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Abstract

Questa tesi intende approfondire da un punto di vista, sia teorico sia computazionale,
le proprietà fondamentali dei fononi. A tal fine, sono presentati i modelli quantistici di
Einstein e di Debye che permettono la derivazione analitica degli osservabili macro-
scopici principali di un solido, come l’energia media e la capacità termica. Ciò è possi-
bile tramite una trattazione meccano-statistica basata sull’approssimazione armonica dei
modi normali di vibrazione degli ioni reticolari. Quindi, all’inizio si mostrano brevemente
i risultati principali riguardanti l’oscillatore armonico quantistico. Successivamente, si
approfondiscono i temi della dispersione fononica e della densità degli stati vibrazionali
per reticoli cristallini 1D e 3D. Si ottiene che la prima non può essere considerata lin-
eare se non nel limite di alte lunghezze d’onda, e che la seconda può presentare punti
di singolarità correlati alla forma della relazione di dispersione. Infine, sono state svolte
alcune analisi computazionali ab initio relative alla dispersione fononica, la densità degli
stati vibrazionali e la frequenza di Debye del Carbonio (diamante) tramite i programmi
VASP e Phonopy, confrontando i risultati con dati sperimentali presenti in letteratura.



Chapter 1

Introduction

Phonons are defined as quantized vibrations of atoms in a solid lattice along the normal
modes of the system (3 per atom: 1 longitudinal and 2 transverse). These internal mo-
tions allow the crystal to store and transfer energy. As a consequence, they contribute
to many macroscopic materials’ properties, such as heat transfer, sound propagation in
media and electrical resistance.
In the last decades, the phononic properties of materials have thus been studied in
search of useful applications. Given the remarkable improvement in design, fabrication
and characterization of materials from centimeter to nanometer scale, many technological
innovations have been developed, both in the fields of sound and heat control. For exam-
ple, just to list some of them, acoustic diodes (same as electronic diodes, but for sound
waves) and cloaking shells (devices for the insulation of finite spatial regions from sound
waves without altering them) have been realized using respectively 1D-3D phononic crys-
tals that reflect sound waves with frequency in a precise range and metamaterials with
inhomogeneous bulk modulus and mass density [1].
Focusing back in the phonons’ nature, it can be proved (explicit demonstration in Section
2.1.2) that they can also be described as non-interacting and massless bosons, despite
their experimental observation in interacting systems. So, phonons’ mean occupation
of a generic energy level obeys to the Bose-Einstein statistical distribution with zero
chemical potential.
The thesis is divided in three chapters, whose content is detailed below.
In the first chapter, the most important theoretical models about phonons’ properties
are discussed, beginning with the treatment of 1D simple harmonic oscillators [2]-[3] to
which the vibrational modes can be approximated if the amplitudes of atomic motions
are enough small. Then, being the heat capacity an useful response function for macro-
scopic materials, both classical [2] and quantum procedures [3]-[4] for its determination
are presented. However, the evidence of their critical issues and limitations makes it
necessary to deepen the topics of phononic dispersion [4]-[2] and density of states [5],
which indeed exhibit complicated and interrelated structures.
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In the second chapter, the phononic properties of a fcc Bravais lattice of diamond Car-
bon are studied by performing ab initio calculations via VASP (acronym for Vienna Ab
initio Simulation Package [6]-[7]-[8]) and post-process analyses via Phonopy [9]. Given
the right Input files, the first of the two packages allows to compute an approximate
solution to the many-body Schrödinger problem [10], whose theoretical basis is also pre-
sented in order to better understand the mechanisms hidden behind the numerical results
of the program. While the other one uses the dynamical matrix to obtain the phonon
frequencies along the chosen high symmetry paths in the first Brillouin zone. In this
way, the ab initio calculated values for the phononic dispersion relation and the density
of states are plotted and compared to the experimental data in [11] and [12].
At last, in the third chapter, one can find an overview of the main theoretical results
and critical issues, followed by a summary of the ab initio calculations for the fcc Bravais
lattice of diamond Carbon.
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Chapter 2

Theoretical models

2.1 Harmonic approximation

If the N atoms in a crystal lattice vibrate with small amplitudes of oscillation from
their equilibrium sites with respect to the average atomic distances, then the interaction
potential, as well as the Hamiltonian, can be approximated to an harmonic form, which
basically describes the 3N associated normal modes as 1D simple harmonic oscillators.
However, a classical treatment is not enough to properly model the macroscopic proper-
ties of materials in the low and intermediate temperature ranges.
Therefore, first of all, the energy eigenvalue problem for such systems is discussed by
a quantum approach, aiming at the determination of their well-known discrete and
non-degenerate energy spectrum. Next, assuming the existence of a sufficiently large
ensemble, some statistical quantities useful for the following sections are obtained.

2.1.1 Second quantization

Assuming as well known the Dirac notation of quantum mechanics, one can solve the
energy eigenvalue problem for a 1D simple harmonic oscillator of mass m and frequency
ω by introducing the annihilation and creation operators pair (respectively â and its
adjoint â†) as {

â = 1√
2m~ω (p̂− imωq̂)

â† = 1√
2m~ω (p̂+ imωq̂)

(2.1.1.1)

in dependence on the position q̂ and momentum operators p̂ such that the following
commutation relation is satisfied

[â, â†] = 1̂, (2.1.1.2)

where 1̂ is the identity operator.
Directly from the annihilation and creation operators pair, it is possible to define the
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number operator N̂ as the product
N̂ = â†â (2.1.1.3)

which obeys the commutation relations{
[N̂ , â] = [â†â, â] = [â†, â]â+ â†[â, â] = −â
[N̂ , â†] = [â†â, â†] = [â†, â†]â+ â†[â, â†] = +â†

(2.1.1.4)

due to the validity of Leibniz-like rules for commutator.
In the particular case of a 1D harmonic oscillator, substituting the Equation (2.1.1.1) in
(2.1.1.3), the number operator N̂ takes the form

N̂ =
1

~ω

(
p̂2

2m
+

1

2
mω2q̂2

)
− 1̂

2
=

1

~ω
Ĥ − 1̂

2
(2.1.1.5)

with an additional term proportional to the system’s Hamiltonian operator Ĥ, from
which the selfadjointness of N̂ can be deduced. This last result is essential for the aim
of finding the problem’s solution, because it allows the number operator N̂ to admit an
orthonormal basis of eigenkets |n〉, that satisfy the eigenvalue equation

N̂ |n〉 = |n〉n (2.1.1.6)

with n only taking non-negative and integral values, the orthonormality relations

〈n′|n〉 = δn′,n (2.1.1.7)

and the completeness relations
∞∑
n=0

|n〉〈n| = 1̂. (2.1.1.8)

The application of the annihilation and creation operators (â and â†) on such kets is
known under the name of ladder properties{

â|n〉 = |n− 1〉
√
n

â†|n〉 = |n+ 1〉
√
n+ 1

(2.1.1.9)

which can be used to write an arbitrarily chosen eigenket |n〉 starting from the ground
state |0〉 = |n = 0〉 as

|n〉 = â†n|0〉 1√
n!
. (2.1.1.10)

Now, it is possible and convenient to find the alternative expression of the 1D harmonic
oscillator’s Hamiltonian operator Ĥ from the Equation (2.1.1.5)

Ĥ = ~ω
(
N̂ +

1̂

2

)
(2.1.1.11)
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that clearly shows how the energy eigenvalue problem is solved by the orthonormal basis
of eigenket |n〉 of the number operator N̂ . Indeed, the kets |n〉 also satisfy the following
eigenvalue equation

Ĥ|n〉 = |n〉un, (2.1.1.12)

where the energy eigenvalues un are given by

un = ~ω
(
n+

1

2

)
(2.1.1.13)

and form a completely non-degenerate discrete energy spectrum with a constant gap of
~ω starting from the ground-state level u0 = 1

2
~ω.

2.1.2 Statistical description

Once the expression of 1D harmonic oscillator’s energy eigenvalues is found and written
as in Equation (2.1.1.13), one can move on to a statistical approach in order to calculate
some thermodynamic quantities of interest. Therefore, supposing to have a canonical
ensemble of such systems, the probability pj for the j -th energy level uj is given by

pj =
1

Z
e−βuj =

1

Z
e−β~ω(j+

1
2
) (2.1.2.1)

with j ≥ 0 assuming only integral values and Z being the canonical partition function,
whose expression reads as

Z =
∞∑
j=0

e−βuj =
∞∑
j=0

e−β~ω(j+
1
2
) =

= e−
1
2
β~ω

∞∑
j=0

e−β~ωj
(2.1.2.2)

and reduces to

Z = e−
1
2
β~ω
(

1

1− e−β~ω

)
=

1

2 sinh(1
2
β~ω)

(2.1.2.3)

thanks to the convergence of geometric series, which arises from the certain condition

e−β~ω < 1. (2.1.2.4)

In addition to ensuring the probability normalization, the canonical partition function
Z leads to obtain the analytical formulae of physical quantities by relatively simple
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mathematical operations. For example, one can get the mean energy U of 1D harmonic
oscillators as

U = − 1

Z

∂Z

∂β
= − ∂

∂β
lnZ =

= − ∂

∂β

[
ln e−

1
2
β~ω − ln(1− e−β~ω)

]
=

= − ∂

∂β

[
−1

2
β~ω − ln(1− e−β~ω)

]
=

=
1

2
~ω +

(
1

1− e−β~ω

)
(~ωe−β~ω) =

= ~ω
(

1

2
+

1

eβ~ω − 1

)
=

1

2
~ω coth

(
1

2
β~ω

)
.

(2.1.2.5)

Then, it is also possible to give an alternative physical interpretation to the arbitrary
Hamiltonian eigenvalue uj, which consists in regarding it as the energy required to pro-
vide j excitations of quanta ~ω to the 1D harmonic oscillator. Hence the mean number
of excitations 〈n~ω〉 within the canonical ensemble is found out to be

〈n~ω〉 = 〈j〉 =
∞∑
j=0

jpj =
1

Z

∞∑
j=0

je−βuj =

=
1

Z

∞∑
j=0

(
j +

1

2
− 1

2

)
e−βuj =

=
1

Z

[
∞∑
j=0

(
j +

1

2

)
e−βuj − 1

2

∞∑
j=0

e−βuj

]
=

=
1

Z~ω

∞∑
j=0

uje
−βuj − 1

2
=

=
U

~ω
− 1

2
=

1

eβ~ω − 1

(2.1.2.6)

using the well-known definition of mean energy, which reads as

U =
∞∑
j=0

ujpj. (2.1.2.7)

2.2 The Dulong-Petit law

The Dulong-Petit model is based on the classical harmonic approximation of the inter-
action potential acting on the N atoms of a lattice. Thus the Hamiltonian of the system
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takes the form

H =
N∑
i=1

p(i)2

2mi

+ U eq + Uharm (2.2.0.1)

where p(i) and mi are respectively the momentum modulus and the mass of the i -th atom,

while U eq specifies the equilibrium potential value and Uharm is the harmonic term given
by

Uharm =
1

2

N∑
j,k

~u (j)(t)D(j,k)(t)~u (k)(t). (2.2.0.2)

The symbol ~u (j)(t) stands for the displacement vector of the j -th atom, and D(j,k)(t)
instead is a 3× 3 square matrix, whose generic (µ, ν)-th element reads as

D(j,k)
µ,ν (t) = δj,k

(
N∑
l

φ(j,l)
µ,ν

)
− φ(j,k)

µ,ν (2.2.0.3)

where δj,k is the Kronecker delta and φ
(j,k)
µ,ν stands for the Hessian matrix element of the

exact interaction potential φ(j,k)(r) (similar to that of Lennard-Jones) acting between
the arbitrarily chosen j -th and k -th ions, which is indicated explicitly by

φ(j,k)
µ,ν =

∂2φ(j,k)(r)

∂rµ ∂rν
. (2.2.0.4)

So, the internal energy U of the crystal is calculated by the following weighted average

among all possible ionic configurations

U =

∫
dΓe−βHH∫
dΓe−βH

= − ∂

∂β
ln

(∫
dΓe−βH

)
(2.2.0.5)

with dΓ as the infinitesimal path in the lattice phase space

dΓ =
N∏
i=1

d~u (i) · d~p (i). (2.2.0.6)

If the canonical variables ~u (i) and ~p (i) are changed to the new ones ~W (i) and ~P (i) via{
~u (i) = β−1/2 ~W (i)

~p (i) = β−1/2 ~P (i)
⇒

{
d~u (i) = β−3/2d ~W (i)

d~p (i) = β−3/2d~P (i),
(2.2.0.7)

and the expressions of dΓ and Uharm are substituted into the internal energy formula,
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the integral in Equation (2.2.0.5) explicitly reads as∫
dΓe−βH = e−βU

eq

β−3N

{∫ ∏
i

d ~W (i) · d~P (i) exp

[
−
∑
i

~P (i)2

2mi

− 1

2

∑
i,j

~W (i)D(i,j) ~W (j)

]}
.

(2.2.0.8)
Being the content of the curly brackets temperature independent, one can finally derive
partially with respect to β and thus obtain

U = U eq + 3NkBT (2.2.0.9)

from which the heat capacity c can be calculated as

c =
∂U

∂T
= 3NkB. (2.2.0.10)

This result is known as the Dulong-Petit law, that turns out to be not consistent with the
experimental data for real solids. Indeed, in the low temperature limit the effective heat
capacity rapidly decreases until it completely vanishes, while in the high temperature
case it grows continuously to an horizontal asymptote which is nevertheless not the
same as the Dulong-Petit expected value. The main reason for this last incompatibility
consists in the arising of significant anharmonic terms in the interaction potential as the
temperature increases.

2.3 The Einstein model

The Einstein model for the characterization of phononic properties of materials is essen-
tially based on the assumption that all 3N vibrational modes of the crystal lattice can be
approximated to 1D simple harmonic oscillators with same frequency ωE. This directly
implies a Dirac delta shaped distribution of the frequencies among the normal modes,
which may seem an unrealistic hypothesis, but actually its analytical results show good
compatibility with experimental data in some particular cases, as explained in Section
2.5.
Further assuming the independence of normal modes, the total partition function Z can
be written as

Z =
3N∏
k=1

Zk (2.3.0.1)

where the generic factor Zk is the partition function of the k -th mode that in harmonic
approximation takes the form

Zk =
e−

1
2
β~ωE

1− e−β~ωE
. (2.3.0.2)
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Due to the initial assumption of the Einstein model, Zk clearly does not depend on the
index k. As a consequence, the product in Equation (2.3.0.1) reduces to

Z = (Zk)
3N (2.3.0.3)

and its natural logarithm instead becomes

ln(Z) = ln(Zk)
3N = 3N ln(Zk) =

= 3N
[
ln(e−

1
2
β~ωE)− ln(1− e−β~ωE)

]
=

= 3N

[
−1

2
β~ωE − ln(1− e−β~ωE)

]
.

(2.3.0.4)

Now, the internal energy U can be found as the following partial derivative with respect
to the variable β

U = − ∂

∂β
ln(Z) = −3N

∂

∂β

[
−1

2
β~ωE − ln(1− e−β~ωE)

]
=

=
3

2
N~ωE +

(
3N

1− e−β~ωE

)
(~ωEe−β~ωE) =

= 3N~ωE
(

1

2
+

1

eβ~ωE − 1

) (2.3.0.5)

that could also be obtained by multiplying the mean energy of a 1D harmonic oscillator
of frequency ωE by the total number 3N of normal modes. It turns out to be useful to
define a parameter TE, known as Einstein temperature and given by

TE =
~ωE
kB

, (2.3.0.6)

in terms of which the internal energy U can be expressed as

U = 3NkBTE

(
1

2
+

1

eβkBTE − 1

)
=

= 3NkBTE

(
1

2
+

1

eTE/T − 1

)
.

(2.3.0.7)

Finally, one can proceed to calculate the heat capacity c (because of the validity of
c ≡ cp ' cv for solids with the heat capacities cp at constant pressure and cv at constant
volume) as follows

c =
∂U

∂T
= − 3NkBTE

(eTE/T − 1)2

(
−TE
T 2
e
TE/T

)
= 3NkB

x2ex

(ex − 1)2
(2.3.0.8)
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introducing the new variable x = TE
T

.
As shown in Figure 2.3, in the low temperature limit for T → 0 and consequently
x→ +∞ it exhibits a rapidly vanishing trend of the form

c = 3NkB
x2ex

e2x(1− e−x)2
→ 3NkBx

2e−x (2.3.0.9)

because of the dominant factor e−x = e−TE/T , while in the high temperature limit for
T → +∞ and x→ 0 it becomes practically constant

c = 3NkB
x2(1 + x+ x2/2 + o(1))

(1 + 2x+ (2x)2/2 + o(1)− 2(1 + x+ x2/2 + o(1)) + 1)
=

= 3NkB
x2(1 + x+ x2/2 + o(1))

x2(1 + o(1))
→ 3NkB

(2.3.0.10)

in full agreement with the classical Dulong-Petit law in Equation (2.2.0.10) and the
energy equipartition theorem.

2.4 The Debye model

As an improvement of the Einstein model, the Debye model for phonons in a crystal
lattice assumes a more generic form of frequencies distribution among the normal modes,
which takes the name of the density of vibrational states g(ω) and differs from the
previous Dirac delta shaped one

gE(ω) = 3Nδ(ω − ωE) (2.4.0.1)

represented in Figure 2.1.

ωE ω

gE(ω)

0

Figure 2.1: The Dirac delta shaped density of vibrational states expected by the Einstein
model.
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In particular, such a function g(ω), as well as gE(ω), must satisfy the following normal-
ization condition ∫ ∞

0

g(ω)dω = 3N (2.4.0.2)

being 3N the total number of vibrational modes of the crystal lattice.
Now, in order to find an analytical expression of g(ω), two important assumptions con-
cerning the phonons’ propagation are taken into account. The first states that their
speed is constant in time, uniform in all normal modes and equal to the specific sound
velocity of the material vs. The second one consists in supposing the linearity of the
dispersion relation

ω = vsq (2.4.0.3)

with q = |~q| being the phonon wave vector modulus.
This last hypothesis turns out to be valid in the low temperature limit, but not in the
high one due to the arising of potential anharmonicity.
Proceeding to the determination of g(ω), the number of vibrational states included in
the spherical crown of infinitesimal thickness dq in the reciprocal space can be calculated
by the quantity

g(q)dq =
4πq2dq

(2π
L

)3
× 3, (2.4.0.4)

where the factor 3 results from the three possible phonon polarizations, and
(
2π
L

)3
in

the denominator is the elementary cubic volume in the reciprocal space, that is indeed
quantized due to the spatial confinement of phonons in a cubic crystal lattice of side L.
Then, substituting the linear dispersion relation in Equation (2.4.0.3) into (2.4.0.4), the
analytical expression of the density of vibrational states g(ω) is finally obtained as

g(ω) =
3V ω2

2π2v3s
(2.4.0.5)

with the cubic volume V = L3. In Figure 2.2, the final trend of g(ω) is shown.
However, it is further assumed that exists a maximum frequency ωD, called Debye fre-
quency, at which atoms can vibrate around their equilibrium position. This implies that
the normalization condition in Equation (2.4.0.2) undergoes the following simplification∫ ωD

0

g(ω)dω = 3N (2.4.0.6)

from which an analytical expression for ωD can be easily found by substituting the
formula in Equation (2.4.0.5) into (2.4.0.6) as follows

3V

2π2v3s

∫ ωD

0

ω2dω =
V ωD
2π2v3s

= 3N ⇒ ωD = (6π2v3sn)1/3 (2.4.0.7)
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ωD ω

g(ω)

0

Figure 2.2: The density of vibrational states expected by the Debye model.

with the volumetric density of atoms in the crystal lattice n = N
V

.
The so calculated Debye frequency ωD thus depends on the material specific quantities
n and vs. Moreover, it allows not only to rewrite the density of vibrational states as

g(ω) =
9N

ω3
D

ω2, (2.4.0.8)

but also to define the Debye temperature

TD =
~ωD
kB

(2.4.0.9)

that takes the typical values in Table 2.1.

Material Debye temperature (K)

Ne 63
Na 150

NaCl 321
Al 394
Si 625

C (diamond) 1860

Table 2.1: Table of experimental estimates of Debye temperature for some exemplary
materials from [4].

Once g(ω) is fully determined, one can move on to find the internal energy U expected
by the Debye model via the following integration

U =

∫ ωD

0

g(ω)~ω〈n~ω〉dω =
9N~
ω3
D

∫ ωD

0

ω3

eβ~ω − 1
dω (2.4.0.10)
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that can be solved by changing variable to the dimensionless

x =
~ω
kBT

⇒ xD =
~ωD
kBT

=
TD
T
. (2.4.0.11)

So, the expression for U in Equation (2.4.0.10) becomes

U =
9N~
ω3
D

(
kBT

~

)4 ∫ xD

0

x3

ex − 1
dx =

= 9NkBT

(
T

TD

)3 ∫ TD/T

0

x3

ex − 1
dx

(2.4.0.12)

and the integral admits an already known solution when the condition T � TD holds.
Such a solution is given by the product Γ(4)ζ(4) = 6π4

90
of the Euler gamma and Riemann

zeta functions, respectively indicated by Γ(z) and ζ(s) and defined as{
Γ(z) =

∫∞
0
tz−1e−tdt

ζ(s) =
∑∞

n=1
1
ns
.

(2.4.0.13)

Therefore, the internal energy U in the low temperature limit reads as

U =
3π4NkB

5T 3
D

T 4 (2.4.0.14)

and consequently the heat capacity c is derived as

c =
∂U

∂T
=

12π4NkB
5T 3

D

T 3 (2.4.0.15)

which is known as the Debye T 3 law. This last result turns out to represent correctly
the low temperature heat capacity trend of many materials.
In the high temperature limit for T � TD, instead, the integrand function can be
approximated to its behaviour for x→ 0∫ TD/T

0

x3

ex − 1
dx '

∫ TD/T

0

x2dx =
1

3

(
TD
T

)3

. (2.4.0.16)

As a consequence, the internal energy U in this case becomes

U = 3NkBT, (2.4.0.17)

while the heat capacity c

c =
∂U

∂T
= 3NkB (2.4.0.18)
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in conformity with the Dulong-Petit law and the energy equipartition theorem.
In order to find a heat capacity function valid for the whole temperature range [0,+∞],
it is possible to derive partially the internal energy U written in Equation (2.4.0.10) with
respect to the temperature T as follows

c =
∂U

∂T
=

9N~
ω3
D

∫ ωD

0

−ω3

(eβ~ω − 1)2

(
− ~ω
kBT 2

eβ~ω
)
dω =

=
9N~
Tω3

D

(
kBT

~

)4 ∫ xD

0

x4ex

(ex − 1)2
dx =

=
9NkB
x3D

∫ xD

0

x4ex

(ex − 1)2
dx.

(2.4.0.19)

The whole heat capacity trend expected by the Debye model is plotted in Figure 2.3
thanks to numerical integration of Equation (2.4.0.19), and it is also overlapped with
the Einstein result of Equation (2.3.0.8) in the particular condition TE = TD. The graph
clearly shows how in the high temperature limit both functions grow asymptotically to
C = c/n→ 3R, but also that the low temperature trend predicted by the Einstein model
(∝ 1

T 2 e
−1/T ) vanishes way more rapidly than the Debye one (∝ T 3).

Figure 2.3: Graph of the Einstein and Debye molar heat capacities as functions of tem-
perature T, which is normalized by the Debye temperature TD, here indicated by ΘD. To
further emphasize the difference between the two results, a log-log scale plot is inserted.
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In addition, the experimental temperature dependence of heat capacity evidences high
compatibility to the Debye estimate, which is mainly due to three reasons. The first is
the precision of the total number of normal modes; the second consists in the absence of
phase transitions between the low and high temperature limits; the third is the accuracy
of the Bose-Einstein distribution, which decreases rapidly with the frequency ω.

2.5 Phononic dispersion

In this section, some exemplary models of phononic dispersion in both 1D and 3D lat-
tices are discussed. The aim is simply to understand in a more practical way how the
assumptions of the Debye model about the linear dispersion relation in Equation (2.4.0.3)
become untruthful.
For example, in general the propagation velocity vs is not constant and uniform among
all the normal modes, but instead takes different values vs,T and vs,L according to their
transverse or longitudinal nature. Hence a better estimate of the sound velocity vs of
the material can be obtained by

3

v3s
=

2

v3s,T
+

1

v3s,L
(2.5.0.1)

with weights equal to the associated number of modes per atom.
First of all, the amplitude of oscillations will be considered small with respect to the
atomic distances. So, the interaction potential acting on neighbouring ions will be rea-
sonably approximated to be harmonic.
Moreover, the next models for crystal lattices of a finite number N of atoms necessarily
need the definition of the atomic interaction at the boundaries, and in mathematical
terms this implies a significant complication. In order to avoid it and to seek simplicity
as much as possible, the Born-von Karman periodic boundary conditions will be applied
to the atomic displacement functions.
For 1D chains, the displacement un must satisfy{

uN+1 = u1

u0 = uN ,
(2.5.0.2)

while for 3D Bravais lattices such functions will be indicated by ~u (j)(t) and obey the
following rule

~u (k)(t) = ~u (j)(t) ∀k ∈ N | ~R(k) = ~R(j) +Nµ~aµ (2.5.0.3)

where µ = 1, 2, 3 are the only allowed index values, N1, N2, N3 are integers such that
N1N2N3 = N and ~a1, ~a2, ~a3 are the later defined lattice vectors.
At last, two possible kinds of phononic dispersion curves can be observed.
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The first is usually called acoustic branch, due to the coincidence of the group velocity
vg = dω

dq
with the sound speed vs for |~q| → 0. In addition, in that limit the curve tends

to 0 and the atoms vibrate almost in phase. The associated normal modes go under the
name of acoustic modes and they are well described by the Debye model because at low
temperatures, and thus frequencies, the dispersion relation of real solids is approximately
linear.
The second instead is called optic branch. For |~q| → 0, it exhibits a non-vanishing value
and involves atomic vibrations almost out of phase, which are the typical motions of
ions in a lattice subjected to an external electromagnetic radiation. In this case, the
related normal modes are known as optic modes and their behaviour is very similar to
that expected by the Einstein model because of the near-constancy of the frequency with
respect to ~q.

2.5.1 1D monoatomic linear chain

Consider a 1D linear chain of N atoms of mass m, equally spaced by the lattice step a
and interacting with the neighbours via springs of elastic constant k, as summarized in
Figure 2.4.

a

k k k k k k k k

m m m m m m m

Figure 2.4: Pictorial representation of a 1D monoatomic linear chain.

The equation of motion for the n-th atom is given by

mün = k(un+1 − un)− k(un − un−1) =

= k(un+1 − 2un + un−1)
(2.5.1.1)

where the variable un indicates the displacement of the n-th atom from its equilibrium
position.
Since the purpose of the topic is to find the frequencies ω of collective oscillations of the
crystal lattice, one can look for a plane and harmonic wave solution of the form

un = u ei(qna−ωt) (2.5.1.2)

with u and q respectively the amplitude and the wave number of such a motion. This
displacement function must satisfy the 1D Born-von Karman periodic boundary condi-
tions in Equation (2.5.0.2), which in fact is equivalent to require a quantization of the
reciprocal space as

eiqNa = 1 ⇒ q =
2π

aN
j j ∈ Z. (2.5.1.3)
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Then, the substitution of Equation (2.5.1.2) into (2.5.1.1) brings out

mω2 = −k(eiqa − 2 + e−iqa) = 2k(1− cos(qa)) = 4k sin2
(qa

2

)
(2.5.1.4)

and allows to obtain the aimed dispersion relation as

ω(q) =

√
4k

m

∣∣∣sin(qa
2

)∣∣∣ (2.5.1.5)

which is plotted in Figure 2.5 exclusively for the first Brillouin zone [−π
a
, π
a
].

−π/a +π/a q

ω(q) √
4k/m

0

Figure 2.5: The phonon dispersion relation for a 1D monoatomic linear chain.

In the high wavelength limit for q = 2π
λ
→ 0, the dispersion relation ω(q) becomes linear

ω(q)→ vs|q| (2.5.1.6)

with the proportionality coefficient vs = a
√

k
m

as the material sound velocity.

Only in this precise case, the linear approximation of the dispersion relation assumed by
the Debye model turns out to be valid for the 1D monoatomic linear chain system.

2.5.2 1D diatomic linear chain

Consider now a 1D linear chain of two alternating atoms of different masses M1, M2 and
connected by springs of elastic constant k. The average distance between neighbouring
atoms is indicated by a, hence the lattice spacing is easily given by a′ = 2a.
The system is illustrated in Figure 2.6.
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a′ = 2a

k k k k k k k k

M1 M1 M1 M1M2 M2 M2

Figure 2.6: Pictorial representation of a 1D diatomic linear chain.

The equations of motion for the atoms in the n-th pair actually are very similar to that
of Equation (2.5.1.1) for the 1D monoatomic linear chain and they read as{

M1ün = k(vn − 2un + vn−1)

M2v̈n = k(un+1 − 2vn + un)
(2.5.2.1)

where the variables un and vn are respectively the displacements of the first and second
atom in the n-th pair from their equilibrium position.
Again the solutions of the Equations (2.5.2.1) are required to take the form of plane and
harmonic waves {

un = u ei(qna
′−ωt)

vn = v ei(qna
′−ωt) (2.5.2.2)

with u and v amplitudes, q wave number and ω frequency of the collective oscillations.
These two guess functions must obey 1D Born-von Karman periodic boundary conditions,
that imply a reciprocal space quantization practically identical to the 1D monoatomic
linear chain case.
Then, substituting the Equations (2.5.2.2) into (2.5.2.1), the second ones undergo the
following modifications {

M1uω
2 = −k[v(e−iqa

′
+ 1)− 2u]

M2vω
2 = −k[u(eiqa

′
+ 1)− 2v]

(2.5.2.3)

and thus organize in the homogeneous linear system{
(2k −M1ω

2)u− k(e−iqa
′
+ 1)v = 0

(2k −M2ω
2)v − k(eiqa

′
+ 1)u = 0.

(2.5.2.4)

Such a system of Equations (2.5.2.4) admit solutions only if the following condition is
fulfilled

det

(
2k −M1ω

2 −k(e−iqa
′
+ 1)

−k(eiqa
′
+ 1) 2k −M2ω

2

)
= 0 (2.5.2.5)
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that is equivalent to

4k2 − 2kω2(M1 +M2) +M1M2ω
4 − k2(e2iqa + 1)(e−2iqa + 1) = 0

M1M2ω
4 − 2kω2(M1 +M2) + 2k2(1− cos(2qa)) = 0

ω4 − 2kω2

(
1

M1

+
1

M2

)
+

4k2

M1M2

sin2(qa) = 0

(2.5.2.6)

from which the square of the two possible solutions ω±(q) is derived as

ω2
±(q) = k

(
1

M1

+
1

M2

)
±

√
k2
(

1

M1

+
1

M2

)2

− 4k2

M1M2

sin2(qa). (2.5.2.7)

The phonon dispersion relation for a 1D diatomic linear chain thus exhibits two branches
as shown in Figure 2.7.

−π/2a +π/2a q

ω(q)

0

ω−

ω+

Figure 2.7: The phonon dispersion curves for a 1D diatomic linear chain: optic branch
ω+(q) in red and acoustic branch ω−(q) in blue.

The first ω+(q) is called optic branch and it is mainly characterized by the non-vanishing
frequency that reaches for q = 0 and is equal to

ω+(q = 0) =

√
2k

(
1

M1

+
1

M2

)
. (2.5.2.8)

Instead the second one ω−(q) is known as acoustic branch and it behaves very similiarly
to the 1D monoatomic linear chain dispersion relation. Indeed, this vanishes for q = 0
and reduces to Equation (2.5.1.5) in fulfillment of the condition M1 = M2 ≡ m as

ω2
−(q) =

2k

m
−
√

4k2

m2
− 4k2

m2
sin2(qa) =

2k

m

(
1−

√
1− sin2(qa)

)
=

=
2k

m
(1− cos(qa)) =

4k

m
sin2

(qa
2

)
.

(2.5.2.9)
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This is in fact the simplest model of phononic dispersion, where an optic branch can be
observed.

2.5.3 3D monoatomic Bravais lattice

In case of a 3D Bravais lattice of N atoms of mass m, the equilibrium position of the
j -th atom with 1 ≤ j ≤ N is given by

~R(j) = n
(j)
1 ~a1 + n

(j)
2 ~a2 + n

(j)
3 ~a3 (2.5.3.1)

where ~a1, ~a2 and ~a3 are the lattice vectors, which specify the 3D directions that char-
acterize the crystal translational symmetries, while n

(j)
1 , n

(j)
2 and n

(j)
3 are the integral

coefficients that univocally determine how many lattice vectors the j -th atom needs to
be connected to the origin of axes (must coincide with one of the sites). For a better
comprehension an exemplary system is illustrated in Figure 2.8.

Figure 2.8: Example of a cubic 3D monoatomic Bravais lattice with marked lattice vectors
~a1 (blue), ~a2 (green) and ~a3 (red).

Hence the displacement of that atom from ~R(j) at time t is defined as

~u (j)(t) = ~r (j)(t)− ~R(j) (2.5.3.2)

with its effective position ~r (j)(t).
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The 3N equations of motion associated with each component of all N atomic displace-
ment vectors are written in vector notation as

m~̈u (j)(t) = −∂U
harm

∂~u (j)
= −

N∑
k

D(j,k)(t)~u (k)(t) (2.5.3.3)

with the harmonic potential Uharm defined in Equation (2.2.0.2) and, as well as in Sec-
tions 2.5.1 - 2.5.2, they admit plane and harmonic wave solutions that in this case must
be vectors of the form

~u (j)(t) = uε̂ ei(~q·
~R(j)−ωt) (2.5.3.4)

with the unit vector of polarization ε̂, the wave vector ~q and the frequency ω. The appli-
cation of the 3D Born-von Karman periodic boundary conditions in Equation (2.5.0.3)
to this case necessarily lead to a 3D quantization of the reciprocal space, in which the
only allowed ~q points are

~q =
n1

N1

~b1 +
n2

N2

~b2 +
n3

N3

~b3 (2.5.3.5)

where n1, n2, n3 are integers, while ~b1, ~b2, ~b3 are known as reciprocal lattice vectors and
they satisfy the following orthogonality relations

~bµ · ~aν = 2πδµ,ν µ, ν = 1, 2, 3 (2.5.3.6)

with the lattice vectors ~a1, ~a2, ~a3.
Once the functions in Equation (2.5.3.4) are substituted into (2.5.3.3), the equations of
motion become

mω2ε̂ ei(~q·
~R(j)−ωt) =

N∑
k

D(j,k)(t)ε̂ ei(~q·
~R(k)−ωt)

mω2ε̂ =

(
N∑
k

D(j,k)(t) e−i~q·(
~R(j)−~R(k))

)
ε̂

(2.5.3.7)

from which the dynamical matrix ∆(j)(~q) gets its definition as

∆(j)(~q) =
N∑
k

D(j,k)(t) e−i~q·(
~R(j)−~R(k)) (2.5.3.8)

and Equation (2.5.3.3) further reduces to

mω2ε̂ = ∆(j)(~q) ε̂. (2.5.3.9)

The 3 × 3 square matrix ∆(j)(~q) turns out to be both real and symmetric. This means
that for spectral theorem it admits three real eigenvectors ~ε1(~q), ~ε2(~q), ~ε3(~q) which satisfy
orthonormality relations

~εs(~q) · ~εs′(~q) = δs,s′ s, s′ = 1, 2, 3 (2.5.3.10)
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and eigenvalue equations
∆(j)(~q) ~εs(~q) = λs(~q) ~εs(~q). (2.5.3.11)

The aimed dispersion relation can be finally derived from the real eigenvalues λs(~q) of
the dynamical matrix ∆(j)(~q) as

ωs(~q) =

√
λs(~q)

m
(2.5.3.12)

that clearly depends on the index s. Hence it exhibits three branches, which are proven
to be acoustic, since they vanish for |~q| = 0 as shown in Figure 2.9.

y

z

x

Γ X

WK

L

Figure 2.9: Phononic dispersion relation (left) for a fcc monoatomic lattice of copper
Cu at 80K [13] and high symmetry paths (red) within the first Brillouin zone (right).
Experimental points (dots) are overlapped to two different theoretical results (dashed and
solid lines).

Depending on the lattice 3D structure and its symmetries, the matrix D(j,k)(t) defined in
Equation (2.2.0.3) obeys precise relations that correspond to properties for the dynamical
matrix ∆(j)(~q), of which the eigenvalues problem has just been studied. In this way, the
symmetries indirectly affect the phononic dispersion relation by identifying particular
high symmetry paths within the first Brillouin zone. Along such lines the polarization
vectors are well determined and thus allow the distinction between longitudinal and
transverse normal modes.
So the dispersion curves ωs(~q) are always calculated in those paths and occasionally show
phenomena of branches degeneration.
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2.5.4 3D Bravais lattice with basis

As in Section 2.5.2, the introduction of a poliatomic basis in the unit cell leads to the
occurrence of optic branches in the phononic dispersion relation of the material under
study.
In particular, if p is the integral number of ions in the basis, then there will be 3p normal
modes with associated frequency ωs(~q) and s ∈ {1, 2, ..., 3p}. It can be demonstrated
that only three of those branches turn out to be acoustic, while the other 3(p − 1) are
optic. An example of the resultant dispersion curves is illustrated in Figure 2.10.

y

z

x

Γ X

K

L

Figure 2.10: Phononic dispersion relation (left) for a fcc lattice of silicon Si [14] with
a diatomic basis and high symmetry paths (red) within the first Brillouin zone (right).
Experimental points (dots) are overlapped to ab initio calculated frequencies (lines).

This increases substantially the complexity of finding the analytical solution to the prob-
lem. Indeed, for example, the displacement from the equilibrium position of the j -th atom
(with 1 ≤ j ≤ p) in the l -th basis in the s-th normal mode (with 1 ≤ s ≤ 3p) is of the
form

~u (j,l)(t) = <[us~ε e
i(~q·~R(j,l)− ωt)], (2.5.4.1)

and must solve the equation of motion

Mj~̈u
(j,l)(t) = −

∑
k,l′

D(j,l,k,l′)(t)~u (k,l′)(t) (2.5.4.2)
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that leads to the definition of the dynamical matrix in this case as

∆(j,k)(~q) = (MjMk)
−1/2

∑
l′

D(j,0,k,l′)(t)ei~q·(
~R(k,l′)−~R(j,0)) (2.5.4.3)

with Mj as the mass of the j -th atom in the basis.
So, the eigenvalue equation for the dispersion curve ωs(~q) of the s-th normal mode reads
as ∑

k

∆(j,k)(~q)~ε (k,0)
s (~q) = ω2

s(~q)~ε
(j,0)
s (~q) (2.5.4.4)

with the polarization eigenvectors ~ε
(j,0)
s (~q) that must satisfy the following generalized

orthogonality relations
p∑
j=1

~ε (j,0)∗
s (~q) · ~ε (j,0)

s′ (~q)Mj = δs,s′ . (2.5.4.5)

This clearly shows how the procedure actually is the same of Section 2.5.3, but with an
inevitably more complicated notation.

2.6 Density of phonon states

To further explore the phononic properties of materials, it is often useful to study the
density of states function g(ω) and its strict relation with the dispersion curve branches
ωλ(~q).
In particular, the quantity g(ω)dω actually corresponds to the number of vibrational
states with frequency between ω and ω + dω. This implies the necessity to require
a normalization condition that, in the most general case, takes the form of Equation
(2.4.0.2) as the number of normal modes of a N -ions lattice is 3N .
In Section 2.5.3 and 2.5.4 it is shown that the phononic dispersion curve of a 3D Bravais
lattice can exhibit more branches ωλ(~q) indexed by an integer λ unless local degenerations
over the chosen high symmetry lines in the first Brillouin zone. For each of those branches
a partial density of states function gλ(ω) can be defined such that∑

λ

gλ(ω) =
∑
λ,~q

δ(ω − ωλ(~q)) = g(ω) (2.6.0.1)

where the points ~q in the first Brillouin zone form a discrete set due to the imposition
of the Born-von Karman boundary conditions, as explained in Section 2.5.
In the 3D case, the partial density of states associated to a generic dispersion branch is
given by

gλ(ω) =

(
2π

L

)−3 ∫
S

ds

|∇~q ωλ(~q)|
(2.6.0.2)
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where
(
2π
L

)
is the elementary unit of reciprocal space due to a 3D lattice, whose volume

is approximately cubic of side L and equal to L3, while S is a surface of same frequency
ω in the first Brillouin zone.

2.6.1 Example of a 1D monoatomic linear chain

Now, consider a 1D monoatomic linear chain, whose phononic dispersion curve is ob-
tained step-by-step in Section 2.5.1 and it is written explicitly in Equation (2.5.1.5).
The group velocity can be thus calculated by the following derivative

dω

dq
=

√
4k

m

a

2
cos
(qa

2

)
=
a

2

√
4k

m
− 4k

m
sin2

(qa
2

)
=

=
a

2

√
4k

m
− ω2(q)

(2.6.1.1)

and consequently one gets its inverse as

dq

dω
=

(
dω

dq

)−1
=

2

a
√

4k
m
− ω2

. (2.6.1.2)

Further, in case of an atomic chain of length L, the number of vibrational states dN(q)
with wave number between q and q + dq is

dN(q) = 2

(
L

2π

)
dq ⇒ dN

dq
=
L

π
(2.6.1.3)

taking into account both negative and positive values for q.
Hence the density of states can be expressed as

g(ω) =
dN

dω
=
dN

dq

dq

dω
(2.6.1.4)

which explicitly becomes

g(ω) =
2L

πa
√

4k
m
− ω2

(2.6.1.5)

by substituting the results in Equations (2.6.1.2) and (2.6.1.3) into the product in
(2.6.1.4). An exemplary plot of this function is shown in Figure 2.11.
For ω = 0, it clearly admits a non-zero value equal to

g(ω = 0) =
2L

πa
√

4k
m

=
L

πa

√
m

k
, (2.6.1.6)

while for ω =
√

4k
m

the denominator in Equation (2.6.1.5) vanishes and this implies a

divergence to +∞ for the density of states function.
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Figure 2.11: The density of phonon states for a 1D monoatomic linear chain.

2.6.2 Critical points and van Hove singularities

In general, for a 3D Bravais lattice the density of phonon states can exhibit very peculiar
structures, that mainly derive from the existence of reciprocal space vectors ~qcp such that
|∇~q ωλ(~q = ~qcp)| = 0 involving a zero denominator in Equation (2.6.0.2). These special
wave vectors ~qcp are said critical points of the generic λ-th branch ωλ(~q) of the phononic
dispersion relation and they correspond to the so called van Hove singularities for the
density of states function.
For better understanding what such singularities consist in, it is useful to study the
topology of the dispersion branch ωλ(~q) in proximity of a critical point ~qcp. Then, its
Taylor series expansion at the lowest possible order of approximation for |~q− ~qcp| → 0 is
given by

ωλ(~q) = ωλ(~qcp) +
3∑
i=1

αi(~q − ~qcp)2i (2.6.2.1)

where α1, α2, α3 are three real coefficients whose sign basically specifies the classification
of the critical point ~qcp under study.
If they are all positive or negative, respectively the dispersion curve ωλ(~q) will present a
minimum or a maximum in ~qcp; but if at least one of them has a discordant sign with
respect to the others, ~qcp will be a saddle point.
This is indeed the reason why often such critical points are ranked according to the
number of negative coefficients among α1, α2, α3, as illustrated in Tables 2.2.
In addition, there is a theorem that provides the minimum number CN

n of critical points
of type Mn with n ≤ N , if the associated dispersion curve is periodic and analytical in
N variables, as follows

CN
n =

N !

n! (N − n)!
. (2.6.2.2)
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Negative Coefficients Symbol Class

0 M0 minimum
1 M1 maximum

(a)

Negative Coefficients Symbol Class

0 M0 minimum
1 M1 saddle
2 M2 maximum

(b)

Negative Coefficients Symbol Class

0 M0 minimum
1 M1 saddle
2 M2 saddle
3 M3 maximum

(c)

Table 2.2: Schematic representation of the critical point classification for 1D (a), 2D (b)
and 3D crystal lattices (c) in terms of the number of negative coefficients in the Taylor
series expansion of the dispersion relation.

This means that in the 1D case (N = 1 and n = 0, 1) the branch will exhibit at least
C1

0 = 1 minimum and C1
1 = 1 maximum; in the 2D case (N = 2 and n = 0, 1, 2), it will

have instead C2
0 = 1 minimum, C2

1 = 2 saddle points and C2
2 = 1 maximum; in the 3D

case (N = 3 and n = 0, 1, 2, 3), it will finally present C3
0 = 1 minimum, C3

1 = 3 saddle
points of type M1, C

3
2 = 3 saddle points of type M2 and C3

3 = 1 maximum.
Furthermore, another theorem states that in the 3D case there are four different frequen-
cies ω0 < ω1 < ω2 < ω3, in proximity of which critical points of type Mi tend to show
with i as the index of the associated frequency. So, the overall trend of the density of
states will seem to be characterized by only four van Hove singularities, instead of the
eight required.
In order to study the nature of the reciprocal space surfaces that solve the Equation
(2.6.2.1), the more useful cylindrical coordinates (q, θ, qz) are introduced by the follow-
ing transformations 

q2 = q21 + q22
tan θ = q2

q1

qz = q3

⇒


q =

√
q21 + q22

θ = tan−1
(
q2
q1

)
qz = q3

(2.6.2.3)
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from the canonical ones (q1, q2, q3).
The Taylor series expansion can be thus rewritten as

ωλ(~q)− ωλ(~qcp) = α1q
2 + α3q

2
z (2.6.2.4)

hypothesizing that α1 = α2.
In case of a critical point ~qcp of type M0, one can deduce that ωλ(~qcp) ' ω0 and α1, α3 > 0;
so, the equation describes an ellipsoidal surface for ωλ(~q) > ω0, but also it does not admit
solution for ωλ(~q) < ω0.
Differently, if ~qcp is a critical point of type M1, then ωλ(~qcp) ' ω0 and α1 > 0, α3 < 0
must be valid. These results lead to hyperboloids, that are of one sheet for ωλ(~q) > ω1

and of two sheets for ωλ(~q) < ω1.
Critical points ~qcp of type M2 instead show fully specular features with respect to the
previous case. Indeed, having ωλ(~qcp) ' ω2 and α1 < 0, α3 > 0, the hyperboloidal solu-
tions are of one sheet for ωλ(~q) < ω2 and of two sheets for ωλ(~q) > ω2.
Finally, the case of a critical point ~qcp of type M3 is the opposite of the first, because
basically α1, α3 < 0. This implies that, being ωλ(~qcp) ' ω3, the equation describes an
ellipsoidal surface for ωλ(~q) < ω3, but it does not admit solution for ωλ(~q) > ω3.
The just discussed topological results regarding the solution of Equation (2.6.2.4) are
summarized in a more intuitive way in Table 2.3.

Type Frequency Ranges Surfaces

M0
ω < ω0 No solution
ω > ω0 Ellipsoid

M1
ω < ω1 Hyperboloid of two sheets
ω > ω1 Hyperboloid of one sheet

M2
ω < ω2 Hyperboloid of one sheet
ω > ω2 Hyperboloid of two sheets

M3
ω < ω3 Ellipsoid
ω > ω3 No solution

Table 2.3: Overview of the reciprocal space surfaces that solve the Equation (2.6.2.4) for
each possible type of critical point, indicating ωλ(~q) with ω for simplicity.

Such surfaces can be selected so as to be symmetric to the qz axis, and it can be demon-
strated that the partial density of states gλ(ω) is actually proportional to their projection
on the plane normal to that axis near the critical point ~qcp. This considerably simplifies
the calculation of the density of states function, reducing the Equation (2.6.0.2) to an
integral on the variable qz, whose domain depends firstly on the energy surface, but
indirectly also on the classification of the critical point.
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Indeed, in case of an ellipsoidal surface, the only possible types of critical point are M0

or M3, and the coordinate qz is revealed to be in the real interval

−

√
|ωλ(~q)− ωi|

α3

≤ qz ≤

√
|ωλ(~q)− ωi|

α3

with i = 0, 3 (2.6.2.5)

So, the associated density of states takes the form

gλ(ω) ∝

{√
ω − ω0 for i = 0 and ω > ω0√
ω3 − ω for i = 3 and ω < ω3

(2.6.2.6)

which for clarity is shown in the graphs of Figure 2.12.

ω0 ω

gλ(ω)

0 ω3 ω

gλ(ω)

0

Figure 2.12: The density of phonon states behaviour in proxity of a M0 (left) and M3

(right) van Hove singularity.

Otherwise, for an hyperboloidal surface which can be traced back only to critical points
of type M1 or M2, the qz domain isqz ∈ R−

(
−
√
|ωλ(~q)−ωi|

α3
; +
√
|ωλ(~q)−ωi|

α3

)
if 2 sheets and i = 1, 2

qz ∈ R if 1 sheet.
(2.6.2.7)

Therefore, one can obtain the density of states to exhibit an infinite or finite slope re-
spectively for the first or second case in Equation (2.6.2.7). Indeed, M1 and M2 van
Hove singularities usually appear to be similar to the trends in Figure 2.13.
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ω1 ω

gλ(ω)

0 ω2 ω

gλ(ω)

0

Figure 2.13: The density of phonon states behaviour in proximity of a M1 (left) and M2

(right) van Hove singularity.

Now, the whole shape of the function gλ(ω) can be assembled and in the simplest case
where the M1 and M2 singularities are degenerate it looks like the graph in Figure 2.14.

ω0 ω1 ω2 ω3 ω

gλ(ω)

0

Figure 2.14: The partial density of phonon states associated with an optic dispersion
branch.

However, these results cannot be valid for the acoustic branches ωλ(~q), because of their
high wavelength limit

lim
q→0

ωλ(~q) = 0 (2.6.2.8)

which means that the dispersion curve is not analytical for |~q| = 0.
Hence the only difference of the partial densities of states of acoustic branches from those
of optic branches is the low frequency behaviour, which is found to be gλ(ω) ∝ ω2 for
ω → 0 just as the Debye model result in Equation (2.4.0.8). They thus take the form in
Figure 2.15.
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gλ(ω)

0

Figure 2.15: The partial density of phonon states associated with an acoustic dispersion
branch.
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Chapter 3

Computational analyses of fcc
Bravais lattice of diamond Carbon

3.1 Ab initio calculations

The many-body Schrödinger problem is the starting point for the development of the
quantum theory of materials modeling and its solving techniques are then executed by
most of the computer programs working on the implementation of ab initio calculations
of materials properties, just like VASP. It consists in finding the energy eigenvalues of
a system of N electrons with coordinates ~r1, ~r2, ..., ~rN and M nuclei with coordinates
~R1, ~R2, ..., ~RM , subjected to either attractive or repulsive Coulombic interaction poten-
tials. The so called many-body Hamiltonian thus takes the form

Ĥ = K̂e + K̂n + Ûee + Ûen + Ûnn. (3.1.0.1)

The first two terms (K̂e, K̂n) are the kinetic energies

K̂e = − ~2

2me

N∑
i=1

∇2
i K̂n = −

M∑
n=1

~2

2Mn

∇2
n (3.1.0.2)

with me and Mn respectively indicate the mass of electron and that of the n-th nucleus,
while the others are the Coulombic potential energies of electrons-electrons and nuclei-
nuclei repulsion (Ûee, Ûnn)

Ûee =
1

4πε0

1

2

N∑
i,j=1
i 6=j

e2

|~ri − ~rj|
Ûnn =

1

4πε0

1

2

M∑
n,m=1
n 6=m

ZnZme
2

|~Rn − ~Rm|
, (3.1.0.3)

and electrons-nuclei attraction (Ûen)

Ûen = − 1

4πε0

M∑
n=1

N∑
i=1

Zne
2

|~ri − ~Rn|
(3.1.0.4)
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with Zn as the atomic number of the n-th nucleus.
The wave function ψ of the system depends on the coordinates of each electron and
nucleus

ψ = ψ(~r1, ~r2, ..., ~rN ; ~R1, ~R2, ..., ~RM) (3.1.0.5)

and its square modulus |ψ|2 thus represents the probability of finding all the subsystems
in an arbitrary spatial configuration.
Hence the many-body Schrödinger equation can be written as

Ĥψ = Etotψ, (3.1.0.6)

but it cannot be solved analytically for the eigenvalue Etot due to its remarkable com-
plexity.
However, in case of solid crystal lattices, the nuclei do not move much from their equi-
librium positions with respect to the electronic motions and this is actually result of the
scale of their masses me � Mn ∀n ∈ {1, 2, ...,M}. In this way, the so called clamped
nuclei approximation is taken into account and allows not only to neglect the kinetic
energy K̂n, but also to reduce the potential Ûnn to a constant shift, having the coordi-
nates ~R1, ~R2, ..., ~RM fixed. For the same reason, the Born-Oppenheimer approximation
can be applied to the total wave function, that thus reduces to the tensor product of its
electronic and nuclear components as follows

ψ = ψe(~r1, ~r2, ..., ~rN)⊗ ψn(~R1, ~R2, ..., ~RM). (3.1.0.7)

Therefore, the Equation (3.1.0.6) for the electronic component ψe simplifies to

Ĥeψe = [K̂e + Ûee + Ûen]ψe = Eψe (3.1.0.8)

where Ĥe is called the many-electron Hamiltonian and presents E as the electronic energy
eigenvalue given by

E = Etot −
1

8πε0

M∑
n,m=1
n 6=m

ZnZme
2

|~Rn − ~Rm|
. (3.1.0.9)

Now, the single-electron Hamiltonian Ĥ0(~r) can be defined as

Ĥ0(~r) = − ~2

2me

∇2 − 1

4πε0

M∑
n=1

Zne
2

|~r − ~Rn|
= − ~2

2me

∇2 + V̂n(~r) (3.1.0.10)

so that the previous Ĥe explicitly reads as

Ĥe =
N∑
i=1

Ĥ0(~ri) + Ûee. (3.1.0.11)
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Actually, the appearance of the electrons-electrons Coulombic repulsive potential Ûee
in Equation (3.1.0.11) makes the problem still unsolvable; so, two different approaches
are possible: the independent electrons approximation (less accurate) or the mean-field
approximation (more realistic).
The first consists in the rather drastic hypothesis of eliminating the electrons-electrons
interaction term such that the many-electron Schrödinger equation simplifies to

N∑
i=1

Ĥ0(~ri)ψe = Eψe. (3.1.0.12)

Thus, it is possible to write the wave function ψe as a product of single-electron wave
functions φi(~ri) with i = 1, 2, ..., N that satisfy the following single-electron Schrödinger
equations

Ĥ0(~ri)φi(~ri) = εiφi(~ri) (3.1.0.13)

with ordered energy eigenvalues ε1 < ε2 < ... < εN .
Substituting the result in Equation (3.1.0.13) into (3.1.0.12), one can easily find the
solution to the many-electron Schrödinger equation, as the energy eigenvalue E is given
by

E = ε1 + ε2 + ...+ εN (3.1.0.14)

which means that the N electrons of the system arrange in the lowest-energy configu-
ration, obeying to the condition of permutational antisymmetry on the wave function ψ
required by the Pauli exclusion principle for fermions.
However, the initial assumption of neglecting the Coulombic potential Ûee in the inde-
pendent electrons approximation is completely disconfirmed by its order of magnitude
with respect to the other terms. So, the second approach aims to reintroduce that inter-
action in terms of the average potential V̂H(~r), called Hartree potential, experienced by
each electron

V̂H(~r) =
1

4πε0

∫
d~r ′

ρ(~r ′)

|~r − ~r ′|
(3.1.0.15)

with ρ(~r) =
∑N

i=1 |φi(~r)|2 as the electron density given by the sum of the probabilities of
finding each electron in the position ~r.
The procedure for the solution is basically founded on the following variational principle.
First, considering the ground state ψ0 as a Slater determinant of the single-electron wave
functions, its energy functional E0 is calculated by the integral

E0 =

∫
d~r1...d~rN ψ∗0Ĥeψ0. (3.1.0.16)

Second, if one impose the minimization of the energy functional with respect to φi(~ri)

δE0

δφ∗i
= 0 ∀i ∈ {1, 2, ..., N} (3.1.0.17)
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and the orthonormality condition of such functions∫
d~r φ∗i (~r)φj(~r) = δi,j ∀i, j ∈ {1, 2, ..., N}, (3.1.0.18)

then it can be shown that the Hartree-Fock equations are obtained as
[
Ĥ0(~r) + V̂H(~r)

]
φi(~r) +

∫
d~r ′ V̂X(~r, ~r ′)φi(~r

′) = εiφi(~r)

∇2V̂H(~r) = −ε−10 ρ(~r).

(3.1.0.19)

The last one is known as Poisson equation and the function V̂X(~r, ~r ′) is the so called
Fock exchange potential, whose explicit expression is

V̂X(~r, ~r ′) = − 1

4πε0

∑
j

φ∗j(~r
′)φj(~r)

|~r − ~r ′|
(3.1.0.20)

with the index j that takes the integral values associated with single-electron wave func-
tions φj having the same spin as φi in the first of the Equations (3.1.0.19).
The solutions φi(~r) for the Hartree-Fock equations must be such that the resulting po-
tential V̂H(~r) is self-consistent with its initial guess and also admits same solutions φi(~r)
if it is reinserted in Equations (3.1.0.19). Consequently, the electronic component ψe of
the many-body wave function can be expressed as a Slater determinant of such φi(~r) in
order to satisfy the Pauli exclusion principle. At the same time, the minimum for the
electronic energy functional E0 is further estimated and depends on the lattice structure
given by the previously fixed nuclear coordinates ~Rn.
Thus, the so calculated electronic energy E0({~Rn}) can be reinterpreted as a sort of 3M -
dimensional potential energy in the many-body Schrödinger equation for the nuclear
component ψn [

K̂n + Ûnn + E0({~Rn})
]
ψn = Etotψn. (3.1.0.21)

reintroducing the nuclear kinetic energy K̂n.
Finally, the equilibrium lattice structure can be approximated by numerical algorithms,
such as steepest descent or conjugate gradients methods, for the minimization of the
potential energy experienced by the M nuclei.
Another popular tool among materials modeling programs is the density functional the-
ory, often shortened to DFT, which aims at computing the total energy E0 of many
electrons in their ground state. For the Hohenberg-Kohn theorem such quantity can be
written as the following functional of the electron density ρ(~r)

E0 = F [ρ] = 〈ψe[ρ]|Ĥe|ψe[ρ]〉 =

∫
d~rρ(~r)V̂n(~r) +

1

2

∫
d~rρ(~r)V̂H(~r)

− ~2

2me

∑
i

∫
d~rφ∗i (~r)∇2φi(~r) + Exc[ρ]

(3.1.0.22)
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where the extra term Exc[ρ] is called exchange and correlation energy and gives an un-
known contribution to the total electronic energy.
Now, the Hohenberg-Kohn variational principle can be applied by imposing the mini-
mization condition of the functional F [ρ] at the ground-state electron density ρ0

δF [ρ]

δρ

∣∣∣∣
ρ0

= 0 (3.1.0.23)

which leads to the Kohn-Sham equations that read as



[
− ~2

2me
∇2 + V̂n(~r) + V̂H(~r) + V̂xc(~r)

]
φi(~r) = εiφi(~r)

∇2V̂H(~r) = −ε−10 ρ(~r)

V̂xc(~r) = δExc[ρ]
δρ

(~r).

(3.1.0.24)

However, the energy eigenvalues εi and the eigenfunctions φi(~r) which constitute the
solutions of the problem can be obtained explicitly only if the total potential V̂tot(~r) =
V̂n(~r) + V̂H(~r) + V̂xc(~r) is known as function of the electron density ρ(~r). It implies that
each solution φi(~r) depends on all other φj(~r) with j 6= i.
Therefore, the whole procedure must grant their self-consistency, which means that if the
first solutions φi(~r) are inserted into the electron density formula in order to calculate
the new total potential expression and the Kohn-Sham equations are dealt with again,
then the second solutions φ′i(~r) turn out to be the same as the previous ones.
So, the total electronic energy in the ground state can be computed by constructing
increasingly better estimates of the electron density ρ(~r) until the self-consistency is
finally achieved within a desired tolerance.

3.2 Ionic relaxation

The first procedure consists in the ionic relaxation of the fcc lattice of diamond Carbon,
which is obtained by VASP via the minimization of the total energy of the system, as
anticipated in Section 3.1.
The execution of such a task requires the preparation of four Input files, called POSCAR,
KPOINTS, INCAR and POTCAR.
The POSCAR file provides the necessary information about the spatial configuration of
the lattice as follows
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system C

3.730

0.5 0.5 0.0

0.0 0.5 0.5

0.5 0.0 0.5

C

2

cart

0.00 0.00 0.00

0.25 0.25 0.25

and contains in order an initial comment line that can be used for introducing the name
of the system under study, a guess of the lattice constant ag (in Å) that is later used
as a scale factor for the lattice vectors, the 3D lattice vectors ~a1,~a2,~a3 defining the
unit cell structure, the atom symbol, the number of atoms per unit cell, an indicator
of the choice of coordinate system and finally the coordinates of the atoms in the unit
cell. In particular, the only allowed coordinate systems are Cartesian and Direct, which
respectively allow to specify an arbitrary 3D vector ~R via three real coefficients (x, y, z)
or (R1, R2, R3) as

~R =

{
ag(x~ux + y~uy + z~uz) (Cartesian)

R1~a1 +R2~a2 +R3~a3 (Direct)
(3.2.0.1)

where ~ux, ~uy, ~uz are the versors forming the 3D Cartesian orthonormal basis.
The KPOINTS file instead includes details of the reciprocal space sampling during the
procedure and in this case it has the basic form

Regular k-points mesh

0

Gamma

7 7 7

0 0 0

As POSCAR, the first line is regarded as a comment, while by the zero in the second
is meant that the sample is automatically generated by a regular mesh, whose center
(Gamma=(0,0,0) in reciprocal space) is specified immediately after. At last, the other two
triples of numbers respectively set the sample number (N1, N2, N3) along each reciprocal

lattice vector (~b1,~b2,~b3) and the optional shift (s1, s2, s3) of the mesh generation.
In particular, as the 3D reciprocal lattice vectors for a generic fcc lattice are

~b1 =
2π

ag
(−1, 1, 1) ~b2 =

2π

ag
(1,−1, 1) ~b3 =

2π

ag
(1, 1,−1), (3.2.0.2)
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the sample generated by the mesh in the first Brillouin zone is given by the k-points ~q (j)

with j = 1, 2, ..., N1N2N3

~q (j) =
3∑
i=1

n
(j)
i + si
Ni

~bi for n
(j)
i ∈ 0, 1, 2, ..., Ni. (3.2.0.3)

Next, the INCAR file includes the instructions on what task to be performed and how
to do it, in a ”tag = value” syntax. In this case, the main tags are chosen to be

ALGO = Fast

EDIFF = 0.0004

ENCUT = 520

PREC = Accurate

IBRION = 2

ISIF = 3

The ALGO = Fast specifies an electronic minimization algorithm that follows each ionic
update. Then, the EDIFF and ENCUT tags indicate two energy values in units of eV that
respectively act as the lower energy limit for stopping the algorithm and the cutoff kinetic
energy for the ionic plane waves basis for each k-point read from the KPOINTS file. The
PREC = Accurate instead allows to avoid any aliasing or wrap around errors (necessary
for phonon calculations), while the IBRION = 2 selects the task to be performed, that in
this case consists in a ionic relaxation via the conjugate gradient algorithm summarized
in the following steps:

1. ionic trial displacement along a search direction;

2. forces calculation with respect to the initial lattice configuration (read from the
POSCAR file);

3. approximation of the minimum total energy by a cubic interpolation;

4. corrector ionic displacement towards the approximate minimum;

5. forces and energy values update;

6. other trial and corrector steps are performed until the lattice total energy is enough
close to the minimum.

Finally, the ISIF tag determines how many and which degrees-of-freedom (ionic posi-
tions, cell colume, cell shape) are allowed to change. So, ISIF = 3 means that all three
are considered.
The last Input file (POTCAR) is a read-only file made available by VASP and contains
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specific information about the atoms in the lattice, such as the pseudopotential, the
mass, the number of valence electrons and the default cutoff energy (ENMAX) which is
later compared to the ENCUT tag initialized in the INCAR file.
This procedure of ionic relaxation has been performed not only on a single unit cell, but
also on 2× 2× 2 and 3× 3× 3 supercell structures, which just needed the production of
more complex POSCAR files via the terminal commands of Phonopy

phonopy -d --dim="2 2 2" --cell=POSCAR-unitcell

phonopy -d --dim="3 3 3" --cell=POSCAR-unitcell

and the reduction of the number of k-point samples from 7 respectively to 5 and 3 per
reciprocal lattice vector in the KPOINTS files.
The resulting Output files are several, but only the CONTCAR file is the one of inter-
est, since it contains the optimal lattice geometry at the approximate minimum energy
in form of a POSCAR file, which will be later used as Input file for the study of the
phononic dispersion curves. The so obtained structures are shown in Figure 3.1 thanks
to the VESTA (Visualization for Electronic and STructural Analysis [15]-[16]-[17]-[18])
software.

(a) (b) (c)

Figure 3.1: 3D visualization of the approximate lowest-energy configuration of a unit
cell (a), a 2 × 2 × 2 supercell (b) and a 3 × 3 × 3 supercell (c) of the fcc lattice of
diamond Carbon with interatomic bonds represented by fictitious sticks aiming at better
understanding its three-dimensionality.

Starting from the initial guess for the lattice step of 3.730 Å, these ab initio calculations
for unit cell, 2 × 2 × 2 and 3 × 3 × 3 supercell structures for the fcc lattice of diamond
Carbon respectively lead to three final estimates 3.561 Å, 3.557 Å and 3.556 Å, which
are enough consistent with the experimental value of 3.57 Å found in [2].
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3.3 Phononic dispersion

The ab initio calculations of the phononic dispersion curves require a two-steps proce-
dure, which is performed initially by VASP and then by Phonopy.
In particular, the first step aims to compute the second-order force constants using a
finite differences approach and thus to construct the dynamical matrix ∆(j,k)(~q), whose
definition is written in Equation (2.5.4.3) for a generic 3D lattice. This is done by essen-
tially reusing the same four Input files described in Section 3.2, except for the following
modifications: the INCAR file must have the instruction IBRION = 6 that sets the task
to determine the second-order force constants and the dynamical matrix using six finite
ionic displacements (default size of 0.015 Å) only along symmetry inequivalent directions
and it also must have the ISIF tag canceled because the choice of degrees-of-freedom ac-
tually passes to the previous command. Then, all the results of the execution, as well as
the initial data, are listed into an XML format file called vasprun.xml, which needs to
be read via the Phonopy command

phonopy --fc vasprun.xml

in order to extract only data concerning force constants and write them into a text file
named FORCE CONSTANTS in a more easy-to-use format.
Now, as the second step of the procedure, the phonon frequencies have to be calculated
and this can be performed by Phonopy through the preparation of a configuration file
band.conf with the following ”tag = value” statements

DIM = 2 2 2

ATOM_NAME = C

FULL_FORCE_CONSTANTS = .TRUE.

FORCE_CONSTANTS = READ

EIGENVECTORS = .TRUE.

BAND = 0 0 0 0.375 0.375 0.75, 0.625 0.25 0.625

0.5 0 0.5 0 0 0 0.5 0.5 0.5

BAND_POINTS = 101

BAND_LABELS = $\Gamma$ K U X $\Gamma$ L

where essentially the first two lines give some basic information about the lattice, the
EIGENVECTORS = .TRUE. specifies to prepare an Output file for the polarization eigenvec-
tors of Equation (2.5.3.11) necessary for the subsequent modulation operation of atomic
displacements near Γ, then the third and the fourth lines set the reading of the previ-
ously created FORCE CONSTANTS file and finally the others specify the number of
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k-points sampling and the high symmetry lines chosen for the evaluation of the phonon
frequencies.
Once the band.conf file is ready, the Phonopy commands

phonopy --dim="2 2 2" --cell=POSCAR-unitcell band.conf

phonopy --dim="3 3 3" --cell=POSCAR-unitcell band.conf

can be runned depending on the supercell dimension and thus store the results in a
YAML format file called band.yaml, which can be converted to a CSV file by a rather
simple Python script. Hence the phonon band-structure for 2 × 2 × 2 and 3 × 3 × 3
supercell structures has been plotted and overlapped with the experimental data in [11]
by the use of Matplotlib [19], NumPy [20] and SciPy [21] Python libraries in Figure 3.2.
Note that more unit cells the considered supercell structure includes, more the phononic
dispersion relation can be evaluated precisely for generic k-points ~q different than zero.
The reason behind this is attributed to the increasing possibilities of complex collective
motion within the supercell. So, the study of the case of a single unit cell turns out to
be practically useless, or better physically insignificant.
Indeed, the so obtained dispersion curves show an increasing compatibility to the exper-
imental data by switching from 2× 2× 2 to 3× 3× 3 supercells.
Moreover, according to the actual fcc lattice of diamond Carbon, whose basis is formed by
two Carbon atoms (so p = 2 from Section 2.5.4), they present 3 acoustic and 3(p−1) = 3
optic branches with visible phenomena of degeneracy along some of the high symmetry
lines, such as X-Γ and Γ-L where the capital letters stand for the following k-point in
the first Brillouin zone

Γ =
2π

a
(0, 0, 0) K =

2π

a

(
3

4
,
3

4
, 0

)
U =

2π

a

(
1,

1

4
,
1

4

)
X =

2π

a
(1, 0, 0) L =

2π

a

(
1

2
,
1

2
,
1

2

) (3.3.0.1)

in Cartesian coordinates with a as the approximate lattice step.
Furthermore, those dispersion branches can be either classified as longitudinal or trans-
verse depending on whether the atomic displacement vectors are parallel or perpendicular
to the propagation direction of the collective wave. Thus in case of full non-degeneracy in
proximity of the central k-point Γ, they can be labeled by LA, TA1, TA2, LO, TO1 and
TO2, where L and T stand for longitudinal and transverse, A and O instead symbolize
acoustic and optic and finally 1 and 2 distinguish the two possible transverse branches.
The atomic motions associated with each of these dispersion curves has been represented
via red vectors generated by VESTA in Figure 3.3 with an appropriate amplification to
make their directions appreciable.
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(a)

(b)
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(c)

Figure 3.2: Ab initio phononic dispersion curves for 2× 2× 2 (a) and 3× 3× 3 supercell
structures (b) of fcc diamond Carbon overlapped with the experimental data in [11] along
the high symmetry path Γ-K,U-X-Γ-L within the first Brillouin zone. The difference
between these two ab initio results are evidenced in the third graph (c).

For example, in order to realize the first 3D plot in Figure 3.3, it has been necessary to
run the following Phonopy command on the terminal

phonopy --dim="3 3 3" --readfc --cell=POSCAR-unitcell

--modulation="2 2 2, 0 0 0 1 10 0"

which creates a POSCAR-like file named MPOSCAR of a displaced 2× 2× 2 supercell
structure along the first dispersion branch near the k-point Γ with an amplification factor
A = 10 and a phase shift ϕ = 0 indicated in the modulation option, but it also requires
to specify the dimension of the starting supercell via --dim="3 3 3", to set the reading
of the force constants via --readfc and to name the POSCAR file of a single unit cell via
--cell=POSCAR-unitcell. Then, varying only the seventh number in the modulation

option from 1 to 6, the MPOSCAR files for the other plots can be obtained too.
In this way, the displacement of the j -th atom in the l -th unit cell is calculated from the
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polarization vectors ~ε
(j,0)
s (~q) as

A√
NscMj

<[eiϕ~ε (j,0)
s (~q)e~q·

~R(j,l)

] =
10√

16MC

<[~ε (j,0)
s (Γ)] (3.3.0.2)

being Nsc = 16 the number of atoms in the 2× 2× 2 supercell.

(a) For LA branch. (b) For TA1 branch.

(c) For TA2 branch. (d) For LO branch.

(e) For TO1 branch. (f) For TO2 branch.

Figure 3.3: 3D visualization of the 2 × 2 × 2 supercell structures undergoing modulated
displacements along the six total normal modes in proximity of the k-point Γ.

The first three 3.3a, 3.3b, 3.3c show in-phase oscillations within the unit cells and they are
associated with the acoustic dispersion branches LA, TA1, TA2. While the other 3.3d,
3.3e, 3.3f involve counter-phase motions, that thus correspond to the optic dispersion
branches LO, TO1, TO2.
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3.4 Density of phonon states

The third step in the study of phononic properties of diamond Carbon consisted in
calculating the total density of states g(ω) related to the previous ab initio dispersion
branches in Figure 3.2 via the post-processing methods of Phonopy.
In particular, it requires the preparation of a configuration file named pdos.conf, which
gets executed by the command

phonopy --cell=POSCAR-unitcell pdos.conf

and it is composed of the following basic statements

DIM = 2 2 2

ATOM_NAME = C

FULL_FORCE_CONSTANTS = .TRUE.

FORCE_CONSTANTS = READ

MP = 8 8 8

GAMMA_CENTER = .TRUE.

DOS = .TRUE.

The first four lines are equal to those in the configuration file band.conf shown in
Section 3.3, while the others allow to count the number of phonon states with frequency
ωλ(~q

(j)) ' ω where the symbol ~q (j) indicates the j -th k-point of a Γ-centered mesh
sampling of the first Brillouin zone, as explained in Section 3.2 and explicitly written in
Equation (3.2.0.3).
The total density of phonon states function is thus calculated by Phonopy as

g(ω) =
1

W

∑
λ,j

δ(ω − ωλ(~q (j))) (3.4.0.1)

such that satisfies the peculiar normalization condition∫ ∞
0

g(ω)dω = 3Nuc (3.4.0.2)

with W as the number of unit cells in the chosen supercell structure (2×2×2 or 3×3×3)
and Nuc = 2 as the number of atoms in the basis. The results of the execution of such
a task are written in a DAT format file that can be easily read and plotted by a Python
script, as illustrated in Figure 3.4 for both 2 × 2 × 2 and 3 × 3 × 3 supercell structures
of diamond Carbon. These ab initio calculations are also compared to the experimental
data in [12] through superposition.
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(a)

(b)
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(c)

Figure 3.4: Ab initio total density of phonon states for 2×2×2 (a) and 3×3×3 supercell
structures (b) of fcc diamond Carbon overlapped with the experimental data in [12]. For
better identifying the improvements between the two ab initio trends, their superposition
graph is also reported (c).

As in Section 3.3, the compatibility of the ab initio outcome to the experimental data
increases remarkably with the size of the considered supercell during the procedure. In
addition, they also exhibit very sharp van Hove singularities and a clear Debye trend
(∝ ω2) in the low frequency limit due to the three acoustic dispersion branches.

3.5 Debye frequency evaluation

Due to the evident Debye trend (∝ ω2) in the low frequency limit for both experimental
and ab initio data, two estimates of the Debye frequency ωD of diamond Carbon have
been calculated and then compared with each other in search of a possible accordance.
The process aiming at obtaining them consists in fitting those two series of data to a
curve of the form

gfit(ω) = Bω2 (3.5.0.1)
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in the frequency range [0, 1
4
ωmax], where ωmax is the maximum phonon frequency, which

equals to 41.3 THz in the experimental case and to 40.3 THz in the other, and B is the
fit parameter, whose final value at the same time ensures the normalization to 3Nuc = 6
and allows to determine indirectly the Debye frequency via the relation

B =
9Nuc

ω3
D

→ ωD =

(
9Nuc

B

)1/3

. (3.5.0.2)

In particular, the fit parameter B has been measured to be{
Bexp = (1.38± 0.22)× 10−4 THz−3 for experimental data

Bai = (1.68± 0.26)× 10−4 THz−3 for ab initio data
(3.5.0.3)

regarding the uncertainties ∆Bexp, ∆Bai as the double value of the fit-estimated standard
deviations σB,exp = 0.11 THz−3, σB,ai = 0.13 THz−3. Thus, the Debye frequency ωD has
been calculated as{

ωD,exp = (50.7± 2.7) THz for experimental data

ωD,ai = (47.5± 2.4) THz for ab initio data
(3.5.0.4)

where the uncertainties are obtained by a linear error propagation of ∆Bexp, ∆Bai via
the generic formula

∆ωD =

∣∣∣∣∂ωD∂B

∣∣∣∣∆B =
(9Nuc)

1/3

3B4/3
∆B. (3.5.0.5)

As a result, the definition of the derived quantity ωD,exp − ωD,ai allowed to prove their
reciprocal compatibility due to its indirect measurement

ωD,exp − ωD,ai = (3.2± 5.1) THz (3.5.0.6)

that turns out to be consistent with its optimal value 0.
The plot of the final fitting curves is shown in Figure 3.5, where their domains are
extended to the real interval [0, ωD] in order to better visualize the global trend of the
density of phonon states in the Debye approximation and its evident discrepancy in the
high frequency limit with respect to both of the series of data.
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(a)

(b)

Figure 3.5: Graphs of the best-fitting functions for the density of phonon states in the
Debye approximation in relation to both experimental (a) and ab initio data (b), which
are also overlapped to them.
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Chapter 4

Conclusion

The harmonic approximation of the vibrational modes of a solid crystal lattice is the
foundation of the two most relevant theoretical models (Einstein and Debye ones), which
provide an analytical solution for the temperature-dependent heat capacity function be-
ginning with basic assumptions, as well as generically unrealistic, on the density of states
function and the phononic dispersion relation.
Both their results agree with the classical Dulong-Petit law in the high temperature
limit, but at the same time they also differ from that in the low one by showing a rapidly
vanishing trend (∝ 1

T 2 e
−1/T and ∝ T 3 respectively for the Einstein and Debye models),

which actually turns out to be more consistent with the related experimental data. This
clearly demonstrates how necessary the quantum treatment of the 1D simple harmonic
oscillator is with respect to the classical one.
However, their initial hypotheses are found to be valid only in limited conditions and
frequency ranges. Indeed, the phononic dispersion relation for real solids cannot be con-
sidered to be linear generically because it actually presents acoustic and optic branches.
The firsts set at 0 for ~q = Γ = (0, 0, 0) and in its vicinity they have a approximately
linear trend, which makes them suitable for the Debye model in the low frequency, or
high wavelength, limit. While the seconds exhibit a finite value even for ~q → Γ, and
often show a nearly constant behaviour, which is instead a requirement of the Einstein
model.
In addition, the number of branches in the phononic dispersion relation for real solids is
proportional to the number of atoms in the unit cell Nuc of the 3D Bravais lattice under
study with 3 as multiplier coefficient, but only three of them are acoustic, the others are
all optic.
Furthermore, the density of phonon states function for 3D lattices presents sharp struc-
tures, called van Hove singularities, that violate the hypotheses of being Dirac delta
shaped or quadratic, as respectively required by the Einstein and Debye models. In
particular, these singularities arise from the cancellation condition of the denominator in
the integral of Equation (2.6.0.2), which corresponds to the search for the critical points
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~qcp of the phononic dispersion relation that thus satisfy |∇~q ωλ(~q = ~qcp)| = 0. On the
basis of the characterization of such critical points, the van Hove singularities can be
also classified into four types (M0, M1, M2, M3) and each of these involves a different
behaviour of the associated part of the density of states, noting that because of the cer-
tain presence of acoustic dispersion branches a quadratic trend of the total function can
be always observed in the low frequency limit.
Next, the VASP and Phonopy software allowed to compute from first principles some of
the phononic properties of the fcc Bravais lattice of diamond Carbon starting from the
ionic relaxation at an approximate minimum of the electronic energy to the evaluation
of its specific Debye frequency. The main results concern though the ab initio calcula-
tion of the phononic dispersion curves and the total density of phonon states, both of
which turned out to be consistent with the experimental data extracted from [11] and
[12] respectively.
Moreover, the number and the quality of the so obtained dispersion branches is in ac-
cordance with the expectations for a 3D Bravais lattice with a diatomic basis, just like
diamond Carbon.
At last, thanks to the quadratic trend of both experimental and ab initio data regarding
the total density of phonon states in the low frequency limit, two compatible estimates
of the Debye frequency for diamond Carbon (that are ωD,exp = (50.7 ± 2.7) THz and
ωD,ai = (47.5 ± 2.4) THz) have been calculated by executing curve fitting operations
limited to the two intervals [0,1

4
(41.3 THz)] and [0,1

4
(40.3 THz)] respectively.
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