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Sommario

La presente tesi si propone di mostrare che l’oscillatore armonico quantistico dipendente
dal tempo è un sistema risolvibile in maniera esatta.

La trattazione è articolata in tre capitoli: nel primo viene richiamata la teoria dell’o-
scillatore armonico quantistico indipendente dal tempo, al fine di recuperare i concetti
e le metodologie che sono comuni anche alla sua controparte dipendente dal tempo. Nel
secondo capitolo viene fornita una breve introduzione alla teoria degli operatori invarianti
dipendenti dal tempo, di cui ci interessa la loro relazione con le soluzioni dell’equazione
di Schrödinger. Infine, nel terzo capitolo viene presentato il problema dell’oscillatore ar-
monico quantistico dipendente dal tempo e discussa la sua soluzione esatta. In aggiunta
se ne individuano gli stati coerenti.



Abstract

The purpose of this thesis is to show that there exists an exact solution to the problem
of the quantum time-dependent harmonic oscillator.

The treatment is organized in three chapters: in the first one the theory of the quan-
tum time-independent harmonic oscillator is recalled, in order to recover the concepts
and methodologies which are common also to its time-dependent counterpart. The sec-
ond chapter consists in a brief introduction to the theory of time-dependent invariant
operators, whose relation with the solutions of the Schrödinger equation is of interest.
Finally, in the third chapter the problem of the quantum time-dependent harmonic os-
cillator is presented and its exact solution is discussed. Furthermore, its coherent states
are specified.
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Chapter 1

The quantum simple harmonic
oscillator

1.1 Introduction to the problem

The quantum time-independent harmonic oscillator is nothing else but the well-known
quantum simple harmonic oscillator. A simple harmonic oscillator of mass m and fre-
quency ω has the following Hamiltonian operator:

Ĥ =
p̂2

2m
+

1

2
mω2q̂2, (1.1)

where q̂ and p̂ are the position and momentum operators of the harmonic oscillator,
respectively. These obey the canonical commutation relation:

[q̂, p̂] = iℏ1̂. (1.2)

The Hamiltonian (1.1) and the quantum condition (1.2) define the system completely.
The Heisenberg equations for the position and momentum operators are given by

dq̂H
dt

=
1

iℏ
[q̂H , ĤH ] =

p̂H
m
, (1.3a)

dp̂H
dt

=
1

iℏ
[p̂H , ĤH ] = −mω2q̂H , (1.3b)

where we use the subscript “H” to distinguish the Heisenberg picture from the standard
Schrödinger picture. Equations (1.3) combined together give the equation of motion

d2q̂H
dt2

+ ω2q̂H = 0. (1.4)
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This is a typical problem of quantum statics, in which the potential energy function is
independent of time. Therefore, in order to solve the time-dependent Schrödinger equa-
tion, it suffices to work out the associated time-independent one. There exist two distinct
approaches to this problem: the first one consists in solving indirectly the eigenvalue
problem of the Hamiltonian by means of an algebraic operator technique; the second one
aims to a straightforward solution to the eigenvalue equation of the Hamiltonian.

1.2 Algebraic solution

In this section we follow the treatment given by Cohen-Tannoudji and Co [1]. Consider
the following operators:

â =
1

(2mℏω)1/2
(p̂− imωq̂), (1.5)

â† =
1

(2mℏω)1/2
(p̂+ imωq̂). (1.6)

The operator â and its adjoint â† satisfy the commutation relation

[â, â†] = 1̂. (1.7)

The operators â and â† constitute a destruction and creation operator pair. With every
such pair of operators there is associated a number operator N̂ , defined as

N̂ = â†â. (1.8)

The operator N̂ is Hermitian and, together with â and â†, obeys the commutation
relations

[N̂ , â] = −â, (1.9a)

[N̂ , â†] = â†. (1.9b)

By direct calculation one can show that

N̂ =
1

ℏω

(
p̂2

2m
+

1

2
mω2q̂2

)
− 1̂

2
. (1.10)

Thus one deduces

Ĥ = ℏω
(
N̂ +

1̂

2

)
. (1.11)

Relation (1.11) implies that the eigenvalue problem of the Hamiltonian operator is au-
tomatically solved once we find the solution to the eigenvalue problem of the number
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operator. From this point forward we shall assume that N̂ and Ĥ are selfadjoint oper-
ators, that is there exists an orthonormal basis for the space of the dynamical states of
the system formed by their eigenvectors.

Then, consider the eigenvalue equation

N̂ |n⟩ = n |n⟩ , (1.12)

|n⟩ being an eigenket of N̂ belonging to the eigenvalue n. The solution of (1.12) is based
on the commutation relations (1.7) and (1.9). The following lemmas can be proven.

Lemma 1. The eigenvalues n of the operator N̂ are non-negative numbers.

Lemma 2. Let |n⟩ be a non-zero eigenket of N̂ with eigenvalue n. Then:

(i) if n = 0, the ket â |0⟩ is zero;

(ii) if n > 0, the ket â |n⟩ is a non-zero eigenket of N̂ belonging to the eigenvalue n−1.

Lemma 3. Let |n⟩ be a non-zero eigenket of N̂ with eigenvalue n. Then:

(i) the ket â† |n⟩ is always non-zero;

(ii) the ket â† |n⟩ is a non-zero eigenket of N̂ belonging to the eigenvalue n+ 1.

From Lemma 1 and Lemma 2 one can derive that an arbitrary eigenvalue n of N̂ must
be a non-negative integer. Then Lemma 3 can be used to show that the spectrum of N̂
indeed coincides with the set of non-negative integers.

Therefore, an eigenket |n⟩ of the number operator N̂ belonging to the eigenvalue n
will be also an eigenket of Ĥ, by solving the eigenvalue equation

Ĥ |n⟩ = En |n⟩ , (1.13)

with the energy eigenvalue En given by

En = ℏω
(
n+

1

2

)
(1.14)

where n = 0, 1, 2, . . . So the energy of a quantum simple harmonic oscillator is quantized,
resulting in a discrete spectrum. In particular its energy eigenvalues are equispaced and
the smallest value, corresponding to the ground state, is not zero, but ℏω/2.

In addition to the above properties, the energy spectrum is completely non-degenerate.
It can be proven by induction. Firstly, according to Lemma 2, if |0⟩ is an eigenket of the
number operator belonging to the eigenvalue 0, it must satisfy the condition

â |0⟩ = 0. (1.15)
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Substituting the definition (1.5) of â, (1.15) reads as

1

(2mℏω)1/2
(p̂− imωq̂) |0⟩ = 0. (1.16)

In the configuration space representation {|x⟩} equation (1.16) becomes the first-order
differential equation (

l
d

dx
+
x

l

)
⟨x|0⟩ = 0, (1.17)

where l is the characteristic length scale of the quantum simple harmonic oscillator
considered, defined as

l =
( ℏ
mω

)1/2

. (1.18)

The general solution of (1.17) is

⟨x|0⟩ = c exp

(
− x2

2l2

)
(1.19)

where c is an integration constant. Since there is only one linearly independent solution
to (1.17), there is only one linearly independent ket which satisfy (1.15). Therefore
the eigenvalue 0 is non-degenerate. Secondly, suppose that the eigenvalue n is non-
degenerate. Then consider an eigenket |n+ 1⟩ belonging to the eigenvalue n+1. Because
of Lemma 2, the ket â |n+ 1⟩ is a non-vanishing eigenket of N̂ with eigenvalue n. Since
n is non-degenerate by assumption, there exist a multiplicative constant factor c such
that

â |n+ 1⟩ = c |n⟩ (1.20)

holds. By inverting this equation we get

â†â |n+ 1⟩ = câ† |n⟩
N̂ |n+ 1⟩ = câ† |n⟩
(n+ 1) |n+ 1⟩ = câ† |n⟩

|n+ 1⟩ = c

n+ 1
â† |n⟩ . (1.21)

Because of Lemma 3, â† |n⟩ is an eigenket of N̂ belonging to the eigenvalue n + 1. As
|n+ 1⟩ is an arbitrary eigenket with eigenvalue n+1, from (1.21) follows that any eigenket
with eigenvalue n + 1 is proportional to â† |n⟩. Therefore, n + 1 is non-degenerate and
this concludes our proof by induction.

Since the spectrum of N̂ is completely non-degenerate, N̂ alone is a complete set of
commuting selfadjoint operators, that is there exists a unique orthonormal basis of its
eigenvectors up to a phase choice. Clearly, the same applies to Ĥ. This basis unique
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up to normalization can be easily constructed in terms of |0⟩. To begin with, we shall
assume |0⟩ to be normalizable with ⟨0|0⟩ = 1. Then, because of Lemma 3, the kets â† |n⟩
and |n+ 1⟩ are the same up to a multiplicative constant. Requiring this constant to be
real and positive by convention, one can show that

â† |n⟩ = (n+ 1)1/2 |n+ 1⟩ . (1.22)

By recurrence one thus obtains

|n⟩ = (n!)−1/2â†n |0⟩ . (1.23)

The orthonormality of the set of kets obtained through the formula (1.23) is guaranteed
by the hermiticity of Ĥ, since each ket of such set belongs to a different eigenvalue, and
by the fact that |0⟩ is normalized to 1. Furthermore, the set exhausts all the linearly
independent eigenkets of Ĥ, given the uniqueness of |0⟩. Thus, being Ĥ selfadjoint, the
above set constitute an orthonormal basis.

It is worth observing that one can prove also the following relation:

â |n⟩ = n1/2 |n− 1⟩ , n > 0. (1.24)

So, â and its Hermitian conjugate â† act on the eigenkets of N̂ as ladder operators. We
can always guarantee the validity of relations (1.22) and (1.24) by specifying the relative
phases of the kets |n⟩ in an appropriate way.

For completeness, we show how to compute the energy eigenfunctions ϕn(x) in this
framework. We have already obtained the eigenfunction corresponding to the ground
state in (1.17). The conventionally normalized ground state eigenfunction has the form

ϕ0(x) =
1

l1/2π1/4
exp

(
− x2

2l2

)
. (1.25)

Now, the normalized energy eigenfunction ϕn(x) of the harmonic oscillator can be com-
puted using (1.23) as follows:

ϕn(x) = ⟨x|n⟩ = (n!)−1/2 ⟨x| â†n |0⟩ . (1.26)

Using (1.6) and the action of the position and momentum operators on the ⟨x| one gets

ϕn(x) =
(−1)nin

(2nn!)1/2

(
l
d

dx
− x

l

)n

⟨x|0⟩ = (−1)nin

l1/2π1/4(2nn!)1/2

(
l
d

dx
− x

l

)n

exp

(
− x2

2l2

)
(1.27)

Finally, we can rewrite (1.27) as

ϕn(x) =
(−1)nin

l1/2π1/4(2nn!)1/2
Hn

(x
l

)
exp

(
− x2

2l2

)
, (1.28)

where we introduced the Hermite polynomial of degree n

Hn

(x
l

)
= exp

(
x2

2l2

)(
l
d

dx
− x

l

)n

exp

(
− x2

2l2

)
. (1.29)
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1.3 Analytical solution

We have seen that the algebraic technique of the destruction and creation operators
is extremely powerful and succeeds in finding basically all the fundamental properties
of the quantum simple harmonic oscillator. However, it is worth illustrating also the
analytical approach since it constitutes an emblematic application of wave mechanics.
In what follows, we will refer ourselves to the treatment given by Griffiths [2].

Consider the time-indipendent Schrödinger equation for the harmonic oscillator:

− ℏ2

2m

d2ϕ

dx2
+

1

2
mω2x2ϕ = Eϕ. (1.30)

We want to find the values of E for which a non-vanishing solution ϕ(x) of (1.30) exists.
Given the form of the potential, we require the solution to vanish at infinity.

Let us first introduce the dimensionless variable

ξ =
x

l
, (1.31)

where l is given by (1.18), and rewrite (1.30) in terms of it:

d2ϕ

dξ2
= (ξ2 −K)ϕ. (1.32)

We have introduced K as the energy in units of ℏω/2, that is

K =
2E

ℏω
. (1.33)

Now, note that at very large ξ (or equivalently at very large x) (1.32) takes the asymptotic
form

d2ϕ

dξ2
≈ ξ2ϕ, (1.34)

which admits an approximate solution that is bounded, namely

ϕ(ξ) ≈ c exp

(
−ξ

2

2

)
, (1.35)

c being an integration constant. The asymptotic form of the physically acceptable solu-
tions of (1.32) suggests the ansatz

ϕ(ξ) = H(ξ) exp

(
−ξ

2

2

)
. (1.36)
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Since ϕ(ξ) must vanish at infinity, H(ξ) must have at most a polynomial growth. Plug-
ging (1.36) into (1.32) we obtain the following differential equation for the function H(ξ):

d2H

dξ2
− 2ξ

dH

dξ
+ (K − 1)H = 0. (1.37)

Equation (1.37) is a standard differential equation of mathematical physics known as
Hermite equation. It can be solved with the power series method. In particular, one
can show that for physically acceptable solutions we must have K = 2n + 1, for some
non-negative integer n. This implies that

En = ℏω
(
n+

1

2

)
, n = 0, 1, 2, . . . (1.38)

recovering the fundamental quantization condition we found algebraically. Then, the
physically acceptable solutions which are admitted by (1.32) are polynomials of degree
n in ξ, precisely the Hermite polynomials, Hn(ξ).

Thus, by (1.31) and (1.36) we can state that the energy eigenfunction corresponding
to the energy eigenvalue En is given by

ϕn(x) =
1

l1/2π1/4(2nn!)1/2
Hn

(x
l

)
exp

(
− x2

2l2

)
, (1.39)

where the normalization constant is determined by imposing the normalization condition∫ +∞

−∞
dx ϕ∗

n′(x)ϕn(x) = δn′,n. (1.40)

Notice that (1.39) coincides with (1.28) up to a constant phase factor.

1.4 Coherent states

Coherent states constitute a class of special quantum states in which the quantum simple
harmonic oscillator exhibits classical motion.

A coherent state is codified by a ket |α⟩ of the form

|α⟩ = exp
(
−|α|2/2

) ∞∑
n=0

αn

(n!)1/2
|n⟩ , (1.41)

where α is a complex number that parametrize the coherent states and the |n⟩ are the
eigenkets of the number operator N̂ . By construction, the kets |α⟩ are normalized to 1.

The coherent state |α⟩ is an eigenket of the destruction operator â with eigenvalue
given by α:

â |α⟩ = α |α⟩ . (1.42)
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Relation (1.42) can be considered as an alternative definition for the coherent states. In
fact one can derive (1.41) searching an explicit normalized expression in terms of the
kets |n⟩ for the eigenkets of â (see [3] for the details).

To show what we mentioned at the beginning of this section we shall consider the
dynamics of these states. Suppose that at an initial time t0 the quantum simple har-
monic oscillator is prepared in the state |ψ(t0)⟩ = |α⟩. The Hamiltonian operator of
the quantum simple harmonic oscillator does not depend on time, thus the evolution
operator Û(t, t0) is simply given by

Û(t, t0) = exp

(
−i(t− t0)

ℏ
Ĥ

)
. (1.43)

Then, take t0 = 0 for simplicity. The state of the system at any time t > 0 is given by

|ψ(t)⟩ = Û(t, 0) |ψ(0)⟩ = exp

(
−i(t− t0)

ℏ
Ĥ

)
|α⟩ , (1.44)

which substituting (1.41) turns into

|ψ(t)⟩ = exp
(
−|α|2/2

) ∞∑
n=0

(α exp(−iωt))n

(n!)1/2
|n⟩ exp(−iωt/2) = |α exp(−iωt)⟩ exp(−iωt/2).

(1.45)
Now, setting α = 1, (1.45) becomes

|ψ(t)⟩ = |exp(−iωt)⟩ exp(−iωt/2). (1.46)

Using (1.42) and expressing the position and momentum operators in terms of the de-
struction and creation operators, we can compute the expectation values of position and
momentum in a generic coherent state |α⟩, obtaining the following results:

< q >= ⟨α| q̂ |α⟩ = −21/2l Imα, (1.47a)

< p >= ⟨α| p̂ |α⟩ = 21/2ℏl−1Reα. (1.47b)

Relations (1.47) can then be used to compute the time-dependent mean values of position
and momentum of a harmonic oscillator whose state evolves according to (1.46). We get

< q >t = 21/2l sin(ωt), (1.48a)

< p >t = 21/2ℏl−1 cos(ωt). (1.48b)

These two expectation values evolve in time as the position and momentum of a classical
simple harmonic oscillator.
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Another important feature of the coherent states is that they minimize the uncertainty
product ∆q∆p. Given a generic coherent state |α⟩, the uncertainties associated to the
position and the momentum of the harmonic oscillator in such state can be computed
following the same reasoning used for the corresponding expectation values. One thus
obtains

∆q = ⟨α| (q̂ − ⟨α| q̂ |α⟩)2 |α⟩1/2 = 2−1/2l, (1.49a)

∆p = ⟨α| (p̂− ⟨α| p̂ |α⟩)2 |α⟩1/2 = 2−1/2ℏl−1, (1.49b)

and we can clearly see that

∆q∆p =
ℏ
2
. (1.50)
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Chapter 2

Explicitly time-dependent invariants

2.1 Generalities

Consider a system whose Hamiltonian operator Ĥ(t) depends explicitly on time. Of
course, such a system is not closed, in the sense that some external influence, which do
not need to be specified, may change the parameters of the system and therefore alter
its total energy. Assume the existence of another explicitly time-dependent non-trivial
operator Î(t), which is Hermitian and invariant. That is to say Î(t) satisfies the two
following conditions:

Î† = Î , (2.1)

dÎH
dt

=
(dÎ
dt

)
H
+

1

iℏ
[ÎH , ĤH ] = 0. (2.2)

Let |ψ(t)⟩ be a solution of the time-dependent Schrödinger equation

iℏ
d |ψ(t)⟩
dt

= Ĥ(t) |ψ(t)⟩ . (2.3)

Consider the same ket in the Heisenberg picture:

|ψ(t)⟩H = Û(t, 0)−1 |ψ(t)⟩ = |ψ(0)⟩ . (2.4)

By applying the left-hand side of (2.2) to |ψ(t)⟩H we obtain

dÎH
dt

|ψ(t)⟩H =

[(dÎ
dt

)
H
+

1

iℏ
[ÎH , ĤH ]

]
|ψ(t)⟩H =

=
(dÎ
dt

)
H
|ψ(t)⟩H +

1

iℏ
[ÎH , ĤH ] |ψ(t)⟩H =

=
(dÎ
dt

)
H
|ψ(t)⟩H +

1

iℏ
(ÎHĤH − ĤH ÎH) |ψ(t)⟩H =
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=
(dÎ
dt

)
H
|ψ(t)⟩H +

1

iℏ
ÎHĤH |ψ(t)⟩H − 1

iℏ
ĤH ÎH |ψ(t)⟩H . (2.5)

Relation (2.2) so implies

iℏ
(dÎ
dt

)
H
|ψ(t)⟩H + ÎHĤH |ψ(t)⟩H − ĤH ÎH |ψ(t)⟩H = 0. (2.6)

Returning to the Schrödinger picture we have

iℏ
dÎ

dt
|ψ(t)⟩+ ÎĤ |ψ(t)⟩ − ĤÎ |ψ(t)⟩ = 0. (2.7)

Observing that
dÎ

dt
|ψ(t)⟩ = d

dt
(Î |ψ(t)⟩)− Î

d |ψ(t)⟩
dt

, (2.8)

we can rewrite the left-hand side of equation (2.7) as

iℏ
d

dt
(Î |ψ(t)⟩)− iℏÎ

d |ψ(t)⟩
dt

+ ÎĤ |ψ(t)⟩ − ĤÎ |ψ(t)⟩ =

= iℏ
d

dt
(Î |ψ(t)⟩)− Î

(
iℏ
d |ψ(t)⟩
dt

− Ĥ |ψ(t)⟩
)
− ĤÎ |ψ(t)⟩ =

= iℏ
d

dt
(Î |ψ(t)⟩)− ĤÎ |ψ(t)⟩ (2.9)

where in the last step we used the fact that |ψ(t)⟩ is a solution of the time-dependent
Schrödinger equation. Then equation (2.7) becomes

iℏ
d

dt
(Î |ψ(t)⟩) = Ĥ(Î |ψ(t)⟩), (2.10)

that means that the action of the invariant operator Î on a solution of the Schrödinger
equation produces another solution of the Schrödinger equation. It is worth noting that
this result holds for any invariant operator, even if it involves the operation of time
differentiation. However, as we will see in section 2.2, if the invariant operator does not
involve time differentiation, we can derive an explicit rule to choose the phases of the
eigenkets of Î in such a way that these kets themselves satisfy the Schrödinger equation.
Henceforth, we shall assume that Î does not involve time-differentiation.

We assume that the invariant operator belongs to a complete set of commuting self-
adjoint operators, so that there is an orthonormal basis of eigenkets of Î which is unique
up to a phase choice. Let us denote the eigenkets of such basis by |λ, κ⟩, where λ rep-
resents the eigenvalue of Î associated to the eigenket considered and the label κ stands
for the collection of quantum numbers other than λ necessary for identifying the same
eigenket. Then, these kets satisfy the eigenvalue equation

Î(t) |λ, κ⟩ = λ |λ, κ⟩ (2.11)
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and the orthonormality relation

⟨λ′, κ′|λ, κ⟩ = δλ′,λδκ′,κ. (2.12)

The eigenvalues λ are real because of the condition (2.1). We can also give a proof of
their time-independence. We first apply the left-hand side of (2.2) to the ket |λ, κ⟩H and
obtain

dÎH
dt

|λ, κ⟩H =

[(dÎ
dt

)
H
+

1

iℏ
[ÎH , ĤH ]

]
|λ, κ⟩H =

=
(dÎ
dt

)
H
|λ, κ⟩H +

1

iℏ
[ÎH , ĤH ] |λ, κ⟩H =

=
(dÎ
dt

)
H
|λ, κ⟩H +

1

iℏ
(ÎHĤH − ĤH ÎH) |λ, κ⟩H =

=
(dÎ
dt

)
H
|λ, κ⟩H +

1

iℏ
ÎHĤH |λ, κ⟩H − 1

iℏ
ĤH ÎH |λ, κ⟩H =

=
(dÎ
dt

)
H
|λ, κ⟩H +

1

iℏ
ÎHĤH |λ, κ⟩H − λ

iℏ
ĤH |λ, κ⟩H , (2.13)

where in the last step we used (2.11). Relation (2.2) so implies

iℏ
(dÎ
dt

)
H
|λ, κ⟩H + ÎHĤH |λ, κ⟩H − λĤH |λ, κ⟩H = 0. (2.14)

Then we take the scalar product of equation (2.14) with a ket |λ′, κ′⟩H :

iℏH⟨λ
′, κ′|

(dÎ
dt

)
H
|λ, κ⟩H + H⟨λ

′, κ′|ÎHĤH |λ, κ⟩H − λH⟨λ
′, κ′|ĤH |λ, κ⟩H = 0

iℏH⟨λ
′, κ′|

(dÎ
dt

)
H
|λ, κ⟩H + λ′ H⟨λ

′, κ′|ĤH |λ, κ⟩H − λH⟨λ
′, κ′|ĤH |λ, κ⟩H = 0

iℏH⟨λ
′, κ′|

(dÎ
dt

)
H
|λ, κ⟩H + (λ′ − λ)H⟨λ

′, κ′|ĤH |λ, κ⟩H = 0. (2.15)

Therefore, if λ′ = λ, relation

H⟨λ, κ
′|
(dÎ
dt

)
H
|λ, κ⟩H = 0 (2.16)

holds regardless of the relation between κ′ and κ. Clearly, an equation of the same form
holds in the Schrödinger picture:

⟨λ, κ′| dÎ
dt

|λ, κ⟩ = 0. (2.17)
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Now, by differentiating (2.11) with respect to time, we obtain

dÎ

dt
|λ, κ⟩+ Î

d

dt
|λ, κ⟩ = dλ

dt
|λ, κ⟩+ λ

d

dt
|λ, κ⟩ . (2.18)

Taking the scalar product of equation (2.18) with the ket |λ, κ⟩, we get

⟨λ, κ| dÎ
dt

|λ, κ⟩+ ⟨λ, κ| Î d
dt

|λ, κ⟩ = dλ

dt
⟨λ, κ|λ, κ⟩+ λ ⟨λ, κ| d

dt
|λ, κ⟩

⟨λ, κ| dÎ
dt

|λ, κ⟩+ λ ⟨λ, κ| d
dt

|λ, κ⟩ = dλ

dt
+ λ ⟨λ, κ| d

dt
|λ, κ⟩

⟨λ, κ| dÎ
dt

|λ, κ⟩ = dλ

dt
, (2.19)

where in the second step we used the orthonormality of the kets |λ, κ⟩. Finally, using
(2.17), equation (2.19) implies

dλ

dt
= 0. (2.20)

Of course, since the eigenvalues are time-independent, the eigenkets must be time-
dependent.

2.2 Relation to solutions of the time-dependent

Schrödinger equation

In order to investigate the connection between eigenkets of Î and solutions of the
Schrödinger equation, we first rewrite equation (2.18) using (2.20) as follows:

(λ1̂− Î)
d

dt
|λ, κ⟩ = dÎ

dt
|λ, κ⟩ . (2.21)

Then, by taking the scalar product of equation (2.21) with the ket |λ′, κ′⟩, we obtain

⟨λ′, κ′| (λ1̂− Î)
d

dt
|λ, κ⟩ = ⟨λ′, κ′| dÎ

dt
|λ, κ⟩

iℏλ ⟨λ′, κ′| d
dt

|λ, κ⟩ − iℏλ′ ⟨λ′, κ′| d
dt

|λ, κ⟩ = iℏ ⟨λ′, κ′| dÎ
dt

|λ, κ⟩

iℏ(λ− λ′) ⟨λ′, κ′| d
dt

|λ, κ⟩ = (λ− λ′) ⟨λ′, κ′| Ĥ |λ, κ⟩ , (2.22)

where in the last step we used equation (2.15) read in the Schrödinger picture to rewrite
the right-hand side. For λ′ ̸= λ, equation (2.22) implies

iℏ ⟨λ′, κ′| d
dt

|λ, κ⟩ = ⟨λ′, κ′| Ĥ |λ, κ⟩ . (2.23)
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Nonetheless, we cannot infer

iℏ ⟨λ, κ′| d
dt

|λ, κ⟩ = ⟨λ, κ′| Ĥ |λ, κ⟩ . (2.24)

If equation (2.23) held for λ′ = λ as well as for λ′ ̸= λ, we would then immediately
deduce that the kets |λ, κ⟩ are solutions of the Schrödinger equation. We shall specify
the phases of the kets |λ, κ⟩, which have not been fixed by our definitions, in order to
achieve the validity of equation (2.23) for λ′ = λ as well.

We assume that some definite phase has been chosen, but we are still free to multiply
|λ, κ⟩ by an arbitrarily time-dependent phase factor. So, we can define a new set of
eigenkets of Î(t) related to our initial set by a time-dependent gauge transformation:

|λ, κ⟩α = exp(iαλκ(t)) |λ, κ⟩ (2.25)

where the αλκ(t) are arbitrary real functions of time. Since by assumption Î(t) does
not contain time-derivative operators, the kets |λ, κ⟩α are still orthonormal eigenkets of

Î. For λ′ = λ, equation (2.23) also holds for matrix elements with respect to the new
eigenkets. Now, suppose that the new eigenkets satisfy (2.23) for λ′ = λ as well. Then,
we have

iℏ α⟨λ, κ
′| d
dt

|λ, κ⟩α = α⟨λ, κ
′|Ĥ |λ, κ⟩α (2.26)

Substituting (2.25) into equation (2.26), we obtain

iℏ
[
exp(−iαλκ′(t)) ⟨λ, κ′|

] d
dt

[
|λ, κ⟩ exp(iαλκ(t))

]
=

=
[
exp(−iαλκ(t)) ⟨λ, κ′|

]
Ĥ
[
|λ, κ⟩ exp(iαλκ(t))

]
(2.27)

and a further development of the equation brings us to

iℏ ⟨λ, κ′| d
dt

|λ, κ⟩ − ℏ
dαλκ

dt
⟨λ, κ′|λ, κ⟩ = ⟨λ, κ′| Ĥ |λ, κ⟩ . (2.28)

At last, using the orthonormality of the kets |λ, κ⟩, we get

ℏδκ′,κ
dαλκ

dt
= ⟨λ, κ′|

(
iℏ
d

dt
− Ĥ

)
|λ, κ⟩ . (2.29)

For κ′ ̸= κ, the left-hand side of (2.29) vanishes and the equation reduces to

⟨λ, κ′|
(
iℏ
d

dt
− Ĥ

)
|λ, κ⟩ = 0. (2.30)

This diagonalization condition is always possible since the operator iℏ d/dt− Ĥ is Her-
mitian. For κ′ = κ, instead, we obtain the following equation for the phases of the gauge
transformation:

ℏ
dαλκ

dt
= ⟨λ, κ|

(
iℏ
d

dt
− Ĥ

)
|λ, κ⟩ . (2.31)
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Therefore, the new eigenkets defined in (2.25) are solutions of the Schrödinger equation
if and only if the initial eigenkets |λ, κ⟩ are chosen to satisfy equation (2.30) and the
phases αλκ(t) are chosen to be solutions of the equation (2.31).

Since each ket of the new set of eigenkets of Î(t), |λ, κ⟩α, satisfies the Schrödinger
equation, the general solution of this latter can be written as

|t⟩ =
∑
λ,κ

cλκ |λ, κ; t⟩α =
∑
λ,κ

cλκ exp(iαλκ(t)) |λ, κ; t⟩ , (2.32)

where the cλκ are time-independent coefficients given by

cλκ = α⟨λ, κ; t|t⟩ = exp(−iαλκ(t)) ⟨λ, κ; t|t⟩ . (2.33)

We revised the notation in equations (2.32) and (2.33) by indicating the time dependences
explicitly: here the Schrödinger state vector is denoted by |t⟩ and the eigenkets of the
invariant by |λ, κ; t⟩. However, in order to simplify the notation, we shall continue to
suppress the time dependence in the following.
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Chapter 3

The quantum time-dependent
harmonic oscillator

3.1 Introduction to the problem

A quantum time-dependent harmonic oscillator of mass m(t) and frequency ω(t) is char-
acterized by the following Hamiltonian operator:

Ĥ(t) =
p̂2

2m(t)
+

1

2
m(t)ω2(t)q̂2, (3.1)

where q̂ and p̂ are the position and momentum operators, respectively, which obey the
canonical commutation relation [q̂, p̂] = 1̂. The Heisenberg equations for q̂ and p̂ are
given by

dq̂H
dt

=
1

iℏ
[q̂H , ĤH ] =

p̂H
m(t)

, (3.2a)

dp̂H
dt

=
1

iℏ
[p̂H , ĤH ] = −m(t)ω2(t)q̂H . (3.2b)

Equations (3.2) combined together give the equation of motion

d2q̂H
dt2

+ µ(t)
dq̂H
dt

+ ω2(t)q̂H = 0, (3.3)

where we have introduced

µ(t) =
d

dt
[ln(m(t))]. (3.4)

We assume m(t) and ω(t) to be arbitrary, piecewise-continuous functions of time. In
particular, we assume the former to be real and positive. We do not require ω(t) to
be real because our treatment is valid even when ω(t) is imaginary, until ω2(t) is a real
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function. Therefore, henceforth we shall assume ω2(t) to be a either positive or negative
real function of time. Of course, if one wants to recover the quantum simple harmonic
oscillator in the limit of time-independence, ω(t) needs to be real.

The quantum time-dependent harmonic oscillator is a problem of quantum dynamics,
since the potential which characterises it is time-dependent. We are interested in showing
the existence of an exact solution to the associated time-dependent Schrödinger equation.
The key to do this is the derivation of a class of exact Hermitian invariants.

3.2 A family of invariants for a time-dependent

harmonic oscillator

We assume the existence of a Hermitian invariant operator of the homogeneous, quadratic
form

Î(t) =
1

2
[α(t)q̂2 + β(t)p̂2 + γ(t){q̂, p̂}+], (3.5)

where α(t), β(t) and γ(t) are real functions of time and the numerical factor is inserted
for convenience. Here we use the same notation used by Lewis and Riesenfeld in [4] for
the anticommutator of two operators, that is {q̂, p̂}+ = q̂p̂+ p̂q̂.

Being an invariant, Î(t) must satisfy equation (2.2). So, let us first take the derivative
of (3.5) with respect to time,

dÎ

dt
=

1

2

(dα
dt
q̂2 +

dβ

dt
p̂2 +

dγ

dt
{q̂, p̂}+

)
, (3.6)

and then, for the sake of clarity, rewrite this and the previous equation in the Heisenberg
picture:

ÎH =
1

2
(αq̂2H + βp̂2H + γ{q̂H , p̂H}+), (3.7)(dÎ

dt

)
H
=

1

2

(dα
dt
q̂2H +

dβ

dt
p̂2H +

dγ

dt
{q̂H , p̂H}+

)
. (3.8)

Now we compute the commutator [ÎH , ĤH ]:

[ÎH , ĤH ] =

[
1

2
(αq̂2H + βp̂2H + γ{q̂H , p̂H}+),

p̂2H
2m

+
1

2
mω2q̂2H

]
=

=
1

2m

[
1

2
(αq̂2H + βp̂2H + γ{q̂H , p̂H}+), p̂2H

]
+

1

2
mω2

[
1

2
(αq̂2H + βp̂2H + γ{q̂H , p̂H}+), q̂2H

]
=

=
α

4m
[q̂2H , p̂

2
H ] +

β

4m
[p̂2H , p̂

2
H ] +

γ

4m
[{q̂H , p̂H}+, p̂2H ]
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+
mω2α

4
[q̂2H , q̂

2
H ] +

mω2β

4
[p̂2H , q̂

2
H ] +

mω2γ

4
[{q̂H , p̂H}+, q̂2H ]. (3.9)

Substituting every commutator appearing in (3.9) with its explicit result (see Appendices
for more details) and rearranging the expression thus obtained, we get

[ÎH , ĤH ] = −iℏmω2γ q̂2H + iℏ
γ

m
p̂2H +

(iℏ
2

α

m
− iℏ

2
mω2β

)
{q̂H , p̂H}+. (3.10)

Finally, we can obtain an explicit expression for the left-hand side of (2.2) using (3.8)
and (3.10), namely

dÎH
dt

=
(dÎ
dt

)
H
+

1

iℏ
[ÎH , ĤH ] =

=
1

2

[(dα
dt

− 2mω2γ
)
q̂2H +

(dβ
dt

+
2γ

m

)
p̂2H +

(dγ
dt

+
α

m
−mω2β

)
{q̂H , p̂H}+

]
.

(3.11)

Relation (2.2) so implies(dα
dt

− 2mω2γ
)
q̂2H +

(dβ
dt

+
2γ

m

)
p̂2H +

(dγ
dt

+
α

m
−mω2β

)
{q̂H , p̂H}+ = 0. (3.12)

In order to satisfy equation (3.12), we demand

α̇ = 2mω2γ, (3.13a)

β̇ = −2γ

m
, (3.13b)

γ̇ = − α

m
+mω2β, (3.13c)

where we shifted to the notation α̇ = dα/dt to lighten the expressions with which we
will deal in the following. It is convenient to introduce another function σ(t) defined by

β(t) = σ2(t). (3.14)

Because β(t) is a real function of time, σ2(t) is a real function of time as well. Equation
(3.13b) then becomes

γ = −mσσ̇. (3.15)

Taking the time derivative of equation (3.15), we obtain

γ̇ = −ṁσσ̇ −mσ̇2 −mσσ̈, (3.16)

and comparing the right-hand side of this equation with that of equation (3.13c) we get

α = mṁσσ̇ +m2σ̇2 +m2σσ̈ +m2ω2σ2. (3.17)
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Similarly, taking the time derivative of equation (3.17), we obtain

α̇ = ṁ2σσ̇ +mm̈σσ̇ + 3mṁσ̇2 + 3mṁσσ̈ + 3m2σ̇σ̈

+m2σ
...
σ + 2mṁω2σ2 + 2m2ωω̇σ2 + 2m2ω2σσ̇, (3.18)

and comparing the right-hand side of this equation with that of equation (3.13a) we get

ṁ2σσ̇ +mm̈σσ̇ + 3mṁσ̇2 + 3mṁσσ̈ + 3m2σ̇σ̈

+m2σ
...
σ + 2mṁω2σ2 + 2m2ωω̇σ2 + 4m2ω2σσ̇ = 0. (3.19)

The non-linear differential equation so obtained imposes a constraint on σ(t). We can
render it more manageable as follows:

3σ̇(m2σ̈ +m2ω2σ +mṁσ̇) + σ[m2ω2σ̇ + 2(mṁω2 +m2ωω̇)σ

+ ṁ2σ̇ +mm̈σ̇ +mṁσ̈] + σ(2mṁσ̈ +m2 ...σ ) = 0

3σ̇(m2σ̈ +m2ω2σ +mṁσ̇) + σ
d

dt
(m2ω2σ +mṁσ̇) + σ

d

dt
(m2σ̈) = 0

σ
d

dt
(m2σ̈ +m2ω2σ +mṁσ̇) + 3σ̇(m2σ̈ +m2ω2σ +mṁσ̇) = 0. (3.20)

In order to find a first integral, we rewrite (3.20) as

1

m2σ̈ +m2ω2σ +mṁσ̇

d

dt
(m2σ̈ +m2ω2σ +mṁσ̇) = −3

σ̇

σ
(3.21)

and then integrate it to get

ln
(
m2σ̈ +m2ω2σ +mṁσ̇

)
= −3 lnσ + c, (3.22)

where c is an integration constant. From equation (3.22) thus follows

m2σ̈ +m2ω2σ +mṁσ̇ =
c

σ3
. (3.23)

Exploiting (3.23), we can rewrite (3.17) as

α = m2σ̇2 +
c

σ2
. (3.24)

Now, returning to the Schrödinger picture and using (3.14), (3.15) and (3.24), we can
express the invariant in the form

Î(t) =
1

2

[ c
σ2
q̂2 + (σp̂−mσ̇q̂)2

]
, (3.25)
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with (3.23) as an auxiliary equation. After making the scale transformation

σ(t) = c1/4ρ(t), (3.26)

ρ(t) being a new auxiliary function of time, equation (3.25) turns into

Î(t) =
c1/2

2

[ 1

ρ2
q̂2 + (ρp̂−mρ̇q̂)2

]
, (3.27)

while the subsidiary condition (3.23) becomes

m2ρ̈+m2ω2ρ+mṁρ̇ =
1

ρ3
. (3.28)

So the constant multiplicative factor c1/2 in (3.27) can be discarded, thus showing the
illusory arbitrariness implied by the presence of the constant c in equation (3.25). Finally,
we can write the invariant in the form

Î =
1

2

[ 1

ρ2
q̂2 + (ρp̂−mρ̇q̂)2

]
, (3.29)

where ρ(t) satisfies the auxiliary equation

ρ̈+ µρ̇+ ω2ρ =
1

m2ρ3
. (3.30)

Note that only the real solutions of this equation make Î(t) Hermitian.
With any particular solution of equation (3.30) there is associated an invariant op-

erator of the form given by equation (3.29). In this way we can construct a family of
invariants which is in one-to-one correspondence with the set of solutions of the non-linear
differential equation (3.30). According to the theory of chapter 2, chosen an invariant
of the form (3.29), we can compute the appropriate time-dependent phase factors that
make the eigenstates of the invariant solutions of the Schrödinger equation. Of course,
before pursuing such issue, we have to determine the eigenvalues and eigenstates of the
invariant. This problem may be approached with an algebraic method or an analytical
one, just as the energy eigenvalue problem for the quantum simple harmonic oscillator.

3.3 Algebraic solution

The algebraic approach is completely analogous to the operator technique presented in
section 1.2. Consider the time-dependent operator

â =
1

(2ℏ)1/2
[1
ρ
q̂ + i(ρp̂−mρ̇q̂)

]
(3.31)
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and its adjoint

â† =
1

(2ℏ)1/2
[1
ρ
q̂ − i(ρp̂−mρ̇q̂)

]
. (3.32)

The operators â and â† constitute a pair of destruction and creation operators. In fact,
they obey the commutation relation [â, â†] = 1̂. This can be easily shown by direct
calculation:

[â, â†] =

[
1

(2ℏ)1/2
[1
ρ
q̂ + i(ρp̂−mρ̇q̂)

]
,

1

(2ℏ)1/2
[1
ρ
q̂ − i(ρp̂−mρ̇q̂)

]]
=

=
1

(2ℏ)1/2ρ

[
1

(2ℏ)1/2
[1
ρ
q̂ + i(ρp̂−mρ̇q̂)

]
, q̂

]
− iρ

(2ℏ)1/2

[
1

(2ℏ)1/2
[1
ρ
q̂ + i(ρp̂−mρ̇q̂)

]
, p̂

]
+

imρ̇

(2ℏ)1/2

[
1

(2ℏ)1/2
[1
ρ
q̂ + i(ρp̂−mρ̇q̂)

]
, q̂

]
=

=
1

2ℏρ2
[q̂, q̂] +

i

2ℏ
[p̂, q̂]− iρ̇m

2ℏρ
[q̂, q̂]− i

2ℏ
[q̂, p̂] +

ρ2

2ℏ
[p̂, p̂]

− mρρ̇

2ℏ
[q̂, p̂] +

imρ̇

2ℏρ
[q̂, q̂]− mρρ̇

2ℏ
[p̂, q̂] +

m2ρ̇2

2ℏ
[q̂, q̂] =

= − i

2ℏ
[q̂, p̂]− i

2ℏ
[q̂, p̂]− mρρ̇

2ℏ
[q̂, p̂] +

mρρ̇

2ℏ
[q̂, p̂] =

= − i

ℏ
[q̂, p̂] =

= 1̂. (3.33)

So we can define a number operator N̂ = â†â. We can derive an explicit expression of
N̂ again by direct calculation:

N̂ = â†â =

=
1

2ℏ

[1
ρ
q̂ − i(ρp̂−mρ̇q̂)

][1
ρ
q̂ + i(ρp̂−mρ̇q̂)

]
=

=
1

2ℏ

[ 1

ρ2
q̂2 + (ρp̂−mρ̇q̂)2 +

i

ρ
q̂(ρp̂−mρ̇q̂)− i

ρ
(ρp̂−mρ̇q̂)q̂

]
=

=
1

2ℏ

[ 1

ρ2
q̂2 + (ρp̂−mρ̇q̂)2 + iq̂p̂− imρ̇

ρ
q̂2 − ip̂q̂ +

imρ̇

ρ
q̂2
]
=

=
1

2ℏ

[ 1

ρ2
q̂2 + (ρp̂−mρ̇q̂)2 + i[q̂, p̂]

]
=

=
1

2ℏ

[ 1

ρ2
q̂2 + (ρp̂−mρ̇q̂)2

]
− 1̂

2
=
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=
1

ℏ
Î − 1̂

2
, (3.34)

where in the last step we recognized (3.29). Thus one deduces

Î = ℏ
(
N̂ +

1̂

2

)
. (3.35)

Before proceeding with our discussion, it is worth noting that all the results presented
in section 1.2 concerning the eigenvalue problem of the number operator introduced for
the quantum simple harmonic oscillator (except for the non-degeneracy of the spectrum,
which is a property characteristic of the problem considered) are equally valid for any
operator of the form (1.8), with â and its adjoint â† satisfying the commutation relation
(1.7), since they are all direct consequences of this very same commutation relation.

So, the spectrum of N̂ is the set of non-negative integer numbers. Furthermore,
relation (3.35) implies that the normalized eigenkets |λ⟩ of Î coincide with the normalized
eigenkets |n⟩ of N̂ :

N̂ |n⟩ = n |n⟩ , (3.36)

Î |n⟩ = λn |n⟩ , (3.37)

where n = 0, 1, 2, . . . and the eigenvalues λn of Î are given by

λn = ℏ
(
n+

1

2

)
. (3.38)

We shall assume N̂ and Î to be selfadjoint operators, for the purpose of having an
orthonormal basis for the space of the dynamical states of the system formed by their
eigenkets. It can be proven that this basis is unique up to normalization, since the
spectrum of N̂ is completely non-degenerate. To begin with, for the reasons exposed in
the previous paragraph, if |0⟩ is an eigenket of N̂ belonging to the eigenvalue 0, it must
obey the following relation:

â |0⟩ = 0. (3.39)

Then, consider the action of the destruction operator â on a bra ⟨x|, conjugate of the
ket |x⟩ of the configuration space representation:

⟨x| â =
1

(2ℏ)1/2
⟨x|

[1
ρ
q̂ + i(ρp̂−mρ̇q̂)

]
=

=
1

(2ℏ)1/2
[1
ρ
⟨x| q̂ + iρ ⟨x| p̂− imρ̇ ⟨x| q̂

]
=

=
1

(2ℏ)1/2
[1
ρ
x ⟨x|+ ℏρ

d

dx
⟨x| − imρ̇x ⟨x|

]
=

=
ℏρ

(2ℏ)1/2
[( 1

ℏρ2
− imρ̇

ℏρ

)
x ⟨x|+ d

dx
⟨x|

]
=
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=
ℏρ

(2ℏ)1/2
[( 1

ℏρ2
− imρ̇

ℏρ

)
x+

d

dx

]
⟨x| . (3.40)

From (3.39) ⟨x| â |0⟩ = 0 follows. Using (3.40), this condition reads as[( 1

ℏρ2
− imρ̇

ℏρ

)
x+

d

dx

]
⟨x|0⟩ = 0. (3.41)

This is a first-order differential equation, whose general solution is given by

⟨x|0⟩ = c exp

[
−1

2

( 1

ℏρ2
− imρ̇

ℏρ

)
x2
]
, (3.42)

c being an integration constant that may depend on time, but is independent of x.
Since there is only one linearly independent solution to (3.41), there is only one linearly
independent ket which satisfies (3.39). Therefore the eigenvalue 0 is non-degenerate. To
complete the proof of the total non-degeneracy of the spectrum of N̂ , one can follow
an argument similar to that presented in section 1.2, showing by recurrence the non-
degeneracy of each other eigenvalue of the spectrum.

Hence the orthonormal basis {|n⟩} constitutes a representation. We choose the rela-
tive phases of the normalized kets |n⟩ so that the standard lowering and raising relations
for â and â† are satisfied:

â |n⟩ = n1/2 |n− 1⟩ , (3.43)

â† |n⟩ = (n+ 1)1/2 |n+ 1⟩ . (3.44)

Now our aim is to make the eigenkets |n⟩ solutions of the Schr̈odinger equation,
by effecting the transformation of equations (2.25) and (2.31). So we need to find the
diagonal matrix elements of the operators Ĥ and d/dt. Let us start from the former.
In order to express Ĥ in terms of â and â†, we first use equations (3.31) and (3.32) to
express q̂ and p̂ in terms of them. We get

q̂ =
(ℏ
2

)1/2

ρ (â+ â†) (3.45)

and

p̂ =
(ℏ
2

)1/2 1

iρ
[(1 + imρρ̇)â− (1− imρρ̇)â†]. (3.46)

Then we compute the square of these operators:

q̂2 =
ℏ
2
ρ2(â+ â†)2 =

ℏ
2
ρ2(â2 + â†2 + ââ† + â†â) =

ℏ
2
ρ2â2 +

ℏ
2
ρ2â†2 +

ℏ
2
ρ2{â, â†}+, (3.47)

p̂2 = − ℏ
2ρ2

[(1 + imρρ̇)â− (1− imρρ̇)â†]2 =
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= − ℏ
2ρ2

[(1 + imρρ̇)2â2 + (1− imρρ̇)2â†2 − (1 +m2ρ2ρ̇2)ââ† − (1 +m2ρ2ρ̇2)ââ†] =

= − ℏ
2ρ2

(1 + 2imρρ̇−m2ρ2ρ̇2)â2 − ℏ
2ρ2

(1− 2imρρ̇−m2ρ2ρ̇2)â†2

+
ℏ
2ρ2

(1 +m2ρ2ρ̇2)(ââ† + â†â) =

=
ℏ
2

(
− 1

ρ2
− 2im

ρ̇

ρ
+m2ρ̇2

)
â2 +

ℏ
2

(
− 1

ρ2
+ 2im

ρ̇

ρ
+m2ρ̇2

)
â†2

+
ℏ
2

( 1

ρ2
+m2ρ̇2

)
{â, â†}+. (3.48)

Substituting (3.47) and (3.48) into equation (3.1), we obtain

Ĥ =
ℏ
4m

[(
− 1

ρ2
− 2im

ρ̇

ρ
+m2ρ̇2 +m2ω2ρ2

)
â2

+
(
− 1

ρ2
+ 2im

ρ̇

ρ
+m2ρ̇2 +m2ω2ρ2

)
â†2

+
( 1

ρ2
+m2ρ̇2 +m2ω2ρ2

)
{â, â†}+

]
. (3.49)

Now, the diagonal matrix elements of the operators â2 and â†2 are zero, as one can see
using relations (3.43) and (3.44) and the orthonormality of the kets |n⟩:

⟨n| â2 |n⟩ = ⟨n| â |n− 1⟩n1/2 = ⟨n|n− 2⟩ [n(n− 1)]1/2 = 0, (3.50)

⟨n| â†2 |n⟩ = ⟨n| â† |n+ 1⟩ (n+ 1)1/2 = ⟨n|n+ 2⟩ [(n+ 1)(n+ 2)]1/2 = 0. (3.51)

Conversely, the diagonal matrix elements of the operator {â, â†}+ are not zero. Precisely,
they are given by

⟨n| {â, â†}+ |n⟩ = ⟨n| (ââ† + â†â) |n⟩ = ⟨n| (2N̂ + 1̂) |n⟩ = 2
(
n+

1

2

)
, (3.52)

where in the second step we added and subtracted â†â inside the parenthesis and used
(3.33), while in the last step we used the orthonormality of the kets |n⟩. Therefore,
only the term proportional to {â, â†}+ contributes non-trivially to the diagonal matrix
elements of Ĥ, which are given by

⟨n| Ĥ |n⟩ = ℏ
2m

( 1

ρ2
+m2ρ̇2 +m2ω2ρ2

)(
n+

1

2

)
. (3.53)

As Lewis suggests in [5], “It is interesting to note that the expectation values of Ĥ
are equally spaced at every instant and that the lowest value is always obtained with
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n = 0”, just as with the quantum simple harmonic oscillator. Clearly, since the {|n⟩}
representation does not diagonalize the Hamiltonian operator, Ĥ has also non-diagonal
matrix elements. The computation of these is not necessary for our discussion, but it is
reported in the Appendices for completeness.

In order to evaluate the diagonal matrix elements of d/dt, we begin by considering
the raising relation (3.44), which we rewrite for convenience as

â† |n− 1⟩ = n1/2 |n⟩ . (3.54)

By taking the time derivative of this equation, and then the scalar product with the ket
|n⟩, we obtain

⟨n| dâ
†

dt
|n− 1⟩+ ⟨n| â† d

dt
|n− 1⟩ = n1/2 ⟨n| d

dt
|n⟩

⟨n| dâ
†

dt
|n− 1⟩+ n1/2 ⟨n− 1| d

dt
|n− 1⟩ = n1/2 ⟨n| d

dt
|n⟩

⟨n| d
dt

|n⟩ = ⟨n− 1| d
dt

|n− 1⟩+ n−1/2 ⟨n| dâ
†

dt
|n− 1⟩ , (3.55)

where in the second step we used the conjugate of the equation

â |n⟩ = n1/2 |n− 1⟩ . (3.56)

So next we compute the expression for dâ†/dt in terms of â and â†:

dâ†

dt
=

1

(2ℏ)1/2
[
− ρ̇

ρ2
q̂ − i(ρ̇p̂− ṁρ̇q̂ −mρ̈q̂)

]
=

=
1

(2ℏ)1/2
[
− ρ̇

ρ2
q̂ − iρ̇p̂+ iṁρ̇q̂ + imρ̈q̂

]
=

=
1

(2ℏ)1/2
(
− ρ̇

ρ2
+ iṁρ̇+ imρ̈

)
q̂ − iρ̇

(2ℏ)1/2
p̂ =

=
1

2

(
− ρ̇

ρ
+ iṁρρ̇+ imρρ̈

)
(â+ â†)− 1

2

ρ̇

ρ
(1 + imρρ̇)â+

1

2

ρ̇

ρ
(1− imρρ̇)â† =

=
1

2

[
− 2ρ̇

ρ
+ im(ρρ̈− ρ̇2) + iṁρρ̇

]
â+

1

2
[im(ρρ̈− ρ̇2) + iṁρρ̇]â†, (3.57)

where in the fourth step we substituted q̂ and p̂ with their expressions in terms of â and
â†. Using (3.57), the raising and lowering relations for â and â† and the orthonormality
of the kets |n⟩, we can rewrite the second term at the right-hand side of equation (3.55)
as follows:

n−1/2 ⟨n| dâ
†

dt
|n− 1⟩ = n−1/2

2

[
− 2ρ̇

ρ
+ im(ρρ̈− ρ̇2) + iṁρρ̇

]
⟨n| â |n− 1⟩
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+
n−1/2

2
[im(ρρ̈− ρ̇2) + iṁρρ̇] ⟨n| â† |n− 1⟩ =

=
n−1/2

2

[
− 2ρ̇

ρ
+ im(ρρ̈− ρ̇2) + iṁρρ̇

]
(n− 1)1/2 ⟨n|n− 2⟩

+
n−1/2

2
[im(ρρ̈− ρ̇2) + iṁρρ̇]n1/2 ⟨n|n⟩ =

= i
m

2
(ρρ̈− ρ̇2 + µρρ̇). (3.58)

Equation (3.55) thus becomes

⟨n| d
dt

|n⟩ = ⟨n− 1| d
dt

|n− 1⟩+ i
m

2
(ρρ̈− ρ̇2 + µρρ̇), (3.59)

and by recurrence we get

⟨n| d
dt

|n⟩ = ⟨0| d
dt

|0⟩+ i
n

2
m(ρρ̈− ρ̇2 + µρρ̇). (3.60)

It can be easily shown that the anti-hermiticity of d/dt requires all diagonal matrix
elements of d/dt to be purely imaginary. Nevertheless, no further information about
⟨0| d/dt |0⟩ can be determined from equation (3.60). In fact, the choice of relative phases
that guarantees the validity of relations (3.43) and (3.44) leaves the phase of the ket
|0⟩ undetermined. In general this time-dependent ket may have a time-dependent phase
factor, which can be specified arbitrarily. For convenience we thus demand

⟨0| d
dt

|0⟩ = i
m

4
(ρρ̈− ρ̇2 + µρρ̇). (3.61)

In this way ⟨0| d/dt |0⟩ vanishes in the limit that ρ(t) becomes a constant. With this
convention the general diagonal matrix element of d/dt is given by

⟨n| d
dt

|n⟩ = i
m

2
(ρρ̈− ρ̇2 + µρρ̇)

(
n+

1

2

)
. (3.62)

At this point we have all the ingredients to calculate the phases required to perform
the transformation of equation (2.25). Using equations (3.53) and (3.62), we can rewrite
the right-hand side of equation (2.31) as follows:

⟨n|
(
iℏ
d

dt
− Ĥ

)
|n⟩ = iℏ ⟨n| d

dt
|n⟩ − ⟨n| Ĥ |n⟩ =

= −ℏm
2

(ρρ̈− ρ̇2 + µρρ̇)
(
n+

1

2

)
− ℏ

2m

( 1

ρ2
+m2ρ̇2 +m2ω2ρ2

)(
n+

1

2

)
=
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= − ℏ
2m

(
m2ρρ̈−m2ρ̇2 +m2µρρ̇+

1

ρ2
+m2ρ̇2 +m2ω2ρ2

)(
n+

1

2

)
=

= − ℏ
2m

(
m2ρρ̈+m2µρρ̇+

1

ρ2
+m2ω2ρ2

)(
n+

1

2

)
=

= − ℏ
mρ2

(
n+

1

2

)
, (3.63)

where we exploited the subsidiary condition (3.30) to simplify the result in the last step.
Therefore, equation (2.31) becomes

dαn

dt
= − 1

mρ2

(
n+

1

2

)
. (3.64)

Finally, the phase factors may be written in the form

αn(t) = −
(
n+

1

2

)∫ t

0

dt′
1

m(t′)ρ2(t′)
. (3.65)

3.4 Analytical solution

The analytical approach is conducted in the framework of wave mechanics. We follow
the treatment given by Pedrosa in [6]. Consider the eigenvalue equation

I(t)ϕ(x, t) = λϕ(x, t), (3.66)

where I(t) is the invariant operator (3.29) in the configuration space representation, that
is given by

I =
1

2

[x2
ρ2

+
(
− iℏρ

d

dx
−mρ̇x

)2]
, (3.67)

ϕ(x, t) is an eigenfunction of I(t) and λ the time-independent eigenvalue to which ϕ(x, t)
belongs. We assume that the eigenfunctions of the invariant form a complete orthonormal
set. Thus ∫ ∞

−∞
dx ϕ′∗(x, t)ϕ(x, t) = 0 (3.68)

and ∫ ∞

−∞
dx ϕ∗(x, t)ϕ(x, t) =

∫ ∞

−∞
dx |ϕ(x, t)|2 = 1. (3.69)

In order to solve (3.66), we effect the unitary transformation

ϕ̃(x, t) = Uϕ(x, t), (3.70)
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with the unitary operator U given by

U = exp

(
−imρ̇
2ℏρ

x2
)
. (3.71)

Under this transformation the eigenvalue equation (3.66) turns into

Ĩϕ̃(x, t) = λϕ̃(x, t), (3.72)

where
Ĩ = UIU†. (3.73)

To obtain the explicit form of the transformed invariant, we start by plugging equation
(3.67) into (3.73):

Ĩ =
1

2
U
[x2
ρ2

+
(
− iℏρ

d

dx
−mρ̇x

)2]
U† =

=
1

2
U
[x2
ρ2

− ℏ2ρ2
d2

dx2
+m2ρ̇2x2 + iℏmρρ̇+ 2iℏmρρ̇x

d

dx

]
U† =

=
x2

2ρ2
− ℏ2ρ2

2
U
d

dx

(dU†

dx
+U† d

dx

)
+
m2ρ̇2x2

2
+
iℏmρρ̇

2

+ iℏmρρ̇xU
(dU†

dx
+U† d

dx

)
=

=
x2

2ρ2
− ℏ2ρ2

2
U
(d2U†

dx2
+ 2

dU†

dx

d

dx
+U† d

2

dx2

)
+
m2ρ̇2x2

2
+
iℏmρρ̇

2

+ iℏmρρ̇xU
dU†

dx
+ iℏmρρ̇x

d

dx
=

=
x2

2ρ2
− ℏ2ρ2

2
U
d2U†

dx2
− ℏ2ρ2U

dU†

dx

d

dx
− ℏ2ρ2

2

d2

dx2
+
m2ρ̇2x2

2
+
iℏmρρ̇

2

+ iℏmρρ̇xU
dU†

dx
+ iℏmρρ̇x

d

dx
. (3.74)

In the calculations above we used the condition UU† = 1. Next we compute the first and
second derivative of U† with respect to x:

dU†

dx
=

d

dx
exp

(
imρ̇

2ℏρ
x2
)

=
imρ̇

ℏρ
x exp

(
imρ̇

2ℏρ
x2
)

=
imρ̇

ℏρ
xU†, (3.75)

d2U†

dx2
=

d

dx

(imρ̇
ℏρ

xU†
)
=
imρ̇

ℏρ
U† +

imρ̇

ℏρ
x
dU†

dx
=
imρ̇

ℏρ
U† − m2ρ̇2

ℏ2ρ2
x2U† =
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=
(imρ̇

ℏρ
− m2ρ̇2

ℏ2ρ2
x2
)
U†. (3.76)

Then, substituting equations (3.75) and (3.76) into (3.74) and using again the condition
UU† = 1, we get

Ĩ =
x2

2ρ2
− ℏ2ρ2

2

(imρ̇
ℏρ

− m2ρ̇2

ℏ2ρ2
x2
)
− iℏmρρ̇x

d

dx
− ℏ2ρ2

2

d2

dx2
+
m2ρ̇2x2

2
+
iℏmρρ̇

2

−m2ρ̇2x2 + iℏmρρ̇x
d

dx
=

=
x2

2ρ2
− iℏmρρ̇

2
+
m2ρ̇2x2

2
− iℏmρρ̇x

d

dx
− ℏ2ρ2

2

d2

dx2
+
m2ρ̇2x2

2
+
iℏmρρ̇

2

−m2ρ̇2x2 + iℏmρρ̇x
d

dx
. (3.77)

At last, by simplifying, we obtain

Ĩ = −ℏ2ρ2

2

d2

dx2
+

1

2

x2

ρ2
. (3.78)

Therefore, specifying the action of Ĩ, equation (3.72) can be written as

−ℏ2ρ2

2

∂2ϕ̃

∂x2
+

1

2

x2

ρ2
ϕ̃ = λϕ̃, (3.79)

where the ordinary derivative becomes a partial one since ϕ̃ depends also on t.
Now, it is convenient to introduce a new variable σ, defined by

σ =
x

ρ(t)
. (3.80)

Taking into account this change of variable, equation (3.79) can be written in the form

−ℏ2

2

∂2ϕ̃

∂σ2
+
σ2

2
ϕ̃ = λϕ̃. (3.81)

The normalization condition (3.69) can also be rewritten as∫ ∞

−∞
dσρ(t) ϕ̃∗(σ, t)ϕ̃(σ, t) =

∫ ∞

−∞
dσρ(t) |ϕ̃(σ, t)|2 = 1. (3.82)

Equation (3.81) is a partial differential equation which does not involve mixed derivatives.
This suggests to solve it by separation of variables, by adopting the ansatz:

ϕ̃(σ, t) = Γ(t)φ(σ). (3.83)
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Plugging (3.83) into (3.81), the temporal part Γ(t) gets cancelled and we obtain an
ordinary differential equation for φ(σ), that is

−ℏ2

2

d2φ

dσ2
+
σ2

2
φ = λφ. (3.84)

The function Γ(t) is hence left undetermined. We notice that, substituting the ansatz in
(3.82) as well, we get

|Γ(t)|2ρ(t)
∫ ∞

−∞
dσ |φ(σ)|2 = 1. (3.85)

So a convenient choice for Γ(t) is one that makes the normalization condition∫ ∞

−∞
dσ φ∗(σ)φ(σ) =

∫ ∞

−∞
dσ |φ(σ)|2 = 1 (3.86)

hold. With this convention, we have

|Γ(t)|2 = 1

ρ(t)
. (3.87)

Since the introduction of a phase factor would be irrelevant, we choose Γ(t) such that

Γ(t) =
1

ρ1/2(t)
. (3.88)

We proceed to solve the ordinary differential equation (3.84). Let us first make the
change of variable

ξ =
σ

ℏ1/2
(3.89)

and rewrite the differential equation as

d2φ

dξ2
= (ξ2 −K)φ, (3.90)

where we have introduced K = 2λ
ℏ . Now notice that equation (3.90) is formally identical

to equation (1.32). Therefore, using a similar reasoning to that of section 1.3, we can
get the values of λ for which there exists a physical acceptable solution of (3.90). These
are given by

λn = ℏ
(
n+

1

2

)
, (3.91)

where n is a non-negative integer number, and the corresponding solutions of (3.90) are

φn(σ) =
1

π1/4ℏ1/4(2nn!)1/2
Hn

( σ

ℏ1/2
)
exp

(
−σ

2

2ℏ

)
, (3.92)
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where Hn is the standard Hermite polynomial of degree n. The normalization constant
was determined imposing (3.86). Thus, by using (3.70), (3.71), (3.80), (3.83), (3.88) and
(3.92), we find that the eigenfunctions of I(t) are given by

ϕn(x, t) =
1

π1/4ℏ1/4(2nn!)1/2ρ1/2(t)
Hn

( x

ℏ1/2ρ(t)

)
exp

[
im(t)

2ℏ

( ρ̇(t)
ρ(t)

+
i

m(t)ρ2(t)

)
x2
]
,

(3.93)
with the corresponding time-independent eigenvalues given by (3.91).

We now propose an alternative method to that presented in section 3.3 for the com-
putation of the phase factors of the transformation (2.25). Let us denote by |n⟩ the
eigenket of Î corresponding to the eigenfunction ϕn(x, t), for continuity of notation, and
let Û be the unitary operator acting on the space of dynamical states whose form in the
configuration space representation is given by U:

⟨x| Û = exp

(
−imρ̇
2ℏρ

x2
)
⟨x| . (3.94)

Then, consider the second member of equation (2.31):

⟨n|
(
iℏ
d

dt
− Ĥ

)
|n⟩ = ⟨n| Û †Û

(
iℏ
d

dt
− Ĥ

)
Û †Û |n⟩ =

= ⟨ñ| Û
(
iℏ
d

dt
− Ĥ

)
Û † |ñ⟩ =

= ⟨ñ|
(
iℏÛ

dÛ †

dt
+ iℏ

d

dt
− ÛĤÛ †

)
|ñ⟩ , (3.95)

where |ñ⟩ = Û |n⟩ corresponds to the transformed eigenfunction ϕ̃n(x, t). In order to
calculate the expectation value (3.95), we look for the form of every operator in the
parenthesis in configuration space representation. From (3.94)

Û † |x⟩ = exp

(
imρ̇

2ℏρ
x2
)
|x⟩ (3.96)

follows. Since this relation is true for any |x⟩, Û † is a function of the operator q̂, precisely
given by

Û † = exp

(
imρ̇

2ℏρ
q̂2
)
. (3.97)

Hence, we have

iℏÛ
dÛ †

dt
= iℏ exp

(
−imρ̇
2ℏρ

q̂2
)
d

dt
exp

(
imρ̇

2ℏρ
q̂2
)

=

= iℏ exp
(
−imρ̇
2ℏρ

q̂2
)
i

2ℏ

(ṁρ̇
ρ

+
mρ̈

ρ
− mρ̇2

ρ2

)
q̂2 exp

(
imρ̇

2ℏρ
q̂2
)

=
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=
(
− ṁρ̇

2ρ
− mρ̈

2ρ
+
mρ̇2

2ρ2

)
q̂2, (3.98)

and

⟨x| iℏÛ dÛ
†

dt
=

(
− ṁρ̇

2ρ
− mρ̈

2ρ
+
mρ̇2

2ρ2

)
x̂2 ⟨x| . (3.99)

In the calculations above we used the fact that q̂ and Û commute. For this very same
fact, we can write

ÛĤÛ † =
1

2m
Ûp̂2Û † +

1

2
mω2q̂2. (3.100)

Therefore, the action of the operator ÛĤÛ † on ⟨x| is given by

⟨x| ÛĤÛ † = ⟨x|
( 1

2m
Ûp̂2Û † +

1

2
mω2q̂2

)
=

=
1

2m
⟨x| Û p̂2Û † +

1

2
mω2 ⟨x| q̂2 =

=
1

2m
exp

(
−imρ̇
2ℏρ

x2
)(

− iℏ
d

dx

)2[
exp

(
imρ̇

2ℏρ
x2
)
⟨x|

]
+

1

2
mω2x2 ⟨x| =

= − ℏ2

2m
exp

(
−imρ̇
2ℏρ

x2
)
d

dx

[imρ̇
ℏρ

x exp

(
imρ̇

2ℏρ
x2
)
⟨x|+ exp

(
imρ̇

2ℏρ
x2
)
d

dx
⟨x|

]
+

1

2
mω2x2 ⟨x| =

= − ℏ2

2m
exp

(
−imρ̇
2ℏρ

x2
)[imρ̇

ℏρ
exp

(
imρ̇

2ℏρ
x2
)
⟨x| − m2ρ̇2

ℏ2ρ2
x2 exp

(
imρ̇

2ℏρ
x2
)
⟨x|

+ 2
imρ̇

ℏρ
x exp

(
imρ̇

2ℏρ
x2
)
d

dx
⟨x|+ exp

(
imρ̇

2ℏρ
x2
)
d2

dx2
⟨x|

]
+

1

2
mω2x2 ⟨x| =

= −iℏρ̇
2ρ

⟨x|+ mρ̇2

2ρ2
x2 ⟨x| − iℏρ̇

ρ
x
d

dx
⟨x| − ℏ2

2m

d2

dx2
⟨x|+ 1

2
mω2x2 ⟨x| =

=
(
− iℏρ̇

2ρ
+
mρ̇2

2ρ2
x2 − iℏρ̇

ρ
x
d

dx
− ℏ2

2m

d2

dx2
+

1

2mρ4
x2 − mρ̈

2ρ
x2 − ṁρ̇

2ρ
x2
)
⟨x| ,

(3.101)

where in the last step we used the auxiliary equation (3.30) to substitute ω. Using (3.99),
(3.101) and subsequently (3.78) and (3.72), we obtain

⟨ñ|
(
iℏÛ

dÛ †

dt
+ iℏ

d

dt
− ÛĤÛ †

)
|ñ⟩ =

=

∫ ∞

−∞
dx ϕ̃∗

n(x, t)
(
iℏ
d

dt
+
iℏρ̇
2ρ

+
iℏρ̇
ρ
x
d

dx
+

ℏ2

2m

d2

dx2
− 1

2mρ4
x2
)
ϕ̃n(x, t) =

=

∫ ∞

−∞
dxϕ̃∗

n(x, t)
(
iℏ
d

dt
+
iℏρ̇
2ρ

+
iℏρ̇
ρ
x
d

dx
− Ĩ

mρ2

)
ϕ̃n(x, t) =
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= iℏ
∫ ∞

−∞
dx ϕ̃∗

n(x, t)
dϕ̃n(x, t)

dt
+
iℏρ̇
2ρ

∫ ∞

−∞
dx ϕ̃∗

n(x, t)ϕ̃n(x, t)

+
iℏρ̇
ρ

∫ ∞

−∞
dx ϕ̃∗

n(x, t)x
∂ϕ̃n(x, t)

∂x
− λn
mρ2

. (3.102)

By means of the change of variable (3.80), (3.102) becomes

⟨ñ|
(
iℏÛ

dÛ †

dt
+ iℏ

d

dt
− ÛĤÛ †

)
|ñ⟩ =

= iℏ
∫ ∞

−∞
dσρ ϕ̃∗

n(σ, t)
dϕ̃n(σ, t)

dt
+
iℏρ̇
2ρ

∫ ∞

−∞
dσρ ϕ̃∗

n(σ, t)ϕ̃n(σ, t)

+
iℏρ̇
ρ

∫ ∞

−∞
dσρ ϕ̃∗

n(σ, t)σ
∂ϕ̃n(σ, t)

∂σ
− λn
mρ2

. (3.103)

Now, substituting

ϕ̃n(σ, t) =
1

ρ1/2(t)
φn(σ) (3.104)

into (3.103), we get

⟨ñ|
(
iℏÛ

dÛ †

dt
+ iℏ

d

dt
− ÛĤÛ †

)
|ñ⟩ =

= iℏ
∫ ∞

−∞
dσρ1/2 φ∗

n(σ)
(
− ρ̇

2ρ3/2
φn(σ)−

ρ̇

ρ3/2
σ
dφn(σ)

dσ

)
+
iℏρ̇
2ρ

∫ ∞

−∞
dσ φ∗

n(σ)φn(σ)

+
iℏρ̇
ρ

∫ ∞

−∞
dσ φ∗

n(σ)σ
dφn(σ)

dσ
− λn
mρ2

=

= −iℏρ̇
2ρ

∫ ∞

−∞
dσ φ∗

n(σ)φn(σ)−
iℏρ̇
ρ

∫ ∞

−∞
dσ φ∗

n(σ)σ
dφn(σ)

dσ
+
iℏρ̇
2ρ

∫ ∞

−∞
dσ φ∗

n(σ)φn(σ)

+
iℏρ̇
ρ

∫ ∞

−∞
dσ φ∗

n(σ)σ
dφn(σ)

dσ
− λn
mρ2

=

= − ℏ
mρ2

(
n+

1

2

)
, (3.105)

where in the last step we inserted the explicit expression of the eigenvalue λn. Therefore,
using (3.95) and (3.105), equation (2.31) becomes

dαn

dt
= − 1

mρ2

(
n+

1

2

)
. (3.106)

By integrating this differential equation, we reach the same result obtained in section
3.3, that is

αn(t) = −
(
n+

1

2

)∫ t

0

dt′
1

m(t′)ρ2(t′)
. (3.107)
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Hence the general Schrödinger wave function may be written as

ψ(x, t) =
∑
n

cn exp[iαn(t)]ϕn(x, t), (3.108)

with cn time-independent constants and αn(t) and ϕn(x, t) given by equations (3.107)
and (3.93), respectively.

3.5 Coherent states

We can construct coherent states also for the time-dependent harmonic oscillator. They
are codified by the wave functions

ϕα(x, t) =
1

ρ1/2(t)
exp

[
im(t)ρ̇(t)

2ℏρ(t)
x2
]
φα(σ, t), (3.109)

where

φα(σ, t) = exp
(
−|α|2/2

) ∞∑
n=0

αn

(n!)1/2
exp[iαn(t)]φn(σ), (3.110)

with α an arbitrary complex parameter. In fact these normalized wave functions are
eigenvectors of the destruction operator, that is to say they satisfy the eigenvalue equa-
tion

aϕα(x, t) = α(t)ϕα(x, t), (3.111)

where a is the form taken by the destruction operator (3.31) in the configuration space
representation and α(t) is given by

α(t) = α exp[2iα0(t)], (3.112)

with

α0(t) = −1

2

∫ t

0

dt′
1

m(t′)ρ2(t′)
. (3.113)

We now show a proof of equation (3.111). First, using (3.71), we write (3.109) more
compactly as

ϕα(x, t) =
1

ρ1/2
U†φα(σ, t). (3.114)

Then, we apply a to the expression above. Using the unitarity of U, we obtain

aϕα(x, t) =
1

ρ1/2
aU†φα(σ, t) =

1

ρ1/2
U†UaU†φα(σ, t) =

1

ρ1/2
U†ãφα(σ, t), (3.115)

where ã = UaU†.

35



Before proceeding to determine the action of ã on φα(σ, t), we need the following
argument. Suppose we have chosen the relative phases of the eigenkets |n⟩ of Î to
make relations (3.43) and (3.44) hold. Then, by projecting equation (3.43) on the {|x⟩}
representation, by applying the unitary transformation (3.70), by making the change of
variable (3.80) and by substituting (3.104), we get

⟨x| â |n⟩ = n1/2 ⟨x|n− 1⟩
aϕn(x, t) = n1/2ϕn−1(x, t)

UaU†Uϕn(x, t) = n1/2Uϕn−1(x, t)

ãϕ̃n(x, t) = n1/2ϕ̃n−1(x, t)

ãϕ̃n(σ, t) = n1/2ϕ̃n−1(σ, t)

ãφn(σ) = n1/2φn−1(σ), (3.116)

where in the last step we used the fact that the destruction operator does not involve
time derivatives.

Using (3.116) we can determine the action of ã on φα(σ, t):

ãφ̃α(σ, t) = ã
{
exp

(
−|α|2/2

) ∞∑
n=0

αn

(n!)1/2
exp[iαn(t)]φn(σ)

}
=

= exp
(
−|α|2/2

) ∞∑
n=0

αn

(n!)1/2
exp[iαn(t)]ãφn(σ) =

= exp
(
−|α|2/2

) ∞∑
n=1

αn

(n!)1/2
exp[iαn(t)]n

1/2φn−1(σ) =

= exp
(
−|α|2/2

) ∞∑
n=0

αn+1

[(n+ 1)!]1/2
exp[iαn+1(t)](n+ 1)1/2φn(σ) =

= exp
(
−|α|2/2

) ∞∑
n=0

ααn

(n+ 1)1/2(n!)1/2
exp[2iα0(t)] exp[iαn(t)](n+ 1)1/2φn(σ) =

= α exp[2iα0(t)] exp
(
−|α|2/2

) ∞∑
n=0

αn

(n!)1/2
exp[iαn(t)]φn(σ) =

= α exp[2iα0(t)]φα(σ, t). (3.117)

Substituting (3.117) into (3.115), we obtain

aϕα(x, t) = α exp[2iα0(t)]
1

ρ1/2
U†φα(σ, t). (3.118)

Finally, using (3.112) and (3.114), we achieve equation (3.111).
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We can show the position-momentum uncertainty relation satisfied by these states.
Let us denote by |α⟩ the normalized time-dependent ket corresponding to the wave
function (3.109). Using (3.45) and (3.111) written in Dirac’s formalism, we can compute
the expectation value for the position operator q̂:

< q > = ⟨α| q̂ |α⟩ = (2ℏ)1/2
ρ

2
⟨α| (â+ â†) |α⟩ = (2ℏ)1/2

ρ

2
(⟨α| â |α⟩+ ⟨α| â† |α⟩) =

= (2ℏ)1/2
ρ

2
(α(t) ⟨α|α⟩+ α∗(t) ⟨α|α⟩) = (2ℏ)1/2ρ

α(t) + α∗(t)

2
=

= (2ℏ)1/2ρRe{α(t)}. (3.119)

In order to compute the uncertainty in q we exploit the following formula:

(∆q)2 =< (q− < q >)2 >=< q2 > − < q >2 . (3.120)

So we need < q2 >. From (3.47) we derive

< q2 > = ⟨α| q̂2 |α⟩ = ℏ
2
ρ2 ⟨α| (â2 + â†2 + 2â†â+ 1̂) |α⟩ =

=
ℏ
2
ρ2(⟨α| â2 |α⟩+ ⟨α| â†2 |α⟩+ 2 ⟨α| â†â |α⟩+ ⟨α| 1̂ |α⟩) =

=
ℏ
2
ρ2(α2(t) ⟨α|α⟩+ α∗2(t) ⟨α|α⟩+ 2|α(t)|2 ⟨α|α⟩+ ⟨α|α⟩) =

=
ℏ
2
ρ2(α2(t) + α∗2(t) + 2|α(t)|2 + 1) =

=
ℏ
2
ρ2α2(t) +

ℏ
2
ρ2α∗2(t) + ℏρ2|α(t)|2 + ℏ

2
ρ2. (3.121)

Then, since from (3.119)

< q >2 =
ℏ
2
ρ2(α(t) + α∗(t))2 =

ℏ
2
ρ2(α2(t) + α∗2(t) + 2|α(t)|2) =

=
ℏ
2
ρ2α2(t) +

ℏ
2
ρ2α∗2(t) + ℏρ2|α(t)|2 (3.122)

follows, using equations (3.120), (3.121) and (3.122), we have immediately

(∆q)2 =
ℏ
2
ρ2. (3.123)

Using (3.46) and (3.111) written in Dirac’s formalism, we can evaluate the expectation
value for the momentum operator p̂:

< p > = ⟨α| p̂ |α⟩ = (2ℏ)1/2

2iρ
⟨α| [(1 + imρρ̇)â− (1− imρρ̇)â†] |α⟩ =
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=
(2ℏ)1/2

2iρ
[(1 + imρρ̇) ⟨α| â |α⟩ − (1− imρρ̇) ⟨α| â† |α⟩] =

=
(2ℏ)1/2

2iρ
[(1 + imρρ̇)α(t) ⟨α|α⟩ − (1− imρρ̇)α∗(t) ⟨α|α⟩] =

=
(2ℏ)1/2

2iρ
[(1 + imρρ̇)α(t)− (1− imρρ̇)α∗(t)] =

=
(2ℏ)1/2

2iρ
α(t) +

(2ℏ)1/2mρ̇
2

α(t)− (2ℏ)1/2

2iρ
α∗(t) +

(2ℏ)1/2mρ̇
2

α∗(t) =

=
(2ℏ)1/2

ρ

α(t)− α∗(t)

2i
+ (2ℏ)1/2mρ̇

α(t) + α∗(t)

2
=

=
(2ℏ)1/2

ρ
Im{α(t)}+ (2ℏ)1/2mρ̇Re{α(t)}. (3.124)

In order to compute the uncertainty in p we use the following formula:

(∆p)2 =< (p− < p >)2 >=< p2 > − < p >2 (3.125)

Thus we need < p2 >. From (3.48) we derive

< p2 > = ⟨α| p̂2 |α⟩ =

= − ℏ
2ρ2

⟨α| [(1 + imρρ̇)2â2 + (1− imρρ̇)2â†2 − 2(1 +m2ρ2ρ̇2)â†â

− (1 +m2ρ2ρ̇2)1̂] |α⟩ =

= − ℏ
2ρ2

[(1 + imρρ̇)2 ⟨α| â2 |α⟩+ (1− imρρ̇)2 ⟨α| â†2 |α⟩]

− 2(1 +m2ρ2ρ̇2) ⟨α| â†â |α⟩ − (1 +m2ρ2ρ̇2) ⟨α| 1̂ |α⟩] =

= − ℏ
2ρ2

[(1 + imρρ̇)2α2(t) ⟨α|α⟩+ (1− imρρ̇)2α∗2(t) ⟨α|α⟩

− 2(1 +m2ρ2ρ̇2)|α(t)|2 ⟨α|α⟩ − (1 +m2ρ2ρ̇2) ⟨α|α⟩] =

= − ℏ
2ρ2

[(1 + imρρ̇)2α2(t) + (1− imρρ̇)2α∗2(t)− 2(1 +m2ρ2ρ̇2)|α(t)|2

− (1 +m2ρ2ρ̇2)] =

= − ℏ
2ρ2

(1−m2ρ2ρ̇2 + 2imρρ̇)α2(t)− ℏ
2ρ2

(1−m2ρ2ρ̇2 − 2imρρ̇)α∗2(t)

+
ℏ
ρ2

(1 +m2ρ2ρ̇2)|α(t)|2 + ℏ
2ρ2

(1 +m2ρ2ρ̇2) =

=
(
− ℏ

2ρ2
+

ℏm2ρ̇2

2
− iℏmρ̇

ρ

)
α2(t) +

(
− ℏ

2ρ2
+

ℏm2ρ̇2

2
+
iℏmρ̇
ρ

)
α∗2(t)
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+
( ℏ
ρ2

+ ℏm2ρ̇2
)
|α(t)|2 + ℏ

2ρ2
+

ℏm2ρ̇2

2
. (3.126)

Then, since from (3.124)

< p >2 =
[(2ℏ)1/2

ρ

α(t)− α∗(t)

2i
+ (2ℏ)1/2mρ̇

α(t) + α∗(t)

2

]2
=

=
2ℏ
ρ2

[α(t)− α∗(t)]2

4i2
+ 2ℏm2ρ̇2

[α(t) + α∗(t)]2

4
+

ℏmρ̇
iρ

[α2(t)− α∗2(t)] =

= − ℏ
2ρ2

[α2(t) + α∗2(t)− 2|α(t)|2] + ℏm2ρ̇2

2
[α2(t) + α∗2(t) + 2|α(t)|2]

− iℏmρ̇
ρ

[α2(t)− α∗2(t)] =

=
(
− ℏ

2ρ2
+

ℏm2ρ̇2

2
− iℏmρ̇

ρ

)
α2(t) +

(
− ℏ

2ρ2
+

ℏm2ρ̇2

2
+
iℏmρ̇
ρ

)
α∗2(t)

+
( ℏ
ρ2

+ ℏm2ρ̇2
)
|α(t)|2 (3.127)

follows, using equations (3.125), (3.126) and (3.127), we immediately deduce

(∆p)2 =
ℏ
2

( 1

ρ2
+m2ρ̇2

)
. (3.128)

Therefore, using (3.123) and (3.128), the product of the uncertainties in q and p is given
by

∆q∆p =
ℏ
2
(1 +m2ρ2ρ̇2)1/2. (3.129)

Notice the difference with the uncertainty relation (1.50): the product of the uncertain-
ties, in general, does not take its minimum value.
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A Commutation relations involving q̂ and p̂

The expression obtained in (3.9) for the commutator [ÎH , ĤH ] is given by a sum of several
other commutators, which involve the square and/or the product of the operators q̂ and
p̂. Here are reported the explicit calculations for those commutators.

The commutator [q̂2, p̂] is given by

[q̂2, p̂] = [q̂q̂, p̂] = [q̂, p̂]q̂ + q̂[q̂, p̂] = iℏ1̂q̂ + iℏq̂1̂ = 2iℏq̂. (A.1)

Similarly, we can compute the commutator [q̂, p̂2] as follows:

[q̂, p̂2] = [q̂, p̂p̂] = [q̂, p̂]p̂+ p̂[q̂, p̂] = iℏ1̂p̂+ iℏp̂1̂ = 2iℏp̂. (A.2)

Either (A.1) or (A.2) can be used to evaluate [q̂2, p̂2]:

[q̂2, p̂2] = [q̂2, p̂]p̂+ p̂[q̂2, p̂] = 2iℏq̂p̂+ 2iℏp̂q̂ = 2iℏ(q̂p̂+ p̂q̂) = 2iℏ{q̂, p̂}+. (A.3)

To determine the commutator [{q̂, p̂}+, q̂2] we use (A.1):

[{q̂, p̂}+, q̂2] = [q̂p̂+ p̂q̂, q̂2] = [q̂p̂, q̂2] + [p̂q̂, q̂2] = [q̂, q̂2]p̂+ q̂[p̂, q̂2] + [p̂, q̂2]q̂ + p̂[q̂, q̂2] =

= −2iℏq̂2 − 2iℏq̂2 = −4iℏq̂2. (A.4)

To determine the commutator [{q̂, p̂}+, p̂2] we use (A.2) instead:

[{q̂, p̂}+, p̂2] = [q̂p̂+ p̂q̂, p̂2] = [q̂p̂, p̂2] + [p̂q̂, p̂2] = [q̂, p̂2]p̂+ q̂[p̂, p̂2] + [p̂, p̂2]q̂ + p̂[q̂, p̂2] =

= 2iℏp̂2 + 2iℏp̂2 = 4iℏp̂2. (A.5)

B Off-diagonal matrix elements of Ĥ and d/dt

In order to compute the off-diagonal matrix elements of Ĥ and d/dt with respect to the
kets |n⟩, we first determine the off-diagonal matrix elements of â2, â†2 and {â, â†}+:

⟨n′| â2 |n⟩ = ⟨n′| â |n− 1⟩n1/2 = ⟨n′|n− 2⟩ [n(n− 1)]1/2 = [n(n− 1)]1/2δn′,n−2, (B.1)

⟨n′| â†2 |n⟩ = ⟨n′| â† |n+ 1⟩ (n+1)1/2 = ⟨n′|n+ 2⟩ [(n+1)(n+2)]1/2 = [(n+1)(n+2)]1/2δn′,n+2,
(B.2)

⟨n′| {â, â†}+ |n⟩ = ⟨n′| (ââ†+ â†â) |n⟩ = ⟨n′| (2N̂ +1̂) |n⟩ = ⟨n′|n⟩ (2n+1) = (2n+1)δn′,n.
(B.3)

Secondly, we rewrite the auxiliary equation (3.30) as

− 1

ρ2
+m2ω2ρ2 = −m2ρρ̈−mṁρρ̇, (B.4)
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and then we substitute (B.4) into (3.49):

Ĥ =
ℏ
4m

{[
m2(ρ̇2 − ρρ̈)−mρ̇

(
ṁρ+

2i

ρ

)]
â2

+
[
m2(ρ̇2 − ρρ̈)−mρ̇

(
ṁρ− 2i

ρ

)]
â†2

+
( 1

ρ2
+m2ρ̇2 +m2ω2ρ2

)
{â, â†}+

}
. (B.5)

Then, for n′ ̸= n, expression (B.5) immediately yields

⟨n′| Ĥ |n⟩ = ℏ
4

{[
m(ρ̇2 − ρρ̈)− ρ̇

(
ṁρ+

2i

ρ

)]
[n(n− 1)]1/2δn′,n−2

+
[
m(ρ̇2 − ρρ̈)− ρ̇

(
ṁρ− 2i

ρ

)]
[(n+ 1)(n+ 2)]1/2δn′,n+2

}
. (B.6)

Furthermore, from equation (2.23) we derive

⟨n′| d
dt

|n⟩ = 1

iℏ
⟨n′| Ĥ |n⟩ , n′ ̸= n. (B.7)
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