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Abstract

In recent times, a significant research effort has been focused on how de-
formable linear objects (DLOs) can be manipulated for real world applica-
tions such as assembly of wiring harnesses for the automotive and aerospace
sector. This represents an open topic because of the difficulties in modelling
accurately the behaviour of these objects and simulate a task involving their
manipulation, considering a variety of different scenarios. These problems
have led to the development of data-driven techniques in which machine
learning techniques are exploited to obtain reliable solutions. However, this
approach makes the solution difficult to be extended, since the learning must
be replicated almost from scratch as the scenario changes. It follows that
some model-based methodology must be introduced to generalize the results
and reduce the training effort accordingly. The objective of this thesis is to
develop a solution for the DLOs manipulation to assemble a wiring harness for
the automotive sector based on adaptation of a base trajectory set by means
of reinforcement learning methods. The idea is to create a trajectory planning
software capable of solving the proposed task, reducing where possible the
learning time, which is done in real time, but at the same time presenting
suitable performance and reliability. The solution has been implemented on
a collaborative 7-DOFs Panda robot at the Laboratory of Automation and
Robotics of the University of Bologna. Experimental results are reported
showing how the robot is capable of optimizing the manipulation of the DLOs
gaining experience along the task repetition, but showing at the same time a
high success rate from the very beginning of the learning phase.
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Chapter 1

Introduction

In recent years, automatic applications are widely used in a wide variety of
scenarios, this due to the ever-increasing demand for productive and efficient
capabilities of machines producing everyday goods such as food or medicine.
Today’s automatic machines consist of a multitude of drives and sensors
connected by electrical wires that distribute power and signals. The handling
of these wires is still done by hand, such as the organization of the wires
into an electrical cabinet, where they are stored in a safe position, or the
wiring of vehicles; in this work the wires are placed on a table to be organized.
The wires are then grouped into different bundles, depending on the final
destination of the wire in the vehicle.
Despite the large amount of automation, machine switchboards or wiring
harnesses are still assembled by a human operator and no robots or auto-
mated processes are involved. It is important to study the feasibility of a
possible robotic implementation in order to understand all the difficulties and
limitations this may entail. It should be remembered that the operation of a
robot must always be a conscious decision [1], in fact a robotic arm is a very
complex mechanism and its control is a task that requires solid knowledge of
various disciplines such as electronics, mechanics and computer science. For
this reason, few companies have the resources to invest in these technologies
and have a built in-house robotic arm. Acquiring the technology from an
external company will inevitably raise the price of the machine for the end
buyer and reduce the profit margin for the company, making the robot an
unprofitable technology to use. The overall price increases further if the
robot is designed and authorized to work with humans, due to the necessary
sensors and certification. However, there are situations where the use of a
robot is strictly necessary due to external causes or a possible dangerous or
inaccessible environment. An example might be the handling or exposure of
chemical and toxic material in the pharmaceutical industries, or the handling
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of viruses for vaccine production. In applications requiring the handling of
heavy loads, a robot may also be used, since the maximum weight that a
human worker can move is strictly determined by government regulations.

Wiring a cable is not a heavy task nor dangerous to the health of the
people involved, however the lack of automatic solutions for the manipulations
of deformable objects make this application a possible investing opportunity,
these technologies can open up a new frontier for the manipulation of de-
formable objects or the development of useful techniques and tools for other
applications.
This thesis project was conducted at the Laboratory of Automation and
Robotics (LAR) of the University of Bologna and the activities covered are
related to the European REMODEL project. The aim of the project is to
develop the technologies required to manipulate flexible objects in different
industrial application, one of this include to complete a cabling operation 1.1.

Figure 1.1: Cabling operation divided in sub-task

The cabling operation can be divided into three sequential steps:

1. The grasping of the cable from a magazine;

2. The insertion of the cable’s connector into the connector block, so that
the position of one end of the cable remains fixed;

3. The positioning of the cable, in the required clips, so that the cables
are correctly organized.

The main topic of the thesis is the positioning of multiple cables along a given
path; in this problem, it must also take into account the issue of wire tension
by means of a force/torque sensor mounted on the end-effector. The robot
used to tackle the problem is the ’Panda’ robot, manufactured by the German
company Franka-Emika. The robot belongs to the category of CoBots, an
acronym for Collaborative Robots, i.e. machines designed to work in contact
with humans in complete safety. Furthermore, the robot used is a 7 DOF
robot and is able to move its end-effector in any position and orientation in
its workspace with different configurations of its arm.
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1 REMODEL Project

The REMODEL Project [2], acronyms for ”Robotic tEchnologies for the
Manipulation Of complex DEformable Linear objects” is a project financed
by the European Union and started in 2020, involving several universities
and commercial partners across the Europe.
The focus of the project is to develop the knowledge and the tools required
for the manipulation of deformable object such as wires, electric cable and
wiring harness by a robotic arm. This type of materials have a wide field of
application, from the automotive manufacturing to the automatic machines
sector, but they are also used in medical application. The objective is the
realization of an automatic robotic platform capable to manage deformable
linear objects, the identification through computer vision technologies of
such objects in non-optimal conditions and their modelling through FEM
software and numerical analysis. Part of the study will cover the design of
specialized end-effectors capable to hold and manipulate the wires by means
of special tactile sensor orientated toward the simulation of the human’s
fingertip interaction with the object; the designed EE will also accomplish
other task required to complete a wiring operation such as securing a screw
to hold the wires in position. The case studies are:

• Switch-gear wiring

• Wiring harnesses manufacturing

• Wiring harness assembly

• Hose packaging

Figure 1.2: REMODEL Project logo

The university of Bologna holds the role of project coordinator, apart that
it will focus on the cable/wire detection, their grasping and their manipulation.
The project involves important company from Europe, such as IEMA a
company, held by IMA group, ELIMCO, a spanish company working on the
aerospace and defence and ELVEZ, slovenian manufacturer of specialized
products for the automotive industry and ENKI an Italian company working
on the production of plastic medical hoses.
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2 ELVEZ Case Study

Elvez is an advanced manufacturing company specialized in providing clients
worldwide with plastic injection components, metallized parts and cable
harness solutions for partners such as BMW, Volkswagen, Mercedes, Volvo,
Scania, ZKW, John Deere, PSA, Renault, Mahle, McLaren, etc.
This company deals with the problem of wiring harness, this operation is
still done manually by operators, so the goal of this thesis is to make an
autonomous system that can accomplish this task.

Figure 1.3: Wiring harness problem

The project focuses on the task of correctly positioning the cables in an
organized manner in order to achieve the desired result. In particular, we
have three groupings of cables distinguished by a different connector and
characterized by a different diameter of the wires. To distinguish the sub-
harnesses, they are identified by the numbers of wires connected at each
connector:

• A six-pole connector (SPC);

• A ten-pole connector (TPC);

• An eleven-pole connector (EPC).
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Chapter 2

Robot Set-up description

The project will investigate the possibility of introducing a robotic arm in
operations where manipulation of deformable objects (DLOs) is required. The
robot will have to deal with different types of cables and different paths, all
in order to obtain a single ordered set of cables. The solution developed will
be based on ROS, an open source operating system. In particular, a panda
robot made by Franka Emika will be used. The robot will be equipped with
a custom gripper capable of dragging, with a good compromise on the forces
exchanged in contact, the cables.

1 ROS

ROS [3] is an open-source operating system for robotic applications. The idea
of ROS is to develop an high level control that can communicate with the
lower level of the robot. This high level controller is an abstraction, meaning
that the program written for a robotic platform can be reused eventually
with other robot even from different producers if their interface with ROS is
provided. The key idea of ROS is the fact that it is a distributed framework of
processes that run concurrently, each process, called ”node”, is meant to work
independently of each-other and represents a different module. The nodes
are capable to share information across-each other through a communication
system based on the concept of ”topic” and ”messages”.
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Figure 2.1: ROS communication scheme, nodes are registered to a central
master node. During their execution, nodes communicate between each other
with messages, services and actions

1.1 Nodes

In ROS each program executed is denoted as a Node, it can be seen as a
single entity running concurrently in the system. Each node can communicate
with the other nodes by using a server-client communication architecture, in
which each node can work as client but also as server. To communicate, a
node must be connected with a master node, which purpose is to enable the
communication between all the node registered to it. Nodes can communicate
between themselves through the direct invocation of another node services or
actions or through publish/subscribe. A ROS−based robot control system
is usually composed by many nodes. Each node should be designed to
have a small and specific task. Nodes should perform their own tasks and
exchange the results with other nodes. This net of elaboration of data will
form a complex graph−like structure capable of solving demanding problems.
Node−based architecture provides ROS with many benefits, where the biggest
benefits are fault tolerance (as each node is an isolated part of the system)
and reduced code complexity compared to monolithic systems, which are not
decoupled.

1.2 Topics

ROS topics are the ”mailboxes” used by nodes to communicate. This com-
munication is based on a publish/subscribe mechanism. Each ROS topic has
a unique name associated, so that ROS nodes can publish or subscribe to
it. Any node is enabled to publish or subscribe to any ROS topic as long
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it′ known the name of the topic. Furthermore, there is no limitation on the
number of topics to which a node can be subscribed or publish to. As this
communication is not direct, nodes are not aware who are they getting the
data from or who are they sending the data to.

1.3 Messages

ROS messages are exchanged between ROS nodes using publish/subscribe
mechanism. One ROS node would publish the ROS message to a certain
ROS topic, while the other ROS node would subscribe to that ROS topic
and obtain the ROS message sent. ROS Messages are described as .txt files
inside a specific folder called msgs under in the ROS package folder structure.
Each ROS message is described with a data structure which contains only
primitive types like integers, floats or booleans, it also can include arrays of
the primitive types listed earlier. A ROS message can also include other ROS
message. In this way, it is possible to create complex and longer messages.
Additionally, ROS message can contain the other ROS message or an array
of ROS messages as a data type. ROS messages can also be exchanged in a
direct communication between nodes. This mechanism is called ”Services”.

Figure 2.2: Visual concept of the message communication scheme in ROS

1.4 Services

Topics can be seen as named ”mailboxes”, where a node can publish or
read messages. In this context there is no direct connections between the
nodes or knowledge of the topics connected which are reading the published
messages. ROS services instead are used when there is a wish for nodes to be
able to communicate directly with each other. By using the ROS services,
publish/subscribe mechanism is avoided and nodes can send requests and
replies to each other directly using the defined srv. Like the messages, also
the services have their target folder named ”srv” in which a custom services
can be defined, each srv is a .txt files in containing his two part, the request
sent from the client node, and the response from the Server node. Since

8



the ROS services are a form of direct communication, they are increasing
the performance of the system, however they are decreasing the system′s
decoupling.

1.5 Action

ROS actions can be seen as an extension of the services capability, since in
some case the services may be an operation that require a certain amount
of time to be executed. Before the communication of the response from the
server take place, it can occur an event that changes the system condition so
that the execution of the service is no longer needed, in this case an Action
is required. In a more general way, the action are needed for more complex
group of operation. The program can call it and continue the execution
of the program with still the possibility to cancel a request, get periodic
feedback from the server or to have a queue of request. An action message
is composed by three part: Goal, Feedback and Result. The Goal that is
sent to the ActionServer by an ActionClient is the part of the message that
contains information about the objective to execute, like a position or a
series of parameters. With the Feedback, the ActionServer is able to tell
to an ActionClient about the incremental progress of a goal. Finally, the
result is sent to the ActionClient to conclude the action providing information
about the correct execution of the task or some other feedback from the
ActionServer.

Figure 2.3: ROS Action working scheme, the action is triggered from a Client,
the Server start the execution of the task and produce some feedback or a
return value that the client can read.

2 Moveit

MoveIt! [4] is a plug−in package based on ROS that incorporates several
functions for motion planning, manipulation, and kinematics. The Motion
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planners are able to consider both the trajectory planning and the execution
of the robot motion. In MoveIt! the motion planners are loaded using a plugin
infrastructure, allowing the package to communicate at run-time with different
planners from multiple libraries.MoveIt! offers user-friendly functionalities for
most operations that a user may want to carry out, specifically setting joint or
pose goals, creating motion plans, moving the robot, and adding objects into
the environment. Indeed, the planning of a trajectory can be accomplished
by just setting the current robot configuration and the specified target. The
default motion planners in MoveIt! are configured to use OMPL [5], which is an
open−source motion planning library that implements randomized planners.
Depending on the planner used, MoveIt! can choose between joint space and
Cartesian space for the representation of the problem. Natively, planning
request switch orientation path constraints are sampled in Cartesian space.
OMPL also provides several sample-based optimal planning algorithms. Some
of them use a general framework to express the cost of robot configurations
and paths, allowing to, e.g., maximize the minimum clearance along a path,
minimize the mechanical work, or some arbitrary user−defined optimization
criterion. However, the convergence to optimality is not guaranteed when
optimizing over some index or metric which is not the path length.

3 Franka Emika: Panda

The robotic platform used in this project is the Panda [6]. This robot
has multiple advantages. The robot has 7DOF, which is an important
characteristic for a robotic arm, since it his able to positioning and orientate
the end-effector in the whatever point inside the workspace, the extra degree
of freedom let the robot able extent the position capability and eventually
be able to perform motion avoidance algorithm. Another key feature of
the design is the force sensors available, with that the robot is capable to
detect if it enters in contact with another object or a person and then stop
the execution of the operation with a low response time of ∼50ms to avoid
possible dangerous situation. This characteristic is fundamental in order to
design a human-machine interaction.
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Figure 2.4: The 7DoF Panda robot from Franka Emika with the proprietary
gripper installed

3.1 Franka ROS

Franka ros is the integration of the libfranka package in ROS and ROS
control, this enables the user to control the robot using the ROS structure,
implementing ROS action for the gripper, or hardware abstraction of the
robot for the control framework. This also enable to launch the robot arm
and gripper controller as ROS node, controllable by using ROS action and
reading the state from the node using the publisher/subscriber approach. The
ROS implementation is also important because a working program based on
ROS can be used also with different robot (of different manufacturer) with a
proper ROS interface.

Figure 2.5: Franka control interface scheme
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4 Custom Gripper Fingers

The gripper fingers, needed by this specific application, require three different
fundamental properties:

• Keeping the body of the robot at a proper distance from the environment
in which the positioning of the cables is carried out, to avoid collisions
and reduce encumbrances;

• Having an elastic part that takes care of the contact with the cables,
which can be of different diameters, allowing the approach of transport-
ing the wires to remain flexible;

• Having rigid strikers that allow the cables to be inserted into the
appropriate clips and at the same time not allow the wires to come
loose from the gripper.

Figure 2.6: Custom gripper finger CAD view
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Chapter 3

Environment Set-up description

This chapter focuses on the description of all the equipment and expedients
that were used to create an optimal environment for the proper development
of the application. This is a wired harness assembly application and thus
we have the task of correctly routing different types of cable groupings, with
common path sections, in order to obtain a single ordered grouping as final
product.

1 Connector Blocks

In the Elvez case study (Sec. 2), we have seen how three different types of
wiring will need to be handled: SPC, TPC and EPC. The application we
desire to realize assumes as an initial condition that the groupings already
have a terminal part locked in connector terminal blocks. The realization
of these components was carried out by 3D printing after an in-depth study
of the design in a CAD environment. The design of these elements was
realized not only to hold the connectors in place, but also to enable the future
development of a connector insertion application, which is an integral part of
the overall project.

1.1 SPC Connector Block

In the specific case of the SPC, a connector block was created using a slot
having the shape of the connector, limiting as much as possible the movement
of the connector once it was inserted. At the top of the connector block
there is a corridor for the passage of the wire, this allows the connector to
be inserted from above, and the insertion of the connector into the slot is
facilitated by the presence of appropriate chamfers and rounding.

14



Figure 3.1: CAD SPC connector block

1.2 TPC Connector Block

The insertion principle of the TPC and thus the construction of its connector
block are similar to those described for the previous design. What changes in
this case is the shape of the connector shape, and having thinner cables, the
insertion corridor is also thinner.

Figure 3.2: CAD view TPC connector block

1.3 EPC Connector Block

The last connector block has a completely identical design to the previous
one except for the height which is a few millimetres higher, this is because
the connector shape is the same but has an extra wire.
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Figure 3.3: CAD view EPC connector block

2 Clips

In the work plane, we also needed components capable of grouping cables, so
that we could apply tape closures between the various wires. To fulfil this
purpose, clips were designed, again in a CAD environment and subsequently
3D printed, with passive retention and insertion. These clips must also work
for different overall cable diameters, so their design was complex and required
several attempts. It was decided to equip them with a flexible part with a
wide chamfer to guide the insertion, this detail provided a very good chance
of success even in the case of small misalignment in the cables’ insertion.

Figure 3.4: Clip CAD view
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3 Cameras

For the application to work properly, it was necessary to consider a good
vision system for two main reasons:

• To suppress misalignments of the various paths due to movements of
the work table with respect to the robot;

• To understand what is happening on the work surface, i.e. how the
cables are arranged and whether the insertions were successful or not.

Solving these two problems will allow the learning system, as explained in
detail in the following chapters, to work in a facilitated manner and with an
excellent knowledge of what is happening in the environment.

3.1 Camera for Alignment

To suppress misalignments, a RealSense 3D camera attached to the end-
effector of the robotic arm was used. In this way, after appropriate calibration
of the camera, the paths to be taken can be realigned on the basis of certain
strategic points in the working plane, such as the arrangement of an Aruco
marker in a corner of the plane.

Figure 3.5: RealSense 3D camera

3.2 Camera for Binarization

For the detection of the working surface, a simple 2D camera fixed at a
sufficiently high position relative to the plane was used. The use of this
camera allows, with the necessary precautions, the realization of a binary
mask of the plane in which the cables will be clearly visible. It was necessary
to create a small structure to keep the camera well positioned and at the
correct height.
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Figure 3.6: 2D camera

4 Background and Lights

As for the adjustments that are needed on the working plane to enable the
2D camera to be able to produce a mask, we certainly have the problem of
contrast between the background and the cables. To solve this issue, it was
decided to create a high-contrast background with multiples colours, ideally
all the colors that the cables might have. The idea of this background is
to create a high density chequerboard of squares where each cell takes on a
random colour. In this way, the specific colour of a cable can only interfere in
small areas of the background and thus the binarization is still efficient.

Figure 3.7: Working plane background

Another major obstacle to creation of a binary mask of an object is the
problem of shadows. Shadows may be recognized as an object and thus
binarized incorrectly in the mask. Anti-shadow lights are used to overcome
this issue.

Figure 3.8: Anti-shadow lights
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5 Force Sensor

To understand the interactions between the robot and the environment, a
force sensor has been mounted on the gripper’s end-effector. In particular,
this sensor can be used to evaluate the forces exchanged between the gripper
and the cables during the wired harness assembly process. The sensor used
is a Nordbo Robotics and provides real-time knowledge of all the forces and
torques it is subjected to.

Figure 3.9: Nordbo force sensor
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Chapter 4

Software Structure

The application is implemented on the ROS environment, initially it was
appropriate to define a general software structure that could contain all the
fundamental components. This was done in order to have a first complete
idea of how the problem should be handled. From the implementation point
of view, the objective is to transport each cable from their starting point
(A connector or a clip) and insert them into the appropriate clips, for the
purpose we need a software portion (ROS node) that takes care of checking
the correct insertion. We also need a high-level node that takes care of the
learning, i.e. managing the exploration and making decisions for improvement
in the execution of the task. Finally, we need a low-level node to physically
make the robot execute the paths and record the exchange of forces between
the gripper and the cables in the trajectories made.

1 General Scheme

The diagram 4.1 presents the solution, in terms of software communication,
required to perform the task.

Figure 4.1: General nodes scheme

The camera node must take care of verifying the correct insertion of the
cables, using video capture of what is happening in the environment. Each

20



time a cable is positioned, the node should send a message informing about
the success or failure of the operation. For this reason this node has been
constructed as a ROS service, every time another node needs this information,
it will call the service and receive the feedback.
The learning server node, on the other hand, is the low-level software portion
that has to deal with interacting to the robot interface and the force sensor, in
order to work it needs a high-level command with the information regarding
the path to be taken. This task is not as short-lived as that assigned to the
camera node, which is why a ROS action server was chosen, which, unlike the
ROS service, allows continuous interaction between the client and the server.
As far as the learning supervisor node is concerned, we can say that it is the
heart of this software structure and that it has to take care of all the tasks
involving learning, the next chapter will deal extensively with the realization
of this node.

2 Nodes

This section aims to explain in more detail the realization of the necessary
nodes, explaining how and what communication channels are constructed. It
also shows in detail the computational operations performed by the nodes.

2.1 Binarization Camera

The camera node has the task of verifying the positions of the cables on the
work surface. To do this, the idea was to use a simple ’find the differences’
approach between two images. Starting with a static image of the work area
and thus identifying the background, it is possible to analyse the differences
between this image and a dynamic one in which the cables are positioned.
What can be achieved with this approach is a binary mask that highlights
the cables, or in any case everything that is different from the static image,
and obscures the background.
Since this was the approach chosen, to make the most of it and increase the
quality of the result, it is important to use a high-contrast background and
use good lighting, as presented in the previous chapter.
The figure 4.2 shows the sequence of operations required to obtain the mask.
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Figure 4.2: Camera node structure

It can be noted that there are pre-elaborations before making the com-
parison, designed to balance the illumination of the images through a nor-
malization process on the greyscale images. This method allows to normalize
and then rebalance the distribution of brightness in the images, favouring the
identification of what should be considered as a background in the resulting
mask. Defining a = 0 and b = 255 as the lower and upper extremes of the
normalization process respectively, c as the lowest value in the image and d
as the highest:

Po = (Pi − c)
b− a

d− c
+ a (4.1)

Po is the new value of pixel intensity in the normalized image and Pi is the
original greyscale image value.
The comparison is the sum of the channel differences to which is added a
contribution of three times the difference between the normalized greyscale
images, all of which is then averaged to obtain an image. This was done to
give more robustness to the solution, allowing the bulk of the work to be done
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with greyscale and adjusting details using channel information.

R =
|SR −DR|+ |SG −DG|+ |SB −DB|+ 3|SG−DG|

6
(4.2)

Where:

R Result Image
SR Red Channel Image of Static frame
SG Green Channel Image of Static frame
SB Blue Channel Image of Static frame
SG Normalized Greyscale Image of Static frame
DR Red Channel Image of Dynamic frame
DG Green Channel Image of Dynamic frame
DR Blue Channel Image of Dynamic frame
DG Normalized Greyscale Image of Dynamic frame

Table 4.1: Camera node variables

This new image undergoes post-processing before being thresholded. First,
a Gaussian blur with a small kernel of dimensions (3,3) with a σ = 1.5 is used
to reduce noise due to the ’salt and pepper’ without affecting the identification
of the cables excessively.
Two-dimensional Gaussian function is given by:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (4.3)

Considering the kernel (3,3) and a σ = 1.5, the weights’ matrix is:

Wi,j = G(i− 2, j − 2) =

0.045 0.057 0.045
0.57 0.07 0.057
0.045 0.057 0.045

 (4.4)

i, j = 1, .., 3

The obtained Gaussian blurred image (RF ) of R is:

RFw,h =

3,3∑
i=1,j=1

Wi,jRw−2+i,h−2+j (4.5)

∀(w, h) ∈ dim(R) : (w − 2 + i, h− 2 + j) ∈ dim(R)
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As far as the threshold is concerned, a value (T = 15) was chosen by tuning,
that is very tight on the foreground and thus favours cables identification.
The binary mask (RM) is:

RMw,h =

{
255 if RFw,h > T

0 else
(4.6)

∀(w, h) ∈ dim(RF )

With regard to the communication between server and client, the idea was
to make it possible to obtain, from the client’s point of view, the entire mask
from this node. This allows those who desire to make use of the feedback
message to be able to retrieve different information of their choice, such as
the correct insertion of cables in specific clips.

Algorithm 1 Camera node

1: START Video Capture
2: Static Image = VideoCaptureFrame()
3: SR, SG, SB = ChannelSplit(Static Image)
4: SG = Normalization(GreyscaleConversion(Static Image))
5: while (Node On) do
6: if (Client Request) then
7: if (New Static Image) then
8: Image = VideoCaptureFrame()
9: Static Image = Normalization(Image)
10: SR, SG, SB = ChannelSplit(Static Image)
11: SG = Normalization(GreyscaleConversion(Static Image))
12: end if
13: Image = Video Capture Frame
14: Dynamic Image = Normalization(Image)
15: DR, DG, DB = ChannelSplit(Dynamic Image)
16: DG = Normalization(GreyscaleConversion(Dynamic Image))
17: Total Differences = abs(SR - DR) + abs(SG - DG) + abs(SB - DB)

+ 3abs(SG - DG)
18: R = int(Total Difference/6)
19: RF = GaussianBlur(R, (3,3))
20: RM = Threshold(RF , 15)
21: Client Result = RM

22: end if
23: end while
24: STOP Video Capture
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The algorithm 1 shows the entire logical procedure performed by the node
and shows the response that the server sends to the client.

Validation Results

Several tests were done to validate and improve the behaviour of the node,
the following shows how the binary mask of the six-poles cable is constructed
with two insertions in the clips.

Figure 4.3: Cables binarization

It can be seen that, with the help of a high-contrast background and good
shadow-free lighting, the software is able to generate a mask with good cable
resolution.
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2.2 Learning Server

The learning server node must perform the trajectories by directly command-
ing the robot. To drive the robot, we have seen how it is possible to directly
exploit the ROS interface provided by Franka and MoveIt, in which we also
have information that the motion has been successfully executed. During
the execution of the path, we have set ourselves the task of gathering all
the information regarding the forces exchanged between the gripper and the
cables. To do this, we can exploit the force sensor and the related topic it
publishes, where all the forces and torques to which the sensor is subjected
are made explicit. Figure 4.4 shows the general structure of the node, where
the client specifies the trajectory to be executed and obtains as feedback the
success of the motion and the forces exchanged.

Figure 4.4: Learning server node structure

The forces and torques provided by the sensor, however, are raw informa-
tion. From these values, the node must reconstruct the three-dimensional
vector of forces to which the cable is subjected; in particular, we are interested
in the module of this vector.
To obtain the force vector at the contact point, we need to perform a conver-
sion of values taking into account the arrangement of reference systems.
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Figure 4.5: Sensor-Contact points: Forces and Torques reference systems



FC
X =

τSY
dSC

FC
Y =

τSX
dSC

FC
Z = F S

Z

(4.7)

F S
X Sensor x-axis force

F S
Y Sensor y-axis force

F S
Z Sensor z-axis force

τSX Sensor x-axis torque
τSY Sensor y-axis torque
τSZ Sensor z-axis torque
FC
X Contact x-axis force

FC
Y Contact y-axis force

FC
Z Contact z-axis force

Table 4.2: Sensor-Contact points: Forces and Torques
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Consequently, the scalar value of the contact force module is:

|FC | =
√
(FC

X )2 + (FC
Y )2 + (FC

Z )2 =

√
(
τSY
dSC

)2 + (
τSX
dSC

)2 + (FC
Z )2 (4.8)

Where all the elements are considered as scalars. Applying this equation
to each new sample, we can obtain a time vector of the force module.
The rationale of the node is to be able to provide the client with a good
representation of the intensity of the contact forces exchanged, however the
number of values we can collect during a path depends on the execution
frequency of the node and the sampling time of the sensor. This number is
far too high and always different even if we run the same path, as even the
slightest slowdown would lead to more values.
What can be done is to standardize the number of samples, whose chosen
window is one thousand elements, by reconstructing them from the initial
sequence obtained. This number allows for a good information density and
at the same time a good speed of computation, while managing to keep the
number of computations to be performed low.
Considering Ns as the number of samples we have collected and Nr as the
number of forces we desire to represent:


Fi+1 =

1

⌈Ns
Nr

⌉

∑(i+1)⌈Ns
Nr

⌉

k=i⌈Ns
Nr

⌉+1
|FC |k ∀i ∈ [0, Nr − 1)

FNr =
1

Ns−(Nr−1)⌈Ns
Nr

⌉

∑Ns

k=(Nr−1)⌈Ns
Nr

⌉+1
|FC |k

(4.9)

Often the number of samples is not divisible by the number of repre-
sentations, the choice was to portion homogeneously, by constructing an
averaging function, all the elements of the new vector except the last one,
which simply averages the remaining elements. This was done because the
last part of the path is not explorable, as we shall see later, and therefore this
small representation compromise will not affect the goodness of the learning.
With regard to the communication between action server and client, The
server’s response at the end of the path must be the entire time vector of force
modules. This allows the supervisor to exploit this information to improve
task execution performance.
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Algorithm 2 Learning server node

1: while (Node On) do
2: if (Req) then
3: Server input = Path
4: Starts to perform the Path
5: while (Moving) do
6: if (not Req) then
7: Reset All
8: Stop Moving
9: else
10: Obtain new samples from force sensor
11: Collect a new sample of contact force module by computation
12: end if
13: end while
14: if (Success) then
15: F = Obtain the representation vector from force module samples
16: Client Results = F , Success
17: else
18: Client Results = Empty vector , Success
19: end if
20: end if
21: end while

The algorithm 2 shows the entire logical procedure performed by the
learning server node and displays the response that the action server sends to
the client, also showing that, unlike a simple service, we have the possibility
of interrupting the execution of the request at any time.
If the node is interrupted, it immediately stops performing the task and
resets all memory elements it was collecting. This provides the possibility
of restarting at any time. The client is provided with the two pieces of
information of interest, the reconstructed time vector of forces and the actual
success of the path. In the event of a negative outcome, the passed vector is
simply null.

Validation Results

It is possible to show some tests that have been carried out to validate the
correct functioning of the node.
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Figure 4.6: Original samples of forces [N]

Figure 4.7: Representation samples of forces [N]

It can be seen that the representation vector (Figure 4.7) also remains
consistent and informative with respect to the source sample vector.

2.3 Learning Supervisor

In this last section, the general structure of the learning supervisor node is
analysed. This is an initial introduction to the subject, which will be treated
exhaustively in the next chapter.
The learning supervisor node is the main part of the project and has the task
of managing the entire learning stage in order to improve the execution of the
tasks. The diagram presented in figure 4.8 shows the three main characteristics
that a supervisor must have: Initialization, Exploration, Learning Phase.
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Figure 4.8: Learning supervisor node structure

The initialization in a machine learning approach is crucial, at this stage
the designer has the opportunity to pass on to the software all his initial
knowledge of how the task can be performed. This makes it much easier
to find a solution and at the same time greatly reduces the time needed to
achieve it.
The exploration is a necessary step to get closer and closer to the desired
result. For this aspect, the concept of path characterization is important,
as by characterizing a trajectory, we have the possibility of changing a few
characteristics in order to find a new path to experiment with.
The last essential stage is the learning phase. In this portion of the node, a
learning method must be chosen that is suitable for the problem to be solved.
The decision process is not trivial, and often leaves compromises behind. Each
learning phase, however, has some common traits; it must exploit initialization
to have the first information from which to learn, and then exploit exploration
to have new paths to evaluate. The way these methods learn is linked to the
concept of a score function, which is a function that generates a score in order
to evaluate a path, on the basis of the feedback available.
The correct creation of this function is what allows the system to obtain the
expected result. In our specific case, the two nodes discussed above were
created to provide the necessary information to the supervisor so that it could
accommodate an effective score function.
We have at our disposal:

• The binary mask of the finished path cable arrangement provided by
the camera node;

• The forces exchanged along this stretch and the correct execution of
movements by the robot provided by the learning server node.
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Chapter 5

The Supervisor: A Machine
Learning Algorithm

The interest of researchers in recent years has focused on how to make a
robot capable of learning just like humans do, trying to understand whether
the human brain can be replicated through mathematical models and neural
networks. A good starting point is to equip the robot with a pool of sensors
that can be adapted to what humans have available to learn, for example
with the use of force sensors to make contact with the surroundings and video
cameras to obtain visual feedback of what is in the scene and possible changes.
With this equipment, complex manipulation techniques can be implemented
by collecting force data and analysing images [7]. An important note is
certainly the fact that these algorithms can be used both online and offline
[8]. While in the offline case the scene is reconstructed with the machine
switched off once the image has been acquired, the online algorithm allows
this to be done during the video acquisition and this would allow the robot to
have the desired information in real time [9][10]. In this chapter, the strategy
implemented in the supervisor node will be specifically analysed. The problem
presents several critical issues and at the same time several initial assumptions.
We have three different types of cable groupings, discriminated by a different
type of connector. These cables are assumed to be already locked in the
connector block and consequently our task is to insert the cables into the
various clips of interest. If we subdivide this task, considering one clip at a
time, then the task becomes uniform for all cables and thus standardizable
in terms of approach. During this wiring harness assembly procedure, it is
important that the cables are kept tensioned to reduce undesirable effects so
as to avoid unexpected collisions, but we desire not to overstretch them in
order not to risk damaging the final result.
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1 Learning Algorithm

In this first section, we will deal with defining how the learning algorithm
is realized from a software point of view. At the beginning is discussed the
concept of path characterization, this aspect is important in order to be able
to deal with the realization of the software components we discussed earlier:
initialization, exploration and learning phase. Once the path structure has
been defined, it will be possible to complete all the elements that the node
needs.

1.1 Path Characterization

Since what we want to learn are paths, it is important to create a characteri-
zation in order to generate a software object that can represent them. We can
see a path (Figure 5.1) as a set of ordered three-dimensional points connected
by linear motion, to make the robot’s behaviour totally deterministic. From
a software point of view, these points can be set as mutable or non-mutable.
The intermediate points between the start and the end are called way-points.
The number of points characterizing a path is regarded as a free parameter
available to the user.

Figure 5.1: Path characterization

1.2 Path Initialization

The path initialization must be done by the user, at this stage one has the
opportunity to decide on the initial path to be taken, which must be the
starting point for learning. In the desired trajectories, there are known points,
which it does not make sense to allocate to learning. In fact, the user is
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responsible for defining for each task the starting point and end point for
inserting the cables into the clips. There is also the possibility of inserting
intermediate way-points, mutable or non-mutable, which can help learning
and avoid collisions, based on a functional path from the start. The user
also has the possibility of deciding the number of points that characterize
a path according to his own experience; too many points would lengthen
the learning time and may be too close together, while too few points may
not be sufficient to perform the task. All non-fixed points are reconstructed
by creating equidistant linear connections between those imposed. In this
way we have obtained a complete first path, that if it is set up correctly is
already able to perform the task but not optimally; the learning objective
is not simply to solve the problem, but to solve it as good as possible with
what is available.

Figure 5.2: Path initialization: way-points reconstruction

1.3 Exploration and Learning Phase

Regarding strategy, the high-level software structure that has been created
can be represented with the following diagram 5.3. The supervisor handles all
the learning stages by choosing paths to take for the robot, the server takes
care of the practical side of executing them, and in the environment we have
the feedback of what is happening in reality, with the appropriate data to
build a score function essential for the learning.

34



Figure 5.3: Learning structure

The idea is that the best path can be obtained from the path set by the
user in the initialization. We have seen how there are mutable way-points
and the purpose of learning is precisely getting the right position for all these
points with respect to a specific score function.

Figure 5.4: Paths learning and exploration

The learning strategy is derived from the so-called class of learning algo-
rithm defined as genetic algorithm inspired by natural selection and designed
to solve complex problem where the number of outcome are too many to
be feasible to obtain an optimal solution. These algorithms are proven to
solve problem such as the travelling postman. The algorithm is based on the
concept of generating a set of possible solution named father (or parents)
characterized by a set of information named genes, that in our specific case
are represented by the points’ trajectories. The changes of a way-point from a
path leads to the creation of a child path. At each iteration of the algorithm,
all trajectories are executed and evaluated with respected to a score-function
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and the best one are selected as breeding parents for the creation of a new
generation of child. In this way, only the best trajectories are allowed to
be propagated, leading to the exploitation of the best paths founded. Only
a better result can replace and old one. At the end of each trajectory, the
cables are returned to the initial position via a user-set restore trajectory.

This approach may be redundant since the same trajectory can be executed
several times, but it is necessary for the actual conditions under which learning
must operate. The results on the same path may be different, as these scores
depend on the friction between gripper and cables, the arrangement in which
the cables are taken, small misalignments, etc.
The algorithm will terminate when the scores obtained begin to saturate,
meaning that we have found a trajectory that maximizes the score and
therefore represents a good solution for the task.
Since the learning procedure is time-consuming and could also be performed
several times, the algorithm was equipped with memory. This allows learning
to be resumed from where it was interrupted and then progress to be saved
each time. The following scheme 5.5, that represent the algorithm structure,
shows precisely this aspect, where we have the option of starting the learning
from zero or taking advantage of a checkpoint saved in memory.

Figure 5.5: Supervisor software structure

It is also possible to show the algorithm executed by the supervisor node,
highlighting its main aspects, such as the possibility of starting from the
beginning or from paths saved in memory. During operation, all paths are
passed to the learning server node, which performs them and returns the
feedback for which it was designed. The camera node is also called when we
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desire to verify the correct insertion of the cable, which returns the binary
mask of the scene. The procedure is iterated, saving the best paths each time,
until the improvement is considered sufficient; to do this, score saturation can
be used as a stop criterion.
As far as scoring is concerned, the next section will go into detail on how
to obtain these values, having to consider different information to construct
them.

Algorithm 3 Supervisor node

1: if (Memory) then
2: Ts[0:3] = Paths from memory
3: Ts = GenerateChilds(Ts)
4: else
5: Ts[0] = Initialization path
6: Ts = GenerateChilds(Ts)
7: end if
8: while (not Improvement and Node On) do
9: for (t in Ts) do
10: LearningServer(t)
11: WaitServer()
12: Results = F, Success
13: if (Success) then
14: Move for picture
15: Camera()
16: WaitServer()
17: Result = Picture
18: if (CableInserted(Picture)) then
19: Scores[t] = ForceScore(F)
20: else
21: Scores[t] = -1000000
22: end if
23: Perform the path to restore the cable conditions
24: end if
25: end for
26: Ts[0:3] = Best four paths
27: SavePaths(Ts)
28: Ts = GenerateChilds(Ts)
29: Improvement = ScoreSaturation(Scores)
30: end while
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1.4 Path Score and Pseudo-Random Mutations

The score is a value that is assigned to an executed trajectory, in our case
this value is conditioned by two parts:

• The correct insertion of the cable in the clips;

• A function on the forces exchanged imposed by the user.

In the first case, what we desire to obtain is a contribution that leads to
the immediate discarding of those paths that are unable to fulfil the task.
To do this, after the execution of the path, the supervisor requests the binary
mask of the scene from the camera node. From this image, it is possible to
take information on whether the insertion was successful. This can be done
by obtaining a crop of the image in the area of the clip, its position is known,
and assessing whether more than one object is present after appropriate
processing. If the cable is correctly inserted then the clip will hide a portion of
it, which is why two separate objects are created in the mask in that specific
area.

Figure 5.6: Cable insertion mask

If the cable is not correctly inserted then the path will receive such a
negative score that it will be discarded a priori, in the case of a positive
outcome, however, the score will only be influenced by the function on the
forces exchanged. This function is set by the user and it may be convenient to
set it with always negative values, thus creating an upper limit value of zero,
which would also be the ideal value as a score for a trajectory. An example
for this function could be:

S(F ) = −
Nr∑
i=1

f(Fi) = −
Nr∑
i=1

F 2
i (5.1)

38



That means trying to reduce the force module of the forces exchanged
during the path as much as possible.
In an attempt to speed up the learning time, a ruse was used to ensure that
path mutations were somewhat score-dependent. In this way, a child path
tries to improve on its father’s defects. When one desires to make a path
mutation, one can think of randomly extracting one of its mutable way-points
and changing its positional values slightly. The idea is precisely not to make
this choice totally random, but to impose more probability of being extracted
on those points that have had the greatest influence on making the score low.
By unpacking the values that the force scoring function returns, it is possible
to create weights that can be associated with the mutable way-points; by
normalising these weights, it is possible to obtain probabilities of choice.
Considering Np as the number of points in a path, the weights:

Wi =

i⌊Nr
Np

⌋+⌊ Nr
2Np

⌋∑
k=i⌊Nr

Np
⌋−⌊ Nr

2Np
⌋

f(Fk) (5.2)

∀i ∈ (1, Np) : wi is mutable

Consequently, the probabilities:

Pi =
Wi∑
Wk

(5.3)

∀k ∈ (1, Np) : wk is mutable

The expressions for the weights and for the probabilities contain an
approximation due to discretization, this approximation however, considering
a high Nr and low Np number, remains very valid for expressing the influence
of way-points on the score.
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Figure 5.7: Separation of force contributions

The figure 5.7 shows how the force contributions are separated to obtain
the probabilities, each mutable way-points generates a neighbourhood of force
contributions, which can be used for the evaluations just explained.

1.5 Path Alignment

As the work table is not attached to the robot base, it is possible that during
the execution or learning resumption of a given task, even days later, there
may be unexpected path misalignments. For this reason, the robot is equipped
with a RealSense camera, on the end-effector, and an Aruco marker is placed
on the work surface. In this way it is possible, when starting the task for the
first time, to obtain and save the position of the Aruco marker, and from
time to time, using this information and the new position of the marker, to
obtain the homogeneous transformations that allow the paths to be realigned
with respect to the working base.
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Figure 5.8: System references

Each path is defined as a succession of spatial points of the end-effector
with respect to the world frame (PE

W ). So if we desire to recompute the path
by realigning it to the working plane (PE′

W ) we must:

• Obtain the homogeneous transformations between Aruco and Camera
(HC

A ) and between Camera and World (HW
C );

• Find the pose of the End-effector with respect to the Aruco frame (PE
A )

and save it;

• Obtain the new homogeneous transformations between Aruco and Cam-
era (HA′

C′ ) and between Camera and World (HC′
W );

• Calculate the pose of the End-effector with respect to the World frame
(PE′

W ), exploiting PE
A saved in memory.

Figure 5.9: Pose vectors
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In order to find PA
W , it is necessary to calibrate the camera so as to obtain

the homogeneous transformation from A to W (HC
W ). By means of a small

ROS node, which uses the camera to find the homogeneous transformation
from A to C HA

C , it is possible to obtain HW
A .

HW
A = HA

CH
W
C (5.4)

It is now possible to find the static vector PE
A by exploiting PE

W , having
HW

A available.

PE
A = HW

A PE
W (5.5)

This procedure is done during initialisation and is necessary to have in
memory the static references between Aruco and the zones of the working
plane in which the End-effector is to operate. When we desire to perform the
realignment, we need to compute HA′

W finding HA′

C′ and HC′
W , considering that

the Aruco has moved. To obtain the coordinates of PE′
W , which are the poses

of the realigned path, we exploit the static vector we saved in memory PE
A

transformed with respect to the World frame.

PE′

W = HA′

W PE
A = HC′

W HA′

C′PE
A (5.6)

2 Algorithm Validation

We can now move on to see the first experimental results of this approach.
The cable used is the SPC cable and the parameters chosen are that the
number of path points is 10 and the number of paths competing with each
other is 8. In order to validate the learning algorithm and, consequently, test
its properties, we set ourselves the first objective of being able to position
the SPC cable in the clip with the connector already locked in the connector
block.

2.1 Simple Score Function and Implementation

The wish is for the robot to learn to perform this task by trying to minimise
the variance of the three-dimensional force vector, which is generated in the
contact between the gripper and the cable. The idea is that in this way the
robot is able to act uniformly on the force during the cable handling path.

S(F ) = −
Nr∑
i=1

f(Fi) = −
Nr∑
i=1

(Fi − µF )
2 (5.7)
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As far as implementation is concerned, the user must provide the specifi-
cations of the initial path, in particular he must define the starting point, the
final point and, if desired, intermediate way-points which may be mutable or
non-mutable. In this specific case it was decided to impose two non-mutable
way-points near the end point and one mutable way-point in the middle of
the path. The starting point was chosen to ensure correct cable grip in the
proximity of the connector block. The intermediate way-point chosen is used
to strategically indicate which direction of motion is favourable for performing
the task, based on the user’s experience.

Figure 5.10: Start point and middle way-point

Figure 5.11: Final sequence of path points
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The choice on the final sequence was made in order to have good results
on cable insertion, since the last points of the path are very precisely imposed
by the user.

Figure 5.12: First path characterization

2.2 Results

Once the user has implemented the initial path, it is possible to proceed with
the execution of learning. the three main nodes including the supervisor are
turned on, which begins the exploration and learning phase. For this first
experiment we wanted to verify that the scores saturated, with improvement,
as the exploration progressed. To achieve the expected result, 240 winning
paths (Np) were explored.

Figure 5.13: Paths performed [mm]
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In order to be able to graph the scores by having a view of the improvement,
a simple function was implemented that could express the improvement in
absolute terms compared to the initial path. Considering the vector of scores
S, it is possible to construct a vector of improvements I with the following
function:

Ii =
| 1
Si
| − | 1

S1
|

| 1
S1
|

(5.8)

∀i ∈ [1, Np]

As can be seen from figure 5.14 the scores tend to saturate, the blue feature
is the filtered scores to limit the visual effects due to data inconsistency. Green
strokes show improvements, while red strokes show deteriorations.

Figure 5.14: Scores Obtained

As explained in the previous paragraphs the same trajectory is executed
several times if it is a winner, these trajectories, however, get very different
scores from each other and this makes the graph look very fluctuating. For
this reason, an improvement function referring to the best path of the previous
learning phase will be implemented in the next chapter. This will allow the
improvement of the paths to be better seen.

45



Figure 5.15: Forces exchanged

The figure 5.15 shows the results on the exchanged forces obtained from
the first path (in red) and the learning solution (in green). The result is
not what we had hoped to achieve; the robot did not make the treatment
homogeneous in terms of forces on the cable, rather it generated a spike in
the early part of the path. However, the result obtained minimizes the score
function we imposed. The generated peak helps to raise the mean of the forces
and thus decrease the variance in the final section of the path. The simple
function on the score we used is not sufficient to obtain the desired behavior,
however, it is sufficient to validate that the algorithm works properly.
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Chapter 6

The Algorithm: Implementation
and Results

In this last chapter, the practical implementation of the algorithm with its
results is discussed. The previous chapters have shown all the software and
hardware components required for the development of the application that
will be used in the implementation phase. With regard to the results, the
learning graphs will be shown, with particular detail on the improvement
curve and the intensities of the vector of forces exchanged in the contact
between gripper and cables. In the second section, we will use the first path
to learn to introduce the results in detail, which considerations will then be
replicated for subsequent paths.
The application aims to find a solution in terms of pseudo-optimal paths with
short learning times. Applying learning directly in reality, without passing
through a simulation environment that can speed up the learning process, it
is unthinkable to find an optimal solution.

1 Tasks Subdivision and Score Function

The application requires the handling of three different groupings of cables,
which must be organized in a specific harness. The environment was con-
structed in such a way that the application could be fulfilled, two clips and a
suitable connector blocks arrangement were required. All three cable group-
ings must be inserted into the clips, but in a different order. Figure 6.1 shows
the final arrangement of the cables and the worktop. The learning phase was
organized into three different tasks, where each task represents the path a
grouping of cables must take in order to be correctly arranged. In turn, these
tasks are unpacked into sub-tasks, where the path is discovered in order to
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perform the insertion in a single clip with the other part of the grouping fixed.
Therefore, there will be six paths to learn, two for each cable type.

Figure 6.1: Representation of the tasks

Regarding the score, we saw how in the previous chapter the solution
obtained with the cost function initially proposed was not suitable for the
purpose, in fact the objective was to obtain a path that is able to keep the
contact forces as homogeneous and low as reasonably practicable, reducing any
force peaks where possible. For this reason, a score function which included
these considerations was implemented, using the variance, mean and peak
value of the contact forces.

S(F ) = −
Nr∑
i=1

f(Fi) = −
Nr∑
i=1

FmaxµF (Fi − µF )
2

2 Six-Poles Cable

The first path we desire to learn is for the six-pole connector cables. This
path will be subdivided into two sub-paths to be learnt, when linked, will
return the overall path. The connector block is located to the right of the two
clips, in the proposed top view, and the goal will be to learn how to insert
the group of cables into the first clip and then the insertion of the cables into
the second clip.

2.1 SPC First Path

This first trait to learn is the same one we analysed in the previous chapter,
when we set out to validate the supervisor algorithm.
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Implementation

As far as implementation is concerned, the user will have to provide an initial
path that can be adequately informative, so that the robot already has a
good initial basis for learning.

Figure 6.2: Representation of the SPC first path

It was decided, in the initialization, to impose two non-mutable way-
points near the end point and one mutable way-point in the middle of the
route. The starting way-point was chosen to ensure proper cable grip near
the connector block. The middle way-point chosen is used to strategically
indicate which direction of movement is conducive to task execution, based
on user experience. This favours finding a path away from the clips initially
to try to avoid collisions.

Figure 6.3: Start point and middle way-point of SPC first path

The choice on the final sequence was made in order to have good results
on cable insertion, since the last points of the path are very precisely imposed
by the user.
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Figure 6.4: Final sequence of SPC first path points

Once the initial path has been set, the algorithm can proceed with the
exploration and learning phase, following the logical structure that was shown
in the previous chapters.

Results

The robot took about 7 hours of continuous work to learn this first path by
performing 244 winning paths, twice as many considering the losers. We have
discussed how the algorithm forces improvement by trying to limit the effects
of data inconsistency and for this reason it is appropriate to define a new
improvement function, that allows the progress of the learning phase to be
graphed in a more visible way.

Ii = 100
| 1
Si
| − | 1

SPS
|

| 1
SPS

|
+ IPS (6.1)

∀i ∈ [1, Np]

SPS is the score of the winning path of the previous learning stage in
the current stage, IPS is the improvement value of the winning path of the
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previous learning stage. With this new expression, this function is able to
describe the improvement in relative terms and thus show how the solutions
are better than those of the predecessors.

(a) (b)

(c)

Figure 6.5: Fig.6.5a Scores of the SPC first path, green strokes show im-
provements, red strokes show deteriorations and the blue curve is the filtered
improvement. Fig.6.5b Forces exchanged of the SPC first path. (Red line
is the initial path, Gray lines are the paths explored, Green line is the final
path choose). Fig.6.5c Paths performed of the SPC first path in mm

Figure 6.5a shows that the slope of the improvement is clear from the
beginning. These results are to be taken lightly, the application suffers greatly
from data inconsistency, but the improvement has occurred. This time,
compared to the previous chapter, the forces exchanged behaved as expected,
reducing the peaks and the mean value as well as minimizing the variance.
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2.2 SPC Second Path

In this second section, we desire to learn how to position the cable in the
second clip considering that it has already been fixed in the first. This way,
once this path has also been learnt, it will be possible to concatenate the two
paths to obtain a single path for the cable.

Implementation

The first thing to do is to decide how to impose the initial path, based on
human experience.

Figure 6.6: Representation of the SPC second path

Figure 6.7: Points sequence of the SPC second path

This path is very short and must be carried out precisely so as not to pull
the cable out of the previous clip and to make a correct insertion into the
next clip. it was decided to characterise the path with six points: a start
and an end point, a mutable way-point immediately after the start and four
non-mutable way-points to follow. This choice was made in order to try to
avoid collisions and free up the cable as much as possible in the initial section,
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giving the possibility of learning to improve the treatment on the cable. The
final leg, on the other hand, was precisely set to ensure proper insertion.

Results

mi io The robot took about 3 hours of continuous work to learn this second
path by performing 168 winning paths, twice as many considering the losers.

(a) (b)

(c)

Figure 6.8: Fig.6.8a Scores of the SPC second path, green strokes show
improvements, red strokes show deteriorations and the blue curve is the
filtered improvement. Fig.6.8b Forces exchanged of the SPC second path.
(Red line is the initial path, Gray lines are the paths explored, Green line is
the final path choose). Fig.6.8c Paths performed of the SPC second path in
mm

The path learnt shows excellent results in terms of the forces exchanged,
significantly reducing the final peak and making the treatment more homoge-
nous.
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3 Ten-Poles Cable

The second path we wish to learn is that of the ten-poles connector cable.
This path will be subdivided into two sub-paths to be learnt which, once
linked, will return the overall path.

3.1 TPC First Path

The first path to learn is the one that leads the TPC cable from the connector
block to the first clip.

Implementation

The first thing to do is to decide how to impose the initial path, based on
human experience.

Figure 6.9: Representation of the TPC first path

This path is very similar to the one we learned in the previous section 2.1
when we analysed the first path of the SPC cable.

Figure 6.10: Points sequence of the TPC first path
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The first part of the initial path will be set to ensure that the cable is
free of collisions, with the possibility of changing the points in the learning
phase. The final part, on the other hand, will be precisely set to ensure that
the cable is correctly inserted into the clip.

Results

The robot took about 5 hours of continuous work to learn this first path by
performing 208 winning paths, twice as many considering the losers.

(a) (b)

(c)

Figure 6.11: Fig.6.11a Scores of the TPC first path, green strokes show
improvements, red strokes show deteriorations and the blue curve is the
filtered improvement. Fig.6.11b Forces exchanged of the TPC first path. (Red
line is the initial path, Gray lines are the paths explored, Green line is the
final path choose). Fig.6.11c Paths performed of the TPC first path in mm
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The learned path shows excellent results in terms of the forces exchanged,
significantly reducing the variance and mean value, and avoiding spikes.

3.2 TPC Second Path

The second path to learn is the one that leads the TPC cable from the first
clip to the second one.

Implementation

The first thing to do is to decide how to impose the initial path, based on
human experience.

Figure 6.12: Representation of the TPC second path

This path is very similar to the one we learned in the previous section 2.2
when we analysed the second path of the SPC cable.

Figure 6.13: Points sequence of the TPC second path

It is very short path and must be carried out precisely so as not to pull
the cable out of the previous clip and to make a correct insertion into the
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next clip. it was decided to characterize the path with six points: a start
and an end point, a mutable way-point immediately after the start and four
non-mutable way-points to follow.

Results

The robot took about 3 hours of continuous work to learn this second path
by performing 104 winning paths, twice as many considering the losers.

(a) (b)

(c)

Figure 6.14: Fig.6.14a Scores of the TPC second path, green strokes show
improvements, red strokes show deteriorations and the blue curve is the
filtered improvement. Fig.6.14b Forces exchanged of the TPC second path.
(Red line is the initial path, Gray lines are the paths explored, Green line is
the final path choose). Fig.6.14c Paths performed of the TPC second path in
mm

The learned path shows good results in terms of the forces exchanged,
reducing the variance and mean value, and avoiding spikes where possible.
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4 Eleven-Poles Cable

The third path we wish to learn is that of the eleven-poles connector cable.
This path will be subdivided into two sub-paths to be learnt which, once
linked, will return the overall path.

4.1 EPC First Path

The first path to learn is the one that leads the EPC cable from the connector
block to the first clip.

Implementation

The first thing to do is to decide how to impose the initial path, based on
human experience.

Figure 6.15: Representation of the EPC first path

This path is very similar to the one we learned in the previous section 3.1
when we analysed the first path of the TPC cable.

Figure 6.16: Points sequence of the EPC first path
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The first part of the initial path will be set to ensure that the cable is
free of collisions, with the possibility of changing the points in the learning
phase. The final part, on the other hand, will be precisely set to ensure that
the cable is correctly inserted into the clip.

Results

The robot took about 6 hours of continuous work to learn this first path by
performing 252 winning paths, twice as many considering the losers.

(a) (b)

(c)

Figure 6.17: Fig.6.17a Scores of the EPC first path, green strokes show
improvements, red strokes show deteriorations and the blue curve is the
filtered improvement. Fig.6.17b Forces exchanged of the EPC first path. (Red
line is the initial path, Gray lines are the paths explored, Green line is the
final path choose). Fig.6.17c Paths performed of the EPC first path in mm
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The learned path shows good results in terms of the forces exchanged,
reducing the variance and mean value, and avoiding spikes where possible.

4.2 EPC Second Path

The second path to learn is the one that leads the EPC cable from the first
clip to the second one.

Implementation

The first thing to do is to decide how to impose the initial path, based on
human experience.

Figure 6.18: Representation of the EPC second path

This path is very similar to the one we learned in the previous section 3.2
when we analysed the second path of the TPC cable.

Figure 6.19: Points sequence of the EPC second path
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It is very short path and must be carried out precisely so as not to pull
the cable out of the previous clip and to make a correct insertion into the
next clip. it was decided to characterise the path with the usual six points.

Results

The robot took about 4 hours of continuous work to learn this second path
by performing 156 winning paths, twice as many considering the losers.

(a) (b)

(c)

Figure 6.20: Fig.6.20a Scores of the EPC second path, green strokes show
improvements, red strokes show deteriorations and the blue curve is the
filtered improvement. Fig.6.20b Forces exchanged of the EPC second path.
(Red line is the initial path, Gray lines are the paths explored, Green line is
the final path choose). Fig.6.20c Paths performed of the EPC second path in
mm

The learned path shows good results in terms of the forces exchanged,
reducing the variance and mean value, and avoiding spikes where possible.
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5 Overall Results

This last section shows all the results regarding learning, in which the training
times and values achieved on the forces, obtained from the chosen path
compared to the initial one, are highlighted.

Path
Learning
Time [h]

Force
Peak [N]

Force
Mean [N]

Force
Variance

Score

SPC1 I
7

9.70 4.33 4.06 -171.02
SPC1 R 6.95 3.83 1.81 -48.24

SPC2 I
3

21.25 4.65 11.75 -1161.40
SPC2 R 9.38 4.42 4.3 -177.21

TPC1 I
5

10.32 7.31 3.57 -269.72
TPC1 R 4.77 3.20 0.58 -8.88

TPC2 I
3

28.47 6.76 45.94 -8853.21
TPC2 R 18.93 5.24 20.43 -2030.91

EPC1 I
6

9.27 2.29 2.35 -49.67
EPC1 R 8.61 1.96 2.68 -45.50

EPC2 I
4

8.69 3.57 4.98 -155.28
EPC2 R 6.72 3.40 2.49 -56.93

Table 6.1: Learning Results (I: Initial Path, R: Result path)

As can be seen from Table 6.1, the results are very satisfactory and testify
to the effective operation of the algorithm, managing to improve paths with
multiple mutable way-points but also those paths that have a single mutable
point.
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Chapter 7

Conclusions and Future
Developments

During the study of this problem, an application was successfully realized to
find an excellent path to solve the wiring harness assembly case study of Elvez.
The project began by trying to realize the best possible environment to host the
subsequent software implementation. 3D pieces were built to house the cables,
cameras and force sensors were exploited to obtain the necessary information
on what is happening in the environment during the execution of the task.
Once all the hardware components were correctly arranged, it was possible
to move on to implementing the software side. The software communication
scheme and the implementation of a supervisor, capable of handling path
learning techniques, made it possible to explore different possibilities and
gradually improve the solutions. This project had several critical issues, such
as the total lack of a model of the DLOs or the real possibility of inconsistency
in the force sensor data. For these reasons, the implementation idea was to try
to create an approach totally focused on avoiding these problems, which was
successfully fulfilled. Regarding future developments, this thesis project was
also a preliminary step for the research topic of the IntelliMan project in which
the University of Bologna is coordinator. The aim of the IntelliMan project
is to develop a robotic system for the manipulation of different elements with
high performance and constant learning capability through a heterogeneous
set of sensors, for advanced robotics, manufacturing and prosthetic services.
This system will be able to adapt to the characteristics of its environment and
decide how to perform a task autonomously, detecting flaws in its execution
and requesting new knowledge through interaction. Ensuring safety and
performance, IntelliMan’s advances range from learning manipulation skills to
abstract descriptions of a manipulation task, or discovering the functionality
of an object.
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