Ottimizzazione di un Data Warehouse con Google Cloud Platform

Bari, Nicolò (2022) Ottimizzazione di un Data Warehouse con Google Cloud Platform. [Laurea magistrale], Università di Bologna, Corso di Studio in Ingegneria informatica [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore. (Contatta l'autore)

Abstract

I dati sono una risorsa di valore inestimabile per tutte le organizzazioni. Queste informazioni vanno da una parte gestite tramite i classici sistemi operazionali, dall’altra parte analizzate per ottenere approfondimenti che possano guidare le scelte di business. Uno degli strumenti fondamentali a supporto delle scelte di business è il data warehouse. Questo elaborato è il frutto di un percorso di tirocinio svolto con l'azienda Injenia S.r.l. Il focus del percorso era rivolto all'ottimizzazione di un data warehouse che l'azienda vende come modulo aggiuntivo di un software di nome Interacta. Questo data warehouse, Interacta Analytics, ha espresso nel tempo notevoli criticità architetturali e di performance. L’architettura attualmente usata per la creazione e la gestione dei dati all'interno di Interacta Analytics utilizza un approccio batch, pertanto, l’obiettivo cardine dello studio è quello di trovare soluzioni alternative batch che garantiscano un risparmio sia in termini economici che di tempo, esplorando anche la possibilità di una transizione ad un’architettura streaming. Gli strumenti da utilizzare in questa ricerca dovevano inoltre mantenersi in linea con le tecnologie utilizzate per Interacta, ossia i servizi della Google Cloud Platform. Dopo una breve dissertazione sul background teorico di questa area tematica, l'elaborato si concentra sul funzionamento del software principale e sulla struttura logica del modulo di analisi. Infine, si espone il lavoro sperimentale, innanzitutto proponendo un'analisi delle criticità principali del sistema as-is, dopodiché ipotizzando e valutando quattro ipotesi migliorative batch e due streaming. Queste, come viene espresso nelle conclusioni della ricerca, migliorano di molto le performance del sistema di analisi in termini di tempistiche di elaborazione, di costo totale e di semplicità dell'architettura, in particolare grazie all'utilizzo dei servizi serverless con container e FaaS della piattaforma cloud di Google.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Bari, Nicolò
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Data Warehouse,Google Cloud Platform,Data Engineering,Cloud Computing,Serverless Computing
Data di discussione della Tesi
6 Ottobre 2022
URI

Altri metadati

Gestione del documento: Visualizza il documento

^