe the the density of the zinc.
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Figure 3.3: Pearson Correlation Matrix

In addition to the values of the Pearson Correlation Matrix, we have re-

ported the pair plot matrix : figure 3.4. In the color scale of the plots we put

different coating measures: dark colors mean an higher coating; the combina-

tions Speed-Distance-Coating or Pressure-Temperature-Coating immediately

strike the eye. Another important consideration we worth to add is that: if

the coating has to decrease and speed decreases too, pressure and distance

decrements have to take into consideration the quantity of decrement of the

speed; this pattern can be found in the pair plot too by seeing the combi-

nations of the plots of the speed with distances and pressures. This is also

what we would like our controller to learn.

3.9 K-fold Cross Validation technique

We planned in this phase also a series of experiments which we conducted

in the next chapter; we trained different possible predictor of Coating Net by

using the 5-Fold Cross Validation technique; the method avoids over-fitting

and ensures much robust metrics evaluation.
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Figure 3.4: Pair plot Correlation Matrix

Cross-validation (CV for short), is a statistical method which is common

practice to apply to compare the performance of (supervised) machine learn-

ing models; k-folds term refers to the usage of the re-sampling technique

applied in training phase; that’s why the entire procedure is often called

k-fold cross validation.

In the initial phase, the training set is shuffled and then it is split into k

smaller sets called folds ; subsequently, different models are trained by using,

in iterative way, k-1 folds as training data and the k-th fold as validation set.

Lastly, the models are tested over a set of data which was hold out from the

previous set; the final metrics is the average value of the k computed metrics.

Machine learning models performances are sensible to the samples of the

validation set; small variations in the set can cause relevant changes in per-

formance; with this techniques, the over-fitting problem is reduced because

every data in the training set is applied to validate a model at least one time.

Such training strategy is also used to reduce the variance of the errors

especially if the size of the dataset is small; the approach can look compu-
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tationally expensive, but it does not waste too much data which is a major

advantage for this problem ([33]).



Chapter 4

Interesting Experiments

The designing of the loss function guided our work into several experi-

ments. In this chapter we collected their results; we acted to train a module

which is able of predicting the coating weight from the context variables of

the process line; we named such predictor Coating Network.

4.1 Coating Net designing

The model takes in input the values < t, h, s, p, d > and estimates the

corresponding coating value < ĉ >. At the beginning, we started our study

trying to predict the coating by using a math formula of the physical phe-

nomenon; for this, we conducted a mathematical study of the phenomenon

which lead us to a linear regression model;the study is presented in the next

section; then, we compared four different neural network architectures with

such linear regression model and the standard predictor; we tested them for

each coating group. The description of their structure, the way on which they

were trained, and the results of the experiments are showed at the section

Coating Net construction.

33
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4.2 Phenomenological approach for wiping pro-

cess control

We applied the same approach of the previous work [16]: we studied the

variables of the wipe problem as an empirical derivation of the phenomenon

and we put them in the following mathematical equation:

c =
s ∗ d ∗ h

p
∗ exp (t) (4.1)

Such formula, can be rewritten in a logarithmic scale as the linear combina-

tion of the variables:

log(c) = log(s) + log(d) + log(h) + t− log(p) (4.2)

The linear regression model can have a direct map from 4.2;

Such relation is:

log(c) = w1log(s) + w2log(d) + w3log(h) + w4t− w5log(p) (4.3)

To conclude the study, in 4.4 we lead back the weights of regression model

as coefficient of the variables in the initial formula 4.1:

c =
sw1 ∗ dw2 ∗ hw3 ∗ exp (w4t)

pw5
(4.4)

4.3 Coating Net construction

The steps we did to define the final architecture of the coating net are

presented in this section. In total we designed and trained five different

predictors, we started by describing four, the last one is described in the fol-

lowing sections concerning the experiments. They differ in their architecture

or way of being trained:
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Figure 4.1: Coating Net Structure

• Linear Regression Model (LR)

We designed a model according to the mathematical mapping that we

proposed in the previous section: see formula 4.4; by using a single

unit structure we trained a linear regression model; the model has no

activation function and no bias; this two characteristics ensure a perfect

matching with formula 4.3.

• Two Dense Layers Regression Model (TDL)

The topology of this network is composed by a stack of 4 layers: input

layer, 2 hidden dense layers of 32 units for each and the output layer

on the top. The swish activation function for each layer is applied.

• Coating Net V1 (CNV1)

The model consists of the combination of both previous models; its

general structure has two towers that process the same input; in ad-

dition, the output layer of CNV1 receives the output tensor lists of

both towers and returns a single tensor which is the sum of the results;

we present the structure in the image 4.1. The structure of the first

module of the network is the same of the LR model; the second tower,

on the other hand, has the same topology as TDL; the only difference

from the latter is that the output level of this module has no activation

function.
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MSE Losses

Coat Group LR TDL CNV1 CNV2

from 39 to 59 5.129 6.117 4.883 5.025

from 59 to 89 12.798 11.153 12.545 9.635

from 89 to 124 56.662 79.724 58.317 28.590

from 124 to 144 3.620 3.739 4.044 3.298

Table 4.1: MSE losses evaluation between LR, TDL,CNV1 and CNV2.

• Coating Net V2 (CNV2)

This network has the same structure of CNV1 but, this time, we trained

this model in a different way: one tower estimates the coating and the

second one acts as reinforce block; it aims to add some correction value

to the first tower; we refer to this second module as ”additive block”.

We trained first the LR model and then, we injected its weights in the

linear tower and we froze it; finally, we trained alone the additive block

from scratch.

4.4 Coating Net Evaluation

We conducted experiments for four different coating groups. This led

us to split the dataset into four smaller set; as each set exhibited different

behavior during training, we adapted the following parameters: initializer,

regularizer, learning rate, batch size and epoch numbers, according to that

behavior. We found that initializing the weights with He-Normal Initial-

izer or RandomUniform(minval=-0.5,maxval=0.5)Initializer speeded up the

training; in addition, to avoid overfitting problem we used kernel regularizer

L2 techniques and the 5-fold Cross Validation method. The explanation of

the technique is provided at section 3.9; the losses showed in the next section

are taken as the average of the five models generated via the cv techniques.
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Output distributions of the additive block

CNV1 CNV2 CNV3

Coat Group µ σ µ σ µ σ

from 39 to 59 18.42 1.05 0.99 1.01 2.72 1.00

from 59 to 89 18.27 1.06 1.00 1.03 2.57 1.02

from 89 to 124 36.69 1.07 1.00 1.05 2.51 1.13

from 124 to 144 21.47 1.05 0.99 1.00 2.72 1.00

Table 4.2: Output additive block distribution

4.4.1 First Experiment

The architectures has been trained into four ranges of coating: the first

experiment compares their mean squared error (mse) losses performed in the

test-sets. The results are showed in the table 4.1; CNV2 outperforms all the

models for each coating group; the second consideration which is worth to

highlight is that LR and CNV1 look to have similar losses values. For this

reason, we investigated about the sustainable difference in losses between

CNV1 and CNV2.

4.4.2 Second Experiment

To understand better what the two models learnt during the training, we

used µ and σ to describe the distribution of their additive block outputs; the

results presented the table 4.2 are the output values obtained in grams of

coating zinc. The CNV2 mean output lies around 1 grams for each group,

on the other hands, CNV1 produce many grams more; such big difference

between the two is the indicator that the two networks learnt a different

behavior. However, to be sure that the training approach used by CNV2

is better then CNV1 we conducted a third experiment with a new version

of Coating Net. In table 4.2 we also anticipated the results of the next

experiments. The output of such new version lies near to the CNV2 values.



38 4. Interesting Experiments

MSE Losses

Coat Group CNV2 CNV3

from 39 to 59 5.025 4.705

from 59 to 89 9.635 11.761

from 89 to 124 28.590 32.066

from 124 to 144 3.298 3.458

Table 4.3: MSE evaluation for model CNV2 and CNV3.

4.4.3 Third Experiment

We wanted to force CNV1’s additive block to learn the same behavior

as CNV2 from scratch; hence, we added to the output layer of its additive

block the tanh activation function and then, we trained again from scratch

the model; we called such version of Coating Net as Version 3 (CNV3).

We compared the two architecture losses in the table 4.3; CNV2 still is

doing better in loss evaluation; in addition we can also see in table 4.2 that

the output of the additive block of CNV3 lies around two; the values of 2

can be misunderstood with tanh output property and needs an explanation:

what the activation function clips are values at a logarithmic scale; the log

of CNV3 values is 0.4 which results widely in the range [-1,1]; the CNV2

approach produced log values around 0.007; the CNV3 had the opportunity

to learn the same behavior of CNV2 but it didn’t worked as expected. With

these new results, we can conclude that the learning approach showed in

CNV2 works better among the five different predictors’ architectures.

4.4.4 Fourth Experiment

Until now, the approach we followed for CNV2 concerned the training of

a machine learning model for each of the different coating groups. However,

four predictor models are difficult to maintain; furthermore, the dataset of a

single coating group may be not enough to train a neural network properly;

for this reason, we decided to train the CNV2 architecture for all the groups.
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MSE Losses

Coat Group Coating

Net

CNV2 Standard

Model

from 39 to 59 6.640 4.741 4.941

from 59 to 89 15.436 9.613 14.255

from 89 to 124 24.727 29.891 75.0727

from 124to 144 28.165 3.863 4.149

All groups 17.525 12.027 24.604

Output additive block

Coating Net CNV2

µ = 1.0085 σ = 1.0465 µ = 0.9996 σ = 1.0238

Table 4.4: MSE evaluation and output shape of the additive blocks.

From now on, since we chose it, we refer to this new predictor as Coating

Net. In Table 4.4 we compared the mse losses of the two final models with

the Standard Model. In this work we have not applied proprietary software

except for comparisons. For the sake of curiosity, we have also added at the

bottom of the table, the shape of the output of the additive block for both

nets: Coating Net and CNV2.

From the results in the table we can see that grouping outputs into coating

groups is a general technique that can pay off. Another consideration is that

the CNV2 approach is the most accurate: it’s general mse is lower in on ”all

groups” row.

The Coating Net, due to the generalization of groups, of course lost some-

thing in accuracy; however, we still consider it a valid approach because its

average result in mse is lower than the Standard model.

Finally, CNV2 and Coating Net have a distribution of values with a very

similar shape at the output of their additive blocks.





Chapter 5

Controller Nets: Training and

Evaluations

Before to focus on this chapter we should briefly review some important

concepts which lead our project scope. The current control system, which

in use in the hot dip galvanizing process line, provides a strong accuracy

in prediction; in chapter 4 we already compared it with the Coating Net

model; anyway, for design reasons, its logic of control of the nozzles doesn’t

work properly sometimes: the requirements we evaluated in chapter are 3

not satisfied and the solutions it generates, are sub-optimal; this brought us

to our Controller.

In this chapter we are going to describe the influence of the weights as

loss components; how we planned the training phase; the metrics we used to

validate the model; and finally, we reported the evaluations tests in precision

and optimization in the last paragraphs.

5.1 Training parameters

This section reports the paramenters we applied to train the Controller

Network. Initialization helped to speed-up the training phases of the net-

works; we instantiated the Random Uniform Initializer class of Keras library:
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min-value 0.045, max-value 0.065 and seed=42. Furthermore, to avoid over-

fitting problems we applied in combination the L2 regularization penalty of

0.0001 on the layer’s kernel and Early Stopping Callback methods.

The Controller was trained with a learning rate of 0.001 and batch size

of 64. They worked good for each strategies.

5.2 Validation Metrics

During the training of the model, we have tried to keep the accuracy of the

model close to that of the current predictor. Furthermore, we have tried to

provide a new logic for piloting the airknives effect towards solutions < p̂, d̂ >

that are able to produce better quality final products. Three outlooks are

taken into account by the validation metrics we engineered:

1. The coating loss produced by the tuples. We prioritized it w.r.t. the

other components of the loss. We focused on reducing it, of course.

2. We acted to maximize the decrement in pressure and distance values

from the current solutions. It means increasing the optimization.

3. We compared the accuracy of the controller with the standard model

outputs when applied in some few optimal cases.

5.3 Training strategies

Each component in the total loss adds some features to the final learned

behaviour; the influence of such characteristics in the function is defined

directly by the size of its weights: high weights can provide strong influence

in the loss computation; lower weights can results too week (or small) to be

considered in the sum of the total loss.

Furthermore when one features has too much weight compared to the

others, its influence can mask some behaviors; as a consequence, at the end

of the training such behaviors are not learned.
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We planned to compare three different strategies of training; each strategy

leads to a different model; in the following sections we will described them

and how we tuned the model for each of them. The general approach, which

we followed during the tuning of the weights w1 and w2 of the loss (formula

3.1, chapter 3), was trying small values first; this ensured that the coating

target was prioritized; then, we increased the weights value exponentially

until we had a balancing in all validation metrics.

First Strategy: Minimize the pressure

The first approach was to model only the minimization of the pressure

values; we set w2 = 0.0 and in this way, we reduced to 0 also the minimization

component of the distance;hence, we tried different values of w1. At the end,

it worked fine for w1 = 0.3.

Second Strategy: Minimize the distance

This second approach was to model only the distance values; hence, we let

the network appropriately reduce the pressure in an indirect way; we tuned

w1 = 0.0 to have the minimization component of the pressure to 0. From

our trial and error approach, it was found that this strategy worked well for

w2 = 10.5. The weights values between the two strategy are very different

because pressure and distance components work in a different scale of values.

Third Strategy: Double weights tuning

In this approach we tuned both weights as w1 = 0.125 and w2 = 5.25. To

discovered them we divided by two the weights we found before, and then,

we did some trials to tune accordingly.
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5.4 What Controller Net learned

In this section our aim is to provide to the reader a full comprehension

of what the controller net can learn by applying one of the strategies that

we proposed above. Specifically in the image 5.1, we showed the output of

the one which was trained with Strategy 3 ; the other two strategies are very

similar; we didn’t evaluated big differences which are worth to be showed;

the evaluation of the differences of three strategies is presented in the next

sections; furthermore, anticipating the results, Strategy 3 will be the favorite

approach; for all this reasons, we decided to show only this images.

Before to continue, a brew explanation of how what is showed in the image

is needed: we fixed first the value of height to 650 mm and the Temperature

around 450°C; subsequently, we fed into the Controller Net increasing values

of speed and different coatings; the values we used as coating target are the

mean values of each group that was presented in the previous chapters.

In the x-axis there is the speed range which goes from 50 m/s to 140 m/s;

in the y-axis, the pressure and distance normalized values into the range

[0,1]; we did the conversion to bring the values into the same unit scale.

The dashed lines in the Cartesian plane are the output of the distance; the

solid ones are the output of the pressure; the lines: dashed and solid, with

the same color has the same target coating. The vertical black line is the

speed threshold; it is a reference for indicating when the minimum pressure

changes.

According to the physics of the problem: if the speed increase, to main-

tain the same value of coating the Controller should increase the pressure or

decrease the distance. In the image we can see that this behavior is propor-

tionally executed: near to the origin we have low values of speed; in this case

the net keeps the value of the pressure at the minimum level and conversely,

the value of distance is high in the range of its values; it is actually around

13/14 mm. As speed increases, the network to maintain the same coating

reduces the distance; When the distance arrives to the minimum possible

value, the only thing that the network can do is increasing the pressure; and



5. Controller Nets: Training and Evaluations 45

Figure 5.1: Controller Net: The output behaviour

it is done too.

In the image there are some events which occurred: for the low coating

value (red color) the controller increases the pressure before of high coating

values (green); this behavior is reasonably and physically interpretable; fur-

thermore, in the case of the red coating, the pressure starts to increase before

the distance is completely arrived at the minimum. Finally, we can see that

the network increases pressure and distance by weighing them proportionally.

The order of the coating is respected in both pressure and distance outputs.

When the threshold of the speed is passed though, there is a change in the

reference of the minimum values of pressure. The controller maintained the

order of the coating values even for higher speeds.

5.5 Experimental Evaluation

We tested the models over the unseen data of the dataset. We mea-

sured both precision and optimization efficiency. In the next two sections we

provided the explanations of the test results.
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Figure 5.2: Percentage reduction of pressure values

5.5.1 Optimization test

We conducted a study on the efficiency of the three optimization policies

we gained from the learning strategies: results are showed in the figures

5.2 and 5.3. The images confirms the effectiveness of our three strategies

approach. On the y-axis of both graph we put the degree of optimization

expressed as percentage of decrement for both values: pressure (in fig. 5.2)

and distance (in fig. 5.3); on the other hands, on x-axis, we binned the values

of distance or pressure applied by the current solutions logic.

According to the results in the image 5.2, when the operator works around

520 millibars of pressure, the controller Strategy 1, produces an alternative

working tuple < p, d > with a pressure, for instance, 52% lower; i.e.: the

controller suggests of applying 270 millibars of pressure instead of 520, and

gives a corresponding distance to obtain the same target.

From the image, we can also conclude that the leader in pressure opti-

mization, as we expected, is the controller trained with Strategy 1.
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Figure 5.3: Percentage reduction of distance values

Differently, if we look into the image 5.3, Strategy 2 leads the distance

reduction analysis.

The bigger reduction in distance values, is provided by Strategy 2 when

the operators worked around 11 millimeters; the new distance which is pro-

posed, in this case, is 2.3 millimeters lower than the current value.

The results of both graphs paved a promising path: the trend of the

reductions is crescent. Furthermore, the negative percentage at the beginning

of both graphics, and the hole, which is almost in the middle of the rising

part of the lines, are due to the two safety requirements: (1)The network was

designed not to exceed the minimum distance of 7.5 mm and,(2) the 160 or

250 millibar of pressure according to the speed of input.

In order to accept such optimization values, however, it is important

to perform also accurate precision tests; they make us understand which

network works better in accuracy; such tests are presented the next two

sections.
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Figure 5.4: Mae comparisons

5.5.2 Accuracy tests on real optimal use cases

We pulled out from historical sets of Marcegalgia, the cases where oper-

ators worked at minimum conditions in pressure and distance. Such cases

have a speed always lower than 109 m/m (meters of strip per minute ) and a

pressure lower than 170 millibar; naturally, they are not enough to cover all

the space of the optimal solutions, however, they are valuable cases which is

worth to test.

At this point we had the opportunity of comparing one-to-one the output

of the controllers with the Standard Model and, as a consequence, we had also

the opportunity for testing the accuracy of the predictions for both outputs

p̂ and d̂.

The picture 5.4 shows the mae (mean absolute error) values that we get

from the test; the standard model won in both error values: pressure and

distance; anyway, what counts here is the level of general accuracy of the

networks; if we focus on this, we see similar losses among the bars in the

chart; the worst result of mae is for the pressure of Strategy 1; It differs of

just less than 2.5 millibars from the mae of the standard model. Such small

differences in the chaotic context of the production line can be of course

imperceptible.

Confirms in this direction arrived also from another point of view of the
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same test: we evaluated the accuracy by counting the number of time the

networks produced satisfactory pressures and distances; according to domain

experts, we defined as ”draw between two solutions” when the difference in

pressure between the output of two models does not exceed a tolerances of 6

millibars of pressure.

We got that networks provided bad outputs only in a very few cases:

• Strategy 2 : The network drew or did better every time: 100%.

• Strategy 3 : The controller drew or did better the 98.33% of the time;

it lost few times.

• Strategy 1 : The model tied with the standard model 90.0% of the times

(,but never won against). However, by relaxing both tolerance param-

eters: distance=0.3 and pressure=7; 94.17% of ties are obtained.

From such results it is possible to conclude that all the three controllers

in the test, returned values which are not distant from the standard model.

With some values of tolerance more, even Strategy 1 can achieve a valuable

level of reliability and precision.

5.5.3 Accuracy tests on new generated solutions

When the controller generates a tuple of values which was never met in

production, performing the test as we did before is not possible; thus, we

evaluated the new generated solutions by using two tools: the Coating net

and the Standard model ; we presented their mse losses in the table 4.4 of

chapter 4.

The estimated metrics for this test is the mean differences of zinc grams

at each group coating target; such metric can be seen also from another point

of view: the general coating loss for each group. The results are showed in

the pictures 5.6 and 5.5.

In the bar graphs, negative values refer to the grams missing to reach

the coating target; positive values are excess grams; the domain expert, even
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Figure 5.5: Standard model: difference in grams between the expected and

the target coating.

in this case, defined the value of ± 3.0 grams as the acceptable level of

prediction; this value was also mentioned in chapter three in the requirements

analysis.

According to the prediction of the standard model, such bound is not

respected for few tenths of grams by Strategy 2 only in one case: when

the model targets the coating group G: 90 124 ; however, Strategy 2 is still

valuable because the test in table 4.4 showed the highest mse loss in the

prediction of the tool for such group.

However, from the image 5.5 we see that the prediction made by the

standard model test are favorable to Strategy 3. It did better in the two

groups with the largest coating. Furthermore it performed very well also for

the target group G: 60 89.

Finally, to conclude this section, in 5.6 we showed the second evaluation

which this time was made by applying the Coating Net model; the test result

is in favour of Strategy 3 for three of the four groups.
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Figure 5.6: Coating net forecast: difference in grams between the expected

and the target coating.

5.5.4 Final considerations on results

The standard model is very accurate in the output of pressure and dis-

tance; however, it has a current logic of minimum which is not largely com-

parable with the optimization we proposed in this work; among the three

training strategies we proposed for controllers, we saw in the results of fig.

5.2 and fig. 5.3 that Strategy 3 is able to capture the optimization of both

output parameters: pressure and distance.

Secondly, we carried two accuracy tests which showed promising results:

Strategy 2 and 3 produced very similar outputs to the standard model for

real optimal solution cases ( 100% and 98.33%).

Finally, we estimated also the projections of the new values that the logic

proposed via the coating net and standard model. From such final test,

Strategy 3 is the controller which achieved the minimum coating differences

for the largest number of groups in both prediction tools.

However it is also important to consider that the three proposed logics

can be adapted to the purpose of optimization; we saw that all the three

models worked with good level of precision and the estimation of the target

coating they receive in input is in the rage of ± 3 g/m2;





Chapter 6

Conclusions and Future works

In this thesis we presented a new approach to solve a real problem in the

intelligent steel industry: to optimize the autonomous control of the weight

coating modeling applied by the air-knife effect in a hot dip galvanizing line.

A formalization of the problem was provided; requirements get collected;

furthermore two important analysis were carried out: the measurements

taken during the steps of the process line; and the lacks of the current control

systems.

The result was a deep learning model which we called controller; and the

techniques we used to train it; the controller is able to drive the air-knife

effect towards optimized solutions that lead to the coating weights provided

in its input.

The loss function we envisioned concerns the minimization of three com-

ponents: (1) the error on the expected resulting coating; (2) the distance

of the pressure from its minimum values;(3) and the minimization of the

distance from its minimum values.

The loss required also the implementation of a second neural network

to provide the ground truth on which compute the error with the expected

resulting coating; we called such neural network coating net.

During its construction we compared four different models with the stan-

dard model; the most accurate was the architecture concerning a structure
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made by a linear and a deep component. The linear reflects an existing math-

ematical approach and makes prediction of the output; in our cases, the deep

nonlinear ”residual” component learned from empirical observations to ad-

just such output.

The advantage of the presented loss function is that by tuning the weights

of the different components of the loss function, it is possible to train model

with slightly different optimization purposes.

Tests showed mainly two things: the first is that the logic provided by the

controllers can optimize of 50% the sub-optimal values of pressure and of the

20% some distance values; the second thing is that all the three strategies

can be regularized with a good level of precision. The accuracy of the coating

target is in the range of ± 3 g/m2;

6.1 Future works and open challenges

The future extension of the work of this master thesis concerns mainly

three outlooks:

The first one is that the Coating net architecture lost something in pre-

cision during its construction; we have to go in this direction and create a

much robust controller net; however, our favorite solution we device to face

such problem is of implementing the two models: Controller and Coating net

in continuous learning; the event-drive context of the production line is op-

portune to such kind of application.

Secondly, a possible future work is about feeding the model with new in-

formation that can have important impact on weight zinc control; they could

be for instance: outdoor Temperature and Humidity; a chemical representa-

tion of the zinc; The presence of sodium in the zinc; etc.

Finally, the latest possible direction could be to extend the loss by con-
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sidering the moving of the formalism we made simplified maybe too much

the real problem; the open challenge is to solve the same problem but taking

into account two additional considerations: the steel strip can move from the

perfect center of the two pumps and; the nozzles movement in distance and

height is not symmetric anymore; They can move arbitrary.
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[40] Edgar O. Reséndiz-Flores, Gerardo Altamirano-Guerrero, Patricia S.

Costa, Antonio E. Salas-Reyes, Armando Salinas-Rodŕıguez, and Frank
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