
ALMAMATER STUDIORUM

UNIVERSITÀ DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE

AND ENGINEERING

ARTIFICIAL INTELLIGENCE

MASTER THESIS

in

Machine Learning for Computer Vision

CONVOLUTIONAL NEURAL NETWORK
ARCHITECTURES FOR TEMPLATE

MATCHING

CANDIDATE SUPERVISOR
Federico Spurio Prof. Samuele Salti

CO-SUPERVISORS
Dott. Angelo Carraggi
Dott. Maurizio De Girolami

Academic year 2021-2022

Session 2nd

Contents

Introduction 1

1 Classic computer vision for Template Matching 3

1.1 (Dis)similarity functions . 3

1.1.1 Compare intensities 4

1.1.2 (Zero-mean) Normalized Cross-Correlation (Z)NCC . 4

1.1.3 Fast Template Matching 5

1.2 Scale Invariant Feature Transform (SIFT) 6

1.2.1 Detection . 7

1.2.2 SIFT Descriptor . 7

1.2.3 Matching . 8

1.3 Implementations . 8

1.4 Limitations . 9

2 Deep Learning Template Matching 10

2.1 Convolutional methods . 11

2.1.1 WaldoNet . 11

2.1.2 PatchNet . 13

2.2 Optical Flow method . 15

2.2.1 FlowNet . 16

3 Custom Implementation of Selected Neural Networks 18

3.1 WaldoNet . 18

ii

3.2 PatchNet . 20

3.3 FlowNet . 21

4 Definition and optimization of the training environment 23

4.1 Training setting . 23

4.2 Dataset . 24

4.2.1 Data augmentation 25

4.2.2 Data normalization 27

4.3 Metrics . 28

4.3.1 Generalized IoU . 29

4.3.2 Average Precision 31

4.4 Loss function . 32

4.5 Training . 33

5 Results and scores of the Neural Networks 34

5.1 WaldoNet . 34

5.1.1 Loss choice . 34

5.1.2 Increasing the depth of the Network 35

5.1.3 Hyperparameter d of Hypernetwork 36

5.1.4 Decoder . 36

5.2 PatchNet . 37

5.2.1 Different resolution 37

5.2.2 PatchNetBigPatches 38

5.2.3 Decoder . 38

5.3 FlowNet . 39

5.4 Implementation of classical methods 39

5.5 Comparisons . 40

Conclusions 45

Acknowledgment 47

iii

Bibliography 48

iv

List of Figures

1.1 Example of slidingwindow of same size of the template across

the whole query image . 4

1.2 An example of SIFT keypoint descriptor, from [7] 8

2.1 Architecture of WaldoNet from [8] 12

2.2 Comparison between PatchNet and other known architecture

from [10] . 14

2.3 Architecture of PatchNet in details. It is composed by two

subnets: PatchCorrelation Layer andAggregation Subnet from

[10] . 15

2.4 Encoder part of the FlowNet architecture. It takes two frames

of a video and produce an estimated flow map from [11] . . . 17

2.5 Decoder part of the FlowNet architecture. It upscale the map

produced by the encoder part to an higher resolution from [11] 17

3.1 Example of prediction of WaldoNet. Each pixel takes value

between 0 and 1 as shown on the color scale on the right. . . . 20

3.2 How PatchNet process the input image in the Patch Corre-

lation Layer. The template is split into patches, re-weighted

in the Fourier domain and converted to convolutional filters.

From [10] . 21

v

4.1 Example of datum of the Dataset: on the left the query image,

in the middle the template image and on the right the ground

truth . 25

4.2 Example of augmented image. On the left the original image,

on the right one of the possible version of the augmented ones 27

4.3 MSE and IoU scores of two predictions (black rectangles) on

the same ground truth (green rectangles). From [28] 29

5.1 IoU graphs of VGG11-VGG11 model. Training with BCE

loss 5.1a and IoU + BCE custom loss 5.1b 35

5.2 Loss graphs of VGG11-VGG11 model. Training with BCE

loss 5.2a and IoU + BCE custom loss 5.2b 35

5.3 Example of prediction with decoder part (VGG11-VGG11) . . 37

5.4 Right approximation of box around the mask 41

5.5 Wrong approximation of box around the mask 41

5.6 Detection of the template in the query. In order cv2 TM,

SIFT, Blueye, WaldoNet (VGG19-VGG11) with confidence

0.2, ModFlowNetC2 with confidence 0.9 44

vi

List of Tables

5.1 Results of methods on non-augmented dataset 42

5.2 Score results of the methods on the augmented dataset 42

5.3 Results of the Neural Networks considering the predicted bi-

nary masks on non-augmented dataset 43

5.4 Results of the Neural Networks considering the predicted bi-

nary masks on augmented dataset 43

vii

Introduction

Computer Vision is the ensemble of algorithms and techniques that allows

computers to reproduce functions and processes of the human visual appara-

tus. The aim of this branch of research is to extract information from images

at increasing higher levels of abstraction and understanding. These informa-

tion allows Computer Vision algorithms to solve many tasks, for example to

detect objects, people, animals inside photos and videos, to recognize faces,

emotions and more.

In recent years, the advent of increasingly advanced Machine Learning

techniques have increased the interest in Computer Vision, since they have

allowed to achieve performance comparable to human standards.

The objective of this thesis is to analyze existing algorithms and propose

newmethods for solving the task of TemplateMatching. The TemplateMatch-

ing problem is defined as follows: given two images, one called template and

the other query, the objective is to find the ”object” (could be a person, an an-

imal, an everyday object) represented in the template image inside the query

image (that usually contains other objects in addition to the searched one).

Template Matching has countless applications in different fields: in the

manufacturing (as part of the quality control), a way to navigate a mobile

robot, for solving games (like ”Where’s Waldo”, cited in the following chap-

ters) and many more.

Machine Learning andDeep Learning have the spotlight on by the industry

and in the research field, even by public opinion, because they have allowed

to solve task deemed impossible for computers. Even thinking about the hot

2

topic of autonomous driving.

For this reason, this work focuses on overcoming the limitations of classi-

cal Computer Vision techniques (SIFT, similarity scores,...) for solving Tem-

plate Matching using Neural Networks. The main challenges in Template

Matching are scale changes, rotation, different light intensities, affine and non-

affine transformation of the template in the query image.

This thesis is the result ofmy curricular internship done inDatalogic S.p.A.

[1], an Italian company that operates worldwide in the fields of automatic data

acquisition and process automation [2].

From the point of view of the structure, this thesis is divided in five chapters.

The first chapter is an overview (advantages and limitations) of the classical

algorithms of Computer Vision for solving the TemplateMatching task. Chap-

ter two presents existing Neural Networks specifically designed for solving

TemplateMatching (WaldoNet), and Neural Networks partially or not initially

designed for this specific task (PatchNet and FlowNet).

Chapter three is rather technical, where all changes and tests I have made

to the mentioned networks to make them suitable for the task of Template

Matching and to achieve better results are explained. Then, in Chapter four,

the choices that I made for the training (dataset, loss function, metrics for

evaluation) are described. In the last chapter, the results on virtual experiments

done on the custom networks, and the evaluation (with the chosen metrics) of

both classical algorithms and deep learning methods are reported.

Chapter 1

Classic computer vision for

Template Matching

TemplateMatching is a well-known problem in the literature of classical Com-

puter Vision. For many years researchers and companies rely on classical al-

gorithm to solve this problem. Since it is not a new challenge, the methods

described in this chapter have been studied for years. There exists both pub-

lished algorithms, taught also in University courses (e.g. ZNCC, SIFT, ...)

and patented or not-disclosed algorithms (e.g. property of companies, like

Datalogic’s Blueye).

In this section, a brief explanation of disclosed algorithms is given.

1.1 (Dis)similarity functions

In an ideal setting where the template is present in the image with the same

size and without any rotation, Template Matching could be solved by simply

slid the template image across the query image and compared at each position

(as shown in Figure 1.1). Then a (dis)similarity function is computed. The ob-

jective is to find the maximum similarity score, or the minimum dissimilarity

score.

1.1 (Dis)similarity functions 4

Figure 1.1: Example of sliding window of same size of the template across
the whole query image

1.1.1 Compare intensities

One way to solve this problem is to compare intensities of the template and the

query. This could be done via Sum of Squared Differences (SSD) or Sum of

Absolute Differences (SAD). For definition these methods are not invariant

to intensity changes. If there is no changes in the light from template to query

then these methods are fast and efficient.

1.1.2 (Zero-mean) Normalized Cross-Correlation (Z)NCC

TheNormalized Cross-Correlation (NCC) is a way to handle linear intensity

changes, but it turns out to be computationally slow. A more robust version

of the NCC is the Zero-mean NCC (denoted as ZNCC), which is invariant to

affine intensity changes, thanks to the subtraction of the local mean [3]. It is

slightly more computationally expensive with respect to the NCC, because it

needs to compute themean of the template and themean of the slidingwindow,

but can be speed up by using box-filtering.

Starting from a query image I of sizes H × W a sub-template image T

of size M × N and , for each position (i, j), the similarity score between the

1.1 (Dis)similarity functions 5

template image T and a query image I can be computed through the (Zero-

mean) Normalized Cross-Correlation as in the following equation 1.1:

ZNCC(i, j) = (1.1)

=
∑M−1

m=0
∑N−1

n=0 (I(i + m, j + n) − µ(Ĩ(i, j))) · (T (m, n) − µ(T))√∑M−1
m=0

∑N−1
n=0 (I(i + m, j + n) − µ(Ĩ(i, j)))2 ·

√∑M−1
m=0

∑N−1
n=0 (T (m, n) − µ(T))2

where:

µ(Ĩ(i, j)) = 1
MN

M−1∑
m=0

N−1∑
n=0

I(i + m, j + n)

µ(T) = 1
MN

M−1∑
m=0

N−1∑
n=0

T (m, n)

The sums over the integers m < M and n < N in the above equations repre-

sent the operation of the sliding window of the image I and template T matri-

ces. After the sliding window summation, with Ĩ(i, j), it is denoted the subset

of the image corresponding to the template at position (i, j). Finally, the slid-

ing window output is normalized by the size M × N and this is symbolically

represented by the mean operator µ(·).

ZNCC-based Template Matching finds the same optimal solution as a full-

search process and allows for significant computational savings.

1.1.3 Fast Template Matching

All the methods above described can be very slow. As a matter of fact, their

complexity is O(M · N · W · H), where H × W is the dimension of the query

image, M × N is the dimension of the template.

TemplateMatching can be solved by approximate methods or exact meth-

ods.

1.2 Scale Invariant Feature Transform (SIFT) 6

Among the approximate methods there is the Image Pyramid, in which

the idea is to shrink the image, building an image pyramid. It is a very fast

approach, but the number of level of the pyramid needs to be chosen carefully,

to avoid losing too much information.

Instead, as said before, NCC and ZNCC are exact methods. They can be

made faster by carrying out the Template Matching in the Fourier domain (due

to the Convolution Theorem [4]) and thanks to box-filtering. Box-filtering is

an incremental calculation scheme which makes the calculation independent

of the template area and requires only four elementary operations per image

position. [5]. With these two methods the computational complexity boils

down to O(W · H · log2(W · H)).

1.2 Scale Invariant Feature Transform (SIFT)

The Scale Invariant Feature Transform (SIFT) is a computer vision algo-

rithm to detect, describe and match local features in images [6].

In Template Matching, SIFT could be used to match the feature of the tem-

plate image with the feature of the query image. This task boils down to a

classical Nearest Neighbour (NN) Search problem. The SIFT descriptors are

matched computing a distance function, usually the Euclidean distance. The

matches then need to be validated, to avoid false matches and matches when

the template is not present.

The algorithm as above described is quite slow, but there exists techniques to

speed it up (e.g. indexing techniques).

Establishing correspondences between features of the template and the fea-

tures of the query image is done in three steps:

• Detection of keypoints

• Description - computation of suitable descriptor based on a neighbour-

hood around a keypoint

1.2 Scale Invariant Feature Transform (SIFT) 7

• Matching descriptors between images

As said before, this process should also be invariant to many transformation.

1.2.1 Detection

A good detector should find the same keypoints in different views of the same

scene, despite transformations (property of repeatability). It should also find

keypoints surrounded by informative patterns (property of saliency). One way

could be to use the corner detectors like Harris. However, corners are rotation-

invariant, but not scale-invariant.

To obtain scale-invariant features, the detector should work on the scale-space.

The key of the scale-space is to apply the detector on scaled and increasingly

blurred version of the input image. The most used scale-space filter is the

Laplacian of Gaussian (LoG), changing the value of the standard deviation σ.

This means, for instance, that Gaussian kernel with low σ gives high value for

small blobs, while Gaussian kernel with high σ fits well for larger blobs. So,

the local maxima across scale and space gives a list of (x, y, σ) values, that

are the possible candidates for a keypoint at (x, y) at σ scale.

The computation of LoG is costly. Instead, SIFT uses theDifference of Gaus-

sian (DoG), that provides a computationally efficient approximation of LoG.

To localize keypoints more accurately, DoG function is approximated around

each extrema by its second degree Taylor expansion.

1.2.2 SIFT Descriptor

The SIFT descriptor is computed in a 16 × 16 oriented pixel grid around each

keypoint (Figure 1.2 shows an example of keypoint descriptor). This is further

divided in 16 sub-blocks of 4 × 4 size. For each region, a gradient orienta-

tion histogram with 8 bins is created. Gradients are rotated according to the

canonical orientation of the keypoint. Each pixel in the region contributes to

its designated bin according to gradient magnitude as well as to a Gaussian

1.3 Implementations 8

weighting function centred at the keypoint. In addition to this, several mea-

sures are taken to achieve robustness against illumination changes, rotation,

etc...

Figure 1.2: An example of SIFT keypoint descriptor, from [7]

1.2.3 Matching

The descriptors are compared across two images to find corresponding key-

points. This is usually done by Nearest Neighbour (NN) Search. The NN,

because of noise or some other reasons, could be a non-valid correspondence.

To avoid false matches, two criteria are used:

1. dNN ≤ T (the NN distance is lower than a threshold T)

2. dNN

d2−NN
≤ T (the ratio of first-closest distance over second-closest dis-

tance is lower than a threshold T)

With T = 0.8, it is shown that 90% of wrong matches are rejected, while only

5% of correct matches are missed.

1.3 Implementations

Implementations of Template Matching and SIFT algorithm can be found,

for Python and C++ programming languages, in the OpenCV library (open

1.4 Limitations 9

source).

Template Matching is also an hot-topic in industries, and some of them have

their own software to achieve this task. An example is the Datalogic soft-

ware, Blueye. Blueye is a Template Matching algorithm designed to be fast

for system with low computational power, while trying to keep an high and

repeatable accuracy. Furthermore, it is designed to be robust to noises, in addi-

tion to small deformation of the query image, scale variation and/or rotations,

and even to different polarity of the template to search.

1.4 Limitations

The SIFT algorithm was successfully applied in many computer vision tasks:

object recognition, panoramic image stitching, gesture recognition, video track-

ing, identification of wildlife, etc. The drawback of this wide flexibility it is

mathematically complicated and computationally heavy. One important fea-

ture of SIFT is that it derives descriptors which are scale and rotation invariant.

The drawback is that these descriptors are created only for “interesting” local

regions. Another disadvantage is that a large number of values to represent

the image by the descriptors is needed. In general, the SIFT algorithm was

found problematic when using for sub-image searching and for affine 1 trans-

formations with rotation angles larger than ∼ 50◦ [6]. The algorithm works

with keypoints representations of images which are not convenient for near-

homogeneous images.

The ZNCC is invariant to constant brightness changes, but it is not defined

for constant intensity images, and shows close to one correlation between ap-

proximately white and black images. In addition, results of ZNCC are not

rotation, scale and affine transformation invariant.

1In Euclidean geometry, an affine transformation is a geometric transformation that pre-
serves lines and parallelism, but not necessarily distances and angles.

Chapter 2

Deep Learning Template Matching

More and more often, machine learning and deep learning are used to solve

classical problems that rely on classical algorithms, and sometimes they over-

come limitation of these methods. This is also the case of Computer Vision,

where, for example, Object Detection is solvedmore effectively by deep learn-

ing approaches than by traditional algorithms.

Despite this, machine learning techniques are quite young and constantly

updated. It is only recently that machine learning solutions have been imple-

mented to solve the Template Matching task.

In this thesis I explore two of the solutions proposed explicitly for Tem-

plate Matching that are ”Where’s Waldo?1 ADeep Learning approach to Tem-

plate Matching” [8] (from now on referred as Hossler paper), that makes use

of Hypernetwork to carry out the spatial information of the template to the

query image (from now on referred as WaldoNet), and ”PatchNet - Short-

range Template Matching for Efficient Video Processing” [10] (from now on

referred as Mao et al. paper), that exploits the division in patch of the tem-

plate, for a more efficient matching in the query (from now on referred as

PatchNet).
1Also known as ”Where’s Wally”. It is a British series of children’s puzzle books created

by English illustrator Martin Handford [9]

2.1 Convolutional methods 11

Then a third method is investigated, not usually used for Template Match-

ing, but for flow estimation. Themethod in question isFlowNet, from ”FlowNet:

Learning Optical Flow with Convolutional Networks” [11] (from now on re-

ferred as Fischer et al. paper), that has a correlation layer used for matching

features of different frames to estimate the flow, but that could be converted

and use for matching features of template and query image.

2.1 Convolutional methods

I decided to group the WaldoNet and PatchNet under the section Convolu-

tional methods because, differently from FlowNet, these methods use stan-

dard convolutional layer to compare the features extracted from the query and

from the template.

Nevertheless, these networks use the convolution differently, as shown in the

following sections.

2.1.1 WaldoNet

WaldoNet is a Convolutional Neural Network (CNN), that given in input two

images, the template image of size 224×224 pixels and the query image of

size 326×224 pixels, produce in output a binary image of size 326×224 pixels

(same as the input) with value 1 where the template is detected in the query

image and 0 elsewhere.

The network is structured as follows (in Figure 2.1 is shown a summary

image): there are two CNNs, trained simultaneously, one extracts the features

from the template (Hypernetwork) and one extracts the features from the query

image (Main network). The feature extraction is done with notorious CNNs

and, in the case of the Hossler paper [8], VGG11 is used for both template

and query. VGG (Visual Geometry Group, from the name of the department

where it was developed) is a Neural Network whose purpose is to classify

objects in a image. The number 11 indicates that there are eleven layers with

2.1 Convolutional methods 12

learnable parameters (8 convolutional layers and 3 fully connected layers) in

the network.

Figure 2.1: Architecture of WaldoNet from [8]

Hypernetwork and hyperlayer

The feature map produced by the Hypernetwork is used as weights of the last

convolutional layer of the main network. In this way, the two feature maps

are convoluted one with the other.

This operation is done in the following way: the last convolutional layer

store its parameters into a kernel. The kernel K contains Nin × Nout filters,

and each filter has dimensions fsize × fsize. In this way, the kernel K storing

all these parameters belongs to a space of dimensions RNin×Nout×fsize×fsize .

The matrix K can be broken down as Nin slices of smaller matrices with di-

mensions Nout × fsize × fsize. Each slice of the kernel is denoted as Ki ∈

RNout×fsize×fsize .

In the following of this document, the layer that turns the tensor produced

by Hypernetwork into the kernel K is denoted as hyperlayer. Therefore, in

the approach of this thesis, the hyperlayer is a two-layer linear network. 2

2The Hossler paper [8] have called Hypernetwork all the layers that convert the tensor im-
age into the kernel of the last convolutional layer of the Main network. The Hypernetwork, in
the original paper of Ha et al. [12], corresponds to the two layers that I have called hyperlayer.

2.1 Convolutional methods 13

The template image is processed by VGG11 and produce a tensor z ∈

Nin×w′×h′, wherew′×h′ is the resolution of the image after being processed.

Then, the tensor z is linearly projected into Nin inputs, and then flattened, so

to have zi ∈ RNz , where Nz is just w′ · h′.

A complete overview of the process that brings the input vector z to the

kernel K of the convolutional layer (notice that the operations described in

the following are computed for all zi, so computed Nin times) can be seen in

the following three equations:

ai = Wizi + Bi ∀i = 1, ..., Nin (2.1)

Ki = ⟨Wout, ai⟩ + Bout ∀i = 1, ..., Nin (2.2)

K = (K1K2 · · · Ki · · · KNin
) (2.3)

Equation 2.1 refers to the the first layer of the hyperlayer that is applied to

zi with weights Wi ∈ Rd×Nz and bias vector Bi ∈ Rd, where d is the size of

the hidden layer, and thus is an hyperparameter. A vector a ∈ Rd is produced.

Equation 2.2 refers to the second and final layer of hyperlayer. It corre-

sponds to a linear operation which takes the input vector ai of size d and lin-

early projects this into Ki, using a common tensor Wout ∈ RNout×fsize×fsize×d

and bias matrix Bout ∈ RNout×fsize×fsize . The symbol ⟨Wout, ai⟩ is the ten-

sor dot product between Wout ∈ RNout×fsize×fsize×d and ai ∈ Rd. It result is

⟨W, a⟩ ∈ RNout×fsize×fsize .

Finally, in equation 2.3 all the matrices Ki are concatenated to obtain the

kernel K.

2.1.2 PatchNet

In the original Mao et al. paper, PatchNet is proposed to match objects in

adjacent video frames, to solve both video object detection and visual object

tracking tasks. Figure 2.2 represents a comparison between Correlation filter

methods (that include also the WaldoNet), Siamese Networks (the idea at the

2.1 Convolutional methods 14

base of FlowNet) and their PatchNet architecture.

The architecture of PatchNet (shown in detail in Figure 2.3) is composed

by two subnets: patch correlation layer and aggregation subnet.

Figure 2.2: Comparison between PatchNet and other known architecture from
[10]

Patch Correlation Layer

Given a fixed-size template image, it is split into a fixed number of patches.

Each patch serves as convolutional filter, and concatenated together, they form

a 4D tensor as convolutional weight. Then a 3D correlation map is produced

by a standard 2D convolution, that perform patchwise correlation. This 3D

2.2 Optical Flow method 15

map is treated as feature map and fed into the aggregation subnet, to localize

the object center and regress the bounding box.

To avoid false responds to background, the authors propose a learning-based

method: PatchNet selects weighted Fourier-domain features rather than plain

image features. The Fourier coefficients are learned.

Aggregation Subnet

TheAggregation Subnet performs target localization and hierarchical bounding-

box regression. The bounding box estimation is done in a few layers, and it is

based on the observation that patch distribution information can inform bound-

ing box estimation. Then, this information is hierarchically aggregated from

smaller patches to larger patches, by convolution and modified max pooling.

Figure 2.3: Architecture of PatchNet in details. It is composed by two subnets:
Patch Correlation Layer and Aggregation Subnet from [10]

2.2 Optical Flow method

The network FlowNet was designed to solve the Optical Flow estimation task.

The definition of this problem is estimating the apparent motion of all pixels

between two frames of a video. Therefore, a network for solving this problem

should take in input two images (in this case two frames) and produce in output

2.2 Optical Flow method 16

the flow map.

2.2.1 FlowNet

The architecture of FlowNet is similar to U-Net, since it has an encoder part

and a decoder part, to gently upscale the tensor produced by the encoder. It

takes in input two images of the same size and produces the flow map, that

has two channels.

Encoder

The encoder part of FlowNet (shown in Figure 2.4) is divided in the Siamese

feature extractor, the Correlation layer and a further processing. The Siamese

feature extractor takes the two input images and extracts their features with

three convolutional layers with shared weights. Then the features extracted

from both image one and two are mixed together through the Correlation layer.

This layer mimic the computation of matching costs performed by traditional

flow pipelines. The matching cost at location (u, v) in the feature map f 1

(obtained from image x1) for displacement (du, dv) in the feature map f 2 (ob-

tained from image x2) is the equation 2.4.

c(u, v, du, dv) =
∑

k

f 1
k (u, v)f 2

k (u + du, v + dv) (2.4)

That is the dot product between f 1 and f 2 (so the unnormalized NCC).

This layer has no learnable parameters, and the only hyperparameters are the

number of displacement D = 2⌊d/s⌋ + 1, where d is the radius of the probing

window, and s is the stride used to sample it (applied to prevent excessive

computational cost).

The output has dimension D × D × H × W , but it is reshaped into a 3D

tensor to be further processed with 2D convolutions. So the final dimension

is D2 × H × W .

2.2 Optical Flow method 17

Figure 2.4: Encoder part of the FlowNet architecture. It takes two frames of
a video and produce an estimated flow map from [11]

Decoder

The decoder part of FlowNet (shown in Figure 2.5) is very similar to U-Net

[13], with upconvolutions (or transposed convolution, upsamples featuremaps

with locally connectivity and shared, learnable parameters) and skip connec-

tion. However, differently from U-Net, supervision is provided at every reso-

lutions.

Figure 2.5: Decoder part of the FlowNet architecture. It upscale the map
produced by the encoder part to an higher resolution from [11]

Chapter 3

Custom Implementation of

Selected Neural Networks

Asmentioned in the previous chapter, three different architectureswhere tested

for the task of Template Matching: WaldoNet, PatchNet and FlowNet. All

these architectures have been modified during my internship to make them

suitable for the task and to achieve better results and predictions.

3.1 WaldoNet

I start implementing this network from the work of Xingrui Wang [14].

The overall architecture is composed by two networks: one that processes

the query image (main network) and one that processes the template one (Hy-

pernetwork). Different combination of object detection networks have been

used (first is the main network and second is the Hypernetwork):

• VGG11 - CNN5

• VGG11 - VGG11

• VGG19 - VGG11

• VGG19 - VGG19

3.1 WaldoNet 19

• ResNet50 - VGG11

CNN5 is a custom Convolutional Neural Network composed by five convo-

lutional layers (convolution - Batch Norm - ReLU).

When VGG11 is used, the first five convolutions are frozen, while the last

three are fine-tuned. Differently, when VGG19 is used, the first ten convolu-

tions are frozen, while the last six are fine-tuned.

Experiments are done also with a decoder part, to gently brings the reso-

lution back to the input one. This idea is the same at the base of FlowNet.

The key part of the architecture is how the main network and the hyper

network are combined. The output of the last layer of the hyper network is

used as weight of the kernel of the last convolution of the main network (the

architecture proposed by Hossler paper is shown in Figure 2.1). Then, the

tensor produced is bi-linearly interpolated to get back the original resolution.

Finally, a Sigmoid layer is applied, to limit the range of value from 0 to 1. In

doing so, each pixel of the binary mask predicted takes on a value between

0 and 1: 1 means that the template is detected in that pixel, 0 means that the

template is not detected in that pixel. An example of predicted output is shown

in Figure 3.1

3.2 PatchNet 20

Figure 3.1: Example of prediction of WaldoNet. Each pixel takes value be-
tween 0 and 1 as shown on the color scale on the right.

3.2 PatchNet

The Mao et al. paper that describes the architecture of PatchNet has also the

link for theGitHub that contains the code [15]. So, the implementation is taken

from this repository. All the implementation below described are a custom

version of the original one. Small changes are made to better fit the task. Since

there is no need to compute bounding boxes, the bounding box regression part

is removed. The decision to remove the box estimation is due to the fact that

both WaldoNet and FlowNet do not compute them. Therefore, to be able to

directly compare the results between these architectures, I decided to make

this change in PatchNet.

• PatchNet

• PatchNetDec

• PatchNetBigPatches

PatchNetDec, as the name suggests, is a custom version of PatchNet that also

3.3 FlowNet 21

implement a decoder, that as the same structure of ModFlowNet. Since the

results of PatchNetDec were better than PatchNet without it, PatchNetBig-

Patches has a decoder part as well.

The difference between PatchNet (and also PatchNetDec) and PatchNetBig-

Patches is only on the size and the numbers of patches. In PatchNet there are

256 patches of dimension 16 × 16, while PatchNetBigPatches processes 64

patches of dimension 32 × 32.

The number of patches and their dimensions are strictly related, as shown in

Figure 3.2. As a matter of fact, for PatchNet with N = 16 and K = 16 (N2

is the number of patches, K × K is the dimension of the patch), the tem-

plate has dimension 3 × 256 × 256; then the Patch Kernels have dimension

256 × 3 × 16 × 16.

Figure 3.2: How PatchNet process the input image in the Patch Correlation
Layer. The template is split into patches, re-weighted in the Fourier domain
and converted to convolutional filters. From [10]

3.3 FlowNet

The implementation of FlowNet is taken from the official GitHub of NVIDIA

[16] (in particular the implementation of FlowNetC) and then is customized.

The original FlowNet architecture processes two images at the time: they are

3.3 FlowNet 22

processed in a Siamese network (three convolutional layers) that extracts the

features of both images. Then the features are put together thanks to a corre-

lation layer. The activation is further processed by six convolution. To obtain

the flow in output, a U-Net like structure is exploited: five upconvolutional

layers brings the activation to bigger dimensions. For each upconvolution, a

flow is predicted to help these convolutions to better reconstruct the flow.

I made three different custom architecture starting from FlowNet:

• ModFlowNetC

• ModFlowNetC2

• ModFlowNetC2v2

All the custom FlowNet implementations have generally the same structure of

the original FlowNet, but there are few changes to adapt these architectures to

the task. First, the resolution in output should be the same of the input. Then,

in the decoder part of the network, is now predicted a binary mask and not

anymore a flow. ModFlowNetC has this exact structure.

On the other hand, in the encoder part ofModFlowNetC2, the last convolu-

tional layer was removed. This is done because a large reduction of the spatial

dimensions decreases the performance of the network (probably it is harder to

reconstruct the segmentation mask from a too low dimension activation).

Both ModFlowNetC and ModFlowNetC2 upscale their resolution, in the

decoder part, until 1/2 of the original resolution; then the tensor is upsam-

pled by an Upsample layer with bi-linear interpolation. ModFlowNetC2v2,

instead, use also the skip connection from the first convolutional layer to up-

scale the tensor to the original resolution.

In all the models a final Sigmoid layer is applied, to limit the range of value

from 0 to 1. In doing so, each pixel of the binary mask predicted takes on a

value between 0 and 1: 1 means that the template is detected in that pixel, 0

means that the template is not detected in that pixel.

Chapter 4

Definition and optimization of the

training environment

Duringmy internship inDatalogic, I have performedmany virtual experiments

using WaldoNet. This was the first network that I have modified and worked

on as described in the previous chapter. The choice of many hyperparameter

values common to the three networks, the loss function and other parameters

have been tested on this network. In any case, different combinations of pa-

rameters and functions have been tested on FlowNet and PatchNet, in order to

confirm the choices made with virtual experiments on WaldoNet.

A smaller number of virtual experiments have been done with PatchNet

for two main reasons. First, the results seem to be not as promising as the one

obtained with FlowNet and WaldoNet; second, it takes very long time to be

trained, and the resources at my disposal were limited.

4.1 Training setting

In this chapter I will explain the setting and the configuration used for train-

ing the networks. First of all, the networks are trained on a cluster of GPUs

kindly offered byDatalogic. TheGPUs are NVIDIA® with 8Gigabytes of Vir-

tual RAM (VRAM). This specification is important because it limited some

4.2 Dataset 24

choices (for example, the batch size).

The chosen programming language is Python, since it has libraries for

building Neural Networks and its flexibility suits perfectly the exigences of

this work. However, Python is slower to run than C++ and it is more prone to

casting errors. The library chosen for build the Neural Networks is PyTorch

[17], a choice made by my team. After some use I was totally convinced by

this choice, because it is more easily customizable than TensorFlow [18].

4.2 Dataset

The choice of the dataset is a crucial part of theNeural Network training. There

does not exists a specific datasets for the Template Matching task. However,

the datasets for object detection could be easily adapted for this kind of prob-

lem. In addition, the networks are not trained on a company dataset for two

reasons: the absence of ground truths and the fact that the network is thought

to work on different industrial dataset, so a possible generalization is one of

the key aspect of this development.

Hence, the dataset used to train the networks is Pascal VOC 2010 [19]

(from now on referred as VOC or the dataset). The train set is composed

of 4998 images and the validation set has 5105 images. The dataset is quite

general purpose, because it contains mainly images of animals, objects and

persons.

A VOC sample is defined as a tuple composed by an image and an anno-

tation file referred to it. In the annotation file, the coordinate of the corners

of the bounding boxes containing the ”objects” (e.g., an animal, a person or a

generic stuff) present in the image are stored.

A dataset for this task should contains triplets composed by the query im-

age, the template and the ground truth. To arrange the VOC to match these

specifications, the objects of Pascal VOC are used as templates (each template

is the part of the query image inside a bounding box). The ground truth is a

4.2 Dataset 25

binary image, with value 1 inside the bounding box of the template, and 0

otherwise.

Finally, the dataset class yields three images: the query image, the template

image and the ground truth binary mask (as shown in Figure 4.1). The query

image is resized to a resolution of 3 × 256 × 256 pixels (3 is the number of

the color channels, in this case RGB, then 256 × 256 is width × height),

keeping the aspect-ratio, and use PAD (value zero) as fill. The original sizes

of the template image are kept and padded to reach 3×256×256 pixels; if the

template exceeds this sizes, the image is downsized to 3 × 256 × 256, always

keeping the original aspect-ratio. Both the query and the template image are

RGB images. The ground truth has dimension 1 × 256 × 256, and has only

binary values.

Selected networks yield as prediction a segmentationmask. Unfortunately,

it is not possible to retrieve a segmentation mask as ground truth using Pascal

VOC. As future improvement, segmentation binary masks should be used as

ground truth.

Figure 4.1: Example of datum of the Dataset: on the left the query image, in
the middle the template image and on the right the ground truth

4.2.1 Data augmentation

In industrial settings the same template is used to match many images: for

this reason, it is almost impossible that the template is present in the query

4.2 Dataset 26

without any transformation (rotation, different scale, perspective changes...).

Therefore, all the networks are trained on an augmented dataset. The vali-

dation set is augmented at instantiating time, so that the model is evaluated

always on the same set; the training set, instead, is augmented at each epoch.

This contributes also to make the network robust to all these transformations

and allows to overcome the limits of the classical algorithms.

The augmentation is done in the following way: any transformation de-

scribed below has a probability of 50% to be applied. The possible transfor-

mations are:

• random rotation [20]: It performs a rigid rotation of a given angle,

which can assume values between −90ř and 90ř;

• random crop [21]: It crop a random portion of image and resize it to a

given size. The area of the crop can have a scale value between 0.5 and

2.0. The scale is defined with respect to the area of the original image;

• random perspective [22]: It performs a random perspective transfor-

mation of the given image with a given probability. The degree of dis-

tortion can assume values between 0.0 and 0.1;

• horizontal flip [23]: It makes a horizontal flip of the given image ran-

domly with a given probability;

• vertical flip [24]: It makes a vertical flip of the given image randomly

with a given probability.

Then, to make the networks also robust with respect to intensity and light

changes, additional color jitterring transformations [25] are applied:

• random brightness: the brightness factor is chosen uniformly from 0.5

to 1.0;

• random contrast: the contrast factor is chosen uniformly from 0.5 to

1.0;

4.2 Dataset 27

• random saturation the saturation factor is chosen uniformly from 0.0

to 1.0;

• random hue: the hue factor is chosen uniformly from −0.2 to 0.2.

An example of an augmented image with all the transformations mentioned

above is shown in Figure 4.2.

Figure 4.2: Example of augmented image. On the left the original image, on
the right one of the possible version of the augmented ones

Data augmentation is key to obtain high performance. For instance, with Wal-

doNet, in the configuration VGG11-VGG11 (explained in section 3.1), the

model trained with a non-augmented dataset reached 56.4% of IoU, while the

same model trained with the augmented dataset reached 63.3% of IoU. IoU

(Intersection over Union) is a score that measure the quality of the network,

and it is defined below in section 4.3.

4.2.2 Data normalization

Normalizing the image data in the training is an important step. It ensures that

each pixel in input has similar distribution, allowing the network to converge

faster during the training [26].

The normalization [27] is done by subtracting the mean for each channel

and then divide for the standard deviation, as formally described in equation

4.1.

outputc = (inputc − µc)
σc

(4.1)

4.3 Metrics 28

The equation refers to one channel, that of index c, but it is applied to

all the RGB channels. The channel outputc is that of the output image pro-

duce by the normalization; the channel inputc is that of the input image.

The mean and the standard deviation values are taken from the dataset Im-

ageNet, and their values are; mean µ = [0.485, 0.456, 0.406]; standard devia-

tion σ = [0.229, 0.224, 0.225], respectively for the R, G and B channels.

To make sure that normalizing the data helps the network to converge faster,

I made an empirical experiment. WithModFlowNetC2 the IoU reached with

normalized training and validation is 67.9%, while, with the same configura-

tion, the IoU reached with not-normalized data is 62.5%. Note that this is not

a formal proof, but only an empirical test of the theory.

4.3 Metrics

Another crucial aspect of the training of a network is the choice of the metrics.

Qualitative speaking, metrics give an indication of ”how good” the network

is performing.

To compare the results obtained with other papers and works, two metrics

are used in this work:

• Generalized Intersection over Union (Generalized IoU);

• Average Precision (AP).

The Hossler paper suggests to use the Mean Squared Error (MSE) as metric to

evaluate the quality of the networks. This metric is computed as in equation

4.2, where N is the total number of pixels, ŷi is the i − th predicted pixel,

while yi is the i-th value of the ground-truth.

MSE = 1
N

N∑
i=0

(yi − ŷi)2 (4.2)

4.3 Metrics 29

I choose to use Generalized IoU instead of MSE because, as shown later,

IoU considers only pixels with value equal to 1, while MSE computes the av-

erage over all the pixels. For this reason, if the size of the object in the image

is small (its dimensions are ≪ N), the MSE value is close to zero both if the

prediction is ”accurate” or if only some pixels are right. In addition, as ex-

plained in the paper by Zhang et al. [28], any bounding box predicted where

the second corner lies on a circle with a radius centered on the correspond-

ing corner of the ground truth will have the same MSE value. This is shown

in Figure 4.3, where the green box is the ground-truth bounding box, while

the black one is the predicted bounding box. The MSE values for the two

configurations shown in 4.3a) and b) are the same, while the IoU values are

different.

Figure 4.3: MSE and IoU scores of two predictions (black rectangles) on the
same ground truth (green rectangles). From [28]

4.3.1 Generalized IoU

As said before, the Template Matching task is quite similar to the Object De-

tection one. Therefore, one choice could be to use the same metric, that is

Intersection over Union (IoU). But since all the networks yield pixel segmen-

tation instead of bounding boxes, the chosen final metric is the Generalized

4.3 Metrics 30

IoU, that is measured at pixel level instead of box level.

The IoU measures the overlapping between the box predicted (BBP) and

the ground truth box (BBGT), and is computed as in equation 4.3:

IoU(BBP , BBGT) = area of intersection

area of union
=

= |BBP ∩ BBGT |
|BBP | + |BBGT | − |BBP ∪ BBGT |

(4.3)

To better understand this score, qualitative speaking:

• IoU∼ 0.55 corresponds to a partial overlap

• IoU ∼ 0.75 corresponds to a good overlap

• IoU ∼ 0.90 corresponds to a perfect overlap.

Given the definition of IoU, the Generalized IoU is computed as the mean of

the IoU referred to a class (IOUc):

IoUc = area of intersection

area of union
(4.4)

The area of intersection (AoIc, i.e. the true positives, in the following also

referred as TPc) is computed as in equation 4.5.

AoIc =
∑

images

#pixels where yuv = c and ŷuv = c (4.5)

While the area of union (AoUc) is computed as in equation 4.6.

AoUc =
∑

images

(#pixels where yuv = c + #pixels where ŷuv = c) − AoIc

(4.6)

Finally, the Generalized IoU (mIoU) is the mean across all the classes of IoUc,

as show in equation 4.7.

4.3 Metrics 31

mIoU = 1
C

C∑
c=1

IoUc (4.7)

From now on the Generalized IoU is referred simply as IoU.

4.3.2 Average Precision

There are two conflicting requirements in finding the template in the query

image:

• Detect the highest number of pixels belonging to the template, i.e., achieve

high True Positive Rate (or Recall);

• Do not detect ”false” pixels in other regions, i.e., achieve high Precision.

The objective is to find a good trade off between these two requirements. In

addition, the number of True Positive and False Negative is influenced by

varying the minimum confidence to accept a detection. In this task, the thresh-

old states whether the predicted pixel probability from the network is 0 (below

the threshold) or 1 (above threshold). But in my thesis work, this threshold

is given by implementation constraints, that is to say the function round of

PyTorch, since is well optimised to work on GPU. Therefore, the threshold

chosen is 0.5 for the training process. During the test, on the other hand, all

the tensors are passed into the CPU, so the threshold could be also different

from 0.5.

The evaluation of the detector is done across all its possible Recall / Pre-

cision regimes, changing the probability threshold. In this way, a precision-

recall curve is obtained. The area under this curve is the Average Precision.

For multiple classes classification, a mean is done across classes to obtain

mean Average Precision (mAP). But in the case of this thesis, the classifica-

tion is binary, and for this reason only the AP is taken.

The practical implementation of the AP is just an approximation of the real

value, because it is not possible to compute with very high accuracy an integral

4.4 Loss function 32

in Python. For this reason, for each threshold i, the Precision (Pri) and Recall

(Rei) values are produced. Then, the final AP is computed in equation 4.8

[29]

AP =
∑

i

(Rei − Rei+1) · Pri (4.8)

4.4 Loss function

The objective of the training of Neural Networks is to minimize the loss func-

tion. The loss function is a proxy measure which avoids to directly optimize

the accuracy (in our case the IoU or the AP). It is easier to optimize, but it still

correlated with how good the classifier is.

The task of Template Matching, as described above, is a case of Binary

Classification: as a matter of fact, our objective is to determine, for each pixel,

if it is a zero or a one. Usually, for this kind of task, the loss used is the Binary

Cross-Entropy (BCE) loss. In the equation 4.9 of the BCE loss, yi is the truth

value for the i − th pixel, while ŷi is the prediction for the i − th pixel.

BCE = − 1
N

N∑
i=1

[yi · log(ŷi)] + [(1 − yi) · log(1 − ŷi)] (4.9)

Since the loss function is a proxy function of the accuracy (in our case the IoU),

I have introduced an inductive bias, since what I really want to maximize is

the IoU score [30]. This was possible only because the Template Matching

task for Neural Networks is casted as Binary Classification problem. Each

pixel can assume value 0 (no template) or 1 (template found).

For this reason, I also employed a custom loss, called IoU loss, that is

= 1−IoU, where IoU is the same quantity computed in equation 4.3. The ”one

minus” in front is just because the loss function is minimized, so to maximize

the IoU this term is necessary. In addition, virtual experiments are done also

with a weighted combination of IoU loss and BCE loss. This is the one largely

employed in the training of all the networks, because it yields the best results

4.5 Training 33

(with them unevenly weighted: 60% the IoU loss and 40% the BCE loss). To

sum up, three different losses have been tested:

• BCE loss;

• IoU custom loss;

• IoU + BCE custom loss.

4.5 Training

To make the experiments repeatable, all the random function are fed with a

static seed (42), and the behaviour of the networks is set to ”deterministic”.

With all these precautions, the results yield after each restart of the machine

are the same. All the networks are trained up to 100 epochs, with Adam [31]

as optimizer, with a weight decay of 5 × 10−4. The batch size chosen is 32.

To avoid overfitting and to allow the learning to converge faster, some

regularization techniques are used.

First of all, I implemented early stopping, a method that treats training

time as hyperparameter. When the model starts to overfit on the training set

(i.e., the accuracy on the training grows, while the accuracy on the validation

decrease), early stopping ”stops” the training. Early stopping has one param-

eter, that is the patience, that state for how many epochs the network should

achieve lower accuracy before interrupting the training. I set the patience to

7 epochs. With this technique implemented, none of the models reached 100

epochs of training.

Secondly, I used the scheduler ReduceLROnPlateau of PyTorch to re-

duce the learning rate if the validation IoU reaches a plateau (i.e., it does not

improve or worsen within a certain range). Also in this case a patience pa-

rameter is set (5 epochs) and a minimum learning rate reachable is imposed

(1 × 10−7).

Chapter 5

Results and scores of the Neural

Networks

5.1 WaldoNet

As mentioned in the previous chapters, for this workWaldoNet was the ”play-

ground” to test many configuration of loss, hyperparameters, batch size and so

on. Therefore, in this section, for this network the results of more experiments

than with the other two, PatchNet and FlowNet, are shown. The choices of

loss, depth and hyperparameter, in particular for WaldoNet, greatly affects the

reached scores. Different is the case on FlowNet, as it will be shown in section

5.3.

5.1.1 Loss choice

VGG11-VGG11: The choice of IoU in combination with the BCE custom

loss allows a more regular training of the model (as shown in Figure 5.2 for

the loss and Figure 5.1 for what concern the IoU), and the IoU increases faster

than the model trained only with BCE loss.

The model trained with BCE loss reached 62.4% of IoU, while the one trained

with IoU + BCE loss reached 63.3% of IoU.

5.1 WaldoNet 35

Models from now on are intended as trained with IoU + BCE loss, unless

differently specified.

(a) BCE loss (b) IoU + BCE loss

Figure 5.1: IoU graphs of VGG11-VGG11 model. Training with BCE loss
5.1a and IoU + BCE custom loss 5.1b

(a) BCE loss (b) IoU + BCE loss

Figure 5.2: Loss graphs of VGG11-VGG11 model. Training with BCE loss
5.2a and IoU + BCE custom loss 5.2b

5.1.2 Increasing the depth of the Network

The main and the Hyper networks extract features from the images thanks

to well know CNNs for object classification and detection. Since increasing

the depth of these networks in the task of object detection helps to reach a

better accuracy, I have tried to do the same for the task of Template Matching.

VGG19 is a CNN with 19 convolutional layers, while ResNet50 is deeper and

exploits the residual connection to avoid high training errors.

VGG19 - VGG11: Increase the depth of the main network seems to produce

5.1 WaldoNet 36

better results. The IoU reached is 68.2%.

ResNet50 - VGG11: Further increase the depth of the main network, e.g.

using ResNet50, does not produce better results; conversely the IoU reached

with this model is 64.9%.

5.1.3 Hyperparameter d of Hypernetwork

The hyperparameter d is the depth of the first fully connected layer of the

Hypernetwork, and it greatly affects the amount of information transmitted

from the template image to the query image [8].

VGG19-VGG11: The choice of d equals to 16 seems to be a good decision.

Lower or larger d values yield worst results, respectively IoU of 63.5% with

d = 8 and 62.2% with d = 32.

5.1.4 Decoder

To reach better results in IoU, I tried to implement a decoder part, that gently

brings back the resolution of the computed tensor to the original image size.

VGG11-VGG11: The average IoU on the validation set is generally worst

with respect to the model without the decoder part (60.6% vs. 63.3%). This

could be due to the fact that the ground truth is the bounding box around the

template; for this reason, models that yield a prediction with more background

around the template are rewarded. As shown in Figure 5.3, the mask around

the motorcycle is quite precise (image taken from epoch 5).

5.2 PatchNet 37

Figure 5.3: Example of prediction with decoder part (VGG11-VGG11)

5.2 PatchNet

The PatchNet network, as described in section 3.2, reaches an IoU of 46.6%,

using the resolution of the input image of 256 × 256 pixels, which is the same

resolution used in all the other network.

5.2.1 Different resolution

This result is much lower than the one obtained by WaldoNet or FlowNet at

their first iteration. Because of this, I have tried two different strategies to

align myself with the original Mao et al. paper [10]:

• feed the network with images at the same resolution used in the Mao et

al. paper. So, the query image is resized to 120×120 pixels (in the paper

they used 119×119, but it gives some problemwith the dimension of the

kernels), while the template is resized to 64 × 64. However, with these

5.2 PatchNet 38

new resolutions, the network has the worst performances, reaching a

IoU of 25.3% only;

• in the dataset described in section 4.2, the size of the template is padded

and only resized if it exceeds 256×256 pixels. Therefore, I have tried to

feed the network with the template resized always to 256 × 256 pixels

without keeping the aspect ratio. The idea behind is to avoid patches

with only pad. But the reached value of the IoU, 36.8%, is still lower

than that obtained in the first test.

After these disappointing results, the dataset used for the training of PatchNet-

Dec e PatchNetBigPatches is the same described in section 4.2.

5.2.2 PatchNetBigPatches

The results obtained by using PatchNetBigPatches are similar to the one ob-

tained by PatchNet. As a matter of fact, the reached IoU is 44.2%. For these

training, I also kept track of the CPU time spent, that ranges between 15 and

24 hours. The CPU time for the training of the other networks, WaldoNet and

FlowNet, is around 8 hours. This CPU consuming time is the reason why there

are fewer experiments on PatchNet than for the other networks.

5.2.3 Decoder

With the use of the decoder, the obtained results seem more promising. Patch-

Net reaches a IoU score of 56.7%, while the use of BigPatches and the Decoder

does not improve drastically the score, since it only reaches 48.8% of IoU. Fi-

nally, another experiment is done with the original resolution of 120 × 120

pixels for the query and 64 × 64 pixels for the template. The decoder turn out

to be a big boost for this configuration, since the IoU reached is 46.3%.

5.3 FlowNet 39

5.3 FlowNet

FlowNet, differently from the case of WaldoNet, is less sensible to variations

in the configuration.

ModFlowNetC, that has the same structure of FlowNet but adapted for the

task of Template Matching, produces already impressive results, with a IoU

score of 67.6%.

A test is made with up-convolutions till the original resolution. The result

of the test is not encouraging, as the result was worst, with IoU score of 66.3%.

In order to reach the original resolution, the Upsample layer is used. However,

a slightly better result is obtained with a less deep encoder, ModFlowNetC2,

that has reached a IoU score of 67.9%.

Then, the same test done using ModFlowNetC is repeated using Mod-

FlowNetC2, by restoring the original resolution adding a up-convolution layer

to the decoder. This version, called ModFlowNetC2v2, as expected from the

previous test, does not performs better that ModFlowNetC2; as a matter of

fact, it reaches only 66.6% of IoU.

5.4 Implementation of classical methods

The classical methods are taken from the OpenCV [32] library for Python.

OpenCV provides a real-time optimized Computer Vision library. It provides

both methods for ZNCC and SIFT. The function for Template Matching of-

fered by OpenCV (from now on referred as cv2 TM) simply slides the tem-

plate image over the input image and compares the template and patch of in-

put image under the template one [33]. The similarity function used by this

function is not exactly the ZNCC presented in section 1.1.2, but it is called

5.5 Comparisons 40

TM_CCOEFF (Correlation Coefficient) and its definition is given by the equa-

tion:

TM_CCOEFF(i, j) =
M−1∑
m=0

N−1∑
n=0

(T ′(m, n) · I ′(i + m, j + n)) (5.1)

where

T ′(m, n) = T (m, n) − 1
(M · N)

·
M−1∑
m′=0

N−1∑
n′=0

T (m′, n′)

I ′(i + m, j + n) = I(i + m, j + n) − 1
(M · N)

·
M−1∑
m′=0

N−1∑
n′=0

I(i + m′, j + n′)

(5.2)

TM_CCOEFF is chosen among different type of similarity function, because

it yields the best results.

The implementation of the SIFT algorithm is also present in the OpenCV

library [34]. Both the SIFT and cv2 TM implementations are taken from the

Zszazi GitHub repository [35] and adapted for this task.

5.5 Comparisons

To better summarize the results obtained by the networks that have been cus-

tomized during my internship, I compared them with the classical methods

and with the Blueye algorithm. This latter is a company proprietary software.

All methods have been tested on two datasets. The first is the original

version of Pascal VOC 2010 (around 5000 images), where the image of the

template is represented in the query without any transformation. The second

is the same dataset, but this time augmented, with heavy transformations (ro-

tations, scale changes, ...).

The classical algorithms produce as prediction four points of the bound-

ing box enclosing the template found in the query. The networks, on the other

hand, produce a binary segmentation mask, with value equal to 1 where the

5.5 Comparisons 41

template is found in the query. To make the predictions of the networks com-

parable with the classical algorithms, the functionmasks_to_boxes [36] of Py-

Torch library is employed. From the binary mask, this function provides the

four corners of the bounding box. This method is a raw approximation of what

the networks really predict. As a matter of fact, a wrongly predicted pixel far

away from the others impacts greatly on the conversion mask to box.

A practical illustration of this is given in the following Figs. 5.4 and

5.5. Figure 5.4b shows an almost correct approximation of the bounding box

around the predicted mask (5.4a). When an isolated, spurious pixel is present,

as in the top part of Fig. 5.5a, a crude approximation of the bounding box is

consequentially produced, Fig. 5.5b.

(a) Binary segmentation mask (b) Box retrieved from mask

Figure 5.4: Right approximation of box around the mask

(a) Binary segmentation mask (b) Box retrieved from mask

Figure 5.5: Wrong approximation of box around the mask

The table 5.1 encloses the results of networks and classical methods on the

non-augmented dataset. It can be noticed that the best results are obtained by

cv2 TM, followed by Datalogic’s Blueye. The Neural Networks, also because

of the problem of conversion between mask and bounding box previously de-

scribed, do not perform well as the classical methods.

5.5 Comparisons 42

Not augmented set

Method IoU AP

cv2 TM 95.5% 95.4%

SIFT (10 matches) 92.6% 92.5%

Blueye (conf 0.8) 94.1% 94.8%

ModFlowNetC2 boxes 79.9% 83.2%

WaldoNet (VGG19-VGG11) boxes 69.7% 71.5%

Table 5.1: Results of methods on non-augmented dataset

The strengths and advantages of the Neural Networks are evident with the

heavy augmented dataset, with results reported in table 5.2. In this case, both

of the classical methods proposed by OpenCV failed, and the drop in the per-

centage is quite impressive. On the other hand, Blueye reaches much higher

IoU score with respect to the classical counterparts, almost comparable with

the IoU score of the Neural Networks. However, the IoU score and the AP

score of the Neural Networks, in particular ModFlowNetC, are very high, and

the drop in percentage respect to the non augmented dataset is not drastic.

Augmented set

Method IoU AP

cv2 TM 49.4% 53.5%

SIFT (10 matches) 48.5% 51.8%

Blueye (conf 0.8) 63.4% 66.9%

ModFlowNetC2 boxes 69.7% 74.8%

WaldoNet (VGG19-VGG11) boxes 67.4% 69.5%

Table 5.2: Score results of the methods on the augmented dataset

Even if there is a problem in converting the predicted binary masks of the net-

works to bounding boxes, the results obtained with the augmented dataset are

impressive. However, even more astonishing are the results obtained without

this conversion. Since is not a fair comparison to compare bounding boxes

5.5 Comparisons 43

with segmentation masks, the scores of the Neural Networks without conver-

sion are reported in separate tables.

In table 5.3 the results of the networks on the non-augmented dataset are

shown. In table 5.4 the results of the networks on the augmented dataset are

listed. It can be noticed that the IoU scores are similar to the bounding box

conversion, while the AP scores are much higher.

Not augmented set

Method IoU AP

ModFlowNetC2 80.7% 96.9%

WaldoNet (VGG19-VGG11) 70.7% 89.5%

Table 5.3: Results of the Neural Networks considering the predicted binary
masks on non-augmented dataset

Augmented set

Method IoU AP

ModFlowNetC2 69.5% 94.1%

WaldoNet (VGG19-VGG11) 68.1% 89.0%

Table 5.4: Results of the Neural Networks considering the predicted binary
masks on augmented dataset

Finally, an example of an image obtained with non-affine transformation (per-

spective distortion [22] with degree of distortion equals to 0.7) is shown in

Figure 5.6a. The query and the template are then processed by classical algo-

rithms and the twoNeural Networks (ModFlowNetC2 andWaldoNet VGG19-

VGG11), and the predictions (segmentationmasks for the networks and bound-

ing boxes for the classical algorithms) are shown in Figure 5.6b. The classical

methods show their limits, since they have not predicted any bounding box,

while the Neural Networks show their strength. ModFlowNetC2 makes an

high confidence prediction (around 90%), while WaldoNet has a confidence

of 20% and also wrongly detect some background on the right of the query

5.5 Comparisons 44

image.

(a) Example of non-affine transformation on the query

(b) Template Matching results of classic algorithms and Neural Networks

Figure 5.6: Detection of the template in the query. In order cv2 TM, SIFT,
Blueye, WaldoNet (VGG19-VGG11) with confidence 0.2, ModFlowNetC2
with confidence 0.9

Conclusions

TheNeural Networks customized and tested in this thesis (WaldoNet, FlowNet

and PatchNet) are a first exploration and approach to the Template Matching

task. The possibilities of extension are therefore many and some are proposed

below.

During my internship, I have analyzed the functioning of the classical al-

gorithms and adapted with deep learning algorithms. The features extracted

from both the template and the query images resemble the keypoints of the

SIFT algorithm. Then, instead of similarity function or keypoints matching,

WaldoNet and PatchNet use the convolutional layer to compare the features,

while FlowNet uses the correlational layer. In addition, I have identified the

major challenges of the Template Matching task (affine/non-affine transfor-

mations, intensity changes...) and solved them with a careful design of the

dataset.

Overall, the results obtained with the Neural Networks seem promising,

since they overcome some limits of the classical algorithms. They are ro-

bust to many distortions and even to non-affine transformations, one of the

unsolved challenge of classical approaches. Still, classical algorithms per-

form better with images without distortions and their performances do not

vary when different set of images are tested. Performances of the networks

on unseen datasets can be increased with fine-tuning 1 on a small set of new

images or even with distorted copies of only one new image.
1Fine-tuning is a technique which consists in taking a trained network and retrained with

new images, but usually with a smaller learning rate. In this way the already learned weights
are not completely changed.

5.5 Comparisons 46

Before mentioning some possible improvements, it is relevant to notice

that some important decisions are strictly related to the choice of the output:

bounding boxes or segmentation masks. The type of the output is strongly

dependent on the use of the network.

In the bounding box case, the final layers of the above described networks

should be replaced by a regression head predicting the four corners, instead

of the sigmoid layer. Instead, in the segmentation mask case, a more suitable

dataset for the training should be used. As a matter of fact, the dataset used in

this thesis has bounding boxes as ground truth. Therefore, a more appropriate

dataset should have as ground truth segmentation masks.

Finally, since classical algorithms have been studied for decades, their per-

formances on not-augmented dataset are unbeaten. Therefore, an inductive

bias2 could be introduced in the networks, to direct the training in the ”right”

direction.

2In machine learning, the term inductive bias refers to a set of (explicit or implicit) as-
sumptions made by a learning algorithm in order to perform induction, that is, to generalize
a finite set of observation (training data) into a general model of the domain [37].

Acknowledgment

This thesis is the result of my curricular internship in the company Datalogic

S.p.A. [1]. The hardware, in particular server and GPUs, was provided by the

company itself. I am grateful to this company for the warm hospitality and

also to let me share this document.

The idea of this work is by Dott. Maurizio De Girolami, the head of the

R&D group in which I worked in. I want to make a warm thanks to Maurizio

and all his team, that have welcomed, advised and encouraged me. A special

thanks goes to Dott. Angelo Carraggi, my company supervisor, with whom I

had many exchange of ideas. He also provided me many papers mentioned in

this thesis, that were the basis of my activity.

I want to acknowledge my supervisor, Professor Samuele Salti, for his pa-

tience and suggestions, and also for making me passionate about this subject.

Bibliography

[1] Automatic Data Capture and Process Automation. Datalogic. (n.d.). Re-

trieved September 26, 2022, from https://www.datalogic.com/

[2] Wikimedia Foundation. (2022, September 22). Datalogic. Wikipedia. Re-

trieved September 25, 2022, from https://it.wikipedia.org/wiki/

Datalogic

[3] L. Di Stefano, S. Mattoccia, F. Tombari. ZNCC-based template matching

using bounded partial correlation. Pattern Recognition Letters 26 (2005)

2129. https://doi.org/10.1016/j.patrec.2005.03.022

[4] Wikimedia Foundation. (2022, August 6). Convolution theo-

rem. Wikipedia. Retrieved September 26, 2022, from https:

//en.wikipedia.org/wiki/Convolution_theorem

[5] L. Di Stefano, S. Mattoccia, “Fast template matching using Bounded Par-

tial Correlation”, Machine Vision and Applications (MVA), 13(4), pages

213-221, February 2003 http://vision.deis.unibo.it/~smatt/

Papers/JMVA2003/JMVA_2003.pdf

[6] Wikimedia Foundation. (2022, August 22). Scale-invariant feature trans-

form. Wikipedia. Retrieved September 13, 2022, from https://en.

wikipedia.org/wiki/Scale-invariant_feature_transform

[7] Bandara, R. (2017, August 30). Bag-of-features descriptor on SIFT

features with opencv (BOF-SIFT). CodeProject. Retrieved September 26,

https://www.datalogic.com/
https://it.wikipedia.org/wiki/Datalogic
https://it.wikipedia.org/wiki/Datalogic
https://doi.org/10.1016/j.patrec.2005.03.022
https://en.wikipedia.org/wiki/Convolution_theorem
https://en.wikipedia.org/wiki/Convolution_theorem
http://vision.deis.unibo.it/~smatt/Papers/JMVA2003/JMVA_2003.pdf
http://vision.deis.unibo.it/~smatt/Papers/JMVA2003/JMVA_2003.pdf
https://en.wikipedia.org/wiki/Scale-invariant_feature_transform
https://en.wikipedia.org/wiki/Scale-invariant_feature_transform

BIBLIOGRAPHY 49

2022, from https://www.codeproject.com/articles/619039/

bag-of-features-descriptor-on-sift-features-with-o?

display=print&fid=1836776&df=90&mpp=25&

prof=True&sort=Position&view=Normal&spc=

Relaxed&fr=176

[8] Thomas Hossler,Where’s Waldo? A Deep Learning approach to Template

Matching, Department of Geological Sciences, Stanford University, 2017

http://cs231n.stanford.edu/reports/2017/pdfs/817.pdf

[9] Wikimedia Foundation. (2022, September 20). Where’s wally?

Wikipedia. Retrieved September 24, 2022, from https://en.

wikipedia.org/wiki/Where%27s_Wally%3F

[10] Huizi Mao, Sibo Zhu, Song Han, & William J. Dally (2021). PatchNet

- Short-range Template Matching for Efficient Video Processing. CoRR,

abs/2103.07371.

[11] Fischer, P., Dosovitskiy, A., Ilg, E., Häusser, P., Hazırbaş, C., Golkov,

V., Smagt, P., Cremers, D., & Brox, T.. (2015). FlowNet: Learning Optical

Flow with Convolutional Networks.

[12] D. Ha, A. Dai, and Q. V. Le. HyperNetworks. 2016 https://arxiv.

org/abs/1609.09106

[13] Olaf Ronneberger, Philipp Fischer, & Thomas Brox (2015). U-Net:

Convolutional Networks for Biomedical Image Segmentation. CoRR,

abs/1505.04597.

[14] XingruiWang. (n.d.). Xingruiwang/wheres-waldo: A Pytorch imple-

menting of a deep learning approach to template matching. USIE Hypernet

+ VGG to match the templates. GitHub. Retrieved September 24, 2022,

from https://github.com/XingruiWang/wheres-waldo

https://www.codeproject.com/articles/619039/bag-of-features-descriptor-on-sift-features-with-o?display=print&fid=1836776&df=90&mpp=25&prof=True&sort=Position&view=Normal&spc=Relaxed&fr=176
https://www.codeproject.com/articles/619039/bag-of-features-descriptor-on-sift-features-with-o?display=print&fid=1836776&df=90&mpp=25&prof=True&sort=Position&view=Normal&spc=Relaxed&fr=176
https://www.codeproject.com/articles/619039/bag-of-features-descriptor-on-sift-features-with-o?display=print&fid=1836776&df=90&mpp=25&prof=True&sort=Position&view=Normal&spc=Relaxed&fr=176
https://www.codeproject.com/articles/619039/bag-of-features-descriptor-on-sift-features-with-o?display=print&fid=1836776&df=90&mpp=25&prof=True&sort=Position&view=Normal&spc=Relaxed&fr=176
https://www.codeproject.com/articles/619039/bag-of-features-descriptor-on-sift-features-with-o?display=print&fid=1836776&df=90&mpp=25&prof=True&sort=Position&view=Normal&spc=Relaxed&fr=176
http://cs231n.stanford.edu/reports/2017/pdfs/817.pdf
https://en.wikipedia.org/wiki/Where%27s_Wally%3F
https://en.wikipedia.org/wiki/Where%27s_Wally%3F
https://arxiv.org/abs/1609.09106
https://arxiv.org/abs/1609.09106
https://github.com/XingruiWang/wheres-waldo

BIBLIOGRAPHY 50

[15] RalphMao. (n.d.). Ralphmao/PatchNet. GitHub. Retrieved September

17, 2022, from https://github.com/RalphMao/PatchNet

[16] Nvidia. (n.d.). Nvidia/FLOWNET2-pytorch: Pytorch implementation

of FlowNet 2.0: Evolution of optical flow estimation with Deep Net-

works. GitHub. Retrieved September 26, 2022, from https://github.

com/NVIDIA/flownet2-pytorch

[17] Pytorch. PyTorch. (n.d.). Retrieved September 26, 2022, from https:

//pytorch.org/

[18] Tensorflow. TensorFlow. (n.d.). Retrieved September 26, 2022, from

https://www.tensorflow.org/

[19] Visual object classes challenge 2010 (VOC2010). The PASCAL Visual

Object Classes Challenge 2010 (VOC2010). (n.d.). Retrieved September 2,

2022, from http://host.robots.ox.ac.uk/pascal/VOC/voc2010/

index.html

[20] Random Rotation. RandomRotation - Torchvision main docu-

mentation. (n.d.). Retrieved September 22, 2022, from https:

//pytorch.org/vision/stable/generated/torchvision.

transforms.RandomRotation.html

[21] Random Resized Crop. RandomResizedCrop - Torchvision

main documentation. (n.d.). Retrieved September 22, 2022, from

https://pytorch.org/vision/main/generated/torchvision.

transforms.RandomResizedCrop.html

[22] Random Perspective. RandomPerspective - Torchvision main

documentation. (n.d.). Retrieved September 22, 2022, from

https://pytorch.org/vision/main/generated/torchvision.

transforms.RandomPerspective.html

https://github.com/RalphMao/PatchNet
https://github.com/NVIDIA/flownet2-pytorch
https://github.com/NVIDIA/flownet2-pytorch
https://pytorch.org/
https://pytorch.org/
https://www.tensorflow.org/
http://host.robots.ox.ac.uk/pascal/VOC/voc2010/index.html
http://host.robots.ox.ac.uk/pascal/VOC/voc2010/index.html
https://pytorch.org/vision/stable/generated/torchvision.transforms.RandomRotation.html
https://pytorch.org/vision/stable/generated/torchvision.transforms.RandomRotation.html
https://pytorch.org/vision/stable/generated/torchvision.transforms.RandomRotation.html
https://pytorch.org/vision/main/generated/torchvision.transforms.RandomResizedCrop.html
https://pytorch.org/vision/main/generated/torchvision.transforms.RandomResizedCrop.html
https://pytorch.org/vision/main/generated/torchvision.transforms.RandomPerspective.html
https://pytorch.org/vision/main/generated/torchvision.transforms.RandomPerspective.html

BIBLIOGRAPHY 51

[23] Random Horizontal Flip. RandomHorizontalFlip - Torchvision

main documentation. (n.d.). Retrieved September 21, 2022, from

https://pytorch.org/vision/main/generated/torchvision.

transforms.RandomHorizontalFlip.html

[24] Random Vertical Flip. RandomVerticalFlip - Torchvision main

documentation. (n.d.). Retrieved September 22, 2022, from

https://pytorch.org/vision/stable/generated/torchvision.

transforms.RandomVerticalFlip.html

[25] Color Jitter. ColorJitter - Torchvision main documentation. (n.d.).

Retrieved September 22, 2022, from https://pytorch.org/vision/

main/generated/torchvision.transforms.ColorJitter.html

[26] B, N. (2019, January 18). Image data pre-processing

for Neural Networks. Medium. Retrieved Septem-

ber 19, 2022, from https://becominghuman.ai/

image-data-pre-processing-for-neural-networks-498289068258

[27] Normalize. Normalize - Torchvision main documentation. (n.d.).

Retrieved September 19, 2022, from https://pytorch.org/vision/

stable/generated/torchvision.transforms.Normalize.html#

torchvision.transforms.Normalize

[28] Zhang, Xin & Han, Liangxiu & Robinson, Mark & Gallagher, Anthony.

(2021). A GANs-based Deep Learning Framework for Automatic Subsur-

face Object Recognition from Ground Penetrating Radar Data. IEEE Ac-

cess. PP. 1-1. 10.1109/ACCESS.2021.3064205.

[29] Gad, A. F. (2021, April 9). Mean average precision (MAP) explained.

Paperspace Blog. Retrieved September 18, 2022, from https://blog.

paperspace.com/mean-average-precision/

https://pytorch.org/vision/main/generated/torchvision.transforms.RandomHorizontalFlip.html
https://pytorch.org/vision/main/generated/torchvision.transforms.RandomHorizontalFlip.html
https://pytorch.org/vision/stable/generated/torchvision.transforms.RandomVerticalFlip.html
https://pytorch.org/vision/stable/generated/torchvision.transforms.RandomVerticalFlip.html
https://pytorch.org/vision/main/generated/torchvision.transforms.ColorJitter.html
https://pytorch.org/vision/main/generated/torchvision.transforms.ColorJitter.html
https://becominghuman.ai/image-data-pre-processing-for-neural-networks-498289068258
https://becominghuman.ai/image-data-pre-processing-for-neural-networks-498289068258
https://pytorch.org/vision/stable/generated/torchvision.transforms.Normalize.html#torchvision.transforms.Normalize
https://pytorch.org/vision/stable/generated/torchvision.transforms.Normalize.html#torchvision.transforms.Normalize
https://pytorch.org/vision/stable/generated/torchvision.transforms.Normalize.html#torchvision.transforms.Normalize
https://blog.paperspace.com/mean-average-precision/
https://blog.paperspace.com/mean-average-precision/

BIBLIOGRAPHY 52

[30] van Beers, F. & Lindström, Arvid & Okafor, Emmanuel & Wiering,

Marco. (2019). Deep Neural Networks with Intersection over Union Loss

for Binary Image Segmentation. 10.5220/0007347504380445.

[31] Kingma, Diederik P., & Jimmy, Ba. ”Adam: A Method for Stochastic

Optimization.” (2014)

[32] Home. OpenCV. (2022, August 22). Retrieved September 20, 2022, from

https://opencv.org/

[33] Template matching. OpenCV. (n.d.). Retrieved September 20,

2022, from https://docs.opencv.org/4.x/d4/dc6/tutorial_

py_template_matching.html

[34] Introduction to SIFT (scale-invariant feature transform). OpenCV. (n.d.).

Retrieved September 16, 2022, from https://docs.opencv.org/4.x/

da/df5/tutorial_py_sift_intro.html

[35] Zszazi. (n.d.). Zszazi/opencv-template-matching-and-sift. GitHub. Re-

trieved September 20, 2022, from https://github.com/zszazi/

OpenCV-Template-matching-and-SIFT

[36] Masks to boxes. masks_to_boxes - Torchvision main documentation.

(n.d.). Retrieved September 20, 2022, from https://pytorch.org/

vision/main/generated/torchvision.ops.masks_to_boxes.html

[37] Hüllermeier, E., Fober, T., Mernberger, M. (2013). Inductive Bias. In:

Dubitzky, W., Wolkenhauer, O., Cho, KH., Yokota, H. (eds) Encyclope-

dia of Systems Biology. Springer, New York, NY. https://doi.org/10.

1007/978-1-4419-9863-7_927

https://opencv.org/
https://docs.opencv.org/4.x/d4/dc6/tutorial_py_template_matching.html
https://docs.opencv.org/4.x/d4/dc6/tutorial_py_template_matching.html
https://docs.opencv.org/4.x/da/df5/tutorial_py_sift_intro.html
https://docs.opencv.org/4.x/da/df5/tutorial_py_sift_intro.html
https://github.com/zszazi/OpenCV-Template-matching-and-SIFT
https://github.com/zszazi/OpenCV-Template-matching-and-SIFT
https://pytorch.org/vision/main/generated/torchvision.ops.masks_to_boxes.html
https://pytorch.org/vision/main/generated/torchvision.ops.masks_to_boxes.html
https://doi.org/10.1007/978-1-4419-9863-7_927
https://doi.org/10.1007/978-1-4419-9863-7_927

	Introduction
	Classic computer vision for Template Matching
	(Dis)similarity functions
	Compare intensities
	(Zero-mean) Normalized Cross-Correlation (Z)NCC
	Fast Template Matching

	Scale Invariant Feature Transform (SIFT)
	Detection
	SIFT Descriptor
	Matching

	Implementations
	Limitations

	Deep Learning Template Matching
	Convolutional methods
	WaldoNet
	PatchNet

	Optical Flow method
	FlowNet

	Custom Implementation of Selected Neural Networks
	WaldoNet
	PatchNet
	FlowNet

	Definition and optimization of the training environment
	Training setting
	Dataset
	Data augmentation
	Data normalization

	Metrics
	Generalized IoU
	Average Precision

	Loss function
	Training

	Results and scores of the Neural Networks
	WaldoNet
	Loss choice
	Increasing the depth of the Network
	Hyperparameter d of Hypernetwork
	Decoder

	PatchNet
	Different resolution
	PatchNetBigPatches
	Decoder

	FlowNet
	Implementation of classical methods
	Comparisons

	Conclusions
	Acknowledgment
	Bibliography

