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Sommario

L’obiettivo di questa tesi è discutere un semplice modello matematico che, attra-
verso il linguaggio della geometria differenziale, descriva due processi fondamentali
del sistema visivo umano: l’individuazione di segmenti orientati nel campo visivo e
il meccanismo di percezione dei contorni come linee continue. La struttura colon-
nare della corteccia visiva primaria viene modellizzata tramite il fibrato R2 × S1,
il fibrato degli orientamenti e, introducendo un campo vettoriale su di esso, si
descrive il processo di riconoscimento dei segmenti orientati. Le linee continue
vengono percepite elevando i segmenti orientati nello stimolo visivo al fibrato; tali
curve nella varietà R2 × S1 sono tangenti a una distribuzione completamente non
integrabile. Di conseguenza, è possibile costruire una struttura subriemanniana
sulla varietà, tramite cui i contorni percepiti sono identificabili con le geodesiche
subriemanniane orizzontali alla distribuzione, soluzioni alle equazioni di Hamilton.

Con questo scopo, nel primo capitolo si illustra il funzionamento delle più
fondamentali strutture delle prime vie visive nel cervello umano, dalla retina alla
corteccia visiva primaria. Si procede con l’introduzione dei concetti necessari di
geometria differenziale e subriemanniana nei capitoli due e tre, con un accenno
all’approccio di Cartan alle connessioni. Infine, il modello vero e proprio viene
implementato nel capitolo quattro, dove si conclude con un confronto tra i risultati
ottenuti e l’esistenza di un association field, evidenziata da Heyes, Fields, e Hess in
seguito ai loro risultati sperimentali sul problema del completamento dei contorni.



Abstract

In this thesis, we aim to discuss a simple mathematical model for the edge detection
mechanism and the boundary completion problem in the human brain in a differ-
ential geometry framework. We describe the columnar structure of the primary
visual cortex as the fiber bundle R2 ×S1, the orientation bundle and, by introduc-
ing a first vector field on it, explain the edge detection process. Edges are detected
through a lift from the domain in R2 into the manifold R2 ×S1 and are horizontal
to a completely non-integrable distribution. Therefore, we can construct a subrie-
mannian structure on the manifold R2 × S1, through which we retrieve perceived
smooth contours as subriemannian geodesics, solutions to Hamilton’s equations.

To do so, in the first chapter, we illustrate the functioning of the most fun-
damental structures of the early visual system in the brain, from the retina to
the primary visual cortex. We proceed with introducing the necessary concepts
of differential and subriemannian geometry in chapters two and three. We finally
implement our model in chapter four, where we conclude, comparing our results
with the experimental findings of Heyes, Fields, and Hess on the existence of an
association field.



Contents

Introduction 3

1 The visual pathway 5
1.1 The retina: an overview . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Retinal photoreceptors . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Retinal ganglion cells . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Lateral geniculate nucleus . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 The primary visual cortex . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Retinotopic maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 Orientation tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.8 Color blobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.9 The Ice Cube model . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Differentiable manifolds 19
2.1 Differentiable manifolds . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Tangent vectors and the tangent space . . . . . . . . . . . . . . . . 22
2.3 Curves in a manifold . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Regular submanifolds, immersions and submersions . . . . . . . . . 25
2.5 Cotangent space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6 Vector fields and differential forms . . . . . . . . . . . . . . . . . . . 27
2.7 Fiber bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.8 Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.9 Lie groups actions on manifolds . . . . . . . . . . . . . . . . . . . . 34

3 Subriemannian geometry 37
3.1 Riemannian manifolds . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Subriemannian manifolds . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Hamiltonian mechanics on manifolds

and Poisson brackets . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Geodesic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1



4 Border perception and border completion 49
4.1 Edge detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Border completion via subriemannian

geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Bibliography 60

2



Introduction

In this dissertation, we aim to present and discuss a mathematical model that,
employing a modern differential geometry language, describes those neural mech-
anisms that perform visual edge detection and boundary completion in the human
brain.

Even though we address only the most fundamental and simple structures in
the visual system, from the retina to the primary visual cortex, they are enough to
provide an insight into how the brain strategically organizes to elaborate complex
stimuli through parallel and segregated receptive networks. The modeling of neural
networks elaborating sensory inputs, besides being extremely engaging, can lead
to many applications and is of practical and intellectual interest. Of course, in
the attempt to outline a mathematical model of perceptive phenomena, we must
consider and rely on both the effective physiological functioning of the neural
structures involved and their phenomenological description. While addressing edge
detection, it is fascinating to understand that the primary visual cortex, with its
topographical, layered, and columnar functional organization, lands itself to fit in
a differential geometry framework through the mathematical abstraction of fiber
bundles. Even more fascinating is that this geometrical framework allows for a
straightforward solution to the problem of boundary completion, by introducing
a subriemannian structure in the primary visual cortex and finding the related
Hamiltonian.

The issue of perceptual completion has been widely studied in psychology from
a phenomenological point of view. The Gestalt theory identifies the empirical
principles under which the human brain integrates local and incomplete visual
stimuli into shapes and smooth figures. Among them, continuity is the leading
principle for the perception of contours and must be reproduced as a law in any
mathematical modeling of boundary completion. By doing so, our modelization
and interpretation of these perceptual phenomena mainly draw from the works of
Mumford [1], Hoffmann [2], Petitot, Tondut [3], Citti, and Sarti [4].

In the first chapter of this dissertation, we want to give an insight into the
neurophysiological aspects of the early visual system. We provide a functional
description of the retina, from the retinal receptors to the optic nerve, we rapidly
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move to the lateral geniculate nucleus, and finally, we outline the structural organi-
zation of the primary visual cortex. Here, we only focus on the aspects concerning
oriented edge detection, and a more comprehensive description can be found in
books on neural physiology. We mainly draw from [5].

In the second chapter, we lay the foundations for working in a differential ge-
ometry environment. We briefly describe differentiable manifolds, tangent vectors
and vector fields, fiber bundles, and Lie groups. We try to describe such geomet-
rical abstraction in a generalized, coordinate-free manner, following the approach
of L. Tu in [6], [7].

In the third chapter, we discuss Riemannian manifolds and Hamiltonian me-
chanics on manifolds. The aim is to extend such concepts to the context of subrie-
mannian manifolds and find the related geodesic equations, using the method by
Montgomery in [8] as a guide. At the end of the chapter, we define connections,
mentioning Cartan’s coordinate-free approach ([9], [7]).

Finally, in the fourth chapter, we proceed with the development of the mod-
elization of the primary visual cortex as a fiber bundle. First, we focus on the
steps that transform discrete light spots into oriented edges. Then, we develop
a subriemannian structure that would let us find the geodesic equations, whose
solutions represent reconstructed boundaries.
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Chapter 1

The visual pathway

Vision is our prime sensory modality, and the most important instrument we have
developed to collect and process information about the world we live in. We tend
to trust what we see more than what we hear or smell. Actually, the visual neural
system occupies more than a half of our cortical surface in the brain. The visual
process is indeed very different from a mere reproduction of the images of the
outside world: it is designed to produce an inner description that is useful to the
observer, neglecting all the irrelevant information.
In this chapter we only give a quick overview of the visual system’s lowest pathway,
namely from the retina to the primary visual cortex. We can say that this segment
of the visual pathway, shown in fig.1.1, lays the foundation of our understanding
of reality: even though it only accounts for low and intermediate image processing,
it generates perceptions like contrasts in brightness, contours, surfaces, and depth,
upon which all superior cognitive functionalities, like object recognition and vision
guided actions, are based. We invite the reader to consult [5] for more details.

1.1 The retina: an overview
The first neural system involved in the process of transforming images into nerve
signals is the retina, which is located in the posterior wall of the eye. On the
retina we can distinguish the fovea, the the retinal region that corresponds to
about five degrees around the fixation point in the visual field, and the optic disc,
from which emerge the optic nerve, as it is shown in fig.1.2. Roughly speaking, the
eye captures the light input, and projects it onto the retinal photoreceptors that
lie at the bottom of the retinal structure. Photoreceptors are able to interact with
photons to execute some low level processing. The information is then forwarded
to the retinal ganglion cells, which represent the output of the retina through the
optic nerve.
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Figure 1.1: Low-intermediate tract of the human visual pathway, [10]

Figure 1.2: Human eye section view - [5] ch.25 (II)
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1.2 Retinal photoreceptors
Let us now take a closer look at those cells that are first hit by the photons that
constitute the visual stimuli: retinal receptor cells. They are found in a depolarized
state in the dark, and get hyperpolarized when interacting with light, until they
saturate. The extent of the hyperpolarization depends on the intensity of the light
input, and on the type of photoreceptor. Two distinct kinds of photoreceptors can
be found in the human retina, which differ in shape, role, connectivity, and the
way they are distributed on the retina:

- Rods: they are about 10 millions and they are distributed throughout the
entire receptive surface, except the fovea. As they are very reactive to light
stimuli, they are responsible for night vision and become of prime importance
in low light conditions, while they get rapidly saturated in the daylight, when
they are no longer able to convey any information. Further, being endowed
with only one kind of molecule that captures light, they do not differentiate
wavelengths, and hence do not code for colors. Rods convey the information
to bipolar cells; each bipolar cell receives synapse from about 15 to 30 rods.

- Cones: we can count a number of about 5 million cones, located throughout
the whole receptive area, but sharply concentrated in the foveal region only.
Accounting for daylight vision, they are much less sensitive to light than
rods. They have in return a good spatial resolution, meaning that they have
narrower receptive fields that allow them separate nearby points, especially
in the foveal region, where they are densely distributed. Indeed, they have
one-to-one connections with bipolar cells, to which they convey signals. We
can distinguish three types of cones, depending on their color selectivity:

• L cones (long wavelength, peak sensitivity at around 600 nm);
• M cones (medium wavelength, peak sensitivity at around 570 nm);
• S cones (short wavelength, peak sensitivity at around 450 nm).

Let us now take a moment to highlight the fact that the dimension of the receptive
field of photoreceptors increases in dimension with eccentricity, i.e distance from
the fixation point. As a consequence, we are able to analyse images in detail only
in the part of the visual scenario that is projected onto the foveal region, where
cones are densely distributed and where our attention leads our gaze. We will
meet this concept again later on when studying the primary visual cortex and its
retinotopical representation, where inputs coming from the center of the visual
field account for the majority of the cortical surface.
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In essence, we can say that at this level we have a neural representation of the
visual scenario that is still pretty simple, with photoreceptors hyperpolarized in
lighted areas and depolarized in dark areas, and further complexity needs to be
added to the neural representation before letting the visual information leave the
retina. This task is performed by bipolar cells and horizontal cells, as we shall see
in the next section.

1.3 Retinal ganglion cells
Retinal ganglion cells (RGC) represent the highest level of retinal processing, cast-
ing the information on the lateral geniculate nucleus in the thalamus through the
optic nerve. They differ from photoreceptors and bipolar cells because they re-
spond to light inputs firing action potentials as the membrane reaches its threshold
potential. These neurons are actually never silent, as they have a basal firing rate
that gets modified by the photoreceptors’ inputs. Their main computational fea-
ture, however, is their circular receptive field, divided into two concentric part in
mutual competition: the center and the inhibitory surround. As a consequence, far
more complex activation patterns emerge at this level. This complexity arises due
to the collaboration of two class of interneurons, bipolar and horizontal cells, that
combine signals from different photoreceptors in such a way that the evoked re-
sponses in the ganglionic cells critically depend on the specific spatial and temporal
light patterns. In particular, the ON-OFF mechanisms are due to the existence of
two kinds of bipolar cells, that respond in an opposite way to photoreceptors’ neu-
rotransmitter: ON cells, which get hyperpolarized, and OFF cells, which in turn
get depolarized. The horizontal cells, with their axoinc trees that spread out lat-
erally in retinal layers, take care of the horizontal inhibition mechanism. Through
their contact with multiple photoreceptors and shared terminals with bipolar cells,
they measure the receptors activation and negative feedback the receptors-bipolar
cell synapsis. A representation of the entire structure can be found in fig. 1.3.
We can now make a first distinction between two types of RGCs that are almost
equally represented in the retina, on the basis of their receptive field (see fig. 1.4):

- ON-center/OFF-surround: they fire in response to the brightening of the
center of the receptive field, while they feature a mechanism of lateral inhi-
bition induced by the brightening of the surround.

- OFF-center/ON-surround: these neurons fire in response to a reduction in
brightness of the center of the receptive field. This response can be inhibited
by a reduction in brightness of the surround.

As a consequence of this particular behaviour, RGCs give the best possible re-
sponse to difference in brightness between their center and their surrounds, while
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Figure 1.3: Pictorial representation of neural connections from the retinal receptors to
the retinal ganglion cells.

Figure 1.4: Responses of the two types of retinal ganglion cells to light inputs. - [11]

they give only weak responses to uniform light stimuli that cover the whole recep-
tive field. This fact tells us that at this level the most useful information is the
distribution of contrasts in brightness in the visual scenario, which is indeed the
earliest step for the perception of contours.
Another distinction that can be made is between transient and sustained retinal
ganglionic cells: transient cells only give a response with a brief and strong activity
shift at the beginning of the light stimulus, immediately followed by a return to
basal firing rate; on the other hand, sustained cells have their firing rate mod-
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Figure 1.5: Dendritic morphology of macaque small bistratified, parasol and
midget ganglion cells. - [12]

ified for the whole duration of the stimulus. Retinal ganglion cells can also be
distinguished by shape, connectivity, and receptive field size (see fig. 1.5):

- Parasol or M-type neurons (from magnus-big): being big cells with large
dendritic trees, thick axons, and wide receptive fields, they quickly respond
to small low-contrast light changes in broad regions of the receptive field.
They account for about the 10% of the retinal ganglionic population, and are
connected to magnocellular layers of the lateral geniculate nucleus (LGN).

- Midget or P-type neurons (from parvo-small): they are smaller and more
numerous then the M-types, accounting for about the 70% of RGCs. Having
tight dendritic trees, thin axons, and narrow receptive fields, they give slower,
sustained responses, rather to color changes than contrast changes. They are
connected to the parvocellular layers of LGN.

- Small bistratified or K-type neurons: they have very broad receptive field,
and project to the koniocellular layers of LGN.

Relying on all this distinctions, we can divide retinal ganglion cells into many
different families that form separate and parallel perceptive networks, each coding
for a specific feature of the image hitting the retina. This is a first example of
how our brain handles such a broad range of visual information: it strategically
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distributes it into many parallel processing pathways, each carrying specialized
information that is relayed to superior neural centers which, in the end, are able
to form a unique and complete representation of reality.
No new synaptic connections are formed after the retinal ganglion cells, until the
information lands in the two lateral geniculate nuclei. We must now specify how
the neuronal fibers formed by the axons of the RGCs are rearranged over the course
of their journey to the thalamus, through a process of partial decussation in the
optical chiasm: the two left visual field representations, nasal of the left eye, and
temporal of the right eye, form the right optic tract, and continue on to targets in
the right hemisphere, first of all the right lateral geniculate nucleus. An analogous
process happens to the nasal right and temporal left optic nerve fibers, which join
to form the left optic tract and get to the left lateral geniculate nucleus. In both
the lateral geniculate nuclei, the two eye inputs remain separate, each segregated
in three of their six layers, and this further segregation continues to the primary
visual cortex (to some level of approximation). The information about each visual
hemifield is thus split and always kept divided for superior elaboration.

1.4 Lateral geniculate nucleus
We now briefly name the main features of the lateral geniculate nucleus (LGN), a
small ventral projection of the thalamus connected to the optic nerve. LGN is an
important relay station in the primary image processing pathway, whose axons are
directly sent to the primary visual cortex. We have one lateral geniculate nucleus
for hemisphere, each composed of six layers: the layer structure help maintaining
ocularity and functional segregation of M, P, and K pathways that started in the
retina. In fact, the magnocellular pathway continues to the two most ventral layers
of LGN, while the parvocellular pathway leads to the remaining four dorsal layers.
The koniocellular pathway is not yet well understood, and represented as the fine
layers sitting in between the six main layers of LGN. A graphic representation of
LGN’s layers is sketched in fig. 1.6.

1.5 The primary visual cortex
The primary visual cortex (V1) is the earliest cortical visual area; it is located in
the occipital lobe, in and around the calcarine sulcus. It is defined by its functional
structure and the role it plays in the visual system, but it can also be identified
with the striated cortex, which instead is defined by its anatomical location. It
is named after the myelinated stria of Gennari, a distinctive stripe also visible
by the naked eye, that coincides with the IV th layer of V1, the layer of thalamic
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Figure 1.6: The Lateral Geniculate Nucleus - [13] pp. 201-206

afferences. Inputs coming from the six layers of the LGN indeed synapse this
layer of V1, maintaining functional segregation and eye-specificity: inputs from
the magnocellular pathway reach the IV thCα layer of V1, while inputs from the
parvocellular pathway reach the IV thCβ layer, forming concurrently a structure
of ocular dominance columns in the cortex, namely approximately 400µm-wide
stripes of visual neurons that predominantly receive their inputs from one eye or
the other.
We are now interested in showing how the cortical representations of the visual
space, viewpoint, orientation and color, are organized in specific maps that allow
a complete coverage of the whole visual field in each of its features. As we want
to provide a model for contour perceptions, we will mainly focus only on the
orientation cortical mapping.

1.6 Retinotopic maps
From the retina to the primary visual cortex, the neural representations of the
visual scenario keep a tidy organization of spatial information. V1 is indeed ar-
ranged to form a 2D map of the visual field where neighborhoods that are close in
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the visual image are represented by close neighborhoods in its cortical area. This
faithful preservation of spatial information is called retinotopy.

The spatial information coming from the retina appears distorted in its map-
ping to V1, by a process called cortical magnification. In fact, the area of the
primary visual cortex is not assigned equally to every degree of the visual field,
but it is proportional to the density of photoreceptors per retinal area. One can
quantify the mm2 of cortex per degree of visual angle by the cortical magnification
factor, that was found to fall by several log units from the foveal representation to
the monocular crescent representation ([14]). This decreasing of the magnification
factor with the eccentricity reflects the fact a larger part of the cortex is allocated
for central vision, which must be finer and more detailed than peripheral vision.
A precise retinotopic map is shown in fig. 1.7, and more detail about this topic
can be found in [14].

1.7 Orientation tuning
From the foregoing, we know that each neuron of V1 contributes with its own
receptive field to the retinotopic cortical representation, and exhibits a number of
specific properties, such as the above-mentioned ocular dominance, receptive field
position in visual space, color selectivity and so on. We now dwell on an emergent
property that characterizes primary cortical neurons, described in the Hubel and
Wiesel pioneering studies [15] on V1 that got them the Nobel prize in 1981, that
is, orientation tuning. Neurons found in the retina and in the LGN had circular
receptive fields, with a center-surround structure that made them reactive to spot
light contrasting stimuli. Cortical neurons were found instead to have elongated
receptive fields that would allow responses for linear light stimuli, and an emergent
selectivity for light edges presented at specific angles. Distinct neurons can respond
at peek proficiency to distinct orientations, and for each of them an orientation
tuning curve can be computed, quantifying the neuronal response as a function
of the presented stimuli orientations. In fig.1.8 we provide an example of a V1
neuron firing action potentials in response to specifically oriented light edges, and
the relative orientation tuning curve. A question that might arise is how this
orientation tuning property is attained by cortical neurons receiving inputs from
the retina through LGN. Hubel and Wiesel explained this fact through a model for
the neuronal receptive fields’ orientation, suggesting a serial elaboration of lower
order receptive field properties. According to the model, a cortical oriented cell
should gather together inputs from specific neurons of the LGN, chosen in such
a way that their center-surround receptive fields, once aligned, correspond to the
cell’s preferred orientation. This process of converging of multiple LGN’s cells on
a single cortical cell to give rise to orientation tuning has been proven by decades
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Figure 1.7: Retinotopic map in the primary visual cortex - Daniel L. Adams and
Jonathan C. Horton - [14]
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Figure 1.8: Response and orientation tuning curve of a simple V1 cell - Seminal results
of Hubel and Wiesel, figure adopted from Hubel and Wiesel, 1968. On the left, orienta-
tion selectivity of a V1 cell. On the right, the orientation tuning.

of research to be very likely true to some degree of approximation, with the aid of
other additional mechanisms, and provides an example of how the visual system
works systematically and hierarchically to elaborate sensory inputs.
We can now make a further distinction among oriented cortical cells, based on
their receptive field properties and therefore their selectivity.

- Simple cells: their elongated receptive fields have separate ON (excitatory)
-OFF (inhibitory) areas that can occur in different combinations covering the
receptive field, inheriting from receptive fields of neurons in the LGN. This
property makes them selective for of course orientation of the light stimuli,
but also for the position of the latter in the receptive field (i.e, a stimulus
activates a cell only if it falls within the ON-area).

- Complex cells: still selective for orientation, they have rectangular, wider
receptive fields, and there is no neat separation between ON and OFF areas.
This fact, again according to the Hubel-Wiesel serial model, might arise
from a progressive information-convergence process in the primary visual
cortex, that is, many V1 simple cells conveying information to one single
complex cell by the overlapping of their receptive field. We then have an
emerging position invariance property that allows complex cells to respond
steadily to stimuli with different positions in the receptive field, and that
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makes them particularly reactive to moving linearly oriented stimuli that
cross their receptive fields.

- End-stopped cells: their receptive fields feature a central excitatory region
bordered by inhibitory peripheral regions with the same preferential orienta-
tion. These patterns might cause, for example, a short linear oriented light
segment to be very effective in activating one of these neurons, and by con-
trast a long oriented light line to be very ineffective. End-stopped cells are
hence useful to detect angles or curved lines in visual images.

1.8 Color blobs
Before moving forward, we shall mention some (relatively) recently discovered
structures that can be found through the second and the third layer of V1 and
represent a prominent feature of its architecture: color blobs. Color blobs are
composed of color tuned but unoriented cells, rich of cytochrome-oxidase, that are
able to compare the activation of green (M) and red (L) cones. Some of them
respond ON to red light and OFF to green light, and some others do the opposite,
while in white or yellow light they respond poorly. They form an anatomically
separated pathway with respect to orientation tuned cells (interblobs), and have a
different functional purpose, as they are part of the broader process of color vision
and surface property estimation.

1.9 The Ice Cube model
We have seen so far how V1 neurons differentiate and exhibit new coding proper-
ties that allow a prior analysis of the visual image. We want now to summarize
the main findings about the primary visual cortex functional architecture. Hubel
and Wiesel’s works ([16], [17]) on the topic led them to formulate the so-called
Ice Cube model of V1, based on the discovery that the cortex’s functional organi-
zation is columnar. Neurons with similar functional properties, i.e neurons with
the same orientation tuning or with the same ocular dominance, and with the
same retinotopic positioning, appear indeed close to each other, forming columnar
structures. More specifically, a vertical electrode penetration in V1 will encounter
neurons that are selective for the same light edges orientation forming orientation
columns, while a tangential penetration will encounter neurons that progressively
change their preferred orientation, covering all the possible orientations. This shift-
ing in the orientation tuning is regular and systematic, approximately continuous,
and it is reproduced periodically with period of about 1mm. As stated above,
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Figure 1.9: Ocular dominance columns and orientation columns - [13], pp. 207-218

the LGN afferents eye-segregation creates also contro-lateral and ipsi-lateral ocu-
lar dominance bands, which alternate along V1 almost every 1mm.
A scheme of this columnar functional organization is pictured in fig.1.9. To de-
scribe the fact that orientation columns, ocular dominance bands and blobs are
not independent and work together to obtain cortical representations, Hubel and
Wiesel defined the concept of hypercolumn, complete set of columns that con-
tains all the cortical structures needed to analyze a specific feature (for example,
orientation) of the stimuli in some specific area of the visual field. Orientation
hypercolumns include a complete set of orientation columns that span all possible
preferred orientations, while a ocular dominance hypercolumn includes one each of
a left eye and a right eye column. Orientation hypercolumns and ocular dominance
columns have the tendency to run perpendicularly to each other, forming, together
with blobs, computational 1mm x 1mm modules, that somehow resemble to the
ice cubes after which they are named. Furthermore, precisely within these mod-
ules, cells represent a single precise spatial location. We can therefore say that,
containing all anatomo-functional type of V1 neurons, these modules are able to
analyse a specific position in the visual field for all possible visual parameters,
and are hence repeated thousands of times in order to address the whole visual
field. This Ice Cube model, sketched in fig.1.10 is a very important and compelling
computational model that let us understand how our primary visual cortex takes
care of all positions in the visual field, by attaching for each point of its retino-
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Figure 1.10: The Hubel and Wiesel’s Ice Cube model.

topic map the correct values of all possible visual parameters, and creating many
parallel representations of the visual image.
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Chapter 2

Differentiable manifolds

In this chapter we give the basic concepts of the theory of differentiable manifolds,
including the notion of tangent space, cotangent space, and differential of a smooth
map. We are particularly interested in Lie groups and their action on manifolds,
and the notion of a fiber bundle. We assume some basic notion of topology, see
[18].

2.1 Differentiable manifolds
In this section we give the notion of differentiable manifold, using as a guide the
notion of differentiability on Rn. With the same logic, we get to define smooth
map between manifolds. Along the discussion, we examine an important example:
the unit sphere as manifold via the stereographic projections. We invite the reader
to consult [6] for more details.

Definition 2.1. Let M be a Hausdorff, second countable, topological space. We
say M is a topological manifold of dimension n if every point p in M has a neigh-
borhood U homeomorphic to an open subset of Rn.
We give the definitions:

- the pair (U, ϕ) is called a chart, ϕ : U → ϕ(U) ⊂ Rn open, ϕ homeomorphism

- U is called a coordinate neighbourhood of p

- ϕ is called a coordinate system on U
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Definition 2.2. Let ϕ : U → Rn, ψ : V → Rn be two charts of a topological
manifold M . ϕ, ψ are C∞-compatible if the two maps

ϕ ◦ ψ−1 : ψ(U ∩ V ) → ϕ(U ∩ V ),
ψ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V )

are of class C∞. These two maps are then called transition functions between the
charts.
A C∞ atlas on a topological manifold M is a collection U = {(Uα, ϕα)} of pairwise
compatible charts such that M = ⋃

α Uα.
An atlas U is said to be maximal if it is not contained in a larger atlas.

We are now ready for the most important definition of this chapter.

Definition 2.3. A smooth manifold is a topological manifold M together with a
maximal atlas. The maximal atlas is called a differentiable structure on M .

Any atlas on a topological manifold is contained in a maximal atlas. In order to
check that a topological manifold M is a smooth manifold, then, it is sufficient to
exhibit a C∞ atlas for M . See [6] for more details.

Example 2.1. Let S2 be the unit sphere in R3:

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}

Let us call the two points N = (0, 0, 1) and S = (0, 0,−1) the north and the
south pole on the unit sphere, respectively. We can cover S2 with two open sets
U1 = S2 \ {N}, U2 = S2 \ {S}, and define two charts (U1, ϕ1), (U2, ϕ2) as follows:

ϕ1 : U1 −→ R2 ϕ2 : U2 −→ R2

(x, y, z) 7−→ ( x

1 − z
,

y

1 − z
) (x, y, z) 7−→ ( x

1 + z
,

y

1 + z
)

These two charts are called stereographic projections, as they map the sphere onto
a plane. Note that ϕ1 and ϕ1 map the south pole S and the north pole N to (0, 0),
respectively, and so ϕ1 and ϕ2 map (U ∩ V ) onto R2 \ {(0, 0)}.
Since ϕ1 and ϕ2 are homeomorphisms, we can compute their inverse ϕ−1

1 and ϕ−1
2 ,

which are continuous:

ϕ−1
1 ((u1, u2)) = ( 2u1

u2
1 + u2

2 + 1 ,
2u2

u2
1 + u2

2 + 1 ,
u2

1 + u2
2 − 1

u2
1 + u2

2 + 1)

ϕ−1
2 ((v1, v2)) = ( 2v1

v2
1 + v2

2 + 1 ,
2v2

v2
1 + v2

2 + 1 ,
1 − v2

1 − v2
2

v2
1 + v2

2 + 1)
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Figure 2.1: Stereographic projections

Note that the transition functions

ϕ1 ◦ ϕ−1
2 : ϕ2(U ∩ V ) −→ ϕ1(U ∩ V )

(u1, u2) 7−→ ( u1

u2
1 + u2

2
,

u2

u2
1 + u2

2
)

ϕ2 ◦ ϕ−1
1 : ϕ1(U ∩ V ) −→ ϕ2(U ∩ V )

(v1, v2) 7−→ ( v1

v2
1 + v2

2
,

v2

v2
1 + v2

2
)

are differentiable functions from R2 \ {(0, 0)} to itself. The two stereographic
projections (U1, ϕ1), (U2, ϕ2) therefore form a C∞-atlas on S2. Hence S2 is a
differentiable manifold.

We now define the notion of smooth map of manifolds. The notion of smooth-
ness can be referred to a map of manifolds thanks to the introduction of a differ-
entiable structure on the manifold via its charts.

Definition 2.4. Let N and M be smooth manifolds of dimension n and m, re-
spectively. A continuous map F : N → M is smooth at a point p in N if there are
charts (V, ψ) about F (p) in M , (U, ϕ) about p in N such that

ψ ◦ F ◦ ϕ−1 : ϕ(F−1(V ) ∩ U) → Rm

is C∞ at ϕ(p). The continuous map F : N → M is said to be C∞ if it is C∞ at
every point of N.
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The notion of smoothness is well defined, as it is independent of the choice of
charts. This independence is ensured by the C∞ compatibility of charts in a dif-
ferentiable structure stated above.
We now define an important class of bijective smooth functions, that is the diffeo-
morphism.

Definition 2.5. A diffeomorphism of manifolds is a C∞ bijection F : N → M
whose inverse is also C∞.

Observation 2.1. Any chart on a manifold is a diffeomorphism, and any diffeo-
morphism of an open subset of a manifold to its image in Rn can be looked at as
a chart. In fact

U Rn

ϕ(U) Rn

ϕ

ϕ id

f

id ◦ ϕ ◦ ϕ−1 is C∞, because it is the identity map.

2.2 Tangent vectors and the tangent space
In this section we generalize the notions of tangent vector and tangent space from
Rn to manifolds. The generalization we need would let us define the tangent space
intrinsically, without referring to any embeddings of the manifold into Rn. This
approach, despite making tangent vectors less intuitive, becomes crucial when
studying manifolds that are not naturally embedded in Rn. Given the definition
of tangent space to a point in a manifold, we finally define the differential of a
smooth map on a manifold, which we will need later on in our discussion.

First, we introduce an equivalence relation on the C∞ functions defined in some
neighborhood of a point in a manifold M .

Definition 2.6. Consider all pairs (f, U) where U ⊂ M is a neighborhood of p,
f : U → R is a C∞ function. Two such pairs (f, U), (g, V ) are equivalent if and
only if there is an open set W ⊂ U ∩ V containing p such that f

∣∣∣
W

= g
∣∣∣
W

. The
equivalence class of (f, U) is called the germ of f at p. The set of all germs of C∞

real-valued functions at p in M is denoted by C∞
p (M).
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We note that C∞
p (M), with ordinary addition scalar multiplication by real num-

bers, is a vector space over R. In addition, if equipped with the ordinary multi-
plication and addition of functions (defined pointwise), C∞

p (M) is a commutative
ring. This is due to the fact that, in general, functions do not have a multiplicative
inverse.

Definition 2.7. A derivation at a point in M is any linear map D : C∞
p (M) → R

that satisfies the Leibniz rule:

D(fg) = (Df)g(p) + f(p)Dg.

A tangent vector at a point p in a manifold M is a derivation at p. The tangent
vectors at a point p form a vector space Tp(M), the tangent space of M at p.

Let (U, ϕ) be a coordinate neighborhood, r1, . . . , rn the standard coordinates
on Rn, xi = ri ◦ϕ : U → R, f a smooth function in a neighborhood of p. We define
the partial derivative ∂f

∂xi of f with respect to xi at p to be:

∂

∂xi

∣∣∣∣∣∣
p

f = ∂

∂ri

∣∣∣∣∣∣
ϕ(p)

(f ◦ ϕ−1) ∈ R.

Then, ∂
∂xi |p is a function from C∞

p (M) to R that evidently satisfies the Leibniz
rule and is therefore a tangent vector at p.
Now that we have defined smooth maps between manifolds and the tangent space
to a manifold, we introduce an important linear map of tangent spaces, the differ-
ential of a smooth map.

Definition 2.8. Let F : N → M be a C∞ map between two manifolds. At each
point p ∈ N , F induces a linear map of tangent spaces, its differential at p,

dpF : TpN → TF (p)M

so that, if Xp ∈ TpN , then dpF (Xp) in TF (p)M is defined by

(dpF (Xp))f = Xp(f ◦ F ) ∈ R for f ∈ C∞
F (p)(M).

It can be shown that a simple rule for computing the differential of the com-
position of functions, the so-called chain rule, holds.
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Theorem 2.1. Let F : M → N and G : N → P be two smooth maps of manifolds,
and p ∈ M . By definition of differential, we have dpF : TpM → TF (p)N and
dF (p)G : TF (p)N → TG(F (p))P . Then

dp(G ◦ F ) = dF (p)G ◦ dpF

where dp(G ◦ F ) : TpM → TG(F (p)).

This theorem leads to the following very important corollary

Corollary 2.1. If F : M → N is a diffeomorphism of manifolds, then dpF : TpM →
TF (p)N for any p in M is an isomorphism of vector spaces.

We invite the reader to read [6] for more details. With the aid of these results,
we can construct a basis for the tangent space to a point on a smooth manifold
M . Let (U, ϕ) be a chart containing p. We know that ϕ is a diffeomorphism, and
hence it follows from the previous corollary that dpϕ : TpM → Tϕ(p)Rn = Rn is
an isomorphism of vector spaces. In particular, TpM is an n-dimensional vector
space.

Proposition 2.1. Let (U, ϕ) = (U, x1, . . . , xn) be a chart about a point p in M .
Then

dpϕ( ∂

∂xi

∣∣∣∣
p
) = ∂

∂ri

∣∣∣∣
ϕ(p)

By virtue of the well known linear algebra property that an isomorphism of
vector spaces carries a basis into a basis, and the fact that ∂

∂r1 , . . . ,
∂

∂rn form a basis
for Tϕ(p)Rn = Rn, we can conclude that

∂

∂x1

∣∣∣∣
p
, . . . ,

∂

∂xn

∣∣∣∣
p

constitute a basis for TpM .

We now want to compute a local expression for the differential. Let F : N → M
be a smooth map of manifolds. Let p be a point in N , (U, x1, . . . , xn) a chart
containing p, (V, y1, . . . , yn) a chart for M containing F (p). According to what
stated above, { ∂

∂xj |p} is a basis for TpN , and { ∂
∂yj |F (p)} is a basis for TF (p)M .

The differential dpF is a linear map, and hence is completely determined by the
numbers ai

j

dpF ( ∂

∂xj

∣∣∣∣
p
) =

m∑
k=1

ak
j

∂

∂yk

∣∣∣∣
F (p)

,
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and applying yi to both sides

ai
j = dpF ( ∂

∂xj

∣∣∣∣
p
) yi

= ∂

∂xj

∣∣∣∣
p

(yi ◦ F ) = ∂F i

∂xj
(p),

where F i is to be understood as yi ◦ F . It follows from these considerations that
the differential dpF at p can be represented locally by the matrix [∂F i

∂xj (p)]

2.3 Curves in a manifold
In the previous section, we defined the notion of smooth map of manifolds. Such
notion is useful to define the notion of a smooth curve in an intrinsic way.

Definition 2.9. A smooth curve γ in a manifold M is a smooth map γ : ]a, b[→ M ,
]a, b[ being an open subset of R. We define the velocity vector γ̇(t0) of γ at some
point t0 ∈] − ϵ, ϵ[ as

γ̇(t0) = dt0γ ( d
dt

∣∣∣∣∣
t0

) ∈ Tγ(t0)M.

We recall that
(dt0γ( d

dt

∣∣∣∣∣
t0

)(f) = ( d
dt

∣∣∣∣∣
t0

)(f ◦ γ)

for f ∈ C∞
γ(t0)

We say that a curve γ is a curve starting at p if γ(0) = p.
Each smooth curve γ, being a map of manifolds, gives rise to a tangent vector for
each t0 in Tγ(t0)M through its differential at t0. It can be shown that for every
tangent vector Xp ∈ TpM you can construct a smooth curve γ such that Xp is the
velocity of γ at p.

2.4 Regular submanifolds, immersions and sub-
mersions

In this section, we provide the definition of regular submanifold, immersion and
submersion. We proceed defining the regular points of a smooth map, and state
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an important theorem which allows us to recognize a regular level set of a smooth
function as a smooth manifold itself. We begin with the definition of a regular
submanifold.

Definition 2.10. A subset S of a manifold M of dimension n is a regular submani-
fold of M of dimension k if for every p ∈ M there exists a coordinate neighborhood
(U, ϕ) = (U, x1, . . . , xn) in the maximal atlas of M such that U ∩ S is defined by
the vanishing of n−k coordinate functions, i.e, on U ∩S, ϕ = (x1, . . . , xk, 0, . . . , 0).

We call such chart an adapted chart for S. Let ϕS : U ∩ S → Rk, ϕS =
(x1, . . . , xk). We note that (U ∩ S, ϕS) is a chart for S in the subspace topology.

Definition 2.11. A map F : N → M is said to be an immersion at a point p ∈ N
if its differential at p is injective, and a submersion at p if dpF is surjective.
A point p in N is a critical point of F if its differential at p fails to be surjective,
and it is a regular point of F if dpF is surjective, i.e, if F is a submersion at p.
Let F−1({c}) = {p ∈ N : F (p) = c} be a level set. F−1({c}) is called a regular
level set if every p in F−1({c}) is a regular point of F .

We note that, if F : N → R is a real-valued function, a point p is a critical
point of F if and only if, relative to some chart (U, x1, . . . , xn) containing p, all the
partial derivatives satisfy

∂f

∂xi
(p) = 0.

In fact, the differential is represented by the matrix

[ ∂f
∂x1 (p), . . . , ∂f

∂x1 (p)],

and the image of dpf is a linear subset of R, that can be either 1 or 0-dimensional,
i.e, if dpf fails to be surjective, it is the zero map.
We are now ready to state a criterion useful to show that the regular level set of
a map of manifolds is itself a manifold, the regular level set theorem. See section
9.3 of [6] for the proof.

Regular Level Set Theorem. Let F : N → M be a smooth map of manifolds,
dimN = n and dimM = m. A non-empty regular level set F−1({c}) = {p ∈ N :
F (p) = c}, c ∈ M , is a regular submanifold of N of dimension n−m.
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2.5 Cotangent space
We now define the dual space of the tangent space to a manifold at some point,
the cotangent space.

Definition 2.12. Let M be a smooth manifold, p ∈ M . The dual vector space
of the tangent space to M at p, T ∗

pM , is called the cotangent space to M at p,
(TpM)∗.

Being the dual of TpM , and being TpM a finite-dimensional vector space of
dimension n, TpM and T ∗

pM are isomorphic as vector spaces. Hence, T ∗
pM is also

an n-dimensional vector space, and we now describe a basis.

Definition 2.13. Let f ∈ C∞(M). At every point p ∈ M , we can define the
linear map

dp : C∞(M) → T ∗
pM

f 7→ dpf.

We call such a map the gradient operator at p, and dpf the gradient of the function
f at p. Notice that, according to definition 2.8, (dpf)X = X(f).

We can use the gradient to construct a basis for the cotangent space to a mani-
fold at some point p in the manifold as follows. Let p ∈ M , (U, ϕ) = (U, x1, . . . , xn)
be a chart containing p. We can construct n covectors dpx

1, . . . , dpx
n. Being T ∗

pM
an n-dimensional vector space, these covectors are good candidate to form a basis
for T ∗

pM , and indeed they are. In fact, if we let dpx
a act on some basis vector for

TpM , ∂
∂xb

∣∣∣∣
p
, we have

dpx
a( ∂

∂xb

∣∣∣∣
p
) = ∂

∂xb

∣∣∣∣
p
xa = ∂

∂rb
(xa ◦ ϕ−1)

∣∣∣∣
ϕ(p)

= δa
b ,

and we can let a and b vary from 1 to n. Thus, dpx
1, . . . , dpx

n are the dual basis
of the dual of TpM . The dpx

i are commonly denoted dxi. We shall see in the next
sections that the dxi are differential 1-forms on M .

2.6 Vector fields and differential forms
In this section, we first want to give a definition of a vector field. This notion
is crucial for our purposes, and we will also see it from a different perspective in
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the following sections. Then, we provide some essential knowledge on the topic of
differential forms, and we will restrict only to what is needed for the understanding
of Hamiltonian mechanics on manifolds. We invite the reader to consult section 3
and 17 of [6] for more details.

Definition 2.14. Let M be a smooth manifold of dimension n. We define a vector
field X on M as an assignment

X : M → Tp(M)
p 7→ X(p) = Xp ∈ Tp(M).

Let (U, ϕ) = (U, x1, . . . , xn) be a chart on M about some point p. Recall that
any tangent vector at p can be written as a linear combinations of tangent vectors
∂1, . . . , ∂n defined by

∂if = ∂

∂xi

∣∣∣∣
p
f = ∂

∂ri

∣∣∣∣
ϕ(p)

(f ◦ ϕ−1).

It follows that, if X is a vector field on M , the value of X at some x ∈ U is a
linear combination

X(x) =
∑

i

ai(x)∂i.

We note that, as x varies in U , the coefficients ai become functions on U . We
can therefore say that the vector field X is smooth if its coefficients are smooth
functions. It can be easily checked that the smoothness of a vector field is a notion
that is independent from the choice of the chart.
We now turn to differential forms. Differential forms can be thought of as a
generalization of real-valued functions on manifolds, which instead of assigning
to each point in the manifold a real number, assign some covector acting on its
tangent space.

Definition 2.15. A differential 1-form on a manifold M is a function ω that
assigns to each p ∈ M a covector ωp, that is, a covector field.

Now let (U, ϕ) = (U, x1, . . . , xn) be a coordinate chart on M . Then the differ-
entials dx1, . . . , dxn are 1-forms on U , that at each point p ∈ U form a basis for
T ∗

pM , which moreover is the dual basis of {∂i}. Therefore, every 1-form ω on U
can be written as

ω =
∑

i

aidxi,
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and we have found a local coordinate expression for differential 1-forms.
We now want to define differential k-forms. First of all, we recall the definition of
a k-tensor on a vector space V , that is a k-linear function

T : V × V × · · · × V → R

We say that a k-linear tensor is alternating if, for any permutation σ in the set of
all permutations of order k, Sk,

T (vσ(1), . . . , vσ(k)) = sgn(σ)T (v1, . . . , vn)

holds. An alternating k-tensor on V is also called a k-covector.

Definition 2.16. A k-differential form on a manifold M is a function ω that
assigns to each p ∈ M a k-covector ωp on the vector space TpM .
If ω is a k-form on M and X1, . . . Xk are vector fields on M , then ω(X1, . . . , Xk)
is a function on M defined by (ω(X1, . . . , Xk))(p) = ωp((X1)p, . . . , (Xk)p)

To provide a local expression for k-forms, we first need to define the wedge
product of k-linear tensors, and to find a basis for the space of all k-linear tensors.

Definition 2.17. Let T1 be a k-tensor and T2 a l-tensor. We define the wedge
product T1 ∧ T2 by

(T1∧T2)(v1, . . . , vk+l) = 1
k!l!

∑
σ∈Sk+l

sgn(σ)T1(vσ(1), . . . , vσ(k))T2(vσ(k+1), . . . , vσ(k+l)),

where the factor 1
k!l! compensates for repetitions in the sum.

This definition can be easily generalized for the wedge product of n-many
covectors. However, we will focus on the wedge product of 1-covectors. Indeed, it
can be easily shown that, if α1, . . . , αk are linear functions on a vector space V ,
then

(α1 ∧ · · · ∧ αn)(v1, . . . , vk) =
∑

σ∈Sk

sgn(σ)α1(vσ(1)) . . . αk(vσ(k)) = det(αi(vj)).

Now, we know that a k-linear function on a vector space V (with a basis {e1, . . . , en})
is completely determined by its values on all k-tuples (ei1 , . . . , eik

). If the k-linear
function is alternating, it is sufficient to know its values on all k-tuples (ei1 , . . . , eik

)
with 1 ≤ i1 < · · · < ik ≤ n. Let {α1, . . . , αn} be the dual basis of V . It can be
shown (see [6] for the proof) that the alternating k-linear functions αi1 ∧ · · · ∧αik

,
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with 1 ≤ i1 < · · · < ik ≤ n form a basis for the space of all alternating k-linear
tensors on V .
Turning again to k-vector fields on a manifold M , it follows from the results above
that a basis for the alternating k-tensors on T ∗

pU is formed by all (dxi1)p ∧ · · · ∧
(dxik

)p, 1 ≤ i1 < · · · < ik ≤ n. We can therefore locally express at each p in M a
k-linear form ω on TpM as the linear combination

ωp =
∑

ai1,...,ik
(p)((dxi1)p ∧ · · · ∧ (dxik

)p),

and omitting p we write ω = ∑
ai1,...,ik

(dxi1 ∧ · · · ∧ dxik
).

As a final step, we define an anti-derivation on the set of all differential forms on
M , A, called the exterior derivative.

Definition 2.18. An exterior derivative on a manifold M is a map D : A → A
such that

(i) D(ωτ) = (Dω) ∧ τ − ω ∧Dτ ,

(ii) D ◦D = 0,

(iii) If f is a smooth function on M , and X a smooth vector field, (Df)(X) = Xf .

The third condition is equivalent to say that

Df ≡ df =
∑

i

∂f

∂xi
dxi

Now, let (U, xi, . . . , xn) be a coordinate chart on M as usual, and ω a differential
k-form, ω = ∑

ai1,...,ik
dxi1 ∧ · · · ∧ dxi1 . It follows from the definition of exterior

derivative that

Dω = D(
∑

ai1,...,ik
dxi1 ∧ · · · ∧ dxi1)

=
∑

D(ai1,...,ik
) ∧ dxi1 ∧ · · · ∧ dxi1) +

∑
ai1,...,ik

D(dxi1 ∧ · · · ∧ dxi1)
=

∑
D(ai1,...,ik

) ∧ dxi1 ∧ · · · ∧ dxi1)

=
∑ ∑

j

∂ai1,...,ik

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxi1

2.7 Fiber bundles
A fiber bundle over a smooth manifold M encodes the data of a family of manifolds,
all diffeomorphic to some other manifold F , parametrized by M . Locally, it looks
like the product manifold U × F , U open set of M .
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Definition 2.19. Let E, M , F be three smooth manifolds, and π : E → M a
smooth surjection. A local trivialization with fiber F is an open cover U for M
together with a collection of diffeomorphisms

{ϕU : π−1(U) → U × F : U ∈ U}

that agree with the projection to the first factor η : U ×F → U , i.e, each diagram

π−1(U) U × F

U

ϕU

π η

should commute.
With those notions clarified, we can provide the definition of a fiber bundle.

Definition 2.20. A fiber bundle (E,M, π) with fiber F is a smooth surjection
π : E → M with a local trivialization with fiber F , i.e, it is locally trivial with
fiber F . The manifold E is called the total space, and the manifold M is the base
space of the fiber bundle. The fiber over a point x in M is the set Ex := π−1(x).

Note that, as π is a submersion, according to the theorem 2.4, each fiber is a
regular submanifold of E. We now provide a first basic example.

Example 2.2. Let M , F be manifolds, then define E = M × F and

π : M × F → M

(p, f) 7→ p

Then (E,M, π) is a bundle called the trivial bundle.

A fiber bundle π : E → M is called a vector bundle if each fiber π−1(x) is a
vector space. The collection of tangent spaces to a manifold has the structure of
a vector bundle over the manifold, called the tangent bundle.

Definition 2.21. Let M be a smooth manifold. The tangent bundle is the set
TM = ⋃

p∈M TpM . We define the bundle projection map

π : TM → M

X 7→ p

where p is the point for which X ∈ TpM .
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By analogy with the tangent bundle, the union of cotangent spaces to M in
all of its point is called cotangent bundle and is denoted by T ∗M . A point in the
cotangent bundle is therefore a linear functional on the tangent space TqM at some
point q in M , and is referred to as the couple (q, p), where q is the chosen point on
M , and p is the functional defined on TqM . If the manifold M has dimension n,
the cotangent bundle has the structure of a smooth manifold with dimension 2n.

Definition 2.22. Let π : E → M be a fiber bundle. A smooth map σ : M → E is
called a smooth section of the bundle if π ◦ σ = idM .

A frame for a vector bundle π : E → M is a collection of sections σ1, . . . , σn of
E such that for each p in M σ1(p), . . . , σn(p) form a basis for the fiber Ep = π−1(p).

With the notion of a smooth section of a vector bundle, it is possible to provide
an alternative definition of a vector field (cfr def. 2.14).

Definition 2.23. Let M be a smooth manifold, and TM its tangent bundle,
π : TM → M , π smooth. A vector field is a smooth section of TM . We denote
the set of all the smooth sections of the tangent bundle with X(M).

In other words, a vector field can be seen as an assignment to each point of a
vector in the fiber over that point.

2.8 Lie groups
We now define a very important class of groups, namely Lie groups, which are
groups with a differentiable structure that is compatible with the group operations.
Due to this property, they can be studied with the tools of differential geometry.
We also provide a general definition of Lie algebras; any Lie group gives rise to a
Lie Algebra, that can be identified with its tangent space to the identity, equipped
with a bracket operation [ , ].

Definition 2.24. A Lie Group (G, ·) is a group with the group operation ·, and a
smooth manifold with a differentiable structure such that the group multiplication
and inverse

µ : G×G → G ι : G → G

(g, h) 7→ gh g 7→ g−1

are C∞. A morphism of Lie groups is a group homomorphism which is also differ-
entiable.
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Lie groups are very common to encounter, and we now provide some examples.

Example 2.3. The unit circle in the complex plane S1 = {z ∈ C | ∥z∥ = 1},
with the usual complex multiplication, (S1, ·C) is a commutative Lie group.

Example 2.4. GL(n,R) = {f : Rn → Rn | f is linear and detf ̸= 0}, with the
composition of functions, (GL(n,R), ◦) is a Lie group called the General Linear
group. More generally, GL(V ) = {f : V → V linear and invertible } is a Lie group
isomorphic to GL(n,R).

For g ∈ G, let ℓg : G → G, ℓg(x) = µ(g, x) be the operation of left translation
by g, and rg : G → G, rg(x) = µ(x, g) be the operation of right translation by
g. For g ∈ G, the left translation ℓg is a diffeomorphism of G onto itself, with
inverse ℓg−1 , that maps the identity element to g. The diffeomorphism ℓg induces
an isomorphism of tangent spaces

d(ℓg)e : Te(G) → Tg(G).

If we can describe the tangent space Te(G) at the identity, then (dℓg)e(Te(G)) will
give a description of the tangent space Tg(G) at any point g ∈ G.

Definition 2.25. A Lie algebra (L,+, · , [ , ]) is a vector space (L,+, · ) equipped
with bilinear map [ , ] : L×L → L that is antisymmetric, that is, [x, y] = −[y, x],
and satisfies the Jacobi identity

[ x , [ y , z ] ] + [ z , [ x , y ] ] + [ y , [ z , x ] ] = 0

Example 2.5. We can equip the set X(M) defined in 2.23 with two operations

+: X(M) × X(M) → X(M)
(σ, τ) 7→ σ + τ

defined by (σ + τ)(p) = σ(p) + τ(p), where the + is defined on the vector space
TpM , and

· : C∞(M) × X(M) → X(M)
(f, τ) 7→ f · τ

where (f · τ) (p) = f(p) · τ(p) is the scalar multiplication on the vector space
TpM . Therefore (X(M),+, ·) has the structure of a module over the ring C∞(M).
Note that X(M) is also a vector field over R. Now let X and Y be two smooth
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vector fields on a smooth manifold M . Their Lie Bracket [X , Y ] at p is defined
by

[X , Y ]pf = [XpY − YpX ]f
for any germ f of a C∞ function at p. It can be easily checked that [X , Y ]p is a
derivation of C∞(M) and hence a tangent vector at p. If p varies in M , [X , Y ] is
a vector field on M , that is also smooth. [ , ] becomes therefore a bilinear map on
the vector space of all smooth vector fields on M , [ , ] : X(M) × X(M) → X(M).
As a bilinear map, [ , ] is antisymmetric and satisfies the Jacobi identity, as follows
from its pointwise definition. Therefore, X(M) is a Lie algebra with Lie brackets
[ , ].

2.9 Lie groups actions on manifolds
The concept of action of a group on a manifold is very important for the appli-
cations. Indeed, it encodes the symmetries of the geometrical objects we want to
study.

Definition 2.26. Let (G, ·) be a Lie group and M a smooth manifold, a smooth
map

µ : G×X → X

(σ, x) 7→ σ · x

is a smooth left action of G on M if

• (i) e · x = x, and

• (ii) σ · (τ · x) = (στ) · x)

for all σ, τ ∈ G, x ∈ X. We can call M a right G-manifold.

Similarly, we define the right action of a group on a manifold

Definition 2.27. A smooth map

µ : X ×G → X

(x, σ) 7→ x · σ

is a smooth right action of G on M if
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• (i) x · e = x, and

• (ii) (x · σ) · τ = x · (στ)

for all σ, τ ∈ G, x ∈ X.

Given a left action on some manifold, it is possible to turn it into a right action,
and vice-versa. It is sufficient to define the right action x · g = g−1 ˙x, and it can
be easily checked that defined this way it satisfies the property needed.
We now provide some definitions for a left action on some smooth manifold M
that have their equivalents for right actions.

- For any p ∈ M we define its orbit under the action as the set

Op = {q ∈ M | ∃ g ∈ G : µ(g, p) = q},

Op ⊆ M .

- We define the equivalence relation

p ∼ q ⇐⇒ ∃ g ∈ G | q = µ(g, p).

Hence, p and q are equivalent if they lie on the same orbit. We denote the
quotient space M /∼ under the equivalence relation ∼ as M/G.

- For any p ∈ M we define the stabilizer Sp = {g ∈ G | µ(g, p) = p}, Sp ⊆ G.

- An action is called free if for each p in M Sp = e.

We now define right G-equivariant maps of manifolds (and analogously left G-
equivariant maps) .

Definition 2.28. Let N and M be right G-manifolds. A smooth map f : N → M
is right G-equivariant if

f(x · g) = f(x) · g,

for every (x, g) ∈ N ×G.

Thanks to the possibility of defining a right action from a left G-action on a
manifold, we can define G-equivariant maps of manifolds.
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Definition 2.29. LetN be a rightG-manifold andM a leftG-manifold. A smooth
map f : N → M is G-equivariant if

f(x · g) = f(x) · g = g−1 · f(x)

.

Definition 2.30. A fiber bundle π : P → M with fiber G is a principal G-bundle
if G acts smoothly and freely on P on the right, and every fiber-preserving diffeo-
morphism

ϕU : π−1(U) → U ×G

is G-equivariant, where the right G-action on U ×G is defined by

(x, h) · g = (x, hg),

and hence if ϕU(x) = (x, h) for some h ∈ G, ϕU (xg) = (x, hg) must hold.
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Chapter 3

Subriemannian geometry

In this chapter, we first define Riemannian manifolds, and recall some concepts of
Hamiltonian mechanics on manifolds. Our purpose, here, is to extend such notions
to the context of subriemannian manifolds, and find the related geodesic curves.
Subriemannian manifolds are basically manifolds endowed with a distribution and
an inner product on the distribution (see [8]). In the next chapter we will use the
notions introduced in this chapter to address the problem of border completion.
In the last section, we briefly introduce connections and Cartan’s approach to
connections.

3.1 Riemannian manifolds
We begin this section with the definition of a Riemannian structure on a manifold,
which makes possible to define the length of a curve and geodesic curves on the
manifold.

Definition 3.1. A Riemannian manifold (M, g) is a smooth manifold M equipped
with a Riemannian metric, i.e, a non-degenerate inner product ⟨ ⟩g : TxM×TxM →
R on each tangent space TxM of M .

Let (q, p) ∈ T ∗M . We can define the metric tensor gq as the function
gq : TqM → T ∗

q M

vq 7→ gq(vq)
such that gq(vq)(wq) = ⟨vq, wq⟩g. We can compute the inverse of the metric tensor,
the so-called cometric tensor

g−1
q = g̃q : T ∗

q M → T ∗∗
q M = TqM

v∗
q 7→ g̃q(v∗

q )
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and its associated scalar product

(( , ))g̃ : T ∗
q M × T ∗

q M → R
(v∗

q , w
∗
q) 7→ ((v∗

q , w
∗
q))g̃ = (g̃(v∗

q ))w∗
q .

We now give the definition of length of a smooth curve and distance between
two points in Riemannian geometry. See [9] for more details.

Definition 3.2. We define the length of a smooth curve γ

l = l(γ) =
∫

γ
∥γ̇∥dt

where ∥γ̇∥ =
√

⟨ γ̇(t), γ̇(t) ⟩g. The distance between two points p and q in M is
defined by d(p, q) = inf l(γ), where the infimum is taken over all smooth curves
connecting p and q.

3.2 Subriemannian manifolds
We want to introduce the notion of a subriemannian manifold, and in order to do
so we need some fundamental definitions.

Definition 3.3. A distribution D on a smooth manifold M is an assignment
x 7→ Dx for each x ∈ M , where Dx is a linear subspace of TxM .

It should be noticed that, once a chart is fixed, being Dx a linear subspace of
Tx, the assignment above can be performed by selecting for each x in M the basis
vectors in TxM that generate the linear subspace Dx,

Dx = span{X1(x), . . . , Xn(x)}.

Each Xi : M → TM is contained in the space of all vector fields on M , X(M),
and the collection of sections X1, . . . , Xn of TM forms a local frame for D. To
check whether D is smooth or not, it is sufficient to check the smoothness of the
coefficients of the chosen basis vectors for each Dx as functions of the point x. We
invite the reader to consult [7], sec. 12.5 for the proof.

Definition 3.4. Let M be a smooth manifold of dimension dimM , k < dimM .
A smooth distribution D is said to be regular of rank k if all of the Dx have the
same dimension as vector subspaces, dimDx = k.
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Example 3.1. Let M = R3, and D = span{∂x, ∂y}. We know that TxM = R3 =
span{∂x, ∂y, ∂z}. It is evident that the distribution D is smooth.

A distribution D, Dx = span{X1(x), . . . , Xn(x)}, is called completely non-
integrable (or bracket generating) if any local frame X1, . . . , Xn, together with all
of its iterated Lie brackets [Xi, Xj], [Xi, [Xj, Xk]], . . . , spans the whole tangent
bundle TM , i.e, if any tangent vector X ∈ TxM can be written as a linear com-
bination of vectors of the type Xi(x), [Xi, Xj](x), [Xi, [Xj, Xk]](x), and so on. Let
us now introduce some useful terminology:

- [D,D] := span{[X, Y ] ∀X, Y ∈ D};

- [D, [D,D], . . . ] = TM if D is completely non-integrable;

- [D,D] ⊂ D if D is involutive.

- An immersed submanifold N of M is an integral manifold of D if and only
if Dp = TpN for each p in N .

- D is a completely integrable distribution if and only if there exists an integral
manifold of D for each p in M .

With these notions acknowledged, we quote a fundamental theorem of differential
geometry, the Frobenius Theorem (see [19] pp.195-209).

Frobenius Theorem. Let M be a smooth manifold of dimension n. A smooth
r-dimensional distribution D on M is completely integrable if and only if it is
involutive.

The concepts of bracket generating distributions and integrable distributions
stand at opposite ends, and the Frobenius theorem can help us understand where
the most profound differences lie.
We are now ready to define the notion of subriemannian geometry on a manifold,
and extend the concept of distance between two points to this context.

Definition 3.5. A subriemannian manifold (M,D, g) is a smooth manifold M of
dimension n with a completely non-integrable smooth regular distribution of rank
k < n, D, equipped with a non-degenerate inner product ⟨ , ⟩g : Dx × Dx → R for
any x ∈ M .

We call D the horizontal distribution, and a curve γ : ] − ϵ, ϵ[→ M on the
manifold M is called horizontal if γ̇(t) ∈ Dγ(t) for every t ∈] − ϵ, ϵ[. We define the
length l = l(γ) of a smooth horizontal curve γ as in Riemannian geometry,

l = l(γ) =
∫

γ
∥γ̇∥dt
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but in this context ∥γ̇∥ is computed through the inner product ⟨ , ⟩g on the hori-
zontal spaces Dγ(t),

∥γ̇∥ =
∫

γ

√
⟨γ̇(t), γ̇(t)⟩gdt.

We can now define the subriemannian distance between two points X and Y in M
d(X, Y ) = inf l(γ)

where the infimum is taken over all the smooth horizontal curves that connect the
two points. If there is no such curve, then d(X, Y ) = ∞ by definition.
We now quote an important result, crucial to the purposes of our discussion,
which states that the subriemannian distance between two points on a manifold
M is always finite (see [8] sec. 1.6)
Chow-Rashevskii Theorem. If D is a completely non-integrable distribution
on a connected smooth manifold M , then any two points in M can be joined by a
horizontal path.

The fundamental hypothesis here is the complete non-integrability of the dis-
tribution D: there is no submanifold of M the horizontal paths are restricted to
lie on.

Definition 3.6. A smooth horizontal path that realizes the distance between two
points is called a geodesic.

Because of the Chow-Rashevskii theorem, the existence of a geodesic is always
guaranteed in the context of subriemannian geometry.

If we denote with C(M) the set of all smooth horizontal curves on M , we can
define the curve energy functional

E : C(M) → R

γ 7→ E(γ) =
∫

γ

1
2 ||γ̇||2.

If we fix the time T of the path γ : [0, T ] → M , we can state the following propo-
sition.
Proposition 3.1. The horizontal curve γ minimizes the energy E among all
curves joining q0 to q1 in time T if and only if it minimizes the length l among all
curves joining q0 and q1, and is parametrized to have constant speed c = d(q0, q1)/T

One can show this proposition making use of the Cauchy-Schwartz inequality.
According to this result, the problem of finding the shortest paths connecting two
points on a manifold can be addressed minimizing the energy functional, that is
nothing more than the constant Hamiltonian functional. We shall proceed this
way when we compute the geodesic curves in the following sections.
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3.3 Hamiltonian mechanics on manifolds
and Poisson brackets

Before finding the geodesic equations in subriemannian geometry, we need to in-
troduce some basic notions of Hamiltonian mechanics on Riemannian manifolds.
We invite the reader to consult [8] (appendix A) and chapter 7 of [20] for more
details.
Let (Q, g) be a Riemannian manifold, the so-called configuration space, endowed
with local coordinates (q1, . . . , qn) near a point q. We call the cotangent bundle
T ∗Q its phase space.

Definition 3.7. A Hamiltonian is a function H : T ∗Q → R on the phase space.

We can associate a cotangent vector p to a tangent vector v through the inner
product that defines the Riemannian structure

p 7→ v

defined by its action on a tangent vector w, p(w) = ⟨v, w⟩q. In coordinates,
v = ∑

vi∂qi, and p = ∑
pidq

i, and we can write

pi =
∑

j

gij(q)vj,

where gij is the metric in the chosen coordinates. Hence, the coordinates qi induce
fiber coordinates pi. We call the 2n functions (qi, pi) canonical coordinates for
our phase space. We can now define the so-called tautological 1-form on T*Q,
Θ = ∑

i pidq
i.

Definition 3.8. The canonical symplectic form on T ∗Q is the non-degenerate and
closed 2-form −dΘ, that has the coordinate expression

ω =
∑

i

dqi ∧ dpi.

Non-degeneracy of ω implies that we can construct a linear isomorphism

T(q,p)(T ∗Q) → T ∗
(q,p)(T ∗Q)

v 7→ ivω = ω(v, )

Therefore, if we are given a function H, then there is a unique vector field XH

such that dH = ω(XH , ), (note that the gradient of H is a cotangent vector, and
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hence a 1-form on T ∗Q). The so-defined vector field is called the Hamiltonian
vector field. In canonical coordinates (qi, pi) this vector field can be written as

q̇i = ∂H

∂pi

, ṗi = −∂H

∂qi
(3.1)

which are a set of ordinary differential equations for the integral curves of XH , and
are called the Hamilton’s equations.

We can now derive the Hamilton’s equations in a different form, through the
Poisson bracket’s formalism.

Definition 3.9. Let Xg be the Hamiltonian vector field associated to a function
g : T ∗Q → R, and f : T ∗Q → R a smooth function. We can define the Poisson
brackets

{ , } : C∞(T ∗Q) × C∞(T ∗Q) → C∞(T ∗Q)
(f, g) 7→ {f, g} = Xg(f).

We have thus, by definition of gradient of a function

{f, g} = df(Xg) = ω(Xf , Xg) = −ω(Xg, Xf ) = −{g, f}

It can also be shown that { , } is bilinear and satisfies the Jacobi identity. It follows
that { , } forms a Lie algebra structure on the ring C∞(T ∗Q). In addition, { , }
satisfies the Leibniz rule, and hence { , H} defines a derivation on C∞(T ∗Q), that
is a vector field, that coincides with the Hamiltonian vector field XH . In canonical
coordinates, we can compute

{f, g} =
∑

i

∂f

∂qi

∂g

∂pi

− ∂f

∂pi

∂g

∂qi

Finally, we can derive the Hamilton’s equations in bracket forms. Let γ(t) be
the integral curve for the vector field XH , and f a smooth function. Then

d

dt
(f(γ(t)) = (XHγ(t))f = {f,H}(γ(t)).

These equations are usually written as ḟ = {f,H}. Letting f run through the
canonical coordinates qi, pj we obtain our earlier expression for Hamilton’s equa-
tions.
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3.4 Geodesic equations
A Riemannian manifold comes equipped with a non-degenerate inner product de-
fined on the tangent space to the manifold, and a metric tensor. This fact allows
to construct a non-degenerate inner product on each cotangent space, that comes
together with the cometric tensor.

In subriemannian geometry we cannot carry out the same computation, as the
inner product on a subriemannian manifold is defined only on the distribution
D, and has the same rank as the distribution k < dimM . The metric tensor
associated to the inner product is clearly not invertible. For this reason, we need
to find another way to define the cometric tensor, which will lead us to a definition
of the Hamiltonian functional associated with the subriemannian structure, the
subriemannian Hamiltonian.
Let (M,D, g) be a subriemannian manifold. We can define the cometric β as the
symmetric bundle map

β : T ∗M → TM

(q, p) 7→ βq(p) ∈ TqM

that is uniquely determined by the following two conditions

(1) im(βq) = Dq ;

(2) p(v) = ⟨βq(p), v⟩g for v ∈ Dq, p ∈ T ∗
q M ,

where ⟨, ⟩ is the inner product defined on the distribution D associated to the
metric g. The cometric β allows us to define a degenerate bilinear form (( , )) on
T ∗M × T ∗M as

(( , ))q : T ∗
q M × T ∗

q M → R
(p, r) 7→ ((p, r))q = p(βq(r))

and p(βq(r)) = ⟨βq(p), βq(r)⟩g by condition (2).

Definition 3.10. Let M be a smooth manifold with a subriemannian structure.
We define the Hamiltonian functional H

H : T ∗M → R

(q, p) 7→ 1
2((p, p))q
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The Hamiltonian functional is strictly connected to the module of the velocity
of a horizontal curve γ̇(t). In fact, by definition of horizontal curve, γ̇(t) ∈ Dγ(t).
Hence γ̇(t) = βγ(t)(p) for some p in T ∗

γ(t), by definition of β. It follows that

1
2∥γ̇∥ = 1

2⟨γ̇(t), γ̇(t)⟩g = 1
2⟨βγ(t)(p), βγ(t)(p)⟩g = 1

2p(βγ(t)(p)) = 1
2((p, p))γ(t)

= H(p, γ(t))

Let q = γ(t). We can conclude that H(q, p) = 1
2∥γ̇∥. H uniquely determines β

through the polarization identity

((a, b)) = 1
4 [((a+ b, a+ b)) − ((a− b, a− b))],

and β uniquely determines the subriemannian structure.
We now want to compute the Hamiltonian functional associated with a subrieman-
nian structure. In order to do so, we need to define some useful linear functions
on the cotangent bundle, that are called the momentum functions.

Definition 3.11. Let X be a vector field on a manifold Q. We define the mo-
mentum function for X on the cotangent bundle

PX : T ∗Q → R
(q, p) 7→ PX(q, p) = p(X(q)).

Let X1, . . . , Xn be a basis for Dp at each p for a distribution D on Q. The
Pa = PXa are the momentum functions for our frame. We know the expression of
Xa relative to the local coordinates xi to be Xa = ∑

i X
i
a(x)∂i, X i

a(x) the coefficient
functions. Hence, it is straightforward to write

PXa(x, p) =
∑

i

X i
a(x) p(∂i) =

∑
i

X i
a(x)P∂i

(x.p)

and express PXa in terms of the functions pi = P∂i
,

PXa =
∑

i

X i
a(x) pi.

Let ⟨, ⟩ be the inner product on the distribution D, with respect to whichX1, . . . , Xn

are orthonormal. We can represent it as the matrix gab(q) = ⟨Xa(q), Xb(q)⟩q. The
associated degenerate bilinear form (( , ))q on T ∗Q can be therefore represented

44



by the matrix gab(q) that is such that gam gmb = δa
b . We have now found a way of

computing the Hamiltonian functional in terms of the momentum functions

H(p, q) = 1
2((p, p))q = 1

2
∑
a,b

gab(q)Pa(q, p)Pb(q, p)

In addition, if the Xa are an orthonormal frame for H with respect to the subrie-
mannian inner product, ⟨Xa(q), Xb(q)⟩q = δab, we can write

H = 1
2

∑
a

P 2
a .

The function H is a smooth function on the cotangent bundle T ∗Q. We saw in
section 3.3 that any smooth function on the cotangent bundle can be associated
with a vector field on the cotangent bundle, and generates a system of Hamilto-
nian differential equations of the form 3.1. These equations are called the normal
geodesic equations.
We now state an important theorem (for the proof see [8] section 1.9) which ensures
that the normal geodesic equations lead to a solution of the problem of finding the
geodesics on the horizontal distribution that defines our subriemannian structure.
Theorem 3.1. Let ζ(t) = (γ(t), p(t)) ∈ T ∗Q be a solution to the normal geodesic
equations for the subriemannian Hamiltonian H, π(ζ(t)) = γ(t) its projection to
Q. Then every sufficiently short arc of γ is a minimizing subriemannian geodesic.
Once its endpoints are given, γ is unique.

We call the projected curves γ(t) the normal subriemannian geodesics. In
Riemannian geometry all geodesics are normal. This fact is no longer true in
subriemannian geometry, where we can find minimizing geodesics that do not
solve the normal geodesic equations. We call these particular geodesics singular
geodesics. For our purposes, we are only interested in normal geodesics.

3.5 Connections
In this section we define connections, that are a generalization of directional deriva-
tives to vector fields and tensor fields. We invite the reader to consult chapter 6
of [7] and [9] (appendix B).

Definition 3.12. Let M be an arbitrary smooth manifold, X(M) the space of all
vector fields on M , and let us set F = C∞(M). We define a connection on M as
the R-bilinear map

∇ : X(M) × X(M) → X(M)
(X, Y ) 7→ ∇XY
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that for all X, Y in X(M), f in F , satisfies

(i) (Leibniz rule) ∇X(fY ) = (Xf)Y + f ∇XY ;

(i) (F -linearity) ∇fXY = f ∇XY .

Example 3.2. An immediate example is the directional derivative in Rn. Let v
be a vector in Rn, v = {vi}. If y = ∑

i b
i∂i, the directional derivative Dv is defined

by

Dv y =
∑
i,j

vj (∂jb
i)∂i.

We can show that the directional derivative satisfies properties (i) and (ii), i.e, it
is a connection on Rn.

Given a connection on an n-dimensional smooth manifold M , once local coor-
dinates x1, . . . , xn are fixed, and the basis vectors on each tangent space ∂1, . . . , ∂n

are set accordingly (see 2.2), we can construct the Christoffel symbols. Let X =∑
i a

i∂i, Y = ∑
j b

j∂j. By definition

∇XY = ∇∑
i

ai∂i

∑
j

bj∂j =
∑

i

ai∇∂i

∑
j

bj∂j

=
∑
i,j

ai(∂ib
j) ∂j +

∑
i,j

aibj ∇∂i
∂j

holds. Hence, the connection is fully defined once the ∇∂i
∂j ∈ X(M) are given.

We define the Christoffel symbols Γk
ij by the equation

∇∂i
∂j = Γk

ij∂k.

We can therefore say that, locally, a covariant derivative is identified with its
Christoffel symbols, once we fix a local coordinates system.
Before going on with our discussion, we define the torsion and the curvature of a
connection on a manifold M . We set

- the torsion vector field T (X, Y ) = ∇XY − ∇YX − [X, Y ],

- the curvature operator R(X, Y ) = [∇X ,∇Y ] − ∇[X,Y ].

Example 3.3. We can compute the torsion on the Euclidean flat space Rn. Let
X = ∑

i a
i∂i, and Y = ∑

j b
j∂j. We know that the directional derivative along,

say, X of Y is given by DXY = ∑
i,j a

i (∂ib
j) ∂j. Hence,

T (X, Y ) =
∑
i,j

ai (∂ib
j) ∂j − bi (∂ia

j) ∂j − [ai∂i, b
j∂j] = 0.
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Let us now note that, through the approach we used so far, in order to fully
determine a connection it is fundamental to fix coordinate charts. However, this
is not the only possible approach. Indeed, when M is a Riemannian manifold,
it is possible to develop a chart-independent expression for the connection using
orthonormal frames, which is the idea underlying Cartan’s formalism. We invite
the reader to consult [9], [7] for more details.

First, we define the solder form

θ : TpM → Rn

v 7→ θ(v) = (v1, . . . , vn)

that maps an orthonormal frame with respect to the Riemannian metric in TM
(∂µ in coordinates) to an orthonormal frame {ei} in Rn. Hence, we can write

∇ei
ej = ωk

j (ei) ej,

where ω = (ωk
j ) is a matrix of 1-forms. We now state the important proposition

that allows us to identify a connection on a Riemannian manifold with the just
defined matrix of 1-forms ω (see [9] appendix B).

Proposition 3.2. Locally, on a Riemannian manifold M , a connection ∇ is com-
pletely determined by both its Christoffel symbols Γk

ij and the matrix of 1-forms
ωk

j .

Given a manifold M , there are many possible connections that can be defined
on it, as well as many possible metrics. We want now to impose some additional
conditions on the connections that can be defined on a manifold, in such a way that
the choice of a metric determines a unique connection satisfying such properties.

Definition 3.13. Let (M, ⟨, ⟩) be a Riemannian manifold. A connection ∇ is
called a metric connection or a Levi-Civita connection if

1) Z⟨X, Y ⟩ = ⟨∇ZX, Y ⟩ + ⟨X,∇ZY ⟩, ∀X, Y, Z ∈ X(M),

2) the connection is torsion free, i.e, T (X, Y ) = 0 ∀X, Y ∈ X(M).

Proposition 3.3. There exists a metric connection on a Riemannian manifold
satisfying properties (1) and (2). Further, such metric connection is unique.

We invite the reader to consult chapter 6 of [7] or [21] for the proof. We now
state an important theorem (by E. Cartan) that allows us to compute both the
matrix of 1-forms ω that identifies the connection and the curvature of a metric
connection in the orthonormal frame’s picture.
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Theorem 3.2. Given a metric connection ∇ on a Riemannian manifold M , the
following properties hold

(i) ω is skew-symmetric, i.e ωi
j = −ωj

i

(ii) First structural equation. Let {ei} be the orthonormal frame identified by
the solder form, and {θi} the orthonormal 1-forms of T ∗

pM found by the
identification TpM ∼= T ∗

pM through the metric ⟨, ⟩. The ωj
k are given by the

equation
dθi + ωi

k ∧ θk = 0,
that is called the first structural equation. Indeed, it defines the unique metric
connection.

(iii) Second structural equation.

Ωi
j = dwi

j + wi
k ∧ wk

j

where Ω is defined as

R(X, Y )ej =
∑

i

Ωi
j(X, Y )ei.

We now provide an example of the calculation of ω and Ω given a Riemannian
manifold.

Example 3.4. (The Poincaré upper-half plane) Let (x, y) where y > 0 be the
global coordinates for the upper-half plane of R2. The basis vectors ∂1, ∂2 of TpM
are defined accordingly. We define the Poincaré metric

ds2 = 1
y2dx⊗ dx + 1

y2dy ⊗ dy.

An orthonormal frame with respect to the metric is given by e1 = y∂1, e2 = y∂2,
and its dual is defined by θi(ej) = δj

i . Hence, θ1 = 1
y
dx, θ2 = 1

y
dy. From (ii), we

can calculate an expression for ωi
j = a dx + b dy

dθ1 = −ω1
2 ∧ θ2 = − 1

y2dy ∧ dx

dθ2 = −ω2
1 ∧ θ1 = 0,

that give as a result ω1
2 = ω2

1 = − 1
y
dx. We can compute he curvature through

(iii)

Ω1
2 = −Ω2

1 = dω1
2 = 1

y2dy ∧ dx.
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Chapter 4

Border perception and border
completion

In chapter 1, we gave a general overview of the visual pathway, from the eye to the
primary visual cortex, with a focus on the retina, the lateral geniculate nucleus,
and the primary visual cortex itself. Though not exhaustive, our description of
such neural structures highlights the role these structures play in elaborating the
visual input, and specifically what are the neural mechanisms that underlie edge
detection. The primary visual cortex, with its specialized simple, complex, and
end-stopped cells, and through its columnar functional organization, is the most
important site where this aspect of the input is processed. Nevertheless, we saw
that the neural process that, from the simple light inputs hitting the retinal pho-
toreceptors, gives rise to edge detection actually begins in the retina, where the
retinal ganglion cells play an extremely important role. In this chapter we first
provide a simple mathematical modeling for the low visual pathway, according to
that given in [22], with regard to those mechanisms responsible for edge detection
and border perception. Then, through the introduction of a contact structure in
the primary visual cortex, [2], [3], [4], [1], we give an interpretation of the border
completion mechanism.

4.1 Edge detection
We now want to define a function that describes how the photoreceptors that
lie at the bottom of the retina are activated by the light inputs. If we consider
only the hemiretinal receptoral layer, we can think of it as a compact, simply
connected domain E ⊂ R2, where each point in this domain corresponds to a
receptor. As we saw in section 1.2, photoreceptors interact with photons in such a
way that the extent of their activation is proportional to the light intensity, until
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they saturate. We can therefore imagine to associate to each point p = (x, y) in E
a number representing the activation rate of the photoreceptor that corresponds
to that point. It is not important, here, to distinguish between rods and cones,
and on and off receptors: in such a model, we consider only those features that
have a different logical impact on the downstream neurons. Hence, we define a
field R

R : E → R
(x, y) 7→ R(x, y).

Of course, we cannot expect this function to be continuous, but we can certainly
deduce, from the previous considerations, that it is bounded.
As stated above, the layer of retinal ganglion cells, whose axons constitute the
output of the retina, plays a crucial role in elaborating the visual information to
give rise to border perception, and more complex activation patterns arise. Due to
the competing center and surround in their concentric receptive fields, which we
described in 1.3, the retinal ganglion cells best respond to contrasts in brightness,
rather than to uniform light stimuli. As we did for the receptoral layer, we can
think of the retinal ganglion layer as a compact, simply connected subset of R2,
which we call Ẽ. In this model, we identify through a map

G : E → Ẽ

(x, y) 7→ (x′, y′)

receptors and ganglions, in the sense that for the receptor (x, y) there exists a
ganglion whose receptive field (bigger than one of a receptor) is centered at (x′, y′).
Such a map G must preserve distances, i.e G is an isometry according to the metric
d2 of R2. As to the activation pattern, we should take into account that a retinal
ganglion receives inputs from many receptors in a neighborhood of G−1(x′, y′), and
that it has a center-surround receptive field. We can take care of these features
describing the ganglionic activation pattern through a function

R̃ : Ẽ → R
(x′, y′) 7→ R̃(x′, y′)

defined by
R̃(x′, y′) =

∫
Uρ(G−1(x′,y′))

K(u, v)R(u, v)dudv

where

Uρ(x, y) = {(u, v) ∈ R2 : (u− x)2 + (v − y)2 ≤ ρ2}

K(u, v) =
±1 if (u− x)2 + (v − y)2 ≤ (ρ− ϵ)2

∓1 if (ρ− ϵ)2 ≤ (u− x)2 + (v − y)2 ≤ ρ2
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The subset of E, Uρ(x, y), represents the receptive field of the corresponding gan-
glion, while the the integral kernel K(u, v) encodes the fact that the center and
the circular anulus (see fig.1.4) are in mutual competition. The two cases defining
K(u, v) stand for the ON-center/OFF-surround cells and the OFF-center/ON-
surround cells, respectively.
An interesting property of the retinal ganglion activation pattern is that the func-
tion R̃ is Lipschitz continuous in both variables on Ẽ. Even though the light image
is non-continuous, its perception is. This fact provides a first example of how the
human brain can reconstruct border perceptions from a collection of light inputs.
We may now state the latter property as a more general proposition.

Proposition 4.1. Let D be a compact domain in R2, and consider

S : D → R

(x, y) 7→ S(x, y) =
∫

Uρ(x,y)
K(u, v)S(u, v)dudv

where

Uρ(x, y) = {(u, v) ∈ R2 : (u− x)2 + (v − y)2 ≤ ρ2}

K(u, v) =
±1 if (u− x)2 + (v − y)2 ≤ (ρ− ϵ)2

∓1 if (ρ− ϵ)2 ≤ (u− x)2 + (v − y)2 ≤ ρ2 ,

and S is an arbitrary function with S(D) bounded. The function S is Lipschitz
continuous.

An interesting application of such property can be found in [22]. A further
smoothing reconstruction is carried out in the lateral geniculate nucleus; hence we
are allowed to consider, from now on, R̃ a smooth function.
We finally turn to study the primary visual cortex, whose anatomical and func-
tional properties are discussed in sections 1.6, 1.7, 1.9, and we now recall those
involved in the process of border perception. First of all, we saw that in V1 there
is a faithful preservation of spatial information, i.e, there is a homeomorphism
between the hemiretinal receptoral layer and V1, the retinotopic map. This is
basically how the primary visual cortex encodes for the position of the point in
the retinal layer that receives the light stimulus. The existence of such retinotopic
map allows us to identify V1 with a compact domain in R2, which we may call D.
Thanks to the center-surround elongated receptive fields of its simple and com-
plex cells, the primary visual cortex can encode for the orientation θ of some edge
through the point at the center of the receptive fields of such cells (see fig.1.8).
Moreover, through the so called end-stopped cells, the perception of the curvature
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of those perceived edge is created. According to the fundamental work [15], V1 is
organised in functional units called hypercolumns, that allow to analyze different
aspects of the visual information separately and in parallel. In this model, we
assume that at each point of the domain D there is a full set of simplex, complex
and hypercomplex orientation columns, i.e, a full orientation hypercolumn. For
this reason, at each point of the domain D we have available every possible ori-
entation for any light edge through the point. For this purpose, we make use of
the concept of fiber bundle, which we described in section 2.7,and we define the
orientation bundle E := D×S1 → D. We now define the vector field Z on D×S1

Z(x, y, θ) = −sinθ ∂x + cosθ ∂y,

where ∂x and ∂y form a basis for the tangent space at each point (x, y) in the
domain D, and θ is the coordinate for the manifold S1. Thanks to the action of
the lateral geniculate nucleus, we can identify each image with a smooth function
F : D → R. We can therefore define the orientation of a function.

Definition 4.1. Let F : D → R be a smooth function, and reg(D) ∈ D the subset
of the regular points of F (see definition 2.11). We define the orientation of F as

Θ: reg(D) → S1

(x, y) 7→ Θ(x, y) = argmaxθ∈S1{Z(θ)F (x, y)}

The map Θ here is in charge of reproducing the behavior of simple and complex
hypercolumns, so that an oriented edge is assigned at each point. We now show
that the map Θ is well defined.

Proposition 4.2. Let F : D → R be a smooth function, and (x0, y0) ∈ D a regular
point for F . Then:

1) There exists a unique θx0,y0 ∈ S1 for which the function ζx0,y0 : S1 → R,
ζx0,y0(θ) = Z(θ)F (x0, y0) reaches its maximum.

2) The map Θ: reg(D) → S1, θ(x, y) = θx,y is well defined and differentiable.

3) The set
ϕ = {(x, y,Θ(x, y)) ∈ D × S1 : Θ(x, y) = θx,y}

is a regular submanifold of D × S1.

52



Proof. 1. For each (x, y) regular point of F , ζx,y is a differentiable function (and
hence of course continuous), on a compact domain. Its image set must also be
compact, and hence bounded and closed, i.e the function admits a maximum. We
must now show the maximum is unique. Let us write explicitly

ζx,y(θ) = −sinθ ∂xF + cosθ ∂yF,

where we know that (∂xF, ∂yF ) ̸= (0, 0), as (x, y) is a regular point. The uniqueness
of the maximum can be easily seen carrying out the first and second derivative
with respect to θ.
2. The map Θ is well defined by (1), and it is clearly differentiable.
3. It is a consequence of the implicit function theorem, and theorem 2.4.

We may now imagine a smooth contour to be represented by the level set of
some smooth function F : D → R,

Γ = {(x, y, θ) ∈ E : F (x, y) = c ∈ R},

and we construct the lift of Γ via the map Θ

Σ = {(x, y, θ) ∈ E : (x, y) ∈ Γ, θ = Θ(x, y)}.

Let σ(t) = (x(t), y(t), θ(x, y)) be a regular parametrisation for Σ. We can show
that Σ is tangent by construction toX = cosθ ∂x + sinθ ∂y

Y = ∂θ

,

as Θ(x, y) corresponds to the angle between the tangent line to the perceived
orientation in (x, y) and the x axis:

dσ(t)
dt

= ẋ(t) ∂x + ẏ(t) ∂y + θ̇(t) ∂θ

=
√
ẋ(t)2 + ẏ(t)2(cosθ ∂x + sinθ ∂y) + θ̇(t) ∂θ

=
√
ẋ(t)2 + ẏ(t)2X + θ̇(t)Y

We now define the distribution ∆ = span{X, Y }. By computing the Lie bracket

[X, Y ] = − ( − sinθ ∂x + cosθ ∂y ) = −Z,

it is clear that span{X(q), Y (q), [X, Y ](q)} = TqE , for each q ∈ E . Our distribu-
tion ∆ is therefore a bracket generating distribution (see section 3.2), and the lift
of the smooth edge Γ is horizontal to it. In the following section, we will make use
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of this horizontal distribution to construct a subriemannian structure on E , and
address the problem of the border completion mechanism in the primary visual
cortex. We need now to highlight the fact that, from the neurophysiological point
of view, this kind of perceptual completion performed in the human cortex must
be closely related to the perception of continuity, given a set of oriented edges (see
[3]).

4.2 Border completion via subriemannian
geodesics

In the previous section, we dealt with the modeling of the feed-forward filtering
performed by the simple and complex cells of the primary visual cortex, that al-
lows to detect oriented edges in the visual input.
We now describe the border completion mechanism, which is the basis of the
perception of objects and shapes as separated entities from the background. A
mathematical model of this perceptual completion process must consider, as a
phenomenological basis, that given an initial and a final segment, i.e, two bound-
ary inducers, there is always one special path that is preferentially reconstructed
as a perceived border in the human brain ([23]). In this section, we want to model
such particular path as the projection onto D (see section 4.1) of a normal sub-
riemannian geodesic in E . To compute this geodesic curve, we need to introduce
a subriemannian structure to find the related Hamiltonian, and we will follow the
method in [8]. Furthermore, this grouping of isolated oriented edges into a smooth
contour happens only when the relative orientations of the elements conform to
curves without points of inflection ([24]). This statement finds its equivalence in
the Gestalt psychology law of good continuation.
In the previous section we provided a model for the functioning of the hypercolum-
nar structure of V1 as the manifold E = D × S1, which we called the orientation
bundle, and for which we fixed the coordinates (x, y, θ). We saw also that, if Γ is
a smooth edge on D in a given visual image, its lift Σ via the map Θ of definition
4.1 is tangent to X = cosθ ∂x + sinθ ∂y and Y = ∂θ, and that the distribution
spanned by these two vector fields is bracket generating. We now need to define an
inner product on this distribution, and we choose the standard euclidean product
inherited from R3, restricted to ∆:

⟨, ⟩ : ∆q × ∆q → R
(v, w) 7→ ⟨v, w⟩.

Hence, we can define the subriemannian manifold (E ,∆, ⟨, ⟩). We note that X
and Y are orthonormal, with respect to the subriemannian inner product ⟨, ⟩.
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Therefore, according to what discussed in section 3.4, we can define a cometric for
every q ∈ E ,

βq : T ∗
q E → TqE
p 7→ βq(p).

such that Imβq = span{X(q), Y (q)}. Let us introduce the local coordinate sys-
tem (x, y, θ, px, py, pθ) on T ∗E , where (px, py, pθ) are the local coordinates on the
cotangent bundle corresponding to (x, y, θ), defined by writing any covector p as
p = px dx + py dy + pθ dθ. We obtain the expression for the cometric in local
coordinates

βq =

cosθ 0
sinθ 0

0 1


The subriemannian Hamiltonian associated with β, is the functional

H : T ∗E → R

(q, p) 7→ 1
2⟨βq(p), βq(p)⟩,

and from the section 3.4 we know that we can express H as

H = 1
2(P 2

X , P
2
Y ).

Here, PX and PY are the momentum functions (3.11) of X and Y :

PX = cosθ px + senθ py

PY = pθ,

where px = P∂x , py = P∂y , pθ = P∂θ
, coincide with the local coordinates for T ∗

q E ,
defined above. Hence, in local coordinates, we can write

H = 1
2[(cosθ px + sinθ py)2 + p2

θ].

From section 3.3, we know that to each Hamiltonian functional we can associate an
Hamiltonian vector field, defined by the Hamilton’s equations 3.1. Furthermore,
we know that ḟ = {f,H}, for any smooth function f on the cotangent bundle. If
we define the auxiliary functions

p1 = PX = cosθ px + senθ py

p2 = PY = pθ

p3 = PZ = −sinθ px + cosθ py.
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We can obtain equations 3.1 letting f vary over the coordinate functions (x, y, θ),
and the auxiliary functions on the cotangent bundle (p1, p2, p3). Before going on
with our derivation of the Hamilton’s equations, let us note that

{PX , PY } = PZ = −P[X,Y ].

We can now easily calculate the Hamilton’s equations for the position coordinates
(x, y, θ)

q̇i = {qi, H} −→


ẋ = cosθ p1

ẏ = sinθ p1

θ̇ = p2

and for (p1p2, p3)

ṗi = {pi, H} −→


ṗ1 = p3p2

ṗ2 = −p3p1

ṗ3 = −p1p2

As we know that the Hamiltonian functional assumes a constant value along
the Hamiltonian flow (i.e, the solutions to Hamilton’s equations), we can write

E = p2
1 + p2

2,

where E/2 is a constant Hamiltonian value. Then, we can introduce an auxiliary
variable γ(t) such that 

p1 =
√
E sin(γ

2 )
p2 =

√
E cos(γ

2 )
p3 = 1

2 γ̇,

and therefore we can express the other variables as
ẋ =

√
E sin(γ

2 ) cosθ
ẏ =

√
E sin(γ

2 ) sinθ
θ̇ =

√
E cos(γ

2 ).

The variable γ satisfies a pendulum-like differential equation

γ̈ + E sinγ = 0,

which is not analytically solvable. Hence, in order to give a graphical representa-
tion of the geodesic curves, we need to resort to numeric integration. The solutions
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Figure 4.1: Solutions of the geodesic equations for some values of γ, projected onto
the domain D. The energy is fixed to E = 0.2.

Figure 4.2: A solution to the geodesic equations that joins (0, 0, 0) and (0.01, 0.005, π
3 )

(on the right), and its projection onto the domain D (on the left).
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Figure 4.3: The association field (on the left): the rays extending from the ends of the
central oriented element represent the optimal orientations at different positions. On
the right, the specific rules of alignment are represented.
- [24]

of this differential equations are the the lifts in E of perceived borders. In fig. 4.1,
we show the projections on D of some solutions with the energy fixed to a value
E = 0.2, obtained varying the initial value of the parameter γ. A solution to
the geodesic equations that joins the points (0, 0, 0) and (0.01, 0.005, π

3 ) is shown
in fig.4.2, mimicking the border completion mechanism in the brain, given two
boundary inducers, i.e, given initial and final coordinates (x, y, θ).

To conclude, we note the similarity of the geodesic curves depicted in fig. 4.1
with the local association fields from [24] shown in fig. 4.3. Fields, Heyes and Hess
investigate, through a set of experiments, how the relative alignment of neighboring
oriented elements is related to the perception of continuity in the human brain. The
information detected by single orientation selective cells is supposed to propagate
locally through some long-range connections in an orientation and position-specific
modality ([25], [26]). According to our model, the natural interpretation of the
local association field is the representation of the projection onto D of a family of
integral curves of the Hamiltonian vector field, i.e, the solutions to the geodesic
equations corresponding to the joint constraints of position and orientation.
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