
Alma Mater Studiorum · University of Bologna

School of Science
Department of Physics and Astronomy

Master Degree in Physics

Synthetic data generation for the
assessment of antimicrobial resistance

through machine learning

Supervisor:

Dr. Claudia Sala

Co-supervisor:

Prof. Gastone Castellani

Submitted by:

Adriano Zaghi

Academic Year 2021/2022

2

Contents

1 Introduction 3

2 Materials and methods 7
2.1 Genomes information . 8
2.2 Community design and simulation of data 9
2.3 Fastq format and quality assessment . 12
2.4 Resistome evaluation . 19
2.5 Preprocessing and PCA . 22
2.6 Machine learning . 24

2.6.1 Phenotype definition . 25
2.6.2 Training, validating and testing 27
2.6.3 Feature importance . 28
2.6.4 Elastic net logistic regression . 29
2.6.5 Random forest . 32
2.6.6 AdaBoost Classifier . 36

3 Results 39
3.1 Single specie populations . 39

3.1.1 Elastic net logistic regression results for single specie populations 42
3.1.2 Random forest results for single specie populations 43
3.1.3 AdaBoost results for single specie populations 44
3.1.4 Feature importance for single specie populations 45

3.2 Four species populations . 46
3.2.1 Elastic net logistic regression results for four species populations . 48
3.2.2 Random forest results for four species populations 49
3.2.3 AdaBoost results for four species populations 50
3.2.4 Feature importance for four species populations 51

4 Conclusions 53

5 Ringraziamenti 57

1

Abstract

Antibiotics are a resource that has been revolutionary for medicine and biology since
those allows to control bacterial infections on humans and in all kinds of environments.
Apart from medicine, antibiotics are exploited also in production techniques, like farm-
ing, agriculture and food manufacture. Despite the wide use of them, it is well proven
that popular antibiotics are becoming less effective on their targets; this seems to be a
consequence of the exposure of the bacteria to those substances. Due to an (un)natural
process of species selection, bacteria are gaining resistance to the more diffuse antibiotics,
at the point that, in many situations, we cannot afford to distribute new antibiotics, in
order to preserve their effectiveness. AntiMicrobial Resistance (AMR) is becoming a
serious threat for human and in general for the ecosystem, being responsible for 1.27
million deaths in 2019 [1]. To monitor and predict AMR is hence a fundamental part in
the effort of avoiding pandemic situations which have proven to be problematic in a glob-
alized society: metagenomics analysis seems to be the way to do so. As a consequence
of the diffusion of next generation sequencing techniques, metagenomics databases have
become indeed one of the most promising repositories of information about features and
behavior of microorganisms. One of the subjects that can be studied from those data are
bacteria populations. Next generation sequencing techniques allow to study the bacteria
population within an environment by sampling genetic material directly from it, without
the needing of culturing a similar population in vitro and observing its behavior. As a
drawback, it is quite complex to extract information from those data and usually there
is more than one way to do that; AMR monitoring is no exception. In this study we
will discuss how the quantified AMR, which regards the genotype of the bacteria, can be
related to the bacteria phenotype and its actual level of resistance against the specific
substance. In order to have a quantitative information about bacteria genotype, we will
evaluate the resistance spectrum of bacteria from the read libraries, aligning them against
CARD database. With those data, we will test various machine learning algorithms for
predicting the bacteria phenotype. The samples that we exploit should resemble those
that could be obtained from a natural context, but are actually produced by a read
libraries simulation tool. In this way we are able to design the populations with bacteria
of known genotype, so that we can relay on a secure ground truth for training and testing
our algorithms.

2

Chapter 1

Introduction

DNA was isolated for the first time in 1869 by Friedrich Miescher, but only in the middle
of 1900 scientists started to figure out its importance in the constitution of life. Two
milestones in this root where placed by Oswald Avery, Colin MacLeod, and Maclyn
McCarty[2], who noticed that purified DNA could change a strain of bacteria into an
other, and James Watson and Francis Crick[3], who discovered the structure of this
protein. While the second publication is well know to a large audience, also the first
can be considered as a fundamental starting point for the exploration of the field we
are approaching in this work. During the last 70 years the technologies improvement
allowed a deeper and deeper insight on the structure of DNA and on how it determines
the behavior of cells. It is worth to mention some achievements in this field:

• Sequencing of the first genetic sequence, associated to insulin (by Frederick Sanger
in 1955) [4]

• Sequencing of the first complete genome from a DNA based virus (again by Fred-
erick Sanger in 1977) [5]

• Sequencing of the first complete genome of a free-living organism, the bacterium
Haemophilus influenzae (1995 by Hamilton Smith et all) [6]

• Sequencing of the first complete human genome in 2003 (by Human Genome
Project)

• Diffusion of high troughtput sequencing procedures: next generation sequencing

With “sequencing” we are referring to the practice of detecting the sequence of bases
that are enclosed in the double helic of the DNA. This indeed is the most relevant part of
the structure proposed by Watson and Crick and we are convinced that the properties of
the DNA can be deduced from those. The result of a sequencing procedure is essentially
a sequence of symbols that represents the four different bases of the DNA (A, T, C, G);

3

in some situations, a quality score is associated to the information of each base. We
will not get into the details of how the sequencing procedure is performed, but is worth
mentioning that, at the moment, there is an reasonable availability of those data, from
the most various sources. When the genetic material of populations of cell is sequenced
we obtain big samples that encode genetic sequences: we call them genomic data.

In this study we will focus on a particular kind of genomic data: those obtained from
bacterial populations. Bacteria are relatively simple organisms, composed by just one
cell, and are very important in a wide variety of situations. They are present in almost
every place of the biosphere and are fundamental in various processes that guarantee
the persistence of the ecosystem; moreover almost all the multicellular organisms lives
in symbiosis with bacterial populations located in various places of their body (skin,
stomach, gut. . .). On the other hand, bacteria populations which are harmful for human
or other organisms can become a serious threat for them. The reason is their explosive
reproduction rate in appropriate environmental conditions and their adaptability. This
problem becomes even more important in a globalized society, in which humans and
goods travels around the world every day, spreading and mixing the bacteria that they
carry with them.

Such an important component of the biosphere have to be controlled and regulated
in order to avoid pandemic situations and the most effective tool that we have elabo-
rated are the antibiotics. With this generic term, we refer to antimicrobial substances
which are active against bacteria and are able to eliminate them, or at least reduce their
reproduction rate. Of course, as there is a variety of bacteria, there is also a variety of
antibiotics and the effect of them depends on their target. The research of more efficient
antibiotic substances is a primary importance field in medicine and is probably the most
direct attempt to regulate bacteria activities. Unfortunately, using strong antibiotics
will not be enough to control bacteria populations, due to the fact that bacteria have
an incredible capability of adapting and evolving. It is indeed well proven that the ef-
fectiveness of popular antibiotics have decreased in time and this is surely connected to
the exposition of bacteria populations to them. The high reproduction rate of bacteria
allows their community to adapt to harmful environmental conditions, including antibi-
otics substances. This adaptation takes place because in each reproduction cycle many
bacteria are affected by mutations and some bacteria can even mutate during their life
exchanging genetic information with others. While many of those mutations are fatal or
useless to the individual, some of them can give him an advantage against an antibiotic
substance that used to be effective. The intense use of antibiotic then produce the ef-
fect of selecting those resistant bacteria eliminating the others; thus the antibiotics that
used to be effective are now very less powerful on those selected strains. This phenom-
ena is called antibiotic resistance and it falls in to the bigger category of AntiMicrobal
Resistance (AMR) which is the core of this study. To have a idea about how AMR is
problematic at the moment, we can consider a report from the U.S. association Centers
for Disease Control and Prevention (CDC). The analysis shares that more than 2.8 mil-

4

lion antibiotic-resistant infections occur in the U.S. annually, and 35,000 people die as a
result. Six multidrug-resistant germs alone have had an immense cost for the U.S. health
system: more than $4.6 billion every year. [7].

As proven by the experiment performed by Avery, MacLeod and McCarty and many
other evidences, the behavior of bacteria is determined, in relevant part, by their genetic
material. This is why in various study the data provided by DNA sequencing techniques
are chosen as indicator to monitor and to predict AMR. Usually the starting point for
the assessment of AMR in a wild bacteria population are the data produced by the next
generation sequencing techniques; those are one of the high troughtput technologies men-
tioned before. In order to read huge amount of bases in a certain time, next generation
techniques sequence the DNA in parallel, reading multiple sequences at the time. The
drawback is that those techniques are capable of reading only short fragments of DNA,
which we call reads. The final output of those procedures are big read libraries that con-
tains the short sequences (between 100 and 200 bases) and the information about their
quality. The total size of those read libraries is calculated in GigaBasePair (1 Gpb =
109 bases encoded); in this study we used 1 Gbp read libraries, but in many cases those
are even bigger. Notice that in this procedure we can not keep track of the organism
that owned the genetic material from which the read is sampled. This aspect of the data
is very important, since we have no possibility of linking the data we are dealing with
to a specific organism without taking into account other databases and supplemental
information. The data produced by shotgun sequencing shall be instead considered to
be about a population of bacteria. In many situations, the fact that we can not assign
the genetic material to a specific source will be problematic, but we should say, anyway,
that a single bacteria, even with very high resistance, has very little relevance: almost
all the parameters that we can be interested in should then be referred to the population
or to a part of it.

In this study we will mention two kind of bacteria population which are completely
different and shall not be confused: the in-vitro populations and the wild populations.
First kind of bacteria populations are cultured in laboratory and are composed by a
large amount of bacteria which are almost equal to each other: those can be considered
clones. Those populations are useful for various kind of experiments and in particular to
test the effect of antibiotic substances. After the tests the genome of the bacteria, which
should be almost equal for all the clones, is sequenced and creates a reference for that
specific population. For a single bacteria specie, a variety of different populations can
be cultured, all with relevant differences: we call them strains and usually the genomes
that we find in the databases refers to a particular strain.

Our study will instead be centered on the wild populations of bacteria. Those are
characterized by a great heterogeneity of species and strains that have diverse abundance
and diverse behavior. All together determine the behavior of what we call micro-biome.
Depending on the circumstance, it can be useful to refer the AMR to the whole popu-
lation, to a single specie that compose it or to a strain of a certain specie. It is obvious

5

that, dealing with a population of different individuals, rather then a uniform one (in-
vitro populations) increases the complexity of the metagenomics data and makes more
difficult to obtain useful information from them. Anyway, the sequencing procedure per-
formed in order to obtain metagenomic data from wild populations is essentially the same
procedure used for in silico population DNA sequencing and do not present additional
difficulties.

At the moment, a huge amount of metagenomic data, both from in-vitro and wild
population is available. The data from wild populations have been extracted from the
bacteria found in a variety of environments, like human or animal gut, marine or sewer
water and also food. Evaluating the information about the AMR from those data would
give us an important insight about the effect of the antibiotics that we have used up
to now and also an advice about what antibiotics to use in the future. Never the less,
the objective of this study is not to access the resistance of a specific population, but
we are interested instead in evaluating the performances of different AMR quantification
techniques and this is why we will work with simulated data. Part of the study has been
indeed to implement a tool capable of simulating the output of a shotgun sequencing
procedure on a population designed from us. This allowed us not only to compare the
different AMR evaluation algorithms between them, but we could also validate them
against our ground truth about the simulated data.

6

Chapter 2

Materials and methods

Figure 2.1: We present a flow chart of the
metagenomic data processing. Rectangular
boxes represent data while the hexagonal boxes
represent procedures. The ”Sequencing” box is
in red, since we did not performed that proce-
dure, but it should be the sarting point of the
pipeline once it is used on real world data

In the following sections, we are going to
present the tools that were used to per-
form the analysis; those will be explained
following the order in which are applied
on the data. This organization reflects the
structure of the computational pipeline
that have been implemented in order to
perform the analysis. The software Snake-
make is probably the best way to deal with
the complex sequence of tasks required, al-
lowing to split them in different modules
(rules). Snakemake provides a lot of facil-
itation and useful features, like paralleling
of multiple analysis on various data and
ad hoc environment construction. Any-
way, the most relevant aspect is the fact
that the Snakefile, which is the file where
the pipeline can must be encoded, is essen-
tially a track of the operations performed
on the data. This and the information
about the software distributions that was
used, makes the pipeline reproducible and
allows in any moment to perform again the
same analysis. Being reproducible is fun-
damental in scientific experiments and the metagenomics ones are no exception. Here
[8](https://github.com/AdrianoZaghi/AMR) can be found a link to a github pace where
is stored the Snakemake file encoding the pipeline we used and all the other environment
files and documentation required to make it work. We provide also an image 2.1 of the

7

flow of the data in the piepeline, so that the reader can have a better idea of it.

2.1 Genomes information

In this study we intend to identify a sequence of algorithms capable of predicting the
AMR phenotype (resistant or not to a specific substance) of a bacteria population starting
from the reads that we obtain from a shotgun sampling of its genetic material. The
starting point to do so is to find a database containing the same kind on information
that that we intend to predict connected to our starting data; in this case the AMR
phenotype of a bacteria, associated with the genome sequences of that. Our choice
was PATRIC database [9] (PathoSystems Resource Integration Center). Funded by
the National Institute of Allergy and Infectious Diseases, PATRIC gives access to over
250 000 uniformly annotated and publicly available genomes with curated metadata.
Between all the information about a genomic sequences, we have been interested in
the AMR phenotype relative to the Imipenem antibiotic, a member of the carbapenem
antibiotic family. The choice of this specific substance was due to the availability of
many genomess having known AMR phenotype about it. More specifically, we focused
our attention on different strains of the Acinetobacter Baumannii (NCBI ID 470). This
bacteria has come to the attention to the scientific community because it proliferates in
hospitals [10]. Its resistance mechanisms are widely studied and we found indeed a lot of
data about different strains of it. The strains that was used in this study had the AMR
phenotype information relative to the Imipenem noted in their metadata [11].

This information is evaluated by laboratory studies or exploiting machine learning
classifiers. In PATRIC can be found a lot of genomes annotated with the AdaBoost
Classifier, but our choice was not to consider them. Indeed it seems redundant to train
a machine learning algorithm on data produced by an other algorithm of the same kind.
We are left then with the genomes whose phenotype was evaluated by physicians in
laboratory. This procedure is relays on the culturing of the other kind of population we
mentioned before, the clones population. The effects of an antibiotic substance is tested
exposing those populations of very similar individuals to it. There are two techniques
that are used in this process and those produces different results.

• Disc diffusion

Bacteria populations are cultured on a solid soil. With successive selections, the
population is purified up to the required homogeneity. On the solid support are
then placed fixed quantities of the substances of which we intend to test the resis-
tance of the population; those are contained in small disks of tissue. If the bacteria
are susceptible to the substance, those which are near the tissue disk will die and a
circular surface around the disk will depopulate. The more the bacteria is suscep-
tible to the substance, the bigger will be the diameter of this surface. The result

8

of this procedure is indeed the measure of this diameter.

• MIC

Minimum Inhibitory Concentration is the result of a different kind of experiment
that aims to measure AMR in bacteria. Again, the bacteria population is selected
in order to achieve a certain level of homogeneity, but in this case the culture is on a
liquid soil, weather then a solid one. If left unchecked, the bacteria population will
reproduce and increase it’s number of individuals, since the culture is, by definition,
a favorable environment. To access the AMR phenotype of the cultured bacteria
to a certain substance, the antibiotic is added to the liquid culture. The MIC is
the minimum concentration of the substance required for stopping the increase of
bacteria number.

As it can be noticed, the results of those two measurements is quite difficult to
compare, if not by making both experiment on the same population, and this is rarely
the case. Moreover, in the present study we did not consider a continuum quantity as a
measure of AMR phenotype, but rather a discrete variable: ”susceptible” or ”resistant”.
This information is evaluated by the two type of data mentioned before by establishing
thresholds. The categorical definition of AMR phenotype is the most diffuse, since it can
be obtained by both kind of procedures. It is also the one that is usually evaluated by
machine learning techniques, like the AdaBoost Classifier used by PATRIC itself.

PATRIC, like all others -omic databases, collects an impressive amount of evidence
from biomedical studies. Due to such high numbers and variety, it results quite difficult
to ascertain if all the studies have followed the same procedure and chosen the same
threshold. The standardization of this kind of information is the major challenge for
any kind of -omic database and there is still work to do in this sense. Natural language
processing, which is used to collect the articles from the whole world, and well established
laboratory routine have still grate space of improvement. Never the less we trusted
PATRIC information and we were able in to implement an effective pipeline capable of
well classifying those data.

2.2 Community design and simulation of data

Simulating metagenomic data was the starting point of the analysis. The tool that was
used to perform this task was Camisim [12], a program capable not only of simulating
the reads that could have been sequenced from a given genome, but can also simulate
strains of that genome. Those are actually two operations that aim both to reproduce
the complexity of real world data, but are quite different to each other an thus shall be
discussed separately.

The first task performed by Camisim is the strains generation. For this task, the
program relies on a tool called sgEvolver [13], which is capable of reproduce in the new

9

strains both local changes (e.g., single nucleotide substitutions and indels) and larger
genomic changes (e.g., gene gain, loss, and rearrangement). Those changes to the original
sequences aims to reproduce a reasonable amount of diversity inside the single specie of
the population and make the data more realistic. All the mentioned phenomena are
indeed types of mutations that happens frequently in a bacterial population and are at
the base of bacteria evolution. Never the less, we expect them not to change significantly
the AMR genotype from the original genome to the simulated strains. The simulation
of strain evolution process requires as input the full genome sequences that we intend to
diversify, or at least a collection of scaffolds that provides a suitable coverage. Moreover,
in order to locate the provided DNA in the taxonomy classification, sgEvolver requires
also the NCBI ID of the specie. This is useful in order to locate the specie in the
taxonomic three provided my NCBI and exploit taxonomic considerations in order to
perform a more realistic evolution. Once sgEvolver has completed its task, the strains
generated are used to simulate a shotgun sampling. Notice that the original genome is
not included in the simulation: this because the same population design (set of original
genomes used for creating the strains and simulating a sample) will be sampled more
then one time, in order to increase our sample size. By not including the original genome
in the simulation, each time the sample is constructed with newly generated strain only.

Before starting the actual read simulation, we need to assign an abundance to the
various strains of our sample. The number of read sampled from the genome will be
proportional to such abundance. In the input data required by Camisim can be specified
the abundance for a certain specie (original genome), so that we can compose the sample
with different proportions of various bacteria. This abundance is then divided between
all the strains generated from the original genome of that specie exploiting the so called
broken stick model.

This model divide the abundance assigned to a genome in smaller portions, assigning
each of them to a different strain generated from the genome. This approach is derived
by the niche apportionment model [14] in which the resources available in a certain
ecological niche are divided between different communities in a similar way as a stick
can be broken in to pieces. The resources are considered to be proportional to the
abundance of the population that exploits them.

In practice, when Camisim has to assign different relative abundances to the strain
produced from a genome (relative to the abundance assigned to the original genome by
the user), the first strain abundance is sampled from a beta distribution (Figure 2.2).
The parameters of this distribution are α = 1 and β = 3; while the first value must be
1 in order the distribution to have a shape coherent to the situation, the second value
have been chosen arbitrary by us. An smaller value for β would produce very prominent
abundance for the first considered strains, while a higher value would end up in a more
evenly distributed scenario.

Given b1, the first value sampled from the distribution, we will say that the first
strain have a relative abundance of b1. We are left with 1− b abundance to assign to the

10

Figure 2.2: Plot of a beta distribution with parameters α = 1 and β = 3.

remaining strains and in order to do so, we scale the ”remaining part of the stick” to 1.
Now the process can be repeated for the second strain, and the sampled value b2 will be
scaled back to the original measure: the second strain will have abundance b2 ∗ (1− b1).
If we iterate this process N − 1 times, where N is the number of the strains, we end up
with the following partition:

Abundancei = bi ∗
i−1∏
j=1

(1− bj) (2.1)

The relative abundance of the last strain will be set in order to reach the unit.
The generation of simulated read libraries from the genomes that we have obtained

is quite a standard practice and there are many of tools that can do that. The reason
of this variety is the fact that usually each tool reproduces the sampling of a specific
next generation sequencing device on the market. Camisim offers various option to
perform shotgun sampling simulation and we chose the one that reproduce the Illumina
sequencer data: ARTillumina [15]. The reason for this choice is the fact that we have
already worked with data produced from Illumina tools and those are probably the most
diffused in literature. The generation of read libraries implies the sampling of fragments
from the strains produced by sgEvolver: the length of the fragments is not fixed but
follows a distribution with the following parameters:

• average length of 270 bases

• variance of 24 bases

11

The result of the simulation are reads that can not be assigned a priori to any of
the genomes used in the process, since we chose the Camisim option that makes them
anonymous. The only information is the one about the correspondence between the two
pair end fragments, so that we were able to organize them in two pair-end libraries in
.fastq format. This is how usually metagenomic data are stored and this format is always
supported by any metagenomic tool.

Filtering and trimming the data was not required. ARTillumina indeed simulates just
the sequences from the DNA, without any kind of adapter sequences and other artefacts
that are likely to be present in a real read library and should be removed.

In conclusion, Camisim enabled us to compose various kind of bacteria population.
A single population can include multiple species and for each of those species can be
simulated a number of strains. For each specie, have to be submitted a genome as input
to Camisim, while the strains of that specie are created by sgEvolver. From the strains
are sampled reads with designed abundance and those are stored in the two .fastq files
that contains the reads of a pair end library.

2.3 Fastq format and quality assessment

Read libraries are encoded in the standard .fastq format and in order to properly talk
about the feature of those data is better to explain how this format is arranged. Fastq
files are essentially text file and for each read the file have four lines that contains all
the information evaluated from the sequencing. It is very common that read libraries
are produced in pair. This means that a DNA fragment is sequenced from both ends,
usually with no superposition between the forward and backward sequences. Those need
to be encoded in a specific way in order to take advantage the adjacency information of
the two pair end reads. Also in this study we used pair end libraries.

The items in a fastq file for a single read are organized in rows:

• First row contains the name of the name of the read and always starts with ”@”.
The names are usually codes that creates an identity for the read inside the sample.
For pair end read libraries, this identity is shared between the backward and the
forward fragments and so those are supposed to have the same name. The only
difference is a ”.1” or ”.2” at the end of the name, depending if the read have been
sequenced forward or backward.

• The second raw contains a sequence of letters representing the bases which have
been sequenced: ”A” for adenine, ”C” for citosine, ”G” for guanine and ”T” for
timine. There might be also the letter ”N”, which represents a base of unknown
identity. Notice that those letters might be both uppercase or lowercase. Since
we are mentioning the bases letters, is a good occasion to introduce a common
statistics that might be referred to the read or the the read position (ith position

12

of all reads in the library). The GC content is a proportion evaluated between the
abundance of guanine and citosine nucletides. Those two bases are bound together
in the double helix structure, so this proportion reflects the abundance of that
couple of nucleotides over the others. The GC content is usually specific for a
single specie and is used in order to identify contamination or artifacts in the read
libraries.

• The third line is occupied by a ”+” sign. This symbol is not informative and is
the residual of an older implementation, but is kept for retro-compatibility.

• The last line contains a sequence of symbols that encodes the quality of the bases
that where sequences. The fourth and the second line should always have the
same number of characters. This score is related to the probability P of the se-
quenced base being incorrect. We will review the Illumina encoding, since this is
the sequencing platform that we used, but different sequencing platforms produces
different quality encoding. In our case the quality score ranges from 0 to 62 and
uses ASCII 64 to 126. The score is evalueted from P as follow

Score = −10 log10 P (2.2)

Using metagenmoic libraries requires a step of quality assessment. This is fundamen-
tal in order to ensure that the data we are using are not somehow corrupted. Many tools
perform some kind of quality control before starting the analysis they are made for, but
usually those controls are partial and involve only the features required in the following
analysis. FastQC [16] is instead a tool created specifically for the quality control of read
libraries: its analysis are implemented in order to access the reliability of the sequencing
process that created the read libraries.

In this situation we know fore sure that our data are not corrupted, since we simulated
them. Anyway, it can be useful to analyze the report of FastQC on the simulated read
libraries: it will be a good way to evaluate the performance of Camisim, which is the
real source of our reads. Here, we are going to discuss the meaning of the items that
are listed in the report and for all of them we will compare the result obtained from our
simulated data with those presented in the FastQC manual as examples. For each of its
items in the report, FastQC signals two levels of warning: those are arbitrary settings
that can be modified. While using quality control tools is fundamental to have your own
expectation about the data content or a minimal requisite to satisfy, weather then base
quality judgement on FastQC warnings.

• Per Base Sequence Quality

As mentioned before, the read libraries are collections of read sequences and each
base of them have a quality score. The first statistic that FastQC presents is the

13

Figure 2.3: This box-plot represents the distribution of the quality scores for each base
of the reads. Each column is referred to a base and contains the quantiles of the distri-
bution of the quality scores in that base for the read library. The different colors of the
background represent warnings thresholds arbitrary chosen by FastQC. On the left we
have the per base quality profile obtained from our simulation, while on the left there is
the one that FastQC presents as example in its manual [17].

sequence of quality distribution for the ith base in the read library. Here we show
an example of such information.

This plot is particularly relevant because we noticed that its values are reproduced
in each of the (forward) read libraries generated by Camisim. All the backward
read libraries have an other common distribution. This suggests that this distri-
bution have been taken as model in order to generate reads simulating an illumina
sampling. The profile of the distribution is coherent with what we would expect
in a real case scenario: the quality is very high an the beginning of the sequencing
and then falls down to critical values near the end. This behaviour is similar in all
the sequencing processes and is the reason why pair end sequencing is used instead
of sequencing longer reads.

• Per Sequence Quality Scores

This statistics represents the distribution of the average quality values of the reads.
In our case, the plots are very low informative, since all the reads results to have
average quality values between 29 and 35, with the most abundant values being 32
for the forward libraries and 31 for the backward. Again the distributions results
to be the same in all the samples with same orientation.

In general, this is instead a very useful statistic, since highlight possible contam-
ination of a subset of reads. Seeing a group of reads having an average quality
lower then the the most abundant value might indicate that the sample have been

14

Figure 2.4: Those histograms represent the abundance of reads (Y axes) with a given
average quality score (X bins). On the left, we find the histogram produced by our
simulated data, where we can see that Camisim produces reads with uniform quality.
On the left there is the example plot from FastQC manual; here we see a more spread
distribution, with also a suspicious amount of low quality reads that might require to be
filtered.

polluted or that, at a certain point in the sequencing procedure something went
wrong. From this plot we can also see how abundant are the polluting reads and
where eventually set a threshold in order to filter them out.

• Per Base Sequence Content

This report takes into account the abundance of different kind of bases in each
read position of the read, represented on the x axes. On the plot we have four
horizontal lines that represents the different bases: ”A”, ”T”, ”C” and ”G”; those
lines are essentially a representation of four bar plots on the same background. In
the Y axes we have the percentage of that base occupying that read position in the
read library.

In our case this report is low informative, since all the bases are represented with
a percentage that reflects the GC content (GC) of the original genome. The four
lines are flat and for each read position can have just two values: for G and C the
values is GC and for ”A” and ”T” in 1−GC.

In a real sampling scenario, we expect to have situations in which those proportions
are less uniform, mainly in the first bases of the rear. A very peaked abundance of
a certain base (or sequence of bases) in a certain position might indicate that many
reads have been overwritten with a certain sequence in that position. This usually
happens in the first bases of the reads because of the presence of some adapters
residual.

15

Figure 2.5: The lines in the plots are 4 histograms, representing the relative abundance
of a certain symbol (Y axes) in a specific sequence position of the read (X axes). On
the left we have the plot produced by the simulated data and we can see how uniform
is this concentration; A and C concentrations are equal respectively to T and G, since
those two are the bases that couples in the double helix structure. On the right we have
a more realistic plot, found in FastQC manual: is very common to find irregular profiles
of abundance, especially in the first positions of the read.

• Per Sequence GC Content

Figure 2.6: In this plots we find the real distribution of reads GC content in the sample
(red) and the distribution that would be expected given the overall GC content of the
sample(blue).

In this report we find an other statistics relative to the GC content. In this case,
this value is referred to the reads and in the plot we find the distribution of the GC
content of them (red). FastQC evaluate also the average GC content of the sample
and, based on that, plots an ideal distribution of reads GC content (blue). A big

16

divergence fot the two distributions could indicate the presence of a biased subset
of reads that could be due again to some kind of corruption of the sample. The
samples that we simulated resulted to have a well shaped GC content distribution.

• Per Base N Content

Figure 2.7: In those plots is represented the percentage of ”N” symbols found in a certain
read position. In the data that we simulated we do not have any ”N” symbol, so the plot
on the left results completely flat. In real case scenario is common to encounter some
”N”s, especially in the final part of the read. This is what is shown plot on the right,
taken from FastQC manual.

For reach read position, on the X axes, indicates the amount of ”N” symbols in
the read library. In real sampling scenarios we might expect a non 0 proportion of
such symbols near the end of the read sequences. FasqQC raises warnings if there
are some positions having 5% amount of ”N” in the sample. In our situation we
see that Camisim simulates reads with 0% ”N” symbols in the sequence.

• Sequence Length Distribution

This report plots the distribution of reads length in the sample. In a real sample,
especially after trimming, we expect to have a variety of lengths and this can be
used as a filtering criterion. In our study we simulated instead equal length reads,
and we did not performed the trimming, since the reads did not contained adapter
sequences.

17

Figure 2.8: In those plots is represented the length distribution of reads in the sample.
We can see how Camisim simulates reads with uniform distribution (on the left plot),
while a real sample usually contains reads of various lengths (on the right, the plot taken
from FastQC manual).

• Duplicate Sequences

Figure 2.9: In those plots are represented the abundances of the reads with a given
duplication level. This abundance is evaluated both for the original sample (blue line)
and for the de-duplicated one (red). On the right we have the plot taken from FastQC
manual, where we can see the presence of a sequence which is repeated a suspicious
amount of times. It might indicate the presence of some kind of adapter or contaminant.
On the left we have the plot produced by the data simulated by Camisim which is instead
completely flat, apart for a very low amount of reads repeated 2 times.

In this report is shown the amount of repeated read sequences in the sample. In a
usual sample we expect each sequence to appear only once, just in case of a very
high coverage (meaning a very high amount of reads sampled from a small variety

18

of genetic material) there might be some repeated sequences. An higher amount
of repeated reads might indicate a bias in the sequencing procedure, probably in
the enrichment step, or the presence of a contaminant. In the plot is shown the
proportion of the library (Y axes) occupied my the reads with a certain duplication
level (X axes). There are two lines on this plot: the blue one represents the propor-
tion of reads in the original sample, while the red one represents this proportion
in the de-duplicated sample. This de-duplicated sample is a sample containing all
the reads in the original one with no repetitions. In the present study, the dupli-
cation levels produced by Camisim are always the same and differs just between
forward and backward oriented reads. This don’t seems to be dependent from the
length and the sequence of the genome, although we expect to get some different
repetition levels if increase the coverage (augment the read number or reduce the
length of the sequenced genome).

• Over-represented Sequences and Adapter Content

The Over-represented sequences report lists all of the sequence which occupy more
than 0.1% of the total sample. Those sequences might be biologically important
or might indicate some sort of contaminant or bias. FasfQC aligns those sequences
to a reference database that contains a variety of possible sources for the sequence,
like commonly used adapters. A match in this database might not be completely
exact, but can be helpful in order to have an idea of what is going on since many
adapter and contaminants are similar to each other.

The adapter content report is similar to the previous one and have essentially the
same goal. However, in this case are not the reads to be counted, but the k-mers
that can be obtained from those. In the report plot we see if there is the presence of
an over-represented k-mer and the percentage of it’s presence at a certain position
in the read (the starting position is taken into account). This plot is very useful in
order to decide weather or not a library requires to be trimmed from the adapters.

In this study, Camisim did not simulated the sequencing error called ”read trough”,
so we did not encountered any trace of adapters. Moreover not any other over-
represented sequence was encountered.

2.4 Resistome evaluation

Once we had obtained the read libraries, we can perform every kind of genomic analysis in
order to access various information. In a real case scenario, the first step of the processing
should always be the quality assessment of the read libraries and the trimming. The first
operation provides an overview an multiple features and statistics about the read library
that should highlight if the data are corrupted or anyhow damaged. The trimming is

19

instead the research and removal of artifact sequences that could have been introduced
during the sequencing by the device used. Both those operations results to be useless if
applied on simulated data, so was skipped, even if those are required while dealing with
real data.

Since we are interested in the AMR phenotype, the first step in the processing of the
data was to perform an alignment of the reads against the metagenomic database CARD
[18]. CARD is an heterogeneous database that contains data and information of various
kind about antimibrobal resistance. It’s elements are labelled with a controlled vocabu-
lary, the Antibiotic Resistance Ontology (ARO), that allows a rigorous organization of
the variety of elements that compose the database. In CARD can be found information
about drug targets, antibiotic molecules, drug classes and the molecular mechanisms of
resistance, but our main interest in this database is about the sequences of the genes that
have been discovered to encode a mechanism of antibiotic resistance. Those are called
resistomes. CARD contains hundreds of resistance genes and, in order to put together
such an amount of information, was required a massive work by expert physicians that
could not be automated. The curation of this kind of databases is a perpetual process
and implies the review of all the scientific literature on the topic. Each article can deter-
mine an addition to the database or a modification of an existing resistance mechanism,
if the publication satisfies the CARD curation paradigm. The resistance mechanism
must be described in a peer-reviewed scientific publication, the DNA sequence associ-
ated to it must be available in the GenBank, including clear experimental evidence of
elevated minimum inhibitory concentration (MIC). Moreover, CARD provides an other
set of resistomes in CARD’s Resistomes and Variants data-set (nicknamed wildCARD);
those differs by the resistomes in CARD because are silico predicted allelic variants,
determined to be reistomes by computational methods. It is highly recommended to
use also this extension of the database as the allelic diversity for AMR genes is greatly
unrepresented in the published literature.

CARD provides also RGI (Resistence Gene Identifier), a command line tool that can
be used to analyze genomic data of various kind and aligning them to the genes present
in the database. RGI can deal with assembled genomes or contigs, but also with read
libraries and in this study was exploited this last modality. This procedure relies on
aligning the reads to the reference genomes contained in CARD and wildCARD, but in
order to perform the alignment in reasonable times the references are transformed using
the Burrows–Wheeler transform. This is a reversible transformation that is widely used
in data compression but also allows to query the data more efficiently. The construction
of the Burrows–Wheeler transform is performed separately and one times for all the
future uses, so it do not slow down the analysis. Both this operation and the alignment
are implemented in Bowtie2 [19], a widely used software in the field of aligners. RGI
provides a wrapper around it, specific for the CARD database and creates an output that
contains all CARD information about the references that results at least in a match.

For reach reference of CARD/wildCARD that appears in the output, are provided

20

a lot of information and also the number of reads matching the reference. From this
data we can evaluate an estimate for the abundance of the genome material associated
to the reference that is in the population. The unit of measure of such abundance is
FPKB (fragments per kilo-bases per million reads). This measure is evaluated for each
reference gene the reads that are aligned to: the count of aligned reads is scaled for both
the length of the sequence (we expect a linear dependence of the number of matches
and the number reference length) and the number of reads in the sample, in order to
make the abundance value comparable with the results from samples with different read
counts.

FPKB =
Aligned Reads

Reference Length ∗Reads in the Sample
(2.3)

In order to get the usual scale of FPKB, the result should be multiplied by 103∗106. In
this way, we obtain what we can call a resistance spectrum: a multidimensional quantity
that represent the abundance of different resistance sequences in the genetic material
that was sequenced. It can be visualized as a bar plot and it contains an entry for each
different ARO identity identified in the sample. We can call resistance spectrum the full
set of resistomes taken into account. Since we needed to compare the spectrum obtained
by various samples, the actual ARO domain that was used was the union of all the
domains of the samples. The collection of those spectra usually results in a very sparese
data-frame that will be the starting point for our machine learning procedures. In the
following image 2.10 we present a bar plot representation of the resistance spectrum
that can be obtained with this procedure. For sake of visualization, the image will
represent a version of it which have already been filtered, leaving out the majority of
columns. Those are usually are in the order of 1000 ARO identities, but most of them
have very low abundance can’t be exploited in the following analysis. A useful statistic
to understand the loss of information in the filtering process is what we can call the
resistome integral. It can be defines as the sum of all the abundances of a spectrum and
its measure is still FPKB. During the filtering operations that we perform, the integral
is usually reduced of its 10% loosing the 90% of the ARO identities. Reducing of such
amount the dimension of our spectrum is important in order to speed up the computation
and but we tried not to decrease the resistome integral : a reasonable trade off have been
chosen.

The distribution of the resistance spectrum, the resistome domain and the resistome
integral strongly depends on the content of the metagenomic sample, but also on the
database used as reference for the alignment. Moreover, the resistome domain depends
also on the other samples and the other spectra we are considering, since it have to
describe the full set of samples we are going to analyze.

21

Figure 2.10: Each column represents a different ARO identity found during the alignment
process in one of the populations. For sake of visualization, we plotted the resistance
spectrum already filtered (see chapter 2.4 for the filter procedure); in this case we are
left just with 51 columns over the original 1335, while decreasing the spectrum integral
of its 11%

2.5 Preprocessing and PCA

As mentioned in the previous section, the obtained data are very high dimensional. In
a simulated sample we found tracks of hundreds of different resistomes and we also
need to add the other resistomes that are found in other samples; in the one we are
considering will be counted 0. In order to train a machine algorithm with such complex
data would be required an absurd amount of information and computational time. We
thus needed to simplify those data and here is the list of operations that were performed
on them. The starting point was, as mentioned, a 2D data-frame which has a row for
each sample and a column for each ARO identity in the ARO domain. In each cell is
reported the abundance of the resistome in the sample (FPKB). The dataframe was
implemented with the python library Pandas (version 1.3.4)[20] and also all the filtering
operation were performed tanks to the functions of this library. In the following list we
will not specify any parameter for the filtering procedures, since those were adapted to
the various samples simulated to obtain the best trade off in terms of computational
times and information loss. Notice that the action of sparsity filter and of the median

22

filter (that we are going to discuss) reduces the dimension of the resistance domain. This
operation have to be performed being careful of not unbalance the information content
of the different samples.

• SPARSITY: A resistome that appears in in just few samples increases the dimen-
sion of our database without bringing much information. We chose to eliminate all
the columns that was showing a 0 abundance in more than the X% of the samples
(sparsity > X%). Notice that in each set of sample simulation we simulated 50%
of an AMR phenotype and 50% of the other. We will get in deeper detail about
what we mean here by phenotype, but, given this proportion, we had to keep all
the columns with sparsity < 50% and also keep a wide margin over 50%. Features
with sparsity > X − 50% and < X% could be indeed very good indicator of our
phenotype, as they could be present in one of the groups and absent in the other.
During the trials of this study this filter caused some problems in the process-
ing of a particular design. We considered different samples, some of them (say
Y%, Y > X) with an high percentage of individuals similar between the samples
and some other samples with different ”outsider” species. In this case the sparsity
filter action eliminated almost completely the resistance spectrum of the outsider
samples, since many of its entry where sparse in our data although being truly
informative. In order to avoid this loss of information is useful to keep in check
the resistome integral of the samples before and after the filtering.

• MEDIAN: There are a lot of resistomes that have very low abundance in the
samples, but still are present in many of them. Those won’t be affected by the
sparsity filter, but still are of very little use in our classification process. A resistome
like this could be some sort of background noise that could be produced by a bias
in the simulation or in the alignment procedure. In order to get read of such
resistomes, was calculated the median of their abundances in the samples and
those that resulted under a certain soil was eliminated.

• STANDARDIZATION: Standardization is not a filtering process, but still is a
necessary step in order to make the data available for PCA. This operation is quite
common and in this context we relied on a pre-implemented function of SKLearn
library. The abundances of each resitome are scaled and shifted so that the average
of their distribution becomes 0 and the standard deviation becomes 1. In this way
all the resistomes that was not filtered out comes to have the same ”importnace”,
even if those presented different abundances and different variances.

Up to now we have transformed the database just eliminating some of the columns
and keeping the others as they are, a part for standardization; at the end of the filtering
we expect to have a database with less then 200 columns. Since in all the simulation
set up we produced far less samples, those dimensions results to be still too many for

23

our purpose. Having data for each sample of higher dimension of the number of samples
itself results in the under-determination of our problem. If we train a machine learning
algorithm with data like this, we will obtain an operative classifier, but ti will just work
exploiting few of the dimensions of the data. The number of them will be, at most,
equal to the number of samples. In this situation, the best we can do is to identify
the dimensions of our data that are more relevant if we intend to perform classification.
Those dimensions won’t be the original ARO identities of our starting database, but will
be a linear combination of them. At this point we are allowed to cancel all the other
non informative components and train our machine learning algorithms just on the N-1
most important, where N is the number of the samples we have. The procedure that we
are talking about is called Principal Components Analysis (PCA) and is implemented in
a function of the Scikit learn python library. To perform this procedure, the data needs
to be centered, so that the average of all their components (column values) have to be
0. Their variance have to be the same, otherwise the PCA will privilege the components
with bigger variance, even if it is due to a bigger abundance of the component. If the data
are in this condition, PCA can be correctly applied and its results is a new database with
lower dimension of the original one: just N-1 columns remains. The data are represented
in a different base which is a linear combination of the original columns. The new base
has its columns sorted by the PCA in order of ”variance explained”. This expression
refers to a parameter that is evaluated by PCA and is relative to the amount of variation
that the data present if projected on that component. For a better understanding of
the meaning of the explained variance and PCA, see section 14.5 of [21]. Based on this
parameter, the algorithm sorts the new columns of the database and then we can get
read of the less variance explaining components an keep just the N-1 most relevant.

2.6 Machine learning

The complexity of our data has been reduced a lot. The filtering operation we performed
resulted in a considerable loss of information, but due to the limited number of samples,
we could not really take advantage of it in the classification process. With PCA we
managed to identify the most relevant combinations of components and we kept just
them. We find ourselves with a quite smaller 2D database, composed by N rows and N
columns. It is possible now to use the machine learning algorithms that we considered
in this study. Although being different in their implementation, the ML algorithms
can be treated quite in a similar way and we will start this section with some general
considerations about them (subsections 2.5.1, 2.5.2, 2.5.3).

After this, we will give a brief explanation of how the ML algorithms used in this study
work. All of them are used for classifying multidimensional data that can be described
in a multidimensional feature space. Some of the components of such space might be
continuum variables, other might be categorical. In the case of a ML algorithm used

24

for classification, we have one additional categorical variable which will be the object of
the guesses of the algorithm. In this study, the categorical variable will have just two
possible values: ”resistant” or ”susceptible”. Like in all the ML process, the classifiers
have to be trained using a set of data in which we know all the features and ad also their
classification. Understanding how the training process tune the parameters of the ML
algorithm is the base for understanding their functioning.

The classifier that was exploited for this analysis was:

• Elastic net logistic regression (subsection 2.5.4)

• Random forest (subsection 2.5.5)

• AdaBoost classifier (subsection 2.5.6)

The implementation of them an them can be found in the following python libraries:

• sklearn.linear model.LogisticRegression for the elastic net logistic regression

• sklearn.ensemble.RandomForestClassifier for random forest

• sklearn.ensemble.AdaBoostClassifier for AdaBoost classifier

All the parameters have been left with default values, apart from those that we will
mention in the following sections.

2.6.1 Phenotype definition

In first place, we have to provide a suitable definition of phenotype. Up to now we
have mentioned this term, but we did not explain what is its exact meaning in this
study. The National Human Genome Research Genome Institute defines it as ”the
individual’s observable traits, such as height, eye color and blood type”. It is reasonable
to include in the list of observable traits also the resistance or susceptibility to a particular
antimicrobial substance. An aspect of this definition that instead is not compatible with
this study is the fact that the phenotype is referred to an individual. Referring the
phenotype just to an individual can be indeed problematic when we are dealing with
metagenomic data obtained by wild bacteria populations. In this case, the samples
contains information about a huge variety of individuals, some of them may be resistant
and some of them may be not.

One possible solution to this problem could be to perform a taxonomic classification
of the genomic material of our samples. This is a well established routine and it results
in the classification of the reads based on the specie of their source. In this way we
obtain a set of sub-samples, each of them referred to a homogeneous population (more
or less, depending on the taxonomic classification parameters). We could now assume

25

those populations to be made of exactly equal individuals; in this case the resistance
spectrum that we obtain from the taxonomic sub-set of reads will be informative on
each single individual of the taxa. From those spectrum, which are now referred to
singular individuals, we could evaluate the phenotype. In this way we have recovered
the singularity of the phenotype definition, but the assumption that we made was very
strong. Whatever the granularity of the taxonomic classification is, we end up considering
the bacteria population as made just of few groups of bacteria, each group made of cloned
individuals. This simplification becomes less problematic as we increase the resolution of
our taxonomic classification, but we can’t increase it too much. Indeed, given the finite
sample size, if we divide the same number of reads in a bigger number of species, we
end up with a smaller number of reads per specie and this is problematic if we intend to
evaluate the resistance spectrum with an appropriate depth.

The solution we adopted was another one: we provided a more flexible definition
of phenotype that fits the purpose of our study. The phenotype will be defined as a
metadata associated to a bacteria population. In this study, the phenotype will be a
binary data that can have the values of ”resistant” and ”susceptible”. Depending on the
population design, the meaning of those two values will be defined more clearly, but we
can anticipate some examples:

• In populations produced by a single specie, so produced by a Camisim run that had
just a single genome as input (it will contain just the strains simulated from it),
the phenotype of the population is considered to be the phenotype of the genome.
The genome phenotype is the metadata provided by PATRIC and it is the result
of a laboratory experiment on AMR phenotype made on populations of ”cloned”
individual, all having that genome. The experiment can be disk diffusion or MIC
evaluation, but we will refer just to the ”resistant”/”susceptible” data.

• We also simulated populations of 4 species. In all the simulations 3 of the 4 species
was kept the same, and the phenotype of their genome was ”susceptible”. The
fourth specie was changed each simulation and half of the times its phenotype was
”susceptible” and half of the times its phenotype was ”resistant”. In this design,
the population phenotype is ”resistant” if there is at least a specie simulated by a
”resistant” genome, otherwise the population is ”susceptible”.

Those definitions might appear not intuitive and the fact that the phenotype have
to be defined again for every kind of population can be problematic. Never the less,
those definitions are useful if we use them for machine learning; those indeed provides
a clear way to classify the populations that was simulated. If we train a ML algorithm
with the resistance spectrum of various populations of 4 species and their phenotype
as defined it in the second example, the algorithm will be able to make predictions on
other samples. Those predictions will be in therms of ”resistant” or ”susceptible” as we
defined them in the training set. This means it will be able to distinguish populations of

26

all ”susceptible” species to populations with at least one ”resistant” specie on a constant
background. Notice that a ML algorithm trained as described will produce nonsense
prediction on a population with more then one ”resistant” specie, since it is outside the
domain of the phenotype definition it was trained for.

In the Results section, will be specified the definitions used for each population design
that was simulated. Anyway, we can anticipate that all of them are boolean metadata.
This is due to the data availability on PATRIC, which provides boolean information
about the AMR phenotype in the majority of cases. Never the less could be considered
the possibility of repeating this kind of study taking into account the MIC, weather then
the categorical definition of phenotype. MIC, being a positive real number, is clearly
more informative then a boolean variable.

2.6.2 Training, validating and testing

Before getting in the detail of how the machine learning algorithms are implemented,
we should consider the structure of a ML study, which is independent to the classifier
used. ML classifiers are procedures that are capable of assigning a labels (in our case,
the AMR phenotype) to multidimensional data (in our case, the resistance spectrum).
In order to do this, those algorithms are trained on a set of data which have already
their labels assigned. The training procedure is specific for each kind of classifier, but in
general we can say that the algorithm finds the best set of internal parameters in order
to succeed in the classification of known label data. This is usually implemented as the
minimization of an error function that is achieved with an iterative process. The more
we train the ML algorithm, the more it will be efficient in assigning the labels to the
training data-set. In this process we have to keep in mind that the training will improve
the model performance just on the training data, while instead we usually want to have
good performance on all data of that kind. An excessive amount of training (amount of
iterations) will end up in the so called over-fitting the training data. In this condition,
the classifier have very good performance on the training data-set, but scars performance
on other unknown data.

In order to avoid over-fitting and test the result of the training procedure, the perfor-
mance of a ML classifier are evaluated on a set of data which was not used in the training
process; this practice is called validation. An usual measure of those performance are
the ratio of correctly classified data over the full validation data-set: we will call it
score. Also counting the type of errors made is a useful statistic (classified ”susceptible”
while being ”resistant” or the opposite). Notice that the validation data-set have to be
structurally equal to the train one: even if the labels of the first are non provided to
the classifier, we need to know them, in order to understand the validation results. In
practice, this means that, if we intend to perform a ML procedure on a data-set, we need
at least to divide it in a train and a validation sub-set.

There are a variety of ways to do so, but the more basic one is simply to chose a

27

proportion 0 < P < 1 and randomly extract P ∗ data − set.size elements form the
data-set and use them as validation set. Notice that, if we change the entries that we
move to the validation set, the training of the classifier will end up in a different way.
This because the values of the internal parameters of the classifier are determined by
the training set and different training sets produce different classifiers. This means that,
even if we establish a proportion P for a split of a given data-set, we have a variety of
possibility to chose the P ∗ data − set.size validation entries and for each of them we
will have a different classifier at the end.

This under-determination is clearly problematic, but provides also a more detailed
picture of the performances of the ML procedure we are using. In order to capture
the results from a variety of possible train-validation split, we exploited various cross
validation techniques. A k-cross validation procedure consist in dividing the data-set
in k equal size folds, rather then in just 2. A classifier is trained on k - 1 folds and
its performances are validated with the remaining fold. This procedure is repeated k
times, using a different validation fold each time. The collection of scores (and the errors
type) for all the validations performed is a good indicator of the performance of our ML
procedure. The data we will report in chapter 3 will be the average and the variance
of the scores distribution. In this study, we used a five fold cross validation (k = 5)
and a live one out cross validation(k = data − set.size). This kind of cross validation
techniques have the peculiarity of including each sample in the validation set exactly one
time. This implies that, for each sample, we have exactly one prediction at the end of
the validation process. Since we intend also to report which kind of error committed the
ML algorithm (false ”susceptible” or false ”resistant”), we will refer to this prediction.

In some studies is required to chose, between all the k classifiers trained in the cross
validation, the one that best performs. In this case is required a supplemental set of
data in order to perform a testing of it independent from the data used to create it. We
can’t indeed relay on the score that the classifier performed on the cross validation set,
because the choice of the classifier is determined from the validation set itself. In the
present study we did not performed any kind of test, since our purpose is not to obtain
the best possible classifier, but just to have a picture of how ML classification works on
the data we simulated.

2.6.3 Feature importance

In many situations, referring to machine learning algorithms, those are said to be similar
to ”black boxes” that are able to perform classification from the features of the input
data. This wording refers to the fact that the way in which the features are processed is
quite complex but don’t have to be known in order to exploit the classification obtained.
This kind of approach, although being useful in naive experiments, is quite poor and
keeps the user away from a better understanding of the content of its data.

A first step into those ”black boxes” understanding is to evaluate the feature im-

28

portance that results from the machine learning training. There are various measure of
feature importance, but all of them intend to quantify how much a feature results to
be relevant in the classification process. In this context, the features that are provided
to the classifiers are the components evaluated from the PCA: linear combinations of
the resistance gene abundances that are found in the metagenomic samples during the
alignment. We adopted this strategy for computational reasons, in order to reduce the
dimension of each sample and the computational times, but in principle those features
could be the resistome abundances themselves. Evaluating the feature importance for
the resistomes means to access how those are relevant in the determination of the pop-
ulation phenotype. This is quite an important aspect of the analysis that might enable
to link the result of the machine learning classifiers to biomedical knowledge about the
properties of the resistomes. Moreover, comparing the various importance values ob-
tained from different classifiers will be informative about the differences in the resulting
phenotype.

In the following subsections, we will explain how work the classifiers that we used and
we will also clarify what is the importance measure that we took into account. Notice
that feature importance values are not supposed to be comparable, since are defined
differently. Anyway, the order of the features sorted by those importance values can be
instead object of comparisons.

We recall that in this study the classification of the samples is achieved with cross
validation strategies. This means that, for each classifiers used, we trained various copies
of it on different training sets. As a result, those classifiers will assign different importance
values to the features of the data. In order to provide a detailed picture of the actual
importance of a feature, we will present the average values and the standard deviation
of the importance values of each classifier trained during the cross validation.

2.6.4 Elastic net logistic regression

Logistic regression is the first classifier we have taken into account. This model belong to
the category of generalized linear model and indeed the equation that we are fitting to the
data can be obtained from a linear fit. Generalized linear models are fitted to the data
maximizing the likelihood (likelihood of those data being sampled from the candidate
distribution). Before getting in the detail of the fitting procedure, let us present the
visualization 2.11 of the procedure result of it for the logistic function: we will start with
an heuristics analysis of it.

The equation 2.4 that we are fitting is the following, where the parameters will be
called slope (k) and intercept (x0):

Y =
1

1 + ek(x0−X)
(2.4)

29

Figure 2.11: In this picture we see a plot of a logistic function fitted to the data, which
are represented by the circles. The different colors of the circle represent different clas-
sification of the represented. The horizontal axe represent the domain of the function
and in which are described the features of the data. The co-domain of the function goes
from 0 to 1 and represents the probability of a data to belong to one of the two category.
The training data are placed at the boundary of this domain, since their classification is
secure

While the intercept have to be bigger then 0, there is no limitations for the slope
values: the absolute value of this second parameter is proportional to the slope of the
curve and if it is negative, the curve results up side down. The domain of this equation
is the all real number set, while the co-domain is limited to the interval [0 − 1]. In our
case, the dimension of our data is bigger then one, so this picture results to be actually
a projection of a multidimensional curve which associates values of a N dimensional
domain (RN) to the co-domain interval. In various context a probabilistic interpretation
is associated to the co-domain of the logistic function, but, in our case, we will use it for
classification porous. This means that the co-domain is split in two sub intervals which
will be associated to the catheterise we are dealing with: [0− 0.5] and [0.5− 1].

The data which are already classified are represented in the plot by the dots of
different colors. Referring to the probabilistic interpretation of the logistic function,
those are represented at the boundaries of the co-domain, since we are sure about their
classification. Fitting the values to of slope and intercept to the known data allows
us to exploit their information in order to have a guess about new data classification.
This is actually an elemental form of machine learning, in the case the calculation is
performed by a computer. When the best fitting curve is found, new data with unknown
classification can be taken in to account and the image of them will be informative
about the probability of belonging to a category or an other. We assign to the data
the more probable label. Notice that, because of the shape of the logistic function, the
domain which is associated to an intermediate probability (say [20% to 80%]) is actually
quite small respect to the rest of the domain, where we have an high probability for the
element to belong to one of the categories. This is why logistic regression is used also

30

as a classification method, assigning the elements of its domain to the most probable
category.

In this context, the slope of the curve is very relevant, since the steeper it will be,
the more sharp will be the classification. In the context of multiple dimension domain,
we have a slope coefficient associated to each of the variables in the scalar product that
we have at the exponential. The k components (it’s absolute value) will then be used as
a measure of the feature importance for the features of the domain they are related to.

In this context, we did not used this exact equation, but a regularized version of
it. Regularization is an usual procedure in statistics and is used in order to reduce the
sensibility of the fitting algorithms to the training data. This is useful in order to avoid
over-fitting the data and can also be helpful in reducing the dimension of our problem.
In a moment we will explain the fitting procedure and the regularization, but we can
anticipate that the regularization affect the value of the slope, reducing the importance of
the features. One of the regularization techniques that we use, the Lasso regularization,
is capable of putting some components of the slope to 0, making the variable useless in
the classification and reducing the dimension of the problem.

Let us now consider the negative log-likelihood of a logistic distribution P in the light
of a set of known data {xi}. For each xi, yi will have a value between {0, 1} depending
on the category they belong to 3.3.

Pi = P (xi) =
1

1− e−k(xi−x0)
(2.5)

yi ∈ {0, 1} (2.6)

Lnlog = − log(L) = −
N∑
i=1

[log(1− Pi) + yi log(
Pi

1− Pi

)] (2.7)

If the we explicit the logistic distribution as a function of xi and the other parameters,
we get 2.8:

Lnlog = −
N∑
i=1

[− log(1 + ek(x0−x)) + yi ∗ k ∗ (x0 + x)] (2.8)

Minimizing this equation results in finding the best values for the parameters slope
and intercept. From this formulation, it is easy to introduce the regularization terms we
mentioned before. Since we aim to reduce the sensibility of our fit by reducing the values
of k, it will be enough to penalize bigger (absolute) values of it in the Lnlog function.
There are two ways of doing so: Ridge and Lasso penalization. In this study we combined
them with equal proportion in order to have both the advantages of the two techniques:
this hybrid regularization is called elastic net. The regularized negative log likelihood
takes the following form 2.11:

31

RRidge =
N∑
j=1

(k ∗ xj)
2 (2.9)

RLasso =
N∑
j=1

|k ∗ xj| (2.10)

Reg Lnlog = Lnlog + λ[γ ∗RRidge + (1− γ) ∗RLasso] (2.11)

Λ is a parameter that regulates the intensity of the penalization: it can go from 0
(normal logistic regression) to potentially ∞ for stronger ad stronger penalization. Γ’s
domain is instead limited between 0 and 1 and it determines the proportion between the
two types of penalization.

The two penalization terms have similar structure: both aims to reduce the norm of
the k vector. Ridge penalization is implemented referring to the L2 norm of the vector
and results in a very strong penalization for high values of k. Lasso penalization is
instead referred to the L1 norm of the vector: this means that the penalization is linear
(and not quadratic) respect to the vector length. This results in the fact that, although
Lasso regression will penalize in equal proportion big and small vectors, it is capable of
penalizing them to zero if the combination λ ∗ (1− γ) is sufficiently big. If a component
of the slope vector results to be 0, we end up neglecting the relative component of our
domain and we achieve a dimension reduction.

2.6.5 Random forest

A random forest is a machine learning method which is used for classification, but also
for regression and other tasks. In this subsection we will just consider the first use, which
is the one which is exploited in this study. Random forests are called ensemble machine
learning methods, since the classification they perform is the result of the average of the
result of multiple classifiers. Those are trained with data-sets obtained by the original
training data-set with various techniques (boostrap). In the case of a random forest, the
classifiers that compose the ensemble are classification trees and the final classification
of the input is decided by the majority of them. In order to understand random forests
is then important to consider how classification trees work.

A decision tree can be represented as a set of splits in the feature-space in which
the data are describes. Those splits are parallel to the axes and the regions that they
define are hyper-rectangles. Each rectangle is assigned to a category, and the data that
falls in that rectangle are categorized in that way. In the training process, we define
the position and the shape of the splits that we perform on the feature-space and the
category assigned to the hyper-rectangles so that those are able to correctly classify the
training data.

32

Figure 2.12: In the images we have the two representation of a trained decision tree that
acts on a two dimensional domain [0 − 10] ∗ [0 − 10]. At the left we can see how the
domain results divided from the splits on the two variables. The colors corresponds to
the two categories that the decision tree is working on. The same coloration is reported
in the leaves of the network that can be found in the image at the right. In this tree
network we have a root node, in light orange on the top, and three branches, in light blue.
Each of them corresponds to a split in the domain based on the condition written in the
node. The bottom arrow indicates a formalism which is often used in the decision tree
representation: between the two outgoing arrows, the one pointing to the left link node
that respect the condition in the starting node, while the node pointed by the left-going
arrow does not.

33

The algorithm that is used to do so can be well explained if we represent the splits
as the nodes of a network. This network have specific properties and nomenclature:

• The network is a directed tree: each node of the tree might have many outgoing
edges, but must have at most one ingoing edge.

• In a classification tree, each node have at most two outgoing edges.

• The network is connected and the only node with no ingoing edges is called root
node.

• The nodes which have no outgoing nodes are called leaves.

• The nodes which don’t belong to the previous categories are. called branches

In the training process we start considering just one of the multiple features of our
data and a split value for that. This feature might be categorical, in this case we will
be splitting a discrete domain in two sets, or continuum and ordered, in this case the
split domain using a threshold. To decide how to perform this split, we will consider the
purity of the two resulting sets of training data. There is a variety of purity measures,
but in our study we used the weighted sum of the Gini Impurity 2.12 of the resulting
set: we will tray to minimize this value in order to obtain the best possible purity from
our split. Let us consider a tree that needs to classify the data between resistant and
susceptible category. Being Ri the number of resistant type element in a set and Si the
number of susceptible type element in the ith resulting leaves:

Gi = 1− (
ri

ri + si
)2 − (

si
ri + si

)2 (2.12)

Purity = −
2∑

n=1

(Gi ∗ (si + ri)) (2.13)

The highest purity split is chosen for that component of the feature space. For each
component is repeated this process until we find all the possible highest purity split.
At this point is chosen the component which have the split with the maximum purity
and the training data-set is divided based on the split on that component. With this
procedure, we evaluated the direction and the value of the first split of our feature space;
it is represented by the root node.

Whatever have been the chose split, is unlikely the Gini impurity to be 0 in both the
resulting subsets (the minimum value for the Gini impurity is 0). In order to increase the
precision of our classification, we will perform other splits on the two subsets of data that
was obtained from the first split. Those new splits will probably be on other variables
and with other values: those will be determined with the exact same procedure described

34

before. Those splits are represented as the branch node of the tree. If we find ourselves
with a subset of data composed just by resistant or susceptible elements, we will stop
splitting it, since it’s already pure. Those data are located in a hyper-rectangle that will
not be partitioned any more and that will be represented as a leave. We need to assign
to all the leaves a type between resistant and susceptible in order to provide a meaning
for our classification. In case of a pure leave this is straightforward: the category of a
pure leave is the category of the training data that falls inside it.

If we let this iterative process go without any limit, we will end up with just pure
leaves. The classification tree will have achieved the best possible precision in classifying
the training data. Anyway, as many machine learning procedures, if we train too much
a classifier on a data-set, the classifier will end up over-fitting it. This means that it
will have very good performance in classifying the training data, but will not be able
to classify new data of the same kind. For this reason, usually we set a limit for the
leaves Gini impurity which is bigger then 0 for stopping the splitting. In this case we
end up with impure leaves, which represent subsets of feature-space containing both
resistant and susceptible training data. In order to chose a category for those leaves we
can consider various strategies, but usually we simply assign to the the category of the
most abundant training data that falls into them.

For a decision three classifier, the feature importance is determined by how much
the best split on that feature reduces the impurity measure of the resulting leaves. This
value is then normalized in order its sum over all the features equals 1.

Now that we have trained the classification tree, we can use it to classify new data.
Those will be represented in the same features space that we have partitioned and will
be located inside one of the leaves (hyper-rectangles) that we defined. The classification
performed by the classification tree results in assigning to the new data the category of
the leave it falls in.

Random forests are a collection of multiple decision trees (100 in the present case):
each of them classify the same input data and the results are averaged over all the
trees. This kind of machine learning algorithms is called ensemble, since is based on the
average of the results of multiple classifiers. Considering many classifiers, rather then a
single one, makes sense only if those classifiers are different to each other. The threes
are created always with the same criterion, so in order to differentiate them we must
have different training data. In order to train a random forest we indeed obtain various
training data-set from the original one using a bootstrap procedure. In this way we get
many training data-sets of equal size, containing some repeated data and without some
other; different trees will be trained on those data and those will compose the random
forest.

In the training of those trees, at each node, the choice of the feature on which perform
the split will be limited to random subset of the total features: just N of the total will
be considered. The performance of those trees is evaluated on the data left out from the
training set during the bootstrap. This allows to chose the best value for N .

35

The procedure described aims to diversify the tree created while taking information
from the same training set, which is the one provided to train the random forest.

The feature importance that is evaluated from a random forest results to be the
average of all the importance that the decision threes assign to the features. A decision
three is taken into account in this average only if it actually contained this feature in its
training data-set. The resulting values ate then normalized again.

For a better understanding of this subject, we suggest to read chapter 9.2 of [21].

2.6.6 AdaBoost Classifier

The AdaBoost classifier [22] is an ensemble machine learning technique as well as the
random forest. Also in this case a set of simple classifiers is used to evaluate different
guesses and then the final result of the classification is obtained taking into account all
of them. In this case the classifiers shape have relatively low importance and usually
the simplest possible structure is chosen. The structure used in our study is called
stomps and can be described as a three node tree: one root and two leaves. Respect
to the random forest, the AdaBoost classifier simplify the structure of the classifiers,
making them all equal to each other. On the other end, AdaBoost construct those
classifiers in a more refined way, taking into account the results of the classifiers already
constructed. Moreover it assign difference importance to the results of those classifiers
when is evaluating the final result.

A stomp can take into account only one component of the multidimensional feature
space that is used to describe the data. AdaBoost procedure uses the same strategy
explained for the random forest in order to identify which is the component where the
split should be made and at what value, in order to get the maximum purity in the
resulting leaves. With this very simple split of our feature space, we can perform a
classification of the training data. The purity of this result will determine how much the
stomp will be taken into account when a prediction on new data will be performed. This
feature of the sub-classifier is called ”say” and can be evaluated like this 2.14:

Say = 0.5 ∗ log 1− Error

Error
(2.14)

For the first stomp, the Error therm in that expression can be considered just the
number of miss-classified over the total number of them. Few things should be said about
the shape of this function:

• The say can be negative. This happens when we have a sub-classifier that makes
more mistakes then correct predictions. In this case, multiplying it’s guess for a
negative value will reverse the prediction when we are evaluate the final average
guess.

36

• If a stomp perfectly classifies the samples (Error = 0 or Error = 1) the say
diverges, so in practice a small amount of Error is always added or neglected.

• A stomp gets the lowest possible consideration in the final evaluation if can’t be
found any correlation between it’s guess and the real classification of the samples.
More specifically, when half of samples are correctly classified and the other half
are not.

With this function we can determine the importance of a stomp based in its perfor-
mance on the training data-set. AdaBoost classifiers exploit the result of the first stomp
to update the training data-set, in order to give more importance to the miss-classified
samples. To each of the sample is indeed assigned a weight such that the sum of all the
weights equals 1. In the case of the first stomp the weight are uniformly assigned, but
after the first prediction is evaluated, the weights are updated in the following way [2.15
2.16]:

• For miss-classified samples we have

New weight = weight ∗ eclassifier say (2.15)

• For well-classified samples we have

New weight = weight ∗ e−classifier say (2.16)

The new weights are then normalized in order to have sum equal 1. In this way
we have essentially obtained a different training data-set and so we can construct a new
classifier following the exact same procedure. The new classifier (a new stomp) will differ
from the first since also the training data-set is different. More precisely, when we are
looking for the best dimension on which perform the split and the best value to do it,
we should refer to the weighted definition of the Gini impurity index, that takes into
account the updated weights.

Alternatively, we can sample a new training data-set from the original one. The
sampling will allows repetition of sample choice and will end up in when the new data-
set have the same size of the original one. The sample should be a stochastic process
that follows the probability distribution that is specified by the samples weights. The
two strategies are not exactly equivalent, but usually, and also in our study, is used the
second, since is computationally more efficient.

When a desired number of stomps (50 in our case) have been trained and their say
have been evaluated, the AdaBoost classifier is considered to be trained. As anticipated,
the classification performed by this tool will be the result of a weighted average of each
stomp result, where the weights of the classifiers are the normalized says.

37

Also the features importance will be the weighted average of all the importance values
obtained from the stomps that actually take that feature into account. Notice that each
stomp evaluate an importance only for one feature and it is obtained again from the
reduction of Gini impurity due to the split on that feature.

38

Chapter 3

Results

In the rest of this work, we will present the results of the procedures described up to
now on the samples that were simulated. In the following table we present a summary
of the different design of such populations. We remind that, for each of following set up,
half of the populations had a susceptible phenotype, while the other half was considered
resistant. The substance that resistance/susceptibility is referred to is and antibiotic of
the carbapenem family: the imipenem.

N. of genomes Strains per genome Depth N. of different designs
Single Specie 1 8 1Gbp 10
Four Specie 4 8 1Gbp 10

Each design was sampled two times, and each time the 8 strains was generated from
scratch. In this way we expect to have two populations which are similar, since the strains
are created from the same set of genomes, but with actually no genomes in common.

3.1 Single specie populations

In order to start with the simplest possible scenario, we simulated a set of populations
containing just one genome. Although sgEvolver diversify it in 8 strains, this scenario
is still quite simple and far from the complexity of a real metagenomic sample. The
original genomes that was used are 10 different stains of acinetobacter baumannii, one
in each design. Each design was sampled two times, tor a total of 20 different samples.
In the following table we provide the reference to the strains that was used; the AMR
phenotype is refered to imipenem.

39

Strain name PARTIC ID AMR phenotype genome length
Acineto. baumannii BAL 056 470.16198 resistant 4008549
Acineto. baumannii NCSR 106 470.16275 resistant 4123188

Acineto. baumannii A074 470.2428 resistant 4097771
Acineto. baumannii A078 470.2431 resistant 3884708

Acineto. baumannii SIUA14 470.4065 resistant 3939944
Acineto. baumannii NL 6 470.16279 susceptible 3724831

Acineto. baumannii UV 956 470.16281 susceptible 3868975
Acineto. baumannii 91 an 470.16309 susceptible 4003153
Acineto. baumannii 184 n 470.16316 susceptible 3998530
Acineto. baumannii 233 an 470.16326 susceptible 3998495

The read libraries that was generated was aligned to the CARD and WildCARD
database in order to obtain the so called resistance spectrum with the procedure described
in section 2.3. Those spectra have been filtered with the procedure specified in section
2.4; the following values was used as threshold for the database columns.

• Median: 5 FPKB at least

• Sparsity: present at least in 70% of the samples

In the following plot 3.1(sx) we can have a picture of the effect of the sparsity filter
and the median filter on the resistome abundances. In this population design, the values
chosen for the filter removed 872 ARO identities from the original resistome domain
which was of 945 ARO identities. This operation costed the 8% of the sum of all sample
integrals the samples set. This suggests a reasonable loss of information but a grate
dimensional reductions. The loss of sample integral, moreover, results to be quite equally
distributed among the samples as we can see by the following plot 3.1(dx).

As mentioned, the resistance spectrum data have been standardized and their dimen-
sion have been reduced dappling PCA. All the PCA dimensions was taken in to account;
since the number of samples, 20, is less then the spectrum dimensions, it will be also the
number of our PCA dimensions we consider. In the following bar plot 3.2 is reported the
distribution of the variance explained by the PCA components that we obtained. This
is an importance measure for the new components. Moreover, we plot the data that we
have in the coordinate of the two most important components of PCA with different
colors depending on their phenotype. In this way we can have a visualization of how
the different samples are distributed in PCA components. In this second picture, we see
some clusters of samples, also with uniform colors. Those can’t be directly related to the
phenotye of the population, but surely hihhlight some similarity between the considered
acinetobacter strains from which the populations are constructed. We remind that we
feed the machine learning algorithms with all the PCA components, so this picture is

40

Figure 3.1: In the scatter plot on the left is shown the effects of the sparsity filter and the
median one on the resistance spectra evaluated from the single specie populations. Each
circle represent an ARO identity and the surface of it is proportional to the abundance
of that resistome in all the populations. The two red lines represents the threshold
values for the median and the sparcity. The bar plot on the left represent the spectrum
resistance integral of each sample before and after the filtering procedure have been
applied. The x-axis labels refers to populations name; for graphical reasons, we reported
only one of the two samples with the same design.

just a projection of the data we are dealing with. The color of each dot distinguish the
phenotype defined for the population.

We trained the classifiers that we mentioned in chapter 2.5 with the result of the
PCA analysis; the result of the validation of the classifiers for single species populations
are summarized in the following subsections. The correct rate is the amount of samples
correctly classified in the validation data-set. Notice that we used a cross validation
strategies that perform multiple validations with different splits between validation and
training sets. Since, for all the splits, the validation sets never overlap, at the end of
the validation process we get one prediction for all of the samples. Correct rate refers
then to the ratio between samples correctly classified and the number of all the samples.
An other important aspect of the result of cross validation procedure is the distribution
of the correct ratio that we obtain from each validation set. Since all the validation
splits have the same size, we can say that the correct rate will be the average of such
distribution. Anyway, also the shape of this distribution, summarized by its variance, is
quite relevant in order to access the stability of our machine learning procedure. Notice
that, in the case of Leave one out cross validation, the correct rate will be distributed
between two values: 0 and 1. This because in this strategy the validation set is always
made by just one sample. We also evaluate the two more parameters which are useful in
order to understand what kind of error the algorithm is affected by. False susceptible is

41

Figure 3.2: In the plot on the right is shown the distribution of the explained variance
of our data from various the PCA components. The values on the x-axes labels the
new created components. In the plot on the left are represented the resistomes of stud-
ied populations in the two first PCA components. The different colors distinguish the
population phenotype: RED for ”resistant” and BLUE for ”susceptible”

the number o resistant samples classified as susceptible; false resistant is the number of
susceptible samples classified as resistant. Notice that all the cross validation strategies
that we exploited assigned just one time each sample to the validation set, so for all of
them we have exactly one prediction on their phenotype.

3.1.1 Elastic net logistic regression results for single specie pop-
ulations

In the following tables are summarized the results of the Logistic regression classifier on
the single specie population:

Five fold cross validation Leave one out cross val
Average correct rate 0.8 0.7
Correct rate variance 0.06 0.21
False susceptible 4 5
False resistant 0 1

We present also a plot of the correct rate distribution in both validation strategies
3.3; notice that for the leave one out cross validation, the correct rate can be just 1 or 0.

42

Figure 3.3: In the two bar plots are represented the distribution of the correct rate for
five fold cross validation (on the left) and leave one out cross validation (on the right).

3.1.2 Random forest results for single specie populations

In the following tables are summarized the results of the random forest classifier on the
single specie population:

Five fold cross validation Leave one out cross val
Average correct rate 0.75 0.95
Correct rate variance 0.05 0.05
False susceptible 4 1
False resistant 0 0

We present also a plot of the correct rate distribution in both validation strategies
3.4; notice that for the leave one out cross validation, the correct rate can be just 1 or 0.

43

Figure 3.4: In the two bar plots are represented the distribution of the correct rate for
five fold cross validation (on the left) and leave one out cross validation (on the right).

3.1.3 AdaBoost results for single specie populations

In the following tables are summarized the results of the AdaBoost classifier on the single
specie population:

Five fold cross validation Leave one out cross val
Average correct rate 0.8 0.9
Correct rate variance 0.03 0.09
False susceptible 3 1
False resistant 1 1

We present also a plot of the correct rate distribution in both validation strategies
3.5; notice that for the leave one out cross validation, the correct rate can be just 1 or 0.

Figure 3.5: In the two bar plots are represented the distribution of the correct rate for
five fold cross validation (on the left) and leave one out cross validation (on the right).

44

3.1.4 Feature importance for single specie populations

In the following 3.6 plots we represent the feature importance that have been obtained
from the three different machine learning methods that were exploited, in the two differ-
ent cross validation strategies. We recall that in this study the features that are taken
into account are the PCA components.

Figure 3.6: From the top to the bottom we have the feature importance evaluated for
logistic regression, random forest and AdaBoost. At the right we find leave one out
results and at the left five fold cross validation results.

45

3.2 Four species populations

In order to test our machine learning algorithms in a more complex scenario, samples
containing four species was simulated. The genomes that were used as input for Camisim
was the same used in the single specie populations. Moreover, we added to each sample
three more genomes. Those are the same in each sample and create a sort of background
uniform to each sample. All of the three genomes where downloaded from PATRIC and,
like the acinetobacter strains, their AMR phenotype relative to the imipenem was noted:
all of them are susceptible. In this circumstance, as mentioned in chapter 2.5.1, the
population phenotype is determined by the phenotype of the acinetobacter strains: if
that is susceptible, all the species in the population are susceptible and so the population
is considered susceptible. Otherwise, the acinetobacter will be the only resistant strain
in the population, but we will consider the population to be resistant. In the following
table we present the references for the genomes used as background. Notice that all the
genomes used have been diversified in 8 strains each and the original genome have not
been included in the simulation. In the following table, we present the reference to the
background genomes that was used.

Specie name PARTIC ID AMR phenotype genome length
Streptococcus pneumoniae 1313.34903 susceptible 1963680

Staphylococcus haemolyticus 1283.799 susceptible 2119443
Yersinia kristensenii 28152.31 susceptible 4448883

The read libraries that was generated was aligned to the CARD and WildCARD
database in order to obtain the resistance spectrum with the procedure described in
section 2.3. Those spectra have been filtered with the procedure specified in section 2.4;
the following values was used as threshold.

• Median: 5 FPKB at least

• Sparsity: present at least in 70% of the samples

In the following plot we can have a picture 3.7 of the effect of the sparsity filter and
the median one on the resistance spectrum. In this population design, the values chosen
for the filter removed 768 ARO identities from the original resistome domain which was
of 881 ARO identities. This operation costed the 6% of the sum of all sample integrals
of the samples set, this suggests a reasonable loss of information. This moreover results
quite equally distributed as we can see by the following plot.

As mentioned, the resistance spectrum data have been standardized and their di-
mension have been reduced dappling PCA. All the PCA dimensions was taken in to

46

Figure 3.7: In the scatter plot is shown the effects of the sparsity filter and the median
one on the resistome evaluated from the four specie populations. Each circle represent
an ARO identity and the surface of it is proportional to the abundance of that identity
in all the populations. The two red lines represents the threshold values for the median
and the sparcity. The bar plot represent the spectrum integral of each sample before and
after the filtering procedure have been applied. The x-axis labels refers to populations
names.

account; since the number of samples is less then the spectrum dimensions, it will be
also the number of our PCA dimensions. In the following bar plot 3.8 is reported the
distribution of the variance explained by the PCA components that we obtained. This
is an importance measure for the new components.

We plot the data that we have in the coordinate of the two most important compo-
nents of PCA. In this way we can have a visualization of how the different samples are
distributed in PCA components. Te distribution of the points results more sparse then
the single population scatter plot, sign of the higher complexity of those samples. We
remind that we feed the machine learning algorithms with all the PCA components, so
this picture is just a projection of the data we are dealing with. The color of each dot
distinguish the phenotype defined for the population.

We trained the classifiers that we mentioned in chapter 2.5 with the result of the PCA
analysis; the result of the validation of the classifier are summarized in the following
subsections. We recall the considerations made in chapter 3.1 in order to understand
those statistics.

47

Figure 3.8: In the plot on the right is shown the distribution of the explained variance
of our data from various the PCA components. The values on the x-axes labels the
new created components. In the plot on the left are represented the resistomes of stud-
ied populations in the two first PCA components. The different colors distinguish the
population phenotype: RED for ”resistant” and BLUE for ”susceptible”

3.2.1 Elastic net logistic regression results for four species pop-
ulations

In the following tables are summarized the results of the logistic regression classifier on
the single specie population:

Five fold cross validation Leave one out cross val
Average correct rate 0.85 0.8
Correct rate variance 0.03 0.16
False susceptible rate 1 2
False resistant rate 2 2

We present also a plot of the correct rate distribution in both validation strategies;
notice that for the leave one out cross validation, the correct rate can be just 1 or 0 3.9.

48

Figure 3.9: In the two bar plots are represented the distribution of the correct rate for
five fold cross validation (on the left) and leave one out cross validation (on the right).

3.2.2 Random forest results for four species populations

In the following tables are summarized the results of the random forest classifier on the
single specie population:

Five fold cross validation Leave one out cross val
Average correct rate 0.85 0.85
Correct rate variance 0.15 0.13
False susceptible rate 1 0
False resistant rate 2 3

We present also a plot of the correct rate distribution in both validation strategies;
notice that for the leave one out cross validation, the correct rate can be just 1 or 0 3.10.

49

Figure 3.10: In the two bar plots are represented the distribution of the correct rate for
five fold cross validation (on the left) and leave one out cross validation (on the right).

3.2.3 AdaBoost results for four species populations

In the following tables are summarized the results of the AdaBoost classifier on the single
specie population:

Five fold cross validation Leave one out cross val
Average correct rate 0.9 0.9
Correct rate variance 0.02 0.09
False susceptible rate 1 2
False resistant rate 1 0

We present also a plot of the correct rate distribution in both validation strategies;
notice that for the leave one out cross validation, the correct rate can be just 1 or 0 3.11.

50

Figure 3.11: In the two bar plots are represented the distribution of the correct rate for
five fold cross validation (on the left) and leave one out cross validation (on the right).

3.2.4 Feature importance for four species populations

In the following plots 3.12 we represent the feature importance that have been obtained
from the three different machine learning methods that was exploited, in the two different
cross validation strategies. We recall that in this study the features that are taken into
account are the PCA components.

51

Figure 3.12: From the top to the bottom we have the feature importance evaluated for
logistic regression, random forest and AdaBoost. At the right we find leave one out
results and at the left five fold cross validation results.

52

Chapter 4

Conclusions

Since the resistance to antibiotics, it is becoming a serious threat is fundamental to be
able to monitor it. The objective of this study was to implement a procedure capable to
distinguish resistant bacterial populations from susceptible ones, starting from a metage-
nomic sample. The resistance we are dealing with is referred to a specific substance: in
this study we chose the Imipenem antibiotic but in principle any substance could be
considered. The only constraint in this sense is availability of a sufficient amount of
data in order to train the algorithms. Those data should be metagenomic samples as
well, derived from population with known resistance/susceptibility to the substance of
interest.

Since we did not have this kind of data, we exploited Camisim in order to generate
artificial samples from genomes of bacteria with known resistance/susceptibility. Those
genomes where diversified and combined in various way in order to obtain different levels
of complexity, but we could not reproduce the diversity of a real bacterial population.
Never the less, we consider the simulated scenarios a useful starting point to test our
procedure, which well performed on them. Moreover, if the algorithms trained on this
artificial data proves to perform well also on real metagenomic data, Camisim could also
be used to increase the size of real data training data-sets.

Different population designs with increasing complexity was produced. The more
species are included to a population, the more it is comlpex to establish a definition
for the resistance/susceptibility for the population. This is a fundamental aspect in
order to make possible the classification of them. Two different definitions were tested,
corresponding to two different levels of complexity of the samples. In principle any
definition could be stated, but surely the performance of the algorithms will strongly
depend on it and in some cases those definitions can’t even be applied to some scenarios.
An example of those limitations is the definition stated for the four species samples:
the sample is resistant if there is a resistant specie, otherwise it is susceptible. This
definition in principle could be used also for populations containing more species, but
there must be a maximum of one resistant species in all populations. This is quite an

53

hard constraint and surely a more comprehensive definition has to be found in order
to analyze more complex samples. A solution to this limitation could be to perform
a taxonomic classification of the reads in the samples. In this way, the subsets of the
original metagenomic sample could be analyzed independently, assuming to be single
specie populations and the resistant/susceptible definition would be straightforward.
The taxonomic classification is quite a standard analysis [23] and usually is capable of
classifying the reads at the specie level, but in some case can also distinguish different
strains. In this way we would have very simple populations to study and the phenotype
definition problem would become trivial.

The implemented procedure exploits an innovative feature extraction strategy in order
to provide the data to the machine learning algorithms. The reads where aligned to two
databases containing genes associated to various resistance mechanisms (resistomes) and
the data provided to the machine learning algorithms was the estimated abundance
of such genes. We named this multidimensional quantity resistance spectrum. This
procedure is very specific for antibiotic resistance study and requires to have a reference
database containing the resistance genes (resistomes): we used CARD and WildCARD
databases.

Both for the single species and the four species design, we filtered the resistance
spectra of 20 samples, and reduced their dimension with PCA. Three machine learning
algorithms were trained with those data and their performance was evaluated with cross
validation. Result are detailed chapter 3 and here we provide a summary: in the following
tables is reported the average score of the classifiers on the different validation sets.

• Leave one out cross validation results

Classifier Single specie score Four species score
Logistic regression 0.72± 0.45 0.8± 0.4
Random forest 0.95± 0.22 0.85± 0.4

AdaBoost 0.9± 0.3 0.9± 0.3

• Five fold cross validation results

Classifier Single specie score Four species score
Logistic regression 0.8± 0.24 0.85± 0.17
Random forest 0.75± 0.22 0.85± 0.38

AdaBoost 0.8± 0.17 0.9± 0.14

All three tested methods seem to perform well in the classification of the samples.
The scores with different validation techniques and on different design of population do

54

not present a clear ranking of the classifiers, but we can say that AdaBoost has an overall
better power in distinguishing susceptible from resistant samples. Its performance are
also quite stable as we can see by the low standard deviation values. This means that
the performance of the classifier do not depend in a strong way on which samples we
use for the training and which ones we use for the validation and is a good indicator
of the stability of the algorithm. In order to see more clearly which machine learning
algorithms performs better, would probably be required a larger collection of samples.
The result of this ranking is likely to be dependent also no the parameters setting of the
classifiers. Further analysis will be carried on in this sense in order to identify the best
procedure to perform this classification. Anyway, we should say that the performance
already obtained with such a small sample size are quite satisfactory.

An interesting comparison that will be surely performed is instead between the per-
formances achieved with this feature extraction procedure and the performance of more
canonical approaches. Usually the read libraries are decomposed in k-mers and then the
count of those k-mers is used a input for the machine learning algorithms [24]. This
procedure is more generic and is useful also for other classification procedures that don
not regard AMR. Anyway, specifically for AMR study, the feature extraction proce-
dure should take into account the knowledge about resistance genes that is collected
in databases like CARD. For this reason we expect that the the resistance spectrum
should be the right way to extract the features from read libraries when the objective is
accessing AMR phenotype.

The two population design that was simulated have a great difference in terms of
complexity, but the performance of the classifiers don not seems to be affected by this.
All three algorithms are capable of classifying correctly the population, both if they are
simulated starting from a single genome or four genomes. We remind that three of the
four genomes, in the four species design, are kept constant in all populations (even if
we sample the reads from the strain produced by sgEvolver which are different from
time to time) creating a sort of background noise. The classifiers that we tested were
able to overcome this difficulty identifying the variation of the acinetobacter genome
and also the phenotype of those genomes. This let us being quite optimistic for the
future developments of this study: the composition of the feature extraction procedure
and the machine learning algorithms don not seem to be affected by an increase of
sample complexity. An important part of the future development of this study will
verify this statement and test the procedures also on more diverse sample design in
order to approach the complexity of real metagenomic samples.

Finally, the feature importance profiles evaluated from the machine learning proce-
dures highlight how the different algorithms, although differently implemented, agree on
the importance of a certain feature (second component for single species population and
fourth component of the PCA). The other features results still relevant: the random
forest classifier takes advantage of almost all of them while the logistic regression and
the AdaBoost classifier exploits just a subset. Understanding why the second or fourth

55

PCA component is so important in the classification process goes beyond the objectives
of this study, but it will be the subject of further developments. It is likely that a more
clarifying picture could be provided without performing the PCA and this will be also a
point that will be deepen in future works.

56

Chapter 5

Ringraziamenti

Questo elaborato è il completamento di un’ esperienza durata sei anni che le persone
chiamano università. In questi sei anni sono successe svariate cose oltre all’università,
ma questa ha dettato il tempo di tutte le altre, costringendomi a non essere troppo
sfaticato o troppo selvaggio. Finita l’università, quindi, mi aspetto che qualcosa cambi,
che qualcosa di nuovo cominci e che qualcosa di vecchio finisca. In questa situazione è
bello lasciarsi andare a un po’ di nostalgia per il tempo passato e ricordare le persone
che lo hanno reso memorabile. Concedetemi quindi qualche pagina per menzionare chi di
dovere e concedetemi di farlo in italiano, che l’ inglese è adatto al massimo a dei batteri.

Innanzitutto ringrazio Claudia, Ettore, Gastone, Daniel, Nicolas, Alessandro... che
mi hanno introdotto e appassionato alle tematiche della mia tesi e dei miei studi futuri.
Con voi ho scoperto una dimensione sociale della scienza, di scambio e collaborazione,
che ha rimpiazzato lo studio solitario e alienante a cui ero abituato. Sono molto contento
di poter’ continuare a lavorare con voi ancora per un po’.

Oppostamente, ringrazio anche tutti i colleghi degli improbabili lavori che ho fatto:
vendemmiatore, cameriere, bagnino, venditore allo stadio, etc... Siete troppi da nominare
e alcuni di voi mi stanno pure sull’anima, ma esservi colleghi mi ha dato molto più del
misero stipendio. Mi avete insegnato la varietà dell’uomo e ad andar d’accordo quasi
con tutti quando c’è da lavorare. Questo genere di occupazioni non penso avrà più posto
nella mia vita, almeno per un po’.

Ringrazio poi i miei amici, che in modo diverso mi hanno abbellito l’esistenza, in
questi sei anni e prima. Questi, invece, vorrei nominarli tutti, ma mi conterrò e spero
che gli esclusi non se ne abbiano a male.

I primi che ringrazio sono Francesco, Francesco, Federico, Lara, Francesca, Dario,
Andrea... In un film [25] che vi consiglio si dice che con certe persone si raccontano solo
le cose belle. Voi siete decisamente quelle persone; ci siete da sempre e ci sarete il più a
lungo possibile.

Alessandro, Domenico, Mattia, Luca, Ciro, Chiara e Cecilia... con voi invece ho
condiviso anche dispiaceri e bile. Eppure ci siamo divertiti parecchio e sono sicuro che

57

continueremo a farlo. Faremo casino e ci rilasseremo a piacimento, limitandoci solo
quando siamo noi a volerlo e non quando sarebbe conveniente.

Ringrazio Chiara, una strana creatura che da un po’ mi segue, oppure io seguo lei.
Non ho ben’ capito, ma la sua vena artistica è di ispirazione e spero impari a godertela.

Ringrazio Elena, Michela, Davide, Alessandra, Fabrizio, Chiara, Gabriele, Giordano,
Ilaria, Lorenzo, Lorenzo, Lorenzo, Pietro, Matilde, Matteo, Nicøla, Pietropaolo, Davide,
Mattia... Mi avete regalato una città e poi l’Italia intera. Siete sparsi un po’ in giro, ma
farò il possibile per continuare a trovarvi e continuare a vivere avventure mirabolanti.

Ringrazio anche le ragazze che, a modo mio, ho amato. Non ci provo neanche a
spiegare, ne a buttare l̀ı dei nomi: questo ringraziamento è già abbastanza controverso.
Eppure sento che siete state e contninuerete ad essere un parte importante della mia vita.
Il ricordo del tempo passato con voi è una grande ricchezza e l’aspettativa di qualsiasi
futuro è un sogno.

Ringrazio infine la mia famiglia, un’ entità che ha trè nomi che non pronuncio quasi
mai: Franca, Piero e Antonio. Siete i miei idoli ed i miei benefattori. Voi più di tutti mi
avete preparato per questo viaggio e avete soffiato sulle mie vele bizzarre, dandomi piena
fiducia sulla rotta. Sento che sta per arrivare un’ onda che mi spingerà parecchio al largo,
ma coglierò ogni occasione per tornare a raccontarvi quello che ho visto e ascoltare cosa
avete da dire. Ne parleremo a tavola mangiando qullo che abbiamo cucinato e bevendo
buon vino.

58

Bibliography

[1] Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial
resistance in 2019: a systematic analysis. Lancet, 399(10325):629–655, February
2022.

[2] O. T. Avery, C. M. Macleod, and M. McCarty. Studies on the chemical nature of
the substance inducing transformation of pneumococcal types : Induction of trans-
formation by a desoxyribonucleic acid fraction isolated from pneumococcus type iii.
The Journal of experimental medicine, 79(2):137–158, Feb 1944. 19871359[pmid].

[3] J. D. WATSON and F. H. C. CRICK. Molecular structure of nucleic acids: A
structure for deoxyribose nucleic acid. Nature, 171(4356):737–738, Apr 1953.

[4] F Sanger, E O Thompson, and R Kitai. The amide groups of insulin. Biochem. J.,
59(3):509–518, March 1955.

[5] F Sanger, G M Air, B G Barrell, N L Brown, A R Coulson, C A Fiddes, C A
Hutchison, P M Slocombe, and M Smith. Nucleotide sequence of bacteriophage phi
X174 DNA. Nature, 265(5596):687–695, February 1977.

[6] R D Fleischmann, M D Adams, O White, R A Clayton, E F Kirkness, A R
Kerlavage, C J Bult, J F Tomb, B A Dougherty, and J M Merrick. Whole-
genome random sequencing and assembly of haemophilus influenzae rd. Science,
269(5223):496–512, July 1995.

[7] Centers for Disease Control, Prevention, et al. Antibiotic resistance threats in the
United States, 2019. US Department of Health and Human Services, Centres for
Disease Control and . . . , 2019.

[8] Adriano Zaghi and Ettore Rocchi. https://github.com/adrianozaghi/amr.

[9] James J Davis, Alice R Wattam, Ramy K Aziz, Thomas Brettin, Ralph Butler,
Rory M Butler, Philippe Chlenski, Neal Conrad, Allan Dickerman, Emily M Di-
etrich, Joseph L Gabbard, Svetlana Gerdes, Andrew Guard, Ronald W Kenyon,

59

Dustin Machi, Chunhong Mao, Dan Murphy-Olson, Marcus Nguyen, Eric K Nord-
berg, Gary J Olsen, Robert D Olson, Jamie C Overbeek, Ross Overbeek, Bruce Par-
rello, Gordon D Pusch, Maulik Shukla, Chris Thomas, Margo VanOeffelen, Veronika
Vonstein, Andrew S Warren, Fangfang Xia, Dawen Xie, Hyunseung Yoo, and Rick
Stevens. The PATRIC bioinformatics resource center: expanding data and analysis
capabilities. Nucleic Acids Res., 48(D1):D606–D612, January 2020.

[10] Lúısa C.S. Antunes, Paolo Visca, and Kevin J. Towner. Acinetobacter baumannii:
evolution of a global pathogen. Pathogens and Disease, 71(3):292–301, 08 2014.

[11] Ioannis Kyriakidis, Eleni Vasileiou, Zoi Dorothea Pana, and Athanasios Tragian-
nidis. Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens,
10(3):373, March 2021.

[12] Adrian Fritz, Peter Hofmann, Stephan Majda, Eik Dahms, Johannes Dröge, Jessika
Fiedler, Till R Lesker, Peter Belmann, Matthew Z DeMaere, Aaron E Darling,
Alexander Sczyrba, Andreas Bremges, and Alice C McHardy. CAMISIM: simulating
metagenomes and microbial communities. Microbiome, 7(1):17, February 2019.

[13] A. Darling, M. Craven, B. Mau, and N.T. Perna. Multiple alignment of rearranged
genomes. In Proceedings. 2004 IEEE Computational Systems Bioinformatics Con-
ference, 2004. CSB 2004., pages 738–739, 2004.

[14] Robert MacArthur. On the relative abundance of species. The American Naturalist,
94(874):25–36, 1960.

[15] Weichun Huang, Leping Li, Jason R. Myers, and Gabor T. Marth. ART: a next-
generation sequencing read simulator. Bioinformatics, 28(4):593–594, 12 2011.

[16] Fastqc, Jun 2015.

[17] Fastqc manual, Oct 2018.

[18] Brian P Alcock, Amogelang R Raphenya, Tammy T Y Lau, Kara K Tsang, Mégane
Bouchard, Arman Edalatmand, William Huynh, Anna-Lisa V Nguyen, Annie A
Cheng, Sihan Liu, Sally Y Min, Anatoly Miroshnichenko, Hiu-Ki Tran, Rafik EWer-
falli, Jalees A Nasir, Martins Oloni, David J Speicher, Alexandra Florescu, Bhavya
Singh, Mateusz Faltyn, Anastasia Hernandez-Koutoucheva, Arjun N Sharma, Emily
Bordeleau, Andrew C Pawlowski, Haley L Zubyk, Damion Dooley, Emma Griffiths,
Finlay Maguire, Geoff L Winsor, Robert G Beiko, Fiona S L Brinkman, William
W L Hsiao, Gary V Domselaar, and Andrew G McArthur. CARD 2020: antibi-
otic resistome surveillance with the comprehensive antibiotic resistance database.
Nucleic Acids Res., 48(D1):D517–D525, January 2020.

60

[19] Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with bowtie 2.
Nature Methods, 9(4):357–359, April 2012.

[20] Wes McKinney et al. Data structures for statistical computing in python. In Pro-
ceedings of the 9th Python in Science Conference, volume 445, pages 51–56. Austin,
TX, 2010.

[21] Hastie Trevor, Tibshirani Robert, and Friedman Jerome. The elements of statistical
learning: data mining, inference, and prediction, 2009.

[22] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of computer and system sciences,
55(1):119–139, 1997.

[23] Derrick E. Wood, Jennifer Lu, and Ben Langmead. Improved metagenomic analysis
with kraken 2. Genome Biology, 20(1):257, Nov 2019.

[24] Sanjat Kanjilal Melis N Anahtar, Jason H Yang. Applications of machine learning
to the problem of antimicrobial resistance: an emerging model for translational
research. Journal of clinical microbiology vol. 59,7 (2021), 59(7):119–139, 2021.

[25] Youth - la giovinezza, 2015.

61

