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Abstract

We investigate the potential of a high-energy muon collider in measuring the muon
Yukawa coupling (yµ) in the production of two, three and four heavy bosons via muon-
antimuon annihilations. We study the sensitivity of these processes to deviations of yµ

from the Standard Model prediction, parametrized by an effective dimension-6 operator
in the Standard Model Effective Field Theory (SMEFT) framework. We also consider the
κ framework, in which the deviation is simply parametrized by a strength modification
of the µ+µ−h vertex alone. Both frameworks lead to an energy enhancement of the
cross sections with one or more vector bosons, although the κ framework yields stronger
effects, especially for the production of four bosons. On the contrary, for purely-Higgs
final states the cross section is suppressed in the κ framework, while it is extremely
sensitive to deviations in the SMEFT. We show that the triple-Higgs production is the
most sensitive process to spot new physics effects on yµ.
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Introduction

After a century of continuous theoretical and experimental progress, the research for a
theory of fundamental interactions culminated in the formulation of the Standard Model,
which describes electromagnetic, weak and strong forces in terms of a SU(3) × SU(2) ×
U(1) gauge theory. The last missing particle was the Higgs boson, which was predicted
by the Electroweak Symmetry Breaking mechanism, and it was finally observed in 2012
[1],[2]. Despite the abundance of experimental confirmations at colliders, there is clear
evidence that this cannot be the ultimate theory and that some physics beyond the
Standard Model is needed. Dark matter, the generation of neutrino masses, or the
matter/antimatter asymmetry, are just some examples of the physics that are awaiting
for a deeper description.
Nevertheless, at the moment we are lacking specific indications on where to look for new
physics, suggesting that it probably lies beyond the present energy reach at colliders.
In absence of well-defined traces, the study of the Higgs sector holds the greatest po-
tential for discoveries. Indeed, the precision that has been reached so far on the Higgs
couplings measurements still leaves room for deviations from the Standard Model predic-
tions, paving the way for a more fundamental theory. In particular, the Higgs coupling to
light flavors has not been probed yet, apart from the muon coupling which has been mea-
sured with a large uncertainty [3],[4]. In this situation, two different paths are possible
at colliders: increasing the precision, in order to detect indirect effects of heavy physics,
or increasing the energy reach to access the new states directly. Both approaches require
the construction of a new collider.
In this work, motivated by the proposal of a future high-energy muon collider and by
recent developements in muon physics, we study the sensitivity to the muon Yukawa
coupling in the production of multiple heavy bosons (W±, Z0 and h) via muon-antimuon
annihilations. The thesis is organised as follows. In chapter 1 we review the basic
features of the Standard Model, with a specific focus on the Higgs role in preserving
unitarity. Chapter 2 presents an overview of the current experimental status on the
Higgs coupling measurements, and some motivations for the study of the muon Yukawa
coupling. In chapter 3 we discuss the parametrization of new physics into two frameworks,
the Standard Model Effective Field Theory (SMEFT) and the κ framework, focusing in
particular on a dimension-6 operator in SMEFT. Finally, in chapter 4 we study in detail
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the multiboson production processes in the SMEFT and κ frameworks, with a particular
emphasis on the high-energy limit, presenting our results.
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Chapter 1

The Standard Model

The present knowledge of fundamental interactions is summarised in an elegant and com-
pact formulation, the Standard Model (SM), predicting with impressive accuracy most
of the experimental data at colliders. In this description, strong and electroweak inter-
actions are described in terms of a SU(3)C × SU(2)L × U(1)Y gauge invariant quantum
field theory, where the electroweak sector SU(2)L × U(1)Y is spontaneously broken by
the Higgs mechanism.
According to this picture, matter is described by fermionic quantum fields, and their
interactions are mediated by vectorial gauge bosons. The interaction of matter with the
scalar Higgs boson has different nature and provides the masses to fermions and to the
weak interaction’s mediators W± and Z0.
Finally, the SM depends on 19 free parameters (assuming the neutrino massless):

• 9 fermion masses,

• 3 angles and 1 phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix,

• the strong coupling constant αs and the QCD Landau pole,

• the Higgs mass,

• 3 electroweak parameters, chosen among the fine structure constant α, the Fermi
constant GF and the gauge boson masses mZ and mW .

Once measured, these parameters allow to extract theoretical predictions and so far they
are providing a spectacular agreement with experimental results at colliders.
However, the Standard Model carries several unexplained features, open questions and
technical issues, suggesting that this description is far from being complete. For example,
the SM does not provide a mass term for neutrinos, a quantum formulation of gravity,
an explanation for dark matter, the asymmetry between matter and antimatter in the
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Universe, just to cite some of them. All these limitations indicate the need for a more
fundamental theory.
In the first section of this chapter we briefly discuss the structure of the electroweak
sector of the SM and the Electroweak Symmetry Breaking (EWSB) mechanism. The
second section is devoted to a fundamental property of the SM, which is the unitarization
of matrix elements at high energies, in which the Higgs field plays a central role. The
role of the Higgs interaction with fermions in preserving unitarity will be the foundation
of the phenomenological analysis carried out further in this work.

1.1 The electroweak Standard Model Lagrangian

Symmetries are the guiding principle to build the SM Lagrangian. Besides Lorentz
invariance, all operators must respect the gauge SU(3)C × SU(2)L × U(1)Y symmetry.
This is schematically realised by substituting the ordinary partial derivative in the free
Lagrangian with the gauge-covariant derivative, defined as

Dµ = ∂µ − igUa
µt

a . (1.1)

It contain new vector fields Ua
µ in the same number as the generators of the gauge group

ta. They are called gauge fields and mediate interactions by coupling to matter with
strength g. The gauge invariance condition is sufficiently strict to uniquely determine
the 4-dimensional operators describing gauge interactions. This description still misses
an important feature of the SM: in fact, a gauge invariant mass term for gauge bosons
and fermions cannot be written within this theory. The problem is solved by introducing
a scalar field, the Higgs, that generates the masses thanks to the Spontaneous Symmetry
Breaking (SSB) mechanism.
The SM Lagrangian can be separated into a QCD sector LEW and an electroweak sector:

LSM = LQCD + LEW = LQCD + Lfermions
EW + Lgauge

EW + LHiggs
EW + LYukawa . (1.2)

The EW Lagrangian contains the following terms:

• Lgauge
EW contains the gauge bosons kinetic and self-interaction terms,

• Lfermions
EW describes the interaction between fermions and electroweak gauge bosons,

• LHiggs
EW is the Higgs field kinetic term and potential,

• LYukawa is the Yukawa operator, involving the Higgs and fermion fields. After
spontaneous symmetry breaking, it generates the interaction between fermions and
Higgs boson and the fermionic masses.
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1.1.1 Electroweak Symmetry Breaking mechanism

The SU(2)L × U(1)Y group is generated by three weak isospin operators I1, I2, I3 and
the hypercharge Y . The associated vector fields are a SU(2)L triplet W a

µ and an isospin
singlet Bµ with hypercharge Y . Denoting respectively with g1 and g2 the U(1)Y and
SU(2)L coupling constants, the gauge bosons part of the Lagrangian is

Lgauge
EW = −1

4
W a

µνW
µν a − 1

4
BµνB

µν (1.3)

where we have introduced the field strength tensors

W a
µν = ∂µW

a
ν − ∂νW

a
µ + g2ǫ

abcW b
µW

c
ν , (1.4)

Bµν = ∂µBν − ∂νBµ . (1.5)

The partial spontaneous symmetry breaking (SSB) of the SU(2)L × U(1)Y gauge group
is realised by introducing a single SU(2)L doublet of complex scalars

φ =

(

φ+

φ0

)

(1.6)

with hypercharge Y = 1 according to the Weinberg relation

Q = I3 +
Y

2
(1.7)

and a potential
V (φ†φ) = −µ2φ†φ+ λ(φ†φ)2 . (1.8)

The coupling to the gauge fields is introduced by substituting the derivative ∂µ with the
covariant derivative defined as

Dµ = ∂µ − ig2I
aW a

µ − ig1
Y

2
Bµ (1.9)

in the free Higgs Lagrangian:

LHiggs
EW =

∣

∣

∣

∣

∂µφ− ig2I
aW a

µφ− i
g1

2
Bµφ

∣

∣

∣

∣

2

− V (φ†φ) . (1.10)

The potential in eq. (1.8) has a non vanishing, degenerate ground state

| 〈φ〉 |2 =
µ2

2λ
≡ v2

2
(1.11)

which describes a three-sphere of radius v/
√

2 in the field space, hence all the correspond-
ing field configurations are equivalent. According to the Goldstone theorem, since the
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vacuum is 3-dimensional, there are 3 energetically equivalent degrees of freedom, thus 3
massless Goldstone bosons. They will be reabsorbed in 3 of the 4 gauge bosons becoming,
after a change of basis, the masses of the W± and Z0 bosons.
Since all vacuum configurations are equivalent, we can consider as ground state

〈φ〉 =
1√
2

(

0
v

)

, v =
µ√
λ
. (1.12)

As expected from the Goldstone theorem, there is a 1-dimensional subgroup U(1)em ⊂
SU(2)L × U(1)Y that leaves the vacuum invariant. In other words

〈φ〉 SU(2)L×U(1)Y−−−−−−−−−→ 〈φ〉′ 6= 〈φ〉 , (1.13)

but

〈φ〉 U(1)em−−−−→ 〈φ〉 . (1.14)

Since it is generated by the electric charge operator Q̂ = Î3 + Ŷ /2, we recognize it as the
gauge group of QED.
We choose a linear parametrization of the fluctuations of φ around the vacuum:

φ =
1√
2

(

i
√

2G+

v + h+ iGz

)

. (1.15)

The complex scalar G+ and the real one Gz are the Goldstone bosons, while h is the
physical Higgs field. Because of the gauge invariance of the Lagrangian however, Gold-
stone bosons can be gauged away and are therefore unphysical. With this choice, called
unitary gauge, the doublet takes the simple form

φ =
1√
2

(

0
v + h

)

. (1.16)

The expansion of LHiggs
EW = LHiggs

kinetic − V in the unitary gauge generates:

• the mass of h, mh =
√

2µ, and the cubic and quartic self-interactions of h from V :

V = −λv
4

4
+

1

2
2µ2h2 + λvh3 +

λ

4
h4 , (1.17)

• the kinetic term of h and the masses of W±, Z0 from LHiggs
kinetic:

LHiggs
kinetic =

1

2
∂µh∂

µh+
1

8
(v + h)2

(

g2
2W a

µW
µ a − 2g1g2W

3
µB

µ + g1
2BµB

µ
)

. (1.18)
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The masses can be found after diagonalisation. This is done by making a change
of basis that leads to the physical EW gauge bosons

W±
µ =

1√
2

(W 1
µ ± iW 2

µ) ⇒ mW =
g2v

2
(1.19)

Zµ = cos θwW
3
µ − sin θwBµ ⇒ mZ =

mW

cos θw

(1.20)

Aµ = sin θwW
3
µ + cos θwBµ ⇒ mγ = 0 (1.21)

having defined the Weinberg angle θw

tan θw ≡ g1

g2
. (1.22)

We recognise the Aµ field as the photon and the W±
µ and Z fields as the weak force

mediators. With these definitions, the gauge Lagrangian in eq. (1.3) gives rise to the
kinetic terms and interactions between the electoweak bosons:

Lgauge
EW = −1

4
FµνF

µν − 1

4
ZµνZ

µν − 1

2
W+

µνW
µν − (1.23)

where

Fµν = ∂µAν − ∂νAµ , (1.24)

Zµν = ∂µZν − ∂νZµ , (1.25)

W±
µν = ∂µW

±
ν − ∂νW

±
µ . (1.26)

1.1.2 Fermion sector

We now discuss the coupling of gauge bosons to fermions. Experimentally, the theory
of weak interactions is chiral, since the SU(2)L gauge bosons only couple to left-handed
fermions. Indeed fermion fields are distinguished in eigenstates of the chiral operator as
left- or right-handed. Left-handed (LH) spinors form SU(2)L doublets

ψL
j =

(

ψL
j+

ψL
j−

)

(1.27)

where j indicates the family, and σ = ± is the component index. Right-handed (RH)
spinors are instead SU(2)L singlets

ψR
j = ψR

j+ , ψ
R
j− . (1.28)

Each field is an eigenstate of Y such that Weinberg relation of eq. (1.7) is fulfilled. In
Table 1.1 we summarise the SU(2)L and U(1)Y charges for the SM fermionic fields of

9



I3 Y Q

QL =





uL

dL





1/2 1/3 2/3

-1/2 1/3 -1/3

uR 0 4/3 2/3

dR 0 -2/3 -1/3

LL =





νL

eL





1/2 -1 0

-1/2 -1 -1

eR 0 -2 -1

Table 1.1: Fermionic fields of first generation and their charges under SU(2)L, U(1)Y

and U(1)em.

the first generation, as the charges are the same for all generations. The fermionic
Lagrangian is compactly written as

Lfermion
EW =

∑

j

ψ̄L
j i /Dψ

L
j +

∑

j,σ

ψ̄R
j σi /Dψ

R
j σ . (1.29)

Moving to the mass eigenstates basis, it can be written in a more physically meaningful
form. Identifying the electric charge as

e = g2 sin θw = g1 cos θw , (1.30)

eq. (1.29) can be written in terms of the electromagnetic current Jµ
em, and the neutral

and charged weak currents Jµ ±
W and Jµ

Z . As an example we write explicitly the fields of
the first generation.

Lfermion
EW = L̄Li/∂LL + ēRi/∂eR + Q̄Li/∂QL + ūRi/∂uR + d̄Ri/∂dR+

g2(W
+
µ J

µ +
W +W−

µ J
µ −
W + ZµJ

µ
Z) + eAµJ

µ
em

(1.31)

where

Jµ +
W =

1√
2

(ν̄LγµeL + ūLγµdL) = (Jµ −
W )† , (1.32)

Jµ
Z =

1

cos θw

[ νLγµ 1

2
νL + ēLγµ(−1

2
+ sin2 θw)eL + ēRγµ sin2 θwe

R

+ ūLγµ(
1

2
− 2

3
sin2 θw)uL + ūRγµ(−2

3
sin2 θw)uR (1.33)

+ d̄Lγµ(−1

2
+

1

3
sin2 θw)dL + d̄Rγµ(

1

3
sin2 θw)dR ] ,

Jµ
em = −ēγµe+

2

3
ūγµu− 1

3
d̄γµd . (1.34)
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The W boson correctly couples only to LH fermions. Moreover, while the charged and
neutral currents contain a vectorial and axial part, the electromagnetic current couples
to the photon field in a purely vectorial way.

1.1.3 Yukawa sector

The SM picture is now almost complete. What is still missing is a mass term for the
charged fermions. In fact, a Dirac mass of the type mψ̄ψ, which was gauge invariant in
QED, cannot be introduced by hand in the Lagrangian since a term ēLeR would break the
SU(2)L invariance. We write down a gauge invariant operator that couples LH and RH
fermions to the Higgs field, such that the masses appear only after the SSB mechanism.
Focusing now on the first generation only, it reads

LYukawa = −ye L̄
L
j φe

R − yd Q̄
LφdR − yu Q̄

Lφ̃uR + h.c. (1.35)

where φ̃ = iσ2φ∗ and ye,u,d are the Yukawa couplings. When expanding this vertex in
the unitary gauge, LYukawa takes the form

LYukawa = −
∑

f=e,u,d

(

mf ψ̄fψf +
yf√

2
ψ̄fψfh

)

(1.36)

thus providing fermions with a mass

mf =
yfv√

2
. (1.37)

The CKM matrix

When we introduce additional generations of quarks, there are additional coupling terms
that mix generations:

Lq
Yukawa = −

∑

i,j

(

yij
d Q̄

L
i φd

R
j + yij

u Q̄
L
i φ̃u

R
j

)

+ h.c. (1.38)

having introduced ui = (u, c, t) and di = (d, s, b). After EWSB the mass terms become

Lq,masses
Yukawa = − v√

2

(

d̄L
Ydd

R + ūL
Yuu

R
)

+ h.c. . (1.39)

The matrices of Yukawa couplings Yu,d can be diagonalised with a biunitary transfroma-
tion

Yd = UL
d DdU

R †
d , Yu = UL

u DuU
R †
u (1.40)

that transform the fields into the mass basis d′, u′:

dL,R = UL,R
d dL,R ′ , uL,R = UL,R

u uL,R ′ . (1.41)
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When we rotate the fields in the new basis, the fermionic part of the Lagrangian is
affected too. In particular, the neutral current Jµ

Z does not mix up-like and down-like
components and therefore remains flavor conserving. On the other hand, the charged
current Jµ ±

W is transformed:

Jµ +
W =

1√
2
ūLγµdL =

1√
2
ūL ′γµ(UL †

u UL
d )dL ′ . (1.42)

The mixing matrix V ≡ U †
uUd is called Cabibbo-Kobayashi-Maskawa (CKM) matrix.

It is unitary, being the product of unitary matrices, and as a complex 3 × 3 matrix it
depends on 9 real parameters, 3 angles and 6 phases. Actually, 5 of the 6 phases can be
reabsorbed into the the fields, so the physical parameters are only 3 angles and 1 phase.

1.2 Unitarity cancellations in the SM

A very powerful application that follows from the SSB mechanism is the influence of
the Higgs field on the high-energy dynamics of the vector bosons W± and Z. Indeed,
the unphysical Goldstone boson that is eaten by a massive gauge boson leaves a foot-
print in the high-energy limit of physical observables, by controlling the amplitude for
absorption and emission of the gauge boson in its longitudinal polarization state. This
result is formalised in the Goldstone Boson Equivalence (GBE) theorem [5], which has
a fundamental application in the proof of the unitarity of the SM amplitudes [6].

1.2.1 Goldstone Boson Equivalence theorem

In the SSB mechanism, a massless gauge boson becomes massive by combining with a
scalar Goldstone boson. This increases its polarization states from 2 to 3.
In its rest frame with pµ = (m, 0, 0, 0), the 3 polarization are given by a basis of three
orthogonal vectors satisfying ǫµp

µ = 0 and ǫ2 = −1:

ǫ+ =
1√
2











0
1
i
0











, ǫ− =
1√
2











0
1

−i
0











, ǫL =











0
0
0
1











. (1.43)

These states are completely equivalent, but when the particle is moving relativistically,
there is a clear distinction between the transverse and longitudinal polarizations [7]. If
we make a boost along the z-axis, the momentum is pµ = (E, 0, 0, p) and the polarization
vectors become

ǫ+ =
1√
2











0
1
i
0











, ǫ− =
1√
2











0
1

−i
0











, ǫL =
1

m











p
0
0
E











. (1.44)
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The transverse polarizations ǫ+, ǫ− are left unchanged, but for the longitudinal polariza-
tion ǫL the components are growing with energy. A distinctive feature is that it becomes
increasingly parallel to pµ as p grows. In fact

ǫµL =
pµ

m
+ O

(

m

E

)

as E → ∞. (1.45)

This potentially leads to very large contributions to scattering amplitudes of longitudi-
nally polarized vector bosons for E ≫ m, threatening unitarity. The reason why this does
not happen is in the GBE theorem by Cornwall, Levin, and Tiktopoulos and Vayonakis
[5].
When a gauge boson acquires mass via Higgs mechanism, it “steals” a degree of freedom
from the Higgs field, namely a scalar Goldstone boson. When the boson is highly boosted,
the origin of the new longitudinal polarization becomes manifest.
According to the GBE theorem, in the high-energy limit, the couplings of the longitu-
dinal polarization state are the same of the original Goldstone boson, so for example,
considering a Z0 boson

M(X → Y + Z0
L) = iM(X → Y +Gz)

(

1 + O
(

mZ

EZ

))

. (1.46)

Since the scalar cross sections behave as 1/s, some cancellations must happen between
longitudinally polarized amplitudes that preserve this behavior.

1.2.2 High-energy behavior in µ+µ− → ZZ

As an example of unitarity cancellations happening in the SM, we consider the process
µ+µ− → ZZ and show that

• the energy enhancement is due to the longitudinal polarizations,

• the Higgs field cancels the dangerous terms, preserving unitarity.

Kinematics

There are three diagrams, an s, a t and a u channel:

p1

p2

p3, µ

p4, ν

s

p1

p2

p3, µ

p4, ν

t

p1

p2

p3, µ

p4, ν

u

13



Suppose Z is boosted along the z-axis, its momentum is given by pµ = (EZ , 0, 0, p) and
the polarization vectors are given by eqs. (1.44). Since we are interested in the high-
energy limit of the longitudinal polarizations, we are going to use the approximation in
eq. (1.45).
For spinors, we use the Dirac basis of gamma matrices:

γ0 =

(

1 0
0 −1

)

, γi =

(

0 σi

−σi 0

)

, γ5 =

(

0 1
1 0

)

. (1.47)

We introduce a basis for the 2-components spinors, ξr and ηr, r = +,− such that

ξr†ξs = δrs , ηr†ηs = δrs , (1.48)

for example
{

ξ+ =

(

1
0

)

, ξ− =

(

0
1

)}

and

{

η+ =

(

1
0

)

, η− =

(

0
1

)}

. (1.49)

Using the Dirac basis, the four solutions of Dirac equations are:

u±(p1) =







√

E1 +mµ ξ±
−→p1·−→σ√
E1+mµ

ξ±





 , v±(p2) =







−→p2·−→σ√
E2+mµ

η±
√

E2 +mµ η±





 (1.50)

where −→σ = (σ1, σ2, σ3) and pµ
i = (Ei,

−→pi ) , pi
2 = mµ

2 , i = 1, 2.
In the CM frame the initial momenta are directed along the z axis, therefore

p1 =
(

E, 0, 0, p
)

, p2 =
(

E, 0, 0, −p
)

(1.51)

and the spinors are just

u±(p1) =







√

E + mµ ξ±
p σ3√
E+mµ

ξ±





 , v±(p2) =







−p σ3√
E+mµ

η±
√

E +mµ η±





 . (1.52)

Feynman rules

In order to compute the matrix elements associated to the three diagrams we need the
following Feynman rules:

µ−

µ+

h = −i yµ√
2

= −i mµ

v
, (1.53)
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Zµ

Zν

h = i
g2

cw

mZ g
µν , (1.54)

µ−

µ+

Zµ = −i g2

cw

γµ
(

gV − gAγ
5
)

, (1.55)

where v is the vacuum expectation value of the Higgs field, yµ is the Yukawa coupling of
the muon, g2 is the electroweak coupling of SU(2)L, cw = cos θw, sw = sin θw and θw is
the Weinberg angle.
The electroweak masses and couplings are related by the following equations:

g =
e

sw

, GF =
1√
2 v2

,

mZ =
mW

cw

, mW =
g2v

2
, mµ =

yµ v√
2
.

(1.56)

The vector and axial part of the vertex in eq. (1.55) are:

gV =
I3

µ

2
−Qµsw

2 =
1

4
+ sw

2 , gA =
I3

µ

2
=

1

4
, (1.57)

where I3
µ and Qµ are the third component of the weak isospin and the U(1)em charge of

the muon.

Matrix elements in the high-energy limit

We start from the s channel amplitude, using the approximation for longitudinal polar-
izations in eq. (1.45).

iMs = v̄(p2)

(

−i yµ√
2

)

u(p1)
i

s−mh
2
ǫµ∗(p3)ǫ

ν∗(p4)
i g

cw

mZ gµν

= i
mµ

v

g mZ

cw

1

s−mh
2
v̄(p2)u(p1) ǫ

∗(p3) · ǫ∗(p4) .

(1.58)

For E ≫ mZ :

ǫ∗(p3) · ǫ∗(p4) ∼ p3 · p4

mZ
2

=
1

2

s− 2mZ
2

mZ
2

∼ s

2mZ
2

(1.59)
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so that the amplitude in the high-energy limit is:

Ms ∼ mµ

v

g mZ

cw

1

s

s

2mZ
2
v̄(p2)u(p1) =

mµ

v

g

2 cw mZ

v̄(p2)u(p1) . (1.60)

We work out the spinor product in the Dirac basis using eqs. (1.52):

v̄r(p2)us(p1) = v†
r(p2)γ0us(p1)

=
(

η†
r

−p σ3√
E+mµ

η†
r

√

E +mµ

)

(

1 0
0 −1

)







√

E +mµ ξs

p σ3√
E+mµ

ξs







= −2 p η†
r σ

3ξs ∼ −2E η†
r σ

3ξs = −
√
s η†

r σ
3ξs .

(1.61)

Using the definition of the 2-components spinors in eqs. (1.49):

σ3ξ+ = ξ+ , σ3η+ = η+ ,

σ3ξ− = −ξ− , σ3η− = −η− .
(1.62)

Therefore, if the spinors are in the same helicity state:

v̄+(p2)u+(p1) = −
√
s , v̄−(p2)u−(p1) =

√
s , (1.63)

while if they are in opposite helicity states the product is identically 0:

v̄+(p2)u−(p1) = v̄−(p2)u+(p1) = 0 . (1.64)

Finally, the polarized matrix element for the s channel is

Ms(µ
+
Rµ

−
L → ZLZL) = Ms(µ

+
Lµ

−
R → ZLZL) = 0 (1.65)

for opposite polarizations, while for muon in the same polarization state it is

Ms(µ
+
R,Lµ

−
R,L → ZLZL)

E≫mZ−−−−→mµ

v

g

2mW

v̄±(p2)u±(p1) =

mµ

4 v2
(∓

√
s) = ∓

√
2GFmµ

√
s .

(1.66)

Here, the indices R and L stand for the positive and negative helicities respectively.
Now we look at the t and u channels. Starting from t

iMt = v̄(p2)
(

−i g
cw

)

γµ
(

gV − gAγ
5
)

ǫµ
∗(p4)

i(/p1
− /p3

+mµ)

t−mµ
2

·

·
(

−i g
cw

)

γν
(

gV − gAγ
5
)

ǫν
∗(p3) u(p1)

∼ −i
(

g

cw

)2

v̄(p2)
/p4

mZ

(

gV − gAγ
5
) /p1

− /p3
+mµ

t−mµ
2

/p3

mZ

(

gV − gAγ
5
)

u(p1)

= −i
(

g

cw mZ

)2 1

t−mµ
2

[ v̄(p2) /p4

(

gV − gAγ
5
)2

(/p1
− /p3

)/p3
u(p1) +

+mµ v̄(p2) /p4

(

gV − gAγ
5
) (

gV + gAγ
5
)

(/p1
− /p3

)/p3
u(p1) ]

(1.67)
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we get, after some algebra,

Mt = −
(

g

cw mZ

)2 1

t−mµ
2

(V + A ) (1.68)

where the vector and axial part are

V =
(

gV
2 + gA

2
)

(mµ
2 − t) v̄(p2) /p4

u(p1) − 2 gA
2mµ v̄(p2) /p4/p3

u(p1) , (1.69)

A = 2 gV gA (mµ
2 − t) v̄(p2) /p4

γ5 u(p1) + 2 gV gAmµ v̄(p2) /p4
γ5
/p3
u(p1) . (1.70)

Using gamma algebra and the Dirac equation to simplify these expressions, we get

V + A = (t−mµ
2) v̄(p2) /p4

[

−
(

gV
2 + gA

2
)

+ 2 gV gAγ
5
]

u(p1)

− 4 gA
2 mµ

2 v̄(p2) /p4
u(p1) + (t−mµ

2)mµ

[

2 gA
2 + 2 gV gAγ

5
]

u(p1)
(1.71)

and finally

Mt = −
(

g

mW

)2 1

t−mµ
2

[

−4 gA
2 mµ

2 v̄(p2) /p4
u(p1)

]

−
(

g

mW

)2

v̄(p2) /p4

[

−
(

gV
2 + gA

2
)

+ v̄(p2) 2 gV gAγ
5
]

u(p1)

−
(

g

mW

)2

v̄(p2)mµ

(

2 gA
2 + 2 gV gAγ

5
)

u(p1) .

(1.72)

Similarly, for the u channel:

Mu = −
(

g

mW

)2 1

u−mµ
2

[

−4 gA
2 mµ

2 v̄(p2) /p3
u(p1)

]

−
(

g

mW

)2

v̄(p2) /p3

[

−
(

gV
2 + gA

2
)

+ v̄(p2) 2 gV gAγ
5
]

u(p1)

−
(

g

mW

)2

v̄(p2)mµ

(

2 gA
2 + 2 gV gAγ

5
)

u(p1) .

(1.73)

Combining the two amplitudes, the axial part cancels leaving only the vectorial and
scalar ones:

Mt + Mu =
g2

mW
2

4mµ
2 gA

2v̄(p2)

(

/p4

t−mµ
2

+
/p3

u−mµ
2

)

u(p1)

− g2

mW
2

4mµ gA
2 v̄(p2)u(p1) .

(1.74)

In the high-energy limit we can neglect masses in the denominators of the propagators
and approximate the Mandelstam variables as

t ∼ u ∼ −s

2
(1.75)
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so that

Mt + Mu
E≫mZ−−−−→ − g2

mW
2

4mµ gA
2 v̄(p2)u(p1) = − g2

4mW
2
mµ v̄(p2)u(p1) . (1.76)

Finally, the polarized matrix elements for the t and u channels are:

Mt+u(µ+
Rµ

−
L → ZLZL)

Mt+u(µ+
Lµ

−
R → ZLZL)

E≫mZ−−−−→ 0 , (1.77)

Mt+u(µ+
Rµ

−
R → ZLZL)

Mt+u(µ+
Lµ

−
L → ZLZL)

E≫mZ−−−−→ − g2

4mW
2
mµ (∓

√
s) = ±

√
2GFmµ

√
s . (1.78)

To sum up, the longitudinal polarizations of the vectors are responsible for the potential
energy growth of the matrix element, however for muons in opposite polarization states
the s channel is identically 0, and the t+ u channels are suppressed independently with
growing

√
s:

Ms+t+u(µ+
Rµ

−
L → ZLZL) , Ms+t+u(µ+

Lµ
−
R → ZLZL)

E≫mZ−−−−→ 0 . (1.79)

For muons in the same polarizatrion state, the t and u channels have a dependence on√
s, but this is exactly cancelled by the diagram with the Higgs:

Ms+t+u(µ+
Rµ

−
R → ZLZL)

Ms+t+u(µ+
Lµ

−
L → ZLZL)

E≫mZ−−−−→ ∓
√

2GFmµ

√
s±

√
2GFmµ

√
s = 0 . (1.80)

This last cancellation among the s and the t+u channels is particularly surprising, since
the first diagram depends on the Higgs couplings, while the other two are not in any way
related to the presence of the Higgs, at least apparently. Indeed the mass of the muon
multiplying

√
s is provided by the Higgs mechanism, and the presence of the Higgs scalar

is necessary to unitarize the SM by compensating for this growth in energy.
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Chapter 2

Investigating the Higgs couplings

The first two runs of LHC have provided a decisive test of the SM, confirming the success
of the present description of strong and electroweak interactions at present energies. In
particular, an important milestone was set by the discovery in 2012 of a scalar boson
fitting the properties of the SM Higgs, with a single doublet and the minimal set of
interactions providing the fermions and gauge bosons masses, completing the particle
content of the SM.
Up to now all the experimental results at colliders are compatible with SM predictions.
However, while the gauge interactions have been probed with great precision, the tests
of the Higgs boson interactions have not yet reached the same level of accuracy. The
Higgs sector is therefore the most mysterious and less understood sector of the SM, and
improving the precision on Higgs parameters is among the most pressing issues of any
future program in particle physics.

2.1 Overview on Higgs couplings measurements

After the conclusion of LHC Run II in 2018, a major improvement on the measures of
the Higgs properties is expected with the high luminosity LHC (HL-LHC) upgrade [8],
[9]. Meanwhile, the discussion over which future collider will come next is already taking
place.

2.1.1 Higgs interactions at LHC

The left panel of Figure 2.1 [10] presents the current relative precision on Higgs couplings
measurements, and the projections for HL-LHC. Here and in what follows, the parameter
κi, defined as

κi ≡ gi

gSM
i

(2.1)
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specifies the deviation of the coupling gi of the Higgs boson to a given particle i from the
SM expectation. The couplings to gauge bosons can be measured through the diboson
decays of the Higgs into γγ, ZZ and WW , and their current uncertainty is around
10%. On the other hand, the Yukawa sector has not yet been tested at the same level
of precision. On the right of Figure 2.1 are shown the 2021 results from the CMS
experiment [3]. The best information currently available is on the Higgs couplings to the
third-generation charged fermions, while the only evidence of the Yukawa coupling to the
first two generations of fermions is the muon Yukawa coupling, which has an uncertainty
of about 100%.
With the HL-LHC, significant improvements are expected for the Higgs couplings with
gauge bosons, reaching a relative precision of 1 − 2%. Moreover, the muon coupling will
be measured with an uncertainty of 4%.

Figure 2.1: Left: relative precision on Higgs coupling modifiers κi, determined by ATLAS
and CMS with the LHC data at present, and as expected for HL-LHC. Right: the best fit
estimates for the Yukawa couplings at CMS compared to their corresponding prediction
from the SM. In the lower panel, the ratios of the measured coupling modifiers values to
their SM predictions are shown.

2.1.2 Future prospectives

Different types of future colliders are being discussed, and their predicted uncertainties on
the Higgs couplings are reported in Table 2.2, combined with HL-LHC results [11]. One
of the proposals for the next collider facility is an electron-positron collider running at the
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Figure 2.2: Expected relative precision on Higgs coupling modifiers κ for future accel-
erators beyond the LHC era. An asterisk (*) indicates the cases in which the HL-LHC
dominates the combination. FCC-ee/eh/hh corresponds to the combined performance
of FCC-ee240+FCC-ee365, FCC-eh and FCC-hh.

Zh threshold energy (Higgs factory) [10], such as the International Linear Collider (ILC)
[12],[13], the Future Circular Collider (FCC-ee)[14] or the Circular Electron-Positron
Collider (CEPC) [15], while the Compact Linear Collider (CLIC) [16] would run in the
multi-TeV range. Alternatively, lepton-hadron or hadron-hadron colliders like the FCC-
eh and the FCC-hh are expected to reach respectively 50 and 100 TeV [17]. Compared to
the HL-LHC, the e+e− colliders improve most parameters by about factors of 5-10, with
the exceptions of top, γZ and µ couplings. For fermions, the best sensitivity is reached
for b quarks and τ , and it is below 1%.

2.2 The muon Yukawa coupling

The next target in the investigation of Higgs properties is the muon Yukawa coupling.
Reaching a better precision on this measure is interesting for several reasons.
On one hand the muon Yukawa is the most experimentally sensitive probe of the Higgs
boson couplings to second-generation fermions at the LHC. Since the last results are not
yet at the 5 σ level for discovery, there is still room for O(100%) corrections.
Moreover, some recent issues, like the anomalous muon g − 2 and the discrepancy be-
tween the branching ratios of B-meson decay to muons and electrons, are suggesting the
presence of potential new physics related to muons, motivating a deeper investigation on
muon properties.
Finally, among the many future accelerators proposals on the table, there is a high-energy
muon collider, which holds interesting prospects for new physics searches at the energy
frontier as well as precision measurements for SM physics and beyond, in particular in
connection with the muon anomalies.
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All these arguments are prompting the interest towards the study of processes that would
allow a better sensitivity on this currently elusive parameter.

2.2.1 Muon anomalies

The recent g − 2 and B-decay anomalies offer experimental hints for flavour-violating
new physics that point strongly and specifically to muons. If confirmed, these anomalies
might become primary drivers for particle physics research, supporting the need for a
deeper investigation on muon properties.

Muon g − 2

The magnetic and electric dipole moments are intrinsic properties of charged spinning
particles like the leptons.
On the classical level, an orbiting particle with electric charge e and mass m has a
magnetic dipole moment given by

−→µm =
e

2m

−→
L (2.2)

where
−→
L is the angular momentum, and an electrical dipole moment

−→
de can be present

due to a relative displacement between the centers of positive and negative charges.
These moments contribute to the electromagnetic interaction Hamiltonian with electric

and magnetic fields
−→
E and

−→
B as

H = −−→µm · −→
B − −→

de · −→
E . (2.3)

For a particle with spin, the magnetic moment is intrinsic and is obtained by replacing

the angular momentum operator
−→
L with the spin operator

−→
S = −→σ /2

−→µm = g Q
e

2m

−→
S (2.4)

where g is called gyromagnetic factor. Dirac equation correctly predicts a value of g = 2
for a free electron (and in general an elementary fermion like the muon), twice the value
g = 1 known to be associated with orbital angular momentum.
However, when QFT is taken into account, the g − 2 receives radiative corrections from
perturbative loops in the µ+µ−γ interaction. The deviation from the Dirac (tree-level)
result is the anomalous magnetic moment

a ≡ g − 2

2
. (2.5)

The anomalous magnetic moment of the electron ae is employed to determine the value of
the fine-structure constant α, due to the extreme experimental precision on its measure-
ment. It is therefore used as an input parameter in the SM. On the other hand, because
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of the high precision of its theoretical and experimental determinations, the muon aµ has
always been considered a powerful test on new physics and has been recently measured
with high precision. The SM contributions to the muon anomaly include electromagnetic,
strong, and weak interactions that arise from virtual effects involving photons, leptons,
hadrons, and the W , Z and Higgs bosons. The theoretical SM predictions [18] found a
value of

ath
µ = 116591810(43) · 10−11 . (2.6)

On the experimental level, the Brookhaven (BNL) collaboration found in 2006 a value
larger than ath

µ by 3.7 standard deviations (σ) [19]. More recently, the Fermilab (FNAL)
experiment obtained a value exceeding that of the SM by 3.3 σ [20], in agreement with
BNL result. The experimental average

aexp
µ = 116592061(41) · 10−11 (2.7)

increases the significance of the discrepancy between ath
µ and aexp

µ to 4.2 σ as shown in
Figure 2.3 [20], motivating the development of SM extensions.

Figure 2.3: Experimental values of aµ from BNL, FNAL, and the combined average. The
SM prediction is also shown.

It is worth mentioning that lattice calculations for the hadronic contribution [21] predict
a value compatible with experimental observations, and that further studies are being
made on the topic.

B-meson decay anomaly

A distinctive feature of the SM is that the different charged leptons, the electron, muon
and tau, have identical electroweak interaction strengths. This principle is known as
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lepton universality, and the only exception in the SM is the lepton-Higgs interaction,
being dependent on the different lepton masses.
Previous measurements have shown a wide range of particle decays are consistent with
this principle of lepton universality. However, in 2021 the LHCb experiment provided
evidence for the breaking of lepton universality in beauty-quark decays, with a signifi-
cance of 3.1 standard deviations. The measurements are of processes in which a beauty
meson like B+ transforms into a strange meson (K+) with the emission of two charged
leptons, either e+e− or µ+µ−. The B+ hadron contains a beauty antiquark, b̄, and the
K+ contains a strange antiquark, s̄. Thus at the quark level the decay involves a b̄ → s̄
transition mediated in the SM by virtual γ, W±, Z0 bosons and the top quark, as shown
in Figure 2.4 [22].

Figure 2.4: Fundamental processes contributing to B+ → K+l+l− decays in the SM.

The ratio between the branching fractions

RK =
B(B+ → K+ µ+ µ−)

B(B+ → K+ e+ e−)
(2.8)

is predicted with a precision of O(1%) to be close to 1 [23–25], since the masses of
electrons and muons are small compared to that of b and the difference is therefore
negligible. Table 2.1 shows the recent measurements of the branching ratios at the
LHCb experiment [22].
The ratio RK was found to be 3.1 σ below the SM expectation, giving evidence for the
violation of lepton universality in this decay.
If confirmed by future measurements, this violation of lepton universality would imply
physics beyond the Standard Model, such as a new fundamental interaction between
quarks and leptons.
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LHCb-data ’14,’21 SM
B(B+ → K+ µ+ µ−) (1.19 ± 0.03 ± 0.06) · 10−7 1.75 · 10−7

B(B+ → K+ e+ e−) (1.40 ± 0.07 ± 0.06) · 10−7 1.75 · 10−7

RK 0.846+0.044
−0.041 1.00 ± 0.01

Table 2.1: Branching ratios and their ratio RK as measured at LHCb and their SM
prediction.

2.2.2 Muon colliders

The high-energy muon collider is among the new accelerators that are being considered
for the future advances in particle physics [26–30]. Despite their technological challenges,
such facilities have great potential for precision measurements for SM physics and be-
yond, and for the investigations of muon properties in particular. Electron-positron and
proton-proton colliders are typically associated with complementary strategies of explo-
ration. While the former offer much more precise measurements, allowing for the search
of indirect manifestation of new physics, the latter can access heavy particles directly
thanks to a higher energy reach. Electrons are indeed subjected to a considerable en-
ergy loss due to the synchrotron radiation, which scales with the beam particle mass as
∼ m−4. Hence, because of the lightness of electrons, their energy reach is considerably
limited, compared to protons. Muon colliders would combine the benefits of lepton and
hadron colliders in a single machine that works effectively as a precision facility as well
as an exploratory machine.
Muon colliders leverage the strength of leptonic colliders, which is they collide elementary
particles. This means that:

• in first approximation their center-of-mass energy is known and it is entirely avail-
able for the hard scattering process, making leptonic collisions more effective than
hadronic ones with comparable energy and luminosity,

• the final states are cleaner relative to those produced by the dissociation of com-
posite particles, which instead generate a background of underlying events.

These advantages come at a cost. In fact there are severe technical challenges related
to the fact that the muon is not stable, having a very short lifetime of 2.2 µs. While
the push to high momentum beams can extend the lab frame lifetime up to the order
of seconds, the exponential decay of the muon produces an intense source of collinear
off-momentum electrons. The electrons then interact with the beamline components,
producing electromagnetic showers that result in a high flux of low-energy photons and
soft neutrons; these are the primary source of background for a muon collider detector.
Another important aspect must be taken into account: the decay neutrinos will produce
a secondary radiation, with hadrons, muons and electrons traversing the earth that may
constitute a radiological threat.
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However, the technological development has already shown considerable progress in ad-
dressing these issues, making the muon collider a competitive candidate for high-energies
future facilities.

Prospectives on Higgs couplings measurements

Two possible configurations of muon colliders have been proposed so far [26]: a muon
collider running at the Higgs pole mass, and a higher energy collider operating in the
multi-TeV range.
A 125 GeV muon collider could directly determine the Higgs width and couplings with
a production channel µ+µ− → h. The expected sensitivity reach is shown in Figure 2.5
[29], compared to that of HL-LHC and an e+e− collider at 240 GeV.

Figure 2.5: The Higgs couplings and decay width precisions at HL-LHC in the S2 scenario
(which assumes that the current uncertainties can be reduced by a factor of two by the
end of the HL-LHC), at a circular e+e− collider, at a 125 GeV muon collider, and the
combination of e+e− and the muon collider. Lepton colliders scenarios are combined
with the HL-LHC measurements. The column shows results with ΓH treated as a free
parameter, the horizontal marks show results assuming that the Higgs has no exotic
decays.

Not surprisingly, the Higgs production channel gives the muon Yukawa coupling precision
a significant boost of more than one order of magnitude, from ∼ 4% to ∼ 0.4%, with
which a future e+e− collider could not compete. On the other hand, a 240 GeV e+e−

collider is much better at measuring the Higgs coupling to Z, thanks to its excellent
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Zh production measurement. For the other couplings, the two colliders reaches are
comparable when individually combined with HL-LHC.
Despite the considerable improvement on the measure of yµ, the physics potential of a
125 GeV muon collider is not competitive with other colliders such as the Higgs factory.
On the other hand, a multi-TeV muon collider would exploit the potential of muons in
reaching extremely high energies, offering an indirect access to potential new physics
with scale-dependent effects.

In what follows, motivated by the promising potential of a multi-TeV muon collider we
lay the groundwork to determine its sensitivity in measuring the muon Yukawa coupling.

27



Chapter 3

Theoretical frameworks

Our goal is determining the precision on the measurement of the muon Yukawa. In order
to compute new physics deviations form the SM, we need a framework to parametrize
these effects. In the first section, we discuss two approaches, the Standard Model Ef-
fective Field Theory and the κ formalism. Then, we focus on the parametrization of
muon-Higgs coupling deviations specifically and discuss some differences in the two ap-
proaches.

3.1 The SMEFT and κ formalisms

In the following we discuss two different parametrizations of new physics effects. The
EFT framework is a well-defined Quantum Field Theory, allowing to perform consistently
calculations below a certain energy scale and to make predictions on the heavier physics.
On the other hand, experimental results are usually presented in the simpler κ famework,
which however presents several deficiencies.

3.1.1 The Effective Field Theory approach

Effective theories are the low-energy limit of more fundamental theories. They allow to
make meaningful predictions in situations characterized by sufficiently low energy scales,
even when the exact theory is not known. This is not an exotic concept in physics.
For example Newtonian mechanics provides a complete framework for the description of
macroscopic and non-relativistic physics, even if the short distance properties of Nature
are not known.
Just like any QFT, an Effective Field Theory (EFT) is a consistent theory that allows to
compute measurable quantities without any additional input from the underlying theory.
Calculations come with a finite error that depends on a small expansion parameter δ,
the power counting. When the power n of the expansion is fixed, the error is of order
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δn+1. The number of free parameters of the EFT Lagrangian depends on n and increases
with increasing n [31].
Two different approaches to effective theories are possible, depending on whether the
dynamics at high energy is known and calculable. If the full UV theory is known, we can
work in a simpler context by integrating out the heavy physics. The resulting EFT has an
infinite tower of local operators that are suppressed by powers of the heavy scale. If the
full theory is not known, EFTs provide a parameterization of the unknown interactions,
allowing to estimate their magnitudes and to classify their relative importance. The new
operators can then be constrained with experimental data.
The reason why EFTs are applicable to both cases with the known and with the unknown
high-energy theory is that in an effective description only the relevant degrees of freedom
are used and the high-energy physics is encoded indirectly through interactions among
the light states.

The decoupling theorem

The key principle of the effective theory is a separation of scales, summarised in the
Appelquist-Carazzone decoupling theorem [32]. It states that, for a renormalizable un-
broken gauge theory where different mass scales are present, at momenta small compared
to the larger masses the dynamics is determined by the light sector of the theory. The
role of the heavy fields in diagrams where they only appear as internal propagators is in
their contribution to the coupling constant and the field strength renormalization.
These fields are removed from the theory by integrating them out of the original La-
grangian, producing the effective Lagrangian that can be used to compute low energy
observables. This is formally done by performing a path integral over the heavy states
φH only, so that the resulting Lagrangian depends only on the light fields φL [33]:

∫

DφH ei
∫

L(φL,φH) = ei
∫

LEFT(φL) . (3.1)

The effective Lagrangian can be expanded into a series of local operators O(d)
i , where d

is their mass dimension. The information on heavy degrees of freedom is encoded in the
Wilson coefficients ci:

LEFT =
∑

i

ci

Λd−4
O(d)

i . (3.2)

The effective theory is consistent when it is applied to processes at energies lower than
Λ, which is the high-energy cutoff of the EFT. For these processes, the behavior of the
operators is determined by their dimension, which classify them into three categories
[34]:

• relevant (d < 4)

• marginal (d = 4)
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• irrelevant (d > 4)

and their contribution to a matrix element is suppressed by a factor

(

E

Λ

)d−4

.

Irrelevant operators are thus small at low energies, while couplings of positive mass
dimension give rise to effects which become large at energies much smaller than Λ and
are called relevant. In 4 dimensions, the only possible relevant operators are

• d = 0: the unit operator,

• d = 2: boson mass term,

• d = 3: fermion mass term and cubic scalar interaction.

Marginal operators are equally important at all energy scales, and quantum effects could
modify their scaling either toward the relevant or irrelevant side. Some examples are the
φ4 theory, QED, QCD and Yukawa interactions.
When there is a large gap between the scale E of the process and the heavy states, the
irrelevant operators can be neglected and the resulting theory contains only relevant and
marginal operators and is called renormalizable.

The SM as an EFT

The presence of Landau poles in the SU(2)L×U(1)Y theory suggests that the electroweak
SM is an EFT valid up to a certain UV scale Λ. The more fundamental theory completing
the picture is expected to involve some new particles heavier than the Higgs vev, which is
the characteristic scale of the SM. A suitable UV completion should satisfy the following
requirements [35]:

• it should contain the gauge group SU(3)C × SU(2)L × U(1)Y ,

• all the SM states should be included either as fundamental or composite fields,

• at energies E < Λ, it should match the SM up to corrections of order O(E/Λ).

According to the decoupling theorem, the heavy states leave some footprints in the low
energy Lagrangian in the form of gauge invariant irrelevant operators.
The power of EFT description is that, even if the underlying theory is not known, it is
possible to build an effective, model-independent Lagrangian describing the low-energy
limit of a wide class of SM extensions. In the SM Effective Field Theory (SMEFT) the
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new physics is parametrized by adding to the SM Lagrangian all possible local, higher-
dimensional operators built out of the SM fields and preserving the fundamental gauge
symmetry SU(3)C × SU(2)L × U(1)Y :

LSMEFT = L(4)
SM +

1

Λ

∑

i

c
(5)
i O(5)

i +
1

Λ2

∑

i

c
(6)
i O(6)

i + ... . (3.3)

Their contribution is automatically ordered by the power expansion in 1/Λ. This is
in principle an infinite sum. In practice, just a few terms are relevant. Only a finite
number of terms has to be kept because the theory needs to reproduce experiments
to finite accuracy and also because the theory can be tailored to specific processes of
interest. The higher the dimension of an operator, the smaller its contribution to low-
energy observables. Hence, obtaining results to a given accuracy requires a finite number
of terms.
The lowest dimension new term in the SMEFT is the only dimension 5 operator:

L(5) =
c(5)

rs

Λ
ǫijǫkl(LT

irCLks)φjφl + h.c. (3.4)

where r, s are flavor indices, i, j, k, l are SU(2)L indices and C = iγ2 is the charge-
conjugation operator. However, this term violates lepton number by 2 units. Therefore
it is not present if we assume lepton number conservation. In this case, the most relevant
effective operators are those of dimension 6. In absence of additional symmetries, the
number of independent operators for each generation of fermions is 59, and 2499 for three
generations. It is then reasonable to consider only a subset of operators when we study
the sensitivity of a measurement.
Once the framework is set by introducing specific higher-dimensional operators, the
measurements can be used to put constraints on the effective coefficients, from which we
can extrapolate bounds on the UV theory.

3.1.2 The κ framework

The SMEFT is a well-defined QFT built with precise requirements that ensure consis-
tency with the UV extensions of the SM. On the other hand, the formalism currently used
to present experimental results is the κ framework, which we have already encountered
in chapter 2. This approach is an ad-hoc rescaling of couplings in the SM without a field
theory embedding, although a mapping can be performed when further UV assumptions
are made. We summarise the main limitations of the κ framework with respect to the
EFT.

• Since the complete theory can introduce new structures that are not captured by
the κ framework , it is not always possible to map consistently the deviations from
the κ fits to a UV quantum field theory.
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• The κ formalism is not systematically improvable with perturbative corrections.
The only way to determine perturbative corrections without assuming the SM is
with an effective field theory embedding. Higher order calculations are however
made necessary by the increasing experimental accuracy.

• The formulation is intrinsically non-gauge invariant. Since the couplings to the
Higgs are left arbitrary, it will likely lead to non-unitary matrix elements. This
is not a concern in an EFT, since it must be unitary only below the UV cutoff
Λ. However, the κ formalism do not contain any cutoff scale in its definition that
defines its range of validity and it is in principle consistent at all energies. For this
reason, when it is not embedded in an EFT the violation of unitarity is problematic.

The κ framework was constructed as a first probe of the Higgs boson properties and
constitutes a reasonable framework for testing the consistency of the experimental data
with the SM Higgs. However, with the increased experimental precision, it is not an
appropriate tool for a consistent analysis of the Higgs properties. An EFT description is
more suited for future high-precision studies as it would overcome the main limitations
of the κ framework.

3.2 Muon Yukawa coupling in SMEFT

Our target is the muon Yukawa coupling, so we consider a 6 dimensional operator affect-
ing the muon coupling to the Higgs doublet

L(6) =
c6

Λ2
(φ†φ− v2

2
)(L̄φµR + h.c.) . (3.5)

The quantities entering eq. (3.5) are defined as follows:

φ =

(

φ+

φ0

)

the Higgs doublet field ,

v = vacuum-expectation-value (vev) of the Higgs field ,

L =

(

νµ L

µ−
L

)

the left-handed lepton doublet of the 2nd generation .

The Wilson coefficient c6 is suppressed by a high energy scale Λ, which can be interpreted
as the energy cutoff for the validity of the EFT.
The operator has been written with the constant term v2/2 subtracted in order to man-
tain the tree-level relation between the muon mass and the Yukawa coupling

mµ =
v ySM

µ√
2

(3.6)

also in the EFT extension.
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3.2.1 Feynman rules

In order to get the Feynman rules from the Lagrangian, we need to choose a parametriza-
tion for the four degrees of freedom of the Higgs doublet. When expanding the Higgs
doublet around the vev in the Lagrangian, we will get different Feynman rules according
to the gauge choice. In any case, the final result for the cross section must be gauge
invariant, hence independent of the choice, however one of them may provide significant
simplifications depending on the situation.

Unitary gauge

After EW symmetry-breaking, when expanding the new operator of eq. (3.5) in the
unitary gauge, i.e. as in (1.16), we get three new vertices involving the muon and Higgs
fields:

L(6) =
c6

Λ2

(

φ†φ− v2

2

)

(

L̄φµR + h.c.
)

=
c6

Λ2

1

2

(

2vh+ h2
)

(

µ̄L

v + h√
2
µR + h.c.

)

(3.7)

=
1√
2

c6

Λ2

(

v2h+
3

2
vh2 +

1

2
h3
)

(µ̄LµR + µ̄RµL) .

The corresponding Feynman rules are:

V1 =

µ−

µ+

h = i
c6

Λ2

v2

√
2
, (3.8)

V2 =

µ−

µ+

h

h

= i
c6

Λ2

3 v√
2
, (3.9)

V3 =

µ−

µ+

h

h

h

= i
c6

Λ2

3√
2
. (3.10)
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The contribution of the first diagram in eq. (3.8) is a Yukawa-like term with a strength
given by

yNP
µ =

c6v
2

Λ2
. (3.11)

The new V2 and V3 vertices generate a local interaction between muons and 2 or 3 Higgs
bosons. All vertices are proportional to the c6/Λ

2 coupling.

Rξ gauges

Instead of getting rid of the Goldstone bosons, we can keep them and expand the La-
grangian using the parametrization in (1.15). Hence we now get interactions between
µ−, µ+ and the three Goldstone bosons, as well as the Higgs:

L ⊃ c6

2
√

2Λ2
[ (h2 + 2vh) (µ̄LµR + µ̄RµL) (v + h) +

(h2 + 2vh) iGz (µ̄LµR − µ̄RµL) +

(2G+G− +Gz
2) (µ̄LµR + µ̄RµL) (v + h) +

(2G+G− +Gz
2) iGz (µ̄LµR − µ̄RµL) ] .

(3.12)

The + or - sign between µ̄LµR and the hermitian conjugate depends on the number of
Golstone bosons. The vertices involving the Higgs only are the same as for the unitary
gauge, while for the Goldstone bosons they are:

1 Goldstone

µ−

µ+

Gz

h

= ± c6

Λ2

v√
2

µ−

µ+

G+

G−

h

= ± c6

Λ2

1√
2

(3.13)

2 Goldstone

µ−

µ+

G+

G−

= i
c6

Λ2

v√
2

µ−

µ+

G+

G−

h

= i
c6

Λ2

1√
2

µ−

µ+

Gz

Gz

= i
c6

Λ2

v√
2

µ−

µ+

Gz

Gz

h

= i
c6

Λ2

1√
2

(3.14)
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3 Goldstone

µ−

µ+

Gz

G+

G−

= ± c6

Λ2

1√
2

µ−

µ+

Gz

Gz

Gz

= ± c6

Λ2

3√
2

(3.15)

As we will see in section 4.2, a non-unitary gauge choice is very useful when we want to
study multiboson production in the high-energy limit, since the vertices of eqs. (3.13),
(3.14), (3.15) can be used to write the dominant diagrams for certain processes.

3.2.2 EFT vs κ framework

We summarise the main features of the two frameworks, focusing on our theory with the
operator in eq. (3.5):

• EFT framework

There are new Feynman rules coming form eqs. (3.7) and (3.12), depending on the
gauge choice. All new vertices are proportional to the new physics coupling c6/Λ

2.

• κ framework

The new physics effects are not encoded in a specific model, as for the EFT, but
they are instead parametrized in a generic coefficient κµ modifying the strength of
the SM vertex. For the Yukawa coupling this is given by

κµ ≡ yµ

ySM
µ

. (3.16)

There is not any new Feynman rule, the only modification is the strength of the
Yukawa vertex.

It is possible to identify a one way mapping between the free parameters of the theories,
which in this case are c6/Λ

2 and κµ. In the EFT, the modification of the first diagram
to the SM coupling ySM

µ can be written as

yµ ≡ ySM
µ + yNP

µ =

√
2mµ

v
+
c6v

2

Λ2
≡ ySM

µ κµ , (3.17)

so that κµ is defined as

κµ ≡ 1 +
c6

Λ2

v3

√
2mµ

. (3.18)
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For κµ = 1 we get the Yukawa of the SM. The deviation is proportional to the new
coupling c6/Λ

2.

Vertices cancellations in the κ framework

The κ framework can be embedded consistently in the SMEFT, when we consider specific
processes. It is indeed equivalent to introducing higher dimensional operators and tune
their coefficients properly to exactly cancel all the new vertices, except for the Yukawa-
like term, which does not receive any higher-order correction. Having subtracted v2/2
from the doublet product, each higher-order operator will start affecting vertices with
always a higher number of Higgs bosons.
Introducing the operator in (3.5) we derive the 3 new Feynman rules of eqs. (3.8), (3.9),
(3.10) of the SMEFT framework. If we want to introduce only the Yukawa-like vertex
V1 of (3.8), we have to “turn off” the others setting them to 0. This can be done by
introducing in the SMEFT higher-dimension operators of the type

L(4+2n) =
c4+2n

Λ2n

(

φ†φ− v2

2

)n

(L̄φµR + h.c.) . (3.19)

From their expansion, we will find new Feynman rules involving up to 1 + 2n Higgs or
Goldstone bosons, which we can calibrate in order to cancel properly the extra vertices.
We show as an example how the dimension 8 and dimension 10 operators can cancel the
vertices in (3.9) and (3.10). Since we want to fix 2 vertices, we need to introduce 2 extra
degrees of freedom, c8 and c10

L(8) =
c8

Λ4

(

φ†φ− v2

2

)2

(L̄φµR + h.c.) , (3.20)

L(10) =
c10

Λ6

(

φ†φ− v2

2

)3

(L̄φµR + h.c.) . (3.21)

Expanding the Higgs doublet in the unitary gauge as in (1.16), we find

L(8) =
c8

Λ4
√

2

1

4

[

4v3h2 + 8v2h3 + 5vh4 + h5
]

(µ̄LµR + µ̄RµL) , (3.22)

L(10) =
c10

Λ6
√

2

1

8

[

8v4h3 + 20v3h4 + 18v2h5 + 7vh6 + h7
]

(µ̄LµR + µ̄RµL) . (3.23)

The new Feynman rules for the vertices with 2 and 3 Higgs in (3.9) and (3.10) become

V2 = i 2

(

c6

Λ2
√

2

3

2
v +

c8

Λ4
√

2
v3

)

, (3.24)

V3 = i 6

(

c6

Λ2
√

2

1

2
+

c8

Λ4
√

2
2v2 +

c10

Λ6
√

2
v4

)

. (3.25)
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Now, imposing V2 = 0 and V3 = 0, we find the required values for c8 and c10, namely

c8

Λ4
√

2
= − 3

2v2

c6

Λ2
√

2
,

c10

Λ6
√

2
=

5

2v4

c6

Λ2
√

2
. (3.26)

It is worth remarking an important consequence of this interpretation. As we can see from
the expansions in (3.22) and (3.23), the higher dimensional operators generate vertices
with up to 5 and 7 Higgs/Goldstone bosons respectively, which are not present in the
6 dimensional SMEFT. The equivalence between the two frameworks depends on what
processes we want to study. For example, in the next chapter we will study the effect of
operator on the production of 2, 3, and 4 bosons. In the κ framework, while the vertices
µ+µ−nh, n ≥ 2 are 0, this is not the case for the contact terms with the Goldstone bosons.
The choice of parameters in (3.26) introduces new vertices with 4 Goldstone boson as
well that are proportional to c6. These vertices generate the dominant amplitudes in
the high-energy limit, causing an enhancement with respect to the EFT case in 4 boson
production. This result is shown later in section 4.3.2.
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Chapter 4

Multiboson production

In section 2.2 we discussed how measuring with high precision the muon Yukawa coupling
might give hints on heavy new physics, and that the muon collider could likely be the most
suited facility for spotting these deviations. The ultimate goal is now finding processes
that are sensitive to BSM effects. Thanks to the high-energy reach of muon colliders, the
muon coupling can be directly measured in multiboson production via muon annihilation,
leveraging on the energy growth induced by the violation of unitarity [36]. Indeeed, as
discussed in section 1.2.2, the Higgs field plays a fundamental role in the unitarization
of the SM, ensuring that energy-growing contributions are exactly cancelled among the
SM amplitudes.
As an example, we can consider the process µ+µ− → ZZZ: the amplitudes are shown
in Fig. 4.1. In the third diagram, the Higgs couple directly to the muon, hence the
amplitude is proportional to the muon mass. The mass dependence of the energy-growing
terms arising from the other amplitudes is instead of kinematic origin. The “miraculous”
cancellation between dangerous terms is a consequence of the mass generation mechanism
of the SM.

µ−

µ+

h
Z

Z

Z

µ−

µ+

Z

Z

Z

µ−

µ+

h Z

Z

Z

Figure 4.1: The three diagrams contributing to the µ+µ− → ZZZ process. The third
diagrams involving the Higgs makes the process sensitive to the muon Yukawa coupling.

If BSM effects are present, they become manifest by disrupting these cancellations, thus
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inducing an energy growth in the multiboson production cross section [37]. The deviation
from the SM prediction, which is instead unitarity safe, may become important in the
multi-TeV range.
The processes considered in this work are the µ+µ− annihilation into two bosons:

hh , hZ , ZZ , W+W− , (4.1)

three bosons:
hhh , hhZ , hZZ , ZZZ , W+W−h , W+W−Z , (4.2)

and four bosons:

hhhh , hhhZ , hhZZ , hZZZ , ZZZZ,

W+W−hh , W+W−hZ , W+W−ZZ , W+W−W+W− ,
(4.3)

in a range of center-of-mass energy 1 <
√
s < 30 TeV.

In absence of a specific new physics model, we parametrize the BSM effects in the EFT
framework. The κ framework is also considered for comparison.
All numerical analyses are carried out with MadGraph5 aMC@NLO, implementing
the EFT and κ frameworks with Feynrules.

4.1 Perturbative expansion in the effective coupling

In both the EFT and κ frameworks, we perturbatively expand the squared amplitude in
the new physics coupling c6/Λ

2:

|M|2 = |MSM|2 + 2
c6

Λ2
Re(M∗

SMMNP=1) +

+
c6

2

Λ4

[

|MNP=1|2 + 2Re(M∗
SMMNP=2)

]

+ (4.4)

+ ...

where MNP=i is the matrix element with i insertions of c6, thus MNP=i ∼ (c6/Λ
2)i. In

the expansion in (4.4) this dependence is extracted from the matrix element.
It is worth noticing that the first order contribution - linear in c6 - is unambiguous, in
the sense that there is only one type of contribution given by the interference between
SM amplitudes and those with only one new physics insertion. Going to higher orders
instead, we get different results cutting the expansion in M rather than in |M|2.
In what follows we denote the linear expansion (hence containing up to 1 c6) as NP1, the
quadratic expansion, involving only up to MNP=1, as NP2, and the expansion in which
we keep all new physics terms as NPall.
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4.1.1 First order suppression

Since the new physics contribution appears as a perturbative expansion, as shown in
eq. (4.4), we expect that each term brings a lower order correction to the previous ones,
being more suppressed by an extra factor c6/Λ

2. Actually, if the coefficients of the
expansion differ of several orders of magnitude, the hierarchy of the terms might be
altered. This is indeed what happens to the first order contribution: although we expect
it to be more relevant than the second, it is actually suppressed due to a hierarchy in
the polarized amplitudes. Hence, even though truncating the expansion at first order
may seem the most sensible choice because of its unambiguity, it would cut away the
dominant corrections.
In order to better understand the NP1 suppression, we can consider again the example
of ZZ production discussed in section 1.2.2 and analyse the polarized cross sections,
focusing on the production of longitudinaly polarized bosons ZL. This is a particularly
simple case since, as shown later, the EFT and κ framework coincide. Moreover, we
work in the unitary gauge, since the new physics contributes in a single diagram.

Unitarity cancellations in the SM

In the SM, there are three types of diagrams contributing, as shown in Fig. 4.2.

µ−

µ+

h
ZL

ZL

µ−

µ+

ZL

ZL

µ−

µ+

ZL

ZL

Figure 4.2: The three SM diagrams contributing to µ−µ+ → ZLZL.

As already discussed in section 1.2.2, longitudinal polarizations are the ones responsible
for the potential unitarity violation at high energies, but cancellations between the SM
polarized amplitudes (presented in Table 4.1) ensure that the energy growth is controlled.

λ− λ+ Ms Mt+u

RL,LR 0 a constant A(λ+, λ−)

RR,LL (a constant B) ±
√

2GFmµ

√
s (a constant C) ∓

√
2GFmµ

√
s

Table 4.1: High-energy limit of the matrix element for the production of longitudinally po-
larized Z. λ− and λ+ are the helicities of µ− and µ+ respectively. The energy-dependent
terms are computed using Goldstone Bosons Equivalence theorem.
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We observe that the scattering between opposite helicities is not problematic, while
cancellations happen between amplitudes for same helicity configurations. Moreover,
the s channel does not contribute to σ(LR) and σ(RL).
In Table 4.2 are displayed the polarized cross sections in pb at

√
s = 30 TeV from

MadGraph, for longitudinally polarized Z and for all polarizations of Z. For the ZL cross
section, the contributions from different diagrams are evaluated separately, in order to
highlight the diverging contributions that are cancelled.
In the production of longitudinally polarized bosons, as expected, for σ(LR) and σ(RL)
the s channel gives 0 contribution. However, looking at σ(RR) and σ(LL), we see how
the Higgs plays a fundamental role in the cancellation of divergences. Indeed, without the
Higgs - and the s channel diagram - the cross section is 10 orders larger than observed in
the SM with all three diagrams. What happens instead is that the diverging contributions
of the s channel and the u + t channels disappear when summing the matrix elements,
thus leaving a very small, constant contribution.
Focusing on the overall contributions from all channels, in the SM we observe a natu-
ral suppression of 2 orders of magnitude between scattering among same and opposite
polarizations. Moreover, longitudinal polarizations are themselves suppressed with re-
spect to transverse polarizations of several orders of magnitude actually, as observed by
comparing first and fourth columns.
This is the key to understand the suppression of the linear expansion NP1 in the EFT
(and κ) framework.

Energy growth in EFT and κ frameworks

We consider the situation in which the correction to the Yukawa coupling is exactly
equal to −ySM

µ , such that the Yukawa vertex is cancelled by settin κµ = 0. Imposing this
condition we get

c6

Λ2
=

√
2mµ

v3
≃ 1.00107 · 10−8 GeV (4.5)

σ(→ ZLZL) (pb) σ(→ ZZ) (pb)
λ− λ+ |s+ t+ u|2 |t+ u|2 |s|2 |s+ t+ u|2
LR 5.265 ·10−13 5.265 · 10−13 0 1.092 · 10−3

RL 2.431 ·10−13 2.425 · 10−13 0 0.6516 · 10−3

RR 2.362 ·10−15 1.179 · 10−5 1.173 · 10−5 4.936 · 10−6

LL 2.366 ·10−15 1.175 · 10−5 1.175 · 10−5 5.043 · 10−6

Table 4.2: Contributions of the initial polarizations to σ in the SM, for the production of
both polarized and unpolarized vectors. The first three columns report the values from
MadGraph at

√
s = 30 TeV, in pb, considering all three channels, only t and u, and only

s. The fourth column shows the values for all the Z polarizations.
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which, setting for example the new physics scale at Λ = 1 TeV, selects c6 = 0.01.
In addition to the previous diagrams of Fig. 4.2, there is now one extra diagram con-
tributing:

µ−

µ+

h
ZL

ZL

∼ 0 λ− λ+ = RL,LR
B′ ∓ c6

Λ2

v√
2

√
s λ− λ+ = RR,LL

(4.6)

where B′ is a constant, obatined using GBE theorem. Since there is not any new diagram
containing the vertices V2 and V3 of eqs. (3.9) and (3.10), the EFT and κ frameworks
coincide for this process. For κµ = 0, B′ = −B since the new physics vertex V1 is
∼ c6v

2/Λ2 = −ySM
µ .

Notice that this new matrix element is 6= 0 only for opposite helicities, thus σNP(LR)
and σNP(RL) are exactly the same as in the SM.
This is true at every perturbative order in the new physics coefficient expansion and
in particular it is true for NP1 and NP2. Therefore these initial polarizations are not
responsible for the growth in energy, which is instead due to the new diagram (only
present for opposite helicities) containing a term that grows with

√
s and does not cancel.

For NP1 we are introducing the interference among the new diagram and the ones of the
SM

|MNP1(RR,LL)|2 = |MSM(RR,LL)|2 + 2

[

B′ ∓ c6

Λ2

v√
2

√
s

]

· [B + C ] , (4.7)

while in NP2 we add on top of this the square of the new diagram, thus introducing a
growth with s instead of

√
s:

|MNP2(RR,LL)|2 = |MNP1(RR,LL)|2 +

[

B′ ∓ c6

Λ2

v√
2

√
s

]2

. (4.8)

The values for σ(RR) = σ(LL) for the production of ZLZL, in pb, are reported in Table
4.3. The fact that σNP2 is equivalent to the σSM without s channel is a consequence of
choosing κµ = 0. Indeed

|Mt+u
SM |2 =

(

C ∓
√

2GF mµ

√
s
)2

(4.9)
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SM NP1 NP2
σ(RR), σ(LL) 2.36 ·10−15 2.62 ·10−11 1.18 ·10−5

Table 4.3: σ(→ ZLZL) (pb) from MadGraph for polarized muons with same helicities at√
s = 30 TeV, in the SM and EFT/κ frameworks at first and second order in the new

physics coupling.

while imposing B′ = −B

|MNP2|2 = (B + C )2 + 2
(

−B ∓
√

2GF mµ

√
s
)

(B + C ) +
(

−B ∓
√

2GF mµ

√
s
)2

=
(

B2 + C2 + 2BC
)

+ 2
(

−B2 −BC ∓ B
√

2GF mµ

√
s∓ C

√
2GF mµ

√
s
)

+
(

B2 + 2GF
2mµ

2s± 2B
√

2GF mµ

√
s
)

= C2 ∓ 2C
√

2GF mµ

√
s+ 2GF

2mµ
2s

=
(

C ∓
√

2GF mµ

√
s
)2
. (4.10)

Looking at NP1 in Table 4.3, we notice that the contribute of σNP1(RR) and σNP1(LL) to
the production of longitudinally polarized bosons is dominant with respect to the other
initial polarizations σNP1(RL) and σNP1(LR), which are of order 10−13 as in the SM. So
the growth in energy would actually be visible if we observed longitudinal polarizations
only. However, as shown in Table 4.2, longitudinal polarizations are very suppressed
with respect to the transversal ones, thus becoming dominant only at high energies in
the EFT/κ framework. For this reason the growth in NP1 is not visible, but for NP2 it
gives relevant contributions that can be observed.

Unpolarized cross section

λ− λ+ SM NP1 NP2

LR 1.092 ·10−3 1.092 ·10−3 1.092 · 10−3

RL 6.516 ·10−4 6.516 ·10−4 6.506 · 10−4

RR 4.936 ·10−6 4.935 ·10−6 1.162 · 10−5

LL 5.043 ·10−6 5.074 ·10−6 1.192 · 10−5

unpolarized 4.384 ·10−4 4.385 ·10−4 4.416 · 10−4

Table 4.4: σ(→ ZZ) (pb) from MadGraph for polarized muons at
√
s = 30 TeV, in the

SM and EFT/κ frameworks at first and second order in the new physics coupling. The
last line shows the unpolarized cross section in each framework, i.e. averaged over initial
polarizations.

In Table 4.4 are reported the cross sections in pb, for the production of unpolarized
Z bosons, considering polarized and unpolarized muons. For NP2, the longitudinal

43



polarizations contribute to order 10−5, so they are significant at 30 TeV, even though for
this process they are not dominant yet over transversal polarizations.

4.1.2 Second order is dominant

Since the second order terms are greater than the first ones, we must be careful on which
order to cut the expansion. Is NP2 dominant over the higher order terms, or we should
consider even more contributions? It turns out that if we keep all terms in the expansion,
as in NPall, the cross sections are equivalent to NP2. Recall that in NP2 we keep in
the squared amplitude only contributions up to order 2 overall, with maximum one new
physics contribution per diagram. This means that the high energy limit is uniquely
dominated by certain diagrams containing only one anomalous vertex. This is clear for
2 and 3 boson production, since in these processes the Feynman gauge allows to write
diagrams containing only the contact vertices V2 and V3 of eqs. (3.9) and (3.10) without
any propagator. However, this is no longer the case for 4 boson production, given that
all diagrams now contain one or more internal propagators. The asymptotic limit is
therefore non-trivial.
In the Feynman gauge the diagrams relevant for this discussion are similar for vector and
Higgs bosons, because the Higgs and Goldstone bosons couple to the muons in similar
way, so we can just analyse the 4 Higgs production.

EFT framework

We expect the dominant diagrams to be those containing the minimal number of internal
propagators, which is one: the candidate diagrams to dominate are shown in Fig. 4.3. We
can define two types of these potentially dominating diagrams: those with the fermion
propagator and those with the Higgs propagator. The former can have also 2 new vertices,
as for (a) and (b): they are present for NPall but not for NP2. The latter, with the Higgs
propagator, have only one new physics insertion, hence their contribution is the same in
NP2 and NPall.
The fact that NP2 and PNall are equivalent suggests that the diagrams with the Higgs
propagator only are dominant, and this is indeed the case. In Tab. 4.5 are presented the
values for the cross section of µ+µ− → hhhh at

√
s = 30 TeV in the EFT framework,

with Λ = 2 TeV and c6 = 0.01, corresponding approximately to a value of κµ = 3/4. The
diagrams with the muon propagator are extremely suppressed compared to the others.
Indeed, instead of a Higgs self coupling they contain one Higgs-muon coupling, which is
suppressed by the c6/Λ

2 dependence. On the other hand, the Higgs self coupling λ is
∼ 1/8, around two orders of magnitude larger than the anomalous vertices in diagrams
(a) and (b): this determines the dominant behavior of diagrams (d) and (e).

κ framework

In this framework the vertices V2 and V3 of eqs. (3.9) and (3.10) are turned off, meaning
that the diagrams which are dominating in the EFT framework are not present. However
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Figure 4.3: Diagrams containing only one propagator for the µ+µ− → hhhh process, in
the EFT framework. Amplitudes (a) and (b) are present in NPall, but not in NP2. The
high-energy behavior is however determined by amplitudes (d) and (e).

NP2 NPall
total σ 2.6932 · 10−7 2.6932 · 10−7

diagrams without µ propagator 6.689 ·10−7 6.689 ·10−7

diagrams without h propagator 1.531 ·10−13 6.597 ·10−14

Table 4.5: σ (pb) at
√
s = 30 TeV in the EFT framework, with Λ = 2 TeV and c6 =

0.01 at second and all orders in the new physics coupling. Diagrams without Higgs
propagator are dominated by (a), (b) and (c) of Fig. 4.3, while (d) and (e) are the
dominant contributions to diagrams without muon propagator.

the situation is still similar. In this case the diagrams contain at least two internal
propagators and again we can define two types of them, shown in Fig. 4.4: those with
two Higgs propagators, (a) and (b), and those with one Higgs and one fermion propagator,
(c), (d), (e) and (f). Diagram (f) is present for NPall but not for NP2. However diagrams
(a) and (b) are dominant over the others, since they have an Higgs self coupling instead
of a Higgs-muon coupling.
Tab. 4.6 shows how diagrams without the muon propagator, like (a) and (b), represent
the most relevant contribution to the total cross section, explaining why also in this
framework we can truncate the new physics expansion at second order in c6/Λ

2.
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Figure 4.4: Diagrams containing only two propagators for the µ+µ− → hhhh process, in
the κ framework. Amplitude (f) is present in NPall, but not in NP2. The high-energy
behavior is however determined by amplitudes (a) and (b).

NP2 NPall
total σ 7.305 · 10−16 7.302 · 10−16

diagrams without µ propagator 7.268 ·10−16 7.268 ·10−16

Table 4.6: σ (pb) at
√
s = 30 TeV in the κ framework, with Λ = 2 TeV and c6 = 0.01 at

second and all orders in the new physics coupling. Diagrams without muon propagator
are dominated by (a) and (b) of Fig. 4.4. The extreme suppression of the κ framework
with respect to the EFT is due to the fact that the diagrams of Fig. 4.4 are also present
in the EFT, but they are subdominant with respect to the ones of Fig. 4.3.

4.2 High-energy behavior for multiboson production

In the SMEFT framework, two and three boson production processes are dominated in
the high-energy limit by a single diagram. Indeed, using GBE Theorem, the longitudinal
polarizations are approximated at high scales by the Goldstone bosons. Therefore we
have that certain diagrams do not present internal propagators [38], so we can easily
derive their energy dependence and compare the thoretical predictions with the numerical
simulations. The two contact vertices (3.9) and (3.10) are responsible for the dominant
diagrams for the 2 and 3 Higgs production respectively at high energies. Contrary to
other channels, they contribute to diagrams that do not contain any propagator and
consequently are not suppressed. In the other processes instead, the high-energy behavior
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is not as trivial, but it is instead determined by the combined contributions of many
diagrams.
Take as an example the µ+µ− → ZZZ process. The high-energy behavior is the result of
the combination of the diagrams in Fig. 4.1, which are the SM ones, plus a new diagram
involving the V1 vertex:

µ−

µ+

h Z

Z

Z

In this case it is not clear a priori which diagrams are dominant, and the only way to
determine the cross section is to carry out the calculation with all the diagrams.
In this section we analyse the energy growth induced by the violation of unitarity in
SMEFT, as it plays a crucial role in the sensitivity of multiboson production.

4.2.1 Analytical predictions

The differential cross section is given by

dσ =
|M|2unpol

Φ
dΠLIPS . (4.11)

In this expression
Φ = (2EA)(2EB)|−→v A − −→v B| (4.12)

is the flux of the 2 colliding beams A and B with velocities −→v A and −→v B, |M|2unpol is the
unpolarized matrix element, while dΠLIPS is the Lorentz invariant phase space volume
element

dΠLIPS =
∏

f

d3kf

(2π)32Ef

(2π)4 δ(4)(
∑

f

kf − p) (4.13)

where kf = (Ef ,
−→
kf ) are the final-state momenta and p is the total initial momentum.

Considering the center-of-mass frame and massless particles in the initial state (we are
interested in the high-energy limit), the flux is just Φ = 2s, where s = ECM

2 is the
Mandelstam invariant and EA + EB = ECM is the collision energy in the center-of-mass
frame. Denoting as V the Feynman rule of the vertex for the contact term, we can
approximate the matrix element for longitudinally polarized vectors in the high-energy
limit, averaged over muons polarizations, as

|M|2unpol =
1

4
|V |2 2s =

s

2
|V |2 . (4.14)
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Notice that the mass dimension of V is −2 for triboson production, while it is −1 in
diboson production. Indeed, by expanding the 3 Higgs doublets as in (3.12), we get for
each vertex 3 insertions of bosons/vev. This restores the correct dimension of σ, since

σ =
1

2s

s |V |2
2

ΠLIPS , (4.15)

and given that phase space is adimensional for two particles, while it has dimension 2
for three particles.

Cross section for 2 to 2 scattering

The 2-particle phase space is given by

dΠ
(2)
LIPS =

d3k1 d3k2

(2π)6 (2E1)(2E2)
(2π)4δ(4)(k1 + k2 − p)

=
d3pf

(2π)3

1

4E1E2
(2π) δ(E1 + E2 −ECM)

= dΩ
pf

2dpf

16 π2

1

E1E2
δ(E1 + E2 −ECM) .

(4.16)

where −→pf =
−→
k1 = −−→

k2 . Changing variable

x = E1 + E2 − ECM =
√

pf
2 +m1

2 +
√

pf
2 +m2

2 − ECM , (4.17)

dx =
ECM

E1E2
pf dpf (4.18)

the phase space integral becomes

∫

dΠ
(2)
LIPS =

∫ dΩ

16 π2

∫ ∞

m1+m2−ECM

dx
pf

ECM
δ(x) =

∫ dΩ

16 π2

pf

ECM
θ(ECM−m1−m2) . (4.19)

For massless particles in the final state ECM = 2pf , hence the asymptotic behavior of
the cross section is

σ(2) =
|M|2

2s

4π

32π2
=

1

16 πs

s |V |2
2

=
|V |2
32 π

∼ constant . (4.20)

Cross section for 2 to 3 scattering

The 3-body phase space is

dΠ
(3)
LIPS =

d3k1 d3k2 d3k3

(2π)9 (2E1)(2E2)(2E3)
(2π)4δ(4)(k1 + k2 + k3 − p)

=
d3k1 d3k2

(2π)6 (2E1)(2E2)(2E3)
(2π) δ(E1 + E2 + E3 −ECM)

(4.21)
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where we integrated out
−→
k3 with δ(3). The measure in spherical coordinates becomes

d3k1 d3k2 = k1
2dk1 k2

2 dk2 dΩ1dΩ12 , (4.22)

where dΩ1 is the spherical integral measure associated with k1 and it can be integrated
over giving 4π, while dΩ12 is the spherical integral measure of the relative angle between−→
k1 and

−→
k2. However, E3 is not independent of θ12:

E3 =

√−→
k3

2|−→
k3=−(

−→
k1+

−→
k2)

=

√−→
k1

2 +
−→
k2

2 + 2
−→
k1 · −→

k2 =
√

E1
2 + E2

2 + 2k1k2 cos θ12 . (4.23)

We use the properties of the delta function

δ(ECM − E1 − E2 − E3) =
E3

E1E2
δ(cos θ12 − E3

2 −E1
2 −E2

2

2k1k2
) , (4.24)

so that the phase space integral becomes

∫

dΠ
(3)
LIPS =

∫ k1
2dk1k2

2 dk2

(2π)6 2E1 2E2 2E3
16π3

∫

d cos θ12
E3

E1E2
δ(cos θ12 − E3

2 −E1
2 − E2

2

2k1k2
)

=
1

32π3

∫

dE1dE2 . (4.25)

Finally, changing variables

xi =
2Ei

p
, dxi =

2

p
dEi (4.26)

we get
∫

dΠ
(3)
LIPS =

s

128 π3

∫ 1

0
dx1

∫ 1

1−x1

dx2 =
s

2 · 128 π3
, (4.27)

and the total cross section is

σ(3) =
1

2s

s

2
|V |2 s

2 · 128 π3
= |V |2 s

1024 π3
. (4.28)

Theoretical predictions for longitudinally polarized vectors

Summarising the above results, we can express the high-energy limit of the cross section
of Higgs and longitudinally polarized W+,W−, Z, respectively for diboson and triboson
production, as

σ(2) = I2|V |2 , I2 =
1

32π
, (4.29)

σ(3) = I3(s)|V |2 , I3(s) =
s

1024π3
, (4.30)
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namely an asymptotically constant trend for the former, and a growth with s ∼ ECM
2

for the latter.
Substituting the values for V from section 3.2.1, we find for the diboson production

σ(ZZ) = I2
1

2
v2
(

c6

Λ2

)2 1

2
, (4.31)

σ(hh) = I2
9

2
v2
(

c6

Λ2

)2 1

2
= 9 σ(ZZ) , (4.32)

σ(hZ) = I2
1

2
v2
(

c6

Λ2

)2

= 2 σ(ZZ) , (4.33)

σ(W+W−) = I2
1

2
v2
(

c6

Λ2

)2

= 2 σ(ZZ) (4.34)

and for the triboson production

σ(hZZ) = σ(hhZ) = I3(s)
1

2

(

c6

Λ2

)2 1

2
, (4.35)

σ(hhh) = σ(ZZZ) = I3(s)
9

2

(

c6

Λ2

)2 1

6
= 3 σ(hZZ) , (4.36)

σ(W+W−h) = σ(W+W−Z) = I3(s)
1

2
v2
(

c6

Λ2

)2

= 2 σ(hZZ) . (4.37)

4.2.2 Numerical results

The predicted asymptotic behaviors can be compared with the exact results from the
MadGraph simulation, in the cases of both unpolarized and longitudinally polarized vec-
tor bosons. The perturbative expansion in (c6/Λ

2) of the squared amplitude is truncated
at second order, as discussed in section 4.1. The situation we consider is that in which
κµ = 0 equivalent to setting the new physics scale at Λ=1 TeV and c6 = 0.01, as in
eq. 4.5.

Asymptotic behavior for longitudinal polarizations

The plots in Figure 4.6 show the production of two and three bosons, considering only
the longitudinal polarizations.
As expected, in general, the high-energy limit is well approximated by the formulas (4.20)
and (4.28). However, from the plots, we can make the following observations:

• σ(hZ) and σ(W+W−) should be both approximated asymptotically by (4.33) and
(4.34), although this does not appear as clearly as for the other processes. The
effect of the new EFT operator to the cross section is indeed to introduce terms
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Figure 4.5: Cross section for boson production including all polarizations, as a function
of CM energy, in the EFT framework. The dashed lines are for c6 = 0.01 and Λ=1 TeV,
up to second order in (c6/Λ

2); the solid lines are the asymptotic behaviors predicted by
(4.20) and (4.28).

proportional to (c6/Λ
2)n, where n is the order of the perturbative expansion, on

top of the SM value

σ = σSM +
c6

Λ2
σ1 +

(

c6

Λ2

)2

σ2 + O
(

c6
3

Λ6

)

. (4.38)

σSM goes to 0 as 1/s, while the new physics terms violate unitarity. The differ-
ence for these two processes is that their σSM are much larger than for the other
processes, hence the growth induced by unitarity violation becomes dominant at
higher energies. In fact the new physics induces

σ ∼ A

s
+ constant (4.39)

where the constant A is larger for W+W− and hZ than for the other porcesses.

• σ(hh) is flat. The reson is that the SM values for double Higgs production cross
section are extremely small, therefore in this case the constant contribution is
already dominant in this energy range.

Overall asymptotic behavior

So far we have considered only longitudinally polarized vector bosons, in order to verify
the equivalence theorem. However, experimentally, the observed final state will include
all the polarizations. We can therefore compare the total cross sections for the same
processes with the asymptotic behavior, as shown in Fig. 4.5. The energy growth ap-
pearing in the EFT is caused by unitarity breaking for longitudinal polarizations, which
determine the asymptotic limit. It is still true that, at a certain energy, the asymptotic
behavior will start to dominate, however it has to overcome the contributions of all the
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Figure 4.6: Cross section for the production of longitudinally polarized bosons as a
function of CM energy, in the EFT. The dashed lines are for c6 = 0.01 and Λ=1 TeV,
up to second order in (c6/Λ

2); the solid lines are the asymptotic behaviors predicted by
(4.20) and (4.28).

other polarizations, which are unaffected by the growth. Indeed, the energy at which the
longitudinal polarizations become dominant is larger than 30 TeV for diboson production,
and is over 10 TeV for triboson production.
For the double and triple Higgs, being scalars, actually nothing changes with respect to
the previous case.

4.3 Results

We investigate here in detail multiboson production considering the situation in which
the correction to the Yukawa coupling is exactly equal to −ySM

µ , such that the Yukawa
vertex is cancelled. This corresponds to setting κµ = 0, i.e. Λ = 1 TeV and c6 = 0.01, as
in eq. (4.5).
Since they present very different features, we treat separately the pure multi-Higgs pro-
duction (i.e. µ−µ+ → hh, hhh, hhhh) from the other multiboson channels. In all processes
we analyse the EFT and κ frameworks comparing NP1, NP2 and NPall.

4.3.1 EFT framework

Tables 4.7 and 4.8 in the Appendix 4.3.2 show respectively the SM and EFT values for
the cross sections.

Vector boson production

The plots comparing the SM results with the NP2-EFT values are reported in Fig. 4.7 for
two, three and four boson production respectively. All the processes considered involve
at least one vector boson in the final state.
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For diboson production, the deviation from the SM cross section is barely visible for Zh,
which has indeed the lowest value of σSM, while it is undetectable for ZZ and W+W−.
The constant asymptotic behavior induced by longitudinal polarizations is dominated by
the SM contribution. On the other hand, the energy growth is more visible for three and
four boson production since the relative growth with respect to the SM case is higher, as
discussed in section 4.2 and the EFT contributions become dominant at lower energies.

Figure 4.7: Cross section (in fb) for two, three and four boson production in the EFT
framework, NP2 (dashed lines) and in the SM (solid lines), as functions of

√
s (GeV).

Multi-Higgs production

The multi-Higgs production shows a very different behavior and it requires a different
discussion from section 4.1.1, since it is no longer true that the interference with the SM
amplitude is suppressed. When a vector boson is produced, the scattering of muons with
opposite helicities is dominant over that with same helicities (see for instance Table 4.4).
For multi-Higgs production, the Higgs only couple to the fermions through Yukawa inter-
action and it is no longer true that scattering between opposite helicities dominate over
the others. Hence the energy enhancement in the unpolarized cross section is significant
at all orders in the new physics expansion, and it overcomes the very small values of σSM

already at first order. In fact, for NP1 the absolute value of the new physics correction
is larger than the SM value, and being the interference with SM negative, the total σ is
itself negative. In NP2 we observe again that the second order terms dominate over the
linear one.
In Fig. 4.8 the plots for multi-Higgs production present the comparison between the SM
and the EFT frameworks. Being the SM cross section very small, the energy enhance-
ment is already significant at 1 TeV. For example, for the two Higgs production the flat
asymptotic behavior is dominant over σSM and is clearly visible over the entire energy
range. This suggests that multi-Higgs production might be the most sensitive process
to BSM effects. For comparison, in Fig. 4.8 are reported the most energy enhanced pro-
cesses containing at least one vector boson: the deviation for the multi-Higgs production
is much stronger, resulting in comparable values to the vector boson production. In par-
ticular, three and four Higgs production processes present the strongest growth relative
to the SM, and three Higgs production has the highest cross section.
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Figure 4.8: Cross sections for the production of two, three and four Higgs boson in the
EFT framework at second order in the new physics coupling (dashed lines) and in the
SM (solid lines), as functions of

√
s (GeV). The black plots, for comparison, represent

the most sensitive process involving vectorial final state.

4.3.2 κ framework

In Table 4.9 in the Appendix 4.3.2 are reported the values of the cross sections for NP2
in this framework.

Vector boson production

In this framework, the contact vertices V2 (3.9) and V3 (3.10) are “turned off”. This pro-
cedure breaks unitarity cancellations even more, thus the growth in energy in multiboson
production is stronger than for the EFT framework. Indeed, as shown in section 3.2.2,
this condition is realised in the EFT by introducing the dimension 8 and 10 operators
in (3.20) and (3.21). If we now expand them keeping the Goldstone bosons, as we did
for the dimension 6 operator in (3.12), we get new contact vertices for the Goldstone
that do not cancel. In particular, we are introducing contact vertices with 4 Goldstone
bosons, yielding the dominant diagrams for four boson production, similarly to V2 and
V3 for two and three bosons. Consequently, the energy enhancement is clearly visible in
four boson production.
All the considerations previously made for the EFT framework explaining the suppression
of the linear term in c6/Λ

2 still hold.
In Fig. 4.9 are reported the cross sections in the SM and for NP2 in two, three and four
boson production respectively.

Multi-Higgs production

In the κ framework, the Higgs interacts with the muon only via Yukawa-like interaction,
as the vertices V2 and V3 are 0. However, having set κµ = 0, the modified Yukawa vertex
yNP

µ is 0, suggesting that the total cross section σ(µ−µ+ → nh) is 0 itself.
This is almost true, but a small caveat has to be made. Indeed, this is actually true only
for NPall, when we keep all terms in the new physics expansion of the squared amplitude.
However, when we truncate the expansion at a fixed order in c6, this is no longer true:
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Figure 4.9: Cross section (in fb) for two, three and four boson production in the κ
framework, NP2 (dashed lines) and in the SM (solid lines), as functions of

√
s (GeV).

for κµ = 1 + δ, where δ ∼ c6, κµ = 0 ⇐⇒ δ = −1, the new physics expansion is

|M|2 =κµA+ κµ
2B + κµ

3C + ...

= (1 + δ)A+ (1 + 2δ + δ2)B + (1 + 3δ + 3δ2 + δ3)C + ...

= (A+B + C + ...) + δ(A+ 2B + 3C + ...) +

δ2(B + 3C + ...) + δ3(C + ...) + ... .

(4.40)

Since the coefficients of the powers of δ considered cannot be all 0, the truncated expan-
sion is in general 6= 0. This is why the values for σ(µ−µ+ → nh) in the NP2 case, shown
in Table 4.9, are very small but not exactly 0.
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Conclusions

In this thesis we have studied the sensitivity on the muon Yukawa coupling in multiboson
production processes at a high-energy muon collider.
We have examined two possible parametrizations of the deviation, the SMEFT and the
κ framework, which despite its numerous flaws, is still tipically used in the experimen-
tal analyses of the Higgs couplings. In the SMEFT formalism we have considered a
dimension-6 operator inducing an anomalous Yukawa coupling. Considering the same
deviation on the Yukawa coupling in the κ framework, we have shown how it can be
interpreted as a higher-dimensional effective field theory. Then, with the Mathemat-
ica package FeynRules, we have implemented the SMEFT and κ frameworks into two
models, and used them to perform cross section simulations with the event-generator
MadGraph5 aMC@NLO.
We have then considered the multiboson production processes via muon-antimuon anni-
hilation in the SMEFT and κ formalisms. Thanks to the energy enhancement induced
by the violation of unitarity, these processes are particularly suited for precision studies
in the multi-Tev energy range.
For these processes, we have analysed the perturbative expansion in the effective coupling:
the linear contribution, despite being generally the most meaningful choice due to its
unambiguity, is not a good approximation when considering muon annihilation, since it
is negligible because of certain suppressions in the polarized amplitudes. Therefore we
have considered the second order expansion and shown that higher-order corrections are
effectively negligible.
Using the Goldstone Boson Equivalence theorem we have studied analitically the asymp-
totic energy growth of the multiboson production cross sections in the SMEFT. This first
analysis suggests that diboson production is not a suitable process for spotting effects
from an anomalous muon Yukawa coupling.
Finally, we have compared for all the processes how the cross sections scale in the SM and
in the EFT (or in the κ framework), assuming a 100% deviation of the muon Yukawa from
its nominal value. Considering the processes with at least one vector boson produced,
in the κ framework we observe for three and in particular four bosons a considerably
stronger growth with respect to the SMEFT case. On the contrary, for purely-Higgs
final states the cross section is very small in the κ framework, while it is extremely
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sensitive to deviations in the SMEFT. In particular, for the triple Higgs case the cross
section becomes comparable to other triboson production processes, as expected by the
Goldstone Boson Equivalence theorem.
Further studies have to be made, including for example perturbative electroweak correc-
tions that could affect the sensitivity. Moreover, this channel could be a portal for the
simultaneous study of the Higgs self coupling and muon Yukawa coupling. In conclusion,
the triple Higgs production could be a good observable to detect BSM effects in the
multi-TeV range, opening interesting prospects on Higgs precision measurements.
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Appendix

The Tables show some values of cross sections for two, three and four boson production
in the SM, EFT and κ frameworks, within a center-of-mass energy range of 1 <

√
s < 30

TeV. The simulations were carried out in MadGraph, with new physics parameters
c6 = 0.01 and Λ = 1 TeV, corresponding to κµ = 0 according to eq. (4.5).

Standard Model

√
s (TeV) 1 2 4 10 20 30

ZZZZ 3.278 3.538 2.668 1.381 0.7459 0.4607 ·10−6

ZZZh 3.49 3.32 2.223 0.9488 0.4589 0.2822 ·10−6

ZZhh 14.65 12.7 7.953 3.36 1.598 0.9606 ·10−7

Zhhh 40.87 25.92 10.47 2.684 0.9065 0.4758 ·10−8

W+W−ZZ 4.934 10.53 12.02 8.711 5.429 3.871 ·10−4

W+W−Zh 6.196 9.21 7.746 4.094 2.09 1.337 ·10−5

W+W−W+W− 8.039 13.77 14.4 9.86 5.95 4.16 ·10−4

W+W−hh 12.95 12.99 8.549 3.843 1.814 1.172 ·10−6

hhhh 26.9 8.133 1.53 0.1564 0.03109 0.01264 ·10−13

ZZZ 8.795 5.418 2.572 0.7606 0.3155 0.1744 ·10−4

ZZh 3.138 1.359 0.5239 0.1355 0.04433 0.0232 ·10−4

Zhh 121.6 55.24 22.44 6.044 2.107 1.13 ·10−6

W+W−Z 5.887 4.455 2.55 0.937 0.3917 0.233 ·10−2

W+W−h 37.05 17.71 7.353 1.946 0.6551 0.3505 ·10−4

hhh 39.32 7.454 1.588 0.2263 0.05581 0.02547 ·10−11

ZZ 15.27 5.069 1.605 0.3306 0.09607 0.04603 ·10−2

Zh 12.77 3.144 0.7754 0.1239 0.03073 0.01363 ·10−3

W+W− 268.4 91.01 28.61 5.909 1.717 0.8276 ·10−2

hh 1292 81.13 5.006 0.1327 0.008611 0.001852 ·10−11

Table 4.7: Total cross sections (in pb) for the production of two, three and four bosons
in the SM, for six values of CM energy.
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EFT framework

√
s (TeV) 1 2 4 10 20 30

ZZZZ 2.896 3.115 2.466 3.05 11.49 31.2 ·10−6

ZZZh 3.29 3.242 2.896 11.24 62.35 175.4 ·10−6

ZZhh 1.429 1.384 1.819 12.35 67.42 181.5 ·10−6

Zhhh 4.125 2.877 2.699 18.68 107.1 306.2 ·10−7

W+W−ZZ 4.571 9.689 10.99 8.317 6.398 7.581 ·10−4

W+W−Zh 5.824 8.657 7.465 5.477 11.54 27.55 ·10−5

W+W−W+W− 7.752 13.19 13.76 9.498 6.698 6.742 ·10−4

W+W−hh 1.247 1.258 1.079 2.781 13.73 37.17 ·10−5

hhhh 0.1045 0.5309 1.559 6.395 20.47 42.45 ·10−7

ZZZ 8.012 4.944 2.466 1.595 3.96 8.451 ·10−4

ZZh 3.014 1.325 0.5815 0.4882 1.328 2.897 ·10−4

Zhh 1.21 0.5524 0.2773 0.3785 1.278 2.782 ·10−4

W+W−Z 5.517 4.223 2.396 0.8989 0.4008 0.2714 ·10−2

W+W−h 3.572 1.737 0.702 0.2541 0.3276 0.609 ·10−3

hhh 0.1523 0.4793 1.641 9.44 36.62 82.26 ·10−5

ZZ 14.57 4.84 1.534 0.3152 0.09238 0.04454 ·10−2

Zh 127.8 31.06 7.734 1.345 0.4266 0.2503 ·10−4

W+W− 261.7 88.47 27.94 5.739 1.67 0.8056 ·10−2

hh 5.161 5.254 5.301 5.305 5.296 5.294 ·10−5

Table 4.8: Total cross sections (in pb) for the production of two, three and four bosons
at second order (NP2) in the EFT, for six values of CM energy.
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κ framework

√
s (TeV) 1 2 4 10 20 30

ZZZZ 0.02898 0.03346 0.09069 3.363 57.18 290.2 ·10−4

ZZZh 0.033 0.04182 0.2973 13.42 222.2 1148 ·10−4

ZZhh 0.01418 0.01874 0.1892 8.897 150.4 771.2 ·10−4

Zhhh 0.004136 0.00672 0.1217 5.948 98.41 507.8 ·10−4

W+W−ZZ 4.571 9.689 11.05 12.76 81.4 391.2 ·10−4

W+W−Zh 0.5824 0.8736 0.9494 9.709 152.5 773.7 ·10−4

W+W−W+W− 7.753 13.22 13.89 18.38 157 776.5 ·10−4

W+W−hh 0.1244 0.137 0.4771 18.32 301.9 1540 ·10−4

hhhh 17.45 25.74 12.85 3.675 1.123 0.6796 ·10−19

ZZZ 8.012 4.944 2.466 1.594 3.977 8.455 ·10−4

ZZh 3.009 1.335 0.6817 1.331 4.878 11.15 ·10−4

Zhh 1.21 0.5722 0.3988 1.251 4.932 10.96 ·10−4

W+W−Z 55.17 42.23 23.97 8.988 3.954 2.693 ·10−3

W+W−h 3.571 1.739 0.7236 0.4261 1.038 2.252 ·10−3

hhh 100 53.79 18.99 4.04 1.176 0.6304 ·10−17

ZZ 14.57 4.84 1.534 0.3152 0.09238 0.04454 ·10−2

Zh 127.8 31.306 7.734 1.345 0.4266 0.2503 ·10−4

W+W− 261.8 88.47 27.94 5.739 1.67 0.8056 ·10−2

hh 67.34 25.82 9.009 1.888 0.5731 0.2795 ·10−14

Table 4.9: Total cross sections (in pb) for the production of two, three and four bosons
at second order (NP2) in the κ framework, for six values of CM energy.
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