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Abstract

Mentre si svolgono operazioni su dei qubit, possono avvenire vari errori, modificando cos̀ı
l’informazione da essi contenuta. La Quantum Error Correction costruisce algoritmi che
permettono di tollerare questi errori e proteggere l’informazione che si sta elaborando.
Questa tesi si focalizza sui codici a 3 qubit, che possono correggere un errore di tipo
bit-flip o un errore di tipo phase-flip. Più precisamente, all’interno di questi algoritmi,
l’attenzione è posta sulla procedura di encoding, che punta a proteggere meglio dagli
errori l’informazione contenuta da un qubit, e la syndrome measurement, che specifica su
quale qubit è avvenuto un errore senza alterare lo stato del sistema. Inoltre, sfruttando
la procedura della syndrome measurement, è stata stimata la probabilità di errore di tipo
bit-flip e phase-flip su un qubit attraverso l’utilizzo della IBM quantum experience.



Abstract

While performing quantum computations several errors may occur on the qubits involved,
thus modifying the information they store. Quantum Error Correction constructs algo-
rithms to tolerate these errors and protect the information which is been processed. This
dissertation focuses on 3-qubit codes which can correct for bit-flip or phase-flip errors.
More precisely, within these algorithms, the attention is driven on the encoding proce-
dure, which aims to better protect from errors the information stored by a qubit, and on
the syndrome measurement, which specifies on which qubit an error has occurred with-
out altering the state of the system. Furthermore exploiting the syndrome measurement
procedure the error probability of a bit-flip and a phase-flip error on a qubit has been
assessed using the IBM quantum experience.
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Introduction

Quantum Information Science is an interdisciplinary field that seeks to understand the
analysis, processing, and transmission of information using Quantum Mechanics princi-
ples. This manner of handling information processing promises to overtake the classical
computer’s capabilities in some areas [1]. The devices that perform quantum computa-
tion are quantum computers, which operate using qubits as the basic unit of quantum
information, that can be built using different physical systems such as neutral atoms
[2], ion traps [3], superconductors [4], photons [5], or anyons (topological quantum com-
puting) [6]. However there is an obstacle which needs to be solved common to all these
devices: qubits suffer quantum decoherence, i.e. it is difficult to keep the qubit in a
quantum superposition. Therefore quantum computers need Quantum Error Correction
(QEC), which is the theoretical topic that guides the experimental effort to build fault-
tolerant quantum computers [7]. QEC gives the tools to increase the state fidelity and
nowadays it has been proven to be realizable for example on superconducting circuits [8]
and on trapped-ion quantum computers [9].

Avoiding the specifics of each quantum hardware, the goal of this thesis is to under-
stand what a quantum error is and to analyze the 3-qubit Shor codes for bit-flip and
phase-flip errors, focusing primarily on the encoding procedure, which aims to better
protect the information stored in a qubit, and the error detection procedure, that indi-
cates the qubit on which an error has occurred and that is then exploited to evaluate
the error probability on a qubit on a real quantum device.

More precisely this dissertation is structured in 3 chapters: Chapter 1 gives the
fundamental concepts needed for the topic at hand, namely postulates of Quantum
Mechanics for pure states and mixed states, and of course qubits, quantum gates and
quantum circuits, which are necessary to implement quantum algorithms. Then Chapter
2 discusses the basis of QEC [10], explaining the differences with classical error correction,
and illustrating what a quantum error is. Afterwards the focus is moved on the 3-qubit
codes which can correct for bit-flip or phase-flip errors. Common to both of them,
the encoding procedure is deeply analyzed, justifying its purpose with both analytical
computations and a computer simulation with the Python module Qutip. Furthermore
the error detection procedure, involving syndrome measurement, is thoroughly discussed
as it is fundamental in this chapter, but also in the following one. To conclude in
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Chapter 2 the 9-qubit Shor code [11] is introduced as an example of a QEC procedure
that exploiting more qubits can correct for more than one error. Finally in Chapter 3 the
method to perform syndrome measurements, introduced for the 3-qubit codes in Chapter
2, is taken advantage of in order to evaluate the error probability on a single real qubit
for both bit-flip and phase-flip errors. This is done by implementing quantum circuits
via the Python module Qiskit and running them on the 5-qubit real quantum device
ibmq manila that IBM makes available on the cloud.
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Chapter 1

Fundamentals of Quantum
Mechanics for QEC

Quantum computation is done on quantum systems which are known as qubits [12], i.e.
two-level systems. Therefore the first section of this chapter will introduce them in order
to be able to make examples in which they are involved. In order to understand the
subject one has to have some knowledge of Quantum Mechanics. Since the concept of
mixed states is present in this dissertation the density matrix formalism [12] needs to be
introduced and, for the sake of clarity, before doing this, the vector state’s formalism will
be revised, which will come in handy for pure states [12], that will be widely exploited
throughout this thesis. The two formalisms are indeed discussed in Sec. 1.2. To conclude
this chapter quantum gates and quantum circuits will be introduced in Sec. 1.3 [12].

1.1 Qubits

In classical computing the basic unit of information is the classical bit, which can take
the value 0 or 1. In quantum computing the basic unit of quantum information is the
quantum bit, known as qubit [12], which is a two-state quantum-mechanical system,
mathematically described as object belonging to a two-dimensional Hilbert space.

While a classical bit is either in the state 0 or in the state 1, a qubit can be, as it is
a quantum object, in a superposition of the two:

|ψ⟩ = α |0⟩+ β |1⟩ , (1.1)

when α, β ∈ C. The set {|0⟩ , |1⟩} is known as computational basis and form an or-
thonormal basis for the two-dimensional Hilbert vector space. In the more common
column-vectors notation they are written as:

|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
.

4



This implies that when one measures the state of a qubit the result can be either |0⟩
with probability |α|2 or |1⟩ with probability |β|2. Obviously probabilities are normalized
to one so that |α|2 + |β|2 = 1.

A Hilbert space is a linear space, thus one can change the basis in which they represent
the space’s element. For example there are the basis {|+⟩ , |−⟩} and {|+⟩y , |−⟩y}. These
basis can be written in the computational basis as:

|+⟩ = |0⟩+ |1⟩√
2

|−⟩ = |0⟩ − |1⟩√
2

, (1.2)

|+⟩y =
|0⟩+ i |1⟩√

2
|−⟩y =

|0⟩ − i |1⟩√
2

. (1.3)

These three basis that have been introduced are the eigenkets of the Pauli matrices
(Eq. (1.29), (1.30), (1.31)): {|0⟩ , |1⟩} is the Z-basis, {|+⟩ , |−⟩} is the X-basis and the
{|+⟩y , |−⟩y} is the Y-basis. Their importance lies in the fact that they are orthonormal
basis.

Moreover one can visualize a single qubit by means of the Bloch Sphere (Fig. 1.1).
Indeed, introducing the real numbers θ, φ, one can write Eq. (1.1) in the following form:

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ , (1.4)

thus a state is a point on the Bloch Sphere.

Figure 1.1: The Bloch Sphere

Furthermore the basis kets previously introduced correspond to the positive and
negative directions of the axis of a Cartesian system:

• ẑ = |0⟩ ,−ẑ = |1⟩,
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• x̂ = |+⟩ ,−x̂ = |−⟩,

• ŷ = |+⟩y ,−ŷ = |−⟩y,

which means that measuring the state of a qubit in a given basis corresponds to project
the state on one of the three axis depending on which basis is chosen.

1.2 Postulates of Quantum Mechanics

Quantum mechanics can be studied with the formalism of vector states [12] or of density
operators [12], where one is preferred to the other in different situations which will
become more clear later. In the following section the postulates for the former will be
analyzed, whereas this will be done for the latter in section 1.2.2.

1.2.1 Vector state formalism

As mentioned in the previous section the states live in a Hilbert space. This is stated as
the first postulate of quantum mechanics:

Postulate 1.2.1. Associated with any isolated physical system there is a Hilbert space
(on C), named state space of the system. The system is entirely described by its state
vector (a unit vector in the state space of the system).

As introduced in Sec. 1.1, the qubits live in a two-dimensional state space. Postulate
1.2.1 requires that the state vector is a unitary vector, i.e. ⟨ψ|ψ⟩ = 1, which, for a state
vector defined as in Eq. 1.1, implies that |α|2 + |β|2 = 1. The condition ⟨ψ|ψ⟩ = 1 is
known asthe normalization condition.

In general it is:

|ψ⟩ =
∑
i

αi |ϕi⟩ . (1.5)

It is said that the state |ψ⟩ is a superposition of the states |ϕi⟩ with amplitude αi for the
state |ϕi⟩.

A system will eventually undergo an evolution. The description of the evolution of a
closed system is given in the following postulate:

Postulate 1.2.2. The evolution of a closed quantum system is described by an unitary
transformation. That is, given the state |ψ⟩ at time t and the state |ψ′⟩ at time t′,

|ψ′⟩ = U |ψ⟩ , (1.6)

where U is an unitary operator which depends only on t and t′.
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One may want a more general formulation of the time evolution of a closed system, as
the one given before refers to two precise moments in time. Indeed more in general the
evolution of a closed quantum system is fully described by the Schroedinger equation:

iℏ
d |ψ⟩
dt

= H |ψ⟩ , (1.7)

where H is an Hermitian operator called Hamiltonian of the closed system, whose knowl-
edge gives a complete understanding of the system’s dynamics. It needs to be said that
once the system is coupled with the environment the system becomes open and therefore
what just stated ceases to be true in the simple way shown in Eq. (1.7).

In Physics measurements are of crucial relevance. The following postulate describes
how a measurement can be viewed mathematically and how it affects the state of the
given system.

Postulate 1.2.3. Quantum measurement are described by a set {Mm} of measurement
operators. They operate on the state space of the system being measured. If a system is
in the state |ψ⟩ before being measured, the probability that the outcome of the measure
is m is

p(m) = ⟨ψ|M †
mMm|ψ⟩ (1.8)

and the system is left in the state

|ψ′⟩ = Mm |ψ⟩√
⟨ψ|M †

mMm|ψ⟩
. (1.9)

Furthermore the {Mm} satisfy the completeness relation∑
m

M †
mMm = I, (1.10)

which represents the fact that probabilities sum to one (
∑

m p(m) = 1).

When an observable is described by an Hermitian operator M it admits a spectral
decomposition

M =
∑
m

mPm, (1.11)

where Pm is the projector onto the eigenspace of M with eigenvalue m. As P †
m = Pm

and as P 2
m = Pm (projectors are Hermitian, idempotent and PmPm′ = δm,m′Pm), from

Eq. (1.8) and (1.9) follow:

p(m) = ⟨ψ|Pm|ψ⟩ (1.12)

|ψ′⟩ = Pm |ψ⟩√
⟨ψ|Pm|ψ⟩

. (1.13)
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Projective measurements have some handy properties, such as a simple way to com-
pute the mean, which will not be discussed as not relevant for the purposes of this
dissertation.

When one is not interested in the state of the system after the measurement has been
completed, the POVM measurements can be useful. Given Eq. (1.8), is thus defined
Em =M †

mMm, which simplifies the probability expression to

p(m) = ⟨ψ|Em|ψ⟩ , (1.14)

while the explicit expression (1.9) for the state after the measurement is lost. Further-
more Em is a positive operator which satisfies the completeness relation

∑
mEm = I.

The complete set {Em} is called POVM and its elements Em are known as the POVM
elements associated with the measurement.

In this dissertation the measurements will be done on qubits, therefore here an ex-
ample on how to measure the state of a qubit in the computational basis is given.

Example 1.2.1. Given the computational basis {|0⟩ , |1⟩}, let
M0 = |0⟩ ⟨0|
M1 = |1⟩ ⟨1| ,

which can be easily verified to be the projectors onto the subspaces |0⟩ and |1⟩, respec-
tively. In general a qubit is in the state |ψ⟩ = α |0⟩+β |1⟩. By applying the two operators
on the state, one obtains

p(0) = ⟨ψ|M0|ψ⟩ = |α|2 |ψ′⟩ = M0 |ψ⟩
|α| = |0⟩

p(1) = ⟨ψ|M1|ψ⟩ = |β|2 |ψ′⟩ = M1 |ψ⟩
|β| = |1⟩ ,

where in the last step for both a phase has been neglected.
If one wishes to continue the description of the system, the density operator formalism

is required, which will be discussed in Sec. 1.2.2.

When dealing with quantum circuits is sure to stumble upon a composite system,
namely, in a quantum circuit, multiple qubits. In order to manage them a mathematical
tool to describe them is needed and this is accomplished by the following postulate:

Postulate 1.2.4. The state space of a composite physical system is the tensor product
of the state spaces of the component physical systems.

Given all what was mentioned in this section one is ready to understand how systems
being in a pure state are described. Nevertheless this is not always the case, as for
example when environmental decoherence is taken into account, or, as already mentioned,
when one makes a measure. Indeed in these cases pure states will be turned into mixtures,
for which the density matrix formalism is needed.
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1.2.2 Density operator formalism

When a system state is not completely known one turns to the density operator formal-
ism.

Definition 1.2.1. Suppose that a system is in one of the states in the ensemble of pure
states {pi, |ψi⟩}, where each state |ψi⟩ has the probability pi. The density operator of
the system, also known as density matrix, is defined by

ρ =
∑
i

pi |ψi⟩ ⟨ψi| . (1.15)

It is now possible to clearly explain the difference between a pure state and a mixed
state. A pure state of a quantum system is denoted by a vector |ψ⟩ with unit length, i.e.
⟨ψ|ψ⟩ = 1, in a complex Hilbert space, as defined in postulate 1.2.1. One can construct
the operator

ρ = |ψ⟩ ⟨ψ| , (1.16)

which is a projector.
Now one can introduce a mixture of pure states, i.e. the system is in one of the states

in the ensemble of pure states {pi, |ψi⟩}. Thus ρ, as defined in Eq. (1.15), is in a mixed
state; it is said to be a mixture of the different pure states in the ensemble.

There is a way to distinguish if a system is pure or mixed and it is given by the
following theorem:

Theorem 1.2.1. Criterion to decide if a state is mixed or pure. ρ is a pure
state if and only if ρ2 = ρ.

Proof. Now ρ is Hermitian, as will be explained by theorem (1.2.2). Therefore it admits
a spectral decomposition

ρ =
∑
j

λj |j⟩ ⟨j| ,

where the λj ∈ R are the eigenvalues of ρ and |j⟩ are orthogonal vectors.
For a pure state it is ρ = |j⟩ ⟨j|, therefore ρ2 = ρ.
In general one has

ρ2 =
∑
j,k

λjλk |j⟩ ⟨j|k⟩ ⟨k| =
∑
j

λ2j |j⟩ ⟨j|+
∑
k ̸=j

λjλk ⟨j|k⟩ |j⟩ ⟨k| =
∑
j

λ2j |j⟩ ⟨j| .

Thus

ρ2 = ρ∑
j

λ2j |j⟩ ⟨j| =
∑
j

λj |j⟩ ⟨j| ,
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which is true if and only if

λ2j = λj ⇔ λj = 0 or λj = 1.

Given the fact that the trace of a density operator is equal to one, as shown in theorem
1.2.2, one has that only one λj = 1 and the others λj are zero, which means that the
system is in a pure state.

Before stating new postulates for the density operator it is appropriate to describe
it more thoroughly, by giving a mean by which the class of density matrices can be
characterized.

Theorem 1.2.2. Characterization of density operators. An operator ρ is the
density operator associated to an ensemble {pi, |ψi⟩} if and only if ρ is Hermitian, the
trace of ρ is equal to one and ρ is a positive operator.

Proof. • Given the definition (1.15) of a density operator, one can easily compute

ρ† =
(∑

i

pi |ψi⟩ ⟨ψi|
)†

=
∑
i

p∗i (|ψi⟩ ⟨ψi|)† =
∑
i

pi |ψi⟩ ⟨ψi| = ρ,

proving indeed that a density operator is Hermitian.

• If ρ is a density operator, then from its definition it follows that

Tr(ρ) = Tr
(∑

i

pi |ψi⟩ ⟨ψi|
)
=

∑
i

pi Tr(|ψi⟩ ⟨ψi|) =
∑
i

pi = 1

as the |ψi⟩ are unit vectors and the sum of probabilities in normalized to one.

• As for the positivity, let |ϕ⟩ be any vector in the state space. Thus

⟨ϕ|ρ|ϕ⟩ = ⟨ϕ|(
∑
i

pi |ψi⟩ ⟨ψi|)|ϕ⟩ =
∑
i

pi ⟨ϕ|ψi⟩ ⟨ψi|ϕ⟩ =
∑
i

pi| ⟨ϕ|ψi⟩ |2 ≥ 0

always, as it is product of to surely positive quantities.

• Conversely, if ρ is a Hermitian operator it means that it has a spectral decompo-
sition

ρ =
∑
j

λj |j⟩ ⟨j| ,

where the λj ∈ R are the eigenvalues of ρ and |j⟩ are orthogonal vectors. Thus,
given any vector in the state space |ϕ⟩,

⟨ϕ|ρ|ϕ⟩ = ⟨ϕ|
(∑

j

λj |j⟩ ⟨j|
)
|ϕ⟩ =

∑
j

λj ⟨ϕ|j⟩ ⟨j|ψ⟩ =
∑
j

λj| ⟨ϕ|j⟩ |2 ≥ 0,
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if and only if λj ∈ R+, thus proving that ρ is also positive if this last condition
is satisfied, which is the case if λj are probabilities. Finally imposing the trace
condition Tr(ρ) = 1,

Tr
(∑

j

λj |j⟩ ⟨j|
)
= 1∑

j

λj Tr(|j⟩ ⟨j|) = 1∑
j

λj = 1.

Thus a system in a state |j⟩ with probability λj will have ρ as the density operator
associated with the ensemble {λj, |j⟩}.

A density operator can be thus defined to be a Hermitian and positive operator with
trace equal to one.

The postulate 1.2.1 given in the previous section for a pure state can be reformulated
for the density operator.

Postulate 1.2.5. Associated with any isolated physical system there is a Hilbert space
(on C), named state space of the system. The system is completely described by its
density operator which is a Hermitian and positive operator ρ with trace one, acting on
the state space of the system. If a quantum system is in the state ρi with a probability
pi then the density operator of the system is

∑
i piρi.

It is worth noting that while a certain ensemble of quantum states uniquely defines
a density matrix, the opposite is not true. Take for instance

|a⟩ =
√

1

2
|0⟩+

√
1

2
|1⟩ (1.17)

|b⟩ =
√

1

2
|0⟩ −

√
1

2
|1⟩ , (1.18)

and the quantum state is prepared in state |a⟩ with probability 1/2 and in state |b⟩ with
probability 1/2. This ensemble will give the density matrix, by definition (1.15):

ρab =
1

2
|a⟩ ⟨a|+ 1

2
|b⟩ ⟨b| = 1

2
|0⟩ ⟨0|+ 1

2
|1⟩ ⟨1| . (1.19)

If one now takes into account the ensemble {(1/2, |0⟩), (1/2, |1⟩)} the related density
matrix will be

ρ =
1

2
|0⟩ ⟨0|+ 1

2
|1⟩ ⟨1| , (1.20)
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which is equal to the density matrix in Eq. (1.19), thus showing how a density operator
does not uniquely define an ensemble of quantum states.

The evolution of a pure state is described by an unitary transformation U (|ψ′⟩ =
U |ψ⟩), then

ρ′ =
∑
i

Upi |ψi⟩ ⟨ψi|U † = UρU †,

which rises the following postulate:

Postulate 1.2.6. The evolution of a closed quantum system is described by an unitary
transformation. That is, given U depending only on the times t and t′, the states ρ at
time t and ρ′ at time t′ are related by:

ρ′ = UρU †. (1.21)

As for quantum measurement it is required a bit more of work. Firs of all a linear
algebra result must be recalled: given the operator A and the unit vector |ψ⟩, it stands
[12]:

Tr(A |ψ⟩ ⟨ψ|) = ⟨ψ|A|ψ⟩ . (1.22)

Therefore, given the ensemble {pi, |ψi⟩} and the measurement operatorMm, if the initial
state is |ψi⟩ then the probability of getting the result m is, given Eq. (1.8):

p(m|i) = ⟨ψi|M †
mMm|ψi⟩ = Tr(M †

mMm |ψi⟩ ⟨ψi|).
From probability theory it is known that p(m) =

∑
i p(m|i)pi and therefor:

p(m) =
∑
i

p(m|i)pi =
∑
i

pi Tr(M
†
mMm |ψi⟩ ⟨ψi|)

and for the linearity of the trace

p(m) = Tr(M †
mMm

∑
i

pi |ψi⟩ ⟨ψi|);

here, given the definition of the density matrix in Eq. (1.15),

p(m) = Tr(M †
mMmρ). (1.23)

After the measurement is carried out the density matrix of the quantum system will be
different. Indeed, if the initial state is |ψi⟩, than the state after obtaining the measure-
ment m is

|ψm
i ⟩ =

Mm |ψi⟩√
⟨ψi|M †

mMm|ψi⟩
. (1.24)
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This leaves an ensemble of states {p(i|m), |ψm
i ⟩} to which corresponds the density matrix:

ρm =
∑
i

p(i|m) |ψm
i ⟩ ⟨ψm

i | =
∑
i

p(i|m)
Mm |ψi⟩ ⟨ψi|M †

m

⟨ψi|M †
mMm|ψi⟩

.

Given the Bayes theorem

p(i|m) =
p(m|i)pi
p(m)

, (1.25)

ρm =
∑
i

p(m|i)pi
p(m)

Mm |ψi⟩ ⟨ψi|M †
m

⟨ψi|M †
mMm|ψi⟩

=

=
∑
i

⟨ψi|M †
mMm|ψ⟩ pi

Tr(M †
mMmρ)

Mm |ψi⟩ ⟨ψi|M †
m

⟨ψi|M †
mMm|ψi⟩

=

which gives

ρm =
MmρM

†
m

Tr(M †
mMmρ)

. (1.26)

The measurement postulate for the density operator formalism can be stated as:

Postulate 1.2.7. The set {Mm} of measurement operators, acting on the state space
of the system being measured, describes quantum measurements and the index m refers
to the outcome of the measurement. If immediately before the measurement is carried
out the state of the system is ρ, the probability that the measurement m occurs is given
by (1.23) and the state of the system after the measurement is (1.26). Furthermore it is
satisfied the completeness equation (1.10).

One may be interested in studying a composite system and in this case the following
postulate is needed:

Postulate 1.2.8. The state space of a composite physical system is the tensor product
of the states space of the component physical systems. If the i-th states is described by
the density operator ρi, with i = 1, ..., n, then the combined state is ρ = ρ1 ⊗ ...⊗ ρn.

It happens frequently to be interested in a subsystem of a composite quantum system.
In such cases their description is provided by the reduced density operator.

Reduced density operator

Suppose two physical systems A and B are coupled to form the physical system AB,
whose state is therefore described by the density matrix ρAB. This is for example the
case of a quantum system which undergoes a coupling with the environment. Then to
analyze the result of the coupling on the system the reduced density operator is needed:
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Definition 1.2.2.
ρA = TrB(ρAB), (1.27)

where TrB is the partial trace over system B. Given any two vectors in the state space
of A (|a1⟩, |a2⟩), and any two vector of system B (|b1⟩, |b2⟩), TrB is defined by

TrB(|a1⟩ ⟨a2| ⊗ |b1⟩ ⟨b2|) = Tr(|b1⟩ ⟨b2|) |a1⟩ ⟨a2| . (1.28)

The introduction of the reduced density operator is justified by the fact that it re-
produces the correct measurements statistics for measurements made on subsystem A.

Now that the formalism used in this dissertation has been introduced it is time to
introduce the tools used in QEC.

1.3 Quantum circuits and quantum gates

Quantum information is carried on qubits, therefore a way to act on them and extract
the information is needed. Since qubits are quantum entities their manipulation must
follow the postulates given in the previous section. Moreover to visualize the operations
one does on the qubits quantum circuits have been introduced [12].

As stated in postulate 1.2.2, the evolution of a closed quantum system is carried out
by unitary operators. Besides the identity operator I, it is convenient to introduce the
most used unitary operators in quantum computing, which are the Pauli operators. As
they operate on a two-dimensional complex Hilbert space these will be 2× 2 matrices:

X =

(
0 1
1 0

)
(1.29)

Y =

(
0 −i
i 0

)
(1.30)

Z =

(
1 0
0 −1

)
. (1.31)

Another very useful operator for qubit manipulation is the Hadamard operator:

H =
1√
2

(
1 1
1 −1

)
. (1.32)

The pictorial representation of the operators just introduced in Eq. (1.29), (1.30),
(1.31), (1.32) in quantum circuits is the one that can be seen in Fig. 1.2.

As they will be later exploited in some examples, also rotation operators will be here
discussed. Before hand a proof the following lemma can be provided:
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X

(a) X gate.

Y

(b) Y gate.

Z

(c) Z gate.

H

(d) H gate.

Figure 1.2: Pictorial representation of the X, Y , Z, H gates.

Lemma 1.3.1. Let x be a real number and A a matrix such that A2 = I. Then

exp(iAx) = cos(x)I + i sin(x)A. (1.33)

Proof.

exp(ixA) =
∞∑
n=0

(ix)nAn

n!
=

∞∑
ne=0

(ix)neAne

ne!
+

∞∑
no=1

(ix)noAno

no!

where ne, no denote even and odd indexes respectively. As Ane = I and Ano = A the
Taylor series for cosine and sine can be spotted and therefore Eq. (1.33) stands.

Given this results the rotation operators about the x, y, z axes are defined by:

Rx(θ) = e−iθX/2 = cos
θ

2
I − i sin

θ

2
X =

(
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

)
(1.34)

Ry(θ) = e−iθY/2 = cos
θ

2
I − i sin

θ

2
Y =

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)
(1.35)

Rz(θ) = e−iθZ/2 = cos
θ

2
I − i sin

θ

2
Z =

(
e−iθ/2 0
0 eiθ/2

)
. (1.36)

(1.37)

Given any direction n̂ = (nx, ny, nz), a real unit vector in three dimensions, a gener-
alized rotation by θ around n̂ is given by the equation

Rn̂(θ) = exp(−iθ
2
n̂ · σ⃗) = cos

(θ
2

)
I − i sin

(θ
2

)
(nxX + nyY + nzZ), (1.38)

where σ⃗ = (X, Y, Z) is the vector of Pauli matrices.
For the sake of completeness it has to be mentioned that any unitary operator on a

single qubit can be written in different ways as a combination of rotations and global
phase shifts on the qubit. The following theorem expresses this [12].

Theorem 1.3.2. Z-Y decomposition for a single qubit. Suppose U is a unitary
operation on a single qubit. Then there exist real numbers α, β, γ, δ such that

U = eiαRz(β)Ry(γ)Rz(δ). (1.39)
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This dissertation will discuss more in detail the correction of two specific kind of
errors: the bit-flip error and the phase-flip error. Therefore their definition in terms of
the application of an unitary operator is given:

Definition 1.3.1. Bit-flip error. Given a qubit in the state |ψ⟩ = α |0⟩ + β |1⟩, a bit
flip error is:

|ψ⟩e = X |ψ⟩ = α |1⟩+ β |0⟩ , (1.40)

which, is easy to verify, is a rotation of π around the x axis up to a global phase.

Definition 1.3.2. Phase-flip error Given a qubit in the state |ψ⟩ = α |0⟩ + β |1⟩, a
phase flip error is:

|ψ⟩e = Z |ψ⟩ = α |0⟩ − β |1⟩ , (1.41)

which, is easy to verify, is a rotation of π around the z axis.
However it is important to remark that quantum errors are not discrete, but contin-

uous, as it will be better explained in the next chapter.
When trying to identify whether a phase-flip error has occurred it is useful to encode

the qubit with an Hadamard gate. Therefore the following identities are of service:

HXH = Z, HY H = −Y HZH = X, (1.42)

and their proof is a direct computation.
The above mentioned quantum gates are known as single qubit quantum gates, but

also gates that act on more than one qubit do exist. Indeed when performing quantum
error corrections, the controlled operations are necessary. The main one, and the one
that will be exploited in the following sections, is the CNOT gate, which takes as input
two qubits, named the control qubit and the target qubit respectively. Its action is the
following: if the control qubit is |1⟩ the target qubit will be flipped, whereas if the control
qubit is |0⟩ the target qubit will be left unchanged. Therefore in the computational basis
the matrix representation of a CNOT for the |control, target⟩ system is:

UCNOT ≡ CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (1.43)

In Fig. 1.3 the circuital representation of a CNOT gate is given: the full dot on the
wire is drawn on the control qubit and the circled plus on the wire is drawn on the target
qubit.

As it will be useful in the next chapters and to clarify how this gate works, let the
control qubit be |ψ⟩ = α |0⟩+ β |1⟩ and the target qubit be |0⟩. The state vector of the
composite system is |Ψ⟩ = α |00⟩ + β |10⟩. Applying the CNOT on this state will leave
the system in the state |Ψ′⟩ = α |00⟩+ β |11⟩.
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|c〉
|t〉

Figure 1.3: Pictorial representation of a CNOT gate.

Furthermore the CNOT gate, coupled with the Hadamard gate can create an entan-
gled state, which is a composite quantum system which cannot be written as a product
of states of its component systems. Indeed with the circuit displayed in Fig. 1.4,

|0〉
|0〉

H |ψ〉

Figure 1.4: Quantum circuit needed to construct an entangled state.

the entangled state

|ψ⟩ = |00⟩+ |11⟩√
2

(1.44)

is built.
Entangled states play a crucial role in quantum information and in quantum compu-

tation and for this reason they have been mentioned in this dissertation, but there will
not be a deeper analysis as it will lead off-topic.

Another quantum gate which will be mention in Sec. 3.2 is the SWAP gate, which
swaps the state of the two qubits involved in the operation. Its matrix representation is

USWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (1.45)

and its pictorial representation is shown in Fig. 1.5.
Only the gates used in this dissertation have been mentioned, but a lot more may be

introduced. Furthermore it turns out that universal quantum gates, such as in classical
computing, do exist, but this will not be discussed here, as it is not quite relevant for
the goal of the dissertation.
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|ψ〉
|φ〉

|φ〉
|ψ〉

Figure 1.5: Pictorial representation of a SWAP gate.

Before passing to the next chapter one last observation is in place: the state vector
of a composite quantum system is the tensor product of the state vectors of the systems
involved, thus the Hilbert space expands and expanded operators act on it. Indeed
suppose one has a composite system composed by n qubits, thus described by the state
|Ψ⟩ = |ψ1⟩ ⊗ · · · ⊗ |ψn⟩. Then, for instance, if one wants to apply the X Pauli operator
on each one of the qubits that compose the system, one has to build the operator Xn =
X ⊗ · · · ⊗X, where there are n X Pauli operators. In order to lighten the notation it is
avoided using the symbol for the tensor product. The following example should clarify
the notation: take a system composed by three qubits, then

X ⊗ I ⊗ I ≡ X1I2I3, (1.46)

meaning that an X operator is acting on the first qubit and identity operators are acting
on the second and third qubit.
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Chapter 2

Quantum Errors and QEC Codes

While performing quantum computations the qubits are not an isolated system, therefore
this interaction leads to noise which can produce errors. QEC deals with how to correct
them and thus doing reliable computations. Before diving into more details of quantum
errors ad the codes by which they are corrected one has to understand the key aspects
of error that occur in quantum computation. Indeed the three following points must be
taken into account in order to build QEC algorithms:

• No cloning: the no cloning theorem does not allow for a repetition code in the
classical sense, i.e. copy the bits that carry the information, which is a technique
widely used in classical error correction. This means that quantum data cannot be
protected by doing multiple copies.

• Errors are continuous: a continuum of errors can occur on a single qubit,
whereas in classical information the only error is a bit-flip.

• Measurements destroys quantum information: measuring a quantum sys-
tem destroys the quantum state which is being observed, making the recovery
impossible.

These facts make classical error correction not suited to quantum information, where
different algorithms are needed.

This chapter will discuss the three points just illustrated. Indeed Sec. 2.1 will de-
scribe the classical repetition code and then give the proof of the No cloning theorem.
Afterwards Sec. 2.2 will focus on what a quantum error is, disclosing the big differ-
ences with the classical error on a bit. Next Sec. 2.3 will talk about 3-qubit codes. More
specifically the processes by which one does the error correction are called codes and they
work by encoding quantum states in a special way that makes them resilient against the
effects of noise, and then decoding when it is wished to recover the original state. It is
supposed that encoding and decoding can be performed without errors.
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More precisely is worth nothing that the error correction protocol will give no infor-
mation on the coefficients α and β of the vector state of the qubit |ψ⟩ = α |0⟩ + β |1⟩.
This will be discussed more thoroughly in Sec. 2.3.1. As the key aspect of the 3-qubit
codes is how to extract information without changing the state of the system, Sec. 2.3.2
will explain how this is done in the error correction algorithms for bit-flip and phase-flip
errors. Furthermore to suppress the failure of the code, QEC uses the idea of redundant
encoding, which means expanding the Hilbert space to a dimension bigger then the one
that is needed to store the information given by a single qubit in a way that will be
explained in Sec. 2.4. In this section this encoding procedure will be thoroughly exam-
ined, giving an analytical proof of why this is needed and also a computer simulation to
confirm what derived with computations, for an error rate equal on all the qubits of the
system. In this section also a computation of the error probabilities if the error rate is
different on each qubit is carried out, as it will be needed in Chapter 3.

To conclude, the 9-qubit Shor code will be presented in Sec. 2.5 in order to give an
example of a QEC protocol which can correct for both bit-flip and phase-flip errors, thus
generalizing the ideas used in Sec. 2.3 to do the error detection.

Finally the following remark needs to be addressed: in this chapter it is assumed that
all the operations one wish to do on a quantum system are free of errors. For example
it is assumed that applying a quantum gate is not affected by errors, which is not the
case in the real quantum devices as will become clear in Chapter 3.

2.1 No-cloning theorem

Classical information can be copied. This is exploited when correcting for classical errors.
Indeed when one wants to protect a message against an error, the message is encoded
by adding some redundant information to the message. In this way, if an error takes
place, there will be enough information to recover (decode) the message and extract the
original information. The example of the binary symmetric channel should make this
clear: suppose a classical bit is sent through a channel which is affected by noise. In the
channel the bit will be flipped with probability p whereas with probability 1−p there will
be no error, with the hypothesis that p is small. To be able to correct an eventual error
one can encode 0 → 000 and 1 → 111 (these triplets are called logical 0 and 1). Now
the three bits are sent through the channel. Suppose the receiver gets 011. Applying the
decoding called majority voting, since p is small, it is very likely that there has been a
bit-flip error on the firs bit and the original message was 111. Since the probability of
having more than one bit-flip error is 3p2(1−p)+p3, the probability of making a mistake
using this procedure is pe = 3p2 − 2p3. Without the encoding this last probability was
p, therefore if p < 1/2 it follows that pe < p.

On the other hand quantum mechanics does not allow to copy exactly unknown
quantum states, making it impossible to do as just explained for classical information.

20



This is proved by the no-cloning theorem [13], which stands for pure states.

Proof. Suppose there is a copying quantum machine, which can copy an unknown quan-
tum state |ψ⟩ into a target unknown quantum state |s⟩. Therefore the initial state of
this machine is

|ψ⟩ ⊗ |s⟩ .
The copying procedure is made by an unitary evolution operator, according to postulate
1.2.2, such that:

U(|ψ⟩ ⊗ |s⟩) = |ψ⟩ ⊗ |ψ⟩ .
If this procedure works for two different pure states, |ψ⟩ and |ϕ⟩ it stands

U(|ψ⟩ ⊗ |s⟩) = |ψ⟩ ⊗ |ψ⟩
U(|ϕ⟩ ⊗ |s⟩) = |ϕ⟩ ⊗ |ϕ⟩ .

To see the nature of the copied quantum systems the inner product of the two hand sides
of the last two equations may be taken:

|φ1L⟩ = U(|ψ⟩ ⊗ |s⟩)
|φ2L⟩ = U(|ϕ⟩ ⊗ |s⟩)
⟨φ1L|φ2L⟩ = ⟨ψ|ϕ⟩
|φ1R⟩ = |ψ⟩ ⊗ |ψ⟩
|φ2R⟩ = |ϕ⟩ ⊗ |ϕ⟩

⟨φ1R|φ2R⟩ = (⟨ψ|ϕ⟩)2.

Therefore it stands that
⟨ψ|ϕ⟩ = (⟨ψ|ϕ⟩)2.

This is formally an equation of the kind x = x2 which has two solutions:

x = 0 ⇐⇒ ⟨ψ|ϕ⟩ = 0 =⇒ |ψ⟩ and |ϕ⟩ are orthogonal,

x = 1 ⇐⇒ ⟨ψ|ϕ⟩ = 1 =⇒ |ψ⟩ = |ϕ⟩ ,

thus implying that a quantum cloning device can only copy states that are orthogonal
to one another, making impossible to construct a general quantum cloning device.

The impossibility to clone quantum states also stands for mixed states, but the details
will not be given in this dissertation as it does not concern it directly.
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2.2 Quantum errors

As already stated, errors may occur on qubits, namely the state of the quantum systems
on which computations are done can change. When it happens it is said that an error
occurs. This happens because qubits are not isolated systems and thus they are subjected
to noise. One example of this is the coupling of the system under examination with the
environment, which leads to environmental decoherence [10]. This means that the state
of the system is not preserved by time evolution.

To understand this a simple example can be studied: consider a single qubit quantum
system and a two level quantum system environment with two basis states |e0⟩ and |e1⟩
that satisfy

⟨ei|ej⟩ = δij, I = |e0⟩ ⟨e0|+ |e1⟩ ⟨e1| . (2.1)

When the qubit is in the state |0⟩ nothing happens, while when the qubit is in the state |1⟩
the environmental state is flipped. Finally let the coupling with the environment occur
only in the waiting stage of an algorithm; such stage will be mathematically represented
by the identity operator I. As the goal is to observe a decoherence between the states
|0⟩ and |1⟩, a coherent superposition of these two states is needed to see the effect of the
environment. This is achieved by using the Hadamard gate (Eq. (1.32)). Assuming that
the environment is initialized in the state |E⟩ = |e0⟩, it is then coupled with the qubit
which is initialized in the state |ψ⟩ = |0⟩:

HIH |ψ⟩ |E⟩ = HIH |0⟩ |e0⟩ , (2.2)

where HIH means that a coherent superposition is applied

(HI)
1√
2
(|0⟩+ |1⟩) |e0⟩ , (2.3)

then the coupling with the environment takes place

1√
2
H(|0⟩ |e0⟩+ |1⟩ |e1⟩) (2.4)

and finally
1

2
(|0⟩+ |1⟩) |e0⟩+

1

2
(|0⟩ − |1⟩) |e1⟩ . (2.5)

Given the definition of the density matrix (Eq. (1.15)), with a direct computation it
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is found that the density matrix of the state HIH |0⟩ |e0⟩ is

ρ =
1

4
(|0⟩ ⟨0|+ |0⟩ ⟨1|+ |1⟩ ⟨0|+ |1⟩ ⟨1|) |e0⟩ ⟨e0|+

1

4
(|0⟩ ⟨0| − |0⟩ ⟨1|+ |1⟩ ⟨0| − |1⟩ ⟨1|) |e0⟩ ⟨e1|+

1

4
(|0⟩ ⟨0|+ |0⟩ ⟨1| − |1⟩ ⟨0| − |1⟩ ⟨1|) |e1⟩ ⟨e0|+

1

4
(|0⟩ ⟨0| − |0⟩ ⟨1| − |1⟩ ⟨0|+ |1⟩ ⟨1|) |e1⟩ ⟨e1| .

(2.6)

In order to learn something about our system the use of the reduced density operator
is needed as seen in Sec. 1.2.2. Therefore the next step is to trace over the environment
part of the total quantum system. This is done using Eq. (1.28) and Eq. (1.22), where
in the latter A = I for this example. So, given the orthonormality of the states |e0⟩, |e1⟩
(Eq. (2.1)),

TrE(ρ) =
1

4
(|0⟩ ⟨0|+ |0⟩ ⟨1|+ |1⟩ ⟨0|+ |1⟩ ⟨1|)+

1

4
(|0⟩ ⟨0| − |0⟩ ⟨1| − |1⟩ ⟨0|+ |1⟩ ⟨1|)

=
1

2
(|0⟩ ⟨0|+ |1⟩ ⟨1|),

(2.7)

meaning that the coupling with the environment has removed coherences between |0⟩
and |1⟩ states and the second Hadamard transform does not bring back the system in
the initial state, which was |0⟩, leaving the system in a complete mixture of the two qubit
states.

After this first example which gives an idea of how an error may occur when the
qubits are coupled with the environment, the focus will be now put on two types of
errors for which error correction codes will be introduced in the next sections: bit-flip
errors and phase-flip errors.

Having a bit-flip error is equivalent to have an X operator applied on a qubit:

|0⟩ → |1⟩ ↔ X |0⟩ = |1⟩ , (2.8)

while having a phase-flip error is equivalent to have a Z operator applied on a qubit:

|+⟩ → |−⟩ ↔ Z |+⟩ = |−⟩ , (2.9)

where the computational basis and the X-basis are used in a way that makes the errors
more appreciable. In order to correct for these errors it is preferable to encode the
qubit as explained in Sec. 2.4. This is somehow in analogy to what is done in classical
information processing, but the means by which this is done are different. Indeed it has
already been explained in Sec. 2.1 how it is not possible to adopt the same procedure
used in the binary symmetric channel while manipulating quantum information. This
matter will be addressed more in detail in the next section.
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2.3 3-qubit codes

In order to perform error correction on a qubit one has to find a different procedure from
the classical repetition code, as proven in Sec. 2.1. A first example of how to achieve
QEC are the 3-qubit Shor codes for bit-flip and phase-flip errors. It is though important
to remark that the 3-qubit code is not a full quantum code, as it cannot simultaneously
correct for both a bit and a phase-flip error. This will be achieved with the 9-qubit Shor
code which will be discussed in Sec. 2.5.

For 3-qubit Shor codes [10] the fundamental structure of the algorithm is the same
for both the type of errors just mentioned:

1. There is a qubit in the state |ψ⟩ which contains some information that we wish to
preserve.

2. In order to better protect against errors this qubit is encoded (in the example of
Fig. 2.1 with other two qubits prepared in the state |0⟩) mapping |ψ⟩ −→ |ψ⟩L
which is the logical qubit.

3. It is assumed that an error may only occur between encoding and the error correc-
tion process.

4. After the time when an error may occur the error detection takes place. For this
process an ancillary system is needed in order to perform syndrome measurements,
namely extracting information from a system by performing a measurement, but
without changing the state of the system. Furthermore the ancilla system is not
affected by errors.

5. If an error is detected it is corrected.

|ψ〉
|0〉
|0〉 E
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|0〉a
|0〉a
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Figure 2.1: General scheme of how a 3-qubit error correction code works.

Even though explaining what each step in Fig. 2.1 following a left-to-right order
would be preferable, a thorough understanding of the encoding procedure cannot be

24



achieved without first understanding what a syndrome measurement is. Therefore now
the focus will be put on the latter matter firstly in a more general framework in Sec.
2.3.1, then describing the 3-qubit Shor codes for bit-flip and phase-flip errors in Sec.
2.3.2 as a more concrete example of how such a type of measurement can be done on a
quantum system and finally analyze thoroughly the encoding procedure in Sec. 2.4, thus
understanding why is preferable to encode the initial qubit |ψ⟩.

2.3.1 Syndrome measurement

As stated by postulate 1.2.3, once one performs a measurement on a quantum system, the
state of this system changes irreversibly. This is not what one wants while performing
error detection. Indeed when one performs a measurement which tells what error, if
any, has occurred on the state, a result is given which is called error syndrome. While
doing this no information is given about the coefficients of the linear combination of
the basis’s vectors in which the state is. The following example should clarify how this
works. Let the initial state be |ψ⟩ = α |0⟩ + β |1⟩, thus the encoded state is |ψ⟩L =
α |000⟩ + β |111⟩. Now a bit-flip error happens on the first qubit therefore leaving the
system in the state |ψ′⟩L = α |100⟩ + β |011⟩. The error syndromes correspond to the
four projection operators [12]:

P0 = |000⟩ ⟨000|+ |111⟩ ⟨111| , (2.10)

P1 = |100⟩ ⟨100|+ |011⟩ ⟨011| , (2.11)

P2 = |010⟩ ⟨010|+ |101⟩ ⟨101| , (2.12)

P3 = |001⟩ ⟨001|+ |110⟩ ⟨110| , (2.13)

which respectively correspond to no error, bit-flip on qubit one, bit-flip on qubit two,
bit-flip on qubit three. If one measures the probabilities ⟨ψ′|Pi|ψ′⟩L = δi,1 meaning the
error syndrome is certainly one for the projector P1. By eq. (1.13):

|ψ′′⟩L =
P1 |ψ′⟩L√
⟨ψ′|P1|ψ′⟩L

= α |100⟩+ β |011⟩ , (2.14)

revealing that the quantum state is left unchanged. Anyway in the following in order to
extract information regarding possible errors on the data block, i.e. the three encoded
qubits, an ancillary system is introduced, making possible to avoid discriminating the
exact state of any qubit. To see how the ancillary system works the 3-qubit Shor code
can be taken as reference.

2.3.2 3-qubit error correction codes

As an introduction to quantum error correction codes the 3-qubit code will here be studied
for both bit-flip and phase-flip errors. It is though important to remark that the 3-qubit
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code is not a full quantum code, as it cannot simultaneously correct for both a bit and a
phase-flip error. This will be achieved with the 9-qubit Shor code which will be discussed
in Sec. 2.5.

First of all suppose there is a single qubit in a state |ψ⟩ = α |0⟩+ β |1⟩ which carries
some information to preserve. For reasons that will become clear in Sec. 2.4, in order
to correct for a single qubit bit-flip or phase-flip error with the highest probability of
measuring the correct result, the qubit needs to be encoded. In the three qubit code
a single logical qubit is encoded into three physical qubits. Thus the two logical states
|0⟩L and |1⟩L are defined as

|0⟩L = |000⟩ , |1⟩L = |111⟩ , (2.15)

such that the state previously defined is mapped to

|ψ⟩L = CX13CX12 |ψ⟩
= CX13CX12(α |0⟩+ β |1⟩) |0⟩ |0⟩
= CX13(α |00⟩+ β |11⟩) |0⟩
= α |000⟩+ β |111⟩ ,

(2.16)

as shown in Fig. 2.2. In the equation the CXij operators are CNOTs and the subscript
i defines the control qubit whereas the subscript j defines the target qubit.

|ψ〉
|0〉
|0〉

|ψ〉L

Figure 2.2: Encoding circuit for a single logical qubit.

Let |ψ⟩L = |0⟩L. In order to bring the state to |1⟩L three bit flips must occur, therefore
the distance between the two codeword states is d = 3. This distance defines the number
t of errors that can be corrected [10]:

t =
d− 1

2
, (2.17)

which in this particular case is t = 1, therefore meaning that a three qubit code can only
correct one error.

Once the qubit is encoded, two additional ancilla qubits are introduced which will be
used to extract syndrome information, i.e. information regarding possible errors, from
the data block without discriminating the exact state of the three qubits in the data
block. For the sake of simplicity it is assumed that the qubits are susceptible to errors
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only between encoding and correction (Fig. 2.1) and that the gate operations are perfect,
even though this is not the case in the real world as will be discussed in Chap. 3.

The next two subsections will examine how to correct for a bit-flip or a phase-flip
separately. A common feature of the two errors is that the detection can be seen from
two different point of views: parity between adjacent qubits and the quantum circuit im-
plemented for the error detection. Both are analyzed because the former is conceptually
interesting and the latter is crucial to realize working error correction algorithms on real
quantum devices.

Bit-flip correction

|ψ〉
|0〉
|0〉

|0〉a
|0〉a

E
rr
o
r

Figure 2.3: 3-qubit error correction circuit for bit-flip errors.

Now the focus will be driven on a 3-qubit bit-flip error correction code. To achieve
this a circuit as the one shown in Fig. 2.3 is needed. At first the single qubit |ψ⟩ is
encoded. For the sake of clarity in this section |ψ⟩ = |0⟩ in order to be able to avoid the
density matrix formalism, as the action of the CNOTs are thus determined and there is
not an ensemble of states (also the state |1⟩ is a good way to go). Then it is assumed
that an error may occur and in order to detect it and therefore correct it a two-qubit
ancilla system is introduced, denoted by the subscript a. To find out if a bit-flip error
has indeed happened the parity between the three qubits must be evaluated, namely, if
there is a three qubit system |q1q2q3⟩ and one wants to find out if a bit-flip error has
occurred, one measures the parity by applying the Z Pauli operator on two adjacent
qubits of the two couples of qubits, for example on q1q2, by applying Z1Z2, and q2q3, by
applying Z2Z3. This works as the eigenvalues of the Z Pauli operator are λ = ±1:

Z |0⟩ = |0⟩ Z |1⟩ = − |1⟩ . (2.18)

To better understand what just stated suppose the data block is in a |000⟩ state.
Now this state is sent trough a quantum circuit and the receiver wants to find out if a
bit-flip error has occurred. This can be achieved using the operator Z to check parity
between qubits as it is shown in Tab. 2.1.
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received Z1Z2 Z2Z3 Error
|000⟩ +1 +1 No
|100⟩ −1 +1 X1

|010⟩ −1 −1 X2

|001⟩ +1 −1 X3

Table 2.1: Parity using the Z Pauli operator to find out if a bit-flip error has occurred.

An important remark is in order: if there is more than one bit-flip, the 3-qubit code
cannot detect it as all the possible combination of ±1 are already present in Tab. 2.1.

Going back to the quantum circuit showed in Fig. 2.3, and thus also taking |ψ⟩ =
α |0⟩ + β |1⟩, the parity is checked via the CNOT gates used after the time when it is
supposed an error can occur. The parity is indeed checked by measuring the state of the
two ancilla qubits, as shown in Tab. 2.2, where the logical equivalence with Tab. 2.1 is
clear.

Ancilla measurement Collapsed state Error
00 α |000⟩+ β |111⟩ No Error
01 α |001⟩+ β |110⟩ X3

11 α |010⟩+ β |101⟩ X2

10 α |100⟩+ β |011⟩ X1

Table 2.2: Syndrome measurements for the 3-qubit bit-flip code using the quantum circuit
in Fig. 2.3.

As can be seen from Eq. (2.17), the code is not able to correct for more than one
error. Indeed if more than one error occurs the code will not detect the right error. This
is summarised in Tab. 2.3 and it is in agreement with the result of Eq. (2.17) for the
3-qubit code.

Error occurred Collapsed state and ancilla Error detected
X1X2X3 α |111⟩ |00⟩+ β |000⟩ |00⟩ No Error
X1X2 α |110⟩ |01⟩+ β |001⟩ |01⟩ X3

X1X3 α |101⟩ |11⟩+ β |010⟩ |11⟩ X2

X2X3 α |011⟩ |10⟩+ β |100⟩ |10⟩ X1

Table 2.3: The quantum circuit in Fig. 2.3 is not able to detect more than one error.

Once the syndrome measurement has been performed one is able to correct the error,
that has been detected, restoring the initial information, by applying an X gate on the
qubit suggested by the detection procedure. It is important to stress again the fact that
this is the case only if just an error has occurred, as if more than one qubit has been
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altered the detection will lead to correct the wrong qubit. For example, taking Tab. 2.3
if an error occurs on both the first and the second qubit the detection procedure will
suggest that a bit-flip error has happened on the third qubit, but flipping it back will
give a final state which is the flipped of the original one.

Phase-flip Correction

In order to detect a phase-flip error the encoding must be done as in Fig. 2.4.

|ψ〉
|0〉
|0〉

H

H

H |ψ〉L

Figure 2.4: Circuit needed to encode a single qubit for a phase-flip error correction.

Also in this case syndrome measurement may be performed by doingH⊗3Z1Z2I3H
⊗3 =

X1X2I3 and H
⊗3I1Z2Z3H

⊗3 = I1X2X3, where the use of the Hadamard gates is justified
by the identities of Eq. (1.42). As for the case of a bit-flip error, measuring these observ-
ables can be viewed as comparing the parity of the pairs of qubits, but this time in the
basis introduced in Eq. (1.2). Indeed suppose |ψ⟩ = 0, therefore the three qubits will be
mapped, by means of the procedure displayed in Fig. 2.4, this way: |000⟩ −→ |+++⟩.
This state is sent to the receiver. In order to determine whether a phase-flip error has
occurred one measures the observables just cited and obtains the results of Tab. 2.4.

received X1X2 X2X3 E
|+++⟩ +1 +1 No
|−++⟩ −1 +1 Z1

|+−+⟩ −1 −1 Z2

|++−⟩ +1 −1 Z3

Table 2.4: Parity using the X Pauli operator to find out if a phase-flip error has occurred.

Now the quantum circuits able to measure this parity is shown in Fig. 2.5.
Before analysing how this circuit works one has to understand why it works. A bit-flip

error changes a state of the computational basis into the other. The same is done by a
phase-flip error if one operates in the X-basis. Indeed a phase-flip error is equivalent to
apply the Z Pauli operator, which, when applied on |+⟩ , |−⟩ results in

Z |+⟩ = |−⟩ Z |−⟩ = |+⟩ ; (2.19)
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Figure 2.5: 3-qubit error correction circuit for phase-flip errors.

Also the action of a CNOT is modified:

H⊗2I1X2H
⊗2 = I1Z2. (2.20)

This means that if also on the ancilla qubits one applies a Hadamard gate before the
error detection, the circuit will work formally identically to the one for the bit-flip error.
Indeed in order to understand how the code works let |ψ⟩ = 0. The encoded logical
state will be |ψ⟩L = |+++⟩ and at the same time the ancilla state is |ψ⟩a = |++⟩. If
a phase-flip error occurs on the first qubit then the state will be |ψ⟩L = |−++⟩. The
CNOT operations for error detection will leave the ancilla state in |ψ⟩a = |−+⟩, that
will turn into |ψ⟩a = |10⟩ after applying again an Hadamard gate on each of the two
ancilla qubits. This will suggest that a phase flip error has occurred on the first qubit.
As for the bit-flip code, after detection, correction can be performed.

All the combinations for the syndrome measurement are showed in Tab. 2.5 and, as
for the bit-flip error correction code, only one phase-flip error can be corrected, making
of it not a full quantum code.

Ancilla measurement Collapsed state Error
00 α |000⟩+ β |111⟩ No Error
01 α |001⟩+ β |110⟩ Z3

11 α |010⟩+ β |101⟩ Z2

10 α |100⟩+ β |011⟩ Z1

Table 2.5: Syndrome measurements for the 3-qubit phase-flip code using the quantum
circuit in Fig. 2.5.

Moreover by examining the second column of Tab. 2.5, one can see that the collapsed
states, which are taken after applying the Hadamard gate following the detection proce-
dure, are the same as the ones for the bit-flip code, listed in Tab. 2.2, thus showing once
again the formal analogy of the two codes.
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Having now understood how the error detection works it is possible to thoroughly
focus on the encoding procedure. Indeed the encoding is done before the error detection,
but to appreciate why it is useful one has to compare the final state, after correction, for
an encoded and an unencoded qubit, therefore making necessary to understand the way
one can detect errors.

2.4 Why to encode the system

The objective of QEC is to detect and then correct any errors that may occur while
processing quantum information. Therefore if one has initially a single qubit in a state
|ψ⟩ = α |0⟩+β |1⟩, the aim is to obtain, after the error correction code (Fig. 2.1), a final
state |ϕ⟩ = a |0⟩+ b |1⟩ as ”close” to |ψ⟩ as possible.

The ”closeness” of the two states can be evaluated with the concept of fidelity :

Definition 2.4.1. Let |ψ⟩ and |ϕ⟩ be two vector states. The fidelity is

F = | ⟨ϕ|ψ⟩ |2. (2.21)

By this definition a state gets closer to another as F approaches 1, and vice versa,
therefore the error correction process needs to leave the system in a state with the
highest fidelity possible with the initial state. The encoding procedure makes it possible
to increase the fidelity between the initial and the final state if the error probability on
a single qubit is p < 0.5. This can be proven with a simple example which uses as a
prototype the bit-flip error, but the results are equivalent for the phase-flip errror.

2.4.1 Analytical proof

Let U = exp(iϵX) be coherent errors acting on the qubits, where ϵ ≪ 1 (this is a good
example of a quantum error as it is a rotation, which is continuous). Coherence is chosen
in order to keep the state vector formalism. Now if the unitary operation U is considered
acting on a single unencoded logical qubit |ψ⟩, given Eq. (1.33), the state after the error
occurs is

|ψ⟩E = U |ψ⟩ = cos(ϵ)I |ψ⟩+ i sin(ϵ)X |ψ⟩ . (2.22)

Therefore the fidelity of the single qubit state is, according to Eq. (2.22),

Funencoded = | ⟨ψ|U |ψ⟩ |2 = cos2(ϵ) ≈ 1− ϵ2, , (2.23)

as ϵ≪ 1, meaning that the error on the resulting state is of order O(ϵ2). Is important to
remark that worst case fidelity is assumed, namely, in this particular case, ⟨ψ|X|ψ⟩ = 0,
i.e. the state and its bit-flipped are orthogonal. This is however not the general case,
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but a more thorough explanation of this is provided in Sec. 2.4.3, where understanding
this is key to the computer simulation.

Now if the single logical qubit is encoded into three physical qubits as shown in Fig.
2.3 in the part of the circuit before an error may occur, the assumption that each qubit
experiences the same error is made and an ancilla system is introduced in order to extract
syndrome information. Given the fact that the system is now composed by three qubits,
the operators on the system need to be tensorially composed.

Let now the encoded system affected by an error be

|ψ⟩E = E |ψ⟩L , (2.24)

where

E =U⊗3 = (cos(ϵ)I + i sin(ϵ)X)⊗3

= c0I1I2I3

+ c1(X1I2I3 + I1X2I3 + I1I2X3)

+ c2(X1X2I3 + I1X2X3 +X1I2X3)

+ c3X1X2X3,

(2.25)

and

c0 = cos3(ϵ) (2.26)

c1 = i cos2(ϵ) sin(ϵ) (2.27)

c2 = − cos(ϵ) sin2(ϵ) (2.28)

c3 = −i sin3(ϵ). (2.29)

In order to do a quantitative analysis it is assumed that the error detection works as
shown in Fig. 2.3 . Let all the operations carried out in the error detection procedure
in Fig. 2.3 be summarized in the operator UQEC , thus:

UQEC(E |ψ⟩L |00⟩) =c0 |ψ⟩L |00⟩
+ c1X1I2I3 |ψ⟩L |10⟩
+ c1I1X2I3 |ψ⟩L |11⟩
+ c1I1I2X3 |ψ⟩L |01⟩
+ c2X1X2I3 |ψ⟩L |01⟩
+ c2I1X2X3 |ψ⟩L |10⟩
+ c2X1I2X3 |ψ⟩L |11⟩
+ c3X1X2X3 |ψ⟩L |00⟩ ,

(2.30)

where it becomes clear that the QEC algorithm just introduced cannot correct for more
than a bit-flip error, as the ancillary states if more than one error occurs are the same
of the ones that one gets after a single error occurs.
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Given what has been detected error correction is made and the collapsed state with
correction is in a superposition of |ψ⟩L and the logically flipped state XXX |ψ⟩L: |ϕij⟩,
where i, j stands for the state of the ancilla system

|ϕ00⟩ = c0 |ψ⟩L + c3X1X2X3 |ψ⟩L with the ancilla system in the state |00⟩ (2.31)

|ϕ01⟩ = c1 |ψ⟩L + c2X1X2X3 |ψ⟩L with the ancilla system in the state |01⟩ (2.32)

|ϕ10⟩ = c1 |ψ⟩L + c2X1X2X3 |ψ⟩L with the ancilla system in the state |10⟩ (2.33)

|ϕ11⟩ = c1 |ψ⟩L + c2X1X2X3 |ψ⟩L with the ancilla system in the state |11⟩ . (2.34)

If worst case fidelity is assumed, ⟨ψ|XXX|ψ⟩L = 0 (prescript L omitted for the sake
of legibility), i.e. the two states are orthogonal, the fidelity between the state after no
error has been detected with the initial state is, with a suitable normalisation given by
the fact that |c0|2 + |c1|2 + |c2|2 + |c3|2:

Fned =
| ⟨ψ|ϕ00⟩ |2

| ⟨ψ|ϕ00⟩ |2 + | ⟨ψ|X1X2X3|ϕ00⟩ |2

=
|c0 ⟨ψ|ψ⟩L |2

|c0 ⟨ψ|ψ⟩L |2 + |c3 ⟨ψ|ψ⟩L |2
=

|c0|2
|c0|2 + |c3|2

=
cos6(ϵ)

cos6(ϵ) + sin6(ϵ)
≈ 1− ϵ6

(2.35)

which is therefore of order O(ϵ6). This state is detected with a certain probability:

P00 = |00⟩A A⟨00| (2.36)

p(|00⟩A) = Tr(P00 |ϕ⟩ ⟨ϕ|) = Tr(|00⟩A A⟨00|ϕ⟩ ⟨ϕ|) = | ⟨ϕ|00⟩A |2, (2.37)

where |ϕ⟩ is the state expressed in Eq. (2.30) and the subscript A indicates the ancillary
system. Therefore

p(|00⟩A) = |c0 + c3|2 = | cos3(ϵ)− i sin3(ϵ)|2 = cos6(ϵ) + sin6(ϵ)

≈ 1− 3ϵ2 +O(ϵ4).
(2.38)

Thus an error is detected with probability 1 − p(|00⟩A) ≈ 3ϵ2 + O(ϵ4) and the fidelity
between the state in which an error is detected and the initial state, taking any of the
|ϕij⟩ where an error has been detected is given by:

Fed =
| ⟨ψ|ϕ10⟩ |2

| ⟨ψ|ϕ10⟩ |2 + | ⟨ψ|X1X2X3|ϕ10⟩ |2

=
|c1 ⟨ψ|ψ⟩L |2

|c1 ⟨ψ|ψ⟩L |2 + |c2 ⟨ψ|ψ⟩L |2
=

|c1|2
|c1|2 + |c2|2

=
cos4(ϵ) sin2(ϵ)

cos4(ϵ) sin2(ϵ) + cos2(ϵ) sin4(ϵ)
≈ 1− ϵ2.

(2.39)
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To sum up, if no error is detected the error on the resulting state is suppressed from
O(ϵ2) to O(ϵ6) if the logical qubit is encoded in three physical qubits. If an error is
detected the fidelity of the final state is the same, making the encoding procedure useful
in order to protect against errors. Indeed as ϵ ≪ 1 the majority of correction cycles
will detect no error and thus the fidelity of the encoded state will be higher than the
unencoded one. Therefore the probability of measuring the correct result at the end of
a given algorithm is higher when the system is encoded.

To clarify how the encoding procedure better protects against errors, let the state
vector after the error occurs be as the one in Eq. (2.22), where it can be observed that
|i sin(ϵ)|2 is the probability p that an error has occurred, while | cos(ϵ)|2 is the probability
(1− p) that no error has occurred. The state can therefore be written as

|ψ⟩E =
√

1− p |ψ⟩+√
pX |ψ⟩ . (2.40)

By computing the fidelity of this state with the one of the initial qubit, analogously to
Eq. (2.23), the fidelity will be

Fne(p) = cos2(ϵ) = 1− p. (2.41)

If now one encodes the qubit with other two physical qubits, not considering the
terms which account for more than one error, one has:

E |ψ⟩L = U⊗3 |ψL⟩ = (cos(ϵ)I + i sin(ϵ)X)⊗3 |ψ⟩L
≈ cos3(ϵ)I1I2I3 |ψ⟩L
+ i cos2(ϵ) sin(ϵ)(X1I2I3 + I1X2I3 + I1I2X3) |ψ⟩L ,

(2.42)

where the computations are analogous to the ones of Eq. (2.30). If, as for the not
encoded qubit

| cos3(ϵ)|2 = cos6(ϵ) = (cos2(ϵ))3 = (1− p)3 (2.43)

|i cos2(ϵ) sin(ϵ)|2 = cos4(ϵ) sin2(ϵ) = p(1− p)2, (2.44)

making therefore the final state vector of the system

E |ψ⟩L ≈ (1− p)3 |ψ⟩L + p(1− p)2(X1I2I3 + I1X2I3 + I1I2X3) |ψ⟩L , (2.45)

having therefore a total probability of 3p(1−p)2 of having a single error. Once quantum
error correction is done the state will be

|ψ′⟩L ≈ [(1− p)3 + p(1− p)2] |ψ⟩L (2.46)

and therefore computing the fidelity in the encoded case one finds:

Fe(p) = (1− p)3 + 3p(1− p)2 (2.47)
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Figure 2.6: Plot of the fidelities for both an encoded and an unencoded qubit after under-
going a quantum error correction process.

One can now plot the fidelities for both the cases given by Eq. (2.41) and Eq. (2.47)
as shown in Fig. 2.6, where one can see that for little probabilities of an error happening
the fidelity of an encoded qubit is higher than the one for an unencoded qubit, making
this procedure worth it in the interval of probability p ∈ [0, 0.5[, whereas this situation
reverses for p > 0.5, where the encoding procedure decreases fidelity respect to the
unencoded qubit.

Before going on to the section where results of a computer simulation which verify
the computations just done will be displayed, the discussion done for a single error rate
ϵ can be extended to a situation in which the error rate on the three qubits is different.

2.4.2 Different error rates on each qubit

What just stated means that the error upon each qubit is represented by

Ej = exp(iϵjX) j = 1, 2, 3, (2.48)

were j labels the qubits. Upon the composite system |ψ⟩ the error operator will be

E⊗3 = E1 ⊗ E2 ⊗ E3 = exp(iϵ1X1) exp(iϵ2X2) exp(iϵ3X3), (2.49)
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which can be written as

E⊗3 = (cos(ϵ1)I1 + i sin(ϵ1)X1)(cos(ϵ2)I2 + i sin(ϵ2)X2)(cos(ϵ3)I3 + i sin(ϵ3)X3)

= cos(ϵ1) cos(ϵ2) cos(ϵ3)I1I2I3 + i cos(ϵ1) cos(ϵ2) sin(ϵ3)I1I2X3

+ i cos(ϵ1) sin(ϵ2) cos(ϵ3)I1X2I3 + i sin(ϵ1) cos(ϵ2) cos(ϵ3)X1I2I3

− cos(ϵ1) sin(ϵ2) sin(ϵ3)I1X2X3 − sin(ϵ1) cos(ϵ2) sin(ϵ3)X1I2X3

− sin(ϵ1) sin(ϵ2) cos(ϵ3)X1X2I3 − i sin(ϵ1) sin(ϵ2) sin(ϵ3)X1X2X3.

(2.50)

For a bit-flip error the error detection can be done as shown in Fig. 2.3. Denoting
with UQEC the operations done to detect the errors, one finds that the final state after
detection is:

UQECE
⊗3 |ψ⟩L |00⟩A =

(
cos(ϵ1) cos(ϵ2) cos(ϵ3)− i sin(ϵ1) sin(ϵ2) sin(ϵ3)

)
|ψ⟩L |00⟩A

+
(
i sin(ϵ1) cos(ϵ2) cos(ϵ3)− cos(ϵ1) sin(ϵ2) sin(ϵ3)

)
|ψ⟩L |10⟩A

+
(
i cos(ϵ1) sin(ϵ2) cos(ϵ3)− sin(ϵ1) cos(ϵ2) sin(ϵ3)

)
|ψ⟩L |11⟩A

+
(
i cos(ϵ1) cos(ϵ2) sin(ϵ3)− sin(ϵ1) sin(ϵ2) cos(ϵ3)

)
|ψ⟩L |01⟩A .

(2.51)

Thus after the error detection has occurred the 5-qubit system can be in one of the 4
states of Eq. (2.31),(2.32),(2.33),(2.34), where this time one has:

c0 = cos(ϵ1) cos(ϵ2) cos(ϵ3) (2.52)

c1 = i
(
cos(ϵ1) cos(ϵ2) sin(ϵ3) + cos(ϵ1) sin(ϵ2) cos(ϵ3) + sin(ϵ1) cos(ϵ2) cos(ϵ3)

)
(2.53)

c2 = −
(
cos(ϵ1) sin(ϵ2) sin(ϵ3) + sin(ϵ1) cos(ϵ2) sin(ϵ3) + sin(ϵ1) sin(ϵ2) cos(ϵ3)

)
(2.54)

c3 = −i sin(ϵ1) sin(ϵ2) sin(ϵ3). (2.55)

Now in order to get the error probability on each qubit one has to compute:

| ⟨ϕ00| (|ψ⟩L |00⟩A)|2 no error detected, (2.56)

| ⟨ϕ10| (|ψ⟩L |10⟩A)|2 error on qubit 1, (2.57)

| ⟨ϕ11| (|ψ⟩L |11⟩A)|2 error on qubit 2, (2.58)

| ⟨ϕ01| (|ψ⟩L |01⟩A)|2 error on qubit 3. (2.59)

For instance one can compute the probability of detecting an error on the first qubit by
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computing Eq. (2.57):

p(X1) = | − i sin(ϵ1) cos(ϵ2) cos(ϵ3)− cos(ϵ1) sin(ϵ2) sin(ϵ3) ⟨ψ|ψ⟩L ⟨10|10⟩A |2
= | − i sin(ϵ1) cos(ϵ2) cos(ϵ3)− cos(ϵ1) sin(ϵ2) sin(ϵ3)|2
= sin2(ϵ1) cos

2(ϵ2) cos
2(ϵ3) + cos2(ϵ1) sin

2(ϵ2) sin
2(ϵ3)

= ϵ21(1− ϵ22)(1− ϵ23) + (1− ϵ21)ϵ
2
2ϵ

2
3 +O(ϵ41) +O(ϵ42) +O(ϵ43)

≈ ϵ21,

(2.60)

where in the last term all the terms O(ϵ4i ) have been omitted. The same can be done to
assess the other four probabilities obtaining:

p(No error) = 1− ϵ21 − ϵ22 − ϵ23 (2.61)

p(X1) = ϵ21 (2.62)

p(X2) = ϵ22 (2.63)

p(X3) = ϵ23. (2.64)

These probabilities will be evaluated for real qubits in Chapter 3 using the IBM quantum
experience.

2.4.3 Computer simulation proof

Theoretically it turns out that the encoding procedure increases the fidelity between
the initial and the final corrected state for an error probability p ∈ [0, 0.5[, whereas for
p ∈]0.5, 1] the fidelity of the encoded system decreases as compared to the not encoded
one. The plots of the theoretical fidelity of an encoded and an unencoded qubit are
shown in Fig. 2.6. This can be proven doing a simulation on a classical computer using
the Python package Qutip, with which one can perform a simulation of the encoding
procedure and verify the results just found analytically.

Before diving into the details of the computer simulation it has to be stressed the fact
that a classical computer has been used. Indeed this simulation cannot be performed on
a quantum computer given the way the measurement is done (more details will be given
later).

Hypothesis and initial remarks

The goal is to reproduce numerically the results obtained theoretically in the previous
paragraph. In order to do so the same hypothesis done there need to be transported into
this analysis. Here it is considered a bit-flip error correcting code for an encoded qubit
as the one shown in Fig. 2.3. This means that the simulation will be carried out taking
as a prototype of error the bit-flip error. Furthermore the initial qubit is initialize in the
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state |ψ⟩ = |0⟩, thus respecting the worst case fidelity hypothesis, that is that the bit-
flipped state is orthogonal to the original state. The qubits of the logical basis {|0⟩ , |1⟩}
respect this and therefore are suitable to be the initial qubits. In the simulations it has
been taken that the original qubit is in the state |0⟩. Anyway any other pair of operator
and basis that fulfill this requirement could have been taken, for instance the Z Pauli
operator, i.e. a phase-flip error, and the X-basis {|+⟩ , |−⟩}, which is equivalent to do a
simulation for the phase-flip error correction code.

Implementation

Established the initial state of the qubit |ψ⟩ = |0⟩ and the error that can occur on the
system, bit-flip error, one has to distinguish the cases when it is unencoded and when it
is encoded. The former is a two-dimensional Hilbert space, therefore operators on this
system are 2× 2 matrices, while the latter, is the tensor product of three 2-dimensional
Hilbert spaces, making it a 8-dimensional Hilbert space. Furthermore when the ancillary
system is introduced as be explained in Sec. 2.3 this space gets even large becoming a
Hilbert space of dimension 32, thus rising the issue of implementing operators for this
space.

For the unencoded qubit the only operator needed is the X Pauli operator (Eq. 1.29),
which is already implemented in Qutip. Given that also a method for getting the fidelity
of two state vectors or two density matrices is offered, there is little work to to for this
part of the simulation.

On the other hand for the encoded qubit some operators are needed. The encoding
procedure happens in an 8-dimensional Hilbert space and, as seen in Fig. 2.2, CNOT
operators acting on this system are needed. In general a control-operator gate can be
written as

CU = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗ U, (2.65)

where |0⟩ ⟨0| is the projector on the subspace of the first qubit, the control, and it gives
a non-zero term when the control qubit is |0⟩ and the same goes for |1⟩ ⟨1| and |1⟩. From
Eq. (2.65) one finds that the control-not operator is

CX = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗X, (2.66)

which is easily generalized to more dimensions. In the following the operators without
superscripts or subscripts are operators in a two-dimensional Hilbert space and the apex
(ij) show on which qubits the operator operates. The CX operator can be generalized
for the 8-dimensional Hilbert space as:

CX(12) = |0⟩ ⟨0| ⊗ I ⊗ I + |1⟩ ⟨1| ⊗X ⊗ I, (2.67)

CX(13) = |0⟩ ⟨0| ⊗ I ⊗ I + |1⟩ ⟨1| ⊗ I ⊗X, (2.68)
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where the former is the CNOT between the first and the second qubit and the latter
between the first and the third qubit. Afterwards the ancillary system is introduced,
giving a 32-dimensional Hilbert space. Here CNOT gates of greater dimensions are
needed, and they are a generalization of Eq. (2.66). Just an example is given as the
concept is pretty straight forward:

CX(14) = |0⟩ ⟨0| ⊗ I ⊗ I ⊗ I ⊗ I + |1⟩ ⟨1| ⊗ I ⊗ I ⊗X ⊗ I. (2.69)

Once the system is encoded and the ancillary system is introduced, it is assumed
that now and only now an error may occur on any of the three qubits with probability
p, thus making necessary the implementation of bit-flip errors operator on this system:

X(1) = X ⊗ I ⊗ I ⊗ I ⊗ I, (2.70)

X(2) = I ⊗X ⊗ I ⊗ I ⊗ I, (2.71)

X(3) = I ⊗ I ⊗X ⊗ I ⊗ I. (2.72)

It is important to remark that an error may happen independently on any one of the
three qubits (not on the ancilla system), thus an error may occur on more than one qubit
(indeed this becomes more likely as p increases).

In order to implement the error detection procedure the operators CX(14), CX(24),
CX(25), CX(35) are needed. Once the detection procedure is done, as shown in Fig. 2.3
with the operators just defined, the measures are made. To find out the state of the
ancillary system the following operators are applied:

P (00) = I ⊗ I ⊗ I ⊗ |00⟩ ⟨00| , (2.73)

P (10) = I ⊗ I ⊗ I ⊗ |10⟩ ⟨10| , (2.74)

P (11) = I ⊗ I ⊗ I ⊗ |11⟩ ⟨11| , (2.75)

P (01) = I ⊗ I ⊗ I ⊗ |01⟩ ⟨01| , (2.76)

which when applied give p(m) = 1 respectively when no error, a bit-flip on the first,
second or third qubit is detected. With respect to this measure then the encoded system
is corrected, by flippimng back the qubit that the algorithm suggests.

The only thing left to do is to measure the fidelity between the initial state and the
final state. As the initial state was |ψ⟩ = |ψ⟩L |00⟩ the ancilla system must be in the
state |00⟩ after the correction procedure in order to give a non-zero fidelity. Therefore,
depending on which error has been detected a bit flip is done on one or more of the
ancilla qubits if needed. This measurement procedure is the reason why is not possible
to simulate this on a real quantum device: in order to extract information a measurement
is done, then using the result of the measurement both the logical qubits and the ancilla
qubits are manipulated. This is obviously a procedure that cannot be done on a real
quantum system as measurement make the wave function of the system collaps.
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Results and conclusions

Once the operators are implemented and the error detection procedure is done one needs
to vary the error probability p from zero to one. In each step there is a variation of
0.01. For each one of the 100 probability values the error correction protocol described
in the implementation paragraph is done and the fidelity is measured 1000 times. Then
the mean value of this measurements is plotted as a function of p with an associated
error which is the standard deviation of the sample divided by the square root of 1000,
i.e. the sample dimension. The result of the simulation is shown in Fig. 2.7 where
the theoretical curves are superimposed to the results of the simulation. Without doing
a complete data analysis, which is not necessary to the goal of this chapter, one finds
that the data harvested from the simulation reproduces what one theoretically aspects,
confirming that encoding the qubit which is carrying information is advantageous if
p < 0.5, which is hopefully the case on real quantum devices.
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Figure 2.7: Plot of the fidelities of an encoded and an unencoded qubit given by the
simulation procedure described in this section in the worst case fidelity.
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2.5 9-Qubit Code: Shor’s Code

The Shor’s code [11] is largely based on the 3-qubit code. The circuit needed to encode
a single qubit in order to undergo error correction is shown in Fig. 2.8. Therefore the
logical encoded state is

|ψ⟩L =α |0⟩L + β |1⟩L
= α

1√
8
(|000⟩+ |111⟩)(|000⟩+ |111⟩)(|000⟩+ |111⟩)

+ β
1√
8
(|000⟩ − |111⟩)(|000⟩ − |111⟩)(|000⟩ − |111⟩).

(2.77)

By Eq. (2.17), as d = 9, one has t = 4. Indeed this code can correct up to a phase-flip
error on any of the nine physical quibit and up to a bit-flip error for each group of three
qubits. This method of encoding using a hierarchy of levels is known as concatenation.

|ψ〉
|0〉
|0〉
|0〉
|0〉
|0〉
|0〉
|0〉
|0〉

H

H

H

|ψ〉L

Figure 2.8: Encoding procedure for the 9-qubit Shor code.

To understand how this encoding works let |ψ⟩ = |0⟩. The first block of three quibits
will be encoded in a state |ψ′⟩ = (|000⟩ + |111⟩)/

√
2 and, given the CNOTs connecting

the first qubit to the fourth and the seventh one, also the other two blocks will be in the
state |ψ′⟩, leaving the composed system in the encoded state

|ψ⟩L = |0⟩L = (|000⟩+ |111⟩)(|000⟩+ |111⟩)(|000⟩+ |111⟩)/
√
8. (2.78)

The detection procedure for the bit-flip error on each one of the three blocks of
qubits is the same as the 3-qubit code of Sec. 2.3.2, whereas for phase-flip errors they
are detected by valuating the parity between two blocks of six qubits as shown in Fig.
2.9, but the concept is the same as for the 3-qubit code. Anyway this time one cannot
ensure on which specific qubit the error has occurred, but only on which block.
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Figure 2.9: Error detection circuit for the phase-flip error in Shor code.

Even though, as previously noted, four errors can be detected, the Shor code is a single
error correcting code, because it cannot handle multiple errors if they occur in certein
locations, for example if two bit-flip errors occur in the same block, as the procedure is
the same of the 3-qubit code and it could not manage to detect more than one error.
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Chapter 3

Quantum Error Correction with the
IBM quantum experience

In Chap. 2 it has been explained what a quantum error is and how to correct it with QEC
protocols from a theoretical point of view, namely without dealing with real quantum
systems. Indeed also the computer simulation carried out in Sec. 2.4.3 is done using
a classical computer not subjected to noise and decoherence as a real quantum device.
Given the fact that IBM renders available on the cloud some quantum devices to everyone
disposal, it is possible to verify if the algorithms developed in Sec. 2.3.2 actually work
in the real world and what are the differences between what theoretically expected and
what actually goes on with real qubits, implementing the 3-qubit codes with the Python
module Qiskit.

This chapter will therefore describe how what studied in Chap. 2, more specifically
the syndrome measurement, can be used to evaluate the probability of an error occurring
on a qubit (Sec. 3.1). Then in Sec. 3.2 the choice made for the real quantum device
to use and its main features will be presented, as they are crucial to understand the
results that will be later obtained. The desired algorithms are then implemented on the
quantum device using the Python module Qiskit in Sec. 3.3. Finally the results will be
commented in Sec. 3.4 drawing some conclusions.

3.1 Assessing the error probability on a qubit using

the syndrome measurement

As mentioned in the introduction to this chapter, QEC provides algorithms that can
correct errors that may occur on qubits while performing some computations. This
means that they are algorithms that need to be run in parallel to other ones, in order
to make the results of the latter ones reliable. Nevertheless the syndrome measurement
realized on a quantum circuit presented in Sec. 2.3 has interesting features that can be
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exploited in order to assess the probability of an error happening on a qubit. In order
to do so, one can run the quantum circuit and extract the error syndrome many times,
then build a histogram of occurrences from which extract the error probability.

To get a better understanding of what just said one can take for instance the quantum
error detection protocol pictured in Fig. 2.3 for the bit-flip error. Here by measuring the
state of the ancilla system after the detection one can get one of the four results |00⟩,
|10⟩, |11⟩, |10⟩, meaning that no error, or an error on the first, second or third qubit
respectively has been detected. If one measures this state many times and counts the
times one obtains a given outcome, the results can be put in a histogram, which will
then display the probability of detecting an error on a given qubit. This probability
can be simply identified, in a first order approximation as seen in Sec. 2.4.2, with the
error probability on a given qubit. The objective of this chapter is indeed to assess this
probability for bit-flip and phase-flip errors using the error detection procedure described
in Sec. 2.3.2. Indeed these codes give the possibility to detect if an error has occurred on
one of the three qubits of the data block. Therefore the error probability on each one of
the three can be evaluated. The other important thing to notice is that the initial qubit,
before the encoding procedure takes place, is in a state |ψ⟩, which can be arbitrarily
set to any superposition with Qiskit. In order to see if there are any differences in the
results depending on this initial state, four different ones have been chosen, namely the
vectors of the computational basis and the X-basis. This choice has been done as these
are the basis in which what bit-flip and phase-flip errors do is better understandable (as
displayed by Eq. (2.8) and Eq. (2.9)). Finally another important difference between
the theory and the real devices needs to be pointed out: in the algorithms displayed
in Fig. 2.3 and Fig. 2.5 it is assumed that an error may occur only on the data block
qubits between the encoding and the error detection procedure, which is not true on real
quantum devices.

3.2 Choosing the device

All quantum systems deployed by IBM Quantum are based on superconducting qubit
technology [14]. The specifics of this type of hardware are out of the scope of this
dissertation. Nevertheless one has to understand a little bit of how they work in order
to be able to choose the best device for one’s purpose and correctly interpret the results
obtained.

First of all one has to deal with the limited number of devices that IBM renders
available for free. Indeed if one needs to perform any algorithm involving more than five
qubits it is necessary to subscribe for a membership. Luckily five qubits are sufficient
to perform the 3-qubit codes. Now there are four different 5-qubit chips one can choose
between. These are all sub-sections of larger devices, which belong to the same archi-
tecture (Falcon). One of them has undergone its latest revision in January 2021, while
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the other three got their last revision in April 2020. The one with the latest revision is
called ibmq manila and has some better features such a fastest readout, which though
does not concern the objective of this dissertation. However there are some differences
between the devices just mentioned which do concern it.

The main difference between ibmq manila and the other three is the disposition of
the physical qubits, which are shown in Fig. 3.1, where one can see how for ibmq manila
(Fig. 3.1a) the qubits are disposed in a linear way, whereas for the other devices (Fig.
3.1b) the qubits are disposed forming a T.

(a) Physical disposition of
the qubits on the device
ibmq manila.

(b) Physical disposition of
the qubits on the other 5-
qubit devices.

Figure 3.1: Qubit disposition of the 5-qubit quantum devices available.

At a first glance this could seem harmless, but one has to take into account the fact
that CNOT operation can be carried out only between adjacent qubits. Therefore if,
for instance, a CNOT has to be performed between qubit 0 and qubit 2 on ibmq manila
(Fig. 3.1a), beforehand one of these two qubits has to undergo a SWAP operation (Fig.
1.5) with qubit 1. This brings with it some noise into the final data. Indeed all gates
performed on real qubits have an error rate, which has been neglected in Chap. 2 where
it has been supposed that the application of a gate can be done perfectly.

Indeed IBM provides tables with the error rates for the main gates one can perform
on the qubits such as the X Pauli operator, and the CNOT, whereas no data can be
found on the error rate of the SWAP gates. As it concerns the results of the experiment
described in Sec. 3.1, the error rates for the CNOT gates have been analyzed. IBM gives
information on the error rate between each adjacent qubit of its devices, but in order to
make a good choice on which system to use it is sufficient to look at the average error
rate of CNOT gates. It turns out that for ibmq manila this is 8.194×10−3, while for the
devices with qubits disposed in a T shape the average is 1.747 × 10−2. Given the fact
that the circuit has to be run several times the natural way to go is ibmq manila.

Now the last choice to do is how many times one should run the circuit to get the
histogram of occurrences. Given the fact that the CNOT error rate for ibmq manila is
approximately of order 10−2, one could think about running the circuit a number of times
adequate to have just one hundred CNOTs applied in order to avoid this noise. However,
for instance, in the 3-qubit code for bit-flip errors shown in Fig. 2.3 one applies 6 CNOTs
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for each run (the same goes for the phase-flip code), thus, after just approximately 20
runs, this noise will emerge, which is a problem, because 20 measures are certainly not
enough to build an histogram of occurrences. Given the fact that evaluating all the
noise and finding a proper amount of times to run the circuit will require a deeper
understanding of the quantum hardware and a more thorough data analysis, which is
not fundamental to this thesis, the number of times that the circuit will be run has been
set to 20000, which is the maximum allowed by IBM, having therefore enough entries
for the histograms.

3.3 Implementation of the quantum circuits

Once chosen the device and the number of times that the circuits need to be run, the
next thing to do is to implement the circuits. As stated in Sec. 3.1 the objective of
this chapter is to evaluate the error probability of bit-flip and phase-flip errors on the
qubits using the error detection protocols described in Sec. 2.3.2, employing as initial
state the vectors of the computational basis and the X-basis. Thus the implementation
of the circuits has to follow these main steps:

• initialization of the five qubits,

• encoding the qubit |ψ⟩ which stores the initial information with other two,

• perform the error detection protocol using the ancilla system,

• measure the state of the ancilla system to extract the error syndrome.

Here this processes will be thoroughly analyzed for each one of the four vectors chosen
to be the initial states and for the error detection codes for both bit-flip and phase-flip
errors. However in order to avoid useless repetitions the encoding procedure and the
detection procedure will be examined just once, for each code, as they obviously work
the same for all the initial states |ψ⟩.

First of all one has to initialize the complete circuit of five qubits: a quantum register
of three qubits which makes up for the data block, a quantum register of two qubits which
is the ancilla system and two classical registers to store the result of the measurement.
All this is done with the following commands:

from qiskit import *

qr_system = QuantumRegister (3)

qr_ancilla = QuantumRegister (2)

cr_0 = ClassicalRegister (1)

cr_1 = ClassicalRegister (1)

circuit = QuantumCircuit(qr_system , qr_ancilla , cr_0 , cr_1)

Then one has to initialize the first qubit of qr system, which then needs to be encoded
with the other two qubits of qr system before passing through error detection.
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3.3.1 Initialization of the first qubit

First of all one must know that by default Qiskit initializes all the qubits in the state |0⟩,
therefore nothing has to be done when employing this state as the initial state. However
when |1⟩ or |+⟩ or |−⟩ are used, the first qubit |ψ⟩ of qr system has to be transformed.
As Qiskit would have initialized the first qubit in the state |0⟩,

• to obtain the state |1⟩ it is sufficient to apply an X Pauli gate on it (Eq. (1.29)):

X |0⟩ = |1⟩ , (3.1)

which is done using the command:

circuit.x(qr_system [0])

• To obtain the state |+⟩ it is sufficient to apply an Hadamard gate H on it (Eq.
(1.32)),

H |0⟩ = |+⟩ , (3.2)

which is done using the command:

circuit.h(qr_system [0])

• To obtain the state |−⟩ one has to apply an X Pauli gate (Eq. (1.29)) and then a
Hadamard gate H (Eq. (1.32)) on it,

HX |0⟩ = H |1⟩ = |−⟩ , (3.3)

which is done using the commands:

circuit.x(qr_system [0])

circuit.h(qr_system [0])

All these operations are represented pictorially in Fig. 3.2.

|0〉 X |1〉
(a) Operations to ob-
tain
|ψ⟩ = |1⟩.

|0〉 H |+〉
(b) Operations to ob-
tain
|ψ⟩ = |+⟩.

|0〉 X H |−〉
(c) Operations to obtain
|ψ⟩ = |−⟩.

Figure 3.2: Initialization of the first qubit |ψ⟩.

The initialization procedure is the same for both the 3-qubit codes correcting respec-
tively for bit-flip and phase-flip errors. Anyway the encoding procedure and the error
detection procedure are different for the two codes as seen in Sec. 2.3. Therefore the
implementation of the two will be carried out separately. For the sake of clarity the
discussion in the subsections below will be done employing |ψ⟩ = |0⟩, but the same
obviously stands also for the other three initial states.
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3.3.2 3-qubit bit-flip error detection code

In order to detect if a bit-flip error has occurred the algorithm that needs to be performed
is the one displayed in Fig. 2.3. Therefore first of all the encoding procedure needs to
be carried out and it can be done using the following commands:

circuit.cx(qr_system [0], qr_system [1])

circuit.cx(qr_system [0], qr_system [2])

obtaining the circuit shown in Fig. 2.2. After this the detection procedure takes place:

circuit.cx(qr_system [0], qr_ancilla [0])

circuit.cx(qr_system [1], qr_ancilla [0])

circuit.cx(qr_system [1], qr_ancilla [1])

circuit.cx(qr_system [2], qr_ancilla [1])

and in the end the measurement on the ancilla system can be performed

circuit.measure(qr_ancilla [0],cr_0)

circuit.measure(qr_ancilla [1],cr_1)

the measurement result thus being stored in the classical register. The complete circuit
is shown in Fig. 3.3.

|ψ〉
|0〉
|0〉

|0〉a
|0〉a

Figure 3.3: Error detection circuit implemented with Qiskit for the bit-flip error.

3.3.3 3-qubit phase-flip error detection code

In order to detect if a phase-flip error has occurred the algorithm that needs to be
performed is the one displayed in Fig. 2.5. Therefore first of all the encoding procedure
needs to be carried out and it can be done using the following commands:

circuit.cx(qr_system [0], qr_system [1])

circuit.cx(qr_system [0], qr_system [2])

circuit.h(qr_system [0])

circuit.h(qr_system [1])

circuit.h(qr_system [2])
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obtaining the circuit shown in Fig. 2.4. In this case also the two qubits of the ancillary
system need to be modified with an Hadamard gate, thus

circuit.h(qr_ancilla [0])

circuit.h(qr_ancilla [1])

After this the detection procedure takes place:

circuit.cx(qr_system [0], qr_ancilla [0])

circuit.cx(qr_system [1], qr_ancilla [0])

circuit.cx(qr_system [1], qr_ancilla [1])

circuit.cx(qr_system [2], qr_ancilla [1])

then an Hadamard gate is applied on each qubit of the system:

circuit.h(qr_system [0])

circuit.h(qr_system [1])

circuit.h(qr_system [2])

circuit.h(qr_ancilla [0])

circuit.h(qr_ancilla [1])

and in the end the measurement on the ancilla system can be performed

circuit.measure(qr_ancilla [0],cr_0)

circuit.measure(qr_ancilla [1],cr_1)

the measurement result thus being stored in the classical register. The complete circuit
is shown in Fig. 3.4.

|ψ〉
|0〉
|0〉

|0〉a
|0〉a

H

H

H

H

H

H

H

H

H

H

Figure 3.4: Error detection circuit implemented with Qiskit for the phase-flip error.

3.4 Results and conclusions

At this point everything is ready to perform the experiments. Therefore the 3-qubit codes
for bit-flip and phase-flip errors have been run with all the four initial states illustrated in
Sec. 3.3.1. More specifically, for each initial state the code has been run for 20000 times
as mentioned in Sec. 3.2 and the times in which the ancill state has been measured in one
of the four outcomes |00⟩, |10⟩, |01⟩, |11⟩ have been counted. The resulting histograms
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are illustrated in Fig. 3.5 and in Fig. 3.6 for bit-flip and phase-flip errors respectively,
where on the x axis there is the measured ancilla state and on the y axis the probability
of measuring that state.

Now in order to evaluate the error probability, separately for bit-flip and phase-
flip errors, let p

(i)
α represent the error probability on the i-th qubit for the initial state

|ψ⟩ = |α⟩. To have a more significant value, the error probability will be assessed as a
mean of the four values obtained directly by the experiment:

p̄(i) =
p
(i)
0 + p

(i)
1 + p

(i)
+ + p

(i)
−

4
. (3.4)

To this mean value an error has to be associated:

σp̄(i) =

√
1

4

[
(p

(i)
0 − p̄(i))2 + (p

(i)
1 − p̄(i))2 + (p

(i)
+ − p̄(i))2 + (p

(i)
− − p̄(i))2

]
. (3.5)

All the p̄(i) and σp̄(i) are reported in Tab. 3.1 and Tab. 3.2. These values could be more
precise carrying out a more thorough data analysis, but this is not the subject of this
dissertation.

First of all a comment on the convention that has been followed in the association
of the error needs to be done: the error has been taken with two significant digits. Now
the results for the two types of error will be displayed and conclusions drowned.

Bit-flip Error

The histograms of occurrences are displayed in Fig. 3.5 and the probabilities with the
associated error are shown in Tab. 3.1.

Guessed error Ancilla state p̄ σp̄
No error 00 0.801 0.015
X1 10 0.0575 0.0047
X2 11 0.0480 0.0086
X3 01 0.0935 0.0075

Table 3.1: Values of the mean probability and its relative errors for the bit-flip error
detection code.

The first thing that can be noticed is that in all cases the probability that no error
occurs is the highest. Looking at the probability that an error actually occurs one in
principle expects that it should be the same on each one of the three qubits, as there
is no reason to establish a priori that a qubit may be more affected by errors than the
others. This though is not the conclusion that can be drowned looking at the results in
Tab. 3.1, where indeed the probability of a bit-flip error happening on the third qubit is
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Figure 3.5: Histograms for the bit-flip error detection.

higher then the other two probabilities, which are comparable in the error range. This
may depend on many factors and it is difficult to assess the specific reasons why this
happen giving the fact that how Qiskit swaps the qubits in order to perform CNOTs is
unknown, nevertheless some reasons will be pointed out later, since they are valid also
for the phase-flip error.

Phase-flip error

The histograms of occurrences are displayed in Fig. 3.6 and the probabilities with the
associated error are shown in Tab. 3.2.

The first thing that one notices is that the probability of having no errors is the
highest. Furthermore one notices by looking at Fig. 3.6 and Tab. 3.2 that even if a
priori one expects to have the same phase-flip error probability on each qubit it turns
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Guessed error Ancilla state p̄ σp̄
No error 00 0.863 0.025

Z1 10 0.101 0.025
Z2 11 0.0058 0.0015
Z3 01 0.0298 0.0015

Table 3.2: Values of the mean probability and its relative errors for the phase-flip error
detection code.

out that the first qubit is much more affected by this type of error than the other two,
whereas the second qubit is very less likely to be phase-flipped. As for the bit-flip error
it is difficult to understand why this happens, but some considerations will be done in
the next paragraph.

Comparisons and conclusions

The significant downside to this analysis is the impossibility to be certain of what is
the reason why the error rates on the different qubits is not the same, given the fact
that in order to perform the algorithm Qiskit modifies the order of the qubits on the
linear device ibmq manila, thus rendering necessary a very thorough knowledge of the
underling quantum hardware and a more thorough data analysis, such as randomized
benchmarking [15], which both are out of the objective of this theses. Nevertheless some
considerations can be done. Indeed the first thing that needs to be pointed out is that
the two codes are only able to detect one error, but more than one error may occur,
as shown in Tab. 2.3 (it is equivalent also for a phase-flip error), leading to another
type of noise in the collected data. Indeed even if having more than one error is less
probable, in 20000 runs this event surely takes place. Furthermore, as mentioned in Sec.
3.2, the order of the physical qubits is important, since CNOTs can be carried out only
on adjacent qubits. Indeed Qiskit provides a way to implement a circuit, but then, in
the background, it manipulates the qubit on the device in a way suited to carry out the
required computations. Therefore all the swaps that go on while running the circuit are
unknown and this leads to more noise as well.

However it can be pointed out that, for both the kinds of errors, one qubit is more
affected by errors than the others, regardless the initial state of the first qubit |ψ⟩.
Indeed for the bit-flip error the qubit more affected by it is the third qubit, whereas for
the phase-flip error it is the first qubit. Once again the reason why this happens cannot
be evaluated.

Moreover, as these probabilities include also the effects of noise due to the application
of gates and also the errors that may occur on the ancillary system, which have not
been taken into account, it can be concluded that these error probabilities are for sure
overestimated.
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Figure 3.6: Histograms for the phase-flip error detection.

Finally it can be stated that it is more likely to have a bit-flip error than a phase-flip
error, given the fact that the probability of having no error is p̄ = 0.801 ± 0.015, for
the former, and p̄ = 0.863± 0.025 for the latter, which are also both significantly higher
than having an error on any of the three qubits, thus meaning that most of the time the
computation will be correct. Furthermore given the fact that all the error probabilities
evaluated in this section are smaller than 0.5 it can be said that the encoding procedure
is convenient as proven in Sec. 2.4.
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Conclusions

In this thesis, after an introduction on the postulates of Quantum Mechanics (for both
pure and mixed states), followed by the study of quantum gates and quantum circuits,
Quantum Error Correction has been discussed. This has been done by analyzing the
differences with the classical error correction. Firstly the no-cloning theorem has been
proven, which leads to the necessity of finding another option to protect information
from the classical repetition code, which is the encoding procedure. Then the fact that
quantum errors are continuous, differently from the classical ones, has been discussed,
pointing out, with an example, how on qubits the errors happen when they are coupled
with the environment. Lastly the problem of measurement has been tackled and a
solution that allows to extract information from the system, without modifying it, has
been found: the syndrome measurement, done with an ancilla system. Once described the
general framework of QEC, some examples of quantum error correction codes have been
presented, namely the 3-qubit codes for bit-flip and phase-flip errors and the 9-qubit Shor
code. Then, given its importance in the understanding of how the information carried by
qubits can be protected against errors, a detailed study of the encoding procedure has
been carried out.

In the last chapter the probability of a bit-flip and a phase-flip error happening on a
qubit has been assessed by performing the syndrome measurements on the 3-qubit codes.
More precisely a 5-qubit quantum computer, imbq manila, has been employed to run the
3-qubit codes and, by measuring the state of the ancilla system after the error detection
protocol for 20000 times, histograms of occurrences were built from which the error
probabilities on each one of the three qubits of the data block could be evaluated. The
results showed that the probability of not having a bit-flip error is p̄ = 0.801 ± 0.015,
whereas the probability of not having a phase-flip error is p̄ = 0.863 ± 0.025. Thus
the error probability is not negligible, however the error probability is less than 0.5,
hence legitimizing the encoding procedure and showing how the QEC theory is indeed
applicable on real quantum computers.
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