Numerical prediction of the lateral displacement capacity of flexural reinforced concrete shear walls

Nabizadeh Moghaddam, Nasser (2022) Numerical prediction of the lateral displacement capacity of flexural reinforced concrete shear walls. [Laurea magistrale], Università di Bologna, Corso di Studio in Civil engineering [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore. (Contatta l'autore)

Abstract

Previous earthquakes showed that shear wall damage could lead to catastrophic failures of the reinforced concrete building. The lateral load capacity of shear walls needs to be estimated to minimize associated losses during catastrophic events; hence it is necessary to develop and validate reliable and stable numerical methods able to converge to reasonable estimations with minimum computational effort. The beam-column 1-D line element with fiber-type cross-section model is a practical option that yields results in agreement with experimental data. However, shortcomings of using this model to predict the local damage response may come from the fact that the model requires fine calibration of material properties to overcome regularization and size effects. To reduce the mesh-dependency of the numerical model, a regularization method based on the concept of post-yield energy is applied in this work to both the concrete and the steel material constitutive laws to predict the nonlinear cyclic response and failure mechanism of concrete shear walls. Different categories of wall specimens known to produce a different response under in plane cyclic loading for their varied geometric and detailing characteristics are considered in this study, namely: 1) scaled wall specimens designed according to the European seismic design code and 2) unique full-scale wall specimens detailed according to the U.S. design code to develop a ductile behavior under cyclic loading. To test the boundaries of application of the proposed method, two full-scale walls with a mixed shear-flexure response and different values of applied axial load are also considered. The results of this study show that the use of regularized constitutive models considerably enhances the response predictions capabilities of the model with regards to global force-drift response and failure mode. The simulations presented in this thesis demonstrate the proposed model to be a valuable tool for researchers and engineers.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Nabizadeh Moghaddam, Nasser
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Structural Engineering
Ordinamento Cds
DM270
Parole chiave
Nonlinear analysis,Concrete wall,Numerical simulation,Distributed plasticity,Cyclic response,Material Regularization,Lateral displacement capacity
Data di discussione della Tesi
6 Ottobre 2022
URI

Altri metadati

Gestione del documento: Visualizza il documento

^