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Abstract

Il modello di Hubbard 1d esteso con potenziale soft-shoulder si è dimostrato estrema-
mente difficile da studiare a causa della sua non risolvibilità analitica e della competizione
tra i diversi termini dell’Hamiltoniana. Per questo motivo abbiamo deciso di utilizzare
tecniche di Machine Learning per studiarne il diagramma di fase nel caso di riempimento
ρ = 2/5 e range del potenziale soft-shoulder rc = 2, ottenendo un diagramma di fase
estremamente ricco. Detti U , V i parametri dell’Hamiltoniana associati rispettivamente
al potenziale di Hubbard e al potenziale soft-shoulder, abbiamo accertato che per V ≲ 5
e U ≳ 3 il sistema è sempre un liquido di Tomonaga Luttinger, diventando poi un liquido
di Luttinger composto da cluster per 5 ≲ V ≲ 7 (con struttura a blocchi dipendente dal
valore di relativo di U e V ), e infine subisce un processo di cristallizzazione per V ≳ 7,
diventando un cristallo nella regione U ≲ 3V/2 e U ≳ 5. Infine abbiamo constatato che
per U ≲ 5 e V ≳ 2 − 3 il sistema mantiene la struttura di liquido di cluster con un
residuo grado di mobilità intra-blocco delle particelle.
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Abstract

The 1d extended Hubbard model with soft-shoulder potential has proved itself to be
very difficult to study due its non solvability and to competition between terms of the
Hamiltonian. Given this, we tried to investigate its phase diagram for filling ρ = 2/5 and
range of soft-shoulder potential rc = 2 by using Machine Learning techniques. That led
to a rich phase diagram; calling U , V the parameters associated to the Hubbard potential
and the soft-shoulder potential respectively, we found that for V ≲ 5 and U ≳ 3 the
system is always in Tomonaga Luttinger Liquid phase, then becomes a Cluster Luttinger
Liquid for 5 ≲ V ≲ 7 (with different block structure depending on the relative values
of U and V ), and finally undergoes a general crystallization for V ≳ 7, with a quasi-
perfect crystal in the U ≲ 3V/2 and U ≳ 5 region. Finally we found that for U ≲ 5
and V ≳ 2− 3 the system shall maintain the Cluster Luttinger Liquid structure, with a
residual in-block single particle mobility.
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Introduction

The study of strongly correlated electron systems has proved itself fundamental in order
to understand peculiar aspects of nature such as magnetism and superconductivity. Some
examples are the Kitaev model [9, 26], Bardeen–Cooper–Schrieffer (BCS) theory [2, 3,
8] and the Hubbard model [18, 37, 43]. In particular the latter Hamiltonian describes
the behaviour of spin 1/2 particles in a lattice and is composed by two elements: the
quantistic hopping term, which makes particles jump from a site to its neighbours, and
the on-site potential, which can disfavour or favour double occupancies depending on its
repulsive or attractive nature.
This model has been widely studied in d = 1 due to its exact solvability thanks to
Lieb and Wu’s 1968 Bethe ansatz solution [22], which made it a theoretical laboratory
for non-perturbative effects. An almost complete review of the model can be found in
[20]. Here we briefly review its phase diagram, which depends onto two parameters,
those being the Hamiltonian parameter associated to the on-site potential and the filling
of the chain. For systems with repulsive potential (which is the natural choice if one
wants to reproduce the behaviour of electrons), for a generic filling spin fluctuations
dominate over superconducting ones. In fact, as one would expect, particles are forced
not to be on the same site so the system is a spin density wave. That consists in anti-
ferromagnetic and low-conducting state, which is more and more dominant as the on-site
potential becomes more repulsive. That changes only at half-filling (i.e. one particle per
site), when the system becomes a Mott insulator (which is an insulating state which
cannot be described by conventional band theories [29]) for all repulsive interactions.
On the other hand, when the potential is attractive, fermions tend to pair in singlets
for every filling and the system becomes superconducting. It is important to underline
the richness of this phase diagram; in fact, despite the simpleness of the Hamiltonian,
the model exhibits both superconducting and Mott insulator phases, which are non-
trivial states of matter. One of the main factors which causes such a richness is low
dimensionality. It shall be stressed in fact (and it will be done in the following chapters)
that the d = 1 case is dramatically different to the others. As a matter of fact, differently
to all other frameworks, in such a scenario single-particle excitations do not exist, as low
dimensionality force all excitations to be collective. Because of this, Fermi liquids [40]
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do not exist in d = 1, and are substituted by Tomonaga Luttinger Liquids (commonly
referred to as TLL), which will be carefully examined in the following.
Moreover, technological progress has made possible the experimental realization of the
Hubbard model, promoting it from a simple theoretical toy model to an experimental
prototype for strongly correlated electrons. Some examples of quantum simulation of the
Hubbard model are metal-insulator transitions in organic solids [11], quantum simulation
with cold atoms [41], and dopant atoms in Silicon [36].
As the Hubbard model has been widely studied due to the previously mentioned nice
properties which characterize it, many extension have been proposed and examined.
Some of them consists in modifying the hopping term by introducing second and third
nearest neighbour hopping [23], while others consists in modification of the potential
[16]. In this thesis we are going to focus on one of the latter, which is obtained by
including a new term into the Hamiltonian, i.e. the soft-shoulder potential (this is
sometimes called the U , V model, e.g. in [15]). This new term introduces an off-site
and spin-independent interaction to the previous framework and drastically changes the
physics of the model. One example of this dramatic change is the fact that the Mott
insulator phase [28] can be reached at fillings which are not necessarily half-filling (i.e.
one particle per site); for example taking just a nearest-neighbour repulsive interaction,
that can be achieved for ρ = 1/4 (i.e. one particle every two sites). That is due to effect
of frustration of particles [30, 5], which is caused by the competition between the three
terms of the Hamiltonian. Another example is the emergence of phases with underlying
block-structures (in particular we will see Cluster Luttinger Liquids CLL), as pointed
out in [6, 27].
In order to study the phase diagram of this model, which can be a difficult task due
to the previously mentioned competition, we decided to use Machine Learning (often
referred to as ML in the following) techniques. Machine Learning has become more and
more important in physics, as its use has had an exponential growth in the last years,
see Fig. 1. In particular we will focus on unsupervised Machine Learning techniques for
phase recognition; unsupervised methods were prefered to supervised ones as they do
not require any a priori knowledge of the system.
The work is structured as follows:

§ In Chapter 1 we briefly review some key aspects of quantum many-body theory,
with a particular focus on Fermi gas. We also give an empirical and almost-formal
prove of the failure of Fermi gas theory in the case of d = 1.

§ In Chapter 2 we move on the d = 1 picture. We introduce the 1d extended Hubbard
Hamiltonian and use it as a model to study bosonization, which is the main topic
of this chapter. Bosonization, which is a mathematical technique which makes
fermions and bosons the same (this is only possible in d = 1), is tackled from both
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Figure 1: Percentage of ML-based publications in material science, physics and
chemistry from 2000 to 2020. Image from [10], adapted from [4].

formal and phenomenological arguments. That naturally leads to the discussion
of Luttinger liquids, which are the analogue of Fermi gases in d = 1. Finally this
chapter also includes a brief discussion of the Renormalization Group flow of the
1d extended Hubbard Hamiltonian.

§ Chapter 3 is dedicated to the discussion of previously proposed phases of the sys-
tem. That includes the introduction of the liquid of clusters phase, perturbation
theory for U ≫ t with V = 0 and perturbation theory with U ≫ V ≫ t. A
previous proposal for the phase diagram of the 1d extended Hubbard model is also
included.

§ Chapter 4 focuses on numerical and ML techniques which were used in this work.
That therefore includes the discussion of Density Matrix Renormalization Group
(DMRG), Principal Component Analysis (PCA), k-means clustering and Learning
by Confusion.

§ Chapter 5 includes the result of the application of the ML techniques to the 1d
extended Hubbard model. After the exam of these, our proposal for the phase
diagram of the system, along with a detailed explanation of all possible phases, is
discussed.

§ Finally in the conclusions we briefly resume and discuss the content of the main
outcomes of this work.
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Chapter 1

Many-fermion systems

“The more, the merrier!”

Common quote

By studying Quantum Mechanics one immediately realizes that the exam of quantum
many-body systems presents great technical difficulties. On the other hand, studying
these systems is necessary to understand matter’s strangest aspects, such as supercon-
ductivity or superfluidity.
In the following, we will mainly focus on systems of fermions (we’ll see that in one
dimension it does not make sense to make such a strict distinction), first considering
non-interacting systems (the Fermi gas), then we’ll show a good approximation of inter-
acting ones (Landau’s Fermi liquids) and finally, we’ll show that this approximation fails
in one dimension.

1.1 The Fermi gas

Taking ℏ = 1 (we will always do so in the following), a non-interacting, translationally
invariant system has plane waves as single particle eigenstates with energy εk = k2/2m.
That being said, at T = 0, for a system of N fermions, the ground state corresponds
to the notorious Fermi sea, which means that every momentum eigenstate is filled up to
the Fermi momentum kF , whose correspondent energy is the Fermi level εF = k2F/2m.
The Hamiltonian therefore reads

H =
∑
k⃗

ξk⃗nk⃗ (1.1)
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where nk⃗ is the number of particles with momentum k⃗, the sum over spin is implicit and
ξk⃗ = εk⃗ − µ, where µ is the chemical potential. Starting from this expression one can
derive 1 the specific heat

CV (T ) = γT =
2π2

3
N(εF )k

2
B T (1.2)

where kB is the Boltzmann constant and N(ε) is the number of particles with energy ε
(commonly called density of states). Moreover it is possible to compute an expression
for spin susceptibility

χ = 2N(εF )µ
2
B (1.3)

where µB is the Bohr magneton µB = e/2me (with e and me being the electron charge
and mass respectevely). Finally one also find an expression for the compressibility

κ = 2N(εF )/ρ
2. (1.4)

where ρ is the mass density of the system. Given these one can easily find that the
so-called Wilson ratio, defined as

RW =
1

3

(
πkB
µB

)2
χ

CV /T
(1.5)

is equal to the unity for non-interacting fermionic systems, independently of the density
N(ε).

1.2 Fermi Liquids

Non-interacting systems are as nice as, in a sense, useless. They do have nice features
which theoretical physicists enjoy (one above all their nice analytical representation),
but they do not present real physical interest. The question of how interaction modifies
this picture naturally arises and Landau’s theory represents, with some limits due to its
nature of approximation, a good answer.
The fundamental hypothesis of Fermi liquids theory is that interactions do not change
the picture dramatically. More formally, we can imagine switching on the interaction by
using a continuous parameter V and our assumptions consist in taking the ground state
energy and the low-lying eigenstate as a continuous function of V . Consider, for example,
a low-lying eigenstate, the state obtained by adding one particle with momentum p⃗
(which must satisfy |p⃗| > kF because of Pauli exclusion principle)

1See [33] for more details

12



a†p⃗ |0, N⟩ = |p⃗, N + 1⟩

where a†p⃗ is the fermionic one particle creation operator for states with momentum p⃗ and
|0, N⟩ is the non-interacting ground state with N particles. Following our continuity as-
sumption, in the interacting case, the momentum p⃗ still must be greater than the Fermi
momentum, but interaction will modify the energy of the state and the k⃗-distribution of
the particles. The complex of the added particles and the disturbed distribution will be
the so-called Landau’s quasiparticle. One can consider analogously the state with total
momentum p⃗ with an added hole, which is nothing but the state obtained by acting on
|0, N⟩ with the destruction operator a−p⃗.
We now want to investigate the physical properties of low-lying excitations in the inter-
acting system. Starting from the ground state quasiparticle k⃗ distribution

n(k⃗) =

{
1 if |⃗k| < kF

0 if |⃗k| > kF
(1.6)

the shift in the energy due to the disturbance in n(k⃗) caused by the interactions (which

we will indicate with δn(k⃗)) is

δE =
∑
k⃗

ε0
k⃗
δn(k⃗) +

1

2V

∑
k⃗k⃗′

f(k⃗, k⃗′) δn(k⃗)δn(k⃗′). (1.7)

The last expression needs further examination. The energy shift is divided into two
different terms, the first one representing the energy of a single ”bare” quasiparticle
while the second takes into consideration the interaction between quasiparticles. One
could now argue what ε0

k⃗
and f(k⃗, k⃗′) are. The first one depends on the microscopic

aspects of the theory, but can be expanded near the Fermi surface as

ε0
k⃗
=
kF
m∗ (k − kF ) +O(k2) (1.8)

where m∗ defines the effective mass and shall be thought of as an expansion parameter.
The analysis of f(k⃗, k⃗′) is less trivial. First, we cannot assume that it does not depend
on the spin, so we shall divide it into symmetric and anti-symmetric parts w.r.t. spin as

f(k⃗ ↑, k⃗′ ↑) = f s(k⃗, k⃗′) + fa(k⃗, k⃗′) = f(k⃗ ↓, k⃗′ ↓)
f(k⃗ ↑, k⃗′ ↓) = f s(k⃗, k⃗′)− fa(k⃗, k⃗′) = f(k⃗ ↓, k⃗′ ↑)

(1.9)

then assuming rotational invariance and that all processes under exam happen near the
Fermi surface one finds that f s,a(k⃗, k⃗′) shall only depend on the angle between k⃗ and k⃗′
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which will be called θ and whose cosine can be expressed as

cos θ ≃ k⃗ · k⃗′
k2F

.

One can now expand f s,a(k⃗, k⃗′) in terms of Legendre polynomials

f s,a(k⃗, k⃗′) =
∞∑

L=0

f s,a
L PL(cos θ) ≡

∞∑
L=0

π2

kFm∗F
s,a
L PL(cos θ) (1.10)

where the last equality defines the quantities F s,a
L and it is just a rescale to obtain

dimensionless coefficients. We can now express the full energy of a quasiparticle as the
difference in δE between a state with δn(k⃗) = 1 and a state with δn(k⃗) = 0 as

εk⃗ = ε0
k⃗
+

1

V

∑
k⃗′

f(k⃗, k⃗′) δn(k⃗′). (1.11)

The continuity assumption we made at the beginning states that the interaction does not
change dramatically the picture. It is therefore reasonable to assume that quasiparticles
obey the same statistics as non-interacting particles, that is, in this case, the Fermi-Dirac
statistics. For Fermi-Dirac statistics the occupation number is

n(k) =
1

eβεk + 1
(1.12)

and it is fundamental in order to compute observables. We start by looking at the specific
heat CV . Recalling its definition

CV =
1

V

∂U

∂T

where U is the internal energy, one sees [40] that ”new” contributions due to thermally
excited quasiparticles come from T -dependence of the second term in (1.11), but these
only contribute at T 2 order and can therefore be neglected in the low-temperature limit.
That implies that in this limit one can simply substitute εk⃗ with ε0

k⃗
and get

CV =
m∗kF
3

k2BT (1.13)

which is identical to the non-interacting expression (apart from the substitution of the
bare mass bym∗). For spin susceptibility, the situation is significantly different. Recalling

χ =

[
V
∂2E0

∂M

]−1

14



Figure 1.1: Difference between d = 1 and higher dimension.

whereM is the spin magnetization, which isM = µB = (N↑−N↓), one sees that varying
M corresponds to a positive (negative) shift in the Fermi momentum for ↑ (↓) particles.
Using now (1.7) one has

χ =
1

1 + F a
0

µ2
BkFm

∗

π2
(1.14)

which means that now interaction enters also via the adimensional coefficient F a
0 , which

also modifies the Wilson ratio

RW =
1

1 + F a
0

. (1.15)

One can also find the compressibility

κ = − 1

V

∂V

∂P
=

[
V
∂2E0

∂V 2

]−1

=
m∗kF

π2ρ2(1 + F s
0 )

(1.16)

and obtain the m∗ dependence on interaction coefficients (that is done by using Galilean
invariance)

m∗

m
= 1 +

F s
1

3
. (1.17)

1.2.1 Failure at d = 1

The idea of Fermi liquids is extremely powerful at high dimensions but fails at d = 1.
This can be seen in a quite intuitively way as the whole theory is based on the idea
of single particle-hole excitations. Now imagining many body systems e.g. in d = 3,
one particle getting excited does not imply a collective phenomenon, i.e. it does not
necessarily hurt other particles exciting them as depicted in Fig. 1.1.

A more formal argumentation to prove the failure is given in [15] and I recall here the
basics concepts. It was proven [50] that the susceptibility that measures the response of
⟨ρ(x)⟩ to an external potential in the form

Hint =

∫
ddx V (x, t)ρ(x)

15



is given by

χ(q, ω) =
1

V

∑
k

fF (ξk)− fF (ξk+q)

ω + ξ(k)− ξ(k + q) + iδ
(1.18)

where ξ(k) = ε(k) − µ, fF is the Fermi factor, V is the volume of the system and
δ → 0+. Now in the case of ω = 0 (static susceptibility), if one finds some values of q
such that both ξ(k) and ξ(k + q) are zero, this would lead to singularities. Luckily in
high dimensions, this happens for a very limited set of points and it is smoothed out by
integration. On the other hand, there may be some values Q such that

ξ(k +Q) = −ξ(k) (1.19)

which brings

Re χ(Q,ω = 0) = − 1

V

∑
k

tanh(βξ(k)/2)

2ξ(k)
(1.20)

which in the thermodynamic limit becomes

Re χ(Q,ω = 0) = −
∫
dξ N(ξ)

tanh(βξ/2)

2ξ
(1.21)

which is logarithmic divergent near the Fermi level (where N(ξ) is roughly constant).
Luckily enough this nesting property in high dimension is rather the exception than the
rule, and that implies that the susceptibility itself does not diverge while its derivatives
are generally singular. On the other hand in d = 1 the nesting property is always
satisfied. Close to the Fermi surface (which are Fermi points in d = 1), one has

ξ(k) ≃ vF (k − kF ) k ∼ kF

ξ(k) ≃ vF (−k − kF ) k ∼ −kF

from which is clear that Q = 2kF shall be a nesting vector for all values of k near the
Fermi points (we have assumed that the Fermi velocity is the same on the two Fermi
points; this is in general the case because of the inversion properties of practically all
systems).
It is possible to examine other reasons why Landau’s theory fails in the one-dimensional
case, e.g. the singularity which arises in the particle pairing, which is the response to a
pair creation/destruction potential as

Hpair =

∫
dx V (x, t)[ψ(x)†ψ(x′)† + h.c.]

16



but we will not examine them in this thesis as we are more interested in examining the
properties of the extended Hubbard model.
What I want to underline now is the physical reason which makes Landau’s theory fail.
That is that Fermi liquids rely on the fundamental hypothesis that the excitation is
indeed a small perturbation of the non-interacting theory, the reason for it to be small
being the fact that the excitation is indeed single-particle. In one dimension that is
never the case. In fact, due to the reduction of momentum space, every excitation is a
collective one and every the physical phenomenon is itself due to the collective behavior
of particles.
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Chapter 2

Bosonization

“Everything in this world is magic,
except to the magician.”

Robert Ford - Westoworld

To make our considerations useful and clear we shall directly examine the extended
Hubbard Hamiltonian in 1d:

H = −t
∑

i,σ=↑,↓

(
c†i+1,σci,σ + c†i,σci+1,σ

)
+ U

∑
i

ni↑ni↓ + V
∑
i

rc∑
l=1

nini+l (2.1)

where ci,σ and c†i,σ are the fermionic annihilation and creation operators of fermions with

spin σ at the site i of a chain respectively, niσ = c†i,σci,σ is the number operator for
particles of species σ at site i and ni = ni↑+ni↓ is the total number operator of particles
at site i. The first term is the kinetical term and it is often referred to as hopping term
as its effect is to make a paticle jump from a site to its neighbour. The second term is
called the Hubbard term and it is an on-site potential which can be either attractive or
repulsive depending on the sign of U . Finally the last term represents the extension to the
standard Hubbard model due to its non-zero range. In fact, differently to the Hubbard
term, this makes particles on different sites interact independently on their spin (in fact
only total number operators ni are involved). The range of the potential depends on
the parameter rc, which represents the range of the potential. In the following we shall
consider rc = 2, which implies that particles interact with their nearest neighbours and
with next-to-nearest neighbours. We will often refer to this last term as soft-shoulder
potential. We start by looking at the symmetries of the model, then we’ll divide the
Hamiltonian into three different terms and study each of them through bosonization.
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2.1 Symmetries of the model

As pointed out in [12] the Hubbard model (i.e. V = 0) enjoys many symmetries. We
start by looking at conserved quantities. One can trivially check that the total number
of particles

N = N↑ +N↓ with Nσ =
∑
i

c†iσciσ (2.2)

and the total magnetization

Sz =
1

2

(
N↑ −N↓

)
(2.3)

are conserved (in particular N↑ and N↓ are separately conserved i.e. [H,Nσ] = 0). As
the number of particles is conserved, it is possible to add a term proportional to N to the
Hamiltonian without modifying the physics of the system. That implies a modification
to the Hubbard term which will be useful when using bosonization dictionary

U
∑
i

ni↑ni↓ −→ U
∑
i

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
.

It is possible to define the other two components of the magnetization Sx,y (which also
commute with the Hamiltonian) as

Sα =
∑
i

Sα
i =

1

2

∑
σ,σ′=↑,↓

∑
i

c†iσ(σ
α)σσ′ciσ′ (2.4)

where σα, with α = x, y, z are the Pauli matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
.

Consequently

Sx
i =

1

2

(
c†i↑ci↓ + c†i↓ci↑

)
Sy
i =

1

2i

(
c†i↑ci↓ − c†i↓ci↑

)
Sz
i =

1

2

(
ni↑ − ni↓

)
.

(2.5)

The conservation of the three total components of the spin (it shall be underlined that
only total components are conserved, while local are not) implies the symmetry under
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the SU(2) rotation group in spin space. This symmetry will be useful when dealing with
the soft-shoulder potential term. Another SU(2) symmetry is related to the components
of charge operators, which can be obtained by spin operators through a particle-hole
transformation only on ↓ fermions combined with a change of sign on the odd-sites
sublattice

ci↑ → ci↑ , ci↓ → (−1)ic†i↓. (2.6)

That brings

Cx
i =

(−1)i

2

(
c†i↑c

†
i↓ + ci↑ci↓

)
Cy

i =
(−1)i

2i

(
c†i↑c

†
i↓ − ci↑ci↓

)
Cz

i =
1

2

(
ni↑ + ni↓ − 1

)
.

(2.7)

It shall be noted that the symmetry relation

[H,Cα] = 0

only holds for an even number of sites (which will always be the case in the examined
numerical simulations). This imposes some constraints on the joint irreducible represen-
tation and implies that the total symmetry group is

SU(2)× SU(2)/Z2 = SO(4). (2.8)

It is worth mentioning that the transformation (2.6) maps the charge sector into the spin
sector and the repulsive Hubbard term into the attractive one, i.e.

H(t, U) → H(t,−U).

We also observe that a magnetic field term like B
∑

i S
i
z in the Hamiltonian would break

spin-rotational symmetry, while a chemical potential term like µ
∑

i ni term would break
charge symmetry.
We finally list the discrete symmetries of the model

* Under periodic boundary conditions, translation of length L, ciσ → ci+L,σ

* Reflection ciσ → cL−i+1,σ

* Particle hole symmetry ciσ → (−1)ic†iσ (for bipartite lattices only)

* Spin flips ciσ → ciσ̄ (where σ̄ =↓ if σ =↑ and viceversa)
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* Time reversal ciσ → σciσ with ↑= +1, ↓= −1.

The soft-shoulder potential V
∑

i

∑rc
l=1 nini+l reduces the SU(2) charge symmetry into

U(1). The total symmetry is therefore

SU(2)× U(1) = U(2). (2.9)

2.2 Luttinger Hamiltonian

We divide the Hamiltonian into three terms

H ≡ HK +HU +HV

and start by considering the kinetical part, i.e. HK . Fourier transforming it as

ci,σ =
∑
k

eikxick,σ , c†i,σ =
∑
k

e−ikxic†k,σ

one has

HK =
∑
k,σ

εkc
†
k,σck,σ (2.10)

with εk = 2 cos(ka) where a is the lattice spacing. If we imagine to ignore the exact
expression for εk and being interested only in low-level excitations, we can approximate

εk ≃ vF (±k − kF )

where ± is there because of the different signs that the expansions at the two Fermi
points carry. Introducing a multiplicative factor r = ±1 in order to differentiate the
two different expansions, the resulting form of the Hamiltonian is (from now on we are
omitting spin index to simplify the notation)

HK =
∑

k,r=±1

vF (rk − kF ) c
†
r,kcr,k (2.11)

which is known as the Luttinger Hamiltonian. In the following, we are going to call
particles created near k = kF right-going (r = +1 or r = R) and particles created near
k = −kF left-going (r = −1 or r = L).
Within this frame, particle-hole excitations’ energy is (for right-going)

ER,k = vF (k + q) − vFk = vF q. (2.12)
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We can now define the density fluctuation operator as

ρr(q) =
∑
k

c†k+q,rck,r (2.13)

which is indeed a superposition of particle-hole excitations. Since it is the product of
two fermionic operators, it has bosonic character. We shall now prove, to ensure a
correct mapping from fermions to bosons, that the Hamiltonian can be written in terms
of these and that the correspondence is, so to say, complete (one-to-one correspondence
between operators). We shall now pause and focus on the nature of the ground state.
The Hamiltonian (2.11) implies an infinite number of occupied states, so one needs to
be careful in defining density operators to avoid infinities. To do so in the following we
will use normal ordering, which is defined as

: AB : ≡ AB − ⟨0|AB |0⟩ (2.14)

where |0⟩ is the ground state of (2.11), that is the 1D Dirac sea. The normal ordered
density operator is defined as

: ρr(x) : ≡ : ψ†
r(x)ψr(x) : (2.15)

and has Fourier expansion

: ρr(x) : =
∑
k

: ρr(k) : e
ikx

so that

: ρ†r(p) : =
∑
k

c†r,k+pcr,k (p ̸= 0)

=
∑
k

[c†r,kcr,k − ⟨0| c†r,kcr,k |0⟩] ≡ Nr (p = 0).
(2.16)

It is trivial to see that the fact that ρ(x) is real implies ρ†(q) = ρ(−q). Let us now look
at commutations relations between bosonic operators. It is immediate to verify

[ρR(q), ρL(q)] = 0.

Considering now fermions od the same species and the relation

[AB,C] = ABC − CAB + ACB − ACB = A{B,C} − {C,A}B

one obtains
[ρ†r(p), ρr(p

′)] =
∑
k

(c†r,k+p−p′cr,k − c†r,k+pcr,k+p′)
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One would now be led to a change of variable to obtain zero. That would be true if we
were not operating with infinities, which complicate (but indeed save) the situation. To
remove these infinities we shall operate with normal-ordered operators. By doing so one
finds

[ρ†r(p), ρr(p)] = δp,p′
∑
k

(⟨0| c†r,kcr,k |0⟩ − ⟨0| c†r,k+pcr,k+p |0⟩)

As the momentum is quantized, by taking periodic boundary conditions kn = 2πn/L
one finds

[ρ†r(p), ρ
′
r(p

′)] = −δr,r′δp,p′
rpL

2π
. (2.17)

This is crucial as it shows that density operators can be mapped to bosonic cre-
ation/annihilation operators. It is easy to realize that

ρ†R(p < 0) |0⟩ = 0

ρ†L(p > 0) |0⟩ = 0

thus we define the new bosonic operators as (here Θ(x) is the step function)

b†p =

(
2π

L|p|

)1/2∑
r

Θ(rp)ρ†(p)

bp =

(
2π

L|p|

)1/2∑
r

Θ(rp)ρ(p)

(2.18)

which are only defined for p ̸= 0. We now want to find out if the Hamiltonian can be
expressed in terms of these new operators. We compute

[bp0 , H] = vFp0bp0

assuming the basis is complete one arrives at the conclusion

H ≃
∑
p̸=0

vF |p|b†pbp. (2.19)

This result is remarkable as it shows that the kinetic Hamiltonian is indeed quadratic in
bosonic operators, and not quartic as one would naively guess. The same can be done
for real space one particle creation and annihilation operator ψr(x), ψ

†
r(x), obtaining

[ρ†r(p), ψr(x)] = −eipxψr(x) ψr(x) ≃ e
∑

p eipxρ(p)( 2πr
pL

) (2.20)
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To complete the mapping one needs to add the p = 0 term to the Hamiltonian and
consider the loss of charge due to particle destruction (charge is on the other hand
conserved by density operators). Taking care of this

ψr(x) = Ure
∑

p eipxρ(p)( 2πr
pL

) (2.21)

where Ur suppresses a charge, and another term is added to the Hamiltonian

Hp=0 =
∑
p ̸=0

vF |p|b†pbp +
πvF
L

∑
r

N2
r . (2.22)

It is now convenient to introduce field operators

φ(x), θ(x) = ∓(NR ±NL)
πx

L
∓ iπ

L

∑
p̸=0

1

p
e−α|p|/2−ipx(ρ†R(p)± ρ†L(p)) (2.23)

or in terms of bosonic creation/annihilation operators

φ(x) = −(NR +NL)
πx

L
− iπ

L

∑
p ̸=0

(
L|p|
2π

)1/2
1

p
e−α|p|/2−ipx(b†p + b−p)

θ(x) = (NR −NL)
πx

L
+
iπ

L

∑
p ̸=0

(
L|p|
2π

)1/2
1

p
e−α|p|/2−ipx(b†p − b−p)

(2.24)

where α is a cutoff scale or a mimic of a finite bandwidth (roughly speaking the bandwidth
is Λ ∼ 1/α). By working out commutation rules (in the thermodynamic limit and limit
α → 0) one gets

[φ(x), θ(x′)] = iπ Sign(x− x′).

Similarly one can prove
[φ(x),∇θ(x′)] = iπδ(x− x′) (2.25)

so the conjugate momentum to the field φ(x) is

Π(x) =
1

π
∇θ(x). (2.26)

The Hamiltonian can be rewritten in terms of these field operators as

H =
1

2π

∫
dx vF [πΠ(x))

2 + (∇φ(x))2]. (2.27)

In principle, one could now add higher order terms of the Hamiltonian, compute again
commutation relations, and modify the density operator definition to maintain a diagonal
Hamiltonian. That being said, the picture soon becomes quite cumbersome. For this
reason, to include higher order terms we prefer a different approach that we describe in
Sect. 2.3. We now look at the effect of point-like interactions.
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2.2.1 Interactions

We shall now see how this picture changes if we introduce short-range (indeed point-like)
interactions. Possible interactions with coupling constant g are

• with g ≡ g4 scattering between particles lying near the same Fermi point, i.e. with
V (q ∼ 0) ;

• with g ≡ g2 scattering particles lying near opposite Fermi points (that is equiva-
lent to saying they are different species fermions) which ”stay” on their side after
interacting, i.e. V (q ∼ 0);

• with g ≡ g1 scattering of particles lying near opposite Fermi points which ”switch”
sides after interacting, i.e. V (q ∼ 2kF ).

It is clear that for spinless fermions the last two are the same as one cannot distinguish
them. We shall therefore start by looking only at g4 and g2 and then turn back to g1
when dealing with systems with spin. Dividing

ψ(x) = ψR(x) + ψL(x)

the g4 interaction is (for right-going)

g4
2
ψ†
R(x)ψR(x)ψ

†
R(x)ψR(x) =

g4
2
ρR(x)ρR(x) =

g4
2

1

(2π)2
(∇φ−∇θ)2 (2.28)

and similarly for left-going (with R → L, φ− θ → φ+ θ). Adding the two contributions
is therefore equivalent to a velocity rescale

u = vF

(
1 +

g4
πvF

)
. (2.29)

A similar treatment can be applied to g2 interaction

g2ρR(x)ρL(x) =
g2

(2π)2
[(∇φ)2 − (∇θ)2]. (2.30)

The entire Hamiltonian can now be rewritten as

H =
1

2π

∫
dx[uK(πΠ(x))2 +

u

K
(∇φ(x))2] (2.31)

so the entire effect has been reabsorbed into two parameters u,K defined by

uK = vF

(
1 +

g4
2πvF

− g2
2πvF

)
u

K
=

(
1 +

g4
2πvF

+
g2

2πvF

) (2.32)
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which can be solved as

u = vF [(1 + y4/2)
2 − y22/2]

1/2

K =

(
1 + y4/2− y2/2

1 + y4/2 + y2/2

)1/2 (2.33)

with yi = gi/πvF . Note that quite generally K > 1 for attractive interactions (y2 < 0)
and K < 1 for repulsive ones.

2.2.2 Systems with spin

One can use the bosonization technique for the two degrees of freedom separately, intro-
ducing two sets (φ↑, θ↑) and (φ↓, θ↓), then the kinetic Hamiltonian reads

Hkin = H↑ +H↓.

The situation changes by introducing interactions. In fact in this case we have two
different possibilities for g4 and g2 interactions as they can couple particles with aligned
or antialigned spin. That is equivalent to write

H4 =

∫
dx

∑
r=R,L

∑
σ=↑,↓

[
g4∥
2
ρr,σ(x)ρr,σ(x) +

g4⊥
2
ρr,σ(x)ρr,−σ(x)

]
H2 =

∫
dx

∑
σ=↑,↓

[
g2∥ρR,σ(x)ρL,σ(x) + g2⊥ρR,σ(x)ρL,−σ(x)

]
.

(2.34)

By using this formulation the Hamiltonian remains quadratic in φ, θ, but is not diagonal
w.r.t. spin. To diagonalize it one can introduce the new densities

ρ(x) =
1√
2
[ρ↑(x) + ρ↓(x)]

σ(x) =
1√
2
[ρ↑(x)− ρ↓(x)]

(2.35)

which of course define new fields, called the charge and spin field respectevely

φρ(x) =
1√
2
[φ↑(x) + φ↓(x)]

φσ(x) =
1√
2
[φ↑(x)− φ↓(x)]

(2.36)
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and similar for θρ, θσ. It is easy to prove that ρ and σ commute and that (φρ, θρ), (φσ, θσ)
obey standard bosonic commutation relations. The full Hamiltonian now reads

H = H0
ρ +H0

σ +
1

4π2

∫
dx[g4∥ + g4⊥][(∇φρ)

2 + (∇θρ)2]+

1

4π2

∫
dx[g4∥ − g4⊥][(∇φσ)

2 + (∇θσ)2]+

1

4π2

∫
dx[g2∥ + g2⊥][(∇φρ)

2 − (∇θρ)2]+

1

4π2

∫
dx[g2∥ − g2⊥][(∇φσ)

2 + (∇θσ)2].

(2.37)

Now we need to consider the g1 process, which is present for systems with spin and needs
a bit more care. In fermionic language the interaction term reads as∫

dx g1∥
∑
σ=↑,↓

ψ†
L,σψ

†
R,σψL,σψR,σ + g1⊥

∑
σ=±1

ψ†
R,σψ

†
L,−σψR,−σψL,σ. (2.38)

By using anticommutation relations it is easy to see that g1∥ has the same form of g2∥
(but with a minus sign), so it will be sufficient to substitute g2∥ → g2∥ − g1∥. On the
other hand, for g1⊥ one finds (in field representation)

H1⊥ =

∫
dx

2g1⊥
(2πα)2

∑
s=↑,↓

e−2iφs(x)e2iφ−s(x)

=

∫
dx

2g1⊥
(2πα)2

cos(2
√
2φσ(x)).

(2.39)

Putting everything together one arrives at the remarkable result of spin-charge complete
separation

H = Hρ +Hσ (2.40)

with (upper sign for ρ, lower for σ)

uν = vF [(1 + y4ν)
2 − (y2ν/2)

2]1/2

Kν =

[
1 + y4ν + y2ν
1 + y4ν − y2ν

]1/2
gν = g1∥ − g2∥ ∓ g2⊥

g4ν = g4∥ ± g4⊥

(2.41)

and

Hσ = H0
σ +

∫
dx

2g1⊥
(2πα)2

cos(2
√
2φσ(x)). (2.42)
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2.3 Phenomenological bosonization

While in the previous section we have examined a rigorous approach to bosonization, we
will now see a more ”physical” one. Considering a 1d chain of particles we can define

ρ(x) =
∑
i

δ(x− xi) (2.43)

where xi is the position of the i-th particle. Following Haldane’s intuition, we introduce
a labeling field φl(x) which shall be continuous and take definite values at particles
positions, e.g. φl(xi) = 2πi (in one dimension this is always well defined as one can
always enumerate the particles from left to right). Now using the rule for the Dirac delta
of a function we can rewrite

ρ(x) =
∑
n

|∇φl(x)|δ(φl(x)− 2πn) (2.44)

and now, using the Poisson resummation formula,

ρ(x) =
∇φl(x)

2π

∑
p

eipφl(x). (2.45)

It is now convenient to define a new labeling field that takes the difference with the
perfect crystalline distribution ρ0 i.e.

φl(x) = 2πρ0x− 2φ(x) (2.46)

so that now

ρ(x) =

(
ρ0 −

∇φ(x)
π

)∑
p

e2ip(πρ0x−φ(x)) (2.47)

which implies that averaging over large distances the only term which contributes is the
p ∼ 0 one

ρp∼0(x) = ρ0 −
∇φ(x)
π

. (2.48)

We now pass to single particle operators by making a reasonable ansatz of the form

ψ†(x) = [ρ(x)]1/2e−iθ(x) (2.49)

where θ(x) is an operator which still has to be defined. Imposing bosonic commutation
relation

[ψ(x), ψ†(x′)] = δ(x− x′)
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and combining it with (2.49) one gets

eiθ(x)[ρ(x)]1/2[ρ(x′)]1/2e−iθ(x′) − [ρ(x′)]1/2e−iθ(x′)eiθ(x)[ρ(x)]1/2.

Assuming [θ(x), θ(x′)] = 0, a sufficient condition to satisfy the bosonic commutation
relation is

[ρ(x), e−iθ(x′)] = δ(x− x′)e−iθ(x′). (2.50)

We start by looking at the p ∼ 0 term (which shall be the most physically relevant)
that is satisfied if

[
1

π
∇φ(x), θ(x′)] = −iδ(x− x′) (2.51)

which resembles the previous chapter φ, Π relation (2.25). Higher harmonics give con-
tributions as

[e−2ipφ(x), e−iθ(x′)] = e−2ipφ(x)e−iθ(x′)(1− eipπSign(x−x′))

which always gives zero for x = x′ while gives contribution for x ̸= x′ (odd terms). That
being said we shall consider that these have a e−2ipφ(x) factor in front, which due to its
rapidly oscillating nature makes them negligible in the continuum limit. It is therefore
sufficient that φ(x) and θ(x) satisfy (2.51). We can now write the full expression for the
bosonic single particle operator

ψ†(x) =

(
ρ0 −

∇φ(x)
π

)1/2∑
p

e2ip(πρ0x−φ(x))e−iθ(x) (2.52)

To go from bosonic representation to fermionic one it is sufficient to go from commutation
to anticommutation relations. In order to do so one can just multiply the bosonic field
for ei

1
2
φl(x), which jumps between ±1 for consecutive particles. This is commonly known

as the Jordan-Wigner transformation.
This representation and this formulation are richer than what we have obtained in the
previous section. It can be proved [15] indeed that the former represents just the p ∼
0 term as the higher harmonics are de facto cut by the complete linearization of the
spectrum.
Going back to us we now want to find the Hamiltonian of this system. The presence
of the term

∫
dxρ(x)2 implies a contribution proportional to (∇φ(x))2. Similar reasons

imply the presence of (∇θ(x))2 terms, that being for example a kinetical single particle
term as

HK =

∫
dx

1

2m
(∇ψ†(x))(∇ψ(x))
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which, if one only keeps the most relevant terms, that is using ψ†(x) = ρ
1/2
0 e−iθ(x), results

in

HK =

∫
dx

ρ0
2m

(∇θ)2. (2.53)

It can be proved that ∇φ∇θ are forbidden by inversion symmetry [14].
We can now parameterize the Hamiltonian as

H =
1

2π

∫
dx[ uK(∇θ(x))2 + u

K
(∇φ(x))2 ] (2.54)

where u,K are parameterize the unknown coefficients.

2.4 The Hubbard term

We now want to include the Hubbard term

HU = U
∑
i

ni↑ni↓.

Using the field definitions (2.24) (sometimes called bosonization dictionary) we introduce
two different fields φ↑(x), φ↓(x) for different spins particles and get

∑
i

ni↑ni↓ →
∫
dx

[
− ∇φ↑(x)

π
+

1

2πα
(e2i(kF x−φ↑(x)) + h.c.)

]
×[

− ∇φ↓(x)

π
+

1

2πα
(e2i(kF x−φ↓(x)) + h.c.)

]
=∫

dx

[
1

π2
∇φ↑(x)∇φ↓(x) +

2

(2πα)2
cos(2φ↑(x)− 2φ↓(x))

]
=(

φρ(x) ≡
1√
2
[φ↑(x) + φ↓(x)] , φσ(x) ≡

1√
2
[φ↑(x), φ↓(x)]

)
∫
dx

[
1

2π2
((∇ϕρ)

2 − (∇ϕσ)
2) +

2

(2πα)2
cos(

√
8ϕσ(x))

]
(2.55)

where we have neglected the highly oscillating ( ∼ e±4ikF x ) terms and introduced the
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charge/spin fields to decouple the kinetical terms. The full Hamiltonian therefore reads

H =
1

2π

∫
dx

[
uρKρ(πΠρ(x))

2 +
uρ
Kρ

(∇φρ(x))
2 +

uσKσ(πΠσ(x))
2 +

uσ
Kσ

(∇φσ(x))
2 +

2U

2πα2
cos(

√
8ϕσ(x))

] (2.56)

where

uρKρ = uσKσ = vF

uρ
Kρ

= vF

uσ
Kσ

= vF

(
1− U

πvF

)
.

(2.57)

This is the well-known and studied Sine-Gordon Hamiltonian [25]. It is useful to review
some general aspects of it, in particular some features of its Renormalization Group.

2.4.1 Sine-Gordon Hamiltonian

Following [25] let’s consider the Hamiltonian

H[Π, ϕ] =

∫
dx

[
v

2

(
Π2 + (∂xϕ)

2

)
− g̃ cos(βϕ)

]
(2.58)

so that after Wick rotating t→ −it the action reads

S[ϕ] ≡ S0[ϕ] + SI [ϕ]

S0[ϕ] =

∫
dx

1

2
ϕ∇2

xϕ , ∇2
x = ∂2x +

1

v2
∂2t

SI [ϕ] =

∫
dx g cos(βϕ) , g =

g̃

v

(2.59)

where x→ (x, vt). The general procedure for Wilsonian RG is to decompose ϕ(x)

ϕ(x) =

∫
|q|<Λ

dq

(2π)2
ϕ̃(q) eiqx =∫

|q|<Λ/s

dq

(2π)2
ϕ̃(q)eiqx +

∫
Λ/s<|q|<Λ

dq

(2π)2
ϕ̃(q) eiqx =

≡ ϕS(x) + δϕ(x),

(2.60)
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where Λ is some cutoff, s ≃ 1 and the field is divided into the bulk and shell components
or slow and fast modes. One can prove that the free part of the action S0 decouples

S0[ϕ] = S0[ϕ
S] + S0[δϕ]

while this is false for the interacting term. We, therefore, decide to treat the interaction
term in a perturbative way by expanding in δϕ≪ ϕS. One finds:

SI [ϕ] ≃ SI [ϕ
S] +

∫
dx aS(x) δϕ(x) +

∫
dxdx′ δϕ(x) bS(x, x′) δϕ(x′)

where

aS(x) =
δlI [ϕ]

δϕ(x)

∣∣∣
ϕS(x)

lI [ϕ] = g cos(βϕ)

bS(x, x′) =
1

2

δ2lI [ϕ]

δϕ(x)δϕ(x′)

∣∣∣
ϕS(x)

(2.61)

so that by using the expanded SI [ϕ one has

S[ϕ] = S[ϕS] + δS[ϕS, δϕ]

with

δS[ϕS, δϕ] = S0[δϕ] +

∫
dx aS(x)δϕ(x) +

∫
dxdx′ δϕ(x)bS(x, x′)δϕ(x′) =∫

dxdx′ δϕ(x)

[
δ(x− x′)

1

2
∇2

x′ + bS(x, x′)

]
δϕ(x′) +

∫
dx aS(x)δϕ(x).

(2.62)

We will now derive an effective action for the slow modes by averaging δS[ϕS, δϕ] w.r.t.
the unperturbed ground state of the fast modes δϕ(x). The RG procedure consists indeed
in re-obtaining S[ϕ] from this average Seff [ϕ

S] through a scale renormalization Λ → Λ/s.
First, we derive the unperturbed Green function G0(x, x

′)

{
G−1

0 (x, x′) = δ(x− x′) 1
2
∇2

x′∫
dx′′G−1

0 (x′′ − x′) G0(x
′′ − x) = δ(x− x′)

→ G0(q, ω) = − 2

q2 + ω2/v2
(2.63)

where

G0(x− x′) =

∫
dq

(2π)2
G0(q) e

iq(x−x′) with x = (x, vt) q = (q, ω).
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Now the full Green function is defined through [25]

G−1(x− x′) = G−1
0 (x− x′)− Σ(x, x′) (2.64)

where Σ is the self-energy which in our case is Σ(x, x′) = bS(x, x′). Inserting (2.64) into
the relation which defines its inverse, which is∫

dx′′ G−1(x′′ − x′)G(x′′ − x) =
1

(2π)2
δ(x− x′),

one gets ∫
dq

(2π)2
dq′

(2π)2
G(q, q′)

1

2

(
− q2 − ω2

v2

)
ei(qx+q′x′) −∫

dx′′
∫

dq

(2π)2
dq′

(2π)2
dk

(2π)2
dk′

(2π)2
Σ(q, k)G(q′, k′) eiqx+i(k+k′)x′′+iq′x′

=

∫
dq

(2π)2
eiq(x−x′)

∫
dq

(2π)2
dq′

(2π)2

[
G(q, q′)G−1

0 (q)−
∫

dq′′

(2π)2
Σ(q, q′′)G(−q′′, q′)

]
eiqx+iq′x′

=∫
dq

(2π)2
dq′

(2π)2
eiqx+iq′x′

dq.

This leads to

G(q, q′) = G0(q)δ(q + q′) +G0(q)

∫
dq′′

(2π)2
Σ(q, q′′)G(−q′′, q′)

which is the well-known Dyson equation. This is solved iteratively as

G(0)(q, q′) = G0(q)δ(q + q′)

G(1)(q, q′) = G0(q)δ(q + q′)−G0(q)

∫
dq′′

(2π)2
bS(q, q′′)G(0)(q′′, q)

= G0(q)δ(q + q′)− 1

(2π)2
G0(q) b

S(q, q′) G0(−q′)

G(2)(q, q′) = G0(q)δ(q + q′)−G0(q)

∫
dq′′

(2π)2
bS(q, q′′)G(1)(q′′, q)

= . . .

(2.65)
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Turning back to the action

δS[ϕS, δϕ] =

∫
dxdx′ δϕ(x) G−1(x, x′) δϕ(x′) +

∫
dx aS(x)δϕ(x)

we see that to average we need it to be quadratic. We rewrite

δϕ(x) = ϕ̄(x) + r(x) (2.66)

so that

δS[ϕS, δϕ] =

∫
dxdx′ (ϕ̄(x) + r(x)) G−1(x, x′) (ϕ̄(x′) + r(x′))+∫
dx aS(x)(ϕ̄(x) + r(x)) =

=

∫
dxdx′ ϕ̄(x)G−1(x, x′)ϕ̄(x′) +∫
dxdx′ ϕ̄(x)

[
2G−1(x, x′) r(x′) + aS(x′)δ(x′ − x)

]
+∫

dxdx′ r(x)

[
G−1(x, x′) r(x′) + aS(x′)δ(x− x′)

]
.

(2.67)

Assuming now∫
dx′G−1(x, x′) r(x′) = −1

2
aS(x) −→ r(x) = −1

2

∫
dx′ G(x, x′)aS(x) (2.68)

one gets

δS[ϕS, ϕ̄] =

∫
dxdx′

(
ϕ̄(x)G−1(x, x′)ϕ̄(x′)− 1

4
aS(x)G(x, x′)aS(x′)

)
(2.69)

which is ready to be averaged. As previously done, one can again find

H0[Π, ϕ] = H0[Π
S, ϕS] +H0[Π̄, ϕ̄] (2.70)

which implies
|0⟩ϕ = |0⟩ϕS |0⟩ϕ̄ . (2.71)

We now want to re-obtain G0(x, x
′) = ϕ ⟨0|ϕ(x)ϕ(x′) |0⟩ϕ in the fast mode subspace. One

finds

G0(x, x
′) =ϕ ⟨0|ϕS(x)ϕS(x′) |0⟩ϕ + ϕ ⟨0|ϕS(x)ϕ̄(x′) |0⟩ϕ

ϕ ⟨0|ϕS(x)ϕ̄(x′) |0⟩ϕ + ϕ ⟨0| ϕ̄(x)ϕ̄(x′) |0⟩ϕ .
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The second and fourth terms vanish because they act on different subspaces, while scale
invariance implies that the first and third terms are equal. That, combined with the fact
that ϕS ⟨0| |0⟩ϕS brings

G0(x, x
′) = 2ϕ̄ ⟨0| ϕ̄(x)ϕ̄(x′) |0⟩ϕ̄

so that we can write

G0(x, x
′) = G0(x− x′) =

∫
shell

dq

(2π)2
G0(q)e

iq(x−x′).

The effective action is found by averaging over ϕ̄

δS[ϕS] = ϕ̄ ⟨0| δS[ϕS, ϕ̄] |0⟩ϕ̄

δS[ϕS] =

∫
dxdx′

[
1

2
G0(x, x

′)G−1(x, x′)− 1

4
aS(x)G(x, x′)aS(x′)

]
.

Keeping terms up to the 2nd order in g, in the Sine-Gordon case, the computation
reduces to

F1[ϕ
S] =

1

2

∫
dxdx′ G0(x, x

′)bS(x, x′)

F2[ϕ
S] = −1

4

∫
dxdx′ G0(x, x

′)aS(x)aS(x′).

(2.72)

By working everything out (see [25] for more details) we finally come to

Seff [ϕ
S] =

∫
dx

[(
1 +

3 dl β4g2

4πΛ3

)
1

2
ϕS∇2

xϕ
S + g

(
1− dl β2

4π

)
cos(βϕS)

]
(2.73)

where dl = − ln s. The RG flow therefore is

β−2
R = β−2

(
1 +

3 dl β4g2

4πΛ3

)
gR = gs−2

(
1− dl β2

4π

)
. (2.74)

One can now define the differentials dβ2 ≡ β2
R − β2 and dg ≡ g − gR and get

dβ2

dl
= −3β6g2

4πΛ3

dg

dl
= 2g

(
1− β2

8π

)
. (2.75)

Finally defining K = β2

8π
and u = 4g

√
3π
Λ3{

dK
dl

= 2u(1−K)
du
dl

= −u2K3.
(2.76)
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From the last equations, it is clear that K = 1 is a critical point where physics changes
dramatically. We can prove that the trajectories in the u−K space are indeed hyperbolas
as

c = u2 − 2(K − 1)2

is invariant. In particular for c < 0 the RG flow has two fixed points (Kf , uf ) =(
1 ±

√
−c
2
, 0

)
, for c = 0 there are two lines with one fixed point (1, 0) while for c > 0

there are no fixed points. The latter is called the crossover regime while the former is
divided into the weak coupling regime (i.e. K > 1) where the fixed points are stable and
the strong coupling regime, where the fixed points are unstable.
We see that both in the crossover and strong coupling regime the system flows towards
large values of u. It is thus reasonable to assume that at some scale lc (a good estimate is
considering when |u| reaches unity) the system encounters a phase transition. Recalling
(2.57), the charge sector has trivial solution u = vF , K = 1 1 while for the spin sector
one has that for U > 0 (i.e. repulsive regime) the cos(

√
8ϕσ) is always marginal, so the

spin sector is always massless.

K

u

weak coupling
strong coupling

crossover

1To be precise we recall that at half filling one should also include the umklapp term which makes
the charge sector less trivial. As in the following, we will consider ρ = 2/5 we do not include this feature
here and refer to [15] for more details.

37



2.5 The soft-shoulder potential

We now pass to analyze the soft-shoulder potential

HV =V
∑
i

rc∑
l=1

nini+l =

V
∑
i

rc∑
l=1

(ni↑ + ni↓)(ni+l↑ + ni+l↓) =

V
∑
i

rc∑
l=1

[
(ni↑ni+l↑ + ni↓ni+l↓) + (ni↑ni+l↓ + ni↑ni+l↓)

]
.

(2.77)

By considering it term by term (we indicate the lattice spacing with a), first we have:

∑
i

rc∑
l=1

ni↑ni+l↑ →
∫
dx

rc∑
l=1

[
− ∇φ↑(x)

π
+

1

2πα
(e2i(kF x−φ↑(x)) + h.c.)

]
×[

− ∇φ↑(x+ la)

π
+

1

2πα
(e2i(kF (x+la)−φ↑(x+la)) + h.c.)

]
=∫

dx
rc∑
l=1

[
1

π2
∇φ↑(x)∇φ↑(x+ la) +

2

(2πα)2
cos(2kF la− 2(φ↑(x+ la)− φ↑(x)))

]

where we have eliminated e2ikF (2x+la) terms as they are highly oscillating. It is the same
for the φ↓(x) field. The other two terms instead lead to∫

dx

rc∑
l=1

[
1

π2
∇φ↑(x)∇φ↓(x+ la) +

2

(2πα)2
cos(2kF la− 2(φ↑(x+ la)− φ↓(x)))

]
.

Using now basic goniometric identities and the fact that sin(φ↑(x+ la)− φ↑(x)) ≃ 0
we find ourselves with a term cos(kF la) cos(2φ↑(x+ la)−2φ↑(x)). It is now reasonable to
expand the cosine, but this has to be done with some care. Because in a normal ordered
operator destruction operators are on the right, by a simple expansion one can find

⟨: cosφ :⟩ = 1.

Then from direct expansion, one can see that

cos(φ) = ⟨cos(φ)⟩ : cos(φ) :
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which leads to

e2i(φ↑(x)−φ↑(x+la)) =: e2i(φ↑(x)−φ↑(x+la)) : e−
1
2
⟨[2(φ↑(x)−φ↑(x+la))]2⟩.

The last expression thus becomes at the lowest order in V 2

e2i(φ↑(x)−φ↑(x+la)) =: e2i(φ↑(x)−φ↑(x+la)) :
α2

(la)2
. (2.78)

Finally in the normal ordered operator, one can expand φ↑(x+ la)−φ↑(x) ≃ (la)∇φ(x)
and that leads to a contribution to the quadratic part of the charge Luttinger Hamilto-
nian, that is

V

π2

∫
dx (∇ϕ↑(x))

2

rc∑
l=1

[1 + 2 cos(kF la)] (2.79)

combining the ↑, ↓ components

(∇φ↑(x))
2 + (∇φ↑(x))

2 = (∇φρ(x))
2 + (∇φσ(x))

2

that leads to corrections

uρ
Kρ

= vF

(
1 +

V
∑rc

l=1(1− 2 cos(kF la)

πvF

)
uσ
Kσ

= vF

(
1− U − V

∑rc
l=1(1 + 2 cos(kF la)

πvF

) (2.80)

where in the spin term we considered the previously listed corrections due to the on-site
potential (see eq (2.57)). Coming to the other terms, in this case, it is easier to compute
the cos(

√
8ϕσ(x)) coefficient and then use spin rotation symmetry (this is due to the

fact that sin(2φ↑(x + la) − 2φ↓(x)) ̸= 0). In fact by looking at the cosine, in this case,
the argument the difference between φ↑(x) and φ↑(x + la) or vice-versa. By expanding
again and keeping only the most relevant terms that clearly becomes cos(

√
8φσ(x)).

That implies a new contribution to the Sine-Gordon term coefficient, which is the back-
scattering g1⊥ in the g-ology theory. The Sine-Gordon term is thus now

HSG =
2

(2πα)2

(
U + 2V

rc∑
l=1

cos(kF la)

)∫
dx cos(

√
8φσ(x)) (2.81)

which means

2The expression for e−
1
2 ⟨[2(φ↑(x)−φ↑(x+la))]2⟩ at the lowest order in V can be found in [15]
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g1⊥ = U + 2V
rc∑
l=1

cos(2kF la). (2.82)

That implies

uρ
Kρ

= vF

(
1 +

V (1 +
∑rc

l=1(1− 2 cos(kF la))

πvF

)
uσ
Kσ

= vF

(
1− U + 2V

∑rc
l=1 cos(2kF la)

πvF

)
.

(2.83)

Let us end this chapter by underlying the differences between the U and V potentials.
While in the first case we did not make any assumption or expansion, in the latter we
only keep the leading terms in V . We, therefore, make the hypothesis that the Luttinger
Liquid theory holds for every value of U while breaks down for finite values of V . In
fact, for some values of V , the RG flow moves to the strong coupling region. Solving as
before for the spin and charge sectors we have

Kρ =

(
1 +

V (1 +
∑rc

l=1(1 + 2 cos(kF la))

πvF

)−1/2

Kσ =

(
1− U + 2V

∑rc
l=1 cos(2kF la)

πvF

)−1/2

.

(2.84)

As for ρ = 2
5
, kF = 2

5a
π, and taking rc = 2 one finds

Kρ =

(
1 +

V
(
3 + 2 cos(2π/5) + 2 cos(4π/5)

)
πvF

)−1/2

=

(
1 +

V

πvF

)−1/2

.

(2.85)

which is always less than one for positive values of V . By looking now at the spin sector
the condition Kσ < 1 which is reached if

U+2V
rc∑
l=1

cos(2kF la) < 0

U+2V

[
cos

(
2π

5

)
+ cos

(
4π

5

)]
< 0

=⇒ V > U.

(2.86)
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Of course, this cannot be exact as for finite values V other terms shall emerge which
can modify the picture, but shall work for small values of U, V .
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Chapter 3

The extended Hubbard model with
soft-shoulder potential: a review

“In a dark place we find ourselves
and a little more knowledge lights our
way.”

Yoda - Star Wars Episode III:
Revenge Of The Sith

In this chapter, we will first examine the classical version of the extended Hubbard
model. That is the Hamiltonian (2.1) with t = 0. In fact the previously described
hopping term is the only quantistic element of the model as it introduces tunnel effect,
while the on-site Hubbard potential and the soft-shoulder potential are indeed classical.
The classical Hamiltonian therefore reads

H = U
∑
i

ni↑ni↓ + V
∑
i

rc∑
l=1

nini+l. (3.1)

Once we will have examined the classical limit we will move on to examine the liquid
of clusters phase first proposed in [27], then we will see the proposal for the extended
Hubbard model made in [6]. Finally we will study strong coupling perturbation theory,
starting with the V = 0, U ≫ t case and then looking at U ≫ V ≫ t.

3.1 The classical limit

A key implicit parameter of the model is the density ρ. Taking the classical limit as
a guide in fact, defining r∗ = 1/ρ (which is the average distance between particles) we
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EA = 0

EB = V

EB′ = U

Figure 3.1: Different blocks for rc = 2

can distinguish three different regimes created by the competition between it and the
soft-shoulder potential range rc:

(i) For r∗ > rc + 1, particle density is small, the system is in a ”liquid-like” phase

(ii) For r∗ = rc + 1, particles are exactly distributed (one every rc + 1 sites) in a
crystalline order

(iii) For r∗ < rc, the competition between r∗ and rc leads to the formation of clusters.

The last regime is the most interesting and can tackle in an analytical way as in [27].
We define block configuration as follows (see Fig. 3.1):

• Block of type A has a length of rc + 1 sites and contains only one particle (with
spin ↑ or ↓); that corresponds to a classical energy EA = 0.

• Block of type B has a length of rc + 2 sites and contains two particles (which can
have any spin configuration) located in nearest neighbours sites; that corresponds
to a classical energy EB = V .

• Block of type B′ has a length of rc + 1 sites and contains two particles located in
the same site (so the two particles must have different spins); that corresponds to
a classical energy EB′ = U .

If U ≫ V the system organizes in blocks A and B. Using the same notation of [6] we
call this Cluster Luttinger Liquid of nearest neighbors (CLLnn) phase. In this phase the
number of blocks is

Mnn =
L−N

rc
. (3.2)
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As one reduces U , there is a phase transition at V = rc
rc+1

U where (rc + 1) B blocks
turn into rc B

′ and 2 A blocks. This is called the Cluster Luttinger Liquid of doublons
(CLLd) phase and has a number of blocks equal to

Md =
L

rc + 1
. (3.3)

3.2 Liquid of clusters

Starting from the classical ground state, in [27] the formalism we developed in Sect. 2.3
was used to capture the effect of the hopping term at intermediate value of the couplings
U, V (actually in [27] there was no U term and fermions were spinless, but that concept
can easily be generalized by introducing B′ blocks). In particular the hypothesis made by
the authors was that the system would still had liquid-lie features, the difference being
in the elementary enetities of the Luttinger liquid, which shall now be clusters and not
particles. This is based on two assumptions: (i) the number of clusters is fixed by the
classical ground state and (ii) the internal cluster degree of freedom is frozen. We can
therefore rewrite the density as

ρ(x) =
M∑

m=1

f(xm)δ(x− xm) (3.4)

where M is the total number of clusters, xm is the position of the m-th cluster and
f(xm) ∈ {1, 2} represents the m-th cluster size. We can now proceed in the same way
as before by introducing the collective cluster counting field φcl(x) and finally getting to

ρ(x) =

[
ρ0 −

N

Mπ
∇φcl(x)

]∑
p

ape
2ip(πρ0

M
N

x−ϕcl(x)) (3.5)

with ap constants. From here one gets a Hamiltonian with an identical functional form
but has evident differences in some observables, such as the Fourier transform of the
denisty-density correlation function G2(l − j)

S(k) =
1

L

∑
l,j

eik(l−j)G2(l − j) where G2(l − j) = ⟨nlnj⟩ − ⟨nl⟩⟨nj⟩.

In our case the two possibilities would be liquid of clusters phases with block structures
identical to the different ground state ones. We shall call the phase with blocks B and
A (i.e. for U > 3V/2 in the classical limit) the Cluster Luttinger Liquid of nearest
neighbours (CLLnn), while we will refer to the phase with blocks B′, A′ as Cluster
Luttinger Liquid of doublons (CLLd). The two phases are represented in Fig. 3.2.
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Figure 3.2: Upper panel: representation of Cluster Luttinger Liquid of nearest
neighbours (CLLnn). Lower panel: representation of Cluster Luttinger Liquid of
doublons (CLLd). The arrows and colors indicate that the elemetary units of the

system are now the clusters.

3.3 Phase diagram proposal

The model under our examination was previously studied in [6], in which the authors
used the knowledge of the classical ground state and the previously explained liquid of
cluster formalism in order to build a proposal for the phase diagram of the extended
Hubbard model. Using Density Matrix Renormalization Group (DMRG) they numeri-
cally calculated various observables (charge and spin structure factor, double occupancy
number) for different values of U and V (rigorously talking they varied U/t and V/t, in
the following we are going to assume t ≡ 1 when dealing with the phase diagram). We
are not going to examine here the precise working of DMRG and the significance of the
observables as we will explain these in the following chapters. The sketch of the phase
diagram is depicted in Fig. 3.3. Starting from low values of U (and arbitrary values of
V ) the first phase predicted by the authors was Tomonaga Luttinger Liquid of doublons
(TLLd). That corresponds to liquid phase whose elementary elements are not particles,
but doublons (i.e. doubly occupied sites). Increasing U , doubly occupied sites are less
energetically favourable and, for low values of V , i.e. V ≲ 5, the system undergoes a
transition to simple Tomonaga Luttinger Liquid (TLL). As V increases the system un-
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Figure 3.3: Sktech of phase diagram of the extended Hubbard model taken from [6].
The transition from Tomonaga Luttinger Liquid (TLL) to Cluster Luttinger Liquid of
nearest neighbours (CLLnn) was well studied for U = 10, finding the approximate value
of Vc ≃ 5.7. The shaded area corresponding to V ≳ 7 corresponds to an area where

numerical results are particularly hard to extract.

dergoes a new phase transition to Cluster Luttinger Liquid (CLL). That can be of two
kinds, which are Cluster Luttinger Liquid of nearest neighbours (CLLnn) and Cluster
Luttinger Liquid of doublons (CLLd). The difference between the two is the nature of
the elementary entities which compose the system, which are A and B blocks in the
former case and A and B′ in the latter. The two liquid of clusters phases are divided
by the classical phase transition line U = 3V/2. Phase transitions from TLL/TLLd to
CLLd were not studied in detail, while the transition point from TLL to CLLnn was
numerically determined for U = 10 at V ≃ 5.7.

3.4 Perturbation theory V = 0 , U ≫ t

By following what was done in [1] we start by dividing the Hamiltonian into

H = −t
∑
i

(
c†i+1ci + h.c.

)
+ U

∑
i

ni↑ni↓ ≡ HK +HU (3.6)
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and by defining

Π(x) ≡
L∏
i=1

[1− (1− x)νi] νi ≡ ni↑ni↓; 0 ≤ x ≤ 1 (3.7)

whose expansion is w.r.t x is

Π(x) =
M∑
l=1

xlPl

where Pl is the projector onto the subspace Hl of the full Hilbert space H with l doubly
occupied sites. By direct expansion, one finds

Pl =
∑

(i1...il)

[
νi1 . . . νil

′∏
j

(1− νj)

]
(3.8)

where the sum is intended over all possible distinct sets of l sites and
∏′

j stands, for
any given set, for a product over all the sites j which are not in the considered set. In
particular

P0 =
L∏
i=1

(1− νi)

projects onto the subspace containing no doubly occupied states and is known as the
”Gutzwiller projector”. Defining

Pη ≡
∑
l>0

Pl

this will project onto the subspace containing at least one doubly occupied site. Of
course, has

P0 + Pη = 1. (3.9)

We now want to make a distinction between diagonal and off-diagonal terms in the
Hubbard Hamiltonian. To do so we use the trivial identity

ciσ = ciσ[(1− niσ̄) + niσ̄] (3.10)

to rewrite
H0 = Th + Td + Tmix (3.11)

where

Th = −t
∑
iσ

(1− ni+1σ̄)c
†
i+1σciσ(1− niσ̄) σ̄ = −σ

Td = −t
∑
iσ

ni+1σ̄c
†
i+1σciσniσ̄

Tmix = −t
∑
iσ

ni+1σ̄c
†
i+1σciσ(1− niσ̄).

(3.12)
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We can give a pictorial representation of Th, Td and Tmix

Th =

Td =

Tmix =

It is clear that Th and Td commute with HV while Tmix mixes different eigenspaces (in
the above picture the different colors, orange for diagonal terms and red for non-diagonal
terms). One can convince himself that

P0HKP0 = P0ThP0

PηHKPη = PηThPη + Td

PηHKP0 + P0HKPη = Tmix.

(3.13)

We define now
H = H̃K +Hη (3.14)

where

H̃K ≡ P0HKP0 + PηHKPη + V

Hη ≡ P0HKPη + PηHKP0

We now look for a unitary transformation that eliminates (at the lowest order) the
effect of non-diagonal terms to obtain an effective Hamiltonian Heff which is completely
diagonal, that is

P0HeffPη = 0 (3.15)

to the required order. We define

H(ε) = H̃K + εHη

U(ε) = exp(iεS) with S = S†.
(3.16)

The previous condition now reads

Heff = eiεSH(ε) e−iεS = H̃K + o(ε2) (3.17)

expanding in ε one gets

Heff ≃
(
I+ iεS

)(
H̃K + εHη

)(
I− iεS

)
=

HK + ε
(
Hη + iSH̃K − iHKS

)
+ o(ε2)
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so that requiring terms at order ε to be zero results in

[H̃K , S] + iHη = 0. (3.18)

Inserting (3.18) into (3.17) and imposing ε = 1 (which is the physical case) one gets

Heff = H̃K +
i

2
[S,Hη]. (3.19)

Now (3.15) can be decomposed into

P0[H̃K , S]P0 = 0 → [P0HP0, P0SP0] = 0

Pη[H̃K , S]Pη = 0 → [PηHPη, PηSPη] = 0

P0[H̃K , S]Pη + iP0HηPη = 0 → (P0SPη)(PηHPη)− (P0HP0)(P0SPη) = iP0HPη

which are satisfied if
P0SP0 = λP0 PηSPη = λPη.

As λ is arbitrary, one can choose λ = 01. By denoting now

X ≡ P0SPη

Y ≡ PηHPη

R ≡ P0HPη

Q ≡ P0HP0

The last equation to satisfy is indeed

X · Y −Q ·X = iR (3.20)

Limiting ourselves to the eigenspace Eη, it is reasonable to assume that Y admits an
inverse, so that we can rewrite the previous equation as

X = iR · Y −1 +Q ·X · Y −1

which has solution

X = i

∞∑
n=0

Qn ·R · Y −n−1. (3.21)

As the order of magnitude ofQ·Y −1 is |t|/U , this is indeed an expansion in this parameter.
So we obtain, to the lowest order

X ≡ P0SPη = iR · Y −1 ≡ i

U
P0HPη. (3.22)

1Of course this implies a little loss of generality; an interested reader is invited to read [1] for further
details

50



Using some algebra and this last result one has

P0HeffP0 = P0HP0 −
1

U
P0HPηHP0 (3.23)

PηHeffPη = PηHPη +
1

U
PηHP0HPη. (3.24)

It is important now to see that, given the structure of H0, not all components of Pη will
contribute. One has PlHKPl′ = 0 unless ∆l = 0,±1, so in (3.23), which represents the
low-energy sector of the Hamiltonian, only P1 will contribute. It is immediate to see that
P1HP0 transfers a particle from a single occupied site to another one, creating a doubly
occupied site. After this, the P0HP1 term transfers aback the particle to an empty site.
There are now two different scenarios:

(i) The particle is moved back to the initial site; this is a virtual process, which is not
accompanied by any real charge transfer.

(ii) The particle is moved to another site; This is not virtual but is totally quenched
at half-filling.

3.5 Perturbation theory U ≫ V ≫ t

As U → ∞ double occupancy is forbidden, so we will not consider the spin degree of
freedom. That is equivalent of considering only the subspace identified by the projector

P0 =
∏
i

(1− ni↑ni↓), (3.25)

which eliminates double occupancies. We need now to define the projector onto the state
with no nearest or next-to-nearest neighbors (this is analogous to the previously defined
Gutzwiller projector, which we will call P0. That is obtained by first eliminating nearest
neighbours with the projector

P1 =
∏
i

(1− nini+1) (3.26)

and then next-to-nearest neighbours with

P2 =
∏
i

(1− nini+2). (3.27)

The full projector is therefore obtained by direct multiplication:

P0 = P2P1P0. (3.28)
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We are now able to define the orthogonal complementary Pη, which shall satisfy P0+Pη =
I, P0Pη = PηP0 = 0. Calling now Pl the projector onto the space with l nearest or next-
to-nearest neighbors one has

Pη =
∑
l>0

Pl. (3.29)

Splitting the Hamiltonian

H = −t
∑
i

(
c†i+1ci + h.c.

)
+ V

∑
i

rc=2∑
l=1

nini+l ≡ HK +HV

it is trivial that

HV P0 = P0HV = 0 (3.30)

while

HK = P0HKP0 + P0HKPη + PηHKP0 + PηHKPη. (3.31)

We can now decompose the Hamiltonian into diagonal and off-diagonal terms by rewrit-
ing the creation/annihilation operators via a (less trivial than before) multiplication for
one

ci → ci

rc=2∏
l=1

(
(1− ni+l) + ni+l

)(
(1− ni−l) + ni−l

)
. (3.32)

In this case the expression we find from c†i+1ci is quite cumbersome (there are 256 terms).
With the help of the symbolic manipulation toolkit FORM [35] we find that the great
part of them is irrelevant (always give zero) and just 16 terms contribute. We now list
them and examine their action.
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(1− ni+3)(1− ni+2) c
†
i+1ci (1− ni−1)(1− ni−2)

(1− ni+3)(1− ni+2) c
†
i+1ci (1− ni−1) ni−2

(1− ni+3)(1− ni+2) c
†
i+1ci ni−1 (1− ni−2)

(1− ni+3)(1− ni+2) c
†
i+1ci ni−1 ni−2

(1− ni+3) ni+2 c
†
i+1ci (1− ni−1)(1− ni−2)

(1− ni+3) ni+2 c
†
i+1ci (1− ni−1) ni−2

(1− ni+3) ni+2 c
†
i+1ci ni−1 (1− ni−2)

(1− ni+3) ni+2 c
†
i+1ci ni−1 ni−2

ni+3 (1− ni+2) c
†
i+1ci (1− ni−1)(1− ni−2)

ni+3 (1− ni+2) c
†
i+1ci (1− ni−1) ni−2

ni+3 (1− ni+2) c
†
i+1ci ni−1 (1− ni−2)

ni+3 (1− ni+2) c
†
i+1ci ni−1 ni−2

ni+3 ni+2 c
†
i+1ci (1− ni−1)(1− ni−2)

ni+3 ni+2 c
†
i+1ci (1− ni−1) ni−2

ni+3 ni+2 c
†
i+1ci ni−1 (1− ni−2)

ni+3 ni+2 c
†
i+1ci ni−1 ni−2

where we have drawn the diagonal and off-diagonal terms in red and blue respectively.
We now proceed by dividing the kinetical Hamiltonian into TA, which includes only the
first of the previously listed terms (and its hermitian conjugate), TB which include the
other diagonal terms, and Tmix which includes the non-diagonal terms. As the first one
represents the translation of a A block, the second is the translation of a B block while
the last one mixes the sectors, one finds

P0HKP0 = P0TAP0

PηHKPη = PηTAPη + TB

PηHKP0 + P0HKPη = Tmix

(3.33)

so that we can decompose the full Hamiltonian into diagonal and off-diagonal terms

H =
(
P0HKP0 + PηHKPη +HV

)
+
(
PηHKP0 + P0HKPη

)
≡ H̃K +Hη. (3.34)
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From here one can proceed in the same way as before, but by working out calculations
one finds out that in this particular case first-order corrections are equal to zero. Why
is that? The fact is that if we act with Heff over the classical ground state |0⟩, one has

Heff |0⟩ = HeffPη |0⟩ =
(
H +

1

V
PηHP0H

)
Pη |0⟩

but it is not possible that the Hamiltonian, acting onto the classical ground state, mod-
ifies the number of B blocks from 1 to 0. The only possible scenario with a 1 B block is
that of a chain of L = 10 sites, but from simple considerations, one can see that if filled
with 4 particles with U → ∞, it is impossible to avoid the presence of B blocks. For
these reasons P0 acting onto HPη |0⟩ annihilates it. Of course, the same is not true for
the previous section as V = 0 but shall get this in the limit V → ∞ (where, in principle,
every movement is, so to say, forbidden and we have a crystal-like phase). One can then
move on to second-order corrections as done in [27], by calculating 2nd order effective
Hamiltonian

Heff = HV + PHK

(
1− P

) 1

ϵ−HV

(
1− P

)
HKP +O(t4/V 3) (3.35)

where P is the projector onto the classical ground state (whose number of B blocks
depend on the density ρ) and ϵ is the classical ground state energy. It is now possible to
map this model to a spin chain of M (total number of blocks) elements by associating a
spin up to each A block and a spin down to each B block. In the rc = 2 case one finds

Heff = HV +
t2

V

M∑
i=1

[(
S+
i S

−
i + h.c.

)
+ 2

]
+O(t4/V 3). (3.36)

It was numerically shown in [27] that this effective Hamiltonian is extremely accurate
up to V/t ≃ 10, starting to be drive away to ”real” results at V/t ≃ 7− 5.
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Chapter 4

Machine Learning techniques and
DMRG

“I am putting myself to the fullest
possible use, which is all I think that
any conscious entity can ever hope to
do.”

Hal 9000 - 2001: A Space Odyssey

In this chapter we are first examining the machine learning (often referred to as ML
in the following) techniques that we have used in order to study the phase diagram of
the extended Hubbard Model. We also introduce Density Matrix Renormalization Group
(DMRG) method, that we used for the calculations of observables and correlators. In
particular we will start by looking at the basics of these techniques and then review some
known models as the Ising and the Kitaev model.

4.1 Machine Learning

As Machine Learning use grew in everyday life, it caught physicists’ attention both be-
cause of its mysterious structures (e.g. Neural Networks) and its potential for research
[7, 10]. In this master thesis, we are going to focus on techniques whose main objective
is phase recognition (as our final goal is indeed to detect and understand different phases
of the Extended Hubbard Model). These are divided into supervised and unsupervised
methods, where the main difference is that while the former implies some a priori knowl-
edge of the model and its phases, the latter does not. In previous chapters, we have seen
that the Extended Hubbard Model is not integrable and that we can study only some
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extreme limits (i.e. U ≫ t with V = 0, t = 0, U ≫ V ≫ t etc.). That (together with
the author’s belief that supervised techniques are more useful to understand Machine
Learning rather than Physics) is the reason why we will uniquely use unsupervised tech-
niques. In particular, we will focus on Principal Component Analysis (PCA), k-means
clustering and Learning by confusion.

4.1.1 Principal Component Analysis

The first important remark that has to be done regarding PCA is that it is improper to
call it a Machine Learning technique as it is rather a data analysis tool (as we will see it
is a simple algebraic operation, and there is no learning algorithm).
Given a matrix, the PCA identifies the directions along which the data have maximum
variance. In particular, it identifies mutually orthogonal directions in the data space,
which are called Principal Components, along which the linear correlation in the data
vanishes. Directions that show the least variance are then discarded, while the ones
which exhibit large variance are considered to contain the most relevant information.
To do this one starts by stacking the data into a n×m matrix X (in our case n will be the
number of set of data and m the dimension of each set of data) and then normalizing it,
which implies modifying it so that it has zero mean column-wise. As real data typically
do not have zero mean, normalization simply implies subtracting the mean column-wise.
It is then necessary to compute the symmetric m × m covariance matrix L = XTX.
The diagonal entries of this matrix (i.e. Lii) represent the variance of the i-th element
over the entire data, while the off-diagonal elements (i.e. Lij) are the covariance between
the i-th and j-th element. Diagonalizing this matrix (which is always possible since it
is symmetric) one finds that the eigenvectors corresponding to the greatest eigenvalues
are indeed the directions in the dataset along which the data change most. Finally, to
understand the physical meaning of Principal Components, two different approaches are
possible:

1. Once the k eigenvectors corresponding to the k most relevant eigenvalues are se-
lected, they are stacked into a matrix V = [v1, . . . , vk]. The data are now projected
onto the Principal Components by the linear transformation X̃ = XV .

2. After selecting a small number of Principal Components {vi}, imagining that each
row of the original matrix X corresponds to a point in the phase diagram, one can
plot the projection onto each eigenvector by computing u = Xv and plotting the
components of u in the phase diagram (the phase diagram point identified with
the i-th row of X corresponds to the i-th component of u).

The reader who feels confused and cannot understand the difference between the two
methods shall not be discouraged as it is, at first sight, obscure. When dealing with
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the application to studied physical models we will encounter both of them, which shall
clarify the difference between the two.

4.1.2 k-means clustering

K-means clustering is a machine learning method for finding clusters and cluster centers
in a set of unlabelled data [24]. The idea is to divide the dataset into K different clusters
(K is fixed a priori by the user) with, of course, K different cluster centers (called
centroids). These are initially fixed autonomously by the algorithm [34] and then moved
(as cluster boundaries) to minimize variance within the cluster. Finally, a possible choice
to evaluate the success of the algorithm is to calculate the Silhouette score. This is done
by computing the euclidean distance between each point and its centroid (which we call
a) and then between the point and the second closest centroid (which we call b). The
Silhouette is the average of S = (b − a)/max(a, b) ∈ [−1, 1]. Notice that a point close
to its centroid will have S ≲ 1, while points at the boundary between two clusters will
have S ≃ 0.

4.1.3 Learning by confusion

Convolutional Neural Networks (CNN) have had astonishing growth recently, succeeding
in complicated tasks such as pattern recognition, multi-media compression, and image
classification [21, 48, 49]. We will not describe in-depth Convolutional Neural Networks
and Neural Networks in general, as it exulates the main aim of this thesis. We address
the interested readers to [17].
First of all one should have a set of n×mmatrices to start with (each matrix can represent
an image or, in our case, the data set of physical observables). This is randomly split
into a training, validation and test batch (the use of these will soon be clarified). Every
element of the set has a label which classifies it (the number of the possible labels can
vary from case to case). After dividing the set, the training of the network begins.
During the training every element of the training and the validation set and is given
to the network, which tries to predict the right label. In order to guess the label some
filters (also called kernels, they are small square matrices) ”run” over the input matrix
(see Fig. 4.1). Results of this convolution are stored into a new map which is sometimes
called the feature map. The shape of the feature map depends on the shape of the input
matrix and the size of the kernel. After this first convolution, other convolutions or
linear transformations may be applied until the final transformation finally produces the
result. Each transformation is called a layer and is composed of neurons (There is no
precise rule on how to build the network, only empirical rules set by experience; see
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Figure 4.1: Example of convolution; here a 3× 3 kernel is applied over a 8× 8 matrix,
resulting in a 6× 6 feature map.

[17] for more details). The last layer produces the output of the network, which is the
predicted label. The values defining the kernels and the linear transformations (which
were set randomly at the beginning) are now modified in order to reduce the difference
between the predicted and ”real” labels of the training set (in technical terms in order
to minimize the loss function [17]) and the operation is repeated onto the validation
set. The magnitude of the change in the parameter is controlled by the learning rate l,
which is an arbitrary external parameter (commonly set l ∼ 10−2 by empirical rules).
The operation is then repeated for an arbitrary number of times, called the number of
epochs nepochs. Finally one should check the result of the training onto the test set (this
is tipically done by checking the accuracy a, which is the percentage of right labelling
performed by the network).
In [31] an unsupervised method involving Neural Networks to study 2 phases systems
was introduced. The main idea is to ”confuse” the network by mislabeling the training
data and then checking the accuracy over the testing data. Imagine as an example a 2
phase system which is regulated by a parameter x (which can either be a temperature
or a Hamiltonian parameter). In particular we assume that the phase transition occurs
at x = xc. The system is simulated for various values of x and observables which shall
indicate the transition are stored into n ×m matrices (one matrix for each value of x).
Once the data are collected the procedure is articulated as follows:

1. Start by assigning to all the training data the label 1; now split the set randomly
into a training set, a validation set and a test set. Now train the network for a
fixed number of epochs nepochs and with a given learning rate l. Once the training
is done check the accuracy a onto the test set. At this first stage the accuracy shall
be high as the network sees the data as uniform.

2. Re-label the training data, now assigning to all data corresponding to some value
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of the parameter x less than a given x̃ the label 0 and 1 to all the others and repeat
what previously done; the accuracy shall now naturally decrease.

3. Increase x̃ and compute again the accuracy of the network until x̃ reaches the max-
imum simulated value (at this last stage the network shall show a new maximum
in the accuracy as the training batch is uniform again).

Plotting the accuracy of the network we now expect it to show a local maximum). when
the labeling correctly divides two different phases, i.e. when x̃ = xc. This is traditionally
called the W -shape of the accuracy.

4.2 DMRG

Density Matrix Renormalization Group (DMRG) is the state-of-the-art best numeri-
cal method to study 1D systems. Its origin consists in the failure of the Real Space
Renormalization Group (RSRG). As they both use the Renormalization Group idea of
integrating out some degrees of freedom without modifying the physics, the difference
is that while the former operates on wave functions, the latter acts on density matrices.
The proof of the failure of RSRG was given in [46].
The DMRG procedure is structured as follows [38, 39]:

(i) Take a system of finite length l (a block) and suppose its Hilbert space is M -
dimensional with states { |il⟩} In particular, during the first iteration, the block
is composed of just one site so that M = 2 for standing spin 1/2 particles (i.e.
particles which cannot move, which is not the Hubbard case; for moving particles
M = 4) ; as the block length grows the exact dimension of the Hilbert space
would become too large to handle and is therefore reduced (as we will see) so that
M is no longer the exact dimension of the Hilbert space but is the dimension of
a reduced Hilbert space. The block Hamiltonian Hl (and other local operators
representation) is composed by the matrix elements ⟨il |Hl |jl⟩.

(ii) Imagine now adding a site to the previous block and forming a new block of length
l + 1. Taking the basis { |σ⟩} for the 1-site Hilbert space (which we take as N -
dimensional), we can write the new block Hamiltonian Hl+1 in the product basis
{ |il⟩ |σ⟩} ≡ { |ilσ⟩} .

(iii) We now mimic the Thermodynamic limit by embedding this block into an environ-
ment composed of a copy of it, arriving therefore to a superblock of length 2l + 2.
As we want to compute the density matrix, it is necessary to find the superblock
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ground state |ψ⟩. That can be written as

|ψ⟩ =
∑
iS

∑
σS

∑
iE

∑
σE

ψiSσSiEσE |iS⟩ |σS⟩ |iE⟩ |σE⟩ ≡
∑
jSjE

ψjSjE |jS⟩ |jE⟩

where the index S, E indicates the system or the environment. The dimensions
of the Hilbert spaces containing |jS⟩, |jE⟩ are NS = MSNsite and NE = MENsite

respectively (with Nsite being the dimension of the Hilbert space of one site). It is
easy to see that NS, NE fast become too big to be handled by normal computa-
tional resources. It is therefore necessary to cut that space removing some degrees
of freedom. This is done through some different truncation procedures (e.g. Opti-
mization of expectation values, Optimization of the wave function , or Optimization
of entanglement as reported in [38]) and reduces the Hilbert space dimension to
MS < NS and ME < NE. Once the truncation is done it is possible to find the
ground state |ψ⟩ through large sparse matrix diagonalization of H2l+2.

(iv) It is possible to form the reduced density matrix by tracing out the environment
ρ = TrE |ψ⟩ ⟨ψ| and to determine the new eigenbasis |wα⟩, ordered by descending
eigenvalues wα. The ”largest” eigenstates (the cutoff is determined a priori) are
kept and form a new basis for the system S whose dimension isMS. By computing
the matrix elements between the product basis elements |iSl σ⟩ and the ”largest
weights” basis |jl+1⟩ we find the change of basis rectangular basis T . The same is
done for the environment.

(v) Finally we carry out the reduced basis transformation H ′
l+1 = T †Hl+1T and restart

until some final length is achieved.

This procedure is called the infinite-system DMRG. This algorithm alone gives good
results in general but presents some problems in systems such as the one under study. In
our case, the soft-shoulder potential (together with the filling under consideration) has
physical effects which are not taken into account by intermediate Hamiltonians (as they
do not include all the chain). For this reason, finite-system DMRG has been used. The
procedure consists in:

(i) The infinite-system DMRG is stopped at some superblock of length L.

(ii) DMRG is now applied again, but now the length of the superblock is fixed, which
implies that the growth of the system is done at the expense of the shrinkage of
the environment.

(iii) When the environment size reaches a minimum size the growth direction is reversed
(the environment grows at the expense of the system).
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A complete growth and shrinkage is called a sweep and takes about two to four times
the CPU time necessary to complete the infinite-system DMRG.
Numerical calculations used in this work were performed by massive use of the iTensor
library [13]. This library works out the DMRG by parametrizing the Hilbert space by
Matrix Product State (MPS) [39].
Finally, it has to be said that from the beginning of DMRG it has been known that it
offers much more accurate results with open boundary conditions (OBC) for Periodic
Boundary Conditions (PBC) [47]. The reasons for these problems were summarized in
[44] along with possible solutions. In the following, we are always going to consider PBC
as they have more physical advantages (removing finite-size and boundary effects) than
computational disadvantages.

4.3 Applications to physics models

We will now briefly review the two models under study and then examine how Machine
Learning has been used in order to study their phase diagrams.

4.3.1 The Ising model

The Hamiltonian of the model reads

H = −J
∑
⟨ij⟩

σiσj (4.1)

where σi is the discrete spin (can only take σ =↑, ↓ as values) at site i and ⟨ij⟩ stands
for the sum over neighboring sites. Due to its simplicity, it is commonly used as the first
example in Statistical Mechanics and Statistical Field Theory books. It is a rare example
of an integrable system (for d = 1, 2). In particular, the case with d = 2, it represents the
simplest example of 2nd order phase transition between a high-temperature paramagnetic
(disordered) phase and a low-temperature ferromagnetic (ordered) phase. The transition
temperature was analytically found by Osanger in 1944 [32]

Tc =
2J

kB ln
(
1 +

√
2
) . (4.2)

4.3.2 The Kitaev model

The Hamiltonian of the non-interacting case reads

HNI = J
∑
i

(
a†i+1ai + h.c.

)
+∆

∑
i

(
aiai+1 + h.c.

)
+ µ

∑
i

ni (4.3)
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where a†i , ai are creation and annihilation operators for spinless fermions at site i and
ni = a†iai. The interacting Hamiltonian is

HI = HNI + V
∑
i

nini+1. (4.4)

If we consider periodic boundary conditions the former is exactly solvable by means of
Fourier transform and Bogoliubov transformation [19]

HNI =
∑
k

E(k)η†kηk

where ηk are Bogoliubov operators and

E(k) =
√
(J cos(k) + µ/2)2 + (∆ sin(k))2 (4.5)

while the latter is not solvable. Naturally, they exhibit two different phase diagrams.
In particular, the non-interacting phase diagram depends on the values of µ and ∆
and exhibits three different phases: a trivial phase for µ < −2 and µ > 2 and two
superconducting phases (which differ for their topological winding number) for −2 <
µ < 2 and ∆ > 0 or ∆ < 0.

4.3.3 Applications of Machine Learning

We will now consider what was done in [10, 42]. We have seen that the Ising model is
an example of a 2-phase system. For this reason it is a perfect model onto which to
apply Learning by confusion. This was done in [10] using a chain of L = 30 spins, using
100 spin configurations sampled using Monte Carlo methods at temperatures T varying
from T1 = 1 to T2 = 3.5 in equidistant steps as input. The results are plotted in Fig.
4.2 and show a good agreement with Osanger prediction, which was Tc = 2.23 for the
selected value of J .

On the other hand k-means clustering has proved itself to be useful when dealing with
richer phase diagrams. In [42], for the non-interacting case, the single-particle standard
and anomalous correlation functions

c(k) =
∑
ij

eik(i−j) ⟨a†iaj⟩

f(k) =
∑
ij

eik(i−j) ⟨aiaj⟩

62



Figure 4.2: Plot of the accuracy as function of the guessed Tc. The shape resembles the
predicted W-shape; image taken from [10].

where numerically found forN = 12800 different points of the parameter space (with ∆ ∈
[−2, 2] and µ ∈ [−8, 8]) for L = 100 different values of k (kn = 2π/L, n = 0, . . . , L− 1)
and stacked into a design matrix X. The authors then applied k-means clustering onto
X, varying the number of clusters in order to obtain maximum average Silhouette score.
Once they found the maximum for nclusters = 4, they plotted the score of every element
of the parameter space, finding a very good agreement with the exact phase diagram
(results are depicted in Fig. 4.3). The same procedure was followed for the interacting
case (but this time in the µ, V space, with µ ∈ [0, 5] and V ∈ [−4, 4]), obtaining again a
good representation of the expected phase diagram. Results are reported in Fig. 4.4

Finally we look at how PCA was used in both works. We previously mentioned the fact
that there are two different approaches when using PCA, with the first one prescribing
to stack the most k relevant eigenvectors (where k depends on some arbitrary cutoff for
the relative eigenvalue weight) into a matrix V and then studying the projection of the
full design matrix X onto the principal components X̃ = XV , while the second suggests
to study each of the most relevant k eigenvectors separately, multiplying each line of
X (recall that each line of X corresponds to a point in the parameter space) and then
plotting the result in the parameter space itself (e.g. with a heatmap). In [10] PCA was
applied onto the previously mentioned spin configurations considering the k = 2 most
relevant components. The result is plotted in Fig. 4.5. The data are clearly divided
into 3 clusters (two low-temperature and one high-temperature) and it can be shown
[45] that the first principal component corresponds to the magnetization. Furthermore
if one draws a decision boundary (perpendicular to the first principal component) which
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Figure 4.3: Study of the phase diagram of the non-interacting Kitaev model with
k-means clustering. Moving vertically from top to bottom, in the first image the

average Silhouette score S̄ in function of the number of cluster is plotted, with a clear
maximum for K = 4. In the second image the Silhouette score is given for the different
points in the phase diagram. The clustering in parameter space clearly resembles the

exact phase diagram, which is represented in the last image. Images from [42].
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Figure 4.4: Study of the phase diagram of the interacting Kitaev model with k-means
clustering. Moving vertically from top to bottom, in the first image the average
Silhouette score S̄ in function of the number of cluster is plotted, with a clear

maximum for K = 4. In the second image the Silhouette score is given for the different
points in the phase diagram. The clustering in parameter space clearly resembles the
expected phase diagram, which is represented in the last image. Images from [42].
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Figure 4.5: PCA applied to the Ising model. It is manifest the separation into two
low-temperature and one high-temperature clusters. Image from [10].

separates the high-temperature cluster and a low-temperature cluster a rough estimate
of the critical transition temperature can be obtained as T ≃ 2.3, compatible with
the Osanger prediction. On the other hand in [42] PCA was applied to the matrix X
containing the single particle correlation functions (in the non-interacting case) but the
second prescription was followed. In this case the first k = 4 eigenvectors were selected.
The result (which is plotted in Fig. 4.6) was that principal components manifestly
underlined some important features of the phase diagram. Looking at Fig. 4.6 (a) we
can see that the first eigenvector projection reveals the points with topological winding
number ν = 0, the second the ones with ν = ±1, the third phase transition lines and
the fourth has a high projection onto the points with ν = −1. Later the projection onto
the same eigenvectors of the non-interacting case was studied in the interacting one (i.e.
design matrix of the interacting Hamiltonian but with eigenvectors of the non-interacting
one) obtaining surprising results. In fact it can be seen in Fig. 4.6 (b) that the first
and fourth eigenvectors projections reveals the regions with non-trivial winding number,
while the third one puts in evidence a phase transition line.
It should be stressed that the main difference between the two approaches is that while
the first analysis happens in the principal component space, while the second is the plot
of a sort of ”score” in the parameter space.
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Figure 4.6: PCA application to the non-interacting (left panel) and interacting (right
panel) Kitaev model. For each panel, plot (a), (b), (c), (d) represent the projection
onto the first four principal components showing some key aspects such as different

phases or phase transition lines. Image from [42].
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Chapter 5

ML techniques for the Extended
Hubbard Model

“And I knew exactly what to do. But
in a much more real sense, I had no
idea what to do.”

Micheal Scott -
The Office

We are now going to analyze the results obtained with numerical simulations and the
use of Machine Learning techniques. First of all, we have to examine the observables
required to understand the different phases of the system. Then we are going to build the
design matrix X onto which we will apply the previously illustrated Machine Learning
techniques and finally we will study the results and build our proposal for the phase
diagram.

5.1 Observables

5.1.1 Charge structure factor

The static charge structure factor is defined as

Sc(k) =
1

L

∑
l,j

eik(l−j)g2c(l − j) (5.1)

where
g2c(l − j) = ⟨nlnj⟩ − ⟨nl⟩ ⟨nj⟩ . (5.2)
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In the thermodynamic limit, this is the Fourier transform of the density-density correla-
tion function. To calculate it, one can use the field theory description of Chapter 2 and
get

⟨ρ(r)ρ(0)⟩ = 1

π2
⟨∇φρ(r)∇φρ(0)⟩+

1

(2πα)2
[
e−i2kF x ⟨e2i(φρ(r)−φρ(0))⟩+ h.c.

]
. (5.3)

To calculate this we need to compute

R(r1 − r2) = ⟨(φρ(r1)− φρ(r2))
2⟩ . (5.4)

Fourier transforming it, we get

R(r1 − r2) =
1

(βL)2

∑
q1q2

⟨φρ(q1)φρ(q2)⟩
(
eiq1r1 − eiq1r2

)(
eiq2r1 − eiq2r2

)
(5.5)

where r = (x, uτ) are the coordinates in space-time (it really is space-imaginary time as
τ is the Wick rotated analogue of the real time t), with u velocity, q = (k, ωn/u), L is
the space period while β is the imaginary time τ one [15]. The quantity

⟨φρ(q1)φρ(q2)⟩

in the right-hand side can be computed using path-integral formulation (see [15])

⟨φρ(q1)φρ(q2)⟩ =
1

Z

∫
Dφρ(x, τ)Dθ(x, τ) φρ(q1)φρ(q2) e

−S

where, for Luttinger liquids

−S =

∫ β

0

dτ

∫ L

0

dx

[
i

π
∇θ(x, τ) ∂tφρ(x, τ)−

1

2π

(
uK(∇θ)2 + u

K
(∇φρ)

2

)]
= − 1

2π

1

βL

∑
q

(
θ∗ρq, φ

∗
ρq

)(k2uK ikωn

ikωn k2 u
K

)(
θρq
φρq

)
≡ −1

2

1

βL

∑
q

(
θ∗ρq, φ

∗
ρq

)
M−1

(
θρq
φρq

)
.

(5.6)

One can then perform the sum over theta (as the quantity to average does not depend on
it) and cancels the, so to say, ”theta part” of the partition function in the denominator.
This leaves us with the ”phi part” of the action

Sφρ =
1

βL

∑
q=(k,ωn/u)

[
ω2
n

u
+ uk2

]
φ∗
ρ(q) φρ(q)

=
1

2πK

∫ L

0

dx

∫ β

0

dτ

[
1

u
(∂tφρ)

2 + u(∂xφρ)
2

]
.

(5.7)
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From this, it is possible to find [15]

⟨φρ(q1)φρ(q2)⟩ =
πKδq1,−q2Lβ

ω2
n/u+ uk2

. (5.8)

Inserting this last result back into (5.5) one gets

R(r1 − r2) =
1

β

∑
ωn

∫
dk

2π

2πK

ω2
n/u+ uk2

(
1− cos(kx+ ωnτ)

)
. (5.9)

One shall now use some analytic tricks (e.g. inserting e−αk, inserting Bose occupation
function fB(z) = 1/(eβz − 1) etc. see [15] for more details) and get

R(r) = K log

[
x2 + (u|τ |+ α)2

α2

]
(5.10)

with r = r1 − r2. Using this and the fact that for quadratic Hamiltonians

⟨ei
∑

j(Ajφρ(rj)+Bjφρ(rj))⟩ = e−
1
2
⟨(
∑

j(Ajφρ(rj)+Bjφρ(rj))
2⟩

one gets

⟨ρ(r)ρ(0)⟩ = K

2π2

y2α − x2

(x2 + y2α)
2
+

2

(2πα)2
cos(2kFx)

(
α

r

)2K

(5.11)

where yα = uτ + α Sign(τ).
We shall now stop and focus on this last expression. Similar to the Fermi liquid corre-
lation function the q ∼ 0 part of the correlator decays as 1/x2 (just as a free fermion).
The difference emerges in the second term, the 2kFx one. While in the Fermi liquid case
that decays as 1/r2, in this case, it decays as non-universal power law which depends on
the interactions through the coefficient K. Furthermore, this term will be of particular
interest in the following because Fourier-transforming it a peak emerges at k = 2kF . The
value of kF depends, as we will see, on the nature of the microscopic entities composing
the system, i.e. particles or clusters.

5.1.2 Spin structure factor

The static spin structure factor is defined as

Ss(k) =
1

L

∑
l,j

eik(l−j)g2s(l − j) (5.12)

where
g2s(l − j) = ⟨Sz

l S
z
j ⟩ − ⟨Sz

l ⟩ ⟨Sz
j ⟩ . (5.13)
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This can be calculated similarly to the charge structure (swapping φρ → φσ) factor but
shall exhibit a well-defined peak at the one-particle density k = ρπ (which gives k = 2π/5
for ρ = 2/5, which is the case under examination) when double occupancy is forbidden,
while shall emerge for lower values of k if double occupied states start their formation.

5.1.3 Local density

The local density is the most intuitive observable from a physical point of view. It is
defined as

n(xi) = ⟨0|ni |0⟩ . (5.14)

This shall give us some insights about the liquid or crystal nature of our system. The
latter in fact shall be characterized by a quasi-total localization of particles, while the
former shall correspond to a quasi-uniform distribution over the sites (the liquid phase is
a momentum eigenstate while the crystal phase is a position eigenstate). This also gives
a good check on numerical simulation via particle number conservation∑

i

n(xi) = N.

5.1.4 Double occupancy and nearest and next-to-nearest neigh-
bors numbers

We define double occupancy (D) and nearest and next-to-nearest neighbors (N ) numbers
as

D =
∑
i

ni↑ni↓ (5.15)

N =
∑
i

rc=2∑
l=1

nini+l. (5.16)

These are more similar to order parameters and have clear computational advantages
w.r.t. the other observables.

For different values of U and V we performed numerical simulations using iTensors
to calculate the above mentioned observables on a chain of L = 30 sites and with PBC
(Periodic Boundary Conditions). We set the number of sweeps varying from 20 to 30 and
with the maximum bond dimension varying from 100 to 400. No significant changes in
the results were detected for a different number of sweeps and different maximum bond
dimension.
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5.2 k-means

We simulated the model for 100 equally spaced values of U ∈ [0, 25] and 40 equally
spaced values of V ∈ [0, 10], creating a grid of 4000 points in the parameter space. For
each simulation we followed what was done in [6], numerically evaluating Sc(k) and Ss(k)
for 15 different values of k, kn = 2πn/L with n = 0, . . . , L/2 and L = 30 (half of chain
is enough in order to collect information about the system because of PBC) and we also
evaluated the local density n(xi) onto each of the 30 sites composing the chain. We
finally arranged all the observables into a 4000× 60 matrix X composed as follows:

X =

S
(1)
c (k0) . . . S

(1)
c (k14) S

(1)
s (k0) . . . S

(1)
s (k14) n(1)(x1) . . . n(1)(x30)

...
. . .

...
...

. . .
...

...
. . .

...

S
(N)
c (k0) . . . S

(N)
c (k14) S

(N)
s (k0) . . . S

(N)
s (k14) n(N)(x1) . . . n(N)(x30)


where, again, kn = 2πn/L , and the superscript is indicating that the various observables
have been computed in N = 4000 different points of the phase diagram. We varied the
number of clusters to find the maximum value of the Silhouette score. As shown in Fig.
5.1, the Silhouette score exhibits two maxima at n = 2 and n = 8. We study the two
hypotheses separately.

n = 2

The labels assigned by the algorithm are plotted in Fig. 5.2. As we will see later on
by looking at the centroids in the n = 8 case, the algorithm first detects the difference
between the crystal and the liquid phase. In particular, the boundaries of the crystal
phase can be identified with U ≃ 5 and a line with a slope similar to the one which
separates the two classical ground states, i.e. U = 3V/2. From the Silhouette score plot,
we can see that the average value is quite high (as expected) but has a visibly decreases
for the points assigned to the liquid phase and values of V ≳ 7.

n = 8

In this case, the picture is richer. The first things that pop to the eye are that the crystal
phase previously detected is again revealed and that the lower Silhouette region that we
previously noted (liquid V ≳ 7) is now divided into different regions, but well separated
by the other one (V ≲ 7), as depicted in Fig. 5.3. We shall now look at properties of the
centroids to understand the physical content of the clusters. We recall that the centroid
can be considered as the most representative point of a cluster found by the algorithm.
Since each centroid found by the kmeans algorithm is an array of 60 elements, we can
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Figure 5.1: Silhouette score in function of the number of the cluster. We see two clear
maxima at n = 2 and n = 8 with an average silhouette S = 0.655 and S = 0.620

respectively.

divide it into a charge structure factor part, a spin structure factor part a and a local
density part.

Fig. 5.4 shows the charge structure factor (i.e. the first 15 elements of the array) of the
eight centroids. Recalling that the peak of it shall underline the number of elementary
units composing the system (i.e. the number of blocks) we immediately see from Fig.
5.4 that there are two regimes with M = 8 (tt − CLLd, tt − CLL′

d), three with M = 9
(CLLnn, t − CLLd, CLL

′
nn), one with M = 10 (CLLd), while the TLL and the locked

phase do not exhibit a clear peak. To understand the difference between phases with the
same number of blocks we turn to the density part of the centroids (for the time being
these names are only labels, we will give them physical content later).
Starting from the high-U part of the phase diagram we can see in Fig. 5.5 that the local
density part of the centroid has a perfectly uniform distribution in the TLL phase, then,
raising V , starts developing periodic peaks in CLLnn phase, and finally becomes very
peaked in the CLL′

nn phase. In particular, we can see that the occupation distribution
in the CLL′

nn phase resembles the B A A blocks alternation of the classical ground state.
Moving now to the low-U , high-V part of the phase diagram we see that here it is difficult
to catch a block structure of the system due to the nonregular density shape as depicted
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Figure 5.2: Left panel: labels assigned by k-means algorithm with n = 2 clusters. Right
panel: values of the corresponding Silhouette score (darker for higher values).

Figure 5.3: Left panel: labels assigned by k-means algorithm with n = 8 clusters. Right
panel: values of the corresponding Silhouette score (darker for higher values). For

explanation about the different phases, see text.
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Figure 5.4: Charge structure factor part of the eight centroids. The nomenclature is
explained in the text.
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Figure 5.5: Density part of the TLL, CLLnn and CLL′
nn centroids.

in Fig. 5.6. The only pattern we can identify is that again when moving to the V ≳ 7
region the density shifts from a quasi-uniform distribution to a periodically peaked one.
Finally, we examine the U ∼ 7, V ∼ 6 − 7 region. Here the system moves from the
previously examined CLLnn phase to a very ”tiny” phase which we call CLLd and then
falls into the locked (or crystal) phase. From Fig. 5.7 we see that the difference between
the CLLd and the locked regions of the phase diagram is precisely the different nature
of the system (i.e. liquid/crystal). While the former presents some peaks in the density
but maintains a quasi-liquid structure, the latter is almost perfectly localized in B′, A
blocks. Due to the perfectly localized nature of this phase, the charge structure factor
looks completely flat w.r.t. the other centroids. It should be stressed that it just looks
flat due to scale reasons, in fact by zooming onto it one can see that it has indeed a
sinusoidal shape with a very low peak at k = 2π/3 = 10π/15. Moreover, that shape
resembles the one assumed by the spin structure factor in this phase as depicted in Fig.
5.8. Finally, we plot the Spin structure factor part of the centroids for completeness in
Fig. 5.9. We see that TLL, CLLnn and CLLnn phases exhibit a well defined peak at
k = 6π/15, CLLd has a low peak at k = 4π/15 while t− CLLd, tt− CLLd, tt− CLL′

d

and locked phases do not exhibit a clear peak, with the latter having a quasi-perfect
sinusoidal form.
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Figure 5.6: Density part of the t− CLLd, tt− CLLd and tt− CLL′
d centroids.

Figure 5.7: Density part of the locked and CLLd centroids.
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Figure 5.8: Charge and Spin structure factors parts of locked phase centroids.

Figure 5.9: Spin structure factor part of the centroids.
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5.3 PCA

Eigenvector Number Weight
1 45.7 %
2 24.8 %
3 10.6 %
4 6.0 %
5 5.1 %
6 1.8 %
7 1.6 %
8 1.0 %

Sum 96.6 %

Table 5.1: PCA relative weights

We now apply PCA (Principal Component Analysis) to the same matrix onto which
we applied k-means clustering. The relative weight of the first eight 1 eigenvectors are
reported in Table 5.1 and Fig. 5.10 while Fig. 5.11, 5.12, 5.13, 5.14 represent the
projections of the data corresponding to the different points in the phase diagram onto
the eight eigenvectors.

Some comments are in order:

• All the eigenvectors clearly distinguish the locked phase from the others.

• The first eigenvector divides the phase diagram at V ∼ 7 (liquid/crystal distinc-
tion).

• No eigenvector is able to catch the TLL to CLLnn transition.

• All eigenvectors projections clearly show the transitions which take place at high
values of V for increasing U ( tt−CLL′

d → t−CLLd → locked) previously identified
by the k-means algorithm.

• The last two eigenvectors identify the CLLd phase.

1There is no precise rule that establishes how many eigenvectors one has to consider; we decided
to consider the first eight as the k-means the algorithm identified eight different clusters. The ninth
eigenvalue weight is equal to 0.7%, so there is no abrupt decrease (i.e. difference in order of magnitude).
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Figure 5.10: Principal components eigenvalues weights. It is manifest that there is no
abrupt change of scale between the 8th and 9th eigenvalue.

Figure 5.11: Eigenvectors 1-2.
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Figure 5.12: Eigenvectors 3-4.

Figure 5.13: Eigenvectors 5-6.
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Figure 5.14: Eigenvectors 7-8.

5.4 Learning by Confusion

As we mentioned before, Learning by Confusion is a machine learning technique that
was firstly introduced to identify phase transitions in two-states systems [31]. Here we
decided to apply it in the sector with U = 20 and V ∈ [0, 10], which shall be a three-states
framework. In particular we generated data for 1000 different values of V . As explained
in chapter 4 the method consists in training a neural network repeatedly on the same
data but with different labels created by assigning a ”fake” transition point in a range.
In this case we considered a convolutional neural network so our data will be arranged
into a 2× 30 matrix where the first row is composed of the charge structure factor and
the spin structure factor concatenated while the second row is the local density.
Going into details, we start by labelling every point with the same class (i.e. ′1′). Then
we train and test a binary classification convolutional neural network and finally evaluate
the accuracy a onto the test set. As expected that is equal to 100%. Once the accuracy
is computed we re-label the set by putting the ”fake” phase transition at V = 0.01,
and repeat. In this case we expect the network to perform slightly worse than at the
previous step as the labelling is no longer uniform and points belonging to the same
phase are labelled differently. This is done until we reach again a uniform set (i.e. all
′0). At each step the dataset is randomly split into a training set, validation set and test
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Figure 5.15: Learning by confusion with binary classification at U = 20 and varying V .
It is clear that this is not the previously mentioned W-shape, but has two maxima at

Vc = 4.6 and Vc = 6.9 (red dotted lines).

set. The accuracy is plotted in Fig. 5.15. We see that the shape of the accuracy is not
the previously mentioned W one as it looks more like a ”bridge” (i.e. a high-accuracy
region between two maxima) between two critical values Vc = 4.6 and Vc = 6.9. This
is, in the author’s opinion, a first clue of the three-state nature of the system. In fact,
in this interval, the network is able to catch that the ′0′ is associated to the TLL phase
(and part of the CLLnn which still confuses it) while ′1′s are associated to CLL′

nn. A
second clue that confirms our hypothesis is given by the accuracy plot that we obtain
if we repeat the procedure twice by dividing the set into two. Precisely, we applied the
procedure proposed in [31] to the two intervals V ∈ [0, 6] and V ∈ [6, 10]. These are
plotted in Fig. 5.16 and clearly show the W-shape, indicating that in these ranges the
system encounters two different phases. However, it should be pointed out that the phase
transition points found in Fig. 5.15 and Fig. 5.16 are different.

A 3-state generalization is needed. We therefore define a 3-state classifier and change
the number of labels to three (i.e. ′0′, ′1′ and ′2′). First, we label the entire set as ′2′,
then, as we did before, we compute the accuracy, move the 1 → 2 transition and repeat.
Once the procedure is completed we introduce the ′0′ by labeling the first 10 elements of
the set as ′0′ and repeat the previously explained procedure with labels ′1′ and ′2′. From
this point the generalization is straightforward. The accuracy heatmap is represented in
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Figure 5.16: Split set accuracies plot

Fig. 5.17. Every line represents a different position of the end of ′0′ labels, while every
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Figure 5.17: Accuracy heat map for the 2-dimensional Learning by confusion with fixed
U = 20 and increasing value of V . V1 and V2 are the first and second phase transitions
points respectively. Left corner corresponds to uniform ′1′ labelling, right corner to

uniform ′2′ labelling, while top corner to uniform ′0′ labelling.

point corresponds to a different position of the end of ′1′ labels. The color associated
with every point represents the accuracy achieved by the network. As expected the three
corners (which correspond to a uniform set) exhibit perfect accuracy. As a confirmation
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of what we thought, other local maxima are achieved for first phase transition localized
at V1 ∼ 2 − 4 and second phase transition at V2 ∼ 6 − 8, in particular at V1 = 3.8 and
V2 = 7.2 the accuracy reach its maximum value of 0.98.
We can affirm that this technique confirms what is found by the k-means algorithm. We
then repeated the procedure in order to study the tt−CLL′

d → t−CLLd → locked phase
transitions. We collected data for 1000 values of U ∈ [0, 10] with fixed V = 7.5. Results
are plotted in Fig. 5.18. In this case the accuracy plot shows indeed the traditional W-
shape, with peak at Vc = 4.7, which is extremely compatible with the t−CLLd → locked
phase transition identified by k-means clustering. On the other hand the neural network
could not distinguish the difference between the tt− CLL′

d and t− CLLd phases.

Figure 5.18: Accuracy plot for Learning by confusion with fixed V = 7.5 and increasing
value of U . We can identify the traditional W-shape with peak at U = 4.7 (red dotted

line).

5.5 Order parameters

We plot in Fig. 5.19 the number of doubly occupied sites D and the number of nearest
and next-to-nearest neighbors N for the number of sites L. It is quite manifest that
while N /L changes smoothly as V increases, D/L changes abruptly for high values of
U . In particular it goes from D/L ∼ 0.13 (which is equivalent to D ≃ 4 for L = 30) for
U ∼ 0, to D/L ∼ 0.1 (which is equivalent to D ≃ 3 for L = 30) for U ∼ 2− 3, to finally
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Figure 5.19: Upper panel: nearest and next-to-nearest neighbor number plot. Lower
panel: double occupancy number plot. Right panel:
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D/L ∼ 0.07 (which is equivalent to D ≃ 2 for L = 30) for U ≳ 5. We are now ready to
make our hypothesis for the phase diagram of the system.

5.6 Phases of the system

TLL

CLLnn

CLL′
nn

t− CLLd

tt− CLLd

tt− CLL′
d

CLLd

locked

0

25

10

V

U

Figure 5.20: The hypothesis of phase diagram for the extended Hubbard model.

Combining the information given by each analysis technique we end up with the hypoth-
esis represented in Fig. 5.20. We shall now examine more carefully the supposed phases
of the system.
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Tomonaga Luttinger Liquid - TLL

As we did in the k-means analysis we start by looking at the high-U regime, i.e. U ∼ 20.
From k-means we have seen that for V ∈ [0, 4] the density is uniform n(x) = 2

5
∀x, the

charge density structure factor does not exhibit a clear peak. This agrees with what
was said when dealing with bosonization, that is for low values of V the system is a
Tomonaga Luttinger Liquid (see Fig. 5.21). As V grows the system encounters a phase
transition to CLLnn (which we will examine later). For small values of U the transition
takes place for V ∼ U , as found by classical arguments in Eq. (2.86). When U grows this
limit is no longer valid, as the fundamental hypothesis for perturbation theory was that
V was small to safely expand the cosine. For U ≳ 5 we found that the phase transition
threshold is fixed at V ∼ 4 (that was firstly found by the k-means algorithm and then
confirmed by Learning by confusion).

Figure 5.21: Pictorial representation of Tomonaga Luttinger Liquid (TLL). There is no
block structure and single-particles mobility is extremely high.

Nearest neighbor liquid of clusters - CLLnn

As pointed out in Sect. 3.2, in order to apply phenomenological bosonization it is not
necessary for fundamental entities to be particles, as they can also be clusters of particles.
When U ≫ V (in particular if we consider the classical ground state as guiding start
when U > 3V/2) the clusters which compose the liquid are of type B and A (as depicted
in Fig. 5.22). In this case, it is easy to see from simple geometrical considerations that
one should expect M/L = 3/10, so the charge structure factor shall exhibit a peak at
kCLLnn
c = 3π/5 = 9π/15, the double occupancy shall be zero and the density shall be

quasi-uniform (liquid phase). This is in total agreement with what found by k-means
algorithm (both the density and the structure factor) and in [27]. As V grows the mobility
is progressively reduced until the critical value of V ∼ 7, where the system undergoes
a new phase transition to a crystal. This second transition localizes the particles and
was found by k-means, PCA, and Learning by confusion. Fixing V at an intermediate
value (e.g. V ∼ 5− 6) and decreasing U the system undergoes another transition to the
t− CLLd phase, which we will examine later. It should be stressed that the line of this
phase transition was not uniquely determined by our analysis, as k-means and D data
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were in light contradiction (the first suggests that t − CLLd is realized only for V ≳ 7
while looking at D plot it seems that the phase transition takes place at U ∼ V ).

Figure 5.22: Pictorial representation of Cluster Luttinger Liquid of nearest neighbours
(CLLnn). The system is arranged in A and B blocks, which are the elementary units of

it.

Crystal ”nn” - CLL′
nn

When V grows mobility is reduced (every movement risks to cost V in terms of energy)
but not eliminated. Furthermore as U < 3V/2, B blocks are favored w.r.t. B′ blocks.
This is in agreement with strong coupling perturbation theory and with [27] (even if in
[27] the threshold of the liquid-crystal transition was set to higher values, i.e. V ∼ 10).
This phase, represented in Fig. 5.23, shall exhibit a more peaked density and a flatter
charge structure factor, in complete agreement with what was found by the k-means
algorithm.

Figure 5.23: Pictorial representation of crystal CLL′
nn. The block strucutre is identical

to CLLnn, but mobility is reduced due to the high value of V .

Doublon liquid of clusters - CLLd

When dealing with smaller values of U , i.e. U ∼ 5− 10, double occupancy is no longer
forbidden and that is the origin of the emergence of new phases. In particular, when
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U ∼ 5 − 10 and U ∼ 3V/2, the system undergoes a transition between CLLnn (or
t−CLLd) to CLLd. Similar to CLLnn this is a cluster liquid phase. The main difference
is that in this case the blocks that compose the system are no longer A and B but A and
B′, as depicted in Fig. 5.24. The difference of length of B′ blocks w.r.t. B blocks (the
former are rc+1 long while the latter are rc+2) implies a different number of blocks. In
particular, the peak of the charge structure factor shall now be localized at kCLLd

c = 2π/3.
It must be underlined that this phase is expected to emerge when V < 2U/3, but we
must remember that when dealing with perturbation theory we found that when V ≫ t
(in particular for V/t ≳ 7) the crystalline solution should also be valid. This competition
between the crystalline and liquid solution is one of the main aspects of interest in this
work and is the main reason for CLLd smallness in the phase diagram. CLLd was found
by k-means and confirmed by the last eigenvectors of PCA, whose projections underlined
this phase.

Figure 5.24: Pictorial representation of Cluster Luttinger Liquid of doublons (CLLd).
The system is composed of blocks A and B′ and mobility is not quenched.

Crystal ”locked” phase

As V → ∞, double occupied sites are favored w.r.t to nearest neighbors, so the system
arranges in blocks B′ and A. The difference between this state and the U ≫ V ≫ t one is
that now mobility is completely quenched. It is easy to see that moving a particle from a
doubly occupied state would have an energy cost of V or 2V . Particles are therefore locked
into a perfect crystalline phase, which is represented in Fig. 5.25. This shall correspond
to a flat charge structure factor and perfectly peaked density. The substantial difference
between this state and all the others is identified by all the techniques we used.
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Figure 5.25: Representation of the ”locked” phase; the block structure is identical to
CLLd but now mobility is almost reduced to zero.

tt− CLLd cluster liquid

For small values of U , V , i.e. U ∼ 0 − 2, V ∼ 2 − 7, the single particle mobility is not
negligible. From k-means clustering, we see that in this region of the phase diagram the
system arranges itself into M = 8 blocks. This, combined with the value of the order
parameter D ∼ 4, suggests the structure in the figure below. The fact that L = 30 and
M = 8 implies that there should be 6 blocks of length 4 and 2 blocks of length 3. The
two blocks of length 2 shall be B′ blocks, which are energetically favored due to the small
value of U . The other two doubly occupied sites are arranged into two length 4 blocks.
Finally, the remaining particles are arranged into the other blocks. The extra site in this
blocks w.r.t. to A blocks favor the single particle mobility, which can be done ”for free”
(i.e. there is no cost V ). A representation of this phase is depicted in Fig. 5.26.

Figure 5.26: Representation of tt−CLLd phase. As U and V have intermediate values,
there is not a clear adavantage of B blocks w.r.t. to B′ blocks (or viceversa). That,
combined to the fact that single particle mobility is still relevant (single particle

movement is here represented with a thinner arrow), is the cause of this new phase of
the system.

tt− CLL′
d locked liquid

As V crosses the previously seen critical value of V ∼ 7, mobility is reduced but the
underlying structure is not modified, as shown in Fig. 5.27. That is underlined by both
PCA and k-means (the number of blocks does not change, the density shape does).
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Figure 5.27: tt−CLL′
d representation; the block structure is identical to the tt−CLLd

one, but now mobility is reduced due to the high value of V .

t− CLLd cluster liquid

When U grows to higher values (i.e. U ∼ 2− 4) the number of blocks changes to M = 9
and the doubly occupied sites become D = 3. This suggest a structural change w.r.t.
the tt−CLLd phase. For L = 30 in fact, one can suppose that the system arranges itself
into 6 blocks of length 3 and 3 blocks of length 4. Three of the former shall be B′ blocks
while the other shall be A blocks. On the other hand, the length 4 blocks shall contain
just one particle to favor single particle mobility. This structure is represented in Fig.
5.28.

Figure 5.28: Representation of t− CLLd phase. As U increases double occupancies are
energetically less favourable and reduces to D = 3.
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Chapter 6

Conclusions

“In case I’m wrong. It has
happened.”

Dr. House

We shall now briefly review the main outcomes of our work.
Competition between the different terms of the Hamiltonian and frustration of particles
play a fundamental role in building the phases of the system and make them extremely
hard to determine. Given this, Machine Learning has proved itself to be extremely
useful to tackle this task. Moreover, Machine Learning techniques used in this work
demonstrated to be complementary, as PCA and k-means clustering are more useful to
get a general impression of the phase diagram while Learning by Confusion is useful in
order to determine precisely the transition points.
Thanks to k-means clustering we saw that the phase diagram of the extended Hubbard
model shall be richer than what predicted in [6]. In particular we found that CLLnn

and CLLd appear for U ≳ 5 and V ≳ 5, but the latter occupies a very thin space of the
phase diagram, as the system falls into the locked crystalline phase as soon as we move
from the classical phase transition line U ≃ 3V/2. Moreover, we found that Tomonaga
Luttinger Liquid of doublons TLLd is not a phase of the system, as the low-U region of
the phase diagram presents three different phases: tt−CLLd, tt−CLL′

d and t−CLLd.
This region was the most difficult to analyze, as, due to the high value of V and low value
of U , it is possible that, during Density Matrix Renormalization Group simulations, the
system can ”fall” into local energy minima difficult to overcome. A simple example to
think of can be the one of a doubly occupied site from which it is difficult for a particle
to exit (as soon as it goes out from the doubly occupied site the energy increases of V ).
Finally we found that for V ≳ 7, which was not analyzed in [6] due to difficult numerical
convergence, all the phases undergo a sort of crystallization, as particles become more
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and more localized. This crystallization is indicated by the prime subscript (e.g. CLLnn

to CLL′
nn).

As no physical work is, in a sense, never finished, we indicate now three possible directions
along which one could operate in order to confirm what found:

1. First of all one should try to simulate the system for bigger systems. In this
thesis, we just examined the case of L = 30 due to limited computational resources
(and time). When enlarging the chain one should always keep in mind that it is
important to maintain a length that allows both the classical ground state. As the
blocks A and B′ are rc + 1 long while blocks B are rc + 2 long, the total length of
the system shall be a multiple of 3rc + 4 and rc + 1. In our case, that is rc = 2,
that is being a multiple of 10 and 3 (i.e. L = 60, 90, . . . ). Enlarging the system
should limit finite-size effects.

2. The second possibility to verify our hypothesis is to modify boundary conditions.
In our study, we limited ourselves to PBC (periodic boundary conditions), which
limit finite-size effects but can reduce the DMRG precision. One should therefore
generalize the study to anti-periodic and open boundary conditions, which better
fits the density matrix renormalization group.

3. Finally one can go to higher values of the maximum bond dimension. We limited
ourselves to 400 due to limited computational resources (that should be sufficient
for 1d systems) but increasing it to e.g. 1000 should make the simulation more
precise. It shall be stressed that this is simply a simulation parameter and has no
physical relevance (differently to the other refinements).
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