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Abstract

The aim of this thesis is the study of the normal phase of a mass imbalanced
and polarized ultra-cold Fermi gas in the context of the BCS-BEC crossover, using
a diagrammatic approach known as t-matrix approximation. More specifically, the
calculations are implemented using the fully self-consistent t-matrix (or Luttinger-
Ward) approach, which is already experimentally and numerically validated for the
balanced case.

An imbalance (polarization) between the two spin populations works against
pairing and superfluidity. For sufficiently large polarization (and not too strong
attraction) the system remains in the normal phase even at zero temperature. This
phase is expected to be well described by the Landau’s Fermi liquid theory. By
reducing the spin polarization, a critical imbalance is reached where a quantum
phase transition towards a superfluid phase occurs and the Fermi liquid description
breaks down. Depending on the strength of the interaction, the exotic superfluid
phase at the quantum critical point (QCP) can be either a FFLO phase (Fulde-
Ferrell-Larkin-Ovchinnikov) or a Sarma phase. In this regard, the presence of mass
imbalance can strongly influence the nature of the QCP, by favouring one of these
two exotic types of pairing over the other, depending on whether the majority of
the two species is heavier or lighter than the minority.

The analysis of the system is made by focusing on the temperature-coupling-
polarization phase diagram for different mass ratios of the two components and on
the study of different thermodynamic quantities at finite temperature. The evolution
towards a non-Fermi liquid behavior at the QCP is investigated by calculating the
fermionic quasi-particle residues, the effective masses and the self-energies at zero
temperature.
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Introduction

Superconductivity was discovered in 1911 by Onnes [1], who was studying the re-
sistance of solid mercury at cryogenic temperatures. He observed that the resistance
of the material abruptly vanished below a critical temperature, which corresponds
to 4.2 K for mercury. Great efforts have been devoted to finding out how and why
superconductivity works and the first theoretical model was conceived in 1935, sum-
marized by the completely classical London constitutive equations [2]. In 1950, the
phenomenological Ginzburg–Landau theory of superconductivity [3], which com-
bined Landau’s theory of second-order phase transitions with a Schrödinger-like
wave equation, had great success in explaining the macroscopic properties of super-
conductors.

In 1957, Bardeen, Cooper and Schrieffer [4] proposed a complete microscopic
theory of superconductivity, awarded with the Nobel prize in 1972. The BCS theory
explained the superconducting current as a superfluid of Cooper pairs, pairs of
electrons with size of order 103 times the typical inter-particle distance and formed
through an effective attractive interaction due to the exchange of phonons. Two
years later, Gor’kov showed that the BCS theory reduced to the Ginzburg-Landau
theory close to the critical temperature [5].

In their work, the authors of the BCS superconductivity made a point to em-
phasize the differences between their theory, based on strongly-overlapping fermion
pairs, and the one proposed by Schafroth, Butler and Blatt [6], based on the Bose-
Einstein condensation (BEC) of non-overlapping composite bosons. Therefore, for
some time, the interest in these two situations has been kept disjoint, until theo-
retical interest arose for unifying them. Interestingly, it turned out that Cooper
pairs and composite bosons can be considered as two limiting (BCS and BEC) sit-
uations of the same theory where they share the same kind of broken symmetry. In
this way, the Fermi system, in the crossover between the BCS and BEC regimes,
smoothly passes through an intermediate region where the dimension of the pairs
is comparable with the inter-particle spacing. This unified theory, known nowadays
as BCS–BEC crossover, took shape initially through the work by Eagles [7] in 1969
in the context of superconducting semiconductors, and later through the works by
Leggett [8] in 1980 and by Nozierès and Schmitt-Rink [9] in 1985, for an attrac-
tive Fermi gas respectively at T = 0 and in the normal phase above the critical
temperature.

With the advent of high-temperature (cuprate) superconductors in 1987, in which
the size of the pairs is comparable to the inter-particle spacing [10–17], the interest
in the BCS–BEC crossover grew, also because of the possible applications in nuclear
physics [18]. However, a real explosion of this activity started from 2003, with the
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advent of the fully controlled experimental realization essentially of all aspects of
the BCS–BEC crossover in ultra-cold Fermi gases [19]. Notice that, in this case,
the fermions involved in pairing are neutral atoms (and not charged particles, as
electrons in superconductors), so in this case the ordered phase is superfluid, rather
then superconducting.

Some time ago, a theoretical and experimental research activity on ultra-cold
polarized (i.e. spin imbalanced) attractive Fermi gases began [20, 21], mainly with
the aim to understand the different nature of the superfluid phase. Quite generally,
an imbalance between the two spin populations works against pairing and super-
fluidity and thus, for sufficiently large polarization (and not too strong attraction),
the system remains in the normal phase even at zero temperature. Depending on
the strength of the interaction, the superfluid phase can be either a Sarma phase,
a homogeneous polarized superfluid predicted many years before by Sarma in the
BCS limit at T = 0 [22], or a more exotic FFLO phase predicted by Fulde and
Ferrell [23] and, independently, by Larkin and Ovchinnikov [24], characterized by a
finite center-of-mass momentum of the pairs. Robust evidences of a FFLO phase
have been reported in quasi-two-dimensional organic superconductors [25–27], as
well in the iron-based multiband superconductor KFe2As2 [28]. For ultra-cold Fermi
gases, indirect evidence for the occurrence of FFLO ordering has been reported so far
only for one-dimensional systems [29]. In three dimensions, the region of the FFLO
stability is mostly covered by an experimentally confirmed phase separation [30,31],
related to a first-order normal-to-superfluid transition. However, we expect that this
effective narrow region at very low temperatures can be enlarged by the presence
of a mass imbalance since, from mean-field calculations, it is already known that a
majority of heavy atoms should favor FFLO pairing [32].

Thanks to the experimental observations in ultra-cold Fermi gases, the study of
the BCS-BEC crossover has strongly developed also on the theory side [33,34]. Many
theoretical methods, like many-body diagrammatic techniques, quantum Monte
Carlo (QMC), diagrammatic Monte Carlo (DMC), functional renormalization group,
epsilon and virial expansions, have been extensively used to describe the crossover.

In this work, we will focus on diagrammatic techniques based on the t-matrix
approximation since, particularly in the context of attractive ultra-cold Fermi gases,
this theoretical approach appears as a natural candidate to describe the system while
it evolves throughout the BCS-BEC crossover. The first pioneering approach in this
respect goes back to the work by Nozières and Schmitt-Rink (NSR) [9] in 1985. In
that work, a simplified version of the non-self-consistent t-matrix approximation,
obtained by extending the diagrammatic description of a dilute repulsive Fermi gas
due to Galitskii [35], proved to highlight the main features of the crossover physics
in the normal phase above the superfluid critical temperature. Later on, the NSR
approach was extended to improve the treatment of the non-self-consistent t-matrix
approximation, further improved in turn by its fully self-consistent version, known as
Luttinger-Ward approach. This approach compares well with experimental data and
Quantum Monte Carlo (QMC) calculations for several thermodynamic quantities for
a balanced system, where the two species in the Fermi gas have the same population
and mass [36–41].

In this thesis, we will use the fully self-consistent t-matrix to study the normal
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phase of mass imbalanced and polarized ultra-cold Fermi gas. In particular, we
will focus on the mixtures 40K-161Dy (potassium-dysprosium) and 6Li-53Cr (lithium-
chromium), which are relevant for the ongoing experiments in Innsbruck [42, 43]
and Florence [44], respectively. The results for the two mass imbalanced mixtures,
which represent a new contribution of this thesis, will be often compared with the
known results for a mass balanced mixture, which we have anyway reproduced for
completeness. For the calculations presented in this work, we will use the numerical
codes at both finite and zero temperature developed by Michele Pini [45–47]. The
thesis is organized as follows:

• In Chapter 1, we review the main features of the BCS-BEC crossover, with
particular interest to imbalanced ultra-cold Fermi gases, showing that the
inclusion of pairing fluctuations above a mean-field approach is required to
describe consistently this theory.

• In Chapter 2, we introduce the finite temperature diagrammatic Green’s func-
tion formalism, which is a fundamental theoretical basis for a quantum many-
body approach to the BCS-BEC crossover.

• In Chapter 3, we discuss and justify the t-matrix approximation, which se-
lect a certain class of diagrams, known as ladder diagrams, that are relevant
to study an ultra-cold Fermi gas in the normal phase throughout the BCS-
BEC crossover. Furthermore, we discuss the Luttinger-Ward approach, which
improves the t-matrix approximation with the inclusion of full self-consistency.

• In Chapter 4, we describe the Landau Fermi liquid theory and its application
to imbalanced ultra-cold Fermi gases, showing that a transition towards non-
Fermi liquid behaviour is used to investigate the presence of a quantum critical
point (QCP) in the phase diagram of the system.

• In Chapter 5, we introduce some considerations on experiments with imbal-
anced ultra-cold Fermi-Fermi mixtures. In particular, we focus on the 40K-
161Dy and 6Li-53Cr mixtures, which will be the ones analyzed in our numerical
calculations.

• In Chapter 6, we present the numerical results obtained within the Luttinger-
Ward approach for different thermodynamic quantities at finite temperature,
focusing on three different mass ratios. We also consider the high-temperature
limit of the t-matrix approximation, which reduces to the quantum virial ex-
pansion in this regime.

• In Chapter 7, we present some numerical results obtained within the Luttinger-
Ward approach at zero temperature. More precisely, we consider the zero
temperature phase diagram for three different mass ratios and the behaviour
of the quasi-particle residues and effective masses near the QCP. Finally, some
results for the self-energies are reported.

6



Chapter 1

BCS-BEC Crossover and Ultra-cold
Fermi Gases

In this chapter, we give a general introduction to the BCS-BEC crossover. We
start by discussing the BCS theory with a mean-field approach and the Bose-Einstein
condensation for a non-interacting gas. We see how these two phenomena can be
smoothly connected through the variation of the size of the fermion pairs and why
the mean-field approximation is not enough to get a consistent description of this
crossover. Then we describe qualitatively the effects of an imbalance of the spin
populations and the main aspects and achievements of the BCS–BEC crossover
that have emerged with ultra-cold Fermi gases. Throughout this thesis, we use
units where the reduced Planck constant ℏ and the Boltzmann constant kB are set
equal to unity.

1.1 BCS Theory of Superconductivity
The first microscopic theory of superconductivity was formulated in 1957 and

is widely known as Bardeen–Cooper–Schrieffer theory (BCS). In a general form, it
considers an effective attractive interaction V (r − r′) between two different species
of fermions at a distance |r−r′| (conventionally denoted with spin ↑ and ↓), embed-
ded in a continuous medium [48]. This interaction is responsible for the creation of
fermion pairs in the medium, also known as Cooper pairs. For example, in conven-
tional superconductors, this attraction is due to the electron-phonon interaction.

In some systems, like metallic superconductors or ultra-cold Fermi gases, a de-
tailed knowledge of the form of the attractive interaction is not important and
one can just consider the simplest form of the potential, i.e. a contact potential
V (r) = v0δ(r), where v0 is a negative constant. However, the price to pay for the
use of this interaction is that, when dealing with a homogeneous system, the Fourier
transform V (k) = v0 is a constant and therefore the 3-dimensional integrals over
the wave vector k may diverge in the ultraviolet. This problem can be avoided by
introducing a cut-off k0, like the Debye frequency for metallic superconductors. For
ultra-cold gases, on the other hand, we will deal with a more useful regularization
procedure (see Section 3.1.3), related to the fact that also the two-body problem in
vacuum is affected by a similar divergence.
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To describe quantitatively this theory, it is more convenient to work in the grand-
canonical ensemble, which allows for a variable number of particles. We therefore
consider the grand-canonical HamiltonianK = H−µN with a zero-range interaction
of strength v0

K =
∑
kσ

ξkc
†
kσckσ + v0

∑
kk′

c†k↑c
†
−k↓c−k′↓ck′↑. (1.1)

In this expression, ξk = k2/(2m) − µ, while c†kσ (ckσ) is a fermionic creation (an-
nihilation) operator for wave vector k and spin projection σ =↑, ↓ (here we are
considering equal densities n↑ = n↓, and thus µ↑ = µ↓, for simplicity).

We now use the BCS mean-field (or Hartree-Fock-Bogoliubov) approximation,
which consists in decoupling the second term of (1.1) by including also particle
non-conserving averages, i.e. c†αc

†
βcγcδ −→ +⟨c†αcδ⟩c

†
βcγ − ⟨c†αcγ⟩c

†
βcδ + ⟨c†βcγ⟩c†αcδ +

⟨c†βcδ⟩c†αcγ + ⟨c†αc
†
β⟩cγcδ + ⟨cγcδ⟩c†αc

†
β, where ⟨. . . ⟩ is the thermal average determined

by K. As can be seen, the first four terms represent the usual HF approximation
and have the effect of renormalizing the spectrum of free fermions. Since we will be
mainly interested in the limit v0 → 0−, in the following these terms will be neglected.
Therefore, we can rewrite the mean-field grand-canonical Hamiltonian as

Kmf =
∑
kσ

ξkc
†
kσckσ −

∑
k

(
∆∗c−k↓ck↑ +∆c†k↑c

†
−k↓

)
− |∆|2

v0
, (1.2)

where the parameter ∆ is determined by the self-consistent relation

∆ = −v0
∑
k

⟨c−k↓ck↑⟩. (1.3)

In mean-field theory, we approximate the effect of all the other bodies on any given
individual by a single averaged effect, thus passing from a many-body problem to a
one-body problem. The description of a system of fermions with a mutual attractive
interaction within this approximation is appropriate when the inter-particle corre-
lations extend much beyond the average inter-particle distance, such that different
pairs strongly overlap with each other. This is definitely the case for conventional
superconductors, to which the BCS theory of superconductivity was originally meant
to apply.

The quadratic form (1.2) can be easily diagonalized introducing the Bogoliubov
(or quasi-particle) operators

γk↑ = u∗kck↑ − v∗kc
†
−k↓, γ†−k↓ = vkck↑ + ukc

†
−k↓, (1.4)

with |uk|2+ |vk|2 = 1, which guarantees the fermionic nature of the γ-operators (i.e.
the usual anti-commutation relations). In particular, one can further evaluate

|vk|2 = 1− |uk|2 =
1

2

(
1− ξk

Ek

)
, (1.5)

where Ek =
√
ξ2k + |∆|2 are the eigenvalues of the diagonalized Hamiltonian [49].
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The BCS ground state |ΦBCS⟩ (at T = 0) is by definition the vacuum for the
quasi-particle operators, i.e. γk↑ |ΦBCS⟩ = γ−k↓ |ΦBCS⟩ = 0, and can be obtained
explicitly as

|ΦBCS⟩ =
∏
k

(
uk + vkc

†
k↑c

†
−k↓

)
|0⟩ . (1.6)

The evaluation of expectation values is considerably facilitated by this relation. One
can easily show that ⟨ΦBCS| c†kσckσ |ΦBCS⟩ = |vk|2 is the occupation number nk and
that ⟨ΦBCS| c†−k↓ck↑ |ΦBCS⟩ = u∗kvk is the so-called anomalous density ϕk which
characterizes the BCS wave function.

At T ̸= 0 we can use the thermal averages ⟨γ†k↑γk↑⟩ = 1 − ⟨γ−k↓γ
†
−k↓⟩ = f(Ek),

where f(ε) = [eβε + 1]−1 is the Fermi function with β = 1/T , together with the
definitions in (1.4), to readily get the mean-field density equation

n =

∫
dk

(2π)3

(
1− ξk

Ek

(1− 2f(Ek))

)
. (1.7)

Correspondingly, the self-consistent condition (1.3) reduces to

∆ = −v0
∑
k

ukv
∗
k(1− 2f(Ek)), (1.8)

and, using the analytic expressions for uk, vk in (1.5) and performing the thermo-
dynamic limit, one finally gets the gap equation

− 1

v0
=

∫
|k|≤k0

dk

(2π)3
1− 2f(Ek)

2Ek

≡
∫
|k|≤k0

dk

(2π)3
tanh (βEk/2)

2Ek

, (1.9)

where k0 is the ultraviolet cut-off introduced to avoid divergences, as discussed
above. As we see from the definition of Ek, the coefficient ∆ originates a gap in
the energetic spectrum which is maximum at T = 0, namely ∆0, and non-zero only
for T < TBCS

c . For this reason, the gap ∆ can be interpreted as the BCS order
parameter.

At finite temperature, it is impossible to find an analytic solution for the den-
sity equation (1.7) and the gap equation (1.9) because of the presence of the Fermi
function, so one has to search for numerical solutions. However, when approaching
the critical temperature TBCS

c from below, an exception occurs and one can obtain
analytic results. At mean-field level indeed, the critical temperature TBCS

c corre-
sponds to a vanishing BCS gap parameter ∆: we will recover this value in Section
3.1.3, when we will introduce a proper regularization condition for ultra-cold Fermi
gases.

1.2 Bose-Einstein Condensation (BEC)
A Bose–Einstein condensate (BEC) is a peculiar gaseous state at low temper-

atures, predicted by Einstein in 1925 and produced in the laboratory for the first
time in 1995, in which a large fraction of bosons reside in the same lowest quantum
state. The study of these condensates has become one of the most active areas of
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research in contemporary physics, mainly because they exhibit quantum properties
on a macroscopic scale [50].

The mean occupation number of the single-particle state ν for non-interacting
bosons in thermodynamic equilibrium is given by the Bose function [eβ(εν−µ)− 1]−1,
where εν is the energy of the single-particle state for a particular external potential
under consideration. The condition that the total number of particles must be
equal to the sum of the occupation numbers of the individual levels determines the
chemical potential µ as a function of N and T . If we consider the energy of the
lowest single-particle state to be zero, i.e. ε0 = 0, we must have µ < 0 above the
transition temperature, in order to have a physical (i.e. positive) distribution, and
µ = 0 in the condensed state, up to terms of order 1/N which we shall generally
neglect in the thermodynamic limit. At high temperatures the mean occupation
number of any state is much less than unity and therefore the chemical potential is
much less than zero. As the temperature is lowered, the mean occupation numbers
increase and the chemical potential rises. This makes µ a non-increasing function
with respect to temperature, i.e. ∂µ/∂T ≤ 0.

Performing the thermodynamic limit, the computations of the thermodynamic
properties of gases involve integrals, rather than sums over states, and the multi-
plicity of the levels is replaced by a density of states g(ε), in which details of the
level structure are smoothed out. However, this procedure fails for a Bose-Einstein
condensed system, since the contribution from the ground state is not properly ac-
counted for. Nonetheless, one can still get a good approximation to the contribution
from excited states

Nex =

∫ ∞

0

g(ε)dε

eβ(ε−µ) − 1
. (1.10)

The transition temperature TBEC
c , defined as the highest temperature at which a

macroscopic occupation of the lowest state occurs, is determined by the condition
that the total number of particles can be accommodated in excited states, imposing
µ = 0 in (1.10), that is

N = Nex(Tc, µ = 0) =

∫ ∞

0

g(ε)dε

eε/Tc − 1
. (1.11)

We can compute the density of state for a three-dimensional free particle with
2s+1 spin states using a semi-classical approach. On average, there is one quantum
state per phase-space volume (2π)3 (in ℏ-units). The volume of the region of the
momentum space for which the magnitude of the momentum is less than p is 4πp3/3
and, since the energy of a free particle of momentum p is by εp = p2/(2m), the
total number of states G(ε) with energy less than ε is given by

G(ε) = (2s+ 1)V
4π

3

(2mε)3/2

(2π)3
, (1.12)

where V is the volume of the system. Therefore, the density of states g(ε) is obtained
by

g(ε) =
dG(ε)

dε
= (2s+ 1)V

m3/2

21/2π2
ε1/2. (1.13)
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Now we are ready to compute the transition temperature TBEC
c for a free 3D Bose

gas by inverting the relation (1.11) and using the density of states (1.13) as

TBEC
c =

2π

m

[
n

(2s+ 1)ζ(3/2)

]2/3
, (1.14)

with the Riemann zeta function ζ(3/2) =
∑∞

n=0 n
−3/2 ≃ 2.612.

We can also easily calculate the condensate fraction ρ0(T ) = N0/N which, in
the thermodynamic limit, is different from zero only for T < Tc. In fact ρ0(T ) =
1 − ρex(T ), where ρex = Nex/N can be calculated from (1.10) below the transition
temperature by setting µ = 0. For particles in a box in three dimensions ρ0 is
therefore given by the well-known result

ρ0(T ) = 1−
(
T

Tc

)2/3

. (1.15)

Bose-Einstein condensation occurs when the macroscopic majority of particles
fall into the single-particle ground state, that is when the number of particles in
the single-particle ground state N0 is N0 ≈ N , and therefore Nν/N ≪ 1 for ν ̸= 0.
For this reason, it is convenient to write the field operator ψ̂(r), which annihilates
a particle at position r, as

ψ̂(r) = φ0(r)a0 +
∑
ν ̸=0

φν(r)aν , (1.16)

where aν is the bosonic annihilation operator in the single-particle state φν(r). Con-
sidering that |aν |. . . , Nν , . . .⟩ | ∼ Nν , the second term in this expression may be
considered to be a small fluctuation δψ̂(r).

Now let us analyze the effect of the ground state annihilation operator a0 on the
Bose-Einstein condensed state. Since we deal with a macroscopic number of bosons
in the ground state, the difference between N0 and N0 − 1 is negligible, and hence
we can assume

a0 |N0, . . .⟩ =
√
N0 |N0 − 1, . . .⟩ ≃

√
N0 |N0, . . .⟩ . (1.17)

So, the unique effect of the ground state annihilation operator is to multiply the
state with the real number

√
N0. We can therefore replace this operator a0 (and

also its conjugate a†0) with the real number
√
N0. This is known as Bogoliubov

approximation [51], which allows one to describe the field operator as a macroscopic
wave function for the ground state plus a small fluctuation, negligible for sufficiently
low temperatures

ψ̂(r) = ψ0(r) + δψ̂(r), (1.18)

where ψ0(r) =
√
N0φ0(r). The classical field ψ0(r) is called condensate wave function

and plays the role of the BEC order parameter.
The Bogoliubov ansatz (1.18) for the field operator implies that the expectation

value ⟨ψ̂(r)⟩, for low temperatures, is different from zero. This would not be possible
if the condensate state is in a particle number eigenstate |N0⟩. From a quantum
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field theoretical point of view, this spontaneous symmetry breaking means that the
condensate state is in or close to a coherent state |α⟩ defined by

a0 |α⟩ = α |α⟩ , |α⟩ =
∑
N0

e−|α|2/2
√
N0!

αN0 |N0⟩ ≡ e−|α2|/2eαa
†
0 |0⟩ , (1.19)

where we notice that, if |α|2 = N0, we recover ψ0(r) = ⟨α|φ0(r)a0 |α⟩ =
√
N0φ0(r).

1.3 BCS-BEC Crossover
We now show that the BCS wave function (1.6) contains the BEC of composite

bosons as a limit. If we set gk = vk/uk, the BCS ground state can be rewritten in
the form

|ΦBCS⟩ =
(∏

k′

uk′

)
exp

[∑
k

gkc
†
k↑c

†
−k↓

]
|0⟩ , (1.20)

since (c†kσ)
2 = 0 for the Pauli principle. By direct comparison with (1.19), the

BCS wave function is by definition a coherent state of Cooper pairs. We see that
the operator a†0 ≡

∑
k gkc

†
k↑c

†
−k↓ contains fermion pairs but it is not a truly bosonic

operator since the commutator [a0, a†0] =
∑

k |gk|2(1−n̂k↑−n̂−k↓) does not satisfy the
proper bosonic commutation relations but explicitly contains the fermionic operators
n̂kσ = c†kσckσ. However, as long as ⟨ΦBCS| n̂kσ |ΦBCS⟩ = |vk|2 ≪ 1 for all k of
physical relevance, one may consider that [a0, a

†
0] ≃ 1 for all practical purposes. As

a consequence, |ΦBCS⟩ = exp
(
a†0

)
|0⟩ represents a Bose-Einstein condensate, since

it corresponds to a bosonic coherent state with a non-vanishing broken symmetry
⟨ΦBCS| a0 |ΦBCS⟩ =

∑
k |gk|2 ̸= 0, exactly as discussed in the previous section.

Looking at the definition (1.5) it is clear that, if the fermionic chemical potential
µ becomes large and negative, the condition |vk|2 ≪ 1 can be satisfied for all k.
This happens when the two-body problem in vacuum presents a bound state with
a large binding energy ε0. In this BEC limit µ approaches the value −ε0/2, which
is equivalent to saying that all fermions are paired up in tight (composite) bosons
with a vanishing residual interaction among them. This result for µ can directly be
obtained from the mean-field gap equation (at zero temperature) in the case of a
wave-vector dependent interaction V (k,k′)

∆k = −
∫

dk′

(2π)3
V (k,k′)

∆k′

2Ek′
, (1.21)

which is a generalization of the equation in (1.9). Using ϕk = u∗kvk ≡ ∆k/2Ek and
|vk|2 = nk, we can rewrite the (1.21) in the form

2ξkϕk + (1− 2nk)

∫
dk′

(2π)3
V (k,k′)ϕk′ = 0. (1.22)

Given nk ≪ 1, this equation is nothing else than the Schrödinger equation for
the relative motion of two particles of equal mass m, mutually interacting via the
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potential V . The negative eigenvalue 2µ of this equation thus is equal to (minus)
the two-body binding energy ε0 as stated above.

The aspects underlined above suggest a crossover phenomenon, which connects
smoothly the BCS superfluidity and the Bose-Einstein condensation through the
reduction of the size of the fermion pairs, the fundamental entities in both phe-
nomena. By varying the size, we pass from large values when Cooper pairs are
strongly overlapping in the BCS limit, to small values when composite bosons are
non-overlapping in the BEC limit. The fermionic chemical potential µ, which can
be found by inverting a proper relation for the number density n, is therefore one
of the driving fields which enables the system to pass from the BCS to the BEC
limits of the BCS–BEC crossover. As an example, Figure 1.1 shows the occupation
number nk = |vk|2 at zero temperature for different values of the chemical potential
µ. In particular, the curves nk have an inflection point at εk = µ, which shows the
presence of an underlying Fermi surface, only when µ > 0, while the occupation
number becomes quite small for all k and the Fermi sea gets completely dissolved
when µ becomes negative.

Figure 1.1: BCS occupation number nk = |vk|2 at zero temperature in function of
the the energy εk = k2/(2m) in units of the Fermi energy EF = (3π2n)2/3/(2m),
where n is the density, for different values of the chemical potential µ. Source:
reproduced from Ref. [33].

Another quantity that is obviously crucial to drive the BCS-BEC crossover is the
form and the strength of the interaction potential V (r) between the fermions [52]. In
particular we will see in Chapter 3 that, for short-range potentials and at low energies
(i.e. temperatures), the crossover is described in terms of a single parameter: the
dimensionless coupling (kFa)

−1, where a is the scattering length associated to the
interaction potential and kF = (3π2n)1/3 is the Fermi wave vector. If the strength
of the potential increases from just below the critical value for binding to just above
it, the coupling increases smoothly from negative to positive values. In Figure
1.2, a graphical representation of a Fermi gas in the broken-symmetry phase along
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the BCS-BEC crossover is given as a function of the coupling (kFa)
−1. Large and

negative couplings (kFa)−1 ≪ −1 correspond to the weak-coupling (or BCS) regime,
while large and positive couplings (kFa)−1 ≫ 1 correspond to the strong-coupling (or
BEC) regime. The intermediate region (kFa)

−1 = 0, where pairs have a dimension
that is comparable to the average inter-particle spacing, is usually called unitary
regime or unitarity.

Figure 1.2: Two-component balanced Fermi gas in the ordered (broken-symmetry)
phase across the BCS-BEC crossover by varying the dimensionless coupling (kFa)

−1.
Source: reproduced from Ref. [46].

1.3.1 Need of Pairing Fluctuations above Mean-field

As we discussed above, in this theory the range of the inter-particle correlations
can become much smaller than the inter-particle distance. Therefore, it is clear
that we need a proper inclusion of pairing fluctuations above mean-field to get a
consistent description of the BCS–BEC crossover, especially at finite temperature
when they are accompanied by thermal fluctuations.

As an example, let’s try to recover the critical temperature in the strong-coupling
(BEC) limit. We assume |µ| ≫ Tc such that µ ≃ −ε0/2, i.e. the chemical potential
reaches the large asymptotic value for the bound state discussed previously. In this
way the density equation (1.7) at the critical temperature can be simplified as

n = 2

∫
dk

(2π)3
1

eξk/Tc + 1
≃ 2

∫
dk

(2π)3
e−ξk/Tc , (1.23)

and we get an equation for Tc that can be solved iteratively yielding [53]

Tc ≃
ε0

2 ln
(

ε0
EF

)3/2 , (1.24)

at leading order in EF/ε0 ≪ 1, where EF = k2F/(2m) is the Fermi energy. Although
Tc ≪ |µ| consistently with our assumptions, the expression of Tc (1.24) diverges in
the BEC limit at fixed density, instead of approaching as expected the finite value
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TBEC
c in (1.14) for the BEC of an ideal gas of bosons with mass 2m and density
n/2. The reason for this failure to recover the BEC temperature from the mean-
field density equation is that we have taken into account only internal degrees of
freedom of the composite bosons, leaving aside the translational ones. To include
these, pairing fluctuations beyond mean field need to be considered, as we will
discuss in Section 3.2.2. Physically, the mean-field temperature (1.24) corresponds
to the pair dissociation temperature T ∗ of the composite bosons, which is completely
different from the BEC temperature at which quantum coherence is established by
the system. Indeed, while in weak-coupling fermion pairs form and condense at the
same temperature (that is T ∗ ≃ Tc ), in strong-coupling pair formation occurs at a
temperature higher than the condensation temperature (that is T ∗ ≫ Tc ).

With the introduction of the pair dissociation temperature T ∗ above, we under-
stand that inclusion of pairing fluctuations is especially relevant in the normal phase
above Tc, where the order parameter vanishes. This is also because, even though
we lose the characteristic long-range order of the superfluid phase, a “local” order
is expected to survive above Tc if the system is fluctuating. In a similar way to
what occurs in the superfluid phase below Tc when the order parameter is instead
non-zero, these considerations have led people to associate pairing fluctuations with
the occurrence of a pseudo-gap above Tc [54].

To collect all these notions, Figure 1.3 presents a qualitative phase diagram of
the BCS-BEC crossover in a dilute Fermi gas in the standard three dimensional
case, obtained well before the era of cold atom experiments. Remarkably, many of
its features have now been tested experimentally [55].

1.4 Spin Imbalanced (Polarized) Systems
What happens if not every spin up fermion can find a spin down partner? This

question has intrigued physicists ever since the early days of BCS theory. In practice,
unequal populations of up and down-spin electrons are very difficult to create in
conventional superconductors, essentially because the orbital effects in the presence
of a magnetic field destroy superconductivity long before the Zeeman splitting is able
to induce an appreciable imbalance. Fortunately, in two-component ultra-cold Fermi
gases, one can control the populations of different “spin” states (that correspond to
different hyperfine states) independently from orbital effects. The first physicists
who addressed this problem within the BCS approach were Clogston, Chandrasekhar
and Sarma [22, 56, 57]. In their works, the orbital effects were completely neglected
and therefore the spin-population imbalance was assumed to be produced by an
external magnetic field acting only on the spins of the electrons.

The BCS mean-field approximation, which was discussed in the previous sections
for a balanced system, can be easily generalized to the presence of different spin
populations (and thus of different chemical potentials). The number equation (1.7)
splits into an equation for the total density

n = n↑ + n↓ =

∫
dk

(2π)3

(
1− ξk

Ek

(1− f(E+
k )− f(E−

k ))

)
, (1.25)
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Figure 1.3: Qualitative phase diagram of the BCS-BEC crossover (temperature
T/EF vs coupling (kFa)

−1). Increasing the relative attraction, the pair-dissociation
temperature T ∗ diverges away from the transition temperature Tc below which a
condensate exists. Source: reproduced from Ref. [34].
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and an equation for the difference between the two densities

n↑ − n↓ =

∫
dk

(2π)3

(
f(E+

k )− f(E−
k )

)
, (1.26)

while the gap equation (1.9) for a contact potential is modified as follows

− 1

v0
=

∫
|k|≤k0

dk

(2π)3
1− f(E+

k )− f(E−
k )

2Ek

. (1.27)

Here Ek =
√
ξ2k + |∆|2 with ξk = (ξk↑ + ξk↓)/2, and E±

k = Ek ± δξk with δξk =
(ξk↑ − ξk↓)/2, where ξkσ = k2/(2m)− µσ is the single particle energy relative to the
chemical potential µσ for the spin σ =↑, ↓. At T = 0, one sees from (1.26) that the
difference n↑ − n↓ between the two densities is finite if one of the two single-particle
excitation energies E±

k become negative in a certain region of k-space. Equivalently,
in terms of the imbalancing field h = (µ↑ − µ↓)/2 such that E±

k = Ek ∓ h, if
h > minEk one obtains n↑ > n↓ (for definiteness, in the following we shall assume
h > 0 such that spin-↑ fermions correspond to the majority species). Moreover, the
above equations at T = 0 correspond to the following ground-state wave function [58]

|ΦS⟩ =
∏
k∈R

c†k↑
∏
k ̸∈R

(
uk + vkc

†
k↑c

†
−k↓

)
|0⟩ , (1.28)

where uk and vk are defined as in (1.5). The region of k-space with E+
k < 0 is

denoted with R and is fully occupied by the ↑-fermions of the majority species,
while outside this region Cooper pairing occurs. The state |ΦS⟩, known as Sarma
state, is determined by a sort of phase separation in k-space between one region
which is unpolarized and superfluid and a second region which is fully polarized
and normal, accommodating at the same time superfluidity and a finite population
imbalance. Depending on the value of µ = (µ↑ + µ↓)/2, two or one Fermi surfaces
with gapless single-particle excitations enclose the normal region R, respectively
if µ > δε or µ < δε, with δε =

√
h2 −∆2 . The phase described by (1.28) thus

corresponds to a gapless polarized BCS superfluid.
A problem with the Sarma state (1.28) in weak-coupling is that it results ener-

getically unstable. Specifically one finds that, by solving the gap equation (1.27) in
the weak-coupling limit, the gap ∆(h) shows a re-entrant behavior below a certain
temperature T0. This re-entrant branch at T = 0 is then associated to the Sarma
state. Furthermore, also the dependence of the critical temperature on h, which
is obtained by setting ∆ = 0 in the gap equation (1.27), shows an analogous re-
entrant behavior (full line in Figure 1.5(a)). However, due to comparisons between
the (grand-canonical) free energies of the normal and superfluid phases, it was found
that below the temperature T0 the transition becomes of first-order, also known as
Clogston-Chandrasekhar transition, with the gap dropping discontinuously to zero
at the transition. Correspondingly, the re-entrant behavior below T0 is completely
eliminated by the transition curve (dashed line in Figure 1.5(a)). The analysis made
by Sarma at T = 0 recovered this first-order transition at h = ∆0/

√
2, from an un-

polarized BCS state to a polarized normal state, suppressing superfluidity when
h > ∆0/

√
2.
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1.4.1 Fulde-Ferrell-Larkin-Ovchinnikov Phase (FFLO)

Fulde and Ferrell (FF) [23] and, independently, Larkin and Ovchinnikov (LO) [24]
proposed an alternative solution to the problem of superconductivity (superfluidity)
in the presence of spin imbalance. The basic idea, presented schematically in Figure
1.4, is that a mismatch of the spin-up and spin-down Fermi surfaces due to spin
imbalance should favour Cooper pairing for a finite value of the center-of-mass wave
vector Q. This is because the pairing states |k+Q/2, ↑⟩ and |−k+Q/2, ↓⟩ remain
in the vicinity of both Fermi surfaces if we take |Q| of the order of kF↑ − kF↓,
with kFσ = (6π2nσ)

1/3. Specifically, this matching occurs only on one side of the
respective Fermi surfaces as determined by Q itself, while on the other side pairing
is completely suppressed. By making these regions completely empty/filled with
↓ / ↑ fermions respectively, one obtains a non-vanishing value of the polarization.
As a consequence, pair condensation at finite Q leads to a space-dependent order
parameter, which is given by a single plane wave in the Fulde–Ferrell analysis and
by a superposition of two plane waves with the same |Q| and opposite direction in
the Larkin–Ovchinnikov analysis. Therefore, the exotic FLLO phase corresponds to
an inhomogeneous superfluid.

Figure 1.4: Left : Two different sizes of Fermi surfaces for the two components of
a non-interacting density-imbalanced Fermi gas. Middle: FFLO phase, in which
the pairs now carry the momentum q. Pairing occurs such that the minority Fermi
surface can be thought of as shifted by the wave vector q. Examples of up and
down spin particles that pair are represented by the green lines. In the red region
pairing is suppressed and therefore are only present the unpaired majority particles.
Right : For some parameters, unpaired minority particles may also appear in the blue
region. Notice that the total net momentum of the system remains zero. Source:
reproduced from Ref. [59].

We can readily extend the mean-field equations (1.25)-(1.27) to take into account
the FF pairing. By setting

∆Qe
iQ·r = −v0

∫
dk

(2π)3
⟨c−k+Q/2↓ck+Q/2↑⟩, (1.29)

we can modify them via the replacements (ξk, Ek, E
±
k ) −→ (ξk,Q, Ek,Q, E

±
k,Q), where

Ek,Q =
√
ξ2k,Q + |∆Q|2 with ξk,Q = (ξk+Q/2↑+ξ−k+Q/2↓)/2, and E±

k,Q = Ek,Q±δξk,Q
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with δξk,Q = (ξk+Q/2↑ − ξ−k+Q/2↓)/2. Analogously to the Sarma phase, the FF
solution at T = 0 then corresponds to the wave function [60]

|ΨFF ⟩ =
∏
k∈R↑

c†k+Q/2↑

∏
k∈R↓

c†−k+Q/2↓

∏
k ̸∈R↑,↓

(
uk + vkc

†
k+Q/2↑c

†
−k+Q/2↓

)
|0⟩ , (1.30)

where in the region R↑ (R↓) the state |k+Q/2, ↑⟩ is fully occupied (empty) and the
state |−k+Q/2, ↓⟩ is fully empty (occupied), while the remaining states are avail-
able for pairing. A finite population imbalance is present only when the difference
between the volumes of the two regions R↑ and R↓ is different from zero. However,
it is important to notice that no finite value of the current is associated with a finite
value of |Q|, because the current carried by the condensate is compensated by an
opposite current of the unpaired fermions.

By minimizing the mean-field free-energy one can get the thermodynamic stabil-
ity of the FF phase, together with the value of |Q|. In weak-coupling, one obtains
that at T = 0 the Clogston–Chandrasekhar transition is replaced by a first-order
transition BCS-FF at essentially the same value of h = ∆0/

√
2, followed by a second-

order transition FF-normal when h = 0.754∆0. Correspondingly, Q changes from
1.28(kF↑ − kF↓) at the transition BCS-FF, to 1.2(kF↑ − kF↓) at the transition FF-
normal. Also at finite temperature the transition FF-normal remains of second
order, while the transition BCS-FF is of first order. The resulting phase diagram is
reported in Figure 1.5(a): we notice in particular the presence of a tricritical point,
where the three transition lines intersect, and a quite narrow region of existence of
the FF phase.

In the LO approach a more general superposition of plane waves with the same
|Q| was considered, corresponding in real space to a crystalline order for the order
parameter. This surpassed the FF assumption of a single wave vector Q, since it
was found that near the transition point the solution ∆Q cos(Q · r) has lower energy
than the single plane-wave FF solution, and has also the lowest energy among the
crystalline solutions. A refined phase diagram for the superfluid/normal transition
in weak coupling, with more general solutions in the FFLO phase is reported, in
Figure 1.5(b) [61]. One sees that the FFLO-normal phase transition is now of first-
order and the FLLO phase still remains confined to a small corner of the phase
diagram, although it is enlarged with respect to the FF solution.

Until this point, the Sarma and FLLO phases and their stability have been dis-
cussed only in the weak-coupling limit. Across the BCS-BEC crossover, theoretical
and experimental works on ultra-cold polarized Fermi gases show the presence of
a (real space) phase separation between the normal and superfluid phases, due to
the fact that the transition has found to evolve from second-order to first-order [30].
Furthermore, also in this context, the Sarma phase turns out to be unstable against
the FFLO phase or the phase separation unpolarized BCS-polarized normal phase,
which is a manifestation of the Clogston-Chandraskhar first-order transition dis-
cussed above [62–64]. More precisely, by taking into account the FF phase (i.e.
a single plane wave order parameter) and the phase separation, a complete T = 0
mean-field analysis for a polarized Fermi gas throughout the BCS-BEC crossover was
carried out, searching for the global minima of the grand-canonical potential [65].
The resulting phase diagram (polarization vs coupling) in Figure 1.6 shows that
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Figure 1.5: (a) Phase diagram for the superfluid/normal transition in the BCS limit
(temperature in units of the critical temperature T 0

c for h = 0 and h = (µ↑−µ↓)/2 in
units of the zero-temperature gap ∆0 at h = 0). Full line: critical temperature from
the BCS gap equation, which corresponds to a true transition line only above the
tricritical point (circle). Dashed line: first-order transition line separating the BCS
superfluid from the normal phase. Dotted line: second-order transition line between
the FF and normal phase. (b) Refined phase diagram for the superfluid/normal
transition in weak-coupling, with more general solutions in the FFLO phase. Full
line: transition line superfluid-normal phase, which becomes of first order below
the tricritical point (circle). Dashed line: second-order transition line BCS-FFLO
phases. For comparison are also reported the transition lines BCS-FF and FF-
normal obtained by the simple FF solution (dotted lines). Source: reproduced from
Ref. [33].

the phase separation normal-superfluid dominates, especially in the unitary limit,
covering the normal-FLLO and the normal-Sarma transition lines. In the BEC side
of the crossover, instead, the polarized superfluid (Sarma) phase is stable, where it
corresponds to a mixture of composite bosons and excess fermions [66]. The FFLO
phase is instead confined to a small region on the BCS side and so far, no evidence
of the elusive FFLO phase has been found in ultra-cold gases.

Within mean-field theory, it has been possible to investigate the FF state in mass
imbalanced ultra-cold Fermi gases through the BCS-BEC crossover [32]. It has been
found that, when the heavy species is the majority, a stable FFLO phase persists
throughout the crossover and the phase region is enlarged with respect to the mass
balanced case. In contrast, when the light species is the majority, such an FFLO
phase exists only in the BCS regime. As an example, in Figure 1.7 are reported the
coupling-polarization phase diagrams for the mixture 6Li -40K at T = 0 for both
positive and negative density imbalance. Despite the fact that a mean-field theory
is not accurate enough to describe the problem, we expect that the findings about
the enhancement effect of a large mass ratio on FFLO type of pairing remain valid
also with the inclusion of pairing fluctuations.

With ultra-cold Fermi gases, also the interesting regime of the strongly imbal-
anced limit becomes accessible. In this case, the minority fermions act as dressed
impurities, called polarons, immersed in a bath of majority fermions and the system
is in the normal phase, even at zero temperature for not too strong attraction. As
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Figure 1.6: Mean-field T = 0 phase diagram for the population imbalance α =
(n↑ − n↓)/n vs the coupling parameter (kFaF )−1. Full lines : phase separation (PS)
boundaries normal-superfluid homogeneous phases (N −SF ). Dotted lines : bound-
aries inside the PS between balanced superfluid and partially polarized normal state,
balanced superfluid and fully polarized normal state, polarized superfluid and fully
polarized normal state (SF0/NPP −SF0/NFP −SFP/NFP ). Dashed line: transition
normal-FFLO phase. Dashed–dotted line: transition normal-Sarma phase (regard-
less its instability). Source: reproduced from Ref. [33].

we will see in Chapter 4, in this regime the system can be correctly described as a
Fermi liquid of weakly-interacting quasi-particles.

1.5 Crossover in Ultra-cold Fermi Gases
Ultra-cold Fermi gases provide a unique opportunity for realizing experimentally

the BCS–BEC crossover. This is because a method was found to vary the scattering
length aF of the two-fermion problem, while keeping the density of the system (and
thus the Fermi wave vector kF ) fixed, from negative to positive values across the
resonance where aF = ±∞. In this way, a direct and unambiguous comparison
between experiments and theory is allowed, because experimental data have been
associated with the value of the dimensionless coupling parameter (kFaF )

−1 which
is also used theoretically to drive the BCS–BEC crossover.

Special attention has been devoted to the unitary limit of the inter-particle inter-
action, when the scattering length diverges. The interesting fact of this unitary limit
is that there are no length scales associated with the interaction, because the only
length scale that remains at zero temperature is the average inter-particle spacing
k−1
F which is fixed by the density. More generally, the thermodynamic properties

of the unitary Fermi gas depend only on density and temperature, paradoxically
somehow just like for the non-interacting Fermi gas, and therefore a few universal
functions of the dimensionless quantity T/EF are sufficient to characterize the prop-
erties of the unitary Fermi gas. For this reason the unitary gas is often said to be
universal.
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Figure 1.7: Mean-field T = 0 phase diagram of 6Li -40K mixture for the polarization
p = (n↑ − n↓)/n vs the coupling parameter (kFaF )−1. As a convention, we take the
m↑ > m↓, thus for p > 0 (p < 0) the heavy (light) species is the majority. Stable
FFLO phase lives in the narrow yellow region. The phase separation (PS) (against
unstable FFLO and Sarma) is divided by the red Q = 0 line and delimited by the
green and blue lines. Source: reproduced from Ref. [32].

1.5.1 Fano-Feshbach Resonance

As discussed above, ultra-cold Fermi gases offer an incredible benchmark for the
experimental realization of the BCS-BEC crossover, because they are easily accessi-
ble and the strength of the interaction between the fermions is controllable by means
of an external uniform magnetic field through a Fano-Feshbach resonance [67]. We
stress again that, what is here meant by “spin” is the quantum number associated
with the atomic hyperfine levels that are split apart by the magnetic field itself. The
two hyperfine levels of lowest energy can be populated independently and are conven-
tionally referred to as spin ↑ and spin ↓. For example, for B sufficiently large, in 6Li
the states |↑⟩ and |↓⟩ correspond to

∣∣mI = 0,mJ = −1
2

〉
and

∣∣mI = 1,mJ = −1
2

〉
,

respectively, where I = 1 and J = 1
2

are the nuclear and electron spin quantum
numbers with projections mI and mJ .

A Fano-Feshbach resonance can occur upon collision of two slow atoms when
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they temporarily stick together forming an unstable compound with short lifetime
(so-called resonance). Specifically, it is a condition where the zero-energy scattering
state of the two hyperfine species (which together define the open channel) is de-
generate with the most weakly bound molecular state of a second pair of hyperfine
species (the closed channel). The ability to tune the scattering length by a change of
an external magnetic field B relies on the difference in the magnetic moments of the
closed and open channels. Because of the Zeeman effect, a variation of B changes
the position of closed channel bound states relative to the open channel threshold.

The atom–atom interaction can be varied from a condition when the resonant
bound state is in the continuum above threshold, to a condition when a true bound
state exists below threshold (see Figure 1.8(a)). Correspondingly, as we will show in
Section 3.1.2, the scattering length aF changes from negative to positive values and
diverges when the bound state sets in (see Figure 1.8(b)). On a phenomenological
level, Feshbach resonances are described by an effective pseudo-potential between
atoms in the open channel with scattering length

a(B) = abg

(
1− ∆B

B −B0

)
. (1.31)

Here abg is the background scattering length in the absence of the coupling to the
closed channel while ∆B and B0 describe the width and position of the resonance
expressed in magnetic field units.

Figure 1.8: (a) Coupling between closed (blue) and open (red) scattering channels,
which can be displaced relative to each other by varying the magnetic field B. (b)
The corresponding scattering length as a function of B. When aF > 0, a bound
state with binding energy ε0 sets in. Source: reproduced from Ref. [33].

In general one needs a two-channel model to describe such kind of resonance.
However, essentially all crossover experiments are performed in the so-called “broad”
Feshbach resonance limit where the width of the resonance is much larger than
the Fermi energy. In this limit, an effective single-channel model is sufficient [68].
The broad Fano-Feshbach resonances are fundamental for using ultra-cold atoms to
simulate the BCS–BEC crossover universally, i.e. independently on the details of
the inter-atomic interaction.
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While in principle the BCS limit corresponds to (kFaF )
−1 ≪ −1 and the BEC

limit to (kFaF )
−1 ≫ 1, the evolution from the BCS to BEC limits is best studied

in the limited range −1 ≲ (kFaF )
−1 ≲ 1. This is because this limited range is suffi-

cient in practice for realizing theoretically the BCS–BEC crossover in most physical
quantities.

1.5.2 Tan’s Contact

The contact C is a quantity that characterizes many-body systems with short-
range interaction (like ultra-cold Fermi gases) and connects the strength of short-
range two-body correlations to the thermodynamics. [69–71].

Physically, the contact C describes how the two-body problem locally merges
into the surrounding many-body problem and can be defined by considering the
short-distance behavior of the pair correlation function for opposite spin fermions

g↑↓(ρ) =
〈
ψ†
↑
(ρ
2

)
ψ†
↓
(
− ρ

2

)
ψ↓

(
− ρ

2

)
ψ↑

(ρ
2

)〉
− n↑n↓, (1.32)

that is given by

g↑↓(ρ)
ρ→0−−→ C

(4π)2

(
1

ρ2
− 2

aFρ
+ . . .

)
, (1.33)

where ρ = |ρ|. In this sense, the contact C is related to the probability of finding two
opposite spin fermions at short distances. Indeed, if we consider a small sphere of
radius δρ centered on a particle, the probability for unit of volume to find a particle
with opposite spin inside the sphere is given by

P (|ρ| < δρ)/Vδρ =

∫
|ρ|<δρ

dρ g↑↓(ρ) ≃
C

4π
δρ, (1.34)

where Vδρ = 4π(δρ)3/3 is the volume of the sphere and we have assumed that δρ is
much smaller than the scattering length aF and all the other relevant lengths in the
system. Note that, as the probability must be dimensionless, this relation defines
the units of the contact as the inverse of a length to the fourth power.

Alternatively, the contact can be defined via the large wave-vector tail of the
fermionic distributions nσ(k) with k = |k|, which behaves asymptotically as

nσ(k)
k→∞−−−→ C

k4
. (1.35)

The contact enters in several thermodynamics relations. For instance, with a
zero-range inter-particle interaction, the internal energy density E/V and the pres-
sure P can be expressed in terms of the contact as

E

V
=

C

4πaFm
+

∫
dk

(2π)3
k2

2m

(
nσ(k)−

C

k4

)
,

P =
2

3

E

V
+

C

12πaFm
,

(1.36)

where V is the volume occupied by the system. One can also prove the following
adiabatic relations, which relate the derivative of the energy (at constant entropy)
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and of the free energy (at constant temperature) with respect to the scattering
length to the contact, as (

∂E

∂a−1
F

)
S

= − CV

4πm
,(

∂F

∂a−1
F

)
T

= − CV

4πm
.

(1.37)

At the mean-field level and zero temperature, n(k) is given by the factor |vk|2 =
(1 − ξk/Ek)/2 that enters the BCS wave function (1.6). Expanding this factor for
large k, one obtains

n(k) = |vk|2 ≃
∆2

4ξ2k
≃ (m∆)2

k4
, (1.38)

which allows one to approximate the contact C with the quantity (m∆)2. However,
this value cannot properly represent the contact, in particular in the BCS limit at
T = 0 where the gap ∆0 is exponentially small in the coupling. Indeed, the leading
coupling dependence of the free energy at T = 0 in weak-coupling is given by
πaFn

2/m, therefore C must reduce to the expression (2πaFn)
2, as it can be readily

obtained from the adiabatic relation above. This is another reason why we need
the inclusion of pairing fluctuations to modify the mean-field results and recover
the correct value of C, that will be obtained within the t-matrix approximation in
Section 3.2.4.
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Chapter 2

Finite Temperature Green’s
Functions Formalism

As discussed in the previous chapter, to describe consistently the whole BCS-
BEC crossover at finite temperature, it is necessary to consider an approach that goes
beyond the BCS mean-field approach and includes pair fluctuations. For this reason,
in this chapter we introduce the finite temperature Green’s function diagrammatic
formalism, which is the fundamental theoretical basis for a quantum many-body
approach. In this formalism, two different kinds of Green’s functions are defined:
the temperature Green’s function G, which has a simple perturbation expansion and
enable us to evaluate the equilibrium thermodynamic properties; and the real-time
Green’s function G, which instead describes the excitation properties and the linear
response of the system to an external perturbation. In the following sections, we
will introduce the formalism for both of them and show that they are connected by
an analytic continuation1.

2.1 Temperature Green’s Function

Let us consider a Hamiltonian Ĥ that describes a system ofN particles at thermal
equilibrium at the temperature T . As in the previous sections, it is useful to describe
the system in the grand-canonical ensemble and use the grand-canonical Hamiltonian
K̂ = Ĥ − µN̂ . We can then introduce the following modified K-Heisenberg picture
for the field operators ψ̂σ

ψ̂σ(x, τ) = eK̂τ ψ̂σ(x)e
−K̂τ ,

ψ̂†
σ(x, τ) = eK̂τ ψ̂†

σ(x)e
−K̂τ ,

(2.1)

where τ is the imaginary time (or euclidean time) and σ is the spin index. The
single-particle temperature Green’s function (or single-particle propagator) is defined

1We just notice that this separation into two different Green’s functions is not required in the
ground-state (zero-temperature) formalism. However, within the finite temperature formalism, the
perturbative analysis arises more naturally without requiring any assumption, like the adiabatic
“switching on” [72].
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in terms of these field operators as

Gσσ′(x, τ,x′, τ ′) = −⟨Tτ [ψ̂σ(x, τ)ψ̂
†
σ′(x

′, τ ′)]⟩, (2.2)

where Tτ is the time-ordering operator, which brings the field operators evaluated
at later time on the left (including a factor (−1)P , where P is the number of permu-
tations of fermion operators), and the symbol ⟨· · · ⟩ represents the thermal average
of an operator

⟨Ô⟩ = Tr[ρ̂GÔ] =
∑
n

⟨φn| ρ̂GÔ |φn⟩ . (2.3)

This trace is the sum of the expectation values over the states |φn⟩, which form a
complete basis for the Hilbert space of the system. The operator ρ̂G is the grand-
canonical density matrix, defined as

ρ̂G =
1

Z
e−βK̂ = eβ(Ω−K̂), (2.4)

where Ω is the grand-potential (or grand-canonical free energy) and Z is the grand-
canonical partition function

Z = e−βΩ = Tr[e−βK̂ ]. (2.5)

If the Hamiltonian is time-independent and the system is homogeneous, i.e. we
assume space-time translational invariance, the temperature Green’s function (2.2)
depends only on x−x′ and τ − τ ′. We can therefore introduce its Fourier transform
to momentum space

Gσσ′(k, τ) =

∫
dx e−ik·x Gσσ′(x, τ), (2.6)

and the corresponding anti-Fourier transform

Gσσ′(x, τ) =

∫
dk

(2π)3
eik·x Gσσ′(k, τ). (2.7)

Furthermore, the temperature Green’s function for bosons (fermions) is periodic
(anti-periodic) in the τ variable with period β = 1/T

Gσσ′(k, τ + β) = ±Gσσ′(k, τ), (2.8)

where the upper (lower) sign refers to bosons (fermions). Without loss of generality,
the imaginary time τ can then be taken only in the interval (0, β). Using these
periodicity properties, the bosonic and fermionic Green’s functions can be expanded
in Fourier series as

Gσσ′(k, τ) =
1

β

∑
n

e−iωnτ Gσσ′(k, ωn), (2.9)

where ωn are the Matsubara frequencies defined as

ωn =
π

β
(2n+ 1) for fermions,

ωn =
π

β
2n for bosons,

(2.10)

with n integer. The Fourier coefficients in the series (2.9) are given by

Gσσ′(k, ωn) =

∫ β

0

dτ eiωnτ Gσσ′(k, τ). (2.11)

27



2.1.1 Relation to Observables

The single-particle temperature Green’s function (2.2) includes information on
the thermal average of all the single-particle observables of the system. Let us
consider a single-particle operator, which can in general be written in the form

Ĵ =

∫
dx Ĵ (x) =

∫
dx

∑
σσ′

ψ̂†
σ′(x)Jσ′σ(x)ψ̂σ(x), (2.12)

where Ĵ (x) is the second-quantized density of the first-quantized operator Jσ′σ(x).
Therefore, its thermal average can be written as

⟨Ĵ⟩ = ∓
∫
dx lim

x′→x
lim

τ ′→τ+

∑
σσ′

Jσ′σ(x)Gσσ′(x, τ,x′, τ ′), (2.13)

where τ+ = τ + 0+. The expression (2.13) is readily obtained using the cyclic
property of the trace, together with the definitions of field operators in the K-
Heisenberg picture (2.1), of the temperature Green’s function (2.2) and of thermal
average (2.3). This means that the thermal average of any single-particle operator Ĵ
can be obtained by operating with its first-quantized version Jσ′σ(x) on the Green’s
function and then summing over the spin indices and integrating on x. For example,
we can consider the number operator

N̂ =

∫
dx n̂(x) =

∫
dx

∑
σ

ψ̂†
σ(x)ψ̂σ(x), (2.14)

where the first-quantized operator is simply the identity matrix Jσ′σ = δσ′σ. The
thermal average of the number of particles is then given by

N ≡ ⟨N̂⟩ = ∓
∫
dx lim

τ ′→τ+

∑
σ

Gσσ(x, τ,x, τ
′). (2.15)

For a homogeneous system in a volume V , it is useful to use the Fourier trans-
formations (2.7) and (2.9) and write the previous number equation in transformed
space

n = ∓
∫

dk

(2π)3
1

β

∑
n

eiωn0+
∑
σ

Gσσ(k, ωn), (2.16)

where n = N/V is the total density of the system and eiωn0+ is a convergence factor
that comes from the imaginary-time ordering.

Similarly to the particle number N , the mean kinetic energy can be obtained as

⟨T̂ ⟩ = ∓
∫
dx lim

x′→x
lim

τ ′→τ+

∑
σ

[
− ∇2

x

2m

]
Gσσ(x, τ,x

′, τ ′). (2.17)

An interesting question now arises: is it possible to construct the mean potential
energy from the two-body operator

V̂ =
1

2

∑
σ,σ′

∫
dx

∫
dx′ V (x− x′)ψ̂†

σ(x)ψ̂
†
σ′(x

′)ψ̂σ′(x′)ψ̂σ(x), (2.18)
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and thereby determine the total internal energy E ≡ ⟨T̂ + V̂ ⟩? Since V̂ involves four
field operators, we might expect to need the two-particle Green’s function. However,
thanks to the Heisenberg equation of motion

∂

∂τ
ψ̂σ(x, τ) = [K̂, ψ̂σ(x, τ)], (2.19)

we can express ⟨V̂ ⟩ solely in terms of the single-particle Green’s function as

⟨V̂ ⟩ = ∓1

2

∫
dx lim

x′→x
lim

τ ′→τ+

∑
σ

[
− ∂

∂τ
+

∇2
x

2m
+ µ

]
Gσσ(x, τ,x

′, τ ′), (2.20)

and this allows to get the internal energy

E = ∓1

2

∫
dx lim

x′→x
lim

τ ′→τ+

∑
σ

[
− ∂

∂τ
− ∇2

x

2m
+ µ

]
Gσσ(x, τ,x

′, τ ′). (2.21)

The mean interaction potential (2.20) can also be used to obtain the grand-
potential Ω (or equivalently the grand-canonical partition function Z), by means of
an integration over a variable coupling constant, known as link clustered expansion
[72]. This calculation consists in replacing the two-body interaction V̂ with λV̂ ,
where λ ∈ [0, 1] is a numerical coupling constant, and evaluate

Ω[G]− Ω0 ≡ − 1

β
[ln(Z[G])− ln(Z0)] =

∫ 1

0

dλ

λ
⟨λV̂ ⟩, (2.22)

where Ω0 is the grand-potential for the non-interacting system and ⟨λV̂ ⟩ can be
calculated using (2.20), in terms of the single-particle Green’s function Gλ

σσ′ for a
system with grand-canonical Hamiltonian K̂(λ) = K̂0 + λV̂ .

2.1.2 Non-interacting System

As a simple example, it is very useful to compute the temperature Green’s func-
tion G0

σσ′(x, τ,x′, τ ′) for a non-interacting system. Since we are interested in the
properties of the bulk medium, we assume periodic boundary conditions (PBC) in
a box of volume V , with the thermodynamic limit to be performed at the end
of the calculations. In this way the single-particle states are plane waves, i.e.
φk(x) = V −1/2eik·x, and we can therefore expand the field operators in terms of
the time-dependent creation and annihilation operators as

ψ̂σ(x, τ) =
1√
V

∑
k

eik·x akσe
−ξkτ ,

ψ̂†
σ(x, τ) =

1√
V

∑
k

e−ik·x a†kσe
ξkτ ,

(2.23)

with ξk = k2/(2m)− µ. Using the definition (2.2), we can easily get

G0
σσ′(x, τ) = −δσσ

′

V

∑
k

eik·xe−ξkτ
[
θ(τ)⟨akσa†kσ⟩0 ± θ(−τ)⟨a†kσakσ⟩0

]
, (2.24)
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where the thermal average ⟨akσa†kσ⟩0 = 1 ± ⟨a†kσakσ⟩0 for a non-interacting system
is well known from statistical mechanics, since it corresponds to a Bose (Fermi)
function for bosons (fermions)

⟨a†kσakσ⟩0 =
1

eβξk ∓ 1
. (2.25)

As expected, G0 is diagonal in the matrix indices. It is also interesting to evaluate
the mean number of particles N0 and the mean internal energy E0 with (2.15) and
(2.21), respectively. A straightforward calculation recovers the well known results

N0 = (2s+ 1)
∑
k

1

eβξk ∓ 1
,

E0 = (2s+ 1)
∑
k

k2/(2m)

eβξk ∓ 1
,

(2.26)

where s is the spin of the particles.
In the thermodynamic limit, we perform the substitution V −1

∑
k −→ (2π)−3

∫
dk

to get an expression for G0
σσ′(k, τ) from (2.6). We can therefore perform the integral

over τ , as suggested by (2.11), to get the non-interacting Green’s function in the
transformed space, which assume the simpler form

G0
σσ′(k, ωn) =

δσσ′

iωn − ξk
. (2.27)

To get the density equation (2.16) for the non-interacting system, we need to evaluate
the sum over the Matsubara frequencies, which can be carried out analytically with
a contour integration [72] leading to∑

n

eiωn0+

iωn − x
= ∓ β

eβx ∓ 1
. (2.28)

Compatibly with the first expression in (2.26), the result simply reduce to the k-
integral of the Bose (Fermi) distribution

n0 = (2s+ 1)

∫
dk

(2π)3
1

eβξk ∓ 1
. (2.29)

2.2 Perturbation Theory and Feynman Rules
In addition to the relation with the thermodynamic quantities, another impor-

tant reason to introduce the temperature Green’s function is that G, commonly re-
ferred to as dressed Green’s function, has a simple perturbative expansion in terms
of the bare (i.e. non-interacting) one G0. For simplicity we consider a homogeneous
system of fermions, in order to work in the momentum-frequency space, and we
assume the common situation in which the Hamiltonian can be written as the sum
of a one-body term and a two-body term, i.e. K̂ = K̂0+ V̂ . Therefore, we are going
to work with the Fourier transform of the potential V (x− x′) given by

V (k) =

∫
dx e−ik·x V (x). (2.30)
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Without going into details of the derivation, which would require the introduc-
tion of the interaction picture and a generalized version of the Wick theorem at
finite temperature [72], we now enunciate the Feynman rules for the n-th order
contribution to the dressed temperature Green’s function Gσσ′(k, ωn)

1. Draw all topologically distinct connected graphs with n interaction lines and
2n+ 1 directed particle lines

2. Assign a direction to each interaction line. Associate a wave vector and a Mat-
subara frequency with each line and impose frequency-momentum conservation
at every vertex.

3. Associate a factor G0
σσ′(k, ωn) (as defined in (2.27)) with each particle line.

4. Associate a factor V (k) (as defined in (2.30)) with each interaction line.

5. Integrate over all n independent internal wave vectors and sum over all n
independent internal Matsubara frequencies.

6. The spin indices form a matrix product along any continuous particle line.
Evaluate all matrix sums.

7. Multiply everything by a factor [−β(2π)3]−n(−1)F , where F is the number of
closed fermionic loops.

8. Whenever a particle line either closes on itself or is joined by the same inter-
action line, insert a convergence factor eiωn0+ .

For instance, once we summed over the spin indices, the zero and first-order
diagrams, represented in Figure 2.1, are given by

G(k, ωn) = G0(k, ωn)

− G0(k, ωn)
2 1

β

∑
m

eiωm0+
∫

dp

(2π)3
[−(2s+ 1)V (0) + V (p− k)]G0(p, ωm),

(2.31)

where we have assumed that we can write Gσσ′(k, ωn) = δσσ′G(k, ωn) because of the
spin-independent interaction, while the factor (2s+1) comes from the sum over the
spin indices. The first-order contribution to the dressed Green’s function consists of
two diagrams, which are known as Hartree-Fock diagrams.

2.2.1 Self-Energy and Dyson Equation

It is possible to classify the various contribution in a generic Feynman dia-
gram. This procedure yields the Dyson equation, which summarizes the perturba-
tion theory in a particularly compact form. We start with the self-energy insertion
Σ′

σσ′(k, ωn), defined as any part of a diagram that is connected to the rest of it by
two particle lines (one in and one out), and so

Gσσ′(k, ωn) = G0
σσ′(k, ωn) +

∑
λλ′

G0
σλ(k, ωn)Σ

′
λλ′(k, ωn)G0

λ′σ′(k, ωn). (2.32)
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Figure 2.1: Zero and first-order diagrammatic contributions to the dressed temper-
ature Green’s function: the zero order is just the bare green function (left), while
the first order is made by the Hartree (middle) and Fock (right) diagrams.

We next introduce the proper self-energy insertion Σσσ′(k, ωn), which is a self-energy
insertion that cannot be separated into two pieces by cutting a single particle line,
i.e. contains information on the so-called one-particle irreducible (1PI) diagrams.
It follows from these definitions that the self-energy can be written as a sum of all
possible repetitions of the proper self-energy

Σ′
σσ′(k, ωn) = Σσσ′(k, ωn) +

∑
λλ′

Σσλ(k, ωn)G0
λλ′(k, ωn)Σλ′σ′(k, ωn) + . . . (2.33)

Correspondingly, the Green’s function in (2.32) can be summed formally, after re-
placing the expression (2.33) for the self-energy, to yield an algebraic self-consistent
equation known as Dyson equation

Gσσ′(k, ωn) = G0
σσ′(k, ωn) +

∑
λλ′

G0
σλ(k, ωn)Σλλ′(k, ωn)Gλ′σ′(k, ωn), (2.34)

which connects the (proper) self-energy, the dressed and the bare temperature
Green’s function. We just notice that the algebraic form of the equation in the
frequency-momentum space is replaced by an integral form in coordinates space,
which is obviously much more complicated.

In the usual case, these quantities are all diagonal in the spin indices, and the
Dyson equation (2.34) can be solved explicitly as

G(k, ωn) =
1

G0(k, ωn)−1 − Σ(k, ωn)
=

1

iωn − ξk − Σ(ωn,k)
. (2.35)

2.3 Real-time Green’s Function
We have seen that the temperature Green’s function can be used to calculate

the thermodynamic properties of our system and has a simple perturbative expan-
sion. However, it is not convenient to work with imaginary time to get dynamical
quantities, since these are in general obtained from real-time responses to exter-
nal perturbations. For this reason, we complete the description by introducing the
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single-particle real-time Green’s function

Gσσ′(x, t,x′, t′) = −i⟨Tt[ψ̂σ(x, t)ψ̂
†
σ′(x

′, t′)]⟩, (2.36)

where now t is a real time, Tt is the time ordering operator for real times and ψ̂σ is
a true K-Heisenberg field operator

ψ̂σ(x, t) = eiK̂tψ̂σ(x)e
−iK̂t. (2.37)

If we consider a homogeneous system with a time-independent Hamiltonian, the
Green’s function (2.36) can be Fourier transformed to the frequency-momentum
space to get

Gσσ′(k, ω) =

∫
dx e−ik·x

∫
dt eiωt Gσσ′(x, t). (2.38)

The real-time Green’s function contains information on the excitations of the
system related to the addition or the removal of a particle. To show this, consider a
system of fermions and assume for simplicity that the Green’s function is diagonal in
the spin indices, i.e. Gσσ′ = δσσ′G (this is always true for a balanced Fermi gas in the
normal phase). One can therefore express G(k, ω) in the Lehmann representation

G(k, ω) =eβΩ
∑
mn

(2π)3δ(k− (Pn −Pm))e
−ik·x| ⟨m| ψ̂σ(0) |n⟩ |2

×
[ e−βKm

ω − (Kn −Km) + i0+
+

e−βKn

ω − (Kn −Km)− i0+
]
,

(2.39)

where |n⟩, |m⟩ are exact eigenstates of Ĥ, P̂ and N̂ and can refer to excited states.
This shows that G(k, ω) is a meromorphic function of ω with simple poles at Kn −
Km = En −Em − µ(Nn −Nm) and the corresponding residue vanishes unless Nn =
Nm + 1, being proportional to | ⟨m| ψ̂ |n⟩ |2.

The Lehmann representation (2.39) is also used to show that, in general, the
real-time Green’s function has the following spectral representation

G(k, ω) =

∫ ∞

−∞
dω′ A(k, ω′)

[
1− f(ω)

ω − ω′ + i0+
+

f(ω)

ω − ω′ − i0+

]
, (2.40)

where f(ω) = [eβω + 1]−1 is the Fermi function and A(k, ω) is the single-particle
spectral weight function, which contains the important physical properties of the
system. Specifically, it can be thought as the probability density to excite eigenstates
with energy ω and momentum k (with respect to the ground state) by adding
or subtracting a particle with momentum k to the equilibrium system at given
temperature T . Indeed, it is semi-positive defined

A(k, ω) ≥ 0 ∀ k, ω, (2.41)

and it satisfies the sum rule ∫ ∞

−∞
dω A(k, ω) = 1. (2.42)
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For many purposes, it is more convenient to deal with the retarded or advanced
real-time Green’s Function

GR
σσ′(x, t,x′, t′) = −iθ(t− t′)⟨{ψ̂σ(x, t), ψ̂

†
σ′(x

′, t′)}⟩, (2.43)

GA
σσ′(x, t,x′, t′) = iθ(t′ − t)⟨{ψ̂σ(x, t), ψ̂

†
σ′(x

′, t′)}⟩, (2.44)

where {·, ·} is the anti-commutator. Also the retarded (advanced) Green’s function
admits a spectral representation

GR
A(k, ω) =

∫ ∞

−∞
dω′ A(k, ω′)

ω − ω′ ± i0+
, (2.45)

which shows that GR (GA) is analytic in the upper (lower) half of the complex plane
ω and, using (2.40), we get

G(k, ω) = (1− f(ω))GR(k, ω) + f(ω)GA(k, ω). (2.46)

In particular, the sum rule (2.42) allows one to evaluate the large-frequency be-
haviour of the Green’s function as

G(k, ω) = GR(k, ω) = GA(k, ω) ∼ 1

ω
|ω| → ∞, (2.47)

which remains correct for an arbitrary interacting system, since in this limit the
kinetic energy of the single-particle excitation dominates any interaction effects.
Moreover, the spectral weight function A can be obtained by inverting the relation
(2.45), obtaining

A(k, ω) = ∓ 1

π
ImGR

A(k, ω). (2.48)

In general, knowledge of A(k, ω) allows one to physically characterize the dy-
namic properties of the system. From it, one can also obtain the density of states
by integrating over all momenta k

N(ω) =
dn(ω)

dω
=

∫
dk

(2π)3
A(k, ω), (2.49)

such that N(ω)dω corresponds to the number of available states with energies be-
tween ω and ω + dω.

2.3.1 Analytic Continuation

As discussed above, the real-time Green’s function G in (2.36) contains some rele-
vant information, however most of the finite temperature calculations are performed
just in terms of the temperature Green’s function G in (2.2). Fortunately, there is a
connection between them: using the Lehmann representation (2.39), one can prove
that the same spectral weight function A(k, ω) introduced previously determines
also the temperature Green’s function [72]

G(k, ωn) =

∫ ∞

−∞
dω′ A(k, ω

′)

iωn − ω′ . (2.50)
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If we now define the following function of complex variable z

G̃(k, z) =

∫ ∞

−∞
dω′ A(k, ω

′)

z − ω′ , (2.51)

we see that the temperature Green’s function corresponds to the value of G̃ at
discrete points on the imaginary axis, G(k, ωn) = G̃(k, iωn). We therefore perform
an analytic continuation to retrieve G̃(k, z) on the whole complex plane and we
evaluate it just above the real axis at z = ω + i0+ to obtain the retarded Green’s
function, GR(k, ω) = G̃(k, ω + i0+) (or just below the real axis at z = ω − i0+ to
get the advanced Green’s function). At the end, the spectral weight function is just
obtained using the relation in (2.48).

Without further information, the analytic continuation is not unique: both
G̃(k, z) and e2πlz/ωnG̃(k, z) (for any integer l) are possible continuations, because
they both reduce to G(k, ωn) at the points iωn. Fortunately, since the sum rule
(2.42) requires that G̃(k, z) ∼ z−1 as |z| → ∞, we are thus able to choose the
proper analytic continuation, which is now guaranteed to be unique.

It is usually simplest to compute the spectral function directly from the tem-
perature Green’s function by formally considering iωn as a continuous variable, and
therefore performing the substitution iωn → ω+ i0+. However, one has to be careful
because this procedure is correct only if the substitution is made after the analytical
evaluation of the sums over Matsubara frequencies.

As an example, consider the bubble diagram Π0 for the polarization insertion,
diagrammatically represented in Figure 2.2 and defined using the Feynman rules as

Π0(q, νn) =
2

β

∫
d3p

(2π)3

∑
ω1

[
1

iω1 − ξp

1

i(ω1 + νn)− ξp+q

]
. (2.52)

The sum over the Matsubara frequencies ω1 can be evaluated using a partial fraction
decomposition and the result in (2.28), leading to

Π0(q, νn) = −2

∫
d3p

(2π)3
f(ξq+p)− f(ξp)

iνn − (ξp+q − ξp)
, (2.53)

where we used e−iβνn = 1 for bosonic frequencies. Now we can substitute iνn →
ω + i0+, obtaining a correct result for Π0(q, ω). On the contrary, if we make the
previous substitution before the evaluation of the frequency sum, we get a different
and incorrect result

Π0(q, ω) = −2

∫
d3p

(2π)3
f(ξp+q − ω)− f(ξp)

ω − (ξp+q − ξp) + i0+
. (2.54)

In practical cases, one knows the temperature Green’s function only at a finite
number N of Matsubara frequencies. The problem of obtaining a unique spectral
weight function A from this set of N data is well known to be ill-posed. For this
reason, we need to constraint the Green’s function using numerical methods, and
therefore performing an approximate analytic continuation.
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Figure 2.2: Diagrammatic representation of the one-bubble diagram contained in
the polarization insertion. The internal momentum-frequency couple is (p, ω1).
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Chapter 3

Ladder Diagrams and t-Matrix
Approximation

Practically, it is impossible to evaluate the temperature Green’s function to all
orders in perturbation theory, so we have to perform an approximation and select
certain classes of diagrams that are relevant to our physical system. In this chapter,
we show that the set of diagrams selected to study the normal phase of an ultra-cold
Fermi gas throughout the BCS-BEC crossovers are the so-called ladder diagrams and
the corresponding method is known as t-matrix approximation. The justification to
this many-body approach is found in the two-body scattering theory which, in the
context of ultra-cold Fermi gases, can be simplified with the s-wave approximation.
Furthermore, this non-self-consistent t-matrix approach can be improved with the
inclusion of different degrees of self-consistency: we will focus on the fully self-
consistent method, also known as Luttinger-Ward approach1.

3.1 Two-body Scattering Theory
To understand which class of diagrams are important for our many-body system,

it is first crucial to know the two-body physics [74]. Let us start from the scattering
problem of two particles with masses m↑ and m↓, interacting via a potential V (r)
that depends only on the relative position r = r1−r2. It is not difficult to show that
the corresponding Schrödinger equation separates into a part describing the center-
of-mass motion and a part describing the relative motion. The center-of-mass part
behaves as a free particle with massmB = m↑+m↓, whereas the relative part behaves
as a single particle with reduced mass mred = m↑m↓/(m↑ +m↓). The relative wave
function is then the solution of the time-independent Schrödinger equation(

− ∇2

2mred

+ V (r)

)
ψ(r) ≡

(
Ĥ0 + V (r)

)
ψ(r) = Eψ(r), (3.1)

1It is important to notice that the many-body formalism presented in this chapter refers to the
normal phase of the Fermi gas up to the critical temperature of the superfluid transition. To study
the superfluid phase, the formalism must be extended to take into account the so-called anomalous
Green’s functions, i.e. the off-diagonal terms in the Nambu representation [73], but this extension
will not be treated in this thesis.
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where E is the energy eigenvalue. If the potential V (r) is short-ranged and the
relative distance is large, then (3.1) is the Schrödinger equation for a free particle
with an energy E = k2/(2mred) ≡ εk, which is conserved since we are interested in
elastic scattering processes. In this way, we can rewrite the Schrödinger equation in
a basis-independent (bra-ket) notation as

(εk − Ĥ0) |ψk⟩ = V̂ |ψk⟩ , (3.2)

whose solution is given by the Lippmann-Schwinger equation

|ψk⟩ = |k⟩+ 1

εk − Ĥ0 + i0+
V̂ |ψk⟩ , (3.3)

where we introduced i0+ to deal with the singular nature of the operator 1/(E−Ĥ0).
The choice +i0+, rather than −i0+, is physical and will become apparent when we
obtain the solution for the scattering state. To find the scattering wave function
ψk(r), we multiply (3.3) by ⟨r|

ψk(r) = eik·r +

∫
dr′ ⟨r| 1

εk − Ĥ0 + i0+
|r′⟩ ⟨r′| V̂ |ψk⟩ , (3.4)

where we used ⟨r|k⟩ = eik·r, that is an incoming plane wave. The second term
requires more work and gives∫

dr′ ⟨r| 1

εk − Ĥ0 + i0+
|r′⟩ ⟨r′| V̂ |ψk⟩

=

∫
dr′

∫
dk′

(2π)3
eik

′·(r−r′)

εk − εk′ + i0+
⟨r′| V̂ |ψk⟩

= −2mred

∫
dr′

eik|r−r′|

4π|r− r′|
⟨r′| V̂ |ψk⟩ ,

(3.5)

where we inserted the completeness relation of the momentum eigenstates in the
first step and integrated in the second step. Since we are dealing with a short-
ranged potential, we are primarily interested in the behaviour of the wave function
at distances which are larger than its range. For this reason, we can expand the
interatomic distance for r ≫ r′ as |r− r′| ≃ r − r′ · r̂ and define k′ = kr̂, which has
the same magnitude as k but points in the direction r̂ = r/r. Putting all the pieces
together, we get the crucial result

ψk(r) = eik·r + f(k′,k)
eikr

r
, (3.6)

which shows that, at distances much larger than the interaction range, the total
wave function can be written as the sum of an incoming plane wave and an out-
going modulated spherical wave. The modulation factor f(k′,k) is the scattering
amplitude, defined as

f(k′,k) = − 1

4π
2mred ⟨k′| V̂ |ψk⟩ . (3.7)

Now, we are also able to understand the reason for adding the +i0+ term in (3.3):
a small negative imaginary part −i0+ would have led to a description of the time-
reversed scattering process, i.e. an incoming spherical wave.
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3.1.1 Two-body t-Matrix

To solve the scattering problem in a more convenient way without dealing with
the scattering state, we introduce the operator T̂ known as two-body transition
operator, and defined by the relation

V̂ |ψk⟩ = T̂ |k⟩ . (3.8)

The matrix elements of T̂ are directly related to the scattering amplitude f(k′,k),
as we can readily see by substituting the previous relation into (3.7), obtaining

f(k′,k) = − 1

4π
2mred t(k

′,k), (3.9)

where t(k′,k) ≡ ⟨k′| T̂ |k⟩ is the two-body t-matrix. The Lippmann-Schwinger equa-
tion (3.3) becomes a self-consistent equation for the T -operator

T̂ = V̂ + V̂
1

E − Ĥ0 + i0+
T̂ , (3.10)

where Ĝ0 ≡ (E − Ĥ0 + i0+)−1 is an operator that gives rise to a non-interacting
propagator G0(r, r

′) ≡ ⟨r| Ĝ0 |r′⟩ for the outgoing wave2, since it is a solution of the
differential equation (

E +
∇2

2mred

)
G0(r− r′) = δ(r− r′). (3.11)

The equation (3.10) can be solved iteratively, resulting in the Born series given by

T̂ (z) = V̂ + V̂ Ĝ0(z)V̂ + V̂ Ĝ0(z)V̂ Ĝ0(z)V̂ + . . . , (3.12)

where the operator Ĝ0(z) = (z − Ĥ0)
−1 corresponds to the non-interacting propa-

gator of the particles at a (complex) energy z. The on-shell t-matrix t(k′,k), that
appears in (3.9), is obtained by calculating the matrix element ⟨k′| T̂ (z) |k⟩ on the
energy shell |k| = |k′| for z = εk + i0+ [75].

A common approximation is to take only the first term of the Born series (3.12)
into account, which is called Born approximation. However, this is not our case: in
the ultra-cold Fermi gases across the BCS-BEC crossover the potential can be really
strong, and we are obliged to solve the equation exactly at all orders to correctly take
into account the effects of the interaction potential on the scattering wave function.
As we will shown in the next section, this is still possible if we limit ourselves to the
low-energy scattering, that is usually the only relevant process in ultra-cold gases.

The Born series for the on-shell t-matrix (or, equivalently using (3.9), for the
scattering amplitude) of the two-body problem is given by

t(k′,k) = V (k′ − k) +

∫
dp

(2π)3
V (k′ − p)G0(p)t(p,k)

≡ V (k′ − k) +

∫
dp

(2π)3
V (k′ − p)G0(p)V (p− k)

+

∫
dp

(2π)3

∫
dp′

(2π)3
V (k′ − p)G0(p)V (p− p′)G0(p

′)V (p′ − k) + . . . ,

(3.13)

2Notice that this quantity is mathematically a Green’s function since is a solution to (3.11),
but has nothing to do with the many-body Green’s functions defined in (2.2) and (2.36).
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where G0(p) = (εk − εp + i0+)−1, and is schematically represented in Figure 3.1.
We see that any term of the series for the scattering amplitude is a repetition of
interactions V and propagations G0 of the pair of interacting particles: this is exactly
the structure of the ladder diagrams that we will choose in the many-body approach,
and explains the reason why this choice of diagrams is called t-matrix approximation.

Figure 3.1: Diagrammatic representation of the born series for the on-shell t-matrix.
Notice that these are not Feynman diagrams but are just a way of keeping track of
the terms that contribute to the expansion.

It is relevant to notice that the formal solution of the operator equation for the
transition operator (3.10) is given by

T̂ (z) = V̂ + V̂
1

z − Ĥ
V̂ , (3.14)

where Ĥ = Ĥ0 + V̂ . Inserting a complete set of eigenstates |α⟩ for Ĥ, we get

T̂ (z) = V̂ +
∑
α

V̂
|α⟩ ⟨α|
z − εα

V̂ , (3.15)

where the summation over α is discrete for possible bound states of the interaction
potential with εα < 0, or becomes an integration for continuum of scattering states
with εα > 0. This means that the poles of the T -operator in the complex-energy
plane correspond to bound states, while its branch cut on the positive real axis is
related to the continuum of scattering states.

3.1.2 s-Wave Scattering

For most physical systems with short-range interactions, the potential is not
known with precision. Fortunately, the exact knowledge is not necessary in the low-
energy scattering limit, a very well verified condition for ultra-cold atoms, since the
two-body interactions are characterized by a single parameter that can be measured
experimentally, namely, the scattering length.

Consider the relative Schrödinger equation in the center-of-mass frame (3.1),
where now the potential V is a typical spherically symmetric molecular potential,
i.e. V (r) ≡ V (r). We can therefore expand the scattering wave function into

ψk(r) =
∞∑
l=0

l∑
ml=−l

ukl(r)

r
Ylml

(θ, ϕ), (3.16)
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where Ylml
are the spherical harmonics of angular momentum quantum number l.

We notice that, since the scattering problem does not depends on ϕ, we omit the
functions with m ̸= 0, i.e only Yl0(θ) are non-zero. By substituting this expansion
in the Schrödinger equation, we find a one-dimensional equation along the direction
of k for each radial wave ukl(

1

2mred

d2

dr2
+ εk

)
ukl(r) = V

(l)
eff (r)ukl(r), (3.17)

where we introduced the effective potential, which is given by the sum of the potential
V (r) and a centrifugal contribution due to the angular momentum

V
(l)
eff (r) = V (r) +

l(l + 1)

r2
. (3.18)

If the energy εk is much lower than the height of the centrifugal barrier l(l + 1)/r20,
where r0 is the range of the potential, the system will not experience the short-range
potential V (r) and will be simply reflected by the centrifugal barrier. We therefore
expect that in the limit of low energy the only relevant contribution to the scattering
will be given by the l = 0 quantum number. As the latter is also denoted with s,
this process is usually called s-wave scattering.

For spherically symmetric interaction potentials, the scattering amplitude (3.7)
depends only on the magnitude of the incoming momentum k and the scattering an-
gle θ, i.e. f(k′,k) ≡ f(k, θ). We can therefore decompose the scattering amplitude,
using the partial waves expansion, into

f(k, θ) =
∞∑
l=0

(2l + 1)fl(k)Pl(cos θ), (3.19)

where Pl(x) are the Legendre polynomials. To see the meaning of fl(k), we first use
the identity

eik·r =
∞∑
l=0

(2l + 1)iljl(kr)Pl(cos θ), (3.20)

where, for large r, we use the asymptotic behaviour of the spherical Bessel functions
jl(kr), obtaining

eik·r ≃
∞∑
l=0

(2l + 1)Pl(cos θ)

(
eikr − e−i(kr−lπ)

2ikr

)
. (3.21)

This shows that the plane-wave part of the scattering wave function can be written
as a sum of incoming and outgoing spherical waves. By combining (3.6), (3.19) and
(3.21), we see that the presence of an interaction potential changes the coefficient
of the outgoing spherical wave according to

eikr

r
−→ (1 + 2ikfl(k))e

ikr

r
, (3.22)

where the magnitude of the coefficient 1 + 2ikfl(k) must be equal to one, owing to
the conservation of probability flux. We can therefore express the coefficient as an
exponential

1 + 2ikfl(k) ≡ e2iδl(k), (3.23)
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where δl(k) is the phase shift. As a result, at large distances, the change in the wave
function due to the collision process is solely given by a shift in the phase of every
outgoing partial wave.

For the s-wave scattering we can define the scattering length

a ≡ − lim
k→0+

δ0(k)

k
, (3.24)

and using (3.23), we then find that

f(k′,k) ≃ f0(k) =
1

k cot δ0(k)− ik
≃ − 1

a−1 + ik
, (3.25)

where in the last expression we approximated cotx ≃ 1/x for low-energies (k → 0).
The relation in (3.25) shows indeed that all the scattering properties are described
in terms of the s-wave scattering length a. The on-shell t-matrix, related to the
scattering amplitude with (3.9), can be analytically continued to

t(k′,k; z) ≃ 4πa

2mred

1

1− a
√
−2mredz

, (3.26)

which shows a pole, i.e. a bound state, for a > 0 with the negative binding energy,
just below the continuum threshold, given by

Eb = −ε0 = − 1

2mreda2
. (3.27)

3.1.3 Contact Potential and BCS-MF Critical Temperature

Since the form of the potential for the s-wave scattering is not important, the idea
is to use the simplest one, which is a contact (zero-range) potential V (r) = v0δ(r),
where v0 is a negative constant chosen in a way to reproduce correctly the s-wave
scattering. However, with this choice we must pay a price: for homogeneous systems
the Fourier transform V (k) = v0 is constant and this can make the integrals in k-
space diverge for large k. To overcome this problem, we introduce an ultraviolet
cut-off k0 such that we can define an effective separable potential in momentum
space as

V (k′ − k) = v0θ(k0 − |k′|)θ(k0 − |k|), (3.28)

where θ(x) is the Heaviside step function. Notice that the choice of a potential that
is separable in k and k′ is just an useful theoretical trick that becomes irrelevant
in the k0 → ∞ limit to recover the contact potential. We can now insert this
separable potential in the equation for the on-shell t-matrix (3.13) and use the s-
wave form of the scattering amplitude (3.25), together with the relation (3.9), to get
an important relation that connects the scattering length aF between two fermions
to the parameters v0 and k0

2mred

4πaF
=

1

v0
+

∫
|k|≤k0

dk

(2π)3
2mred

k2
. (3.29)
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This expression gives us a correct regularization procedure for the contact potential,
since we can take simultaneously the limits k0 → ∞ and v0 → 0− such that the
scattering length aF is kept at the desired value without incurring in any divergence.

As an example, with the regularization condition (3.29) we can modify the mean-
field gap equation (1.9) as

− m

4πaF
=

∫
dk

(2π)3

(
1− 2f(Ek)

2Ek

− m

k2

)
, (3.30)

where now mred = m/2 since we consider the case of a mass-balanced system. This
expression now allows one to get the mean-field critical temperature in the BCS limit
(kFaF )

−1 ≪ −1. As the coupling gets weaker, we expect that the system tends to
a non-interacting Fermi gas: indeed from the mean-field density equation (1.7) we
get a chemical potential µ ≃ EF , provided Tc ≪ EF . Therefore, by imposing ∆ = 0
in (3.30), we get [74]

TBCS
c ≡ eγ

π
∆0 =

8eγEF

πe2
exp

(
π

2kFaF

)
, (3.31)

where γ is the Euler constant and ∆0 is the zero temperature BCS gap parameter.
Notice that, consistently with our assumptions, TBCS

c ≪ EF . It is also possible to
obtain a compact expression for TBCS

c in the imbalanced case, by solving the gap
equation (1.27). This is given by [76]

TBCS
c =

mred√
m↑m↓

∆0

2π
exp

[
− 1

2
F
(

1

2TBCS
c

m↑µ↑ −m↓µ↓

m↑ +m↓

)]
, (3.32)

where F(x) ≡ Ψ(1
2
+ ix

π
) + Ψ(1

2
− ix

π
), Ψ being the digamma function, defined as

Ψ(z) = Γ′(z)/Γ(z), where z is a complex number with a positive real component and
Γ is the gamma function. Due to the highly non-linear term F in this equation, it is
possible to find analytical solutions for TBCS

c only when the system is spin-balanced,
i.e.

√
2m↑µ↑ =

√
2m↓µ↓. This reads

TBCS
c ≡ 2mred√

m↑m↓

eγ

π
∆0 =

2mred√
m↑m↓

8eγEF

πe2
exp

(
π

2kFaF

)
, (3.33)

where the Fermi energy is now expressed as EF = k2F/(4mred). In the BCS limit, we
will try to recover this result within our many-body approach (see Section 3.2.3)3.

We conclude this section with a crucial consideration: at low energy, an inter-
action between two identical fermions is possible only if they are in different spin
states, i.e. they are distinguishable. This happen because of the anti-symmetrization
principle of the wave-function for indistinguishable fermions, which states that

3Actually, it is important to notice that the mean-field result (3.31) is the correct weak-coupling
asymptotic result for Tc only with logarithmic accuracy (i.e. it is the correct asymptotic behaviour
of log Tc rather than Tc). The correct asymptotic result for Tc is obtained by including the Gor’kov-
Melik-Barkhudarov corrections (GMB) [77], that are responsible for the suppression of Tc by a
factor (4e)1/3 ≃ 2.2 in a balanced three dimensional ultra-cold Fermi gas. This screening of the
interaction is related to many-body effects, or simply the effects of the medium, on the two-body
interaction.
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ψk(r) = −ψk(−r). Knowing that the parity of spherical harmonic functions Yl0(θ) is
(−1)l, we see that in the expansion (3.16) only the odd l terms survive for fermions
and contribute to the scattering. Therefore, the s-wave scattering (l = 0 even) is
suppressed for fermions with the same spin state, i.e. indistinguishable fermions.
In the case of the contact potential, this consideration is seen immediately because
δ(r)ψk(r) = 0 for identical fermions, due to the anti-symmetrization imposed on the
wave function by the fermionic statistics.

3.2 Non-self-consistent t-Matrix Approach
We have to generalize what we have discussed until now to the many-body prob-

lem. First of all, we introduce the fundamental class of diagrams that we will use
in our theory, the ladder diagrams, justified in Section 3.1.1 and presented in the
upper part of Figure 3.2. The sum of all these ladder diagrams Γ0 is called particle-
particle propagator or vertex of ladder diagrams. The definition of Γ0 is conveniently
expressed in a self-consistent manner, as shown in the lower part of Figure 3.2, by
applying the Feynman rules of Section 2.2. In this way, using the four-momentum
compact notation Q = (Q,Ων) and p = (p, ωn), we get the Bethe-Salpeter equation

Γ0(k
′,k, Q) = −V (k′ − k)

−
∫

dp

(2π)3
1

β

∑
n

V (k′ − p)G0
↑(p+Q)G0

↓(−p)Γ0(p,k, Q),
(3.34)

where ωn and Ων are respectively the fermionic and bosonic Matsubara frequencies
as defined in (2.10), while G0

σ ≡ G0
σσ is the spin-σ bare propagator, defined similarly

as in (2.27)

G0
σ(k, ωn) =

1

iωn − ξkσ
, ξkσ =

k2

2mσ

− µσ, (3.35)

to take now into account the possibility of spin and mass imbalance in the system.
Notice that, to write the expression (3.34), we used the consideration made in Section
(3.1.3) in which the interaction potential is non-zero only for fermions with different
spin; therefore the only possible choice for two propagator connected by the same
interaction line is G0

↑G0
↓ .

If we directly compare the Bethe-Salpeter (3.34) equation with the self-consistent
equation for the two-body t-matrix (3.13), we immediately see that the structure is
very similar: Γ0 takes the role of −t (the minus sign is related to our convention),
noticing however that Γ0 depends also on the four-momentum of the pair Q =
(Q,Ων), while β−1

∑
n G0

↑G0
↓ takes the role of G0. This comparison explains why Γ0

is also reasonably denoted as many-body t-matrix. A more precise relation between
the two-body and many-body t-matrix will be obtained in the strong-coupling limit,
discussed in Section 3.2.2.

As previously discussed, to study the normal phase of an ultra-cold Fermi gas
throughout the BCS-BEC crossover, we can just focus specifically on the contact
potential (3.28). We therefore get

Γ0(Q) = −v0 − v0

∫
|p|≤k0

dp

(2π)3
1

β

∑
n

G0
↑(p+Q)G0

↓(−p)Γ0(Q), (3.36)
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Figure 3.2: Diagrammatic representation of the particle-particle propagator Γ0, de-
fined as the sum of all the ladder diagrams (above). It can also be expressed self-
consistently (below) through the Bethe-Salpeter equation.

where now we see that Γ0 is only a function of the pair four-momentum Q, and
therefore we can take it out from the integral to write it in the simpler form

Γ0(Q) = − v0
1 + v0χ0

pp(Q)
, (3.37)

with χ0
pp, denoted as particle-particle bubble, given by

χ0
pp(Q) =

∫
|p|≤k0

dp

(2π)3
1

β

∑
n

G0
↑(p+Q)G0

↓(−p). (3.38)

This expression is still ultraviolet divergent in the limit k0 → ∞. This divergence
can be eliminated with the regularization condition (3.29), expressing 1/v0 in terms
of the fermionic scattering length aF , obtaining

Γ0(Q) = − 1

2mred/(4πaF ) +R0
pp(Q)

, (3.39)

where R0
pp is now the renormalized particle-particle bubble

R0
pp(Q) =

∫
dp

(2π)3

(
1

β

∑
n

G0
↑(p+Q)G0

↓(−p)−
2mred

p2

)
. (3.40)

The sum over the Matsubara frequencies ωn can be carried out analytically after a
partial fraction decomposition, with the relation (2.28), and gives the result

R0
pp(Q) =

∫
dp

(2π)3

(
1− f(ξp+Q↑)− f(ξp↓)

ξp+Q↑ + ξp↓ − iΩν

− 2mred

p2

)
, (3.41)

where f(ξ) = (eβξ + 1)−1 is the Fermi function. The ultraviolet divergence that
appears in (3.38) is now eliminated by the counter-term −2mred/p

2, so the k0 → ∞
limit can be taken without problems.
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We can now proceed to define the t-matrix self-energy in the following way: if we
treat the particle-particle propagator Γ0 as an effective interaction in the medium,
the self-energy corresponds to an Hartree-like term (compare with Figure 2.1) of
this interaction, as shown in Figure 3.3. Notice that we are not considering any
Fock-like term (i.e. connect the bottom right and the top left vertices with a bare
propagator), because in our problem this is exactly zero due to the absence of same-
spin interaction4. Using the Feynman rules with a four-momentum notation, the
expression for the self-energy is therefore given by

Σ0
σ(k) = −

∫
dQ

(2π)3
1

β

∑
ν

Γ0(Q)G0
σ̄(Q− k), (3.42)

where σ and σ̄ are opposite spin indices.

Figure 3.3: Diagrammatic representation of the t-matrix self-energy Σ0
σ, interpreted

as an Hartree-like diagram with effective interaction Γ0.

We have now all what is necessary to calculate the dressed Green’s function
of our system. We first compute the renormalized particle-particle bubble R0

pp with
(3.41) from which we obtain the many-body t-matrix Γ0 with (3.39), then we get the
self-energy Σ0

σ with (3.42) and we finally obtain the single-particle Green’s function
Gσ via the Dyson equation (2.35)

Gσ(k) =
1

G0
σ(k)

−1 − Σ0
σ(k)

, (3.43)

as shown in Figure 3.4.
This procedure is known in the literature as non-self-consistent t-matrix ap-

proach (check the upper flowchart in Figure 3.5). In this approximation we have
four free parameters: the temperature T , the scattering length aF and the chemical
potentials for the two species in the Fermi gas µ↑ and µ↓, which can be found in
terms of the densities nσ by inverting the densities equations (2.16)

nσ =

∫
dk

(2π)3
1

β

∑
n

eiωn0+Gσ(k, ωn). (3.44)

4In his original paper on the diagrammatic description of a dilute repulsive Fermi gas [35],
Galitskii considered this Fock-like term.
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Figure 3.4: Diagrammatic representation of the t-matrix Dyson equation, which
relates the dressed propagator Gσ to the bare propagator G0

σ and t-matrix self-energy
Σ0

σ.

However, if we re-scale all the quantities in terms of the total density n = n↑ + n↓,
which is fixed, we reduce this number to three dimensionless parameters:

• The coupling (kFaF )
−1, where kF = (3π2n)1/3.

• The temperature T/EF , where EF = k2F/(4mred).

• The polarization or density imbalance p = (n↑ − n↓)/n.

It is crucial to notice that, since we are dealing with a mass imbalanced system
(conventionally with mL ≡ m↑ < mH ≡ m↓), the value of the polarization p must
be analyzed also for negative values because the situation in which the majority
of atoms is heavier (H), i.e. p < 0, could be physically much different from the
case in which the majority is lighter (L), i.e. p > 0. In the mass balanced case
m↑ = m↓ = m, one can simply study the system for positive polarization, since for
negative values we have a completely symmetric situation.

3.2.1 Thouless Criterion and Pair Susceptibility

Within the non-self-consistent t-matrix approach it is possible to recover the
correct superfluid critical temperature both in the BEC and BCS limits (albeit only
with logarithmic accuracy in the latter case). In order to do this, it is convenient to
introduce the Thouless criterion, [78] which states that the particle-particle prop-
agator shows a pole at Q = 0 and Ων = 0 for a spin-balanced system at T = Tc,
signaling an instability of the normal phase due to a macroscopic accumulation
(condensation) of fermionic pairs in the state of momentum Q = 0

[Γ0(Q = 0,Ων = 0)|T=Tc ]
−1 = 0. (3.45)

The justification for this criterion resides in the notion of t-matrix: as we already
discussed above, the particle-particle propagator can be thought as the many-body
generalization of the two-body t-matrix introduced in Section 3.1.1. There, it was
shown that the poles of the t-matrix correspond to two-body bound states in the
interaction potential. This observation may be generalized to the many-body case,
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such that the onset of a pole in the particle-particle propagator corresponds to long-
lived pairs occurring in the system, that is our superfluid phase.

When dealing with an imbalanced system, one of the main aspects to study
is the temperature-coupling-polarization phase diagram. In a standard normal-to-
superfluid (Sarma) second-order transition, the Thouless criterion is easily general-
ized to find the transition line: the condition for the critical temperature (3.45) that
now depends on the polarization p, i.e. T = Tc(p), is still valid, and in addition we
have a condition to find critical polarization pc as a function of the temperature T

[Γ0(Q = 0,Ων = 0)|p=pc(T )]
−1 = 0. (3.46)

The situation is quite different if one considers the normal-to-FFLO transition:
in this transition the particle-particle propagator should have a divergence at finite
momentum Q0, therefore the condition (3.45) becomes

[Γ0(Q = Q0,Ων = 0)|T=TFLLO
c

]−1 = 0. (3.47)

However, in the limit Q → Q0 at finite temperature, Γ0(Q) would diverge as (|Q| −
|Q0|)−2 and this divergence is non-integrable in the expression of the self-energy
(3.42), in contrast to the standard Q0 = 0 case where the |Q|−2 divergence is
compensated by the factor |Q|2 of the spherical integration over Q [79]. Notice
that this problem would be solved if the normal-FFLO phase transition was indeed
of first-order, like in the weak-coupling regime as we have seen in Section 1.4.1,
since the transition would happen in a region where the divergence of Γ0 is still not
reached. However, in this context, we are treating the normal-FFLO transition as
second-order because the study of a first-order transition would require an approach
working also in the broken-symmetry phase, that will not be treated in this thesis.
As a consequence, within any t-matrix diagrammatic approach, the FFLO phase
can be found only at T = 0, while the system remains in the normal phase for any
T ̸= 0.

Nevertheless, the t-matrix approach allows one to analyze the presence of strong
FFLO pairing fluctuations in the normal phase, which are precursors of a FFLO
superfluid phase [80]. This is done by calculating the pair susceptibility χpair(Q),
that describes the tendency of the normal Fermi gas towards superfluid ordering with
pair center-of-mass momentum Q. Within our approximation, the pair susceptibility
is identified with

χpair(Q) = Γ0(Q,Ων = 0), (3.48)

such that a pole in the particle-particle propagator would correspond to a divergent
χpair (see also Section 6.4). Therefore, the presence of strong FFLO fluctuations in
the normal phase is signaled by a peak in the pair susceptibility at finite momentum
Q0, which is strongly enhanced as the temperature is progressively lowered.

3.2.2 Strong-coupling (BEC) Limit

As we have seen in Section 1.3, in the strong-coupling limit (kFaF )
−1 ≫ 1 the

dominant energy scale is the chemical potential µ = (µ↑+µ↓)/2, which becomes large
and negative since it approaches to half of the dimer binding energy, i.e. µ ≃ −ε0/2.
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From (3.27), we know now that ε0 = (2mreda
2
F )

−1. In the following, we assume spin
balance in the system, i.e. n↑ = n↓. Therefore, by taking the β|µ| ≫ 1 limit, we can
neglect the Fermi functions in the renormalized particle-particle bubble (3.41) and
the integral can be carried out analytically, yielding

R0,SC
pp (Q) = −(2mred)

3/2

4π

√
Q2

2mB

− 2µ− iΩν , (3.49)

where mB = m↑+m↓. By inserting this expression in (3.39), we obtain the particle-
particle propagator Γ0 in the BEC limit

ΓSC
0 (Q) = − 4πaF

2mred

1

1− aF

√
2mred

(
Q2

2mB
− 2µ− iΩν

) , (3.50)

or, by rearranging the previous expression

ΓSC
0 (Q) = − 4π

(2mred)2aF

1 +
√
1 +

(
Q2

2mB
− µB − iΩν

)
ε−1
0

iΩν −
(

Q2

2mB
− µB

) , (3.51)

where we defined the bosonic chemical potential µB = 2µ+ε0. These two expressions
above hide two important results, that we will now discuss. First of all, by comparing
the many-body t-matrix in the strong-coupling limit (3.50) and the two-body t-
matrix in (3.26), we see immediately that

ΓSC
0 (Q) ≡ −t(z = iΩν −Q2/(2mB) + 2µ), (3.52)

so the two expressions coincide up to a minus sign due to our definition of Γ0.
Secondly we notice that, within the square root in (3.51), the term multiplied by
ε−1
0 is sub-leading in the strong-coupling limit, so to the lowest order the particle-

particle propagator assumes the familiar form

ΓSC
0 (Q) ≃ − 8π

(2mred)2aF

1

iΩν − ξBQ
, (3.53)

with ξBQ = Q2/(2mB) − µB. Therefore, in the strong-coupling limit, the particle-
particle propagator reduces to a non-interacting single-particle propagator (2.27) for
composite bosons, up to a multiplicative factor.

For the self-energy (3.42) in the strong-coupling limit, we can neglect the Q
dependence of G0

σ since |µ| is the dominant scale in the denominator, so we obtain

Σ0,SC
σ (k) ≃ −G0

σ̄(−k)
∫

dQ

(2π)3
1

β

∑
ν

eiΩν0+ΓSC
0 (Q), (3.54)

and for the same reason, we can truncate the Dyson equation (3.43) as

Gσ(k) ≃ G0
σ(k) + G0

σ(k)Σ
0,SC
σ (k)G0

σ(k). (3.55)
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If we now integrate Gσ(k) to get the density as in (3.44), we have

n ≃ n0 − 2

∫
dk

(2π)3
1

β

∑
n

eiωn0+G0
σ(k)

2G0
σ̄(−k)

∫
dQ

(2π)3
1

β

∑
ν

eiΩν0+ΓSC
0 (Q), (3.56)

where n0 is simply a free fermion density as in (2.29), that is suppressed in the limit
β|µ| ≫ 1 and can be neglected. By computing the sum over the frequencies ωn and
the k-integral, we evaluate∫

dk

(2π)3
1

β

∑
n

eiωn0+G0
σ(k)

2G0
σ̄(−k) ≃ − (2mred)

2

8π
√

4mred|µ|
≃ −(2mred)

2aF
8π

, (3.57)

and we notice that this constant factor compensates the factor in the bare bosonic
propagator (3.53). Now we can evaluate the sum over the bosonic frequencies Ων

with (2.28) to get the density

n ≃ 2

∫
dk

(2π)2
1

eβξ
B
Q − 1

≡ 2nB. (3.58)

Therefore, in the BEC limit, the non-self-consistent t-matrix approach correctly re-
covers a system of non-interacting composite bosons with with mass mB and density
nB = n/2. Indeed, as we know from Section 1.2, we can recover the correct value of
the BEC critical temperature by letting µB → 0−, obtaining

TBEC
c =

2π

mB

[
nB

ζ(3/2)

]2/3
. (3.59)

It is interesting to notice that the condition µB = 0, used to get the BEC tempera-
ture, is equivalent to require that the particle-particle propagator in (3.53) shows a
pole at Q = 0, i.e. ΓSC

0 (Q = 0)−1 = 0, that is the Thouless criterion (3.45).

3.2.3 Weak-coupling (BCS) Limit

Let us consider the weak-coupling limit (kFaF )
−1 ≪ −1 and let us try to re-

cover the mean-field BCS critical temperature (3.33) within the non-self-consistent
t-matrix approach. To do this, we impose the Thouless criterion (3.45), which can
be rewritten as

2mred

4πaF
+R0

pp(Q = 0)|T=Tc = 0. (3.60)

It is important to notice that, by comparing (3.30) with (3.41), the Thouless criterion
(3.60) is equivalent to the condition of vanishing gap parameter ∆ = 0 in the BCS
theory. In the weak-coupling limit, we expect the system to get closer to a non-
interacting Fermi gas and, consequently, the critical temperature Tc to be very low.
We can therefore take the limit µ/Tc ≫ 1 in the renormalized particle-particle
bubble, with µ = (µ↑ + µ↓)/2, to obtain

R0,WC
pp (Q = 0)|T=Tc ≃

(4mred)
3/2√µ

4π2

[
ln

(
2mred√
m↑m↓

8µeγ

πTc

)
− 2

]
, (3.61)
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where γ is the Euler constant5. By inserting this expression in (3.60) we get

Tc ≃
2mred√
m↑m↓

8µeγ

πe2
exp

(
π

2kFaF

√
EF

µ

)
, (3.62)

which is exponentially suppressed for (kFaF )
−1 ≪ −1, as expected. However, we

need to understand if µ has some corrections of order (kFaF ) to EF , i.e. µ ≃
EF (1+AkFaF ), because in that case we would not recover the BCS critical temper-
ature (3.31) precisely due to a constant factor, i.e. exp(−πA/4)). To this aim, one
can replace the expression (3.62) for Tc in the particle-particle bubble to see that
R0,WC

pp (Q) is linear in (kFaF ) for most values of Q (except for Q ≃ 0 because of the
Thouless criterion) [82], and therefore is sub-leading with respect to 2mred/(4πaF ).
Thus the particle-particle propagator can be approximated as

ΓWC
0 (Q) ≃ − 4πaF

2mred

, (3.63)

while the self-energy reads

Σ0,WC
σ (k) ≃ 4πaF

2mred

∫
dQ

(2π)3
Tc

∑
ν

1

iΩν − iωn + ξQ−kσ̄

=
2πaF
2mred

n0, (3.64)

where n0 is the density of non-interacting fermions as in 2.29. In the limit µ/Tc ≫ 1
this is given by

n0 = 2

∫
dQ

(2π)3
1

eξQσ/Tc + 1
≃ 2

∫
dQ

(2π)3
θ(ξQσ) ≃

k3µ
3π2

, (3.65)

where kµ =
√
2mσµσ. From (3.64), we notice that the self-energy reduces to a con-

stant Σ0
σ, linear in aF at leading order. As we will see below, this simply correspond

to a mean-field shift of the chemical potential. Since (kFaF ) → 0−, we can expand
the Dyson equation to first order in Σ0

σ

Gσ(k) ≃ G0
σ(k) + Σ0

σG0
σ(k)

2. (3.66)

Integrating Gσ(k) as in (3.44) to obtain the total density n, we find a first term that
is simply the free contribution n0 and a second term that is obtained by∫

dk

(2π)3
Tc

∑
n

eiωn0+Σ0
σG0

σ(k)
2 ≃

2πaF
m

n0

∫
dk

(2π)3
Tc

∑
n

1

(iωn − ξkσ)2
≃− kµ

π
n0aF .

(3.67)

Therefore, the density in the weak-coupling limit is given by

n ≃ n0

(
1− 2kµ

π
aF

)
. (3.68)

5It is important to point out that the result 3.61 holds only in the spin-balanced case. In this
way, the integral is computed by splitting it into two parts [81]: one in the range |k −Kµ| > k0
(with Kµ =

√
4mredµ) where the hyperbolic tangent can be set to one, and the other in the range

|k −Kµ| < k0, with k0 chosen such that Kµk0/(2mred) ≪ Tc and k0 ≪ Kµ.
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From this relation, by using the expression n = k3F/(3π
2) for the total density, we

can get the chemical potential at first order in (kFaF ) as

µ ≃ EF

(
1 +

4kFaF
3π

)
, (3.69)

and, if we insert this in (3.62), we get the weak-coupling critical temperature

Tc ≃
2mred√
m↑m↓

8EF e
γ

πe2
exp

(
π

2kFaF
− 1

3

)
= e−1/3 TBCS

c . (3.70)

This means that, within the non-self-consistent t-matrix approach, the BCS critical
temperature is recoverd up to a “spurious” e−1/3 factor. However, this factor can
be corrected by self-consistently including the self-energy constant Σ0

σ (3.64) in the
bare propagator G0

σ within the definition (3.40) for the renormalized particle-particle
bubble R0

pp. This is equivalent to perform the shift µσ → µσ − Σ0
σ in (3.61, which

allows one to recover the mean-field result Tc ≃ TBCS
c in (3.33).

3.2.4 Contact in the t-Matrix Approach

As discussed at the end of Section 1.5.2, within the t-matrix approximation we
can recover the correct value of the contact C in both weak-coupling and strong-
coupling limits. The most straightforward way to obtain C is to relate it to the
trace of the particle-particle propagator Γ0, denoted with ∆2

∞, as

C = (2mred∆∞)2 ≡ (2mred)
2

∫
dQ

(2π)3
1

β

∑
ν

eiΩν0+Γ0(Q). (3.71)

This is because, for large k, the approximation performed in the integrand of (3.56)
holds up for any coupling, and one obtains

nσ(k)
k→∞−−−→ −∆2

∞
1

β

∑
n

G0
σ(k)

2G0
σ̄(−k). (3.72)

If one now performs the sum over the fermionic Matsubara frequencies on the right
hand side, for large k one obtains

∆2
∞
1

β

∑
n

G0
σ(k)

2G0
σ̄(−k) ≃ −∆2

∞
1

(ξkσ + ξkσ̄)2
≃ −∆2

∞
(2mred)

2

k4
(3.73)

and therefore, using the definition in (1.35), the identification in (3.71) is immediate.
The quantity ∆2

∞, therefore the contact C, can be evaluated analytically in the
BCS and BEC limits in the spin-balanced case. In the strong-coupling limit, using
the approximate form for Γ0 in (3.53), we get

CSC ≃ −8π

aF

∫
dQ

(2π)3
1

β

∑
ν

eiΩν0+
1

iΩν − ξBQ
=

8π

aF
nB =

4π

aF
n. (3.74)
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This result coincides with the one obtained from the adiabatic relation 1.37 with the
leading-order expression for the energy E = −N

2
ε0 = −N/(4mreda

2
F ) in this limit.

In the weak-coupling limit, we expand Γ0 to second order in 4πaF/(2mred), so that

ΓWC
0 (Q) ≃ − 4πaF

2mred

(
1− 4πaF

2mred

R0
pp(Q)

)
, (3.75)

and this yields

CWC ≃ (4πaF )
2

∫
dQ

(2π)3
1

β

∑
ν

∫
dk

(2π)3
1

β

∑
n

G0
↑(k+Q)G0

↓(−k) = (2πaFn)
2, (3.76)

which agrees with what reported at the end of Section 1.5.2.

3.3 Luttinger-Ward Approach
When dealing with spin imbalanced systems, the non-self-consistent t-matrix

approach presents a problem: the spin susceptibility χs = dM/dh, where M =
n↑−n↓ is the magnetization and h = (µ↑−µ↓)/2 is the imbalancing field, is negative
for the balanced system near unitarity slightly above Tc [83]. This means that, for
this approach, there is a region where a small imbalance of the chemical potentials
µ↑ > µ↓ produces the non-physical result of an opposite imbalance of the densities
n↑ < n↓.

More generally, we can make an improvement of the non-self-consistent t-matrix
with the inclusion of self-consistency in the equations. One can consider the partial
or full inclusion of self-consistency, but in this thesis we will consider just the latter
case, known as Luttinger-Ward approach [84] or simply fully self-consistent t-matrix
[45,46]. This approach compares well with experimental data and Quantum Monte
Carlo (QMC) calculations for several thermodynamic quantities in the balanced
case [36–41]. In addition, as we will see below and in Section (4.3.1) respectively, the
fully self-consistent approach respects the requirement of conserving approximation
and therefore satisfies the Luttinger theorem for the Fermi surfaces of the two spin
components, a property which is particularly important to describe in a consistent
way the spin-imbalanced Fermi liquid phase.

The main idea of the Luttinger-Ward approach is very simple: we take all the
equations introduced in the non-self-consistent t-matrix and we substitute all the
bare propagators G0 with dressed propagators G in the ladder and self-energy dia-
grams. Therefore, we get the following t-matrix equations:

Gσ(k) =
1

G0
σ(k)

−1 − Σσ(k)
, (3.77)

Σσ(k) = −
∫

dQ

(2π)3
1

β

∑
ν

Γ(Q)Gσ̄(Q− k), (3.78)

Γ(Q) = − 1

2mred/(4πaF ) +Rpp(Q)
, (3.79)

53



Rpp(Q) =

∫
dk

(2π)3

(
1

β

∑
n

G↑(k +Q)G↓(−k)−
2mred

k2

)
. (3.80)

Within this approach, all the considerations done for the non-self-consistent t-matrix
in Section 3.2 still apply: the chemical potentials µσ can be obtained by inverting the
density equations (3.44), while the transition line normal-superfluid can be found by
generalizing the Thouless criterion in Section 3.2.1 to the dressed particle-particle
propagator, i.e. simply by substituting Γ0 with Γ. In particular, this substitution
also holds for the contact in (3.71). Notice that this approach automatically includes
the mean-field shift Σ0 discussed in Section 3.2.3, and therefore correctly recovers
the BCS critical temperature in the weak-coupling limit without any spurious factor.

Obviously, the only possibility to solve the self-consistent equations (3.77-3.80) is
via numerical methods. Therefore, in order to calculate the Green’s function G, the
simplest method is to solve them iteratively and try to converge to a stable solution.
In this procedure it is convenient to Fourier transform G, Γ, Σ and Rpp, from the
(k, ωn) and (Q,Ωn) spaces to the (x, τ) space, with the relations

Gσ(x, τ) =

∫
dk

(2π)3
1

β

∑
n

ei(k·x−ωnτ)Gσ(k, ωn), (3.81)

Γ(x, τ) =

∫
dQ

(2π)3
1

β

∑
n

ei(Q·x−Ωντ)Γ(Q,Ων), (3.82)

and analogous expressions for Σσ(k, ωn) and Rpp(Q,Ων). These transformations are
very useful because allows one to pass from convolution products in (3.78) and (3.80)
to simple algebraic products in the transformed space

Σσ(x, τ) = −Γ(x, τ)Gσ̄(−x,−τ), (3.83)

Rpp(x, τ) = G↑(x, τ)G↓(x, τ)− Λδ(x)δ(τ), (3.84)

where Λ =
∫
|k|≤k0

dk/(2π)3[2mred/k
2] is a divergent constant in the k0 → ∞ limit

for the contact potential, introduced in Section 3.1.3. Therefore, we will always
work with the difference

∆Rpp(x, τ) ≡ Rpp(x, τ)−R0
pp(x, τ) = G↑(x, τ)G↓(x, τ)− G0

↑(x, τ)G0
↓(x, τ), (3.85)

such that we avoid dealing with the diverging constant Λ. In this way, we recover
Rpp(Q,Ων) by transforming back (3.85) and then by adding the non-self-consistent
bubble R0

pp(Q,Ων). In Figure 3.5 we reported the two flowcharts for the non-self-
consistent t-matrix and Luttinger-Ward approaches, in which the self-consistent
iterative procedure is represented by a cycle. Notice that, in the first iteration of
the self-consistent cycle, the value of Gσ(k, ωn) is obtained from non-self-consistent
approach.

Most of the functions that we are going to Fourier transform in the self-consistent
cycle show a slowly decaying tail in the variables (k, ωn) and (Q,Ων), which corre-
sponds to a singular behavior for (x, τ) → 0+. Because of the periodicity properties
of these functions, these singularities typically occur also for τ → β−. Therefore, the
functions to be transformed should be evaluated on scales that accumulate points
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Figure 3.5: Flowcharts of the procedures in the t-matrix approximation: obtain-
ing the dressed Green’s function in the non-self-consistent approach (above) and
achievement of full self-consistency in the Luttinger-Ward approach (below).
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near these peaks, but clearly in this case, a standard fast Fourier transformation
(FFT) cannot be applied because a constant step width would be needed. Nonethe-
less, consistent Fourier transforms for a generic grid of points can be obtained fol-
lowing the Haussmann’s prescriptions [85, 86], discussed in Appendix A6.

As discussed in detail in Appendix B, it is also necessary to subtract some ap-
propriate semi-analytic expressions from the functions to be Fourier transformed in
order to make their singular behavior weaker, or equivalently, their slow decay faster.
Moreover, we need some optimization procedures to achieve the convergence toward
self-consistency, which are particularly important close to Tc. This is because, as
shown in Appendix C, in that region the iterative procedure in Figure 3.5 does not
work properly.

3.3.1 Conserving Approximations

Even if we have included full self-consistency, the expression (3.78) for the self-
energy is obviously not exact because we are still working in the t-matrix approxi-
mation. However, it is important to check if our approximation still respects con-
servation laws that are valid for the exact theory, like the particles number, the
momentum and the energy. If these laws still hold in the approximated theory, this
is said to be conserving. A general method for generating conserving approximations
is given by the Baym-Kadanoff theorem [87,88]. This theorem states that a sufficient
condition for an approximated theory to be conserving is that its self-energy Σ can
be written as a functional derivative

Σσσ′(x, x′) =
δΦ

δGσσ′(x, x′)
, (3.86)

where Φ is a functional of only dressed single-particle Green’s functions G and in-
teraction lines V . Here, we used the compact notation x ≡ (x, τ). In terms of
Feynman diagrams, as shown in Figure 3.6, the functional derivative simply consists
of removing a particle line in the term for Φ, leading to the self-energy contribution
of the t-matrix approximation. Notice that only the Luttinger-Ward approach re-
spects this requirement, as it is the only one that can be derived by a functional Φ
that is not built also with bare Green’s functions G0. Indeed, the non-self-consistent
t-matrix approximation and all the other partially self-consistent versions are clearly
non-conserving.

Conserving approximations are particularly useful in non-equilibrium phenomena
like transport, but they have also some important implications on the equilibrium
properties of the theory, which are the ones we will focus on in this thesis. Consider,
for instance, the link clustered expansion in (2.22) for a Φ-derivable conserving
theory. In this case, we can rewrite the expansion for the grand-potential Ω in

6It is important to point out at least two other cases in which a Fourier transform that accu-
mulates points near specific regions becomes essential. The first one is in the presence of strong
FFLO fluctuations, where the particle-particle propagator Γ(Q,Ων) for a spin-imbalanced system
is strongly peaked near a finite momentum Q0. The second one is in weak-coupling limit and at
low temperatures, where the functions can exhibit the presence of sharp Fermi surfaces.
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Figure 3.6: Diagrammatic representation of the functional Φ[G, V ] for a typical term
in the t-matrix approximation (left) a the corresponding self-energy Σ (right). In
particular, in the figure is reported the 4-th order diagram for Φ and Σ.

terms of the functional Φ as

Ω[G] = ∓ 1

β
(Φ[G]− Tr[GΣ] + Tr[ln(−G)]), (3.87)

where with the symbol trace we mean integration over all the x and τ variables and
sum over all the spin indices σ, i.e.

Tr[X] =

∫
dx dx′

∫ β

0

dτ dτ ′
∑
σ,σ′

Xσσ′(xτ,x′τ ′). (3.88)

An important aspect of conserving approximations is that the thermodynamic quan-
tities derived by the grand-canonical potential (3.87) or directly by the Green’s
function of the system are the same, so that we have a consistent picture of thermo-
dynamic properties. As a concrete example, we consider the average total number
of particles, derived from the grand-potential as

N ≡ ⟨N̂⟩ = ∂Ω

∂µ
. (3.89)

This value is guaranteed to coincide with the same calculated directly from the
single-particle Green’s function in (2.15) only if the the approximation is conserving.
On the contrary, in the non-self-consistent or partially self-consistent approaches,
we do not expect that they satisfy these thermodynamic relations, and therefore we
must specify in which way we are calculating the different quantities7.

7The first original work on pairing fluctuations within the BCS-BEC crossover is known as
Nozières-Schmitt-Rink approach (NSR) [9]. In this work, differently from the non-self-consistent
t-matrix, the density was derived from a thermodynamic potential that is obtained by closing
the ladder diagrams. Except when the self-energy corrections are small, the non-self-consistent t-
matrix and NSR approaches are not equivalent since they are both non-conserving, and the former
might yield a sensible result when the latter does not.
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The same happens also with the Tan’s contact, discussed in Section 1.5.2. The
value of C obtained with the definition (1.35) and the one obtained using the adi-
abatic relations (1.37) are guaranteed to coincide only if we work with conserving
approximations, like the Luttinger-Ward approach.
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Chapter 4

Landau Theory of Fermi Liquids

For large polarization and not too strong interactions, our mixture of ultra-cold
Fermi gases remains in the normal phase even at zero temperature. Therefore, in this
region, the system is well described by the Landau theory of Fermi liquids. In this
chapter we present the main aspects of the Landau phenomenological theory, based
on physical arguments (for a review of Fermi liquid theory see Refs. [89–91]). Then,
we connect it to a microscopic description in terms of the diagrammatic many-body
approaches, relating the quasi-particle properties to the fermionic self-energy and
the spectral weight function. Furthermore, we consider the T = 0 formulation of
the Luttinger-Ward approach, which satisfies the important Luttinger theorem, and
we briefly show how the Fermi liquid description breaks down in our system at the
superfluid quantum critical point (QCP).

4.1 The Quasi-particle Concept
The phenomenological theory of Fermi liquids, originally developed by Landau

for the description of liquid 3He [92–94], deals with the properties of interacting
many-fermion systems at low temperatures (much lower than the Fermi energy, i.e.
T ≃ 0). It has applications in many fields of physics, from the low-energy behavior
of electrons in metals to ultra-cold Fermi gases.

The main assumption of this theory is a continuous one-to-one correspondence
between the eigenstates (ground state and excited states) of the non-interacting
system (Fermi gas) and interacting system (Fermi liquid), as the interaction is adia-
batically switched-on. It is crucial to notice that this adiabatic continuity assumption
can be acceptable only if the interactions do not lead to any form of phase transi-
tion or symmetry-broken ground state1. In this way, the elementary excitations of a
Fermi liquid, known as quasi-particles and quasi-holes, are in direct correspondence
with the (particle or hole) excitations of the ideal Fermi gas2. Consequently, they
carry the same quantum numbers and satisfy the Fermi-Dirac statistics.

1It is also interesting to point out that, in a 1D interacting fermion gas, Fermi liquid theory
breaks down without the occurrence of a broken symmetry state. In this case, the correct theoretical
counterpart of a Fermi liquid is known in literature as Luttinger liquid.

2Generally, the term “quasi-particles” refers to the elementary excitations whatever their relation
to the bare particles. As we will see, in the Fermi liquid theory, it has a narrower sense.
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As a starting point, it is useful to introduce the concept of quasi-particle by
extending the concept of particle of the non-interacting system. Let us start with
the ideal Fermi gas at T = 0 and for simplicity consider a three-dimensional balanced
and isotropic system. The ground state consists in a sphere in momentum space, i.e.
the Fermi sphere, filled with fermions up to the Fermi momentum kF . The mean
particle density n is then related to kF by the well-known relation

n = 2

∫
dk

(2π)3
θ(kF − |k|) = k3F

3π2
, (4.1)

while the ground state energy is given by

E0 = 2V

∫
dk

(2π)3
ε0kθ(kF − |k|) = 3

5
NEF , (4.2)

where ε0k = k2/(2m) is the free fermion dispersion and EF = k2F/(2m) ≡ µ(T = 0)
the Fermi energy. If we consider a deviation δnkσ from the distribution function
n0
k = θ(kF − |k|), the corresponding change in total energy is

δE[δnkσ] = V
∑
σ

∫
dk

(2π)3
ε0kδnkσ. (4.3)

For the non-interacting system, an elementary excitation corresponds to a particle
added to or removed from the ground state (hole). Correspondingly, from (4.3), we
get that the energy of any excited state is obtained by summing the energy of the
added particle or hole.

Let us now add a particle with momentum k (|k| > kF ) and spin σ to the ground
state of the ideal gas. As soon as one adiabatically switches on the interactions, the
particle is no longer in an eigenstate of the system and it may undergo several decay
processes; in other words, it is damped and acquires a finite lifetime. Central to
Fermi liquid theory is the fact that the lifetime becomes larger and larger at low en-
ergy (|k| → kF )3. Thus, the state obtained by adding a low-lying (|k| ≃ kF ) particle
to the non-interacting Fermi sea evolves into a quasi-eigenstate of the interacting
system, which is referred to as a quasi-particle. Similarly, one can define a quasi-hole
by removing a particle with momentum |k| ≃ kF from the non-interacting Fermi
sea. Because of the one-to-one correspondence between particle (or hole) excitations
in the ideal Fermi gas and quasi-particle excitations in the Fermi liquid, the quasi-
particles are fermions and therefore follow the Fermi-Dirac statistics. Furthermore,
conserved quantities like spin and charge are unchanged, whereas the interaction
affects the value of other quantities like the quasi-particle dispersion, the particle
momentum distribution and the (effective) mass.

3More precisely, one gets τ−1
k ∝ (πT )2 + ξ2k. This result is correctly obtained from the collision

term of the Boltzmann equation, used to describe non-equilibrium situations in the system [89].
Actually, the long lifetime of quasi-particles close to the Fermi surface has also an explanation in
terms of phase-space arguments. Consider the process where a particle in the state k above the
Fermi sea is scattered into the state k+ q by creating a particle-hole pair (k′,k′ − q). Because
of energy conservation, the phase phase available for this scattering process is proportional to
(|k| − kF )

2 [90].
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In the interacting Fermi liquid at T = 0, the change in energy due a change δnkσ

in the quasi-particle distribution function n0
k = θ(kF −|k|) (not to be confused with

the particle distribution in the interacting system) reads

δE[δnkσ] = V
∑
σ

∫
dk

(2π)3
εkδnkσ, (4.4)

where εk is the quasi-particle dispersion which, for |k| > kF (|k| < kF ), represents
the energy of a single quasi-particle (quasi-hole). The expression (4.4) is correct
only if the number of quasi-particles is small enough to neglect interactions among
them. If this is not the case, the energy variation can be written as

δE[δnkσ] = V
∑
σ

∫
dk

(2π)3
ε̃kδnkσ +

V

2

∑
σσ′

∫
dkdk′

(2π)6
fσσ′(k,k′)δnkσδnk′σ′ , (4.5)

where we now denoted with ε̃k the energy of a quasi-particle alone. The Landau
function fσσ′(k,k′) characterizes the interaction between the quasi-particles and it is
completely determined by a small number of multipole phenomenological parameters
called Landau parameters4 [91]. Indeed, the power of the Landau Fermi liquid theory
lies in its ability to parameterize the interactions in terms of these few values.

The "dressed" dispersion εk, corresponding to the energy of a quasi-particle
surrounded by a gas of quasi-particles of density nkσ, is defined as the variation
of the total energy of the system due to the introduction of this quasi-particle.
Mathematically, this means that εk is given by the functional derivative

εk =
δE

δnkσ

= ε̃k +
∑
σ′

∫
dk′

(2π)3
fσσ′(k,k′)δnk′σ′ . (4.6)

Given that we are mainly interested in phenomena in the vicinity of the Fermi
surface, we can linearize the quasi-particle dispersion as

εk = µ+
kF
m∗ (|k| − kF ) + o((|k| − kF )

2), (4.7)

thus defining the effective mass as

1

m∗ =
1

kF

∂εk
∂k

∣∣∣∣
|k|=kF

, (4.8)

which is different from the “bare” mass m due to interaction effects that could in
principle be calculated from a microscopic theory of the system.

It should be emphasized that quasi-particle and quasi-hole excitations are not
necessarily the only elementary excitations in the interacting system. The adiabatic
continuity hypothesis does not exclude the possibility of other elementary excitations
of the real system which disappear when the interaction is reduced to zero.

4As far as equilibrium properties are concerned, Landau’s theory has little quantitative pre-
dictive power because the crucial Landau parameters have actually to be determined from exper-
iment. Nevertheless, it makes some important qualitative predictions, the most prominent being
that even in the presence of interactions the low–temperature specific heat remains linear in tem-
perature and that the spin susceptibility tends to a constant as T → 0. The situation is different
for non–equilibrium situations, where the existence of new phenomena, in particular collective
modes, is quantitatively predicted. These modes are another kind of elementary excitations which,
contrary to quasi-particles, involve a coherent motion of the whole system.

61



4.2 Microscopic Basis of Fermi Liquid Theory
Although Landau’s Fermi liquid theory is a phenomenological theory, based on

physical arguments, it translates naturally into the language of diagramatic many-
body theory. The main goal of this microscopic approach to Fermi liquid theory
is to show how the quasi-particle concept emerges from the single-particle Green
function5.

Let us first recall that the non-interacting system is described by the retarded
Green’s function (see also Section 2.3)

G0,R(k, t) =

∫ ∞

−∞

dω

2π

e−iωt

ω − ξ0k + i0+
= −iθ(t)e−iξkt, (4.9)

where ξ0k = k2/(2m) − µ is the usual free particle dispersion minus the chemical
potential, while the corresponding spectral weight function is given by

A0(k, ω) = − 1

π
ImG0,R(k, ω) = δ(ω − ξ0k), (4.10)

which is a Dirac peak located at the excitation energy ξ0k.
Microscopically, when the interactions are adiabatically switched-on, we expect

a shift and a broadening of the Dirac peak in the non-interacting spectral function
(4.10). This peak represents the quasi-particle contribution, is located at the quasi-
particle excitation energy ξk and has a width γk = 1/(2τk), where τk is quasi-
particle lifetime. Moreover, we also expect the presence of a "featureless" incoherent
background from the contribution of multi-particle excitations, which can extend to
rather high energies but becomes small close to the Fermi surface. As shown in
Figure 4.1, we deduce that the spectral weight function which defines a Fermi liquid
can be written as

A(k, ω) =
Zk

π

γk
(ω − ξk)2 + γ2k

+ Ainc(k, ω), (4.11)

where the quasi-particle peak (first term) assumes the form of a Lorentzian distri-
bution with spectral weight Zk (0 ≤ Zk ≤ 1), known as quasi-particle residue. The
corresponding retarded Green’s function is given by

GR(k, ω) =

∫ ∞

−∞
dω′ A(k, ω′)

ω − ω′ + i0+
=

Zk

ω − ξk + iγk
+GR

inc(k, ω), (4.12)

and, by Fourier transforming to (k, t) space, we obtains

GR(k, t) = −iZkθ(t)e
−γkte−ξkt +GR

inc(k, t). (4.13)

Because Ainc(k, ω) has no sharp structure in the frequency, the incoherent part
GR

inc(k, t) of the Green function decays quickly in time, and the long-time behavior
5For completeness, we just point out that the Landau function fσ,σ′(k,k′) admits a microscopic

interpretation in terms of the particle-hole vertex function Γph, but we will not discuss it in this
thesis.
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is dominated by the quasi-particle part. Therefore, for |ξk|−1 ≪ t≪ τk one observes
the oscillating behavior characteristic of an eigenstate of the Hamiltonian. Equation
(4.13) confirms the interpretation of τk as the lifetime of the quasi-particle. Fur-
thermore, the oscillating part of the Green function is reduced by a factor Zk in the
interacting system. Thus, Zk is a measure of the overlap between the particle state
with momentum k and spin σ and the quasi-particle state with same momentum and
spin; it can be seen as the fraction of bare particle contained in the quasi-particle.

Figure 4.1: Spectral function in an ideal Fermi gas (left) and in a Fermi liquid
(right). The dark shaded area shows the quasi-particle peak and the light shaded
one the incoherent part of the spectrum. Source: reproduced from Ref. [90].

The existence of quasi-particles with reduced spectral weight has an important
consequence for the momentum distribution function of the bare particles

nkσ = −i
∫ ∞

−∞

dω

2π
eiω0

+

GR(k, ω) =

∫ 0

−∞
dω A(k, ω). (4.14)

When τ−1
k ≪ |ξk|, the quasi-particle peak in A(k, ω) becomes sharper and sharper

as we approach the Fermi surface and tends to Zkδ(ω − ξk) for ξk → 0. Since the
incoherent part of the spectral function varies smoothly with k, it is continuous
across the Fermi level. Therefore, a typical characteristic of a Fermi liquid is a
sudden jump at kF in the momentum distribution, exactly as in the non-interacting
system, with magnitude given by the quasi-particle residue Z ≡ Zk||k|=kF .

4.2.1 Self-Energy and Quasi-particle Properties

The quasi-particle properties, such as the excitation energies, residues, effective
masses and lifetimes, can be related to the self-energy of the system. In the inter-
acting system, the retarded Green’s function and the spectral weight, introduced in
Section 2.3, can be expressed in terms of the retarded self-energy as

GR(k, ω) =
1

ω − ξ0k − ΣR(k, ω) + i0+
, (4.15)

A(k, ω) = − 1

π

ImΣR(k, ω)

(ω − ξ0k − ReΣR(k, ω))2 + (ImΣR(k, ω))2
, (4.16)

where the last expression holds only if ImΣR(k, ω) ̸= 0, otherwise if ImΣR(k, ω) = 0
we have

A(k, ω) = δ(ω − ξ0k − ReΣR(k, ω)). (4.17)
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Therefore, we readily get that the quasi-particle energy ξk, i.e. the position of the
maximum in the Lorentzian peak (4.11), is determined by the equation

ξk = ξ0k +ReΣR(k, ξk), (4.18)

if ImΣR(k, ω) varies weakly for ω ≃ ξk, i.e. ∂ω ImΣR(k, ω)|ω=ξk = 0. In particular,
the chemical potential is obtained from ξkF = 0, that is

µ =
k2F
2m

+ ΣR(kF , 0), (4.19)

where we used the fact that ΣR(kF , 0) is real at zero temperature [90]. Furthermore,
by comparing (4.16) with (4.11), we immediately get the relation among the quasi-
particle spectral width, the residue and the imaginary part of the retarded self-energy

γk = −Zk ImΣR(k, ξk). (4.20)

If we now expand the retarded self-energy for ω ≃ ξk as

ΣR(k, ω) ≃ ReΣR(k, ξk) + i ImΣR(k, ξk) + (ω − ξk)
∂

∂ω
ReΣ(k, ω)

∣∣∣∣
ω=ξk

, (4.21)

use (4.18) and the expression

ω − ξ0k − ΣR(k, ω) =
ω − ξk + iγk

Zk

, (4.22)

obtained by direct comparison with (4.12) and (4.15), we get the relation between
the quasi-particle residue and the real part of the retarded self-energy

Zk =

[
1− ∂

∂ω
ReΣR(k, ω)

∣∣∣∣
ω=ξk

]−1

. (4.23)

By requiring that the quasi-particle residue satisfies 0 ≤ Zk ≤ 1, the condition

∂

∂ω
ReΣR(k, ω)

∣∣∣∣
ω=ξk

≤ 0, (4.24)

naturally follows. We then differentiate (4.18) with respect to k

∂ξk
∂k

=
∂ξ0k
∂k

+
∂ ReΣR(k, ξk)

∂k
+
∂ξk
∂k

∂ ReΣR(k, ω)

∂ω

∣∣∣∣
ω=ξk

, (4.25)

collect the derivative of ξk and use the definition of the effective mass (4.8) to get

1

m∗ =
1
m
+ 1

kF

∂
∂k

ReΣR(k, 0)||k|=kF

1− ∂
∂ω

ReΣR(kF , ω)|ω=0

, (4.26)

where we have set ξkF = 0. Using the expression (4.23) for the quasi-particle residue,
where Z = Zk||k|=kF , we finally obtain the relation between the effective mass and
the real part of the retarded self-energy

m

m∗ = Z
[
1 +

m

kF

∂

∂k
ReΣR(k, 0)

∣∣∣∣
|k|=kF

]
. (4.27)
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4.3 Zero Temperature t-Matrix Approach
Until this point, within the t-matrix approximation, we worked exclusively in

the normal phase at finite temperature but, as we have seen in Section 1.4, it may
happen that a spin-imbalanced system remains in the normal phase also at T = 0.
To formulate the theory also at zero temperature, we can take the limit T → 0
(i.e. β → ∞) in all relevant equations obtained within the finite temperature (Mat-
subara) formalism. However, we recall from Section 2.1 that the imaginary time
τ at finite temperature is conventionally taken in the interval (0, β), because of
the periodicity (anti-periodicity) of the bosonic (fermionic) functions. Therefore,
the naive implementation of its zero temperature limit would be to consider the
(0,∞) interval, which is incorrect because it does not take into account the singu-
larities for τ → β− (or equivalently for τ → 0−) of some of the functions in the
self-consistent cycle. While these singularities are taken into account at finite tem-
perature thanks to the β-periodicity, they inevitably get lost in this naive version of
the zero-temperature limit. Consequently, the interval to be considered in order to
perform the correct limit is actually (−β/2, β/2), which becomes (−∞,∞) at zero
temperature, so that both the singularities for τ → 0+ and τ → 0− are taken into
account. As a consequence, τ = 0 is usually a point of discontinuity for a generic
function of τ in the self-consistent cycle.

Following the above prescriptions for the T = 0 limit, discrete fermionic Mat-
subara frequencies ωn = (2n + 1)πT or bosonic Matsubara frequencies Ων = 2νπT
are thus replaced by continuous frequencies ω and Ων along the imaginary axis,
with the discrete sums T

∑
n or T

∑
ν being replaced by integrals

∫∞
−∞ dω/(2π) and∫∞

−∞ dΩ/(2π). The advantage of working also at T = 0 with imaginary frequencies,
rather than working with the ground state formalism, is that in this way one avoids
the singularities (or nearly singularities) of the Green’s functions calculated along
the real frequency axis.

We can therefore rewrite the equations (3.77)-(3.80) for the Luttinger-Ward ap-
proach at T = 0 as

Gσ(k) =
1

G0
σ(k)

−1 − Σσ(k)
, (4.28)

Σσ(k) = −
∫

dQ

(2π)4
Γ(Q)Gσ̄(Q− k), (4.29)

Γ(Q) = − 1

2mred/(4πaF ) +Rpp(Q)
, (4.30)

Rpp(Q) =

∫
dk

(2π)3

(∫ ∞

−∞

dω

2π
G↑(k +Q)G↓(−k)−

2mred

k2

)
, (4.31)

where now we have used a different four-vector notation, with k = (k, ω) and Q =
(Q,Ω). Similarly, the density equations in (3.44) become

nσ =

∫
dk

(2π)4
eiω0

+Gσ(k), (4.32)

which can be properly inverted to find the chemical potentials µσ for the two species.
However, in our numerical calculation it is more convenient to find µσ using (4.19),
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which becomes
µσ =

k2Fσ

2mσ

+ Σσ(kF , 0), (4.33)

and checking that the expression (4.32) is always verified within a relative error of
order 10−3 on the densities.

The details of the numerical procedures needed to implement the cycle of self-
consistency at zero temperature must be properly generalized from the ones dis-
cussed in Appendix B. At zero temperature, one also needs to take into account
a secondary subtraction scheme to deal with the quasi-particle contribution, which
describes the sharp Fermi surface at |k| = kFσ and the consequent oscillations at
large x in the (x, τ) representation [47]. Furthermore, considerations similar to
those made in the Appendix C at Tc are required for working exactly at the critical
polarization pc.

4.3.1 Luttinger Theorem

While describing Fermi liquid theory in the previous sections, we made an im-
plicit and crucial assumption: the Fermi momentum kF is an adiabatic invariant
when the interactions are turned on. Actually, this result is a direct consequence
of a more general theorem, known as Luttinger theorem, when limited to isotropic
systems. This theorem, originally derived by Luttinger in 1962 within perturbation
theory at arbitrary order [95], states that the volume enclosed by the Fermi surface6

of a normal Fermi gas at T = 0 is not altered by interaction, therefore it must
remain the same as for the non-interacting gas. Indeed, in the isotropic case, it
means that the radius of the Fermi sphere, that is kF = (3π2n)1/3, is not changed
by interactions. This result is readily extended to a partially polarized Fermi liquid,
in which one has two unchanged Fermi surfaces, namely kFσ = (6π2nσ)

1/3.
While the Luttinger theorem is valid for the exact theory, it is not guaranteed to

hold in an approximate one. It is possible to prove analytically that, for the polarized
Fermi gas, the theorem is still satisfied by the self-consistent t-matrix approach [96].
This is strictly related to the fact that the Luttinger-Ward approach is a conserving
approximation, as discussed in 2.3.1. Therefore, the self-consistent t-matrix is the
most suited approach for the description of the Fermi liquid phase, as it provides
full control on the position of the Fermi surfaces for the two spin components.
This important property is instead not shared by the non-self-consistent t-matrix
approximation.

Just to give two concrete examples, Figure 4.2 shows the T = 0 momentum
distributions nkσ =

∫∞
−∞ dω eiω0

+Gσ(k, ω) for the mass-balanced system with polar-
ization p = 0.5 at unitarity (kFaF )

−1 = 0, calculated within the Luttinger-Ward
approach and the non-self-consistent t-matrix approach. It is evident that the self-
consistent t-matrix satisfies the Luttinger theorem by placing the Fermi steps ex-
actly at |k| = kFσ, while the non-self-consistent t-matrix violates it for the minority
component. Instead, Figure 4.3 shows the same distribution for the K-Dy mixture
with polarization p = −0.45 at unitarity, calculated only within the Luttinger-Ward

6In the most general case, the Fermi surface is defined as the locus of discontinuities in the
momentum distribution n(k).
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approach. As we can clearly see, the Luttinger theorem is still satisfied also for
mass-imbalanced mixtures. This result, is a new contribution of this thesis.

Figure 4.2: Momentum distributions nkσ for the two spin components as a function
of the momentum k = |k| (in units of the effective Fermi wave vector kF = (3π2n)1/3)
at unitarity, polarization p = 0.5 and zero temperature, calculated within both
the self-consistent t-matrix approach and the non-self-consistent t-matrix approach
(denoted as (GG)G and (G0G0)G0 respectively). Source: reproduced from Ref. [47].
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Figure 4.3: Momentum distributions nkσ for the two spin components as a function
of the momentum k = |k| (in units of the effective Fermi wave vector kF = (3π2n)1/3)
at unitarity, polarization p = −0.45 and zero temperature, calculated within the self-
consistent t-matrix approach for the K-Dy mixture. The two black dashed lines are
located at the values of the Fermi momenta k = kFσ.

4.3.2 Non-Fermi Liquid Behaviour at the QCP

Fermi liquid theory is considered one of the most successful theories in condensed
matter physics, as it can describe the behavior of many metals or compounds in
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terms of low-energy excitations of weakly interacting fermionic quasi-particles. How-
ever, in the last three decades, a variety of metals have been discovered which display
thermodynamic and transport properties at low temperatures which are fundamen-
tally different from those of the usual metallic systems which are well described by
the Landau Fermi liquid theory. They have often been referred to as singular or
non-Fermi liquids [97]. The most prominently discussed are the normal phase of
high-temperature superconducting materials for a range of compositions near their
highest Tc.

It has been known for a long time that Fermi liquid theory breaks down in the
fluctuation regime of classical phase transitions. This breakdown occurs in a more
substantial region of the phase diagram around the quantum critical point (QCP)
of a quantum phase transition [98], where the transition temperature tends to zero
as a function of some parameter.

In our diagrammatic approach at T = 0, we expect a QCP in correspondence
to a critical polarization pc for the second-order normal-to-superfluid transition, as
identified by using the generalization of the Thouless criterion (see Section 3.2.1)

[Γ(Q = Q0,Ω = 0)|p=pc ]
−1 = 0, (4.34)

where Q0 is the first pair wave vector at which Γ(Q,Ω = 0) diverges coming from
the normal phase. In particular, if Q0 = 0 the transition is toward a polarized
homogeneous Sarma superfluid, while if Q0 ̸= 0, the transition is toward a non-
homogeneous FFLO superfluid. Therefore, by approaching the QCP coming from
the polaronic limit (i.e. p ≃ 1), the quasi-particle description of the polarized ultra-
cold Fermi gas may cease to be true, with a vanishing of the quasi-particle residues at
the Fermi surfaces Zσ and a corresponding divergence of the quasi-particle effective
masses m∗

σ.
More precisely, within the self-consistent t-matrix, it is possible to prove analyt-

ically that a necessary condition for having a vanishing residue is that Γ(Q,Ω = 0)
diverges at finite pair-momentum |Q0| > |kF↑ − kF↓|, therefore only in the case of
a transition towards the FFLO phase and not towards the Sarma phase [47]. This
breakdown at the FFLO QCP is quite expected because, generally speaking, one
of the reasons why the residue can go to zero is the fact that the phase below the
QCP becomes non-homogeneous, i.e. with some periodic structure in space due to
a non-zero wave-vector Q0 [97].

For example, in Figure 4.4, we report the T = 0 momentum distributions nkσ

for the K-Dy mixture at the FFLO critical polarization pc = −0.60, corresponding
to a coupling (kFaF )

−1 = 1.072, calculated within the Luttinger-Ward approach.
As we can immediately see from this new result, the characteristic jumps at the
Fermi momenta kFσ, typical of a Fermi liquid (see Figure 4.3), disappear at the
critical polarization for both the species. Therefore, these jumps at |k| = kFσ in the
momentum distributions are substituted by non-differentiable points at the same
value, corresponding to a breakdown of the Fermi liquid theory at the QCP. As we
discussed above, this effect is equivalent to a vanishing of the quasi-particle residues
Zσ = Zkσ||k|=kFσ

at the FFLO QCP, which will be verified within our numerical
calculations in Section 7.2.
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Figure 4.4: Momentum distributions nkσ for the two spin components as a function
of the momentum k = |k| (in units of the effective Fermi wave vector kF = (3π2n)1/3)
at zero temperature and critical polarization pc = −0.60, corresponding to a coupling
(kFaF )

−1 = 1.072, calculated within the self-consistent t-matrix approach for the K-
Dy mixture. The two black dashed lines are located at the values of the Fermi
momenta k = kFσ.
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Chapter 5

Experiments with Fermi-Fermi
Mixtures

In this short chapter, we introduce some considerations on experiments with
ultra-cold Fermi-Fermi mixtures, starting from the use of trapping potentials in ex-
periments. We mainly focus on mass imbalanced systems and we discuss which
mixtures have been or are currently being studied. This will be particularly use-
ful to understand the choice of the mass ratios used in the numerical simulations,
corresponding to the 40K-161Dy and 6Li-53Cr mixtures, presented in the following
chapters.

5.1 Trapped Systems
As we have seen in Section 1.5, it is possible to tune the attractive interaction

between two components of an ultra-cold Fermi gas, making the system to span all
the BCS-BEC crossover. However, a crucial consideration is that ultra-cold gases
require a trap to hold the neutral atoms together; only in this way they can be
used as effective quantum simulators. In this regard, the optical traps are the most
useful, because allow for an independent application of a magnetic field to tune a
Fano-Feshbach resonance. Practically, these traps act on the atoms as an external
potential proportional to the laser intensity, which has usually the shape of an
inverted Gaussian. For many purposes, this can be approximated to an anisotropic
harmonic potential of the form

Vσ(x, y, z) =
1

2
mσ(ω

2
σxx

2 + ω2
σyy

2 + ω2
σzz

2), (5.1)

where the set of frequencies (ωσx, ωσy, ωσz) are different for each fermionic component
σ. For this reason, most of the experimental data so far available have been obtained
within the trapping potential (5.1), which makes the system non-homogeneous.

To obtain a theoretical description of a system in the potential (5.1), one can
adopt a local density approximation (LDA) approach. This consists in replacing the
chemical potential µσ in all the t-matrix equations with a position-dependent chem-
ical potential µσ(x, y, z) = µ0

σ − Vσ(x, y, z), thereby obtaining a local Green’s func-
tion Gσ(k, ωn, µσ(x, y, z)). Therefore, this approach partitions the non-homogeneous
trapped system into locally homogeneous regions with local densities nσ(x, y, z).
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Without loss of generality, the original potential (5.1) is conveniently transformed
into an isotropic harmonic potential through a simple rescaling of the spatial co-
ordinates. More specifically, we consider the typical experimental situation where
the trapping frequencies are taken to be ωσx = ωσy and ωσz = λσωσx, so that the
anisotropy is only along the z-axis. We also need the assumption λ↑ = λ↓ ≡ λ, which
is met by the experiments in which both species are trapped by the same laser light.
We can then rescale the variables as (x, y, z) → (x′, y′, z′) = (λ−1/3x, λ−1/3y, λ2/3z),
such that the trapping potential becomes

Vσ(r
′) =

1

2
mσω̄

2
σr

′2, (5.2)

with r′ =
√
x′2 + y′2 + z′2 and ω̄σ = (ωσxωσyωσz)

1/3 = λ1/3ωσx. Accordingly, since
the number of particles Nσ =

∫
dx dy dz nσ(x, y, z) is kept to be the same in the

rescaling, we get the mapping nσ(x, y, z) = n′
σ(x

′, y′, z′).
For trapped systems, the coupling (ktFaF )

−1 is expressed in terms of the effective
Fermi wave-vector ktF =

√
4mredEt

F , where Et
F = (ω̄↑ω̄↓)

1/2(3N)1/3 is the effective
Fermi energy for the trapped system, with N = N↑ + N↓. Another important
quantity in trapped systems, which is usually used to express the position in the
trap in dimensionless units, is the Thomas-Fermi radius RTF . For balanced systems,
it corresponds to the radius of the density profile of a non-interacting Fermi gas at
zero temperature and is given by the condition 1

2
mω̄2R2

TF = Et
F .

In addition, the value of the critical temperature Tc depends on the position in
the trap, that is, it is higher in the regions where the two local densities nσ(x, y, z)
match better. For balanced systems, the central portion of the trap is where super-
fluidity is first established upon lowering the temperature from the normal phase.
For imbalanced systems, in which the trapping frequencies are generally different
for the two species, superfluidity can also occur in spherical shells where the local
densities are better matched than in the center (also known as shell superfluid-
ity [99]). However, quite generally, experimental physicists try to have the densities
as matched as possible in the center in order to have an higher Tc, by modifying the
trapping frequencies of the two species. Therefore, even for imbalanced systems, the
latter is usually the most frequent situation.

Despite the experimental importance of harmonic traps, some quite recent ex-
periments with balanced systems have been performed in a homogeneous box poten-
tial [100,101]. Moreover, it has been pointed out that, for the possible observation of
FFLO phases or related effects, it would be better to use box-like traps, rather than
harmonic traps [80]. This is because, in the latter case, a peak in the “projected”
pair-momentum distribution nproj

pair(Q)1 at finite Q0 would be hard to be detected,
due to the smearing produced by the trap average.

1The “projected” pair-momentum distribution nprojpair (Q) corresponds to the momentum distri-
bution of the molecules formed after a rapid sweep of the magnetic field to the BEC side of
the crossover. This quantity is much more experimentally accessible than the pair susceptibility
χpair(Q), introduced in Section 3.2.1. Anyhow, we expect that strong FFLO pairing fluctuations
should result into a peak of nprojpair (Q) at the same finite Q0 found for χpair(Q).
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5.2 Experiments with Mass Balanced Systems
The original experimental observations on the BCS-BEC crossover, in the bal-

anced case, were realized with trapped ultra-cold gases of fermionic 40K [102] and
6Li [103–105], using broad Fano-Feshbach resonances (see also Section 1.5.1). In
brief, the typical procedure used to cool these gases of fermionic atoms to quantum
degenerate temperatures2 consists in an evaporative cooling in a magnetic trap, after
a laser cooling and trapping3. For the final stage of evaporative cooling, the atoms
are loaded into an optical dipole trap and, by lowering the depth of the optical trap,
the atomic gas evaporates to temperatures far below the Fermi temperature.

Subsequently, these systems were investigated experimentally to study also the
effects of a population imbalance [20, 21, 30, 31]. This is because, besides the tun-
ability of the interaction, ultra-cold Fermi gases allow for a direct control of the
population of the two fermionic components by choosing freely one of the two hy-
perfine states of the atom. A variable spin mixture of the two lowest hyperfine states
is typically created by radio frequency sweeps (rf), where the relative number of the
two states can be controlled by the rf power. States are sequentially and indepen-
dently imaged in an optical trap by absorption. Analysis of these images provides
measurement of the number of atoms in each state and thus the polarization.

5.3 Experiments with Mass Imbalanced Systems
The first attempts to realize a mass-imbalanced mixture were made with a 6Li-

40K (lithium-potassium) mixture [106–108]. In these works, the quantum degenerate
mixture is realized employing sympathetic cooling4 of fermionic 6Li and 40K gases
by an evaporatively cooled bosonic 87Rb gas. Specifically, it was reported the obser-
vation of Feshbach resonances and the successful creation of ultra-cold bosonic het-
eronuclear molecules. However, it turns out that all resonances for s-wave scattering
in this system are quite narrow, causing both practical and fundamental limitations
for experimental applications, such as an interaction control practically limited by
magnetic field uncertainties. Moreover, in Ref. [109], it was found the presence
of open decay channels5 for all the broader resonances, which means that atomic
two-body collisions acquire an inelastic component. This implies two important
consequences: firstly, this unavoidably limits the stability of an atomic Fermi-Fermi

2For an atomic gas, quantum degeneracy is established when the de Broglie wavelength λdB =
h/(mv) of particles becomes comparable to the average spacing between them d = n−1/3, i.e.
λdB ≳ d. For example, for a low density (dilute) gas we have d ∼ 1µm and therefore, by using
the classical relation 1

2kBT = 1
2mv

2 from kinetic theory, we require a temperature T ∼ 100 nK in
order to achieve quantum degeneracy.

3It is interesting to notice that laser cooling works best on hydrogen-like atoms. This is why
experimental physicists tend to laser cool mainly alkali atoms such as lithium (Li), sodium (Na),
potassium (K), rubidium (Rb).

4Sympathetic cooling is a process in which particles of one type cool particles of another type.
This technique is generally used to cool ions and atoms that cannot be cooled directly by laser
cooling and it is most efficient when the mass/charge ratios of the sympathetic-cooled and laser-
cooled atoms are similar.

5In a Feshbach resonance, if the closed channel can decay into open channels other than that in
which the colliding pair is initially prepared, the situation is referred to as a decaying resonance.
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mixture in the unitary regime and secondly, when Feshbach molecules are created
via these decaying resonances, they will undergo spontaneous dissociation. In other
words, from an experimental point of view, these two points imply short lifetimes
(of the order of ∼ 10 ms) for the Fermi-Fermi mixture, which make both the study
of equilibrium properties and the production of a long-lived molecular BEC rather
problematic.

In general, a large number of combinations could be selected to create a Fermi-
Fermi mixture, from the variety of chemical elements that have been brought to
quantum degeneracy with different experimental techniques. Indeed, in addition
to alkali atoms, experimental physicists successfully brought to degeneracy many
other atoms, such as chromium (Cr) and different lanthanides (dysprosium (Dy),
erbium (Er) and ytterbium (Yb)), because of their large magnetic dipole moments
which make them excellent candidates for quantum simulations of physical phenom-
ena with long-range interactions. However, there are important criteria to follow,
namely: a mass ratio above rm ≡ mL/mH = 0.07356, tunable interactions and a
collisional stability. Respecting these criteria, the possible combinations go down to
the mixtures 40K-161Dy, 40K-163Dy, 40K-167Er and 6Li-53Cr [42].

The experimental investigation of the 40K-161Dy (potassium-dysprosium) mix-
ture started quite recently in Innsbruck [42, 43]. The realization of this mixture in
the quantum-degenerate regime was achieved by means of evaporative cooling of
the dipolar dysprosium atoms together with sympathetic cooling of the potassium
atoms. The specific choice of the K-Dy combination is related to its scattering spec-
trum, which is not chaotic but conveniently dense. Moreover, a very useful property
of this mixture is the fact that the polarizability ratio of the two species in an in-
frared optical dipole trap nearly corresponds to its mass ratio (rm = 0.2484). This
allows one to easily match the Fermi surfaces of both species even in a harmonic
trap, and thus to investigate pairing and superfluidity in the BCS-BEC crossover.
In particular, it has been shown that the mixture presents a broad Feshbach reso-
nance with a substantial suppression of inelastic losses, which is a key requirement
for many experiments [43]. This makes it a promising candidate for a detailed anal-
ysis of the thermodynamic properties and the phase diagram of a mass-imbalanced
system in the ongoing and near-future experiments.

In parallel, the 6Li-53Cr (lithium-chromium) mixture was successfully obtained
experimentally in Florence [44], by realizing magneto-optically trapped Li-Cr clouds
in the cold regime. This specific choice was motivated by the unique scattering
properties of the Li-Cr system that cannot be obtained with any other atom-atom
combination, and which open the way to many interesting possibilities. For example,
the mass ratio rm = 0.1136 is predicted to support one weakly bound Cr2Li trimer
state in the regime of strong Li-Cr repulsion, which may enable the resonant tun-
ing of genuine few-body elastic interactions. Interestingly, although no predictions
are currently available for the Feshbach resonances, the rich hyperfine and Zeeman

6The critical mass ratio rm = 0.0735 is where the Efimov effect [110] occurs, i.e. the presence
of an effective long-range three-body attraction in a system with nearly-resonant attractive short-
range interaction, and the system becomes unstable. This instability happens because this effective
interaction is mediated by a light atom moving back and forth between two heavy atoms, and it
is strong enough to make the pairs to collapse [111,112].
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structure of these two atomic species, combined with the highly magnetic character
of Cr atoms, is expected to yield rich resonance spectra. In this regard, it is also
important to notice that even relatively narrow Feshbach resonances could guaran-
tee a good collisional stability [44]. For these reasons, also this mixture seems to
be a promising candidate for exploring the properties of mass imbalanced ultra-cold
gases in the experiments, that are still going on.
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Chapter 6

Numerical Results at Finite
Temperature

In this chapter, we present the numerical results obtained within the Luttinger-
Ward approach for different physical quantities at finite temperature. More pre-
cisely, we are going to discuss the results for the critical temperature Tc, the mean
chemical potential µ and the imbalancing field h, the contact C and, in order to an-
alyze the FFLO fluctuations, the pair susceptibility χpair(Q). We will focus on the
temperature-coupling-polarization phase diagram for three different mass ratios, cor-
responding to a balanced mixture, a 40K-161Dy (potassium-dysprosium) mixture and
a 6Li-53Cr (lithium-chromium) mixture. Moreover, the results for the chemical po-
tential and the imbalancing field are compared with an analytical high-temperature
limit of the t-matrix approach, which reduces to the virial expansion for a quantum
gas in the high-T regime. The results for the two mass imbalanced mixtures are
a new contribution of this thesis, and are compared with known results for a mass
balanced mixture [46,80,113], which we have anyway reproduced for completeness.

6.1 Critical Temperature
One of the most important thermodynamic quantities, for standard BCS pairing,

is the critical temperature for the superfluid transition Tc, which can be obtained
from the Thouless criterion (3.45)

[Γ(Q = 0,Ων = 0)|T=Tc(p)]
−1 = 0. (6.1)

As already discussed in Section 3.2.1, we remark that our analysis at finite tem-
perature focuses on a standard second-order normal-to-superfluid phase transition.
Accordingly, it does not consider the occurrence of either phase separation related
to a first-order normal-to-superfluid phase transition or a FFLO phase.

The results for the critical temperature Tc (in units of EF = k2F/(4mred)) as a
function of the coupling (kFaF )

−1 at zero polarization p = 0 are shown in Figure
6.1. The BCS and BEC temperatures, obtained in (3.33) and (3.59) respectively,
are also reported in the figure for comparison (dashed lines). In the BEC limit
(kFaF )

−1 ≫ 1, the Luttinger-Ward approach correctly recovers the condensation
temperature for non-interacting composite bosons for each mass ratio considered.
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Similarly, in the BCS limit (kFaF )
−1 ≪ −1, the mean-field critical temperature is

recovered for all the mixtures here considered. For the Li-Cr mixture, we have not
been able to go below the value (kFaF )

−1 = −1.8, due to convergence problems in
the numerical calculations.
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Figure 6.1: Critical temperature Tc (in units of the Fermi energy EF ) as a func-
tion of the coupling (kFaF )

−1 in the spin-balanced case p = 0. The dashed lines
correspond to the BCS critical temperatures for (kFaF )−1 < −1 and the BEC criti-
cal temperatures of non-interacting composite bosons for (kFaF )

−1 > 1. The mass
ratios rm = (0.1136, 0.2484, 1.0000) correspond to the Li-Cr, K-Dy and balanced
mixture, respectively.

The ratio Tc/EF can also be obtained as a function of the polarization p, by
fixing the coupling (kFaF )

−1, as shown in Figure 6.2 at unitarity. In this case the
results were already obtained in a previous work [113] and are reproduced here for
completeness. We notice that in the mass-balanced case the maximum of Tc/EF

occurs for equal densities (p = 0). For mass-imbalanced mixtures, however, the
maximum occurs instead at p > 0, which corresponds to a majority of light atoms.
In particular, one obtains pmax = 0.0775 for the K-Dy mixture and pmax = 0.114
for the Li-Cr mixture. Moreover, for the K-Dy mixture, on the p < 0 side the Tc
curve decreases up to a point where it starts developing a re-entrance, in a similar
way to what happens for the mass-balanced case (symmetric peak). As we have
seen in Section 1.4, this re-entrant behavior is usually associated with a region of
phase separation in the phase diagram, where the normal-superfluid phase transition
becomes of first-order and the second-order curve for Tc is covered by this region.
From mean-field calculations (see Figure 1.7 for example), one would expect in
addition an FFLO phase to develop in this region of the phase diagram. For the Li-
Cr mixture, on the other hand, convergence problems in the numerical calculations
prevented exploring the low temperature region at negative polarization.

We conclude this section with an important consideration. In the previous fig-
ures, we see that the ratio Tc/EF decreases monotonically for decreasing mass ratio
rm = m↑/m↓. Actually, at fixed heavier mass m↓, this is just an effect of the chosen
normalization in terms of EF = (3π2n)2/3/(4mred), since EF → ∞ for rm → 0. To
remove this effect, we should consider the temperature in units of the Fermi energy
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Figure 6.2: Critical temperature Tc (in units of the Fermi energy EF ) as a function
of the polarization p = (n↑ − n↓)/n at unitarity. Following our conventions, p > 0
(p < 0) corresponds to the majority of the light (heavy) species. The mass ratios
rm = (0.1136, 0.2484, 1.0000) correspond to the Li-Cr, K-Dy and balanced mixtures,
respectively. Source: adapted from Ref. [113].

EF↓ = (6π2n↓)
2/3/(2m↓) of the heavy component. In this way, the ratio Tc/EF↓ is

instead seen to increase for decreasing rm. This also means that the value of pmax,
referred to Figure 6.2, depends on the units used for normalizing Tc. When these
units are in terms of EF↓ of the heavy component, we obtain pmax = 0.166 for the
K-Dy mixture and pmax = 0.204 for the Li-Cr mixture. Otherwise, when the units
are in terms of EF↑ of the light component, we obtain pmax = −0.003 for the K-Dy
mixture and pmax = 0.036 for the Li-Cr mixture.

6.2 Chemical Potentials
Let us now consider the chemical potentials µσ, which are obtained by inverting

the density equations in (3.44). In the following, rather than deal with µ↑ and µ↓,
we will work with the mean chemical potential µ = (µ↑+µ↓)/2 and the imbalancing
field h = (µ↑ − µ↓)/2, such that we easily recover the original µ and the trivial
result h = 0 in the balanced case. In this section, we focus on these two quantities
at unitarity (kFaF )

−1 = 0 and low temperatures, i.e. T < 1.2EF . However, it is
important to notice that the numerical program initially requires two guess values
for µ and h as input, which can be readily obtained within the high-temperature
approximation discussed below.

In Figure 6.3, we report the temperature dependence of µ and h (in units of EF )
at unitarity, down to the critical temperature Tc, for three different values of the
polarization p = (−0.4, 0, 0.4). Notice that we have h ̸= 0 even at zero polarization,
if the mass ratio rm ̸= 1. This is because the chemical potentials µσ depends also on
the massesmσ, and not only on the densities nσ. Moreover, we see that all the curves
end up at the critical temperature Tc which depends on the chosen polarization p
and mass ratio rm, in agreement with the results discussed in Figure 6.2 above.
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Figure 6.3: Mean chemical potential µ = (µ↑ + µ↓)/2 and imbalancing field h =
(µ↑−µ↓)/2 as a function of the temperature T (both in units of the Fermi energy EF )
at unitarity, up to the critical temperature, for the polarization p = (−0.4, 0, 0.4).
The mass ratios rm = (0.1136, 0.2484, 1.0000) correspond to the Li-Cr, K-Dy and
balanced mixtures, respectively.
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6.2.1 High-temperature Limit

It is interesting to consider the high-temperature limit of the t-matrix approx-
imation. We will show that it reduces to the quantum virial expansion1 of Beth
and Uhlenbeck [114], which means that it becomes exact in this limit [115]. This
is naturally quite a satisfactory feature of this approximation and is also useful for
providing initial values of µ and h in the numerical program2.

We assume the temperature to be sufficiently high, such that the zσ = eβµσ ≪ 1,
i.e. the fugacity is much smaller than one. In this limit, we can expand the equations
for the particle densities nσ in (3.44) since the self-energy Σσ is small with respect to
(G0

σ)
−1, which contains the large energy scale µσ. We therefore have nσ = n0

σ + δnσ,
with

n0
σ =

∫
dk

(2π)3
f(ξkσ) ≃ zσ

(
mσT

2π

)3/2

− z2σ

(
mσT

4π

)3/2

≡ n0
σ,1 + n0

σ,2, (6.2)

where n0
σ,1 is the classical density for a free Fermi gas while n0

σ,2 is the first correction
to this value, and

δnσ =

∫
dk

(2π)3
1

β

∑
n

G0
σ(k)

2Σσ(k). (6.3)

As we know from (3.78), the self-energy Σσ is defined in terms of the particle-particle
propagator Γ which, for zσ ≪ 1, is replaced by its strong-coupling value ΓSC

0 in 3.50.
If we now consider the frequency sum

1

β

∑
n

1

i(Ων − ωn)− ξQ−kσ̄

1

1− aF

√
2mred(

Q2

2mB
− 2µ− iΩν)

=

∮
C

b(z)dz

z − (iωn + ξQ−kσ̄)

1

1− aF

√
2mred(

Q2

2mB
− 2µ− z)

,

(6.4)

where the contour C surrounds the poles of the Bose function b(z) = [eβz − 1]−1 on
the imaginary axis, we notice that we need to distinguish if aF < 0, i.e. no bound
states, or if aF > 0. This is because, in the former case we have a contribution from
the pole of G0

σ̄ and one from the branch cut of ΓSC
0 , while in latter case we also have

a contribution from the pole of ΓSC
0 .

Let us first discuss the case aF < 0. For zσ ≪ 1, one can readily prove that the
contribution from the cut is smaller than the one from the pole by a factor zσ and

1The quantum virial expansion, alternatively referred to as quantum cluster expansion, is a stan-
dard method in quantum statistical mechanics which is practically useful for a dilute quantum gas.
The basic idea is that, since we are dealing with a strongly correlated system at low temperatures,
with increasing temperature the correlation between particles would become increasingly weak.
Concretely, by Taylor-expanding Ω = −T lnZ in the fugacity, where Z = 1 + zZ1 + z2Z2 + · · · ,
the thermodynamic potential takes the form Ω = −TZ1[z+ b2z

2+ b3z
3+ · · · ], where bn is referred

to as the n-th virial coefficient. As shown by Beth and Uhlenbeck, the second virial coefficient
for interacting Fermi gases can be expressed in terms of the phase shifts of a two-body scattering
problem.

2The analytic derivation presented in this section is based on private notes by P. Pieri for the
fully balanced case, here generalized to the mass and density imbalanced case.
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can be neglected. We have then

Σσ(k) = −
∫

dQ

(2π)3
e−βξQ−kσ̄

2mred

4πaF
− (2mred)3/2

4π

√
Q2

2mB
− ξQ−kσ̄ − iωn − 2µ

. (6.5)

If we insert this quantity in the expression (6.3) for δnσ and perform the sum over
the Matsubara frequencies, we see that k = |k| is a cut-off when k ≳

√
2mσT and,

similarly, the Boltzmann factor e−βξQ−kσ̄ is a cut-off for Q = |Q|. We can then
neglect (Q− k)2/2mσ̄ and Q2/2mB in the denominator with respect to µ. This
gives

Σσ(k) =
n0
σ̄,1

2mred

4πaF
− (2mred)3/2

4π

√
−iωn − µσ

, (6.6)

which can be inserted in the expression for δnσ and, after an integration over k, we
get

δnσ = n0
σ̄,1

(2mσ)
3/2

8π

1

β

∑
n

1
2mred

4πaF
− (2mred)3/2

4π

√
|µσ| − iωn

1√
|µσ| − iωn

. (6.7)

The sum over the fermionic frequencies ωn is transformed into an integral over
frequency on a contour encircling the poles of the Fermi function, in analogy to
what we have done in (6.4). This contour is then deformed into a clockwise contour
C around the cut [|µσ|,∞) of the square root. This gives, after some algebraic
manipulations, the important result

δnσ = n0
σ̄,1

23/2

π

(
mσ

2mred

)3/2

zσF

(
ε0
T

)
, (6.8)

where ε0 = (2mreda
2
F )

−1 is the binding energy, corresponding to a bound state if
aF > 0, while the function F is defined as

F (α) =

∫ ∞

0

dx
e−αx2

1 + x2
, (6.9)

with F (0) = π/2. The expression (6.8) is just the Beth-Uhlenbeck result for our
case. We have then, for aF < 0 and T ≫ EF , the coupled equations

nσ = zσ

(
mσT

2π

)3/2[
1 +

23/2

π

(
mσ̄

2mred

)3/2

zσ̄F

(
ε0
T

)
− 1

23/2
zσ

]
, (6.10)

which can be solved analytically only by iteration, knowing that zσ ≃ (2π/(mσT ))
3/2nσ

at leading order, and therefore gives the equations for the high-temperature chemical
potentials of the two species

µHT
σ = T ln

[ (
2π

mσT

)3/2
nσ

1 + 23/2

π

(
2π

2mredT

)3/2
nσ̄F

(
ε0
T

)
− 1

23/2

(
2π

mσT

)3/2
nσ

]
. (6.11)
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It is important to notice that an exception occurs when we deal with a mass and
spin-balanced system: in that case we would simply have a quadratic equation in z,
instead of the two coupled equations in (6.10), which can be solved exactly.

We now pass to consider the case aF > 0. The self-energy Σσ has also a contri-
bution due to a pole in the particle-particle propagator Γ0, which is given by

ΣB
σ (k) =

8π

(2mred)2aF

∫
dQ

(2π)3
b( Q2

2mB
− µB)

iωn + ξQ−kσ̄ + µB − Q2

2mB

, (6.12)

where we denoted µB = 2µ+ε0. The Bose function in (6.12) restricts the range of Q
to Q ≲

√
2mBT . Since at high temperature one has β|µσ| ≫ 1, it then follows that

Q2/(2mB) ≪ |µσ|. In addition, when integrating over k to calculate the densities,
the relevant region of k contributing to the integral extends to k of the order of the
large scale

√
2mσ|µσ|. We can thus consider Q≪ k, and thus set Q = 0 everywhere

in the denominator of (6.12) when calculating the densities. The corresponding
contribution to the density is readily obtained as

δnB
σ =

8πnB

(2mred)2aF

1

β

∑
n

∫
dk

(2π)3
1

(iωn − ξkσ)2
1

iωn + ξ−kσ̄ + µB

, (6.13)

where we defined nB = eβµB(mBT/(2π))
3/2. The double pole at z = ξkσ in the

frequency sum yields a contribution which is suppressed by a factor zσ. Therefore
we remain with

δnB
σ = nB = eβµB

(
mBT

2π

)3/2

, (6.14)

and, for aF > 0 and T ≫ EF , the coupled equations in (6.10) become

nσ = zσ

(
mσT

2π

)3/2{
1 +

23/2

π

(
mσ̄

2mred

)3/2

zσ̄

[
πeβε0 − F

(
ε0
T

)]
− 1

23/2
zσ

}
. (6.15)

For an arbitrary scattering length aF , it is generally convenient to introduce the
function

H

(
ε0
T
; aF

)
= πeβε0θ(aF )− sgn(aF )F

(
ε0
T

)
, (6.16)

such that we get the generic expression for the high-temperature chemical potentials

µHT
σ = T ln

[ (
2π

mσT

)3/2
nσ

1 + 23/2

π

(
2π

2mredT

)3/2
nσ̄H

(
ε0
T
; aF

)
− 1

23/2

(
2π

mσT

)3/2
nσ

]
, (6.17)

which correctly recovers the classical value at leading order

µcl
σ = T ln

[(
2π

mσT

)3/2

nσ

]
. (6.18)

As a check, in Figure 6.4 (above), we present the temperature dependence of µ
and h at unitarity, calculated numerically within the t-matrix approach (Luttinger-
Ward), together with the high-temperature expression in (6.17) and the classical
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value in (6.18), for the K-Dy mixture and Li-Cr mixture at p = 0.4 and p = −0.4,
respectively. Since the scales used in the plots for µ and h compress the differences, in
the same figure (below) we reported the temperature dependence of z↑z↓ = e2βµ and
z↑/z↓ = e2βh. We see that the high-T expression (red dashed line) correctly overlaps
the self-consistent t-matrix curve (black full line) at sufficiently high-temperatures,
i.e. T > EF , and greatly improves the classical result (blue dotted line).

6.3 Contact
The contact C can be obtained from the relation C = (2mred∆∞)2, where ∆2

∞
is directly calculated from the particle-particle propagator Γ, using (3.71), as

∆2
∞ =

∫
dQ

(2π)3
1

β

∑
ν

eiΩν0+Γ(Q). (6.19)

To check the internal consistency of the numerical program, one can verify that the
contact calculated in this way coincides with the coefficient of the k−4 tail of the
momentum distribution per spin component nσ(k), as in (1.35).

In Figure 6.5, we report the temperature dependence of C (in units of k4F ) at
unitarity, down to the critical temperature Tc, for three different values of the po-
larization p = (−0.4, 0, 0.4). What is interesting here is the presence of a maximum
in the curves for the spin-imbalanced systems, in particular only at p < 0 for the
mass-imbalanced mixtures, i.e. majority of heavy species. From the definition of
Tan’s contact, discussed in Section 1.5.2, this means that there exists a temperature
(greater than Tc) in the normal phase for which the pair correlation function for
different species at short distances is maximal.

As we did for the chemical potentials µσ in the previous section, we can study
the high-temperature behaviour also for the contact. Since for T ≫ EF the mean
chemical potential µ is large and negative, we are interested in

∆2
∞ =

∫
dQ

(2π)3

∫ ∞

−∞
dω

1

π
ImΓSC

0 (Q, ω + i0+)b(ω), (6.20)

where b(ω) = [eβω − 1]−1 is the Bose function.
Consider first the case aF < 0, with no bound state. We have that ImΓSC

0 ̸= 0
for ω > −2µ+Q2/(2mB) therefore, by setting ω = −2µ+Q2/(2mB) + x, we have

∆2
∞ =

∫
dQ

(2π)3

∫ ∞

0

dx
1

π
ImΓSC

0

(
Q, 2|µ|+ Q2

2mB

+x+ i0+
)
e
−β
(
−2µ+ Q2

2mB
+x
)
, (6.21)

where we have replaced the function b(ω) with e−βω, since βω is large in the region
where ImΓSC

0 ̸= 0. We can therefore perform the integral over the momentum Q
and, after a few algebraic passages, we get the important result

∆2
∞ = z↑z↓

T 2

2π

(
mB

mred

)3/2[
1−G

(
ε0
T

)]
, (6.22)
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Figure 6.4: Above: mean chemical potential µ and imbalancing field h as a function
of the temperature (both in units of the Fermi energy EF ) at unitarity for the K-Dy
mixture at p = 0.4 (left) and Li-Cr mixture at p = −0.4 (right). The numerical data
are compared with both the classical and high-temperature analytical expressions.
Below: in order to show clearly the differences, the same results are presented in
terms of the fugacities zσ.
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Figure 6.5: Contact C (in units of k4F ) as a function of the temperature T (in units of
the Fermi energy EF ) at unitarity, up to the critical temperature, for the polarization
p = (−0.4, 0, 0.4). The mass ratios rm = (0.1136, 0.2484, 1.0000) correspond to the
Li-Cr, K-Dy and balanced mixtures, respectively.

where we used e2βµ = z↑z↓ and we introduced the function

G

(
ε0
T

)
=

2√
π

(
ε0
T

)1/2

F

(
ε0
T

)
, (6.23)

with the function F defined in (6.9).
For aF > 0, we also have a contribution due to the pole in the particle-particle

propagator Γ0, which is given by

(∆B
∞)2 = z↑z↓e

βε0

(
mBT

2π

)3/2
8π

(2mred)2aF
. (6.24)

To summarize, we have found that for T ≫ EF and arbitrary scattering length
aF , we have

∆2
∞ = z↑z↓

T 2

2π

(
mB

mred

)3/2[
1−G

(
ε0
T

)]
+ z↑z↓e

βε0

(
mBT

2π

)3/2
8πθ(aF )

(2mred)2aF
, (6.25)

where the fugacities zσ can be obtained from the high-temperature chemical poten-
tials µσ in (6.17).

Exactly as we did before, we can compare the numerical results for the contact C
at unitarity with those obtained using (6.25), both for the high-temperature result
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for the chemical potentials (6.17) and classical result (6.18). This is done in Figure
6.6 for the K-Dy mixture at p = 0.4 and the Li-Cr mixture at p = −0.4. Also in
this case, the contact obtained using high-T expression of the chemical potentials
provides a better result than the same calculated using the classical chemical po-
tentials. However, we see that for the K-Dy our approximation remains valid longer
(going down from high T ) than the one for the Li-Cr because, with the same T/EF ,
the numerical error made in the product of the fugacities z↑z↓ is smaller.
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Figure 6.6: Contact (in units of k4F ) as a function of the temperature (in units of
the Fermi energy EF ) at unitarity for the K-Dy mixture at p = 0.4 (left) and Li-
Cr mixture at p = −0.4 (right). The numerical data are compared with both the
classical and high-temperature analytical expressions.

6.4 Pair Susceptibility and FFLO Fluctuations
As discussed in Section 3.2.1, even if we are not able to study the direct occur-

rence of a FFLO phase at finite temperature within the t-matrix approaches, we can
still analyze the presence of strong FFLO fluctuations in the normal phase. In order
to do this, we need to define the pair susceptibility χpair(Q), which describes the
tendency of the Fermi gas in the normal phase towards the superfluid phase with
pair momentum Q, and to properly identify this quantity in our approximation.

Following the derivation of χpair(Q) presented in Ref. [80], we start with the
grand-canonical Hamiltonian

K̂ =
∑
σ

∫
dx ψ̂†

σ(x)

(
− ∇2

2mσ

−µσ

)
ψ̂σ(x)+v0

∫
dx ψ̂†

↑(x)ψ̂
†
↓(x)ψ̂↓(x)ψ̂↑(x), (6.26)

where ψ̂σ is a fermionic field operator and v0 is the bare interaction strength, with
v0 → 0 when the interaction is properly regularized using aF in 3.29. We then add
to the Hamiltonian (6.26) the symmetry-breaking term

Ĥext = −
∫
dx η(x)φ̂(x), φ̂(x) =

1√
2

(
∆̂(x) + ∆̂†(x)

)
, (6.27)

where η(x) is a classical real field coupled to the gap operator ∆̂(x) = v0ψ̂↑(x)ψ̂↓(x)
and its hermitian conjugate. Within linear-response theory, the pair susceptibility
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is obtained as the Fourier transform

χpair(Q) =

∫
dx e−iQ·xχpair(x) (6.28)

of the local functional derivative

χpair(x− x′) =
δ⟨φ̂(x)⟩η
δη(x′)

∣∣∣∣
η=0

, (6.29)

where ⟨. . . ⟩η denotes grand-canonical thermal average containing the symmetry-
breaking term in (6.27).

The expression (6.29) implies that a finite and weak probing field of the form
η(x) = η cos(Q0 · x) induces in the normal phase a gap parameter ∆Q0(x) ∝
χpair(Q0)η cos(Q0 · x), thus signaling that χpair(Q) quantifies the tendency towards
FFLO pairing. Therefore, evidence that the pair susceptibility becomes strongly
peaked about a finite value Q0 can be considered as indicating the presence of
strong FFLO pairing fluctuations in the normal phase.

The pair susceptibility χpair(x − x′) can be related to an appropriate response
function. This is done by calculating the functional derivative in (6.29) at finite η

δ⟨φ̂(x)⟩η
δη(x′)

=
Tr[ δe−βK̂

δη(x′)
φ̂(x)]

Tr[e−βK̂ ]
− Tr[e−βK̂φ̂(x)]

Tr[e−βK̂ ]

Tr[ δe−βK̂

δη(x′)
]

Tr[e−βK̂ ]
, (6.30)

using the operator identity

e(Â+δÂ)s = eÂs
[
1 +

∫ s

0

ds′e−Âs′δÂe−Âs′ + · · ·
]
, (6.31)

to linear order in δÂ [80]. If we then introduce the following temperature response
function

D(xτ,x′τ ′) = ⟨Tτ [∆̂(x, τ)∆̂†(x′, τ ′)]⟩η=0, (6.32)

after some algebraic manipulations, we get

χpair(x− x′) =

∫ β

0

dτ D(x− x′, τ) = D(x− x′,Ων = 0), (6.33)

which becomes χpair(Q) = D(Q,Ων = 0) in Fourier space.
In our diagrammatic approach, the simplest physically meaningful approximation

for D(Q,Ων) results by summing the series of non-self-consistent ladder diagrams,
yielding D(Q,Ων) = Γ0(Q,Ων), which justifies the result given at the end of Section
3.2.1. However, in our improved description of an imbalanced Fermi gas within the
self-consistent t-matrix, is natural to identify the pair susceptibility as

χpair(Q) = Γ(Q,Ων = 0). (6.34)

In Figure 6.7, we present the results for the dimensionless pair susceptibility
χpair(Q)2mredkF at unitarity for two values of polarization p = (−0.4, 0.4). From
these results one sees that the pair susceptibility gets strongly enhanced about a
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finite momentum Q0 of order |kF↑−kF↓| as the temperature is progressively lowered,
thereby signaling the presence of strong FFLO fluctuations in the normal phase.
Moreover, consistently with what has been discussed at the end of Section 1.4.1, we
see that the FFLO phase is suppressed for p > 0, i.e. when the light species is the
majority. However it seems that, the more the mass ratio rm = m↑/m↓ decreases,
the more the FFLO effects are confined to lower temperatures. Exactly as we said at
the end of Section 6.1, this is just an artifact due to our choice of the normalization
in terms of EF . Indeed, from the point of view of experimental feasibility, what
matters is the ratio T/EF↓, which becomes much higher. For example, at p = −0.4
the value T/EF = 0.01 becomes T/EF↓ = (0.039, 0.020, 0.008) for the Li-Cr, K-Dy
and balanced mixtures, respectively.
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Figure 6.7: Pair susceptibility χpair(Q) (in units of (2mredkF )
−1) at unitarity vs pair

momentum Q = |Q| (in units of kF ) at various temperatures for two different values
of polarization p = 0.4 (left) and p = −0.4 (right). The three different mass ratios
rm correspond to the balanced (top), K-Dy (middle) and Li-Cr (bottom) mixtures.
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Chapter 7

Numerical Results at Zero
Temperature

In this chapter, we present the numerical results obtained within the Luttinger-
Ward approach at zero temperature. First of all, we discuss the results for the
T = 0 phase diagram (coupling-polarization), focusing on three different mass ratios,
corresponding to a balanced mixture, a 40K-161Dy (potassium-dysprosium) mixture
and a 6Li-53Cr (lithium-chromium) mixture. The evolution towards a non-Fermi
liquid behaviour at the quantum critical point (QCP) is investigated by analyzing the
quasi-particle residues and effective masses in function of the polarization. Finally,
we present some results for the Matsubara self-energies, which can be connected to
the low frequency behaviour of the spectral weight functions at the Fermi surface.
The results for the two mass imbalanced mixtures are a new contribution of this
thesis, while the results for the mass balanced mixture were already obtained in
Ref. [47], anyway reproduced here for completeness.

7.1 Zero Temperature Phase Diagram
As discussed in Section 4.3.2, The critical polarization pc for the second-order

normal-to-superfluid transition is determined by the generalized Thouless criterion
(4.34)

[Γ(Q = Q0,Ω = 0)|p=pc ]
−1, (7.1)

where, if Q0 = 0, the transition is towards a Sarma superfluid, while if Q0 ̸= 0, the
transition is towards a FFLO superfluid. Indeed, we recall that the FFLO transition
line can be correctly found only at zero temperature in our diagrammatic approach,
because the divergence in the self-energy discussed in Section 3.2.1 becomes inte-
grable only in the T = 0 limit.

In Figure 7.1, we present the critical polarization pc as a function of the coupling
(kFaF )

−1 at T = 0, within the zero temperature Luttinger-Ward approach, for three
different mass ratios rm = m↑/m↓. In all the diagrams, we can identify three phases:
a normal Fermi liquid phase (N), a homogeneous polarized superfluid (Sarma) and
an inhomogeneous superfluid (FFLO). They all meet at two different Lifshitz points
(LP), generally defined as tricritical points among a disordered phase, a spatially
uniform ordered phase and a spatially modulated ordered phase [116].
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Figure 7.1: Polarization-vs-coupling phase diagram of the imbalanced ultra-cold
Fermi gas at zero temperature, for the mass-balanced (above), K-Dy (middle) and Li-
Cr mixtures (below). The diagrams are calculated within the self-consistent t-matrix
approach, considering only the second order phase transitions from the normal (N)
phase towards a FFLO superfluid (red line) or a Sarma superfluid (blue line). LP
is the Lifshitz point while MP is the polaron-to-molecule transition point.
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Notice that the presence of two Lifshitz points is related to an asymmetric situa-
tion in the polarization line due to a mass imbalance in the system. Indeed, for the
mass-balanced mixture, the Lifshitz points are symmetrical and, in our approach,
they are found at ((kFaF )−1

L , pL) = [(0.643, 0.658), (0.643,−0.658)]. Instead, for the
K-Dy mixture we have found ((kFaF )

−1
L , pL) = [(0.106, 0.638), (1.627,−0.765)], while

for the Li-Cr mixture ((kFaF )−1
L , pL) = [(−0.096, 0.629), (2.154,−0.749)]. On the left

of the Lifshitz points, the phase transition (red line) is between the normal (N) and
the FFLO phase and slowly approaches p = 0 in weak-coupling (kFaF )

−1 ≪ −1.
On its right, instead, the phase transition (blue line) is between the normal (N) and
the Sarma phase and ends up in the polaron-to-molecule transition points (MP).
These points are found at (kFaF )

−1
M = [1.17, 1.17] for the mass-balanced mixture,

(kFaF )
−1
M = [0.54, 2.36] for the K-Dy mixture and (kFaF )

−1
M = [0.29, 3.34] for the Li-

Cr mixture. Unfortunately, for the mass-imbalanced systems at p < 0, we have not
been able to complete the normal-FFLO transition line due to convergence problems
in our numerical calculations. Despite this, we are still able to define the Lifshitz
point as the final point in the normal-Sarma transition line, and therefore to obtain
an extrapolation of the missing data.

Notably, for the mass-balanced system, the transition at unitarity (kFaF )
−1 = 0

is still of FFLO kind at a critical polarization pc = 0.434, in contrast to what is found
in mean-field. For later convenience, we report the value pc = 0.776, corresponding
to the coupling (kFaF )

−1 = 0.8. Moreover, for the K-Dy and Li-Cr mixtures at
unitarity, we get pc = [0.578,−0.379] and pc = [0.743,−0.388], respectively.

The most important result of this analysis is a pure enlargement of the FFLO
region when the system is mass-imbalanced with a majority of the heavy species, i.e.
p < 0 following our convention. This is consistent with what has been discussed at
the end of Section 1.4.1, within a mean-field approach. However, to be sure of this
consideration, one has to check if the presence of a mass-imbalance in the system
does not also imply a shift to the right of the strong-coupling limit in the phase
diagram. This is done by evaluating the ratio −µ/(2ε0) at the Lifshitz point with
p < 0, where ε0 = (2mreda

2
F )

−1 is the binding energy of the bound state between two
fermions of different species while µ = (µ↑ + µ↓)/2 is the mean chemical potential.
Indeed, as discussed in Section 1.3, we expect that in the (kFaF )

−1 ≫ 1 limit this
ratio approaches to one. From our calculations, we get µL/EF = −2.89 for the
D-Ky mixture and µL/EF = −4.99 for the Li-Cr mixture, therefore −µL/(2ε0) ≡
(kFaF )

2µL/EF ≃ 1.09 for the K-Dy and −µL/(2ε0) ≃ 1.08 for the Li-Cr. This means
that the strong-coupling limit is not shifted with respect to the mass-balanced case.

At the QCP in the strong-coupling limit, one also expects that the ratio |h|/(2ε0)
is of the order of one, where h = (µ↑−µ↓)/2 is the imbalancing field, while it increases
in the normal phase and decreases in the superfluid phase. This happens because
the presence of a sufficiently strong external field destroys the fermion pairs and
hinders superfluidity also at T = 0. Indeed, at the Lifshitz points with negative
polarization, we get hL/(2ε0) ≃ 1.17 for the K-Dy mixture and hL/(2ε0) ≃ 1.11 for
the Li-Cr mixture.
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7.2 Quasi-particle Residues and Effective Masses
In this section, we characterize the evolution of the Fermi liquid phase from the

polaronic limit (p ≃ 1) to the superfluid QCP (p = pc) at zero temperature in terms
of the quasi particle residues at the Fermi surface Zσ and effective masses m∗

σ.
First of all, it is necessary to generalize the results presented in Section 4.2.1,

which are obtained in terms of the retarded self-energy, by extending the quasi-
particle picture to the Matsubara formalism. Indeed, the expressions (4.23) and
(4.27) (properly generalized to an imbalanced system) can also be obtained from
the self-energies calculated on the imaginary axis. In order to do this, we substitute
ω with iω in the upper complex plane in (4.22), thus we get

iω − ξ0kσ − Σσ(k, ω) =
iω − ξkσ + iγkσ

Zkσ

, (7.2)

where now Σσ(k, ω) is the Matsubara self-energy. We therefore expand the self-
energy near the origin of the complex plane iω = 0 for |k| = kFσ (since γkFσσ = 0
and ξkFσσ = 0)

Σσ(k, ω) ≃ Σσ(k, 0) + iω
∂

∂(iω)
ImΣσ(k, ω)

∣∣∣∣
iω=0

, (7.3)

and, by inserting (7.3) in (7.2), we obtain the desired expression for the quasi-particle
residues at the Fermi surface

Zσ =

[
1− ∂

∂ω
ImΣσ(kFσ, ω)

∣∣∣∣
ω=0

]−1

. (7.4)

With algebraic manipulations similar to those made in Section 4.2.1, the inverse of
the effective masses can be obtained from the relation

mσ

m∗
σ

= Zσ

[
1 +

mσ

kFσ

∂

∂k
Σσ(k, 0)

∣∣∣∣
|k|=kFσ

]
. (7.5)

Figure 7.2 shows the evolution of the quasi-particle residues (7.4) and the inverse
effective mass ratio (7.5) for the mass-balanced system in the normal phase as a
function of the polarization p > 0, for two characteristic couplings (kFaF )

−1 =
(0, 0.8). In the polaronic limit (p ≃ 1), the majority component is completely non-
interacting, so Z↑ = 1 and and m/m∗

↑ = 1. The minority component, instead,
is dressed by the majority atoms through the attractive interaction, and forms a
quasi-particle (attractive polaron), with Z↓ < 1 and m/m∗

↓ < 1. By reducing p, the
effects of the attractive interaction become stronger for both spin components, and
the values of Zσ and m/m∗

σ monotonically decrease. As discussed in Section 4.3.2,
at the QCP the nature of the superfuid phase strongly influences the behavior of the
quasi-particles: in the case of a FFLO phase, i.e. (kFaF )

−1 = 0, the quasi-particle
residues vanish and the effective masses diverge, while in the case of a Sarma phase,
i.e. (kFaF )

−1 = 0.8, they all remain finite, albeit strongly reduced with respect to
the polaronic limit. The vanishing of quasi-particle residues and the divergence of
the effective masses at a FFLO QCP correspond to a complete breakdown of the
quasi-particle description of the Fermi liquid phase.
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Figure 7.2: Quasi-particle residues Zσ (left) and inverse effective mass ratio m/m∗
σ

(right) for the two spin components as a function of the polarization p > 0 for the
mass-balanced system at the couplings (kFaF )

−1 = 0 (above) and (kFaF )
−1 = 0.8

(below). Source: adapted from Ref. [47].

Figure 7.3 reports the same evolution at unitarity for the K-Dy and Li-Cr mix-
tures, for negative values of polarization p < 0 (majority of heavy species). Also in
this case, the breakdown of the Fermi liquid theory at the FFLO QCP is evident,
with a vanishing of Zσ andmσ/m

∗
σ at the values of the critical polarization consistent

with the results discussed in Section 7.1. At the negative polaronic limit (p ≃ −1),
corresponding to a completely non-interacting system of heavier fermions, one can
see that value of the quasi-particle residue for the minority component Z↑ < 1 de-
creases by reducing the mass ratio of the Fermi mixture rm = m↑/m↓. The same
consideration also applies for the ratio mσ/m

∗
σ. In particular, we obtain Z↑ = 0.594

and m↑/m
∗
↑ = 0.732 for the K-Dy mixture, while Z↑ = 0.473 and m↑/m

∗
↑ = 0.515

for the Li-Cr mixture.
It is also interesting to evaluate, for the two mass-imbalanced mixtures, the

polaron energy in the polaronic limit at unitarity, given by the ratio µ↑/EF↓ if
p ≃ −1 (i.e. light polaron). We get µ↑/EF↓ = −1.616 and µ↑/EF↓ = −3.269 for the
Li-Cr mixture, both very different from the same value in the mass-balanced case,
µ↑/EF↓ = −0.677. This means that the absolute value of the light polaron energy
becomes larger as the mass ratio rm = m↑/m↓ decreases. Moreover, we also recover
the trivial result µ↓/EF↓ = 1 for both the mixtures at p ≃ −1, consistently with the
value of the chemical potential for a non-interacting Fermi gas at T = 0.

The previous results for the mass-imbalanced systems can be compared with the
Diagrammatic Monte Carlo (DMC) values in the polaronic limit at unitarity [117].
It has been found that, for the K-Dy mixture, Z↑ = 0.735 and µ↑/EF↓ = −2.61
while, for the Li-Cr mixture, Z↑ = 0.680 and µ↑/EF↓ = −1.49. One sees that,
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Figure 7.3: Quasi-particle residues Zσ (left) and inverse effective mass ratio m/m∗
σ

(right) for the two spin components as a function of the polarization p < 0 for
the mass-imbalanced systems at unitarity (kFaF )

−1 = 0. the mass ratios rm =
(0.2484, 0.1136) correspond to the K-Dy (above) and the Li-Cr mixtures (below),
respectively.

if we consider the DMC results as a benchmark, the fully self-consistent t-matrix
approach slightly overestimates the effects of interaction with the majority species.
This consideration obviously holds also in the mass-balanced case where, according
to the DMC results, Z↑ = 0.760 and µ↑/EF↓ = −0.615.

7.3 Matsubara Self-Energies
From the expression (7.4), we see that the vanishing of the quasi-particle residues

Zσ at the FFLO QCP requires the derivative of ImΣσ(kFσ, ω) with respect to ω to
diverge at ω = 0. It is interesting to see how this non-Fermi liquid behavior is
reached by progressively reducing the polarization and thus approaching the QCP.

In Figure 7.4, we show the evolution with polarization (p < 0) of ImΣσ(kFσ, ω)
for both spin components in the K-Dy mixture at unitarity. We can see that, for
ω ≃ 0, the Fermi liquid linear behavior ImΣσ(kFσ, ω) ≃ (1 − 1/Z)ω is gradually
replaced by a square-root behavior at the FFLO QCP. Specifically, we find a robust
fit of the data at low ω given by

ImΣσ(kFσ, ω) = −Cσ

√
ω, (7.6)

where Cσ is a real positive constant. Notice that, consistently with the finding of a
finite residue, along the N-Sarma critical line ImΣσ(kFσ, ω) remains linear with ω.

In Figure 7.5, we report the evolution with polarization (p < 0) in the K-Dy mix-
ture at unitarity for the quantities Re∆Σσ(kFσ, ω) = Re[Σσ(kFσ, ω) − Σσ(kFσ, 0)].
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Also in this case, we find a square root behaviour at low ω of the form

ReΣσ(kFσ, ω) = Σσ(kFσ, 0) +Bσ

√
ω, (7.7)

where Bσ is a real positive constant and we used the fact that the self-energies
Σσ(kFσ, 0) are real.
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at the Fermi surface as a function of the frequency on the imaginary axis ω at T = 0
and unitarity for the K-Dy mixture. The value p = −0.379 corresponds to the
critical polarization pc at unitarity.
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to the critical polarization pc at unitarity.

The square-root behavior which we have found for both ImΣσ and Re∆Σσ can be
connected to the low frequency behaviour of the spectral weight functions Aσ(kFσ, ω)
at the FFLO QCP. This is quite interesting because we can still get some information
on the spectral weight functions from the imaginary-time formalism, although a
complete knowledge of these quantities is achieved only after a numerical analytic
continuation, as discussed in Section 2.3.1. We start by noticing that the expressions
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(7.6) and (7.7), after the analytical continuation in the upper complex plane iω →
ω + i0+, allow us to get the small frequency behaviour of the retarded self-energies

ΣR
σ (kFσ, ω) = Σσ(kFσ, 0) + [Bσ − Cσsgn(ω)]

√
|ω|
2

− i[Cσ +Bσsgn(ω)]

√
|ω|
2
, (7.8)

for frequencies ω → 0. Notice that the physical condition ImΣR
σ ≤ 0 requires

Bσ ≤ Cσ, a condition which we found to be always satisfied by our fittings. This ex-
pression, plugged in the Dyson equation (4.28) to get the retarded Green’s functions
GR

σ (kFσ, ω), together with the expression (4.33), yields

A(QCP )
σ (kFσ, ω) =

Dσ±

|ω|1/2
, (7.9)

where the coefficient Dσ± depends on the sign of the frequency ω, and is given by

Dσ± =
1√
2π

Cσ +Bσsgn(ω)
B2

σ + C2
σ

. (7.10)

It is clear that the behaviour in (7.9) is very different from the Fermi liquid behaviour
at |k| = kFσ, given by Aσ(kFσ, ω) = Zσδ(ω), as discussed in Section 4.2. This
means that the spectral weight functions Aσ(k, ω), as well as containing important
dynamical properties of the system, also present a direct evidence of the non-Fermi
liquid behavior at the FFLO QCP.

Moreover, the behaviour (7.9) at the QCP can be connected to the dynamical
critical exponent z1 of the dynamic pair susceptibility χpair(Q,Ω) ≡ Γ(Q,Ω), ob-
tained by generalizing the expression (6.34). It has been verified numerically [47]
that, on the positive imaginary frequency axis for |Q| ≃ Q0 and iΩ ≃ 0, one has

χpair(Q,Ω) ≃
(2mredkF )

−1

ϵ+ b(|Q| −Q0)2 − (d1 + id2)iΩ
, (7.11)

where the parameters ϵ,b,d1,d2 are all real and positive, and ϵ vanishes at the QCP.
By performing the analytic continuation iΩ → Ω+i0+ to the real axis, and introduc-
ing the coherence length ξ =

√
b/ϵ2, we obtain the scaling form for the dynamical

pairing susceptibility

χ̃pair(Q,Ω; ξ) =
ξ2

2mredkF b
Φ0[(|Q| −Q0)ξ,m1Ωξ

2], (7.12)

where m1 = (d1 + id2)/b is a non-universal complex constant and Φ0 is a universal
scaling function. From this expression, we see that the real frequency Ω scales with
the inverse of a coherence time ξt ∼ ξ2 i.e. the dynamical critical exponent is z = 2.

1It is known that, near second order (continuous) phase transitions, many static physical quan-
tities show power law behaviours described by different exponents, known as critical exponents.
However, critical singularities also occur in dynamic properties, such as multi-time correlation
functions, responses to time-dependent perturbations and transport coefficients. In particular, the
characteristic time tchar of a system diverges with the correlation length ξ as tchar ∝ ξz, where z
is the dynamical critical exponent [118].

2The phase coherence length ξ is the length associated with the spatial fluctuations of the
superfluid order parameter [119]. It represents the correlation length for our theory.
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Quite generally, at QCPs where the quasi-particle residue vanishes, the spectral
weight functions for |k| ≃ kFσ and ω ≃ 0 should have the scaling form [47] [120]

A(QCP )
σ (k, ω) =

c0σ
|ω|1/z

F0

[
c1σω

||k| − kFσ|z

]
, (7.13)

where F0 is a universal scaling function, c0σ and c1σ are non-universal constants. By
taking the limit |k| → kFσ in (7.13), we recover (7.9), with Dσ± = c0σF (±∞). We
thus conclude that, also in this case, the dynamical critical exponent is z = 2.
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Conclusions and Perspectives

In this thesis, we have presented a theoretical study of the properties of a mass-
imbalanced and polarized ultra-cold Fermi gas in the normal phase throughout the
BCS-BEC crossover. In particular, we focused on two different mass-imbalanced sys-
tems: 40K-161Dy (potassium-dysprosium) mixture and 6Li-53Cr (lithium-chromium)
mixture. The study has been performed by means of a many-body diagrammatic
approach based on the t-matrix approximation, where only ladder diagrams with re-
peated particle-particle interactions are retained. More specifically, the calculations
have been implemented using the Luttinger-Ward approach, or fully self-consistent
t-matrix, obtained by replacing all the bare propagators G0

σ with dressed propagators
Gσ in the t-matrix self-energy diagrams.

At finite temperature, the analysis of the system was carried out by calculat-
ing different thermodynamic quantities: the critical temperature Tc, the chemical
potentials for the two species µσ, the Tan’s contact C and the pair susceptibility
χpair(Q). We have shown that the latter is used to study the presence of strong
FFLO fluctuations in the normal phase, which are precursors of an exotic Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) phase, an inhomogeneous superfluid character-
ized by a finite center-of-mass momentum of the fermionic pairs. In this regard, we
have found that the FFLO phase in mass-imbalanced systems is suppressed when
the majority of the species is the lighter one. Moreover, we have also considered the
high-temperature limit of the t-matrix approximation, which reduces to the virial
expansion for a quantum gas and thus becomes exact in this limit. This is naturally
quite a satisfactory feature of this approximation and is also useful for providing
initial guess values of the chemical potentials in our numerical calculations.

At zero temperature, for large polarization and not too strong interactions, we
have seen that the mixtures still remain in the normal phase, because an imbalance
between the two spin populations works against pairing and superfluidity. In this
region, the system is well described by the Landau theory of Fermi liquids, which
however breaks down at the FFLO quantum critical point (QCP). In this case, to
obtain the numerical results, it was essential to employ a T = 0 formulation of
the fully self-consistent t-matrix approach, so that the FFLO quantum critical line
could be correctly identified. This version, which still works with frequencies on
the imaginary axis, has been shown to satisfy the Luttinger theorem and correctly
describe the Fermi surfaces over which the fermionic quasi-particles are defined. A
relevant result in the coupling-polarization phase diagram for the mass-imbalanced
mixtures, is a pure enlargement of the FFLO region with a majority of the heavy
species, without any shift to the right of the strong-coupling limit. The evolution
of the Fermi liquid normal phase towards a non-Fermi liquid behaviour has been
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investigated by studying the quasi-particle residues and effective masses, ranging
in polarization from the polaronic limit to the superfluid QCP. We found that the
Fermi liquid description in terms of quasi-particles remains valid at the QCP towards
the homogeneous polarized phase (Sarma phase), while at the FFLO QCP we found
instead a complete breakdown of the quasi-particle description, characterized by the
vanishing of the quasi-particle residues, the divergence of the quasi-particle effective
masses and an anomalous ∼ ω1/2 frequency dependence of the real and imaginary
parts of the Matsubara self-energies at the Fermi surface. This square-root behaviour
allowed us to find the form of the spectral weight functions at the FFLO QCP, in
the low frequency limit at the Fermi surface, which is found to be very different from
the standard behaviour of a Fermi liquid. This result is consistent with a scaling at
the QCP with dynamical critical exponent z = 2.

As a perspective, it would be interesting to have a complete knowledge of the
spectral weight functions for a mass and spin-imbalanced system, which is achieved
only after a numerical analytic continuation. This is usually performed by means
of the Padè approximants, using a recursive algorithm developed by Serene in 1977
[121]. Although this simple algorithm is already a powerful tool for the analytic
continuation, it is known in the literature that, in practice, the procedure is quite
sensitive to the numerical errors in the input values on the imaginary axis, to the
extent that sometimes defects appear in the spectral function, distorting it and
even making it acquire negative values. To mitigate this issue, it is possible to
consider an average over multiple analytic continuations performed with different
sets of points on the imaginary axis, discarding the analytic continuations which
give negative functions. Actually, in a very recent work by Fei et al. [122], it was
proposed an alternative method for the analytic continuation that makes use of
Nevanlinna functions, a set complex functions analytical in the open upper half plane
with a non-negative imaginary part. Within this interesting method, the spectral
weight functions are guaranteed to be intrinsically positive. Finally, to explore in
more details the properties of imbalanced ultra-cold Fermi gases, it would be very
intriguing to extend our formalism to describe the superfluid phase and to study
the system at different dimensionalities, in particular in 2D, where a Berezinskii-
Kosterlitz-Thouless transition (BKT) from bound vortex-antivortex pairs at low
temperatures to unpaired vortices and anti-vortices at some critical temperature
can occur.
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Appendix A

Haussmann’s Fourier Transforms

Here we describe the numerical procedure developed by Haussmann [85, 86] to
compute the Fourier transforms, as in (3.81) and (3.82), for the Green’s function G
and the particle-particle propagator Γ, respectively. This powerful method is a good
alternative to the standard fast Fourier transform (FFT), which requires a constant
step width, since it receives as input any grid of points. However, to get this freedom
of choice we need to pay a price: numerical efficiency.

The numerical work can be considerably reduced by exploiting the rotational
symmetry of the system, which implies that the functions to be transformed depend
only on the absolute values of k, Q and x (i.e. we can analytically perform an inte-
gration over the angles). Thus, the Fourier transformations (3.81) and (3.82) become
effectively two-dimensional and we need a one-dimensional continuous Fourier trans-
formation for transforming the functions in the variables k,Q↔ x and τ → ωn,Ων ,
plus a discrete Fourier transformation for transforming the functions in the variables
ωn,Ων → τ 1.

A.1 Continuous Fourier Transformation
We need to evaluate quantities in the form

f(k) =

∫ xmax

xmin

dx eikxf(x) ≈ lim
∆x→0

xmax∑
x=xmin

∆x eikxf(x), (A.1)

where x is a discrete variable with constant step width ∆x and the sum is a trapezoid
sum (i.e. the first and last term are multiplied by a factor 1/2). We assume that
the function values are known in a finite subset of N + 1 distinct points xj such
that they cover the whole interval between xmin and xmax, i.e. xmin = x0 < x1 <
· · · < xN = xmax, distributed on a generic grid. Notice that, in general, the choice
of the points depends on the characteristics of the function to be transformed. For
example, we can use a logarithmic grid given by

xj = γ−1 sinh (γ∆xj), (A.2)
1Some analytical expressions for the discrete Fourier transformations are reproduced from pri-

vate notes by M. Pini.
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where γ is a numerical parameter which determines the distribution of points on the
grid, or an equally-spaced grid, i.e. xj = x0 + j∆x, but also a combination of the
previous two.

Consequently, we can divide the sum in (A.1) into a sum of N trapezoid sums

xmax∑
x=xmin

∆x eikxf(x) =
N−1∑
j=0

{ xj+1∑
x=xj

∆x eikxf(x)

}
, (A.3)

and we assume that the function f(x) can be approximated for x ∈ [xj, xj+1] by a
cubic spline polynomial

f(x) = aj + bj(x− xj) + cj(x− xj)
2 + dj(x− xj)

3, (A.4)

where the spline coefficients aj, bj, cj and dj can be calculated numerically. By
inserting the spline polynomial into (A.3), we find that the trapezoid sums can be
evaluated analytically, obtaining

f(k) =
N−1∑
j=0

{
ajI

(0)
j (k) + bjI

(1)
j (k) + cjI

(2)
j (k) + djI

(3)
j (k)

}
, (A.5)

where
I
(n)
j (k) = eikxj

(
− i

∂

∂k

)n[
∆x

2i
cot

(
k∆x

2

)
[eik(xj+1−xj) − 1]

]
. (A.6)

The continuous limit is easily obtained by taking ∆x→ 0 in the previous expression,
i.e. ∆x/(2i) cot (k∆x/2) → 1/(ik).

The expression (A.5) is good for small values of k ( |kxj| ≲ 1 for all j = 0, . . . , N),
since it does not have any divergence for k → 0. However, for large values of
k it is better to use an alternative formula obtained from the properties of the
spline interpolation. Indeed, since a cubic spline function and its two derivatives are
continuous by construction, we easily get the continuity conditions

f(xj+1) = aj + bj(xj+1 − xj) + cj(xj+1 − xj)
2 + dj(xj+1 − xj)

3 = aj+1,

f ′(xj+1) = bj + 2cj(xj+1 − xj) + 3dj(xj+1 − xj)
2 = bj+1,

f ′′(xj+1) = 2cj + 6dj(xj+1 − xj) = 2cj+1,

(A.7)

which may be used to regroup the terms in (A.5). As a result, we get the alternative
expression

f(k) = J (0)(k)[eikxNaN − eikx0a0] + J (1)(k)[eikxN bN − eikx0b0]

+J (2)(k)[eikxN cN − eikx0c0] + J (3)(k)
N−1∑
j=0

[(eikxj+1 − eikxj)dj],
(A.8)

where
J (n)(k) =

(
− i

∂

∂k

)n[
∆x

2i
cot

(
k∆x

2

)]
, (A.9)

which is still well defined in the continuous limit ∆x → 0. The functions (A.9)
diverge for k → 0 as J (n)(k) ∼ |k|−(n+1) and, for this reason, the alternative formula
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(A.8) can be applied numerically only for large values of k (|kxj| ≳ 1 for all j =
0, . . . , N). In practice, we use a combination of both formulas (A.5) and (A.8)
such that we obtain a special numerical Fourier transformation which is stable and
reliable.

A.2 Discrete Fourier Transformation
The previous procedure can be applied also to a Fourier series

f(τ) =
1

β

∑
ν

e−iωντf(ων), (A.10)

where the Matsubara frequencies ων can be either bosonic or fermionic. We assume
for simplicity that f(ων) = f(−ων)

∗, i.e. f(τ) is a real function, such that we can
rewrite the series as

f(τ) =
1

β
f(ων = 0) +

2

β
Re

[∑
ν>0

e−iωντf(ων)

]
, (A.11)

where the first term is present only in the bosonic case. In this way, we have to
calculate the sum only for positive frequencies, i.e. ν > 0. Also in this case, we take
into account distinct and ordered Matsubara frequencies ωj, sampled on a generic
grid. For example, a good choice for the fermionic frequencies on a logarithmic scale
is given by

ωj =
2π

β
nint

(
sinh(γj)

γ

)
+
π

β
, (A.12)

where nint(. . . ) is the nearest integer function, while for an equally-spaced grid we
have ωj = j∆ω+ π/β, where ∆ω = 2π/β is the difference between two neighboring
frequencies.

Now we have to evaluate numerically the quantity in the square brackets in
(A.11), which can be expressed as a sum of N − 1 sums

νmax∑
ν=νmin

e−iωντf(ων) ≡
ωmax∑

ω=ωmin

e−iωτf(ω) =
N−1∑
j=1

{ ωj+1∑
ω=ωj

e−iωτf(ω)

}
, (A.13)

with ωmin = ω1 < ω2 < · · · < ωN = ωmax. Notice that, unlike the continuous
case, we do not have any trapezoid sum here. We can now perform the cubic spline
approximation for ω ∈ [ωj, ωj+1]

f(ω) = aj + bj(ω − ωj) + cj(ω − ωj)
2 + dj(ω − ωj)

3, (A.14)

which allows to evaluate analytically the sums inside the curly brackets in (A.13),
obtaining an expression for small values of τ that is identical to (A.5), where now

I
(n)
j (τ) = e−iωjτ

(
i
∂

∂τ

)n[
1− e−i(ωj+1−ωj)τ

1− e−i∆ωτ

]
. (A.15)

In the same way, we can get an alternative formula identical to (A.8), which can be
applied only for large values of τ , with the modified J-functions given by

J (n)(τ) =

(
i
∂

∂τ

)n[
1

e−i∆ωτ − 1

]
. (A.16)
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Appendix B

Achievement of Self-consistency at
Finite Temperature

Here we present in detail the numerical procedures that are needed to implement
the cycle of self-consistency, presented in Figure 3.5, in the Luttinger-Ward approach
at finite temperature. This appendix is the direct generalization to the imbalanced
case of Appendix A in Ref. [46]. Consistently with the numerical programs, all the
expressions reported in this appendix are given in dimensionless units, such that
wave vectors are in units of the effective Fermi momentum kF = (3π2n)1/3, with
n = n↑+n↓, and energies (as well as temperatures, since kB = 1) in units of the Fermi
energy EF = k2F/(2m)1. The parameter m is simply substituted by 2mred for mass
imbalanced systems. Accordingly, the single-particle propagator Gσ(k, ωn) is in units
of E−1

F , the self-energy Σσ(k, ωn) in units of EF and the particle-particle propagator
Γ(Q,Ων) in units of (mkF )−1. In addition, we use the symbol v = (kFaF )

−1 for the
coupling.

B.1 Transforming from Gσ(k, ωn) to Gσ(x, τ )
The Fourier transform of the single-particle fermionic propagator G can be done

in two steps, namely

Gσ(k, ωn) → Gσ(k, τ) → Gσ(x, τ), (B.1)

hence a discrete transformation followed by a continuous one.
First of all, we recall that the dressed Green’s function G(k, ωn) for large fre-

quencies behaves like the free propagator

Gσ(k, ωn) ≃
ωn→∞

G0
σ(k, ωn) =

1

iωn − ξkσ
, (B.2)

where ξkσ = γσk
2 − µσ, with γσ = m/mσ. We can therefore calculate numerically

the Fourier series from ωn to τ of the difference ∆Gσ(k, ωn) = Gσ(k, ωn)−G0
σ(k, ωn),

1Notice that these choices are just conventions that easily generalize the case of a balanced
system. For example, another possible choice is to consider the Fermi momentum kFσ = (6π2nσ)

1/3

and the Fermi energy EFσ = k2Fσ/(2mσ) referring to the heavier species.
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which is easier to obtain since it converges for large frequencies as ∆Gσ(k, ωn) ∼
ω
−5/2
n . Then we add to this result the quantity G0

σ(k, τ), which it is known analyti-
cally in the form

G0
σ(k, τ) = e−ξkστ (f(ξkσ)− 1), (B.3)

as we can easily check from (2.24) with τ > 0, where f(ξkσ) is the Fermi function.
In the second step, it is convenient to split the expression B.3 in two parts

G0
σ,n(k, τ) = f(ξkσ)e

−ξkστ ,

G0
σ,a(k, τ) = −e−ξkστ ,

(B.4)

such that G0
σ(k, τ) = G0

σ,n(k, τ)+G0
σ,a(k, τ), where the subscripts n and a mean that

the term has to be numerically and analytically transformed, respectively. Therefore,
we can compute the analytical Fourier transform, which is given by

G0
σ,a(x, τ) = −e

µστe−x2/(4γστ)

8(πγστ)3/2
, (B.5)

which in the limit τ → 0+ is a representation of the Dirac delta function δ(x).
This term describes the singular behaviour for (x, τ) → 0+, not only in the free
case but also for the dressed propagator. It is thus convenient to work with the
difference ∆̃Gσ(k, τ) = Gσ(k, τ)−G0

σ,a(k, τ), which can be readily Fourier transformed
numerically. The desired function Gσ(x, τ) is obtained by adding (B.5) to ∆̃Gσ(x, τ).

B.2 Transforming from Γ(Q,Ων) to Γ(x, τ )

The Fourier transform of the particle-particle propagator Γ can done be in two
steps, namely

Γ(Q,Ων) → Γ(Q, τ) → Γ(x, τ), (B.6)

exactly as we did above for the fermionic propagator G.
We begin by noticing that, for large frequencies, the particle-particle propagator

Γ(Q,Ων) behaves like its non-self-consistent counterpart in the strong-coupling limit,
i.e. ΓSC

0 in (3.50), that in dimensionless units reads

Γ(Q,Ων) ≃
Ων→∞

ΓSC
0 (Q,Ων) = − 4π

v −
√
γ↑γ↓

Q2

4
− µ+ iΩν

2

, (B.7)

where µ = (µ↑ + µ↓)/2. However, using ΓSC
0 (Q,Ων) as the reference function to

be subtracted in the Fourier transform may lead to problems, because for Ων = 0
this function shows a pole at |Q| = 2

√
(v2 + µ)/(γ↑γ↓) for v > 0. Since we are

interested only in taking care of the large-frequency behavior of Γ(Q,Ων), we are
led to introduce the new reference function Γ̃SC

0 (Q,Ων) = ΓSC
0 (Q,Ων)− ΓSC

0 (Q, 0).
Although the Fourier transform of Γ̃SC

0 (Q,Ων) cannot be calculated analytically, it
can be computed with limited effort by writing it as an integral over the complex
plane

Γ̃SC
0 (Q, τ) =

1

β

∑
ν

e−iΩντ Γ̃SC
0 (Q,Ων) =

1

2πi

∮
C
dz

ezτ

eβz − 1
Γ̃SC
0 (Q, z), (B.8)
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where the contour C surrounds the poles of the Bose function (eβz − 1)−1 on the
imaginary axis. Here, the function Γ̃SC

0 (Q, z) has a branch cut along the negative
real axis starting at zc = 2(µ − γ↑γ↓Q

2/4), as well as a pole at zp = 2v2 + zc
when v > 0. The integral (B.8) then reduces to the calculation of an integral along
the branch cut and of the residue of the pole, and can accordingly be split in the
following way

Γ̃SC
0 (Q, τ) = ΓSC

0,n(Q, τ) + ΓSC
0,a (Q, τ) + ΓSC

0,res(Q, τ)− T Re[ΓSC
0 (Q, 0)], (B.9)

where the first two terms (to be numerically and analytically Fourier transformed,
respectively) are contributed by the branch cut while the third term by the pole.

The first term in (B.9), for zc ≤ 0, can be cast in the form

ΓSC
0,n(Q, τ) =

8
√
2ezcτ√
τ

∫ ∞

0

dx
e−x2

x2

(e−β(zc−x2/τ) − 1)(x2 + 2τv2)
, (B.10)

and, for zc > 0, in the form

ΓSC
0,n(Q, τ) =

8
√
2ezcτ√
τ

∫ ∞

√
τ(zc−z0)

dx
e−x2

x2

(e−β(zc−x2/τ) − 1)(x2 + 2τv2)

+ 8

√
2

τ

∫ √
τ(zc−z0)

0

dx
1

e−β(zc−x2/τ) − 1

(
ezcτ−x2

x2

x2 + 2τv2
−
x
√
zc

zp
√
τ

)
+

4
√
2zc
zp

(
z0 − zc − T ln

∣∣∣∣e−βzc − 1

e−βz0 − 1

∣∣∣∣),
(B.11)

where z0 is a negative real number (typically we take z0 = −2T ).
The second term in (B.9) has the semi-analytic form

ΓSC
0,a (Q, τ) = 4

√
2π c(τ, v)

e2µτe−γ↑γ↓Q
2τ/2

√
τ

, (B.12)

where the coefficient c(τ, v) is given by

c(τ, v) =
2√
π

∫ ∞

0

dx
x2e−x2

x2 + 2τv2
, (B.13)

with c(τ, v) → 1 for τ → 0+ or v = 0. The term (B.12) admits also an analytic
Fourier transform from Q to x, given by

ΓSC
0,a (x, τ) =

2c(τ, v)eµτe−x2/(2γ↑γ↓τ)

(γ↑γ↓)3/2πτ 2
. (B.14)

It is possible to show that this is the leading term of the singular behavior of the
full Γ(x, τ) for (x, τ) → 0+ throughout all the BCS-BEC crossover.

The third term in (B.9) is given by

ΓSC
0,res(Q, τ) = −θ(v)16πve

zpτ

eβzp − 1
, (B.15)
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and one can show that the divergence of this term at zp = 0 is exactly compensated
by the fourth term in (B.9), in such a way that Γ̃SC

0 (Q, τ) is always a smooth function
of Q.

At this point, to obtain Γ(Q, τ), we can calculate numerically the Fourier trans-
form of the difference ∆Γ(Q,Ων) = Γ(Q,Ων) − Γ̃SC

0 (Q,Ων), and then add to it
Γ̃SC
0 (Q, τ). Finally, to obtain Γ(x, τ), we Fourier transform the difference function

∆̃Γ(Q, τ) = Γ(Q, τ)− ΓSC
0,a (Q, τ) and then add to it ΓSC

0,a (x, τ).

B.3 Transforming from Σσ(x, τ ) to Σσ(k, ωn)

Also in this case, the Fourier transform of the self-energy Σ is done in two steps,
namely

Σσ(x, τ) → Σσ(k, τ) → Σσ(k, ωn), (B.16)

where now the transformations are in the reversed direction with respect to the
previous cases. This is because, from the relation

Σσ(x, τ) = −2Γ(x, τ)Gσ̄(−x,−τ) ≡ 2Γ(x, τ)Gσ̄(x, β − τ), (B.17)

once Gσ̄(x, τ) and Γ(x, τ) are known, Σσ(x, τ) is also known. In the expression (B.17)
we have a factor 2 due to the use of dimensionless units, while in the second line we
have used the spatial isotropy and the anti-periodicity of the fermionic propagator to
write Σσ in an alternative form. Since both Gσ̄(x, τ) and Γ(x, τ) are strongly peaked
for (x, τ) → 0+, we expect the singular behavior of Σσ(x, τ) to be captured by the
expressions Σ(+)

σ (x, τ) ≃ 2Γ(x, τ)Gσ̄(0, β
−) and Σ

(−)
σ (x, τ) ≃ 2Γ(0, β−)Gσ̄(x, β−τ) in

the limit (x, τ) → (0, 0+) and (x, τ) → (0, β−), respectively. Out of these two terms,
Σ

(+)
σ is the dominant one because Γ(x, τ) is more strongly peaked than Gσ̄(x, τ) in the

limit τ → 0+ (see the expressions in (B.14) and (B.5), therefore Σ(−)
σ is a sub-leading

contribution.
At this point, we consider the difference ∆Σσ(x, τ) = Σσ(x, τ)−Σ

(+)
σ (x, τ), where

we write

Σ(+)
σ (x, τ) = −2nσ̄

e−x2/(2γ↑γ↓τ)

(γ↑γ↓)3/2πτ 2
. (B.18)

Here, we have approximated Γ with the analytic result in (B.14) with c(τ, v) → 1 and
eµτ → 1, since we are interested only in the leading behavior of Σ(+)

σ for (x, τ) → 0+,
and used nσ̄ = −2Gσ̄(0, β

−) for the fermionic density nσ̄ (in dimensionless units).
This expression has the further advantage that its Fourier transform can be obtained
analytically in terms of the error function, in the form

Σ(+)
σ (k, ωn) = −8πnσ̄

erf(
√
β(γ↑γ↓k2 − 2iωn)/2)√
γ↑γ↓k2 − 2iωn

. (B.19)

Once the difference ∆Σσ(x, τ) has been numerically Fourier transformed (first
from x to k and then from τ to ωn) according to the above prescriptions to obtain
∆Σσ(k, ωn), we can add to it the analytic expression (B.19) and obtain the desired
function Σσ(k, ωn).
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Appendix C

Convergence Optimization near Tc

Here we discuss the procedures that we have adopted to achieve optimal conver-
gence toward self-consistency within the Luttinger-Ward approach. This appendix
is the direct generalization to the imbalanced case of Appendix B in Ref. [46]. An
optimization procedure in achieving convergence is especially required when the
temperature approaches Tc, to the extent that this approach become intrinsically
unstable when one uses the straightforward iterative procedure sketched in Figure
(3.5).

C.1 Need of an Optimization Procedure
The fully self-consistent equations (3.77)-(3.80) can be written in a compact way

as a functional equation for the self-energy Σσ, in the form

Σσ(k) = F [Σσ(p)](k), (C.1)

because once Σσ is known, we can readily obtain Gσ and Γ in the previous equa-
tions. Suppose that Σsol

σ (k) is the self-consistent solution to (C.1) which the iterative
method is expected to reach. At a generic iterative step i towards self-consistency,
the self-energy Σi

σ deviates from the solution by a quantity δΣi
σ, i.e.

Σi
σ(k) = Σsol

σ (k) + δΣi
σ(k). (C.2)

The functional equation (C.1) can be linearized around Σsol
σ , provided we are close

enough to the self-consistent solution, to write

Σsol
σ (k) + δΣi

σ(k) = F [Σi−1
σ (p)](k)

≃ Σsol
σ (k) +

∑
λ

∫
dp

[
δF [Σσ(p)](k)

δΣλ(p)

]
sol

δΣi−1
λ (p),

(C.3)

where the integral over p contains both an integral over the wave vector p and a
sum over the Matsubara frequency ωn. This provides a relation for the distance δΣ
from the self-consistent solution between the steps i− 1 and i

δΣi
σ(k) =

∑
λ

∫
dp

[
δF [Σσ(p)](k)

δΣλ(p)

]
sol

δΣi−1
λ (p). (C.4)
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In our numerical calculations Σσ(k) is calculated on a k-grid of points, therefore
δΣ can be regarded as a vector which is acted upon by the functional derivative
matrix [δF/δΣ]sol. The convergence of the iterative procedure, from i − 1 to i and
so on, is then governed by the behavior of this matrix, which can be rewritten in
the form

δF [Σλ(p)](k)

δΣσ(p)
=

∑
µ

δF [Σσ(p)](k)

δGµ(p)

δGµ(p)

δΣλ(p)
. (C.5)

Using (3.77), the factor on the right is given by

δGµ(p)

δΣλ(p)
= δµλGλ(p)

2, (C.6)

while the factor on the left can be calculated by recalling that, using (3.78) and
(C.1), we have

F [Σσ(p)](k) = Σσ(k) = −
∫
dQΓ(Q)Gσ̄(Q− k), (C.7)

yielding
δF [Σσ(p)](k)

δGµ(p)
= −δµσ̄Γ(p+ k)−

∫
dQ

δΓ(Q)

δGµ(p)
Gσ̄(Q− k). (C.8)

In this expression, the functional derivative of the particle-particle propagator Γ(Q)
can be obtained from (3.79)

δΓ(Q)

δGµ(p)
= −Γ(Q)2

δRpp(Q)

δGµ(p)
, (C.9)

where the functional derivative of the renormalized particle-particle bubble Rpp(Q)
is obtained from (3.80)

δRpp(Q)

δGµ(p)
= Gµ̄(Q− p). (C.10)

Grouping all the above results together and splitting δΣi
σ in two terms for later

convenience, i.e. δΣi
σ(k) = δΣi

σ,1(k) + δΣi
σ,2(k), we obtain

δΣi
σ,1(k) = −

∫
dpGσ̄(p)

2Γ(p+ k)δΣi−1
σ̄ (p), (C.11)

δΣi
σ,2(k) =

∑
λ

∫
dpGλ(p)

2

∫
dQΓ(Q)2Gσ̄(Q− k)Gλ̄(Q− p)δΣi−1

λ (p). (C.12)

Suppose now that T = Tc. The Thouless criterion 3.45 implies that the particle-
particle propagator Γ(Q) shows a pole for Q = 0, such that we expect Γ(Q) to be
strongly peaked in the vicinity of Q = 0. The expressions (C.11) and (C.12) can be
then simplified by setting to zero the arguments of the particle-particle propagators
in the smooth functions that multiply them. For the term C.11 we thus have

δΣi
σ,1(k) ≃ −Gσ̄(−k)2δΣi−1

σ̄ (−k)
∫
dpΓ(p+ k)

= −C Gσ̄(−k)2δΣi−1
σ̄ (−k),

(C.13)
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where C is the contact according to (3.71). This term poses no problem to the
convergence, since the quantity that multiplies Σi−1

σ̄ (−k) is finite. For the term
(C.12) we instead obtain

δΣi
σ,2(k) ≃

∑
λ

Gσ̄(−k)
∫
dQΓ(Q)2

∫
dpGλ(p)

2Gλ̄(−p)δΣi−1
λ (p), (C.14)

where the factor
∫
dQΓ(Q)2 is infrared divergent at T = Tc, because for the term

with zero frequency we have Γ(Q,Ων = 0) ∼ Q−2 when Q → 0 at T = Tc.
This divergence represents a problem for the convergence of the iterative algo-

rithm, because it implies that the step i is bound to run infinitely away from it, no
matter how close the step i− 1 might be to the self-consistent solution. Depending
on how much Γ(Q) is peaked in Q = 0, this problem can affect the convergence of
the iterative algorithm also for temperatures T ≳ Tc.

C.2 Optimization for T > Tc

There exists a simple method to make the iterative approach (C.4) converge for
T ≳ Tc, although it cannot converge at exactly T = Tc. It consists in redefining the
iterative steps in terms of the weighted sum

Σi
σ(k) = αF [Σi−1

σ (p)](k) + (1− α)Σi−1
σ (k), (C.15)

where the weight factor α ranges between 0 and 1. This method is used to reduce
the effects of the divergence and to reach the converge sufficiently close to Tc. Never-
theless, the method fails upon approaching Tc, because smaller and smaller values of
α are needed for obtaining convergence. Notice also that a smaller value of α implies
that more iterative steps are required for convergence. In the numerical program,
we found that a good choice for the weight factor is α ∝ [Γ(Q = 0,Ων = 0)]−1/2,
which updates and decreases automatically at each iteration, by lowering the tem-
perature. In practice, before it becomes numerically too demanding, this method
can conveniently be used down to temperatures for which (T − Tc)/Tc ≃ 1%.

C.3 Optimization for T = Tc

Exactly at T = Tc, we can rely on a different method that avoids the convergence
problem discussed above. We begin by fixing the values nσ of the densities and a
guess value Tg/EF for the temperature in units of the Fermi energy, as well as the
ratios µ/Tg and h/Tg, where µ = (µ↑+µ↓)/2 and h = (µ↑−µ↓)/2. Next, we replace
the particle-particle propagator in (3.79) with the following quantity

Γ̃(Q)−1 = Rpp(Q)−Rpp(Q = 0), (C.16)

in such a way that Γ̃(Q = 0)−1 = 0 by construction, i.e. the Thouless criterion is
always satisfied, no matter what was the initial guess temperature.

At this point one can proceed and perform the iterative procedure toward self-
consistency, with Γ(Q) replaced by Γ̃(Q). Once self-consistency has been achieved
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with this modified set of equations, one can obtain the modified density as ñσ =
−2G̃σ(x = 0, τ = β−), and the modified scattering length ãF from the expression

1

ãF
= − 4π

2mred

R̃pp(Q = 0), (C.17)

where R̃pp is obtained from (3.80) with G̃σ replacing Gσ. This result follows directly
from the Thouless criterion corresponding to the modified density ñσ.

Finally, in terms of ñ = ñ↑ + ñ↓ one obtains the modified Fermi wave vector k̃F
and the modified Fermi energy ẼF . The desired value of the critical temperature is
then obtained by

Tc
EF

=
Tg
EF

EF

ẼF

, (C.18)

while the corresponding coupling value is given by

1

kFaF
=

1

k̃F ãF
= −4πR̃pp(Q = 0)

2mredkF

kF

k̃F
. (C.19)

This method avoids the convergence problem discussed above for the iterative
procedure. Specifically, for the functional derivative of Γ̃(Q) with respect to G̃µ(p)
one obtains

δΓ̃(Q)

δG̃µ(p)
= −Γ̃(Q)2

δ(R̃pp(Q)− R̃pp(Q = 0))

δG̃µ(p)

= −Γ̃(Q)2[G̃µ̄(Q− p)− G̃µ̄(−p)],
(C.20)

while the corresponding variation of the self-energy related to this functional deriva-
tive then becomes

δΣ̃i
2(k) =

∑
λ

∫
dp G̃λ(p)

2

∫
dQ Γ̃(Q)2G̃σ̄(Q− k)

× [G̃λ̄(Q− p)− G̃λ̄(−p)]δΣ̃i−1
λ (p).

(C.21)

Comparing this result with C.12, one notice that the singular behavior of Γ̃(Q) for
Q → 0 is now suppressed by the presence of the factor [G̃λ̄(Q− p)− G̃λ̄(−p)]. This
feature makes it possible to reach convergence exactly at T = Tc without the need
for the weighted sum in (C.15), with a limited number of iterations.
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