
ALMAMATER STUDIORUM

UNIVERSITÀ DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

ARTIFICIAL INTELLIGENCE

MASTER THESIS

in

Machine Learning for Computer Vision

DEPTH ESTIMATION IN STEREO
BIOMEDICAL IMAGES VIA

PROXY-SUPERVISED DEEP LEARNING

CANDIDATE SUPERVISOR

Claudio Bonetta Prof. Samuele Salti

CO-SUPERVISOR

Matteo Poggi, PhD

Anna Cesaratto, PhD

Academic year 2021-2022

Session 1st



To my beloved family.

ii



Contents

1 Introduction 1

1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Baseline 4

2.1 Standard Stereo Vision . . . . . . . . . . . . . . . . . . . . . 4

2.2 Semi-Global Matching . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Matching Cost Computation . . . . . . . . . . . . . . 8

2.2.2 Cost Aggregation . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Disparity Computation . . . . . . . . . . . . . . . . . 14

2.2.4 Disparity Refinement . . . . . . . . . . . . . . . . . . 15

3 Dataset Generation 16

3.1 Synthetic Data Generation . . . . . . . . . . . . . . . . . . . 17

3.1.1 Stereo Rig Setup . . . . . . . . . . . . . . . . . . . . 18

3.1.2 Structured Light Projector Setup . . . . . . . . . . . . 20

3.1.3 Random Poses Generation . . . . . . . . . . . . . . . 23

3.1.4 Rendering . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Proxy-Labeling . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Implementation . . . . . . . . . . . . . . . . . . . . . 35

4 Deep Learning-Based Depth Estimation 40

4.1 RAFT-Stereo . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 42

iii



4.1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.3 Zero-Shot Generalization . . . . . . . . . . . . . . . . 47

5 Evaluation 49

5.1 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.2 Inference . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Disparity Metrics . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 3D Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Conclusions 60

6.1 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2 Future Developments . . . . . . . . . . . . . . . . . . . . . . 61

6.2.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2.3 Imaging System . . . . . . . . . . . . . . . . . . . . 64

Bibliography 66

Acknowledgements 70

iv



List of Figures

2.1 Stereo Matching Pipeline . . . . . . . . . . . . . . . . . . . . 5

2.2 Census Transform . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Hamming Distance . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Left-Right Consistency Check . . . . . . . . . . . . . . . . . 14

3.1 3.1(a) is the first stereo rig setup where the light projector’s

position coincide with the camera’s. 3.1(b) is the last configu-

rationwhere the light projector is placed between the two cam-

eras. The left camera is represented by the pyramidal object

on the right while the right one by the rectangular light-gray

object on the left. The light is represented by the spherical

dotted object laying on the axis. . . . . . . . . . . . . . . . . 19

3.2 Structured light projector’s shader nodes. . . . . . . . . . . . 20

3.3 Synthetically generated pattern. . . . . . . . . . . . . . . . . . 21

3.4 3.4(a) is the synthetic image rendered with Blender using the

digitally generated pattern of Figure 3.3. 3.4(b) is a real ex-

ample of an image taken with the projected pattern. . . . . . . 22

3.5 In yellow is the line used to orient the rig to face the teeth. . . 25

3.6 Compositor node tree. . . . . . . . . . . . . . . . . . . . . . . 26

3.7 In 3.7(b) is represented an example of synthetic disparity used

for supervision. In order to obtain this image, the disparity

values have been normalized with the minimum and maxi-

mum disparity values. 3.7(a) is the color image related to 3.7(b). 28

v



3.8 Example of cost curve . . . . . . . . . . . . . . . . . . . . . 32

3.9 In 3.9(b) is represented an example of proxy-labels used for

supervision. In order to obtain this image, the disparity val-

ues have been normalized with the minimum and maximum

disparity values. 3.9(a) is the input image that generated the

labels in 3.9(b). . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Visual representation of RAFT-Stereo. . . . . . . . . . . . . . 43

4.2 Visual representation of the lookup operator. . . . . . . . . . . 45

4.3 Visual representation of the GRU-based module. . . . . . . . 46

5.1 RAFT-Stereo training loss. The original plot curve has been

smoothed with a 1D Gaussian kernel with σ “ 3 and down-

sampled from 10000 to 100 points. . . . . . . . . . . . . . . . 53

5.2 RAFT-Stereo training EPE. The original plot curve has been

smoothed with a 1D Gaussian kernel with σ “ 3 and down-

sampled from 275 to 55 points. . . . . . . . . . . . . . . . . . 54

5.3 RAFT-Stereo training 1px. The original plot curve has been

smoothed with a 1D Gaussian kernel with σ “ 3 and down-

sampled from 275 to 55 points. . . . . . . . . . . . . . . . . . 54

5.4 RAFT-Stereo training 3px. The original plot curve has been

smoothed with a 1D Gaussian kernel with σ “ 3 and down-

sampled from 275 to 55 points. . . . . . . . . . . . . . . . . . 55

5.5 RAFT-Stereo training 5px. The original plot curve has been

smoothed with a 1D Gaussian kernel with σ “ 3 and down-

sampled from 275 to 55 points. . . . . . . . . . . . . . . . . . 55

5.6 The two figures refers to the evaluation indicated with index

1 in the Table 5.3. 5.6(a) refers to the 3D ground truth while

5.6(b) is the generated mesh (segmented as described in this

Section). The colors of the generated mesh indicate the mag-

nitude of the error (blue for small errors and red for high errors). 58

vi



6.1 This example (taken from [15]) shows how texture level in-

formation that do not stem from matching can be detrimental

for disparity estimation. . . . . . . . . . . . . . . . . . . . . . 62

vii



List of Tables

4.1 (from [16]) synthetic to real generalization experiments. All

methods were trained on SceneFlow[23] and tested on the

KITTI-2015,Middlebury, and ETH3Dvalidation datasets. Er-

rors are the percent of pixels with end-point-error greater than

the specified threshold. For each dataset the standard evalua-

tion thresholds are used: 3px for KITTI, 2px for Middlebury,

1px for ETH3D. . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 RAFT-Stereo evaluation on proxy-labels’ validation set. . . . 52

5.2 RAFT-Stereo evaluation on synthetic dataset’s validation set. . 52

5.3 Results of the 3D metrics. The reported values are in microm-

eters (µm). The smaller the mean distance, the better the result. 57

viii



Chapter 1

Introduction

Depth estimation has long been an important enabling factor for many robotic-

related tasks and many other applications involving SLAM-based pipelines.

Many are the techniques that can be used to achieve this task: while some rely

on depth sensors to acquire depth data, others make use of imaging systems

that can either exploit stereo geometry by computing disparities (horizontal

displacement of pixels between two hardware and software aligned cameras)

or use temporal adjacent images in structure from motion (SfM) kind of algo-

rithms.

Disparitymap computation through stereo imaging systems is a commonly

adopted solution in order to achieve depth estimation since it is very cost-

effective and is able to reach a very high level of precision. A lot of bibliogra-

phy focuses on the achievements in the field of autonomous navigation in both

outdoor (such as autonomous driving) and indoor environments, but there is

actually an humongous variety of tasks that are able to enjoy the benefits of a

robust stereo-based disparity map computation pipeline.

This thesis will focus on disparity-map estimation in a 3D reconstruction

pipeline in the biomedical field which, compared to others, suffers greatly

from the presence of smooth and texture-less surfaces and reflective substances
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(such as blood, saliva, mucus and other bodily fluids), which makes the com-

mon stereo matching based pipeline fail because of the absence of distinct

key-points to be matched among the two cameras. Among all the applications

that can be found in the biomedical domain we have decided to focus on dental

imaging, concentrating our efforts on capturing synthetic targets of teeth.

In literature, it is not uncommon to see complementary procedures and/or

sensors introduced alongside standard stereo matching whenever the task is

deemed to be too hard to be faced by mean of pure vision-based approaches

or whenever it is required an additional boost in performances. Such method-

ologies are usually referred to as active stereo vision. We can find among the

most commonly deployed techniques/sensors LIDAR and ultrasonic sensors,

which are often used in navigation based tasks (such as autonomous driving).

Among the other techniques we can also find structured light projection, which

consists in the projection of a light pattern onto the scene to create distinctive

matching points in textureless areas (which are characterized by the lack of

distinctive features). Structured light projection is the technique that will be

used for image capturing in this thesis.

The main challenge that has to be faced in this particular context is the

absence of precise labeled data: the commonly pursued approach of gathering

ground truth data by relying on external sensors is not achievable in those cases

were the working range is very small (in the order of the millimeters) and the

required precision is very high (in the order of the micrometers). This is not

an uncommon scenario in the biomedical domain where, in some of its appli-

cations, it is required to move around in narrow spaces, which constrains the

movements to be very close to the surfaces. Small distances between camera

and foreground can also bemotivated by the necessity of capturing small struc-

tures in a more detailed manner. Since Machine Learning based approaches

require a great amount and variety of examples in order to produce accurate

results, a data gathering technique fit for this context is needed. The tech-

niques adopted to generate ground truth data are reported in chapter 3.
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The implementation of the stereo matching pipeline as been initially es-

tablished through a baseline based on classical computer vision approaches.

Thereafter, we have experimented and implemented a Deep Learning based

stereo matching technique to attempt to gain an improvement over the base-

line.

The main evaluation metric for this application is a 3D distance metric.

This is motivated by the fact that we have access to high precision 3D mod-

els of the targets that are going to be scanned though our imaging system.

This poses the necessity to produce as output not just disparities but also a

3D entity to compare with the 3D ground truth. This is achieved through a

pre-built SLAM pipeline that takes as input the produced disparities and cam-

era’s intrinsic parameters and output a 3D mesh, which will be used for the

comparison with the 3D ground truth.

1.1 Objectives

The objectives of the thesis can be summarized as follows:

• Implementation of a reliable technique to gather ground truth data in the

absence of external sensors.

• Inspect and select a Deep Learning model capable of working in real-

time and that is suitable to work with the imaging systems that is being

used.

• Train the selected model with the gathered dataset.

• Introduce the trained model in the depth sensing part of the SLAM

pipeline and evaluate its performance.



Chapter 2

Baseline

2.1 Standard Stereo Vision

The baseline for this project has been established using a non-learned dispar-

ity estimation technique. All standard stereo vision algorithms can be said to

share more or less the same kind of pipeline. The pipeline is well defined in

[23] and represented in Figure 2.1. It generally consists in a maximum of four

steps (the actual number depends on the algorithm):

In the Matching Cost Computation, it is computed a distance function

between the pixels of the left image and the right image’s pixels that lie on the

same row as the left’s and that are within a predefined disparity range. Since

a pixel-wise comparison would produce ambiguous results (both because of

the redundancy typical of natural signals which might result in neighbour-

ing pixels having very similar values and because of noises introduced by the

imaging system), a commonly adopted approach is to compute the distance

function over pixel-level features derived from a window centered on the said

pixel. Being this a distance function, the smaller the result is, the more proba-

ble that the compared pixels match. The comparisons are performed over the

scanline: pixels of the left image ILpx, yq are compared to the pixels on the
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Figure 2.1: Standard Stereo Matching Pipeline.

right image IRpx, yq that lay on the same row:

Cpx, y, d ´ Dminq “ f pILpx, yq, IRpx ´ d, yqq s.t. d P rDmin, Dmaxs (2.1)

Where f is the distance function and Dmin and Dmax represent the search

range over the scanline. This procedure produces as output a cost volume,

also known as Disparity Space Image (DSI), which in the above formula is

shown as Cpx, y, dq. The cost volume is a data structure that holds, for each

spacial location px, yq and disparity value d, the cost needed to ”approximate”

ILpx, yq with IRpx ´ d, yq or, more formally, the distance between the consid-

ered pixels’ features.

The Cost Aggregation phase is a step typical of global and semi-global

algorithms that is not performed in local methods.

Since, with the exception of disparity discontinuities, disparities tend to show

a smooth behaviour, introducing a smoothness constraint has been shown to be

beneficial. The smoothness constraint is introduced in the form of an energy

function that has to be minimized with respect to a disparity function d:

Epdq “ Edatapdq ` λEsmoothpdq (2.2)

Where Edata is the sum of all the pixels matching costs for the disparity d:

Edata “
ÿ

px,yq

Cpx, y, dpx, yqq (2.3)
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And Esmoothpdq encodes the smoothness assumption, whose value increases as

the difference between the neighbourhood of a disparity’s pixel increases:

Esmooth “
ÿ

px,yq

ρpdpx, yq ´ dpx ` 1, yqq ` ρpdpx, yq ´ dpx, y ` 1qq (2.4)

Where ρ is a monotonically increasing function. Selecting a suitable function

is essential in order to assure the quality of the smoothness performed: for in-

stance, quadratic functions tend to make the disparity d smooth everywhere.

Functions that do not suffer from this issue are referred as discontinuity-preserving.

After the definition of ρ comes the selection of the minimization algorithm.

While many have been proposed (simulated annealing, etc.), thanks to their

efficiency with respect to the other methods, max-flow and graph-cut became

some of the most established global disparity estimation methods.

Independently of the selected global method, it can be proved that the 2D-

optimization of the smoothness function is in practice an NP-hard problem.

Another class of disparity estimation methods that proposes a solution to the

high computational complexity of the global methods are the semi-global class

of algorithmswhich, bymeans of dynamic programming, instead of 2D-minimizing

the smoothness function, minimize its approximation by performing a 1D-

minimization of scanlines over the cost volume. The aforementioned 1D-

minimization done through dynamic programming is an operation that can

be performed in polynomial time, thus solving the issues that the global meth-

ods commonly face.

The disparity computation is the process of extrapolating the disparity

from the cost volume. This is normally achieved by means of winner takes

all: since the cost volume contains a distance function among the matched

pixels it is sufficient to take as disparity value dpx, yq the arg min of the cost
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curve at that spatial location:

dpx, yq “ arg min
d

Cpx, y, dq ` Dmin (2.5)

Since the result of winner takes all is the pixel-distance between the matched

left and right images’ pixels, the produced disparities are integer valued, which

implies that a discretization happens in the process of forming the depth since

it is formed by exploiting the inverse of the disparity:

Z “
fb

d
(2.6)

Where f is the focal length of the camera and b is the length of the stereo rig.

This might not be a big issue for tasks such as robot navigation, but it is for

reconstruction tasks which require a certain degree of precision.

In order to obtain real-valued disparities different techniques have been pro-

posed such as iterative gradient descent and fitting a curve to the matching

costs.

To the disparity refinement step belong all of the post-processing proce-

dures that can be deployed in order to improve the raw disparity resulted from

the previous steps.

Among the commonly deployed refinement techniques there is the left-right

consistency check which allows, through the comparison between the left-

to-right and the right-to-left disparities, to detect occluded and mismatched

disparity values.

A median filter is generally applied to clean the disparity from the presence

of spurious mismatches.



2.2 Semi-Global Matching 8

2.2 Semi-Global Matching

In this section we will introduce the stereo algorithm used to establish the

baseline: Semi-Global Matching (SGM), highlighting the details regarding

the parts of its implementation that differ from the original work [7]. SGM

belongs to the class of semi-global approaches discussed in section 2.1 thus,

as previously described, its cost aggregation step is very fast making it possible

to use it in scenarios that require real-time computation capabilities.

2.2.1 Matching Cost Computation

As engineered by Heiko Hirschmüller [7], Semi-Global Matching uses as

matching cost algorithm a pixel-wise matching cost calculation namedMutual

Information. The usage of Mutual Information is motivated my the fact that,

even thought robustness of matching increases with the size of the window

considered, the implicit assumption done about constant disparity is violated

at discontinuity hence, only the intensities at the considered points can be used

to compute the matching cost. Mutual Information is defined by the entropy

of two images as well by their joint entropy in the following way:

MII1,I2 “ HI1 ` HI2 ´ HI1,I2 (2.7)

Where for the continuous case:

HI “

ż 1

0
PIpiq log PIpiqdi (2.8)

HI1,I2 “

ż 1

0

ż 1

0
PI1,I2pi1, i2q log PI1,I2pi1, i2qdi1di2 (2.9)

Which can easily be rewritten for the discrete case as:

HI “

255
ÿ

i“0
PIpiq log PIpiq (2.10)
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HI1,I2 “

255
ÿ

i1“0

255
ÿ

i2“0
PI1,I2pi1, i2q log PI1,I2pi1, i2q (2.11)

For well rectified stereo pairs, the joint entropy is very low since the Mutual

Information is high. As a pre-requisite in order to compute the joint entropy,

one would need to warp one image over the other according to the disparity so

that pixels are on the same location on both images. The fact that knowledge

over the disparity is needed at cost compute time makes this method unusable.

In order to avoid this issue an approximation of the joint entropy as sum over

pixels using Taylor expansion, proposed by [13], has been used:

HI1,I2 “
ÿ

p

hI1,I2pI1p, I2pq (2.12)

hI1,I2 is calculated from the joint probability distribution PI1,I2 . Convolution

with a 2D Gaussian gpi, jq effectively perform Parzen estimation.

hI1,I2pi, kq “ ´
1
n

logpPI1,I2pi, kq b gpi, kqq b gpi, kq (2.13)

The operator T rs defines the probability distribution of corresponding inten-

sities: it is 1 if its argument is true, 0 otherwise.

PI1,I2pi, kq “ ´
1
n

ÿ

p

T rpi, kq “ pI1p, I2pqs (2.14)

However, Mutual Information is quite expensive to compute and not trivial to

implement. Moreover, an extensive study on different matching costs [8] has

shown in depth the limits of MI in difficult radiometric settings (such as local

radiometric changes). The same study also elect as top performing cost com-

putation method for stereo vision Census Transform [28][9], which is what we

used for this project’s baseline.
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(a) Census Trans-
form

(b) Center-
Symmetric Census
Transform

Figure 2.2: 2.2(a) Standard Census Transform: every element in the win-
dow is compared with the central one. 2.2(b) Center-Symmetric Census
Transform: each element px, yq is compared with the element pW ´ x ´

1, H ´ y ´ 1q.

Census Transform

Census Transform [28] is an image operator used to build pixel-level features

by comparing intensity values in a window centered on a given pixel.

In its classical form, the window’s central pixel is compared with the oth-

ers (either majority or minority comparison) and, for each comparison, it is

outputted a Boolean, whose value depends on whether the comparison held

positive or negative results.

The number of comparisons amount to H ¨ W ´ 1 where H and W are the

height and width of the window respectively.

For performance reasons, the results of the comparisons are usually not stored

in a boolean array, but as bits in a integer variable. The chosen window size

is usually 9 ˆ 7 so that the result of the 62 comparisons can be stored in a 64

bit integer.

In this work it has been used Center-Symmetric Census Transform [26] which,

instead of performing comparisons against the central pixel, compares pixels

at the opposite side of the window. This helps reducing the number of com-

parisons: tH¨W
2 u against the previous H ¨ W ´ 1. This also imply that the

feature generated from a 9 ˆ 7 window can now be stored in a 32 bit integer.
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d “ 2
225

5
ř

i“1
p q1 0 1 1 00 0 1 0 1 ‘

“

5
ř

i“1
p 1 0 0 1 1 q “ 2

W

H

D

Figure 2.3: Visual representation of the Hamming Distance. W , H and D
represent width, height and disparity range respectively whereD “ W . Being
that the left and right feature represented in this example have only 5 bits
(this is done for representational simplicity) we can expect that Cpx, y, dq P

tk | 0 ď k ď 5, k P Nu. Here the cost Cp0, 2, 2q is being computed.

Hamming Distance

Once the Census of the left and right image are computed, the feature distance

between pixel’s features lying over the same horizontal scanline is computed

in order to build the unrefined cost volume.

The Hamming Distance between two Census’ features is computed by mean

of the XNOR operator and counting the 1 bits.

The description above can be formalized as follows:

Cpx, y, dq “

31
ÿ

i“1
pFLpx, yq ‘ FRpx ´ d, yqqi (2.15)
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Where px, yq is the spacial displacement, d is the disparity value,Cpx, y, dq are

the initial costs, FL and FR are the left and right images’ features generated

by the Census Transform. Figure 2.3 shows a visual representation of how

Hamming Distance is computed.

2.2.2 Cost Aggregation

Since pixel-wise matching costs are unreliable due to noise and other fac-

tors, the cost aggregation phase adds an additional smoothness constraint that

penalize changes in neighbouring disparities. The pixel-wise cost and the

smoothness constraint is expressed by the energy function Epdq (that depends

on the disparity d).

Epdq “
ÿ

p

˜

C pp, dpq `
ÿ

qPNp

P1T r|dp ´ dq| “ 1s `
ÿ

qPNp

P2T r|dp ´ dq| ą 1s

¸

(2.16)

The first term is the sum of all the matching costs. The second term adds

a small penalty for those pixels in the neighbourhood of p (q P Np) whose

disparity values change a little bit with respect to p (a change of 1 in this

case). The third term is similar to the second but adds a penalty for large

disparity changes. Since higher disparity changes have to be penalized more

than smaller ones it has always to be ensured that P2 ě P1.

The problem of stereo matching can be now formulated as finding the dis-

parity D that minimizes the energy function EpDq. Since this kind of 2D

global minimization is, in many cases, an NP-complete problem, it is needed

an approximation of the minimization process that would make the problem

tractable. A solution can be found through the adoption of 1D minimization

since it can be performed in polynomial time using Dynamic Programming. In

order to avoid streaking effects given by the asymmetric combination of con-

straints having opposing directions, an equal aggregation of the costs from all

the direction is needed. The aggregated cost Spp, dq for a pixel p and disparity
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d is the summation of all the 1D minimum cost path that end up in pixel p at

disparity d. While the path will be straight in the spacial dimension it is non-

straight in the disparity dimension depending on the disparity changes. For

the correctness of the aggregation only the aggregated cost information needs

to be retained, while information about the followed path can be discarded.

The cost L
1

r pp, dq along a path traversed in the direction r of the pixel p

at disparity d is defined recursively as:

L
1

r pp, dq “ Cpp, dq ` min

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

L
1

r pp ´ r, dq

L
1

r pp ´ r, d ´ 1q ` P1

L
1

r pp ´ r, d ` 1q ` P1

min
i

L
1

r pp ´ r, iq ` P2

(2.17)

The cost Cpp, dq adds the cost at position p while the rest of the equation adds

to the current cost L
1

r pp, dq the minimum cost of the previous pixel along the

followed path p ´ r, including the appropriate penalties for discontinuities.

Since by following the given definition of the recursive formula the values of

the costs monotonically increase along the path, in order to keep the computa-

tion bounded in a range of values, it is possible to subtract the minimum path

cost of the previous pixel.

L
1

r pp, dq “ Cpp, dq ´ min
k

L
1

r pp ´ r, kq ` min

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

L
1

r pp ´ r, dq

L
1

r pp ´ r, d ´ 1q ` P1

L
1

r pp ´ r, d ` 1q ` P1

min
i

L
1

r pp ´ r, iq ` P2

(2.18)

Adopting this definition will allow to limit the value of L to the upper bound:

L ď Cmax ` P2 without changing the path. The final cost value is determined

by summing the results of the aggregation of all the paths:

Spp, dq “
ÿ

r

Lrpp, dq (2.19)
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Figure 2.4: Visual representation of the Left-Right Consistency Check. When
the matching is consistent (there are neither occlusions nor mismatches) it
would be possible, in principle, to visualize it as a cycle between the left-to-
right and right-to-left disparity.

The paths should be at least 8 or 16 to have a good coverage of the 2D image.

The final costs values are bounded by S ď #paths pCmax ` P2q.

The computation of L
1

r pp, dq takes OpDq at each pixel, where D is the dis-

parity range. Since each pixel is visited #paths times the total complexity is

OpWHDq.

2.2.3 Disparity Computation

From the refined costs, in order to extract the disparities, it is used a Winner

Takes All strategy.

In order to choose the disparity value dppq the index of the minimum cost for

p is taken. It can be mathematically expressed as:

dppq “ arg min
dPD

pCpp, dqq (2.20)

Simply choosing the costs’ minimum index as disparity values would result in

having an integer disparity, which is an undesirable property in certain scenar-

ios where high precision is required (such as 3D reconstruction) since integers

disparities ends up discretising the depth-map (as already mentioned in sec-

tion 2.1).

In order to patch this issue it has been proposed a sub-pixel estimation
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technique that consists in fitting a quadratic curve to the cost curve in cor-

respondence of the minimum cost and its direct neighbours and taking the

minimum of such curve as the selected disparity value.

From the very same DSI used to compute the left-right disparity it is also

possible to extract the right-left disparity.

dRpx, yq “ arg min
d

tCpx, y, 0q, Cpx ` 1, y, 1q, ..., Cpx ` D, y, Dqu

“ arg min
d

tCpx ` d, y, dq | d ď D, x ` d ă W u

(2.21)

Extracting this information might be useful for the refinement of the left-right

disparity (more on this in subsection 2.2.4).

2.2.4 Disparity Refinement

In order to attenuate the issue of the presence of outliers a median filter is ap-

plied on both left and right disparity map.

After that, in order to filter out invalid disparity values, a Left-Right Con-

sistency Check [4] is applied: each disparity value of the left disparity map

dLpx, yq is compared with its corresponding value on the right disparity map

(present on the same row y at column x ´ dLpx, yq), which, in order to be

consistent, should be the same as the left’s (or at least different by at most a

predefined threshold). This process enforces an uniqueness constraint by per-

mitting one to one mappings only.

What stated above can be formalized in the following way:

dLpx, yq “

$

’

&

’

%

dLpx, yq, if |dLpx, yq ´ dRpx ´ dLpx, yq, yq| ă threshold

0, otherwise
(2.22)



Chapter 3

Dataset Generation

In order for Supervised Deep Learning approaches to be able to function in

a proper manner, they need the availability of a certain quantity of labeled

examples. The actual quantity needed varies greatly depending on whether

pre-trained weights for a given model are made available. Being able to work

with pre-trained models allows to easily adapt them to the target domain by

means of simple fine-tuning, which requires fewer examples with respect to

a pre-training. Hence, being able to gather examples associated with precise

ground truth data is a core activity in the construction and deployment of a

functioning Deep Learning-based pipeline.

The context revolving around this work is very peculiar: the distances between

the cameras and the foreground is very small (in the range of 10-20 mm) and,

being the target precision of this application in the order of the µm, makes

difficult finding among the commercially available sensors one that could fit

these requirements.

The usage of sensors in order to gather ground truth data is the core approach

used in the greatest majority of disparity estimation works.

The impossibility of gathering ground truth data through sensors constitute a

major issue for this application and creates the need to find alternative tech-

niques in order to collect them.

A throughout revision of the available literature highlighted mainly two ways
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of securing ground truth data without the usage of sensors:

• Synthetic data generation.

• Proxy-labeling.

In this section, we are going to thoroughly examine the proposed data gather-

ing techniques.

Moreover, a zero-shot approach has been attempted as well by leveraging the

generalization capabilities of the model called RAFT-Stereo [16] (which will

be the model that we are going to use in this work and that will be presented

in section 4.1) without excellent results. Even though the zero-shot approach

highlighted the great generalization capability of the said model by exhibiting

results that show some degree of visual consistency with the results presented

by SGM, it is still far off from being precise, and since predictions on tempo-

rally adjacent images do not present much consistency, the 3D reconstruction

through the SLAM-based pipeline has not been made possible and, conse-

quentially, neither the 3D evaluation of this approach (see chapter 5 for more

details about the 3D evaluation). This result, though, was to be expected, since

not only the domain of the image used to train the model is very different from

the one used to test it (trained on Scene Flow [17] and used to make inferences

over teeth images), but also the test time images, being captured using a pro-

jected pattern, can be said to go out from the natural images manifold.

3.1 Synthetic Data Generation

Following the observation made over the zero-shot performance of RAFT-

Stereo [16] (more on it in Section 4.1) pre-trained over Scene Flow [17], it

might have been reasonable to think that fine-tuning it over a dataset that re-

sembles more the target domain could be beneficial to the task even without

training it directly over the images belonging to the target domain. In order to

follow this objective, it has been devised a pipeline that could generate a pair
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of synthetic stereo images obtained through a rendering engine by digitally

projecting over a mesh of teeth an artificially generated dotted pattern.

The rendering engine used for this work is Blender’s Cycles [3] (path tracing

based renderer).

The pipeline that allowed to generate the synthetic dataset is as follows: cre-

ation of the scene’s elements (stereo rig, structured light projector, teeth’s

mesh, etc.), creation of an animation by moving the virtual stereo rig ran-

domly in the scene and the rendering of the animated scene. The rest of this

section will go into detail on all the aforementioned pipeline’s steps.

It is worth to highlight that one of the greatest merits of adopting such a

pipeline is the fact that the generated disparities are very precise and that they

are not affected by the presence of occlusions since they are obtained from the

bidimensional reprojection of the 3D view.

All of the steps needed to generate the synthetic dataset, from the setup

of the virtual stereo rig to the generation of camera’s random poses have been

automated using Blender’s Python API.

3.1.1 Stereo Rig Setup

In order to acquire the synthetic stereo images, it is necessary to setup the

stereo rig with the left and right cameras and the structured light projector.

The first step in order to properly setup a camera in Blender is to specify the

camera’s intrinsic parameters: focal length and size of the sensor. Normally,

real cameras would present also some form of lens distortion such as radial

and/or tangential distortion but, since the aim is to simulate calibrated and

rectified cameras, there is no need to simulate these properties as well.

Blender also allows to automatically generate another camera in order to sim-

ulate stereo vision without having to manually create a second camera object.

The created camera is a phantom object, in the sense that it is not directly

manageable in the object space but it is managed indirectly by acting on the
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(a) First rig setup (b) Final rig setup

Figure 3.1: 3.1(a) is the first stereo rig setup where the light projector’s posi-
tion coincide with the camera’s. 3.1(b) is the last configuration where the light
projector is placed between the two cameras. The left camera is represented
by the pyramidal object on the right while the right one by the rectangular
light-gray object on the left. The light is represented by the spherical dotted
object laying on the axis.

main camera (which is the left one in our case). This relieves the user both

from handling a more complex rendering procedure and managing the rela-

tive positions of the two cameras in a way that allows their image planes to be

co-planar. Moreover, it is also possible to specify the size of the baseline.

After the aforementioned steps comes the positioning of the structured

light projector on the rig. Two configurations have been tried: in the first,

the position the light is the same as the left camera. This has the advantage

of being a particularly simple configuration since it is easy to constrain the

light to have the same location and rotation as the left camera, but it has been

observed distortions of the light captured by the right camera which is not co-

herent with the left view: this phenomena is easily explainable as a parallax

effect.

In order to solve this issue it has been deemed necessary moving the structured

light projector in a position in-between the left and right camera. Placing the

structured light in this position is not as straightforward as it was in the previ-

ous solution since its location cannot be the same of the left camera anymore.
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Figure 3.2: Structured light projector’s shader nodes.

In order to automatically compute the structured light projector’s position the

following setup has been proposed: a segment composed of three vertices (a

central one and two at the extremities) with the same length as the baseline has

been added to the scene and the camera has been placed on one of its extrem-

ities, in this way the phantom right camera will be automatically placed at the

other side of the segment. After that, it is sufficient to add the structured light

projector in the segment’s middle vertex and, through Blender’s integrated

constraint system, constraint both left camera and structured light projector

to follow location and rotation of the segment’s vertex they have been placed

on (this has been implemented through Blender’s Child Of constraint). It is

now possible to move the newly composed stereo rig by simply moving the

segment.

3.1.2 Structured Light Projector Setup

Shader Nodes

In Blender’s Cycle it is possible to setup a projector by relying on a light object

with spot type of light and by adding shader nodes to alter light properties. It

is in fact possible, through the shader nodes, to apply an image as texture to

the emitted light rays.

As it can be seen in Figure 3.2, the node tree (the set of shader nodes
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Figure 3.3: Synthetically generated pattern.

and the links among them) of the structured light projector is composed by a

total of seven nodes. The input node is the Texture Coordinate node. Among

Texture Coordinate’s outputsNormal is used. Normal, instead of returning the

location of the shaded point, returns its normal: location on the unit sphere

centered on the shaded point. The Texture Coordinate’s output is then divided

by its z component so as to project the 3D vector to the bi-dimensional plane so

that the projected pattern is only related to its xy components but not the z. The

Mapping node adjusts the location of the projection, which is initially offset

by 0.5 mm, and let us modulate the scale of the projected image. The Image

Texture node is the projection pattern. The Emission node adds Lambertian

luminous shader for light output. The last node is the Light Output which is

responsible of projecting the image onto the scene.

Pattern Image Generation

The image of the pattern that has been loaded into the digital projector (the Im-

age Texture node) has been synthetically generated through a Python script.

In order to generate a geometrically accurate synthetic version of the pat-

tern, it is necessary to observe that, on the real structured light’s pattern, the
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(a) Synthetic image

(b) Real image

Figure 3.4: 3.4(a) is the synthetic image rendered with Blender using the dig-
itally generated pattern of Figure 3.3. 3.4(b) is a real example of an image
taken with the projected pattern.

blue dots are not arranged precisely in a grid but present elements of pseudo-

randomicity. It is also worth to notice that the vertical distance between the

dots is higher than the horizontal one. Reproducing this effect is quite straight-

forward as it is only necessary to sample regular grid indices with higher in-

tensity on the horizontal axis and with less frequency in the vertical one. In

order to implement the pseudo-randomicity, it has been added the result of the

sampling on a Binomial distribution to the regularly-sampled points on both

axis (to emulate randomicity in both directions). The Binomial distribution’s

number of Bernoulli trials, has been taken to be inversely proportional to the
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axis-wise grid’s points’ sampling frequence: hence, the random offset is gen-

erally higher in the vertical axis with respect to the horizontal one.

Regarding the photorealism, reproducing the drooling effect has proven to be

a major hurdle. We have decided to approach this issue by applying a Gaus-

sian smoothing to the previously placed points to give them a more natural

effect. In Figure 3.3 it can be observed the end result, while Figure 3.4 is

the comparison between an image rendered with the synthetic pattern and one

taken with the real projected pattern.

3.1.3 Random Poses Generation

The generation of camera poses is not straightforward as it present some con-

straints. The constraits can be summarized as follows:

• Constraints relative to the rig’s location: the camera should not appear

beneath the mesh or outside of the working range (which is between

10mm and 20mm).

• Constraints relative to the rig’s rotation: the cameras have to always

look at the teeth.

The first random poses generation approach relied on Blender’s internal

constraint system to shape the aforementioned requirements.

In order to setup the integrated constraints that shape the rig-mesh distance

requirements, it must be created an Empty object that sticks to the surface of

the mesh (through a Shrinkwrap constraint) and follows the rig as it moves

around in the space (which can be done by copying into the Empty object’s

location the rig’s location’s drivers). Two Limit Distance constraints will then

limit the maximum and minimum distance between the rig and the Empty ob-

ject (and, thus, the mesh). The fact that the rig should not appear beneath the

mesh is done by placing the mesh aligned with the Z axis and then a Limit
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Location constraint is imposed to the rig so that it cannot go below certain

values of Z (in this way the rig’s location is limited only to the upper part of

the mesh). The choice of the initial random location is done by generating a

3D random point with maximum and minimum for each axis dictated by the

maximum and minimum location of the mesh’ vertices offsetted by a value.

Using an offset allow the rig to reach the maximum working distance at every

point of the mesh. The initial location obtained through this procedure will be

then adjusted by the integrated constraint system to obtain the final position.

The constraint relative to the rig’s rotation are handled by creating a curve

that passes through the teeth (as shown in Figure 3.5) and convert the said

curve to a mesh (which are two distinct entities in Blender). After that, simi-

larly to how it was done for the Limit Distance constraints, we need to create

an Empty object and add a Shrinkwrap constraint to it so that it will stick to

the created curve. The newly created Empty object needs, while remaining on

the curve, to follow the movements of the rig as it moves around the scene:

this can be done simply by copying into the Empty object’s location the rig’s

location’s drivers. Lastly, a Track To constraint needs to be added to the rig

having as target the newly created Empty object, in this way the cameras will

always be looking at the teeth.

While it is straightforward to leverage Blender’s integrated constraint system

in order to shape these constraints, it is not an advisable approach since the

interaction of multiple constraints might negatively affect the final effective

position (where final effective position means the position obtained as a result

of applying the constraints to the initial random position). In fact, the results

given from the first approach were not deemed appropriate, reason being that

many frames had to be discarded because errors would occur with the choice

of the camera’s angle, resulting in the camera pointing to empty areas.
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Figure 3.5: In yellow is the line used to orient the rig to face the teeth.

In the light of the results obtained with the first approach, it has been de-

cided to create another random poses generation algorithm that could make

less use of Blender’s internal constraint system. While the considerations pre-

viously done about the rotation have been mostly retained, the generation of

the rig’s location has been changed altogether.

In order to generate a position that is not beneath the mesh, we take a random

mesh’ vertex and extract its location and normal vector. The rig is then placed

in the vertex location and pushed with a certain intensity in the direction of

the normal vector. The intensity of the push is random and its interval is de-

termined according to the working range we wish to work with. At the end,

a check on the euclidean distance with the closest mesh’ vertex is performed

and in case it is outside of the working range, the procedure is repeated (se-

lection of the random vertex, etc.).

The procedure has been observed empirically to give good results and only

few corrections to the generated poses were needed.

It is worth to mention that, instead of starting the rendering as the poses are

being generated, it has been preferred to first generate all of the poses and then
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Figure 3.6: Compositor node tree.

leverageBlender’s animation system to perform the rendering. This choice has

been made mainly because during the execution of a Python script Blender’s

GUI remains unresponsive. Therefore, rendering immediately after the gen-

eration of the pose would result in long periods of non-responsiveness of the

GUI, making it difficult to be aware of the state of progress of the rendering

operations. Moreover, using the generated poses to create an animation enable

the inspection of the generated poses before launching the rendering operation,

allowing to skip (or at least lighten) the post-rendering data inspection (none

of the generated examples have been discarded). Lastly, with animations, the

naming of the rendering’s output file is done automatically, whereas otherwise

it would have had to be handled manually.

3.1.4 Rendering

The output of the rendering procedure are:

• The stereo images (the input of the model).

• The disparity (labels used to supervise the training).

The issue is that Blender does not have an integrated option that allows to

return the disparity as a byproduct of the rendering procedure, but it does re-

turn the depth instead. By having information about the camera’s intrinsic

parameters, we are able to retrieve the disparity from the depth.

In order to retrieve the disparity from the rendering procedure we use the
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Compositing Nodes, which are Blender’s internal structures that allow to fid-

dle with the output of the rendering.

The first step would be the activation of the Z pass which allows to obtain the

depth as output of the rendering. After that, we move on to the configuration

of the Compositor node tree. Since we are now able to get the Z-depth rela-

tive to the camera position, we just need to replicate the formula that converts

depth to disparity:

disparity “
fpx ˆ b

depth
(3.1)

Where the focal length fpx is expressed in pixels, not millimeters. In order to

perform the conversion:

fpx “
fmm ˆ W

sensor_widthmm
(3.2)

In the node tree, the input node Render Layers is what allow us to retrieve

depth information (through its Depth output). Using Render Layers’s output,

to retrieve disparity information, it is only needed to replicate the aforemen-

tioned formulas using theCompositor’s nodes as depicted in Figure 3.6. Since

the disparity is obtained from the depth, it might happen, in case the rig is too

close to the mesh, that the disparity’s formula gives values that are superior to

the image’s width. This particular case is handled by masking all those pixels

whose value is greater than the image’s width (by setting them to 0). This is

done in the node tree by using the Less Than node, which receives the dispar-

ity map as input. Less Than node outputs a binary mask that has set to 1 all

of those pixels whose disparity values verify the condition: dpx, yq ă W , 0

otherwise. The produced mask is then multiplied to the raw disparity to mask

the disparity values higher than the width. This particular case, though, should

not happen if the distances in the scene are well managed.

Saving the output is handled by File Output node. While saving the stereo

images as .png files is sufficient, this does not apply to disparities as well.
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(a) Synthetic image

(b) Disparity

Figure 3.7: In 3.7(b) is represented an example of synthetic disparity used
for supervision. In order to obtain this image, the disparity values have been
normalized with the minimum and maximum disparity values. 3.7(a) is the
color image related to 3.7(b).

Since disparities are composed by floating point values (because we are deal-

ing with sub-pixel disparity values) whose range goes potentially up to the

width of the image (depending on the size of the input image it might be

way more than what a simple 8 bit image could handle), it is necessary to

find a file format that preserves these characteristics. Among the ones of-

fered by Blender the only one capable of working with floating point values

is OpenEXR (Open EXtended dynamic Range), but it is not a conventional

format to work with. The file format most affirmed in literature to deal with
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floating point images is PFM (Portable Float Map). As such, in order to ob-

tain disparities in .pfm format, we save the disparities in Blender in .exr and

then, using Python, we convert them in .pfm. This can be easily done through

OpenCV:

1 import os

2 os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"

3 import cv2

4

5 def exr2pfm(path_to_exr_file , out_dir_path):

6 disparity = cv2.imread(path_to_exr_file , cv2.

IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)[:,:,0]

7 cv2.imwrite(os.path.join(out_dir_path , path_to_file.

split(".")[0]+".pfm"), disparity)

The .exr file outputted by Blender is automatically set to be a color image.

Since the disparity computed in Blender with the aforementioned procedure

is represented a single channel image, the three channels of the .exr file are all

equivalent.

In Figure 3.7 can be observed an example taken from the synthetic dataset

collected with the aforementioned procedure.

3.2 Proxy-Labeling

The supervision given by synthetically generated images, even though precise,

still suffers from the domain gap issue. The results given by the synthetic

approach shows how much photorealism is necessary in this domain.

Among the reviewed literature, it has been found in the biomedical do-

main, which greatly suffers from the lack of ground truth data for the task

of disparity/depth estimation, that a technique commonly known as proxy-

labeling can be deployed tomake up for the lack of sensors apt to gather ground

truth data in difficult contexts such as laparoscopy, etc.
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Proxy-labeling is a technique used to gather ground truth disparity data by re-

lying on a traditional disparity computation method. The disparity gathered

from the traditional method (that for this work will be the SGM baseline) will

be filtered by some confidence measures [21], in this way we will be able to

create a sparse supervision in which only those disparity values that are con-

sidered more reliable by the chosen confidence measures are kept, while all

of the others are discarded.

There are many confidence measures that can be applied to a disparity, and

they can be categorized in different types depending on which segment of the

disparity estimation pipeline they use in order to decide whether a disparity

value is reliable or not.

The macro-categories in which the confidence measures can be subdivided

are:

• Minimum cost and local properties:

Confidences that exploit only local information of the cost curve.

They often rely on the global minimum and the second local minimum

but, since the second local minimum is not always available (as in the

case of the ideal cost curve), in its place the second global minimum is

used (in this case the confidence measure used takes the prefix naive).

The second global minimum is always defined.

• The entire cost curve:

Confidences that relies on the entire cost curve. Most of them make

use of the minima introduced in minimum cost and local properties.

• Left-right consistency:

While the target of the disparity estimation’s task is more often than

not the computation of the left-to-right disparity (mainly because of an

affirmed convention), computing the right-to-left disparity from the DSI

is nevertheless a straightforward operation. Having the right-to-left dis-

parity as well, allows to check for correspondences between the two
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views by relying on some cues.

• Disparity map analysis:

Filtering is performed by relying exclusively on disparity cues and/or

features. No information extracted from the DSI is used.

• Reference image analysis:

Class of confidence measure computed by relying on features com-

puted over the input image and/or other priors (such as the position of

the pixel with respect to the border, etc.).

• Self-matching:

Self-matching analyzes the distinctiveness of a pixel with respect to

its neighbours lying on the horizontal scanline. Self-matching methods

are implemented by running a stereo matching algorithm over two in-

stances of the left image and adopting a disparity range ofD “ r´Dmax, Dmaxs

centered over a given point p. This class’ measures make use of the pro-

duced DSI to output a confidence.

• Semi-Global Matching measures:

This class of confidences can be used only with SGM and compute

a score based on cues available in its pipeline.

Among the categories mentioned above only minimum cost and local proper-

ties, the entire cost curve and left-right consistency have been used as deemed

more fit for this particular context.

Minimum cost and local properties and the entire cost curve bases the selec-

tion of reliable disparity values on the analysis of the cost volume (disparity

space image). In particular, for each spacial location some form of evaluation

of the curve of the costs is performed. In Figure 3.8 can be observed an exam-

ple of ideal and ambiguous cost curve. Ideally, the cost curve should present a

single distinct global minimum, while all of the other costs have high values.

In practice, a real cost curve resemble more the ambiguous one.
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Figure 3.8: In the plot are depicted an ideal cost curve and an example of a
realistic cost curve. cd1 , cd2 and cd2m are respectively the global minimum,
second global minimum and the second local minimum.

For notational convenience we define cd1ppq as the minimum of a cost curve,

cd2ppq as its second minimum and cd2mppq as its second local minimum.

Following, it will be given a throughout review of the confidencemeasures

that have been selected with their relative mathematical formula:

Matching Score Measure (MSM) [5]: the lower the cost is, the more

probable the matching is precise.

MSMppq “ ´cd1ppq (3.3)

For instance, it is easy to see in the two plot below that even though they both

have minimum in 46 the quality of the match of the first plot is much higher

than the second’s.



3.2 Proxy-Labeling 33

40 44 48 52
0

5 ¨ 10´2
0.1

0.15
0.2

0.25
0.3

0.35

disparity

co
st

distinctive

40 44 48 52
0

5 ¨ 10´2
0.1

0.15
0.2

0.25
0.3

0.35

disparity

ambiguous

Maximum Margin (MM): the greater the difference between the global

minimum and the second local minimum is, the less ambiguous the cost curve

should be.

MMppq “ cd2mppq ´ cd1ppq (3.4)

Having a local minimumwith a value very similar to the global minimum rep-

resents uncertainty since a small difference in the matching results might be

the outcome of undesired factors (such as noise). A great difference between

the global minimum and the second local minimum is a measure of distinc-

tiveness (as shown in the plots below).

36 40 44 48
0

5 ¨ 10´2
0.1

0.15
0.2

0.25
0.3

0.35

disparity

co
st

distinctive

36 40 44 48
0

5 ¨ 10´2
0.1

0.15
0.2

0.25
0.3

0.35

disparity

ambiguous

Curvature (CUR) [5]: a pronounced steepness of the curvature surround-

ing the global minimum implies a great distinctiveness of the match.

CURppq “ ´2cd1ppq ` cd1´1ppq ` cd1`1ppq (3.5)
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The plots below clearly shows the contribution of Curvature: having a relative

poorer matching results of the direct scanline neighbours of a certain pixel al-

lows the matching to be more distinctive.
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Winner Margin (WMN) [24]: similarly to maximum margin the global

minimum and the second local minimum are compared, but this time the result

is normalized by the summation of the costs of the entire cost curve.

WMNppq “
cd2mppq ´ cd1ppq

ř

iPD cippq
(3.6)

Average Peak Ratio (APKR) [14]: is the sum of the ratios of the costs

computed in the neighbourhood of a given pixel p and positioned on the dis-

parity dimension at the index of its second local minimum cost and global

minimum cost respectively.

APKRppq “
ÿ

qPNppq

cd2mppqpqq

cd1ppqpqq
(3.7)

This confidencemeasure calls for coherence about the positioning of the global

minimum cost (which aligns with the smoothness assumption) and incoher-

ence about the positioning of the second local minimum cost (in this way it

is more probable that its presence is given by spurious and undesired factors

such as noise).
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Left-Right Consistency (LRC) [4]: for more details, please refer to sub-

section 2.2.4

Moreover, other than the aforementioned confidence measures, the dis-

parities have been masked with the thresholded input image: since the target

domain’s input images present uninformative black areas wherever the surface

is not hit by the structured light, it is useful to filter out the spurious predic-

tions left in those areas after the confidence filtering. Before the thresholding,

the image has to be converted to grayscale. In order to perform the said con-

version, it is sufficient to take only the blue channel since, among the three,

it is the only one that holds relevant information (as it can be seen in Figure

3.4(b)).

To summarize, the code for this last masking step can be simply structured as

follows:

1 import cv2

2

3 def compute_mask(image_path):

4 image_bgr = cv2.imread(image_path)

5 image_gray = image_bgr[:,:,0]

6 _, image_threholded = cv2.threshold(image_gray

,30,255,cv2.THRESH_BINARY)

7 return image_thresholded

It is worth noting that the parameters used in the code snippet’s thresholding

reflect those effectively used during the filtering stage.

3.2.1 Implementation

Given a set of candidate confidence measures, it is necessary to find a way to

aggregate them taking into account the fact that some of them are binary (such

as LRC), while others return real values whose range varies considerably from

measure to measure.
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Relevant literature in this field [6] propose an effective way to automat-

ically generate training labels from stereo pairs such that their distribution

resemble as much as possible the ground truth data. The generation of such

labels happen through a selection process carried out by using hand-crafted

confidence measures, which allow to discriminate between correct and wrong

disparity assignments. Relying on learned confidence measures is not possi-

ble as they would need ground truth labels in order to be trained, which is what

we are trying to obtain, hence, a careful selection of the confidence measures

is needed.

In literature, a well established method to determine the goodness of a confi-

dence measure is the analysis of the ROC curve. The behaviour of the curve

is able to describe certain characteristics of the confidence measures. For in-

stance, a flat part of the curve imply that a subset of the disparity’s pixels share

the same confidence value. Ideally, all correct matches should be selected be-

fore all errors, resulting in the smallest possible AUC for a given disparity map

[10]. An extensive analysis of different confidence measures [11] has demon-

strated that different metrics, depending on the processed cues and adopted

strategy, show differences on the evaluation of the assigned disparity values

which are, at times, contradictory among one another. [6] proposes to use a

set of confidence measures deemed as reliable by the available literature to

automatically generate supervision data resembling as much as possible the

actual ground truth labels.

This method assigns to a subset of pixels belonging to the disparity either a

wrong label L0 or a correct label L1. The produced confidence estimate either

comes in the form of binary values (like LRC) or are integer/real valued (like

MSM). For each confidence it is possible to define two sets: C0 and C1. C0

contains the wrong predictions while C1 the correct ones. While assigning

values of binary confidences to either one of the two sets is a straightforward

operation, it is not the same for integer/real valued confidence measures since
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they often work with widely varying ranges of values. The solution proposed

to address this issue is to sort the pixels by ascending order of confidence’s

values and select a fraction of the first ones as belonging to C0 and a fraction

of the last ones as belonging to C1.

The newly created C0 and C1 can be annotated as:

C0 “ tp P d | 0 ď Cppq ď δ0u

C1 “ tp P d | 1 ´ δ1 ď Cppq ď 1u

(3.8)

δ0 and δ1 represents the fraction of lowest scoring pixels and highest scoring

pixels to add to C0 and C1 respectively.

Repeating this procedure for all of the selected confidencemeasures grouped

in the pool P “ tC 1, C2, ...u, would produce a set containing all of the confi-

dence measures’ wrong matches P0 “ tC 1
0, C2

0 , ...u, and one containing all of

their correct matches P1 “ tC 1
1, C2

1 , ...u.

To determine the actual wrongness or correctness of a disparity pixel, it is nec-

essary to aggregate both P0 and P1. The way it has been proposed to be done

is to intersect all of the sets C0 P P0 (which outputs the mistakenly estimated

disparity values) and intersect all of the sets C1 P P1 (in order to determine

the correctly estimated disparity values):

G0 “
č

Ck
0 PP0

Ck
0 , G1 “

č

Ck
1 PP1

Ck
1 (3.9)

In this way only those pixels classified as wrong/correct by all the confidence

measures will be chosen.

Amajor contribution that this thesis brought to [6] is the re-implementation

of its repository in CUDA so that it could be executed on GPU devices. Since

the aim of using proxy-labeling is to select confident disparity values, the part

regarding the selection of wrong disparity pixels has not been re-implemented.

The greatest bottleneck of the application is the sorting of the pixels since an

https://github.com/fabiotosi92/Unsupervised-Confidence-Measures
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(a) Input image

(b) Proxy-labels

Figure 3.9: In 3.9(b) is represented an example of proxy-labels used for super-
vision. In order to obtain this image, the disparity values have been normalized
with the minimum and maximum disparity values. 3.9(a) is the input image
that generated the labels in 3.9(b).

image of 500 ˆ 696 would need 348 000 elements to be sorted. The GPU re-

implementation of this part has been handled by using Thrust library’s sorting

implementation.

The issue about the usage of the sorting method with the SGM implemen-

tation that has been used for this thesis is that its produced cost volume is

composed of integer values whose upper bound is 32 ˆ 8 “ 256 where 32 is

given by the width of the features generated by the Center-Symmetric Cen-

sus Transform and 8 is from the aggregation of the paths. Since the values’

range is relatively small, it happens that many pixels have the same confidence
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values, with the consequence that, as a result of the sorting, only some of the

pixels having a certain value are discarded, while others having the same value

as those discarded are retained, which is not ideal since, logically speaking,

when considering confidence values beneath a threshold as not reliable all of

those values should be discarded. Following these considerations, it has been

deemed to be a more appropriate solution converting the real/integer valued

confidence measures to binary confidences by introducing a threshold, whose

value has been determined by manual tuning with the difficulty that all of the

confidence measures present different ranges of values.

It is also worth to mention that the collection of the proxy-labels’ dataset

has been performed at half the resolution. This has been done because the

maximum disparity range that the used SGM implementation is able to han-

dle is 256 while, originally, our disparity range is of 500. Halving the image

size also means halving the disparity range, this allow us to bring the effective

disparity range to 250. Since the adopted SGM implementation works only

with disparity ranges at 64, 128 and 256, it has been selected 256 as the final

disparity range.

In Figure 3.9 can be observed an example taken from the proxy-labeling

dataset collected with the aforementioned procedure.



Chapter 4

Deep Learning-Based Depth

Estimation

Stereo depth estimation is a fundamental problem in computer vision where,

given two horizontally aligned cameras (both physically and digitally through

rectification), it is computed a disparity, which is the difference in the displace-

ment of pixels between a reference camera view (usually the left one) and the

view of the other aligned camera. For each pixel of the left image ILpx, yq, its

corresponding pixel in the right image is found at IRpx ´ dLpx, yq, yq.

Large pixel displacement means that the object is close, while small displace-

ment imply that the observed object is far from the view. The scene’s depth

can be directly derived as the inverse of the disparity by means of Z “ fb
d
,

where f is the camera’s focal length and b (baseline) is the distance between

the two cameras’ optical centers.

As described in section 2.1, stereo’s standard pipeline can be divided in

four main parts: matching cost computation, cost aggregation, disparity com-

putation/optimization, disparity refinement.

Performing precise disparity estimation remains, though, a tough problem due

to occlusions, large textureless areas, thin structures, repetitive textures, dis-

tortions given by the parallax effect, non-Lambertian and transparent surfaces.
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In order to attempt to improve stereo matching’s accuracy and solve the afore-

mentioned issues, it has been proposed to integrate Deep Learning techniques

in the stereo pipeline.

The first attempt to integrate Deep Learning in the stereo pipeline was

done by replacing the matching cost computation in favor of a learning based

module [29] composed of a siamese network (two architecturally identical

networks that share the same weights) which extract features from the left

and right frames, concatenates the produced feature vectors based on the tar-

get disparity range and then, through a classification head, solves a binary

classification problem with the aim of estimating the correspondence of the

concatenated pixel’s features. The scores of the patches being a no-match is

then used as the matching cost for the pair.

Successive contributions shifted towards end-to-end learning based ap-

proaches. The first of those approaches wasDispNetC [18]. The extraction of

the left and right images’ features is handled by a siamese feature extractor.

Thereafter, the features of the two images are merged with a correlation layer

in order to form the cost volume. The correlation layer is a non-learned layer

which perform a non-normalized cross-correlation between the feature’s vec-

tors. The output of the cross-correlation layer goes trough the decoder, which

upscale it up to the input size and reduce its width to a single channel. The

supervision is performed through a L1 loss applied at each upscaling stage

of the decoder (to make it possible the ground truth disparity is downscaled

accordingly).

GCNet [12], instead, attempted to replicate in a more faithful manner the

pipeline proposed by SGM by explicitly building a cost volume through the

concatenation of the features given by the siamese network, which has as result

the creation of a 4D tensor of dimension 1
2D ˆ 1

2H ˆ 1
2W ˆ 2F . The 4D cost

volume is then used as input to a multi-scale 3D (vector-valued) convolution

module whose aim is to emulate the aggregation step performed in standard

stereo pipelines. From the final cost volume, in order to deduce sub-pixel
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disparity values, a differentiable soft argmin, which computes the expected

values over the cost curve distribution, is introduced:

pdpx, yq “

D´1
ÿ

d“0
d ¨ softmaxp´Cpx, y, dqq (4.1)

4.1 RAFT-Stereo

4.1.1 Introduction

A problem closely related to disparity estimation is optical flow. The only

difference between the two is that the corresponding pixel to seek does not

necessarily have the same displacement relative to the y axis, thus, the search

for the corresponding point must be carried out over a window (and not over

the scanline as done in stereo matching).

Optical flow models have been developed by following a different line of re-

search compared to disparity estimation models where, since GCNet [12], 3D

convolution established the baseline for the task. Optical flow generally rely

on iterative refinement in order to achieve its goals. An optical flow estimation

model named RAFT [27] proposes to build a 4D cost volume by computing

the correlation between all of the pixels’ extracted features and use it as input

to a GRU-based update module [1] to guide the iterative updates of the flow

field.

From this thread of research a model named RAFT-Stereo [16] has been

created. Differently from RAFT, the processed volume is 3D since only sim-

ilarity between pixels belonging to the same scanline are computed. Addi-

tionally, it is introduced a multilevel GRU operator that keeps (and pass to

the next iterative update) hidden states at multiple resolutions. The disparity

update is, though, always done at full resolution. This integration is thought

to help improving the global consistency of the disparity field by propagating

information across the image.
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Figure 4.1: Visual representation of RAFT-Stereo.

With respect to the main thread of research in the field of disparity estima-

tion, which made mainly use of 3D convolutions, RAFT-Stereo uses only 2D

convolutions and a lightweight cost volume built by mean of a single matrix

multiplication. Furthermore, this setup gives the possibility to trade accuracy

for efficiency by changing the number of iterative GRU updates.

4.1.2 Approach

Given a pair of rectified images (IL,IR), RAFT-Stereo aims to estimate the

disparity d, which defines the horizontal displacement of the image IL’s pixels

to the image IR.

RAFT-Stereo is composed by a feature extractor, whose role is to extract the

features from the left and right images. The computed features are then used

to build a correlation pyramid of correlation volumes, which will be used by

the GRU-based module in order to update the disparity field.

Feature Extraction

In order to produce the images’ features two separate encoders are used: a fea-

ture encoder and a context encoder. The feature encoder is applied to both IL

and IR and produces, for each image, a dense feature map which will be used

to build the correlation volume. The feature encoder makes use of instance
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normalization.

The context encoder is identical to the feature encoder, except that the context

encoder uses batch normalization instead of instance normalization and that it

is only applied to IL. The output of the feature encoder is used to initialize the

hidden state of the GRU-module and it is fed to it at each of its iterations.

Correlation Pyramid

In order to build the correlation volume, the visual similarity is computed as

the dot product between feature vectors. Differently from RAFT, which builds

the 4D correlation volume by correlating pixel’s features for all pixels’ pairs,

the construction of the correlation volume is performed only by pairing the

features of pixels laying on the same scanline.

Given f , g P RHˆW ˆF , which are respectively the feature map of the left and

right image, the 3D correlation volume can be computed as:

Cijk “
ÿ

h

fijh ¨ gikh, C P RHˆW ˆW (4.2)

As done for the 4D correlation volume in RAFT, the 3D volume can be com-

puted by means of a simple matrix multiplication.

The correlation pyramid is formed by stacking 4 correlation volumes

built by repeated average pooling of the last dimension: the kth correlation

volume is constructed from the correlation volume at level k by applying a

1D average pooling that slides over the disparity dimension, with kernel size

2 and stride 2, producing a correlation volume of sizeHˆW ˆW {2k. Through

pooling it is possible to increase the receptive field without having to diminish

the spacial dimension, which allows to retrieve fine structures as well.

Since the disparity estimates done at each step of the GRU updates are at
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Figure 4.2: Visual representation of the lookup operator.

sub-pixel precision, an operator capable of performing the lookup of the cor-

relation pyramid at non-integer indices is required. In order to do so RAFT-

Stereo proposes to build a 1D grid with integer offsets around the current dis-

parity estimate. The grid is used to index from each level in the correlation

pyramid. In order to address the fact that grid values are non-integers, linear

interpolation is used when indexing each volume. The retrieved values are

then concatenated into a single feature map.

Multi-Level Update Operator

During the execution of RAFT-Stereo, the iterations performed by the GRU

module produce N disparity fields td1, ..., dN u with the starting point being

d0 “ 0.

For each iteration, the disparity produced at the previous iterative step is used

to index the correlation pyramid (through the lookup operator) producing a

set of correlation features. Both the disparity produced at the previous step

and the correlation features are passed through two (different) convolutional

layers and then concatenated together with the context features and fed to the

GRU module which will produce the new hidden state. The hidden state is

then used to predict the disparity update.

Updating only at high resolution has the issue that the size of the receptive
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Figure 4.3: Visual representation of the GRU-based module.

field increase very slowly hence, for large untextured areas (which lack lo-

cal information), many GRU iterations would be needed in order to aggregate

enough context to produce a reliable disparity estimate. To address this issue,

it has been proposed a multi-resolution update operator which operates on

feature maps strided of 1{8, 1{16, 1{32 with respect to the input resolution.

The output of the computation performed over all of the strided feature maps

is propagated to the next GRU’s iteration through the outputted hidden state.

Correlation lookups and disparity updates are handled by the GRU’s module

only at the highest resolution. Experiments have been performed also at 1{4,

1{8, 1{16 strides.

In order to upsample the coarse disparity map at full resolution, it is used a

convex upsampling method: the disparity values at full resolution are taken to

be the convex combination of the 3 ˆ 3 grid of their coarse resolution neigh-

bours. The convex combination weights are predicted by the highest resolu-

tion GRU.
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Method KITTI-15 Middlebury ETH3Dfull half quarter

HD3 26.5 50.3 37.9 20.3 54.2
gwcnet 22.7 47.1 34.2 18.1 30.1
PSMNet 16.3 39.5 25.1 14.2 23.8
GANet 11.7 32.2 20.3 11.2 14.1
DSMNet 6.5 21.8 13.8 8.1 6.2

RAFT-Stereo 5.74 18.33 12.59 9.36 3.28

Table 4.1: (from [16]) synthetic to real generalization experiments. All meth-
ods were trained on SceneFlow[23] and tested on the KITTI-2015, Middle-
bury, and ETH3D validation datasets. Errors are the percent of pixels with
end-point-error greater than the specified threshold. For each dataset the stan-
dard evaluation thresholds are used: 3px for KITTI, 2px for Middlebury, 1px
for ETH3D.

Supervision

RAFT-Stereo is supervised using a l1 distance between the ground truth dis-

parity dGT and all the disparity fields produced at each iterative step with

exponentially increasing weights.

L “

N
ÿ

i“1
γN´i∥dGT ´ di∥1, where γ “ 0.9. (4.3)

4.1.3 Zero-Shot Generalization

In the original paper, the ability of RAFT-Stereo to generalize over unseen

real data being trained only on synthetic data, i.e. zero-shot generalization,

is also evaluated . This is a critical ability for a model since, currently, there

are no large real-world datasets in existence that can be used for training. In

this instance, RAFT-Stereo has been trained on Scene Flow [17] and evalu-

ated over KITTI-15 [19], Middlebury [22] and ETH3D [25]. The results and

comparisons with other models trained in the same scenario are reported in

Table 4.1.
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Across all three validation datasets, RAFT-Stereo exhibits state-of-the-art per-

formance in the zero-shot synthetic-to-real setting. RAFT-Stereo is trained for

200k iterations using data augmentation.



Chapter 5

Evaluation

The evaluation of the data gathering techniques used during the scope of this

thesis begins with the selection and training of a model fit for the kind of con-

text in which we are operating.

The evaluation of the trained model will be carried out by performing two dif-

ferent kind of comparisons. The first one will be done at disparity level by

comparing the results produced by the model and the disparity ground truth.

The second one will be a 3D comparison between the mesh generated through

a SLAM pipeline using as input a sequence of disparities and a 3D ground

truth gathered using an high precision scanner. Since the training with the

synthetic dataset did not bring good enough results to enable a 3D reconstruc-

tion through the SLAM pipeline, its 3D metric will not be reported.

5.1 Model Selection

The model chosen for this task is RAFT-Stereo [16]. The reason behind this

choice is that, other than being one of the top performing models in the dis-

parity estimation task for various benchmarks, it is also able to handle a very

large disparity range, which is a necessary property in our settings since the

adopted disparity range is 500 (with a minimum of 200 and a maximum of

700). Many of the well established models are not able to handle such an high
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range’s value. Moreover, its generalization capabilities encourage us to see

whether it is able to handle the domain shift between the synthetic domain

used to train the model and the target domain we wish to test the model on.

However, it should be noted that it is difficult to expect good generalization

capabilities in a zero-shot setting on the target domain since it is composed

of non-natural images (this is given by the fact that the lighting is not natural

since it comes entirely from the structured light projector and the scene is not

retro-illuminated by natural light).

5.1.1 Training

Proxy-Labels Dataset

The training has been performed on a NVIDIA RTX 3800 Laptop (16GB

VRAM) using RAFT-Stereo pre-trained over Scene Flow by training all the

model’s layers on the proxy dataset’s training set (none of the model’s layers

have been frozen) for 80000 steps with a batch size of 4.

The optimizer used is AdamW, and it has been chosen to schedule the

learning rate through a 1cycle learning rate strategy, according to which the

learning rate increases linearly for the first 800 steps (1% of the steps) from

an initial learning rate of 0.0002{25 “ 0.000008 to a learning rate of 0.0002

and then decreases linearly in the successive steps.

An aggressive vertical crop has been performed (from an initial height of

500 px to 200 px) while the horizontal dimension has been kept as it is (696

px). This choice is mainly motivated by the fact that there was a need to reduce

the load on the GPU’s VRAM given by the activations. The asymmetry of the

crop is given by the fact that an horizontal crop might have determined the

removal of valid matching points since they lay on the same row. The vertical

crop does not, instead, suffer from this issue and it might actually bring a

regularization effect by limiting the receptive field (and thus the context) that

the network can use to predict the match.
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The only data augmentation used (other than the crop) is a color saturation-

kind of augmentation (which is also the configuration used originally to train

RAFT-Stereo).

Synthetic Dataset

The training performed on the synthetic dataset retains most of the consid-

erations done for the proxy-labels’ one, with the difference that it has been

trained for 50000 steps and that the cropping adopted reduce the input images

to a size of 200 px in height and 1000 px in width.

5.1.2 Inference

Proxy-Labels Dataset

In the inference phase the input images needs to be downsampled by a factor

of 2, and the produced disparities are to be upsampled by a factor of 2 to bring

them back to the original size. This is done because the model has been trained

at with half resolution images. Before upsampling the disparity, it is neces-

sary to multiply its values by 2. The upsampling is done through a bicubic

interpolation. The upsampled disparities are filtered by a mask computed by

thresholding the left input image. This is done because part of the input images

contain black areas (see Figure 3.4(b) for an example) which are uninforma-

tive and, consequently, produce unreliable disparity estimates. The code used

to perform this operation is the same as the one reported in section 3.2.

Synthetic Dataset

Retains most of the considerations done for proxy-labeling with the difference

that, in this case, there is no need for upsampling since the model has been

trained on full resolution images.
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Checkpoint EPE 1px 3px 5px

5000 0.3706 0.9581 0.9983 0.9991
10000 0.3740 0.9555 0.9985 0.9992
15000 0.3921 0.9468 0.9982 0.9991
20000 0.3979 0.9422 0.9983 0.9992
25000 0.4478 0.9224 0.9969 0.9985

Table 5.1: RAFT-Stereo evaluation
on proxy-labels’ validation set.

Checkpoint EPE 1px 3px 5px

10000 9.3291 0.7223 0.7625 0.779
20000 1.2998 0.8008 0.899 0.9383
30000 1.4987 0.7663 0.8597 0.9159
40000 1.662 0.7844 0.8906 0.9324
50000 1.0941 0.7754 0.8936 0.9542

Table 5.2: RAFT-Stereo evaluation
on synthetic dataset’s validation set.

5.2 Disparity Metrics

The disparity metrics adopted are the ones classically used for this task:

• Average end-point error (EPE): this measure was originally introduced

for the task of optical flow [20] as the mean of absolute error among all

pixels:
EPE “

1
WH

∥d ´ dGT ∥1

“
1

WH

W
ÿ

x“0

H
ÿ

y“0
|dpx, yq ´ dGT px, yq|

(5.1)

RAFT-Stereo reinterpret EPE in its euclidean form and implements it in

the following way:

EPE “
1

WH
∥d ´ dGT ∥2

“
1

WH

g

f

f

e

W
ÿ

x“0

H
ÿ

y“0
pdpx, yq ´ dGT px, yqq

2
(5.2)

• 1px: percentage of pixels that have EPE ă 1.

• 3px: percentage of pixels that have EPE ă 3.

• 5px: percentage of pixels that have EPE ă 5.

The results of the evaluation metrics on the proxy-labels’ validation set are

reported in Table 5.1. The best model selected is the checkpoint 5000 as it

reports the lowest EPE and highest 1px.
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The results obtained on the synthetic dataset’s validation set are reported in

Table 5.2.

Proxy-Labeling Training Results

The metrics chosen to evaluate the training are EPE, 1px, 3px, 5px. Below

can be found the plots representing their behaviour during training, together

with the loss’ (in Figure 5.1, 5.2, 5.3, 5.4 and 5.5).
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Figure 5.1: RAFT-Stereo training loss. The original plot curve has been
smoothed with a 1D Gaussian kernel with σ “ 3 and downsampled from
10000 to 100 points.
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Figure 5.2: RAFT-Stereo training EPE. The original plot curve has been
smoothed with a 1D Gaussian kernel with σ “ 3 and downsampled from
275 to 55 points.
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Figure 5.3: RAFT-Stereo training 1px. The original plot curve has been
smoothed with a 1D Gaussian kernel with σ “ 3 and downsampled from
275 to 55 points.
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Figure 5.4: RAFT-Stereo training 3px. The original plot curve has been
smoothed with a 1D Gaussian kernel with σ “ 3 and downsampled from
275 to 55 points.
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Figure 5.5: RAFT-Stereo training 5px. The original plot curve has been
smoothed with a 1D Gaussian kernel with σ “ 3 and downsampled from
275 to 55 points.
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5.3 3D Metrics

As also stated at the beginning of this chapter, the 3D evaluation is the results

of the comparison between the mesh produced by a SLAM pipeline, in which

RAFT-Stereo is the depth-sensing component, and a ground truth gathered

with an high precision scanner.

The scanner adopted to gather the ground truth is a benchtop scanner that

relies on a digital light stripe projection scanning technique and is able to scan

targets whose materials are not strongly absorbent, reflecting or transparent,

with a precision that ranges from 4.9 µm to 0.9 µm.

The software used in order to compute the 3D metrics is called Cloud-

Compare [2]. Through this software all the preliminary operations needed to

be able to compare the meshes are performed.

The first step would be to scale the entities that needs to be compared, but it

can be skipped since the ground truth mesh and the produced one have both

already the same scale. The successive step is to roughly register the meshes:

this can be done with the interactive transformation tool or with the tool that

allows to align two meshes by picking four (roughly) equivalent points on

both of them. The third step is to finely register the roughly aligned entities

through iterative closest point (ICP). While these steps would be normally

enough to compute the final metric, in practice an additional segmentation is

carried out in order to select the specific area of the produced mesh that we

wish to compute the metrics on. The last step is to once again finely register

the two entities.

The comparisons are normally performed over a single tooth or just a part of it.

One of the reasons behind this choice is that, since the captured area is small,

the contribution to the total error introduced by the pose estimation algorithm

is minimized.

Once the preliminary operations are completed, it is possible to compute

the metrics by comparing the two meshes. In CloudCompare, the distance
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Index RAFT-Stereo SGM
Mean distance Std deviation Mean distance Std deviation

1 24.9799 22.8143 26.7032 23.8567
2 15.5599 15.0312 16.573 15.4524
3 17.188 13.0985 18.7317 12.628

Table 5.3: Results of the 3D metrics. The reported values are in micrometers
(µm). The smaller the mean distance, the better the result.

between a point cloud and a mesh is computed through the Cloud-to-Mesh

Distance tool, which computes the euclidean distance between a point of the

compared cloud with the nearest triangle of the reference mesh. Even though

CloudCompare does not offer a mesh-to-mesh comparison tool, is still pos-

sible to perform such comparisons though the Cloud-to-Mesh Distance tool,

which compute the euclidean distance between the compared mesh’ vertices

and the closest reference mesh’ triangles. The final result returned is the aver-

age of the distances computed for each closest vertex-triangle pair (the stan-

dard deviation is computed as well).

Through the aforementioned procedure, a total of threemeasurements have

been done over meshes produced from different image sequences. The results

of the measurements can be seen in Table 5.3, which reports the mean distance

between the compared mesh’ vertices and the ground truth mesh’ closest tri-

angles and the standard deviation. From the table it can be observed how the

results given by RAFT-Stereo bring a general improvement with respect to the

SGMbaseline over the considered 3Dmetrics. The RAFT-Stereo’s checkpoint

used to compute the 3D metric is the 5000, as it was reported to have the best

results on the disparity metrics.

An issue with using this kind of measurement to evaluate the quality of

disparities is that the part of the SLAM pipeline that comes after the disparity

estimation has a significant influence on the result. The update of the scene
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(a) Ground truth mesh (b) Predicted mesh with error colormap

Figure 5.6: The two figures refers to the evaluation indicated with index 1 in
the Table 5.3. 5.6(a) refers to the 3D ground truth while 5.6(b) is the generated
mesh (segmented as described in this Section). The colors of the generated
mesh indicate the magnitude of the error (blue for small errors and red for
high errors).

plays an important role to produce a good quality mesh: during the recording

of a scene it might happen to view a certain part more than once, thus more

disparities capturing its geometry will be produced. Therefore, results on the

3D metric are heavily influenced also by the ability of the SLAM algorithm

to discern which of the different disparity maps, capturing same parts of the

scene, are to be used in the final 3D reconstruction.

In Figure 5.6 are presented the results related to the evaluation indicated

in the Table 5.3 with index 1. It is possible to see from the error colormap of

the generated mesh how the majority of the errors are gathered around small

structures on top of the tooth and at the border between the tooth and the gums.

There are multiple reasons for this behaviour: one is that thin structures are

inherently very hard areas to correctly estimate disparity for. Another rea-

son concern the structure of the imaging system: being that the baseline is

quite large (at least in proportion to the working range), a lot of occlusions are
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present which makes difficult to see some areas. Lastly, since the coverage

given by the structured light’s blue dots is sparse, only some parts of the thin

structures are illuminated rendering impossible to confidently estimate their

shape in one go. This also means that the update of the scene (mentioned in the

precedent paragraph) needs to be very well calibrated in order to integrate pre-

dictions from different frames to enable a precise 3D reconstruction of a given

thin structure by assuring a complete light coverage of its whole geometry.



Chapter 6

Conclusions

6.1 Final Remarks

In this thesis, it has been explored how deep learning based depth estimation

can be integrated in a particular instance of the biomedical domain, which

is characterized by scarcity of visual features and limitations about the gath-

ering of ground truth depth data through sensors, which is the most adopted

approach to deploy Supervised Deep Learning algorithms for this kind of task.

Two techniques have been attempted in order to make up for the absence

of ground truth data:

• Synthetic data generation: a synthetic dataset, whose domain slightly

differ from the target domain, has been created in order to supervise

the training of a Deep Learning model in the attempt of exploiting its

generalization capabilities to perform well even on a domain different

with respect to the one it has been trained on. The results of the pre-

diction of temporally adjacent images (belonging to the target domain)

showed high inconsistency and using the produced disparities in the

SLAM pipeline did not allow the 3D reconstruction to be executed.

• Proxy-labeling: in order to supervise the model it has been used the

output of the SGM baseline filtered by confidence measures with the
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aim of discarding unreliable disparity estimates while keeping the most

confident ones.

Proxy-labeling obtained promising results both in terms of temporal con-

sistency of the prediction (which suggests a certain robustness of the features

produced by themodel) and also in terms of results obtained on the adopted 3D

metric, which, for this application, is the main reference metric even though

it presents the limitations described in section 5.3.

The selection of the model for this project fell upon RAFT-Stereo [16].

The main reason behind the selection of this model is its ability to handle

very large disparity ranges, which is a necessary characteristic for this appli-

cation since the target disparity range is very large (more than what a Deep

Learning-based model usually is able to handle). Other characteristics that

determined the choice of this model is the fact that RAFT-Stereo is one of the

top scoring disparity estimation models on the Middlebury benchmark and

that it also offers a real-time implementation (which is necessary in an online

SLAM pipeline).

The evaluation results given by the RAFT-Stereo model trained on the

proxy-label dataset highlighted the good capacity of the trained model to lead

to a more accurate 3D reconstruction with respect to the baseline it has been

trained on.

6.2 Future Developments

We can divide the work that can be done to improve the current application in

three main threads: one that aims to build a better deep-learning based model,

a second one that attempts to find different ways to gather ground truth data

and the last one that consists in an alteration of the current imaging system.
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(a) Input image (b) RAFT-Stereo’s output

Figure 6.1: This example (taken from [15]) shows how texture level informa-
tion that do not stem from matching can be detrimental for disparity estima-
tion.

In this section, some ideas will be given about how to approach the aforemen-

tioned areas of improvement.

6.2.1 Models

Throughout the development of this thesis a new model that beat the state

of the art, which until that moment was represented by RAFT-Stereo, was

presented at CVPR 2022 under the name CREStereo [15].

CREStereo, other than presenting higher performances on the well known

benchmarks with respect to RAFT-Stereo, retains the ability to work with high

disparity ranges (characteristic necessary for this application) while presenting

interesting features and overcoming some limitations present in RAFT-Stereo.

One of the interesting features introduced by CREStereo is named Adaptive

Group Correlation Layer which, through a sub-module called 2D-1D Alter-

nate Local Search, extends the 1D correlation computation to a 2D computa-

tion in an alternate manner, in this way it can be performed matching outside

of the traditional scanline mitigating the influence of imperfect rectification.

Another contribution that CREStereo might bring to the application at

hand with respect to RAFT-Stereo is that RAFT-Stereo uses as information
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to compute the disparity update in its recurrent GRU module the features ex-

tracted from the left image through its context encoder. While this might ef-

fectively contribute to an higher performance since it might give information

about the boundary of the object (or just because it enlarges the capacity of

the model), it can be argued that this contribution might be detrimental for

the kind of lighting adopted since, while it is effectively able to enhance the

matching capability of the system in a textureless context, it does not give

much visual information about the shape/boundaries of the object, bringing

the risk of introducing artifacts in the output disparities given by the shape

of the structured light’s dots. Moreover, as also shown by some examples in

CREStereo’s paper (see Figure 6.1), it appears that injecting image’s features

other than the matching ones might compromise the ability of the model to

generalize as the consequence of an excessive extrapolation of texture infor-

mation. CREStereo does not make use of this kind of information, thus, it is

possible to expect a better generalization capabilities and not to generate arti-

facts given by the non-natural nature of the input images.

Another addition that might prove to be useful for the task of 3D recon-

struction is the introduction inside the model of a confidence estimation mod-

ule capable of filtering out those disparity values that are deemed as imprecise

or that stem from an ambiguous matching. Since, in 3D reconstruction, preci-

sion should be preferred over density, this module might provide an effective

aid to the update rules of the 3D scene discussed in chapter 5.

6.2.2 Dataset

While proxy-labeling has shown interesting results, other techniques that do

not involve the usage of sensor (for the limitations explained during the course

of this thesis) and that are capable to deliver more precise ground truth data

should be considered as well.
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One of such alternative techniques involves the usage of the 3D ground

truth in order to gather the disparity ground truth. In particular, by exploiting

the SLAM pipeline and the current SGM baseline as its depth sensing com-

ponent, it is possible to obtain the predicted output mesh (which is the one

used for comparison with the 3D ground truth in section 5.3) together with

the poses (location and rotation) where the camera passed through in order to

capture the images used to generate the mesh.

By registering the predicted mesh with the ground truth mesh (with a process

similar to the one described in section 5.3), the camera poses obtained from

the SLAM pipeline can be used on the ground truth mesh as well in order to

obtain the depth information for each image of the sequence that generated

the predicted output mesh, which can then be converted in dense sub-pixel

disparities through the camera parameters. The disparities extracted through

this method can be used as ground truth to supervised a Deep Learning-based

model.

A major limitation that can be encountered with this data gathering tech-

nique is the error introduced by the pose estimation algorithm. In order to

mitigate this issue it is important to capture short sequences of images in or-

der to not accumulate too much error.

6.2.3 Imaging System

While the presence of the structured light is rendered necessary by the ab-

sence of textures of the target, the total absence of natural light gives to the

input images a non-natural appearance. From one side this might hinder a

correct prediction of the disparity by the used model as there are no extensive

studies on the performance of these systems on non-natural imaging scenarios

and in case of RAFT-Stereo, which uses the image context information to aid

disparity estimation, it might lead to the generation of artifacts. Moreover,

as also discussed at the end of chapter 5, the fact that the distribution of the
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structured light’s dots is sparse, means that the full coverage of thin struc-

tures is not guaranteed, leading to sub-optimal disparity estimates where the

estimation of structures not covered by the dots might be given by the prop-

agation of neighbouring disparity estimates rather than being the result of a

direct matching.

In order to solve the aforementioned issues it might be useful to alter the

imaging system in a way that, other than the structured light, also some nat-

ural light is cast upon the scene with an intensity that would not completely

suppress the contribution given by the structured light. A bit of natural light

would contribute to delineate in a more detailed way the shape of thin struc-

tures and the object boundaries.



Bibliography

[1] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio. Empirical evaluation of

gated recurrent neural networks on sequencemodeling.CoRR, abs/1412.3555,

2014. arXiv: 1412.3555. URL: http://arxiv.org/abs/1412.

3555.

[2] Cloudcompare, version 2.12.4. URL: https://www.cloudcompare.

org/. License: GPL.

[3] B. O. Community. Blender - a 3D modelling and rendering package.

Blender Foundation. Stichting Blender Foundation, Amsterdam. URL:

http://www.blender.org.

[4] G. Egnal and R.Wildes. Detecting binocular half-occlusions: empirical

comparisons of five approaches. IEEE Transactions on Pattern Analy-

sis and Machine Intelligence, 24(8):1127–1133, 2002. DOI: 10.1109/

TPAMI.2002.1023808.

[5] G. Egnal, M. Mintz, and R. P. Wildes. A stereo confidence metric using

single view imagery with comparison to five alternative approaches.

Image and vision computing, 22(12):943–957, 2004.

[6] F. T. et al. Learning confidence measures in the wild. In G. B. Tae-Kyun

Kim Stefanos Zafeiriou and K. Mikolajczyk, editors, Proceedings of

the British Machine Vision Conference (BMVC), pages 133.1–133.13.

BMVAPress, September 2017. ISBN: 1-901725-60-X. DOI: 10.5244/

C.31.133. URL: https://dx.doi.org/10.5244/C.31.133.

https://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
https://www.cloudcompare.org/
https://www.cloudcompare.org/
http://www.blender.org
https://doi.org/10.1109/TPAMI.2002.1023808
https://doi.org/10.1109/TPAMI.2002.1023808
https://doi.org/10.5244/C.31.133
https://doi.org/10.5244/C.31.133
https://dx.doi.org/10.5244/C.31.133


BIBLIOGRAPHY 67

[7] H. Hirschmuller. Stereo processing by semiglobal matching and mutual

information. IEEE Transactions on Pattern Analysis and Machine In-

telligence, 30(2):328–341, 2008. DOI: 10.1109/TPAMI.2007.1166.

[8] H. Hirschmuller and D. Scharstein. Evaluation of stereo matching costs

on images with radiometric differences. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 31(9):1582–1599, 2009. DOI: 10.

1109/TPAMI.2008.221.

[9] H. Hirschmüller. Semi-global matching-motivation, developments and

applications. Photogrammetric Week 11:173–184, 2011.

[10] X. Hu and P. Mordohai. A quantitative evaluation of confidence mea-

sures for stereo vision. IEEE Transactions on Pattern Analysis andMa-

chine Intelligence, 34(11):2121–2133, 2012. DOI: 10.1109/TPAMI.

2012.46.

[11] X. Hu and P. Mordohai. A quantitative evaluation of confidence mea-

sures for stereo vision. IEEE Transactions on Pattern Analysis andMa-

chine Intelligence, 34(11):2121–2133, 2012. DOI: 10.1109/TPAMI.

2012.46.

[12] A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy, A.

Bachrach, and A. Bry. End-to-end learning of geometry and context

for deep stereo regression. CoRR, abs/1703.04309, 2017. arXiv: 1703.

04309. URL: http://arxiv.org/abs/1703.04309.

[13] J. Kim et al. Visual correspondence using energy minimization and mu-

tual information. In Proceedings Ninth IEEE International Conference

on Computer Vision, pages 1033–1040. IEEE, 2003.

[14] S. Kim, D.-g. Yoo, and Y. H. Kim. Stereo confidence metrics using

the costs of surrounding pixels. In 2014 19th International Conference

on Digital Signal Processing, pages 98–103, 2014. DOI: 10.1109/

ICDSP.2014.6900808.

https://doi.org/10.1109/TPAMI.2007.1166
https://doi.org/10.1109/TPAMI.2008.221
https://doi.org/10.1109/TPAMI.2008.221
https://doi.org/10.1109/TPAMI.2012.46
https://doi.org/10.1109/TPAMI.2012.46
https://doi.org/10.1109/TPAMI.2012.46
https://doi.org/10.1109/TPAMI.2012.46
https://arxiv.org/abs/1703.04309
https://arxiv.org/abs/1703.04309
http://arxiv.org/abs/1703.04309
https://doi.org/10.1109/ICDSP.2014.6900808
https://doi.org/10.1109/ICDSP.2014.6900808


BIBLIOGRAPHY 68

[15] J. Li, P. Wang, P. Xiong, T. Cai, Z. Yan, L. Yang, J. Liu, H. Fan, and

S. Liu. Practical stereo matching via cascaded recurrent network with

adaptive correlation, 2022. DOI: 10 . 48550 / ARXIV . 2203 . 11483.

URL: https://arxiv.org/abs/2203.11483.

[16] L. Lipson, Z. Teed, and J. Deng. Raft-stereo: multilevel recurrent field

transforms for stereo matching. CoRR, abs/2109.07547, 2021. arXiv:

2109.07547. URL: https://arxiv.org/abs/2109.07547.

[17] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy,

and T. Brox. A large dataset to train convolutional networks for dispar-

ity, optical flow, and scene flow estimation. In IEEE International Con-

ference on Computer Vision and Pattern Recognition (CVPR), 2016.

URL: http://lmb.informatik.uni-freiburg.de/Publications/

2016/MIFDB16. arXiv:1512.02134.

[18] N.Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy, and

T. Brox. A large dataset to train convolutional networks for disparity,

optical flow, and scene flow estimation. CoRR, abs/1512.02134, 2015.

arXiv: 1512.02134. URL: http://arxiv.org/abs/1512.02134.

[19] M. Menze and A. Geiger. Object scene flow for autonomous vehicles.

In Conference on Computer Vision and Pattern Recognition (CVPR),

2015.

[20] M. Otte and H.-H. Nagel. Optical flow estimation: advances and com-

parisons. In European conference on computer vision, pages 49–60.

Springer, 1994.

[21] M. Poggi, S. Kim, F. Tosi, S. Kim, F. Aleotti, D. Min, K. Sohn, and S.

Mattoccia. On the confidence of stereo matching in a deep-learning era:

a quantitative evaluation. CoRR, abs/2101.00431, 2021. arXiv: 2101.

00431. URL: https://arxiv.org/abs/2101.00431.

https://doi.org/10.48550/ARXIV.2203.11483
https://arxiv.org/abs/2203.11483
https://arxiv.org/abs/2109.07547
https://arxiv.org/abs/2109.07547
http://lmb.informatik.uni-freiburg.de/Publications/2016/MIFDB16
http://lmb.informatik.uni-freiburg.de/Publications/2016/MIFDB16
https://arxiv.org/abs/1512.02134
http://arxiv.org/abs/1512.02134
https://arxiv.org/abs/2101.00431
https://arxiv.org/abs/2101.00431
https://arxiv.org/abs/2101.00431


BIBLIOGRAPHY 69

[22] D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl, N. Nešić, X.

Wang, and P. Westling. High-resolution stereo datasets with subpixel-

accurate ground truth. In German conference on pattern recognition,

pages 31–42. Springer, 2014.

[23] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-

frame stereo correspondence algorithms. International journal of com-

puter vision, 47(1):7–42, 2002.

[24] D. Scharstein and R. Szeliski. Stereomatchingwith nonlinear diffusion.

International journal of computer vision, 28(2):155–174, 1998.

[25] T. Schöps, J. L. Schönberger, S. Galliani, T. Sattler, K. Schindler, M.

Pollefeys, and A. Geiger. A multi-view stereo benchmark with high-

resolution images and multi-camera videos. In Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2017.

[26] R. Spangenberg, T. Langner, andR. Rojas.Weighted semi-globalmatch-

ing and center-symmetric census transform for robust driver assistance.

In International Conference on Computer Analysis of Images and Pat-

terns, pages 34–41. Springer, 2013.

[27] Z. Teed and J. Deng. RAFT: recurrent all-pairs field transforms for op-

tical flow. CoRR, abs/2003.12039, 2020. arXiv: 2003.12039. URL:

https://arxiv.org/abs/2003.12039.

[28] R. Zabih and J. Woodfill. Non-parametric local transforms for comput-

ing visual correspondence. InEuropean conference on computer vision,

pages 151–158. Springer, 1994.

[29] J. Zbontar and Y. LeCun. Computing the stereo matching cost with

a convolutional neural network. CoRR, abs/1409.4326, 2014. arXiv:

1409.4326. URL: http://arxiv.org/abs/1409.4326.

https://arxiv.org/abs/2003.12039
https://arxiv.org/abs/2003.12039
https://arxiv.org/abs/1409.4326
http://arxiv.org/abs/1409.4326


Acknowledgements

I would like to thank professor Samuele Salti and Dr. Matteo Poggi for as-

sisting me through the many technical difficulties. I am grateful to my mother

and girlfriend for all the moral support they gave me.

Last but not least, I would like to thank BlueThink for giving me the opportu-

nity to develop this thesis.


	Introduction
	Objectives

	Baseline
	Standard Stereo Vision
	Semi-Global Matching
	Matching Cost Computation
	Cost Aggregation
	Disparity Computation
	Disparity Refinement


	Dataset Generation
	Synthetic Data Generation
	Stereo Rig Setup
	Structured Light Projector Setup
	Random Poses Generation
	Rendering

	Proxy-Labeling
	Implementation


	Deep Learning-Based Depth Estimation
	RAFT-Stereo
	Introduction
	Approach
	Zero-Shot Generalization


	Evaluation
	Model Selection
	Training
	Inference

	Disparity Metrics
	3D Metrics

	Conclusions
	Final Remarks
	Future Developments
	Models
	Dataset
	Imaging System


	Bibliography
	Acknowledgements

