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Introduction

In former times, mathematics was considered as an intellectual, even spiritual

discipline, that had little to do with the real word. Nowadays, mathemat-

ics finds application in the physical, biological, and social sciences, and in

some of the humanities as well. There appears to be no branch of orga-

nized knowledge that cannot benefit -at least to some extent- from the use of

mathematical reasoning. Cancer research belongs to one of the various field

of biology that may benefit from mathematical treatment.

Macroscopic and microscopic tumors are, quite soon after their first phases

of growth, composed by a large to huge number of cells. Thus, in absence

of external perturbations, their growth and, in some cases ,as we shall see in

this thesis,only up to some extent, equilibrium may be described by differen-

tial equations. These can also be used to model perturbations due to human

intervention to cure the disease. However, tumor strongly interact on its

macroenvironment and as a result a totally deterministic description may be

sometime highly inappropriate. In this case the interplay with the statistical

fluctuation due to external disturbances (”extrinsic noises”) can be take into

account by using Ito-Langevin stochastic differential equations (SDE) fields.

This is specially true when modelling highly immunogenic tumors interplay-

ing with the immune system, since the complexity of this interaction results

in multistability. Thus, the noise may induce noise-induced state transitions

(NITs). We point of that a NIT in the tumor size has deep implication on

the life of a patient, since a transition from a small equilibrium state of the

tumor size to a macroscopic equilibrium in most cases means, unfortunately,

a transition from life to death. Note also that, from the point of view of the

tumor, this is a clear illustration of the emerging concept that in many cases

”noise is not a nuisance”.
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Apart oncology, SDE-based models and NITs were extensively used in all

fields of biomathematics in last 35 years, since seminal works by Horstemke,

Lefever and the late Nobel laureate Ilya Prigogine. The standard approach is

to model stochastic fluctuations of parameters by means of white or colored

Gaussian noise. Very recently, it has pointed out that in some important

cases this procedure is highly inappropriate, due to the intrinsic unbounded-

ness of Gaussian noises, which can lead to serious biological inconsistencies:

bounded noises must be used, which, however, are far less studied than gaus-

sian noises. Moreover, the onset of NITs depends on the kind of chosen noise,

which reveals a novel level of complexity in biology.

The aim of this thesis is to study the applications of bounded-noise induced

transitions in two important cases: Tumor Immune-System interplay, and

chemotherapy of tumors. In the former case, we also introduce a novel math-

ematical model of the therapy, which in a new way extends the well-known

Norton-Simon biological hypothesis and model.

The thesis is organized as follows:

The first chapter gives an introduction to cancer. I will explain causes,

symptoms,diagnosis, stages and treatments of the disease giving also a clas-

sification of tumor different types.

In the second chapter I will show some Mathematical models in cancer re-

search divided in carcinogenesis models and models of tumor growth giving

also an introduction to chemotherapy models.

In the third chapter I will explain a family of models modeling tumor-immune

system competition, and also some numerical simulations regarding the in-

terplay lymphoma-Immune System in chimeric mice.

The forth chapter gives an introduction to noise explaining the meaning of

white noise and how to introduce it in some deterministic equations leading

to stochastic differential equations.

In chapter five I introduce bounded noises, with particular regard to the cre-

ation of bounded ”Sine Wiener noise” and bounded ”Cai noise”.

In chapter six I illustrate the effect of bounded stochastic fluctuations in

some key parameters of the above mentioned model of tumor-immune sys-

tem interaction, by means of the use of Sine-Wiener and Cai noises.

In chapter seven I will study a realistic biophysical model of tumor growth in
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presence of the delivering of a constant continuous chemotherapy introducing

some stochastic bounded fluctuations that affect both carrying capacity of

the tumor and drug level in the blood and showing that they might cause

the transition from a low equilibrium to a larger value, not compatible with

the life of the host.
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Chapter 1

Understanding Cancer

In most people’s minds there is no scarier diagnosis than that of cancer.

Cancer is often thought of as an untreatable, unbearably painful disease with

no cure. Although in last 40 years treatment of some kind of tumors

has luckily had remarkable success, cancer is undoubtedly a very

serious and potentially life-threatening illness. Millions of people die

from cancer every year and worldwide trends indicate that millions more will

die from this disease in the future. For example, it is the leading cause of

death in Americans under the age of 85, and the second leading cause of

death in older Americans [Eve10]. However popular this view of cancer may

be, it is over-generalized. It is a misconception to think that all forms of

cancer are untreatable and deadly. The truth of the matter is that there are

multiple types of cancer, many of which can today be effectively treated so

as to eliminate, reduce or slow the impact of the disease on patients’ lives.

Great progress has been achieved in fields of cancer prevention and surgery

and many novel drugs are available for medical therapies. While a diagnosis

of cancer may still leave patients feeling helpless and out of control, in many

cases today there is cause for hope rather than hopelessness.

1.0.1 What is Cancer?

Human’s body is composed of many millions of tiny cells, each a self-contained

living unit. Normally, each cell coordinates with the others that compose

tissues and organs of the body. One way that this coordination occurs is
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reflected in how cells reproduce themselves. Normal cells in the body grow

and divide for a period of time and then stop growing and dividing. There-

after, they only reproduce themselves as necessary to replace defective or

dying cells. Cancer occurs when this cellular reproduction process goes out

of control. In other words, cancer is a disease characterized by uncontrolled,

uncoordinated and undesirable cell division. Unlike normal cells, cancer cells

continue to grow and divide for their whole lives, replicating into more and

more harmful cells. The abnormal growth and division observed in cancer

cells is caused by damage in these cells’ DNA (genetic material inside cells

that determines cellular characteristics and functioning). There are a variety

of ways that cellular DNA can become damaged and defective. For exam-

ple, environmental factors (such as exposure to tobacco smoke) can initiate a

chain of events that results in cellular DNA defects that lead to cancer. Alter-

natively, defective DNA can be inherited from parents. As cancer cells divide

and replicate themselves, they often form into a clump of cancer cells known

as a tumor. Tumors cause many of the symptoms of cancer by pressuring,

crushing and destroying surrounding non-cancerous cells and tissues.

1.0.2 Tumor classification

We may classify tumors in two different ways:

• Behavioral classification:

The greatest distinction of tumor types is between Benign and Malig-

nant:

Benign Tumors: are not cancerous, thus they do not grow and

spread to the extent of cancerous tumors. They are generally

slow growing expensive masses , often with ”pushing margins”

and enclosed within a fibrous capsula.

Malignant Tumors: They are usually rapidly growing, invading

local tissue and spreading to distant sites. The process whereby

cancer cells travel from the initial tumor site to other parts of the

body is known as metastasis.
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It must be noticed that there are some benign tumors that predispose

to malignancy and some in situ carcinomas that progress so slowly that

they may never achieve malignancy. Anyway the ability to metastasize

is evidence of malignancy.

• Histogenetic classification:

The most efficient way to classify tumors is according to the tissue of

origin and the cell type involved. Problems in this kind of classification

arise because some tumor cells grow in such a way that they bear

no resemblance to any structure or cell type. Such anaplastic tumors

require more detailed investigation to discover their histogenesis 1. A

further problem is that sometimes a tumor resembles tissue which is

not normally present at the site of origin.

1.0.3 The causes of cancer

Cancer is basically a genetic disease even if there are some viral cancer types.

There are two differences between it and other genetic diseases:

1. Cancer is generally caused by somatic mutations whereas other genetic

disease arise as result of germ line mutations, although a sizable mi-

nority.

2. Each individual cancer appears to arise from several sequential muta-

tions (Multi-Hit or Multi-Stage theory of carcinogenesis)

A common general feature of carcinogenesis in both humans and experimental

studies is that a relatively long time period elapses between the application of

a carcinogenic stimulus and the emergence of clinically recognizable cancer.

This is known as the latent period and can be from few months to many

years. The most likely reason for the latent period is that carcinogenic agent

does not cause cancer in one step ,but rather genetically alters normal cell(s)

so that it enjoys a proliferative advantage over its normal neighbors. This

altered cell(s) then undergos clonal expansion driven by mutation, and the

resultant cell could be more susceptible to further changes. Accordingly,

1Histogenesis: the cellular origin of a tissue or a tumor.
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one of these cells later acquires a further mutation allowing its progeny to

overgrow its neighbors and perhaps form a small benign tumor. Further

phases of clonal expansion and mutation will eventually give rise to a cell

with a a sufficient number of mutations (’hits’) to bestow the malignant

phenotype upon cells arising from it, so that they invade surrounding tissue

and metastasize to other organs- thus multi-stage carcinogenesis.

Most carcinomas are rare under 30 years old but then the incidence rate

increases dramatically with age. The explanation is that 3 to 7 ’hits’ are

required for a cancer to form.

Initiators and promoters

There are two types of chemical involved in causing cancer:

1. Initiating agents: are ”genotoxic agents”, binding to DNA and causing

mutations. Their effects are irreversible.

2. Promoting agents: circumstances which ”promote” the expansion of

altered cells. They are ineffective in producing cancer on their own or

when given before the initiator.

Thus the process of chemical and irradiation-induced carcinogenesis are thought

to initially involve genotoxic events which irreversibly damage DNA (initia-

tors) followed by circumstances which promote the expansion of altered cells.

Such progeny could than be ’at risk’ of further mutation, leading to cycles

of initiation and promotion before emergence of the malignant phenotype.

The environment

The common fatal cancers occurs as a result of lifestyle and other environ-

mental factors and can be preventable. It is not surprising that the envi-

ronment is implicated in carcinogenesis, as the vast majority of tumors are

carcinomas arising from epithelium in direct contact with the environment.

Environmental risk factors fall into 3 categories:

1. Physical agents (X-ray,UV-light..)

2. Chemical agents
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3. Infectious agents (bacteria,fungi,virus)

Identifying the causes

Through a combination of epidemiological and experimental studies it has

been possible, with a reasonable degree of certainty, to identify certain agents

which have something to do with the carcinogenic process. Doll and Peto

(1981) suggested that there are three determinants for cancer development:

1. Nature: a person’s genetic make-up at conception.

2. Nurture: relates to what people do during their lives.

3. Luck.

We must observe that some occupations , medical and social hazards may

contribute to the developing of cancer. Years of research have brought to

light risk factors that increase people’s chances of getting particular types of

cancer. Some of these risk factors are inevitable, while others can be avoided

by choosing to live a healthy lifestyle. For example, smoking cigarettes is an

avoidable risk factor. Changing your lifestyle to get rid of unhealthy choices

such as smoking can be difficult to accomplish (tobacco is an addictive drug

and stopping smoking means beating that addiction), but the rewards are

real. Stopping smoking and similar healthy lifestyle changes will not insure

that you never get cancer, but they will reduce your cancer risk. This is true

whether you have never had cancer before, or if you have previously beaten

cancer and are wondering what you can do to reduce your chances of relapse.

It is important to note that cancer is not a uniform illness, but rather has

many forms. Each specific type of cancer is different and consequently has a

different set of associated risk factors.

Cancer caused by viruses

As we said at the beginning of this chapter, Cancer can be a genetic dis-

ease or a viral one.

The relationship between virus and cancer is becoming of profound impor-

tance as virus lifestyle inherently affect host cell DNA. Cancer causing viruses
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are called oncogenic viruses. Only 17-20 percent of human cancer is thought

to be associated with viruses. Oncogenic viruses are classified according to

wether they contain DNA or RNA in their genome. DNA viruses are the

major cause of human virally-induced cancers.

• DNA oncogenic viruses:

Such viruses encode proteins which interact with critical cellular growth

regulatory molecules sabotaging their function. (EBV,HBV,HPV..)

• RNA oncogenic viruses:

Only a family of RNA viruses called retrovirus 2 cause tumors. How

these retrovirus induce neoplasia 3 is not entirely clear but it may be

a combination of an impairment of the immune system to kill tumor

cells together with a stimulation of cell proliferation in uninfected or

infected immune competent or other cells.

Genetic basis of cancers

Proto-oncogenes are normal cellular genes encoding cytoplasmic and nuclear

proteins, responsible for the cell’s normal proliferation and differentiation

programmes. These genes encode a variety of proteins involved in mitoge-

nesis 4 and differentiation which are organized into a cascade of reactions.

For example, the oncogenic activity of the v-onc genes seems to be due to

either quantitative changes in the levels of expression or differences between

the viral and cellular homologues leading to the production of a protein with

oncogenic activity. More important probably, in the case of human tumors,

proto-oncogenes can be involved in tumorogenesis through point mutation
5, gene amplification 6 or chromosomal translocation 7. It is now gener-

2Retrovirus: is a virus whose genome is on the form of single-strained RNA and

requires the activity of reversal transcriptase to produce the appropriate DNA because

it can complete its intracellular life cycle by becoming incorporated into the DNA of the

infected host cell for replication.
3Neoplasia: the process of tumor formation.
4Mitogenesis: activity of initiating cell division.
5Point Mutation: mutation at one single base in a gene, resulting in coding for a

different amino acid at this location, thus producing a different protein.
6Gene Amplification: increase in gene copy number.
7Chromosomal Translocation: change of location of a gene either on the same

chromosome or to different chromosome; when aberrant can cause proximity of genes that
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ally believed that most human neoplasia results from abnormalities in the

proto-oncogene expression, genes whose normal function is to control cell pro-

liferation and/or differentiation; thus these genes become oncogenes (cancer-

causing). They may function as oncogenes because their protein product is

abnormal or there is a quantitative defect (too much or too little) in transcrip-

tion of the gene. Two fundamentally different genetic mechanisms appear to

be operative during tumor development:

• Enhanced or aberrant expression of proto-oncogenes.

• Loss or inactivation of tumor suppressor genes.

Oncogenes can be regarded as a foot on the accelerator in the drive toward

cell proliferation. Anti-oncogenes, better known as tumor suppressor genes

are, on the other hand, a foot on the brake, in that their protein products

appear to inhibit cell proliferation. So, the behavior of normal cells seems

to be regarded by growth promoting proto-oncogenes , counterbalanced by

the growth-constraining tumor suppressor genes. Alterations (point muta-

tions,gene amplification,insertional mutagenesis 8 ,translocation) that poten-

tiate the activities of proto-oncogenes create the oncogenes that promote

growth and the establishment of the malignant phenotype. Conversely, ge-

netic alterations in tumor suppressor genes result in a loss of growth restraint

normally imposed by the protein products of these genes. The end product of

these two events would seem to be the same- deregulated cell behavior (prolif-

eration and differentiation). However , accumulating evidence suggests that

the development of many malignant tumors requires both types of change in

the tumor genome.

1.0.4 Cancer Symptoms

Every type of cancer is different, and has a unique set of symptoms associated

with it. Some cancer symptoms are manifest outwardly, and are relatively

influence each other with overall deleterious effect.
8Insertional Mutagenesis: retroviral mechanism of cellular transformation. Virus

RNA is the template for provirus double-strained DNA and this, in its entirely, is inserted

into the host genome, causing mutation.
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easy to notice and identify (such as a lump in the breast for breast cancer, or

blood in the stool corresponding to colorectal cancer). Other symptoms are

observable, but harder to decipher. For instance, two of the major symptoms

for lung cancer are a bronchitis-like deep cough and excessive shortness of

breath. Few people would assume these symptoms were serious and fewer

would associate them with cancer. Still other forms of cancer produce no

observable symptoms until they are at a very advanced (and therefore hard

to treat) stage.

1.0.5 Cancer Diagnosis

A physician who suspects a patient may have a specific form of cancer will

perform a series of tests and procedures to diagnose (or rule-out) a cancer.

Commonly, doctors will collect a sample of tissue or fluid from the area

believed to contain a cancerous tumor so that it may be analyzed in the

laboratory under a microscope. This collection and observation procedure is

known as a biopsy. Often, performing a biopsy and analyzing the resulting

samples is the only way that doctors can accurately determine a diagnosis of

cancer.

1.0.6 Stages of cancer

Following a positive identification of cancer, doctors will try to establish

the stage of the cancer. Cancers are ranked into stages depending on the

specific characteristics that they possess; stages correspond with severity.

Determining the stage of a given cancer helps doctors to make treatment

recommendations, to form a likely outcome scenario for what will happen to

the patient (prognosis), and to communicate effectively with other doctors.

There are multiple staging scales in use. One of the most common ranks

cancers into five progressively more severe stages: 0, I, II, III, and IV.

• Stage 0 cancer is cancer that is just beginning, involving just a few

cells.

• Stages I, II, III, and IV represent progressively more advanced cancers,

characterized by larger tumor sizes, more tumors, the aggressiveness
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with which the cancer grows and spreads, and the extent to which the

cancer has spread to infect adjacent tissues and body organs.

Another popular staging system is known as the TNM system, a three di-

mensional rating of cancer extensiveness. Using the TNM system, doctors

rate the cancers they find on each of three scales:

• T stands for tumor size.

• N stands for lymph node involvement.

• M stands for metastasis (the degree to which cancer has spread beyond

its original locations).

Larger scores on each of the three scales indicate more advanced cancer. For

example, a large tumor that has not spread to other body parts might be

rated T3, N0, M0, while a smaller but more aggressive cancer might be rated

T2, N2, M1 suggesting a medium sized tumor that has spread to local lymph

nodes and has just gotten started in a new organ location.

Still another staging system, called summary staging, is in use by the Na-

tional Cancer Institute for its SEER program. Summary stages include:

• ”In situ” or early cancer (stage 0 cancer).

• ”localized” cancer which has not yet begun to spread.

• ”regional” cancer which has spread to local lymph nodes but not yet

to distant organs.

• ”distant” cancer which has spread to distant organs.

• ”unknown” cancer to describe.

1.0.7 Cancer treatments

Doctors prescribe cancer treatment regimens based on a variety of factors

specific to patients’ individual circumstance. These factors often include the

cancer’s stage (type, location, and size of the cancer being treated), as well

as patients’ age, medical history, and overall health. The doctor may also
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ask patients to specify their treatment preferences before determining an op-

timal treatment plan as far as their condition does not require emergency

intervention. In general, it is not a good idea to rush into a treatment plan

merely as a way to reduce the understandable anxiety of having a cancer

diagnosis.

Each form of cancer is different and calls for a different set of treatment ap-

proaches. The main stay of treatment is usually surgical resection combined

with systemic chemotherapy or localized irradiation. The use of multiple

treatment modalities is known as Adjuvant Therapy and the simultaneous

use of a number of anticancer drugs is referred to Combination Therapy.

Clearly, successful treatments of neoplastic disease largely depends on inflict-

ing the maximum damage on the tumor stem cells and the minimum damage

on normal tissue stem cells.

As we said before, there are two types of treatment:

• Chemotherapy: is one of the most commonly used methods to treat

cancer patients. It is commonly prescribed for patients whose cancer

is not localized but instead has possibly metastasized, or spread, to

various locations in the body. Chemotherapy can be used to reduce

the symptoms and pain associated with cancer as well as to slow the

growth of cancerous tumors. In some circumstances chemotherapy may

even kill spreading cancerous cells.

Chemotherapy utilizes a powerful combination of drugs that are either

taken by mouth or injected directly into the bloodstream. Drug doses

are commonly given in a repeating pattern over a set amount of time.

Treatment frequency and duration depend on the type of cancer each

patient has, and the manner in which the patient tolerates and responds

to the drugs. Chemotherapy drugs target cells in the body that divide

and grow quickly and are usually able to destroy these cells. Unfor-

tunately cancer cells are not the only cells in the body which divide

and replicate quickly. In addition to cancerous cells, chemotherapy

drugs also kill some regular healthy cells, causing side effects such as

the fatigue, nausea, and hair loss. To some extent, side effects can

be controlled or alleviated with other medications or by altering the
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schedule of chemotherapy treatments. Unfortunately, one of the major

obstacles to the ultimate success of cancer chemotherapy is the ability

of malignant cells to develop resistance to cytotoxic drugs. This may be

resistance to a single agent or multi-drug resistance to cytotoxic drugs

(MDR) which confers upon cells the ability to withstand to lethal doses

of many structurally unrelated agents.

• Radiation Therapy: is a method of treating cancer that utilizes ra-

diation energy. Radiation is most commonly used to treat localized

cancers as opposed to cancer that has spread throughout the body.

The goal of radiation therapy is to kill cancer cells or at least limit

their ability to grow and divide by damaging their genetic material.

Like chemotherapy, radiation therapy is not perfectly precise in its tar-

geting of cancer cells, and some normal, healthy cells can also become

damaged. Patients should not become too concerned about damage

to healthy cells, however. Doctors generally do a good job shielding

and protecting healthy cells surrounding cancer areas from radiation

damage. Also, healthy cells that do sustain damage during radiation

treatment are usually able to repair their genetic material when treat-

ment ends.

There are two main ways in which radiation therapy can be admin-

istered: externally and internally. When delivered externally, special

machines are used to project a focused beam of radiation into targeted

areas of tissue within the body. Internal radiation therapy involves

surgical placement of radioactive materials near cancerous tumors or

afflicted body areas. When placed internally, the source of radiation is

often sealed in a small compartment such as a catheter or capsule prior

to implantation.
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Chapter 2

Mathematical Models in cancer

research

There appears to be no branch of organized knowledge that cannot benefit

- at least to some extent - from the use of mathematical reasoning. Biology,

the science basic to cancer research, is intermediate between physics and

literature in the use which it makes of mathematics. Hence, mathematics

can be useful in at least some areas of cancer research and the application

of mathematical models to a series of contemporary topics related to the

understanding and treatment of cancer is possible.

2.1 Carcinogenesis models

Theoretical carcinogenesis deals with the ways in which malignant disease

comes into being. Its scope ranges from detailed molecular theories of the

nature of cancer to phenomenological descriptions of the probability of tu-

mor occurrence under specific conditions. The phenomenological end of the

spectrum provides the less ambitious goals and also lends itself more readily

to the application of mathematical models.

2.1.1 The age incidence pattern of cancer

A natural starting point for many descriptive mathematical models has been

the observed age-incidence pattern of human cancer. It is found that most

41



adult cancers increase rapidly in incidence with increasing age. Each tumor

type has is own pattern of occurrence as a function of age which can be

modulate by lots of factors. In spite of this , some broad generalizations

are possible. For a wide class of human tumors the age incidence pattern is

found to conform to an equation of the form:

I(t) = Ctk (2.1)

where I(t) is the incidence rate at time t since birth, C,k are constants.

2.1.2 Initiation and promotion

Another very important finding that has influenced carcinogenesis modeling

is the observation of a distinction between initiation and promotion in the

causation of cancer by chemical carcinogens. It has been found that different

chemical substances may play different roles in bringing about a recognizable

tumor. Some theories have been proposed that incorporate this feature in

their quantitative description of carcinogenesis.

2.1.3 A single cell origin of cancer

A third general idea which is important for some of the models considered

here is the single-cell origin (monoclonality) of many human tumors. This

implies that all the cells of the tumor are direct descendants from a single cell

which has experienced malignant transformation and undertaken unlimited

proliferation.

2.1.4 The single-stage theory of cancer

The simplest approach to quantitative carcinogenesis models was developed

by Iverson and Arley in 1950. This has been reviewed by Whittemore (1978).

Suppose the carcinogenic transformation of a clonogenic cell required only a

single irreversible event to occur (events are envisaged as occurring sponta-

neously as well as being direct consequence of exposure to some carcinogens).

The rate l(t) at which normal cell are transformed into malignant cells is:

l(t) = s+ pC(t) (2.2)
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where: s is the probability of spontaneous transformation, C(t) is the con-

centration of carcinogen, p is a constant expressing the dose response rela-

tionship for the carcinogen.

If N cells are at risk and carcinogenic transformation occur in depletion of

number, the rate r(t) of generation of malignant cells per unit time is:

r(t) = (s+ pC(t))N (2.3)

For anyone of the transformed cells to give rise to a detectable tumor it

is presumed that it must proliferate until a detectable cell number Nd has

been produced. Iverson and Arley supposed that a transformed cell has a

probability β per unit time of dividing and that is independent on unit time

and concentration of carcinogen. They calculated on this basis G(t) , the

proportion of transformed cells whose time of detectability is less than t.

2.1.5 The multi-cell transformation theory

Suppose now that malignant transformation is not a single cell event but

requires the cooperation of several cells. If k cooperating cells are needed,

the rate at which the kth alteration occurs in the tissue is approximately

proportional to (NpC)ktk−1 where C = const is the concentration of the

carcinogen.

Whit some other simplifying assumptions it is found that the incidence rate

should be proportional to the kth power of carcinogen and (k − 1)power of

time. The observed age incidence curve could be interpreted to mean that

seven cooperating cells are necessary for the genesis of a tumor. The evidence

on monoclonality of tumors implies that it is unlikely to be true in general.

As a result interest has shifted to multistage theories which incorporate the

hypothesis of monoclonality.

2.1.6 The multistage theory of cancer

The multistage theory owes its conceptual origins to Muller (1951) and

Nordling (1954) and its mathematical formulation to Stocks (1953). The

central assumption of the multistage theory is that a single clonogenic cell is

transformed to a malignant state as a result of experiencing a sequence of k
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events, no one of which can bring about transformation on its own. These

may be thought of as being a sequence of k somatic mutations affecting DNA,

although this interpretation is not a necessary one. Consider k stages or steps

through which a cell must pass sequentially in order to reach the end state or

full blown malignant transformation. Let λ1, λ2, ......, λk be the probabilistic

rate constants for entering to a state from the immediately preceding state.

The probability that the first event has not occurred by time t is e−λ1t. The

probability that the second event is not occurred given that the first is oc-

curred is e−λ2t(1 − e−λ1t) and so on k terms. The probability of malignant

transformation of any cell by time t or less is given by:

P (t) =
k∏
j=1

[1− e−λjt] (2.4)

provided that successive stages of transformation are mutually independent.

Now, since malignancy transformation is rare, λi will be very small and we

may write:

e−λjt u (1− λjt) (2.5)

hence

P (t) = Aλ1λ2...λkt
k (2.6)

where A is a compound constant (a function of the λ terms).

If there are N cells at risk in the tissue, the age specific incidence rate may

be equated to the product of the cell number and the rate of change P (t).

I(t) = N
dP (t)

dt
= NAλ1...λkkt

k−1 = Bλ1λ2...λkt
k−1 (2.7)

The general form of multistage theory is consistent with monoclonality , the

dorm of age-incidence curves and the initiation-promotion phenomenon.

2.1.7 Epigenetic formulation of the multistage theory

It is not necessary to visualize the k states of the multistage theory as cor-

responding to a sequence of DNA mutations. An epigenetic version of the

theory was developed in 1977 by Watson, involving gene-switching networks
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rather than point mutations and was invoked to make the math model consis-

tent with the biological idea that malignant change might involve a derange-

ment of the cellular differentiated state rather than a series of conventional

mutations.

2.2 Models of tumor growth

The capacity for progressive growth is one of the most conspicuous prop-

erty of a malignant tumor once established. Many tissues are in a long-term

steady state of cell renewal in which proliferation and cell loss are in equilib-

rium. Many are also capable of sustained periods of regrowth or regeneration

following injury during which the rate of proliferation greatly exceeds the cell

loss rate. All normal tissues, however, cease net growth when cell numbers

have been restored to the original level or close to it. This behavior suggest

a feedback mechanism of some kind. Tumor differs in that the equilibrium

level is unattainable or is set so high as to be incompatible with the survival

of the host. The regulation of growth control is a very mysterious process.

It has been known for a long time that the rate of tumor growth differs be-

tween tumors and varies with time for a single tumor. So, it is generally

misleading to derive any ’general pattern’ of tumor growth; but it is evident

that some models of growth occur more commonly than others. It is perhaps

not unreasonable to think of typical growth patterns rather than universal

or general ones, keeping in mind that some tumors may follow individualistic

growth patterns that are quite untypical. With these reservations in mind

consider now the simplest possible picture of how a tumor grows. Suppose

a tumor at time zero is composed of N0 cells which divide regularly with a

time interval Tc between successive doublings. Assuming the cells are not

synchronized , there will be an ongoing increase in cell number given by

N(t) = N02
t
Tc (2.8)

log2(
N(t)

N0

) =
t

Tc
(2.9)

This exponential growth pattern is the simplest which it is reasonable to

consider. In more complex cases, the doubling time, usually denoted TD ,
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will not be identical with the interdivision time Tc though there will usually

be a close relation between them.

2.2.1 The Gompertz growth model

For tumor following decelerating growth curves, a variety of empirical mathe-

matical descriptions have been used to describe the growth mode. Gompertz

equation dates back to B.Gompertz who, in 1825, first used it in the context

of actual statistics. However, the Gompertz model owes its present popular-

ity to Laird (1964) who developed its use as a growth model.

The algebraic form of the Gompertz equation, applied to a growing cell pop-

ulation, states that:

N(t) = N0exp(
αN0

β
[1− exp(−βt)]) (2.10)

where N(t) is the cell population at time t, N0 the population at time t0 and

αN0 and β are kinetic parameters characteristic of the tumor concerned.

The parameter αN0 corresponds to the instantaneous specific growth rate of

N0 cells at time zero, if N0 is the starting size of the tumor at time origin.

The parameter β provides a measure of how rapidly the curve departs from

a simple exponential and curves over to assume its characteristic shape.

The model implies a limiting cell number N∞ which the tumor cell population

will approach asymptotically:

N∞ = limt→∞N(t) = N0exp
αN0

β
(2.11)

In most cases N∞ is so large that the tumors burden result in death of the

host long before it is reached. It is best regarded as a match abstraction not

physically achievable.

The Gompertz equation may be written in a variety of ways. One is the

equation represented an exponentially growing cell population whose specific

growth rate parameters itself declined with time:

dN(t)

dt
= α(t)N(t) (2.12)

with

N(0) = N0 (2.13)
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and
dα(t)

dt
= −βα(t) (2.14)

with

α(0) = α0 (2.15)

However, it is intuitively unreasonable that the specific growth rate parame-

ter α(t) should be a function of clock time. More likely, α(t) depends on some

other set of biological variables, and the time dependence arise indirectly.

The Gompertz model is best formulated as differential equation represent-

ing the instantaneous rate of change of tumor cell number with time. A

differential equation formulation is in fact the most natural and general rep-

resentation of a growth model. It has the advantage that perturbations of

growth can be incorporated by addition of appropriate terms to differential

equation.

The equation
dN(t)

dt
= βN(t)ln(

K

N(t)
) (2.16)

is a non-linear differential equation which can be shown to yield the Gompertz

algebraic equation on integration.

2.2.2 Tumor growth during latency

All the actual data considered were for the observable phase of growth. The

question of how tumors really grow during ”latency” is an important one.

Some indirect evidence suggesting that Gompertz curves do not provide an

accurate representation over the whole growth range. Evidence that is so

comes from studies of the relationship between the number of tumor cells

implanted in an experimental animal and the time for the resultant tumor

to become detectable (the latent period). Suppose growth following implan-

tation of N0 cells is exponential with constant specific growth parameter α0.

If N is the cell number at which the tumor fist becomes detectable and τ the

latent period we have:

N ′ = N0exp(α0τ) (2.17)

or

τ =
1

α0

[ln(N ′)− ln(N0)] (2.18)
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Now suppose the growth follows Gompertz kinetics with parameters αN0 and

β then:

N ′ = N0exp(
αN0

β
[1− exp(−βτ)]) (2.19)

which gives, on rearrangement,

τ = − 1

β
ln(1− β

αN0

ln(N ′))− 1

β
ln(

β

αN0

ln(N0)) (2.20)

In almost all cases studied, the experimental data support the exponential

model of growth delay during latency. The implications of these findings is

that tumor growth from one cell upwards must be considered in at least two

phases: exponential growth during latency and Gompertz kinetics during the

observable phase.

2.2.3 The ’Gomp-Ex’ growth model

Studies suggested that tumors initially follow an exponential growth pattern

which gives rise to a Gompertz pattern after some critical cell number NC has

been reached. This suggest a composite ” Gompertz- exponential ” growth

model described by a piecewise-continuous differential equation:

1

N(t)

dN(t)

dt
=

{
λ ifN 6 Nc

λ− βln(N(t)/Nc) ifN > Nc

(2.21)

where Nc is tumor cell number at which transition between growth model

occurs.

The integrated form of ’Gomp-ex’ equation is

N(t) =

{
N0exp(λt) ifN 6 Nc

Ncexp(
λ
β
(1− exp[−β(t− tc)])) ifN > Nc

(2.22)

where

tc =
1

λ
ln(

Nc

N0

) (2.23)

represents the time to reach Nc from the initial starting size.
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2.2.4 A stochastic version of the Gompertz growth

model

As a modification of the Gompertz model, Speer et al (1984) introduced a

stochastic component. They suggested that the theoretical population limit

N∞ was pre-set as a mutational property of the cells concerned and could be

changed by further mutations which were envisaged as taking place randomly

over time. An important aspect of these stochastic growth models is that

active growth takes place in a series of spurts with intermediate periods

during which the tumor is close to the asymptotic limit.

2.2.5 Alternative models for growth retardation

All these models incorporates the feature that tumor growth occurs more

slowly as some limit is approached. The cause of this is that growth of a

tumor cell population reflect the net balance of tumor cell production and

tumor cell loss. Retardation of growth with increasing size might than be

attributed to lesser cell production , increased losses or both. Other models

have been created but we will not discuss them here.

2.2.6 Compartmental model based on cellular differ-

entiated state

The existence of differentiated cells warrants attention in the construction

of growth models. The simplest kinetic picture of a differentiating tumor

assigns tumor cells to one of the three compartments:

1. True tumor cells with full clonogenic potential (immortal stem cells in

proliferative normal tissues).

2. Cells which have begun differentiation.

3. Differentiated cells, no longer capable of cell division.

As a first simple model we may assume there is constant probability per

unit time of a clonogenic cell being induced to differentiate (proportional to

the size of the clonogenic compartment). Once induced, differentiated cells
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move through the intermediate developmental stage in programmed fashion

in fixed time. Loss may be either random or result from programmed ageing

(we assume random losses).

These conditions give rise to a compartmental model:

dN1(t)

dt
= H[t, N1, N2, N3]N1(t)− ω1N1(t)− F (t) (2.24)

dN2(t)

dt
= F (t) + (α− ω2)N2(t)− exp[(α− ω2)τ ]F (t− τ) (2.25)

dN3(t)

dt
= exp[(α− ω2)τ ]F (t− τ)− ω3N3(t) (2.26)

where N1(t) represents the number of clonogenic cells with proliferative

rate α0 and loss rate ω1, N2(t) represents the number of developing cells

with proliferative rate α and loss rate ω2, N3(t) represents the number of

differentiated cells with loss rate ω3, H is a mathematical function. We have

supposed the rate of loss of clonogenic cells due to induction of differentiation

is directly proportional to clonogenic cells number:

F (t) = µN1(t) (2.27)

Thus we have:

dN1(t)

dt
= H[t, N1, N2, N3]N1(t)− (ω1 + µ)N1(t) (2.28)

dN2(t)

dt
= µN1(t) + (α− ω2)N2(t)− exp[(α− ω2)τ ] (2.29)

dN3(t)

dt
= µexp[(α− ω2)τ ]N1(t− τ)− ω3N3(t) (2.30)

Clearly, solutions depend on H, specific proliferative rate of clonogenic cells.
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2.3 Models for tumor response to chemother-

apy

Cancer chemotherapy is a very much more complex treatment modality to

consider than radiotherapy. This is because chemotherapy is not a single

modality at all but a collective name for as many modalities as there are

anti-cancer drugs. Commonly, several drugs, often with different modes of

action, are used together in combination regimes and are more effective than

treatment using single agents. These features do not make cancer chemother-

apy a very promising subject for mathematical modeling. Quantitative mod-

eling has the potential to be useful but is likely to require knowledge of

the numerical values of large numbers of parameters necessary to charac-

terize combination chemotherapy regimes. This information is very seldom

available, consequently , though a considerable literature has grown up on

mathematical modeling in cancer chemotherapy, this had a significant impact

on clinical treatment in only a few cases.

2.3.1 Drug Action

The spectrum of drugs now available in cancer chemotherapy sterilize cells

by a variety of mechanisms. An important class of drugs, alkylating agents

achieve their major effects by cross-linking DNA [DH09]. Another important

group of drugs are the metabolic inhibitors which selectively interfere with

particular enzymes. The antibiotic actinomycin D has found some applica-

tion in cancer chemotherapy, it is thought it achieves its cytotoxic effect by

inhibiting the transcription of RNA to DNA. These examples show a few of

the different mechanisms by which anti-cancer drugs kill cells. It is generally

not known why some drugs are more effective than others in treating cancer.

In practice, the most important criterion for drug classification is in terms

of their cycle specificity. Most anti-cancer drugs are more toxic to rapidly

proliferating cells than resting G0 cells [DH09]. However, this cell kinetic

differential varies greatly in magnitude between drugs. For alkylating agents

and similar drugs, cycle specificity of action is not very pronounced; we can

call such drugs cycle-non-specific. For other drugs, the difference between
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the sensitivities of cycling and non cycling cells is much greater. These drugs

are often called cycle-specific. In terms of tumor response to chemotherapy

is important this distinction.

A great consideration in cancer chemotherapy concerns the drug dose to tu-

mor and to critical normal tissues. A natural fist step in determine the ”right

dose” would be to find drug concentration as a function of time for each rele-

vant tissue as well as tumor. This is the subject of pharmacokinetics in which

mathematical models often play a useful role, usually representing important

tissues or body regions as a series of compartments and formulating differ-

ential equations to describe the movement of drug from one compartment to

another.

I will now consider mainly the general principles of how cancer chemotherapy

works assuming that drug concentrations are usually known.

2.3.2 Exposed cells and effects of chemotherapy

• Normal Tissues:

Usually cancer chemotherapy is given systemically; all normal tissues

and organs will be exposed to the drug and any of them may be injured.

It’s fundamental to consider normal tissue damage as a constraint that

must be built into any model used to predict optimum schedules. The

effectiveness of chemotherapy over normal tissues depends on the in-

tensity with which therapy can be given. Some chemotherapy drugs

are very diverse and tissues may be dose-limiting for different drugs

or drug combinations. At the present to little is known about math-

ematical dose-response relationships for normal tissue toxicity so it is

difficult to apply general models; some empirical rules have been found

in practice but they do not usually take analytical form which leads to

prediction of tolerance doses when the schedule is changed.

• Tumoral cells:

Rapidly growing tumors are usually the most responsive to cancer

chemotherapy. This is probably due to the cycle-specific mode of action

of many chemotherapeutic drugs.
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2.3.3 Cycle non-specific chemotherapy of a tumor cell

population conforming to Gompertz kinetics

Recall:

Gompertzian growth of an untreated tumor cell population may be described

by the non-linear differential equation:

1

N(t)

dN(t)

dt
= αN0 − βln(

N(t)

N0

) (2.31)

where αN0 , β are kinetic parameters. In equivalent form:

1

N(t)

dN(t)

dt
= −βln(

N(t)

N∞
) (2.32)

where N∞ = N0exp(
αN0

β
) and represents the theoretical maximum size to

which the growth curve is asymptotic.

Consider now the effect of exposing the tumor cell population to a cycle-

non-specific drug at concentration C(t). For the case of an exponential dose-

response relationship between drug concentration and rate of cell killing, we

may write
1

N(t)

dN(t)

dt
= −βln(

N(t)

N∞
)− λC(t) (2.33)

provided the cells sterilized by the drug disappear quickly from the popula-

tion. The solution depends on the functional form of the drug concentration

C(t). In many real situations C(t) would be obtained by interpolation from

measurement of drug concentration in blood or by solution of pharmacoki-

netic model (by numerical integration).

Considering the idealized case where drug concentration remains constant

throughout the time of interest C(t) = C(0) we have

1

N(t)

dN(t)

dt
= −βln(

N(t)

N∞
)− λC(0) (2.34)

which can be solved by change of variable leading to

log(
N(t)

N(0)
) = (

αN0

β
− λC0

β
)[1− exp(−βt)] (2.35)
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It is useful to compare this equation with the algebraic expression for Gom-

pertzian growth of an untreated cell population

log(
N(t)

N(0)
) =

αN0

β
[1− exp(−βt)] (2.36)

Equations (2.35) (2.36), have the same form.

For low drug concentrations the term (
αN0

β
− λC0

β
) is positive and the tumor

continues to grow, more slowly than in the untreated case. A new asymptotic

limit, depending on drug concentration, N∞(C0) can be defined. Equation

(2.35) can be rewritten

N(t) = N(0)exp[(
αN0

β
− λC0

β
)[1− exp(−βt)]] (2.37)

therefore

N∞(C0) = limt→∞(N(t)) = N∞exp(
−λC0

β
) (2.38)

For higher drug concentrations the term (
αN0

β
− λC0

β
) is negative, the asymp-

totic limit N∞(C0) will be less than the initial cell number N0 and the tumor

does not grow but regress.

2.3.4 Cycle-specific therapy

Changing loss factor

In the case of cycle-specific therapy the analysis differs. First consider the

case where the growth fraction remains constant and retardation is entirely

due to changing loss factor.

The most important factor is the proportion of cycling cells. Assume the

growth fraction f to be constant. Then, in the presence of cycle-specific

drug we have
1

N(t)

dN(t)

dt
= −βln(

N(t)

N∞
)− fµC(t) (2.39)

where µ is the appropriate drug sensitivity parameter. In this case only pro-

liferation cells are vulnerable to cycle-specific therapy in fact the parameter λ

is replaced by fµ. The decline of tumor cells number follow the same pattern

as for cycle-non-specific drug.
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Changing growth fraction

Now consider the case where Gompertz retardation is entirely due to a chang-

ing growth fraction. In this case the growth fraction f(t) is not constant but

varies with cell population size. If C(t) is the concentration and K(t) the

rate of cell kill due to a cycle-specific drug, we have

K(t) = µf(t)N(t)C(t) (2.40)

where µ is the sensitivity parameter for the effect of the drug on cycling cells.

Thus we have
1

N(t)

dN(t)

dt
= −βln(

N(t)

N∞
) (2.41)

1

N(t)

dN(t)

dt
= λf(t) (2.42)

where λ is the specific growth rate for constantly cycling cells.

Equating last two we obtain the following expression for instantaneous growth

fraction f(t):

f(t) =
β

λ
ln(

N(t)

N∞
) (2.43)

which allows to represent the effects of cycle- specific killing agent

1

N(t)

dN(t)

dt
= −βln(

N(t)

N∞
)− µf(t)C(t) (2.44)

= −βln(
N(t)

N∞
)− µ[−β

λ
ln(

N(t)

N∞
)]C(t) (2.45)

= −βln(
N(t)

N∞
)(1− µ

λ
C(t)) (2.46)

and to find the critical drug concentration to initiate depopulation. This

requires
1

N(t)

dN(t)

dt
< 0 (2.47)

Therefore

1− µ

λ
C(t) < 0 (2.48)

or

C(t) >
λ

µ
(2.49)
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This condition is independent of cell population size. This means that a

drug concentration sufficient to initiate depopulation should be sufficient to

maintain it. The phenomenon of Kinetic resistance 1 cannot occur in this

situation.

It is also informative to consider the case of constant drug concentration

C(t) = C(0). This gives for equation (2.46),

1

N(t)

dN(t)

dt
= −βln(

N(t)

N∞
)(1− µC0

λ
) (2.50)

This may be integrated to give

ln(
N(t)

N0

) = (−ln(N∞))(1− exp[β(
µC0

λ
− 1)t]) (2.51)

which is a function whose decline accelerates with time, provided the drug

concentration C0 conforms to inequality (2.49) and therefore is sufficient to

initiate depopulation in the first place.

It must be noticed that this model incorporates the implicit assumption that

the growth fraction of the tumor cell population responds instantaneously to

cell killing by chemotherapy.

1Kinetic resistance means that a chemotherapy schedule which initiates depopula-

tion may nevertheless fail to achieve tumor cure, however long treatment is continued.

Consider the drug concentration level which produce a rate of cell kill just sufficient to

balance cell repopulation. Let this critical concentration be C
(c)
0 . Then if C0 < C

(c)
0 a net

depopulation would occur and the tumor will regress. For a tumor cell population whose

growth conforms to Gompertz kinetics, treated by cycle-non-specific drug, the net rate of

change is given by 1
N(t)

dN(t)
dt = −βln(N(t)

N∞
)−λC(0). If the drug concentration is just suffi-

cient that the rate of cell kill balances rate of repopulation we have: 1
N(t)

dN(t)
dt |C=C

(c)
0

= 0

so that −βln(N(t)
N∞

) = λC
(c)
0 . Therefore, at any instant, the requirement for depopulation

to proceed is that C0 > C
(C)
0 that is C0 > −βλ ln(N(t)

N∞
). This means that the condition to

initiate tumor cell depopulation is itself a function of population size. The drug concen-

tration to initiate depopulation is larger the smaller the population size. A corollary is

that the drug concentration to maintain depopulation will become larger as the population

shrinks. The possibility than arises that drug concentration which initiates depopulation

will not be sufficient to maintain it which is the meaning of Kinetic resistance.
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The general case

Last consider the case where Gompertz retardation is not exclusively due

either to changing loss rate or changing growth fraction but a mixture of the

two:
1

N(t)

dN(t)

dt
= λf(t)− L(t) (2.52)

1

N(t)

dN(t)

dt
= −βln(

N(t)

N∞
) (2.53)

Equating (2.52) and (2.53)

λf(t)− L(t) = −βln(
N(t)

N∞
) (2.54)

Hence

f(t) =
1

λ
[L(t)− βln(

N(t)

N∞
)] (2.55)

Evaluate this in explicit terms requires knowledge of loss function L(t); no

general solution is possible for this case. Intuitively, it seems reasonable

that if the retardation is mainly due to loss-factor changes then kinetic resis-

tance would occur, but if the retardation is mainly due to a changing growth

fraction, the kinetics of depopulation would be accelerating in form. Inter-

mediate situations are possible, it may not be possible to reach clear-cut

conclusions.2.

2It is not difficult to see how the results would be modified if we assume ’Gomp-ex’

kinetics instead of Gompertz one. For more detailed explanation see [Whe98]
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Chapter 3

Modeling tumor-immune

system competition

The complex and non-linear interplay of the immune system (IS) with non-

self entities offers and ideal area of research and has long been a source of

great interest for physicists. In particular, the interaction of IS with tumors

is a classical challenge in the world of biophysics.

Molecular biology has shown that tumor cells (TCs) are characterized by

a vast number of genetic events leading to the appearance of specific anti-

gens, which trigger action by the IS. These experimental observations have

provided a theoretical basis to the old empirical hypothesis of immune surveil-

lance i.e that the IS may act to control or eliminate tumors. Only in recent

years, experimental and epidemiologic evidence has been accumulated in fa-

vor of the hypothesis and it has been demonstrated that the IS can suppress

tumors. The competitive interaction between TCs and the IS, involves a con-

siderable number of events and molecules, and as such is extremely complex

and, as a consequence, the IS is not able to eliminate a neoplasm in all cases,

which may escape from IS control. Of course, a dynamic equilibrium may

also be established, such that the tumor may survive in a microscopic steady

state (MISS), which is undetectable by diagnostic equipment. However, con-

sider a tumor which is constrained by the IS in a MISS. Over a long period of

time (a significant fraction of the mean life span in men), the neoplasm may

develop multiple strategies to circumvent the action of the IS , which, in the
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long term, may allow it to evade immune surveillance and to re-commence

growing to its carrying capacity . The tumor has adapted itself to survive in

a hostile environment, in which antitumor immune response is activated. In

other words the immunogenic phenotype of the tumor is ”sculpted” by the

interaction with the host’s IS. For this reason, the theory of IS-Tcs interac-

tion has been called immunoediting theory by Dunn et al.

Finally, the study of the interaction tumor-immune system led to the pro-

posal and implementation of an interesting therapeutic approach: the im-

munotherapy, consisting in stimulating the IS in order to better fight, and

hopefully eradicate, a cancer. The basic idea of immunotherapy is simple

and promising, but the results obtained in medical investigations are glob-

ally controversial, even if in recent years there has been evident progress.

Coming to the mathematical way to model the above interactions, the ba-

sic idea of the ecological modeling of TCs-IS interaction is simple: TCs and

effector cells (ECs) of IS are seen as two competing populations. TCs are

mainly the prey of the ECs, whose proliferation is stimulated, in turn, by the

presence of TCs. However, TCs also induce a loss of ECs; and there is an

influx of ECs, whose intensity may depend on the size of the tumor. Based

on this simple scheme and on its generalizations, many works have appeared

using a finite dimensional approach based on specific models with constant

or tunable parameters (and references therein).

However an approach based on a specific model is in contrast with the poly-

morphic nature of cancer, and it does not allow easily to catch the general

features of the TC-IS interaction.

We now propose and investigate a family of models, which admits as partic-

ular cases some well known mathematical models of tumor-immune system

interaction, with the additional assumption that the influx of immune system

cells may be a function of the number of cancer cells.
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3.1 A general family of models and its prop-

erties

A very interesting Volterra-like model for the interaction between a popula-

tion of tumor cells ,whose number is denoted by (X), and a population of lym-

phocyte cells,whose number is denoted by (Y ) was proposed by Sotolongo-

Costa et al.[OCCR03]:

X ′ = aX − bXY (3.1)

Y ′ = dXY − fY − kX + u+ P (t) (3.2)

where the tumor cells are supposed to be in exponential growth (which

is, however, a good approximation only for the initial phases of the growth)

and the presence of tumor cells implies a decrease of the ”input rate” of

lymphocytes. In non-dimensional form [OCCR03]:

x′ = αx− xy (3.3)

y′ = xy − 1

α
y − kx+ σ + p(t) (3.4)

(in short notation (x′, y′) = C(x, y)).

The function p(t) ≥ 0 is assumed periodic with period T and it models the

effect of immunotherapy.

The model shows two equilibria (one of which is tumor-free) and also un-

bounded growth. However, the systems allows negative solutions for non-

small x, which is not physically acceptable. In fact:

C(x, 0) = αx, σ + p(t)− kx (3.5)

implies that for x > (σ+pmax)
k

it is C(x, 0) = (0,−1) > 0, and y(t) becomes

negative in finite times. Furthermore, the second equilibrium point is a

consequence of the negativity of σ − kx.

The model in [OCCR03], though it has this problem of lack of physical

consistency, is, however, of great interest because the killing of lymphocytes

is seen as function of the x variable. Alternatively, the influx of lympho-

cytes may be thought of as a function of the entity of the disease, which we
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will denote as Q(x). Indeed, it has been observed that in some cases can-

cer progression may cause generalized immunosuppression [J.S01]. Thus in

[OCCR03], Q(x) = σ(1− (k/σ)x), which may be read as a first order Taylor

approximation of a more general non-increasing function.

However, a general influx function is only one of the possible modifications

of models: there may be others, which are also biologically reasonable. One

might take into the account many factors: different functional forms for

the interaction term, saturation in the predation term and, mainly, non-

exponential growth of the cancer: logistic, Gompertzian, generalized logistic,

etc. All these modifications are reasonable and useful.

Thus, it might be useful to define and study the following general family of

models:

x′ = x(αf(x)− φ(x)y) (3.6)

y′ = β(x)y − µ(x)y + σq(x) + θ(t) (3.7)

where:

• x and y are the non-dimensionalized numbers of, respectively, tumor

cells and effectors cell of immune system;

• 0 < f(0) ≤ +∞, f ′(x) ≤ 0 and in some relevant cases we shall suppose

that it exists an 0 < x̄ ≤ ∞ such that f(x̄) = 0, limx→0+xf(x) = 0.

Thus, f(x) summarizes many widely used models of tumor growth

rates, such as the Exponential model: f(x) = 1 [Whe98], the Gompertz:

f(x) = log(A
x

) [Whe98] and its generalizations [Whe98].

• φ(x) > 0, φ(0) = 1, φ′(x) ≤ 0 and xφ(x)→ l ≤ +∞;

• q(x) is such that q(0) = 1 (as a consequence σ = Q(0)) and it may

be non-increasing or also initially increasing and then decreasing, i.e.

we may assume that either the growth of tumor decreases the influx of

immune cells or that, on the contrary, it initially stimulates the influx;

• β(x) ≥ 0, β(0) = 0 and β′(x) ≥ 0;

• µ(x) > 0 and µ′(x) > 0.
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For the sake of simplicity we define the following function Ψ(x) =

µ(x)− β(x) and write:

x′ = x(αf(x)− φ(x)y) (3.8)

y′ = −Ψ(x)y + σq(x) + θ(t). (3.9)

Ψ(x) is assumed to be positive, otherwise it may be positive in

[0, x1)
⋃

(x2,+∞) with Ψ(x1) = Ψ(x2) = 0. We may assume that it

has an absolute minimum in [0,+∞). We may use Ψ(x) to classify the

tumors depending on their degree of aggressiveness against the immune

system:

• Ψ(x) > 0: in such a case the ability of destroying immune cells is never

won by the stimulatory effect on the immune system, therefore the

tumor may be indicated as ”highly aggressive”/”lowly immunogenic”;

• Variable sign of Ψ(x): since in such a case the destruction of cells may

be compensated by the stimulatory effect, we will refer to such a tumors

as ”lowly aggressive”/”highly immunogenic”.

Note that Nani and Freedman proposed an interesting model of adop-

tive cellular immunotherapy in which generic functions are used [F.N00].

However, their approach differs from ours since in their model the prolif-

eration of cells of the immune systems is not stimulated by cancer cells.

In other words in the Nani and Freedman model the interaction tumor

cells-immune system is only destructive for immune cells. Furthermore, in

their model the ’loss rates’ are proportional (in our notation we might write

µ(x) = µ(0) + constφ(x)).

In the absence of treatment, systems (3.8) and (3.9) admits the existence

of a cancer free equilibrium CF = (0, σ
Ψ(0)

).

If f(0) < +∞, we have that if σ > σcr = αΨ(0)f(0)
φ(0)

CF is locally asymptotically

stable (LAS), unstable if σ < σcr. Biologically, σ > σcr means that the

immune system works very well and that it is able to destroy small tumors.

On the contrary σ ≈ 0 means that there is immunodepression.
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Furthermore, when φ(x) = constant = ϕ and Ψ(x) ≤ Ψ∗ < ∞ if

σ > σ∗ = αf(0)Ψ∗

(qminϕ)
it follows that CF is globally asymptotically stable (GAS).

In fact, from y′ = −Ψ(x)y+σq(x) ≥ −Ψ∗y+σqmin it follows that asymptoti-

cally y(t) ≥ σqmin
Ψ∗ As a consequence, asymptotically x′ ≤ (αf(0)−ϕ(σqmin

Ψ∗ ))x,

i.e. if σ > σ∗ it is x(t)→ 0⇒ y(t)→ σ
Ψ(0)

.

A relevant problem, up to now, is that the immunotherapeutic agents are

characterized by strong toxicity, thus σ > σ∗ might be too biologically

high,even in cases in which it is mathematically small.

If f(0) = +∞, as in the Gompertzian case and in other tumor growth

models, then CF is unstable anyway because in such a cases the derivative

of xf(x) at x = 0 is +∞. In the light of our generalization, this implies that

the immune system would never be able to totally suppress even the small-

est tumor cell aggregates, which is a very strong inference. This instability

result deserves some comments because it has deep medical implications:

the impossibility to completely recover from any type of tumors whatsoever.

On the contrary, it is commonly held that the immune system may be able,

in some cases, to kill a relatively small aggregate of cancer cells. In the

background of all cancer therapies (which are of finite duration) there is the

implicit hypothesis that the drug will kill the vast majority of the malignant

cells and that the relatively few residual cells may in some cases be killed by

the immune system. Accepting this hypothesis, the equilibrium CF should

have the possibility to be LAS and, as a consequence, for small x the function

f(x) should be bounded.

The modeling of cancer by means of the Gompertz law of growth was in-

troduced in early sixties by Laird [Lai64], [Lai65]. She conducted pioneering

data-fitting work using a vast amount of real data and justified the law in

terms of increasing mean generation time. There is much research showing

that the Gompertzian model fits data well from experimental and in vivo

tumors [I.D94, JtA94, A.M94, IM03]. From a theoretical point of view, Gyl-

lenberg and Webb [M.G89], Calderon and Kwembe [CC91], Calderon and

Afenya [E.K00, E.K04] proposed physico-mathematical justification of the

Gompertz model. Furthermore, some interesting physical properties of the

Gompertz model have been elucidated by Konarski and Molski [M.M03] and
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by Konarski and Waliszewski [P.W03]. However, the doubling time of a

population of cells cannot be lower than the minimal time needed by a cell

to divide, which is obviously non-null. This biological constraint is in con-

trast with the unboundedness of f(x) in the Gompertz and other models, as

stressed by Wheldon [Whe98]. More recently, inconsistency at low number

of cells have been recognized by Castorina and Zappala’ in their deriva-

tion of the Gompertzian model based on methods of statistical mechanics

[P.C04b, P.C04a]. They showed that the validity of the Gompertz model

starts above a minimum threshold for the number of cells, whereas under the

threshold there is exponential growth. In other words, they derived biophys-

ically the Gomp-Ex model proposed in the second chapter [Whe98]. Using

data from multicellular tumor spheroids, Marusic et al. performed a sys-

tematic comparison of many models [JSP94], which showed that Gompertzs

model fitted their data very well, but slightly less well than the Piantadosi

model [S.P85], which has finite f(0). Furthermore, in their fittings, it was not

possible to discriminate between the pure Gompertz model and the Gomp-

Ex model. Demicheli et al. used Gomp-Ex model on in vitro and in vivo

data obtaining results strongly supporting this model [CM89]. Moreover, in

general,van Leeuwen and Zonneveld [IL01] claims that it may be not possible

to discriminate between exponential, logistic and Gompertzian models in the

early phases of growth. Recent experimental studies conducted by Bru and

coworkers support an initial phase of exponential growth [GAI03]. Summa-

rizing, the results by de Vladar and Gonzalez are valuable, but they may be

read in a dichotomic way:

• A tumor is permanent: the innate immune surveillance is never able to

completely eradicate even the smallest tumor.

• Since there is relevant evidence that the immune system is able in some

cases to eliminate small tumors [GR02, G.P04] (the ability of eradicate

the disease or not depends on initial conditions), the properties of the de

Vladar Gonzalez model may be seen as an evidence that Gompertzian

and other models characterized by f(0) = +∞ are not appropriate

for very small tumors, (in coherence with [Whe98, P.C04b, P.C04a,

GAI03]).
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In case of the absence of influx of immune cells (q(x) = 0) and for laws

of growth in which x̄ exists,there is a different particular equilibrium point,

which we shall call ”immune free”: IF =(x̄,0), which is LAS.

Other multiple non-null equilibria may be found by finding the positive

intersection of the two nullclines:

yc(x) = α
f(x)

φ(x)
(3.10)

yI(x) =
σq(x)

Ψ(x)
(3.11)

The functions yc(x) and yI(x) are useful in the determination of the LAS

of the equilibria , since the characteristic polynomial of the Jacobian, calcu-

lated at a given equilibrium point (xe, ye), is:

λ2 +(Ψ(xe)−xeφ(xe)y′c(xe))λ+Ψ(xe)xeφ(xe)(−y′c(xe)+y′I(xe)) = 0. (3.12)

So the LAS condition is:

y′c(xe) <
Ψ(xe)

xeφ(xe)

AND

y′I(xe) > y′c(xe)

Note that the first part of the AND condition is automatically fulfilled

when y′c(x) = 0 (because xe cannot lie in an interval where Ψ(x) < 0),

whereas the second part has a straightforward geometrical interpretation.

Finally, it is interesting to note that the above family of model may admit

limit cycles if f(x) = 1 (exponential growth) and q(x) is identically null for

x > xq with xq < x1. In fact, in such a case there is the equilibrium point

(x1, α) whose characteristic polynomial is:

λ2 + h2 = 0 h2 := −x1Ψ′(x1)α > 0

In effect, some cases of sustained oscillations (or slow oscillations with

very small damping) have been reported in the medical literature [B.J70,
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H.T97]. Periodic solutions in absence of influx of immunocompetent cells are

also predicted [D.K98].

On the contrary, if y′c(x) ≤ 0 (for example when Ψ(x) is constant), by

applying the Dulac - Bendixon theorem with multiplicative factor 1
(xyφ(x))

one

obtains that the presence of limit cycles is not possible. In fact:

Div(
1

xyφ(x)
(x′(x, y), y′(x, y))) =

αy′c(x)

y
− σ q(x)

xφ(x)y2
< 0 (3.13)

3.2 On immunotherapies

3.2.1 Therapy schedulings

A realistic anticancer therapy may be modeled with sufficient approximation

as constant (e.g. via a constant intravenous infusion) or periodic (e.g. the

agent is delivered each day as a bolus):

θ(t) = θm + Ω(t) ≥ 0, θ(t+ T ) = θ(t), θm =
1

T

∫ T

0

θ(t)dt (3.14)

For humans, typical periods ranges between 8 hours to 7 days [VVJ97, Edi03].

A particular case of periodic therapy is pulsed therapy, i.e. a therapy which

induces an instantaneous increase of the number of lymphocytes:

θ(t) = γ

+∞∑
n=0

δ(t− nT ) (3.15)

In the case of constant infusion therapy (CIT) (θ(t) = θm) by defining:

σ̂ := σ + θm, q̂(x) :=
σ + θm
σ̂

(3.16)

3.2.2 Continuous infusion therapy

All the considerations we have done the absence of therapy hold also in case

of CIT. In particular, for f(0) < +∞, the condition for the LAS of the

cancer-free equilibrium is:

σ + θm > σcr (3.17)
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Because of the co-presence of other equilibria, the above criterion is not

global, i.e. the immunotherapy is not able to guarantee the disease eradi-

cation from whatever initial values (x(0), y(0)). However, observing that in

models in which Ψ(x) > 0:

ywiththerapyI (x) =
σq(x) + θm

Ψ(x)
> ynotherapyI (x) (3.18)

(e.g. in Stepanova’s model with low µ1) it happens that, roughly speaking,

the stable equilibrium size of the cancer becomes smaller and the unstable

equilibria greater, so that the basin of attraction of the unbounded solution

is reduced. When f(0) = +∞ the total elimination cannot be achieved by

immunotherapy alone. Furthermore, even the suboptimal target of reducing

the cancer to a microscopic size in many relevant cases cannot be achieved

for therapies of finite duration, however they may be long. In fact, let it be

Ψ(x) > 0 (aggressive tumor) and let there be a unique GAS macroscopic

equilibrium EMACRO. By applying a CIT with θ sufficiently high there is a

unique GAS microscopic equilibrium. However, when the therapy ceases θ

falls to zero and the cancer restarts growing macroscopically, since EMACRO

is again GAS. We note in brief that if the original equilibrium is microscopic

(e.g. micrometastasis) the effect of the therapy is simply to create another

and temporary microscopic equilibrium.

Let us suppose that there are three co-existing equilibria: Eo
micro (LAS),

Eo
U (Unstable and through which a separatrix Σo passes) and Eo

MACRO (LAS).

Applying a CIT with θ > θ̃ there is an unique GAS microscopic equilibrium.

Thus at the end of the therapy (at t = tf ) depending on the position of

Pf = (x(tf ), y(tf )) relatively to Σo, we have that either (x(t), y(t))→ Emicro

or (x(t), y(t))→ EMACRO.

We note that θ acts a global bifurcation parameter, and we point out

that these behavior may be observed in case of bounded f(0) when therapy

is applied for an insufficient time.

3.2.3 Periodic Scheduling

In the case of periodic drug schedulings, there is a periodically varying cancer-

free solution CF ∗ = (0, z(t)), where z(t) is the asymptotic periodic solution
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of:

y′ = −Ψ(0)y + σ + θm + Ω(t) (3.19)

that, assuming Ω(t) =
∑+∞

n=1 CkCos(k(2π/T )t− ζn), can be rewritten as::

z(t) =
σ + θm
Ψ(0)

+
+∞∑
n=1

Ck√
Ψ2(0) + k2(2π

T
)2
Cos(k

2π

T
t− ζn − Arg(Ψ(0) + ik

2π

T
)).

(3.20)

Note that if T << 1/Ψ(0) there is a filtering effect and z(t) ≈ (σ+θm)/Ψ(0).

Two basic models of therapy may be:

•
θu(t) = A(1 + bcos(ωt)) (3.21)

which is rather unrealistic, but whose functional form is commonly

used to assess the effect of periodic forcing on nonlinear systems. The

asymptotic solution of (3.19) corresponding to (3.21) is given by:

zu(t) =
σ + A

Ψ(0)
+

Ab√
Ψ2(0) + ω2

Cos(ωt− Arg(Ψ(0) + iω))

• the more realistic function:

θr(t) =
G

1− Exp(−cT )
exp(−cMod(t, T )) , θm =

G

cT
, (3.22)

which represent a boli-based delivery. The ”shape” of θr(t) depends on

c and the corresponding asymptotic periodic solution of (3.19) is given

by:

zr(t) =
σ

Ψ(0)
+

G

Ψ(0)− c
X(

E−cMod(t,T )

1− E−cT
− E−Ψ(0)Mod(t,T )

1− E−Ψ(0)T

)
In case of impulsive therapy, by solving the impulsive differential equation

y′ = −Ψ(0)y + σ, y(nT+) = y(nT−) + γ, n = 0, 1, . . . (3.23)

one obtains that:

z(t) =
σ

Ψ(0)
+

γ

1− exp(−Ψ(0)T )
Xexp

(
−Ψ(0)Mod(t, T )

)
. (3.24)
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Furthermore, it is easy to show that the condition σ + θm > σcr guarantees

the LAS of CF . In fact, since the variational equations around (0, z(t))

are: U ′ = (αf(0) − φ(0)z(t))U,W ′ = (σq′(0) − Ψ′(0)z(t))U − Ψ(0)W , we

obtain that αf(0) − φ(0) < z(t) >< 0 ⇒ U(t) → 0 ⇒ W (t) → 0, and

since < z(t) >= (σ + θm)/Ψ(0) we recover the LAS condition σ + θm > σcr.

Similarly, one may demonstrate the GAS condition: σ + θm > σ∗.

3.3 Numerical simulations

I performed a set of simulations of the model proposed by Kuznetsov et al. in

(3.6), (3.7), choosing parameter values fitted from real data of chimeric mice.

• Considering a ”low aggressive tumor” I used the following parameters:

f(x) = 1.636(1 − 0.002x),φ(x) = 1, β(x) = 1.131x
20.19+x

σq(x) = 0.1181,

µ(x) = 0.00311x+0.3743 and ttrue = 9.9tadim days,(X, Y ) = 106(x, y)cells.

• Considering a ”more aggressive tumor” I used those parameters:

f(x) = 1.636(1 − 0.002x),φ(x) = 1, β(x) = 1.131x
20.19+x

σq(x) = 0.1181,

µ(x) = 10(0.00311x) + 0.3743 and ttrue = 9.9tadim days,(X, Y ) =

106(x, y)cells.

Note that the dynamic of tumors in mouse is faster than that of human

tumors, and that for periods of about 1 day or less (i.e. T < 0.101) it results

that ( 1
µ(0)

) ≥ T .

For the non-aggressive tumor σcr ≈ 0.612 and σ∗ ≈ 1.44� σ.

It clearly important to notice that in other kinds of anticancer therapies the

shape of the therapy may be critical in determining whether or not the cancer

will be eradicated. I found that:

In the absence of therapy non-aggressive tumor has two stable equilibria,

one slightly less than the carrying capacity and the other corresponding to a

small tumor. For the highly aggressive tumor there is one GAS equilibrium

slightly less than the carrying capacity (see phase portrait in Fig. 3.1).
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3.1.1 Non-Aggressive tumor 3.1.2 More-Aggressive tumor

Figure 3.1: On the left: Non-aggressive tumor, phase portrait of model ((3.6),

(3.7)) in the absence of therapy. There are two LAS equilibria. The nullcline

yC(x) is plotted in red, the nullcline yI(x) and its vertical asymptotes are

plotted in green. On the right: More-aggressive tumor, phase portrait of

model ((3.6),(3.7)) in the absence of therapy. There is one GAS equilibria

slightly less than the carrying capacity. The nullcline yC(x) is plotted in red,

the nullcline yI(x) is plotted in green.
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Chapter 4

Noise and noise-induced

transitions

One could say that in the course of its unfolding, life continuously chooses

stochastically among many, perhaps infinitely many, possible scenarios. In

one realization of the process, the scenario which will be followed cannot be

predicted with certainty. So, we can say that macroscopic world is far less

deterministic, i.e predictable in the classical sense, then we ever thought. In

fact, completely new aspects of randomness have come to light which call

for a profound reappraisal of the role and importance of random phenomena

in nature. The investigation of self-organization in non equilibrium systems

which are coupled to fluctuating environments has brought forth a great

impetus to reappraise the role of randomness. In fact, in a large class of phe-

nomena environmental randomness can, despite its apparently disorganizing

influence, induce a much richer variety of behaviors than that possible under

corresponding deterministic conditions. Astonishingly , an increase in envi-

ronmental variability can lead to a structuring of non linear systems which

has no deterministic analog. It is possible to extend the concept of phase

transition to the new class of non equilibrium transition phenomena which

are induced by environmental randomness. We can call them noise-induced

non equilibrium phase transitions or noise induced transitions (This class

is close to the classical equilibrium phase transition and the class of non

equilibrium phase transition). It must be observed that for noise-induced
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transitions the situation is not as neat as it is for classical equilibrium and

non equilibrium phase transition, it is far from unpredictable and lawless.

The notions an concepts, developed for classical transition phenomena and

essentially rooted in a deterministic conception of nature , can be extended

and adapted to deal with situations where noise plays an important role.

A theoretical investigation is thus made possible and more important, the

situation is accessible to experimental investigation.

4.1 Stochastic processes

Real environments vary randomly in the course of time. This can be modeled

by using a random variable to describe the state of the environment at each

instant of time. We thus obtain a family of random variables indexed by the

parameter time t. The fluctuations of the environment induce in their turn

random variations in the state of the system. Here again, we can describe

the temporal evolution of the system by a family of random variables that

at each instant of time represents the state of the system.

Definition: Random or stochastic process

A family of random variables indexed by the parameter time t is called a

random (or stochastic) process. More precisely, a set (Xt; t ∈ θ) of real valued

random variables, i.e Xt : (Ω,A, P )→ (R,B), is called a random process (or

random function) with the index set θ and state space <. Ω represents the

ensemble of elementary outcomes, A is the σ field (or σ algebra) of the events,

P is the probability measure, B is the Borel σ field. As far as notation is

concerned, stochastic processes will be denoted by Xt, whereas deterministic

time-dependent functions will be written as X(t).

4.1.1 Brownian motion

Brownian motion has played a central role in the theory of random phenom-

ena in physics as well in mathematics. It is the rapid, perpetual, highly

irregular motion of a small particle suspended in a fluid. The main features

of Brownian motion, as established by experiments in the last century are:

• smaller particles move more rapidly.
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• lowering the viscosity of the fluid also leads to more rapid motion.

• motion becomes more active when the fluid is heated.

• the motion is ceaseless and the trajectories are so irregular, their details

are so fine, that they seem to have no tangent, i.e. the velocity of

Brownian particle in undefined.

Quite a few explanations were proposed for this strange phenomenon before

the true case of this perpetual motion was understood and the first theoret-

ical treatment was given by Einstein. The chaotic motion of the suspended

particle is maintained by the collisions with the molecules of the surround-

ing medium. There is a mathematical model of Brownian motion which is

generally known as the Wiener process.

4.1.2 The Wiener Process

Definition: Brownian motion (or standard Wiener process)

A scalar standard Brownian motion, or standard Wiener process, over

[0, T ] is a random variable Wt that depends continuously on t ∈ [0, T ] and

satisfies the following three conditions:

1. W0 = 0 (with probability 1).

2. For 0 ≤ s < t ≤ T the random variable given by the increment Wt−Ws

is normally distributed with mean zero and variance t−s; equivalently,

Wt−Ws ∼
√
t− sN(0, 1), where N(0, 1) denotes a normally distributed

random variable with zero mean and unit variance.

3. For 0 ≤ s < t < u < v ≤ T the increments Wt −Ws and Wv −Wu are

independent.

The properties of the Wiener process, namely to be Gaussian distributed

and to have independent increments, reflect closely the characteristic fea-

tures of Brownian motion. The stochastic process Wt is thus a satisfactory

mathematical model of the latter. Indeed, the displacement of a Brownian
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particle is the sum of a very large number of independent infinitesimally

small displacements due to the collisions. Invoking the central limit theorem

we therefore expect the change in position of the Brownian particle to be

Gaussian distributed. Furthermore, the displacements occurring over non

overlapping time intervals should be stochastically independent, since they

are due to collisions which are independent of each other. The stationarity

of the displacements reflects the fact the fluid is in equilibrium.

The Wiener process itself is not a stationary process since probabilities

p(x, t + u) 6= p(x, t). The expectation value and the correlation function

are easily calculated to be:

E[Wt] = 0 (4.1)

E[(Wt)(Ws)] = min(t, s) (4.2)

The mean square displacements of a Brownian particle

E[W 2
t ] = t (4.3)

increases only linearly in time. Thus the Wiener process is also not stationary

in the wide sense. Though the sample paths of the Wiener process are with

probability one continuous functions, the Wiener process is, as befits a model

of Brownian motion, quite ”irregular”. With probability one, the sample

functions are nowhere differentiable, i.e, the velocity of a Brownian particle

is undefined, and they have infinite length on any finite time interval.

4.1.3 The Ornstein-Uhlenbeck Process

If the Wiener process is used to model Brownian motion, i.e is chosen as

a stochastic process to represent the position of Brownian particle, then

the instantaneous velocity is not defined in this model. It is infinite, since

the sample paths of Wt are nowhere differentiable. This can be avoided by

considering the velocity of the Brownian particle instead as the main random

quantity as done by Uhlenbeck and Ornstein. This stochastic process is

therefore known as the Ornstein-Uhlenbeck process.
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4.2 Stochastic Models of Environmental Fluc-

tuations

Three main elements characterize stochastic processes: the nature of the state

variables, the index parameter set θ and the dependence relations among the

random variables Xt.

The parameter set θ is trivially in all cases the time axis. As to the state

space , we distinguish between continuously varying parameters and discrete

parameters: the former can be modeled by a process with Gaussian probabil-

ity law, the latter by a Poisson process. The motion of a Brownian particle

we have just seen is a basic example for Gaussian stochastic process.

We now turn our attention to the dependence relation between the random

variables making up the stochastic process used to model environmental fluc-

tuations. It was observed that in a broad class of applications a clear cut

separation of time scales exists, namely that the environmental state varies

much faster than the macroscopic state of the system. This led to consider

a stochastic process with extremely short memories and in a rather natural

way the notion of white noise, a completely random process with indepen-

dent values at every instant of time, arose. We shall now have a close look

at the passage from a real noise with a short memory to the idealization of

white noise with zero memory.

4.2.1 Correlation function and noise spectrum

As a first step towards a clear formulation of the way to model environmental

fluctuations we have to quantify the notion of rapid external noise. We look

for the characteristics defining the time scale of the system and that of the

environment.

The systems we shall deal with here are governed by a phenomenological

equation of the type:

Ẋ(t) = h(X(t)) + λg(X(t)) = fλ(X(t)). (4.4)
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We denote by τmacro the time that is typical for the macroscopic temporal

evolution of the system (we shall usually identify τmacro with the relaxation

time of the system towards a reference steady state X̄ found under the aver-

age environmental conditions). To be precise, X̄ is defined by:

h(X̄) + E[λt]g(X̄) = 0, (4.5)

and we determine τmacro via the linear stability analysis. This yields to

ω(X̄) = ∂Xfλ(X)|X=X̄ (4.6)

and hence the characteristic macroscopic time is the relaxation time of the

system

τmacro = | 1

ω(X̄)
| (4.7)

A measure of the rapidity of the random environmental fluctuations is the

correlation time τcor. It is, so to speak, the memory time of the stochastic

process and it is defined for stationary process as:

τcor =
1

C(0)

∫ ∞
0

C(τ)dτ (4.8)

The rationale of this definition is easily understood. The right hand side

is the area beneath the normalized correlation function C(τ) = E[δXtδXt+τ ]

E[δXt2
]

C(τ) � 1 and C(0) = 1. Intuitively one would say that the process has

a long memory, if C(τ) or C̃(τ)) decreases only slowly, implying a large

area beneath C̃(τ). On the other hand, for a process with a short memory,

C(τ) or C̃(τ)) decreases rapidly, thus giving rise to small area beneath C̃(τ).

The normalized correlation function is used in order to be able to compare

processes with different values for the variance.

A rapidly fluctuating environment can be characterized by the property that

the correlation time τcor of the stochastic process λt is much smaller than the

typical macroscopic time τmacro of the system:

τcor � τmacro. (4.9)

An alternative way, different from the correlation function, to characterize the

dependence relation between the random variables Xt, is based on the fact,
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which we quote without proof, that any stationary process can be written

as a superposition of oscillations with frequency ν, with random amplitude

and phase. The so called frequency spectrum S(ν) is then a measure for the

mean square power with which an oscillation of frequency ν contributes to

the process Xt. S(ν) is just the Fourier transform of the correlation function

hence contains the same information on the process:

C(τ) =

∫
R

eiντS(ν)dν. (4.10)

Due to a well-known property of the Fourier transform, a narrow frequency

spectrum S(ν) corresponds to a slowly decreasing broad correlation function

C(τ). And vice versa, a broad frequency spectrum is associated with a rapidly

decreasing correlation function. This implies that rapid external fluctuations

τcor � τmacro having a narrow correlation function possess a broad frequency

spectrum with an effective band width νb defined as:

νb =
1

S(0)

∫ ∞
0

S(ν)dν (4.11)

which is very large compared to the typical frequency of the system:

νb � ω(X̄) (4.12)

Typically, the environments of natural systems fulfill this last condition. This

feature is easily understood: external noise can be expression of turbulent

or chaotic state, a defining property of which is a broad-band spectrum, or

the external parameter depends on a multitude of interfering environmental

factors, implying that a large number of harmonic modes are ” excited ” and

intervene in its temporary behavior. Therefore in a large class of applications,

the environmental fluctuations are very rapid in the sense described above.

4.2.2 The White-Noise Process

If τcor � τmacro, one is tempted to pass to the limit τcor = 0. The rationale

to adopt this idealization is the following: the memory of the environment is

extremely short compared to that of the system. It is therefore reasonable to

expect that any effects related to it are barely perceptible in the macroscopic
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system. Hence, no qualitative change in the macroscopic behavior should

occur if we set the non vanishing but extremely short correlations equal

to zero. This means that the environment can be adequately described by

a process with independent values at each instant of time, i.e., a so called

completely random process. Some circumspection, however, has to be exerted

in passing to the limit τcor = 0 because if we approach the limiting process,

having independent values, simply by letting the correlation time go to zero,

we shall not only neglect memory effects but at the same time get rid of any

effect of the environmental fluctuations. To see this, consider a Gaussian

process with an exponentially decreasing correlation function, O-U process.

The frequency spectrum of the O-U process is given by:

S(ν) =
1

2π

∫
<
e−iντC(τ)dτ =

1

2π

∫
<
e−iντ (σ2/2γ)e−γ|τ |dτ = (

σ2

2π
)(ν2 + γ2)−1

(4.13)

The correlation time of the O-U process is:

τcor = γ−1 (4.14)

Hence the limiting τcor → 0 corresponds to γ → ∞. It is easily seen that

in this limit the mean square power with which oscillation of frequency ν

contribute to the O-U process Xt vanishes, i.e

limγ→∞S(ν) = 0, ν ∈ < (4.15)

This implies that a decrease in the correlation time τcor without changing

the other characteristics of the process leads eventually to a situation in

which the random variations have no impact at all on the system, simply

because in this limit the total input power S = 2
∫∞

0
S(ν)dν = σ2

2γ
= C(0) is

spread uniformly over infinitely many frequencies. The limit τcor → 0 is too

simplistic. It implies more than just neglecting the memory of the noise, in

fact it is a noiseless limit.

If the external noise with a short memory is to be replaced by an equivalent

idealized noise with zero memory, then in the light of the above discussion

the appropriate limiting procedure is to couple the decrease in τcor with an

adequate increase in the strength of fluctuations. From (4.13) it follows that
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a finite limit is obtained, if concomitant with τcor → 0, σ2 → ∞ such that

σ2/γ2 is a constant and not the variance σ2/2γ. In the limit τcor → 0,

σ → ∞ such that σ2γ2 = const = σ̄2 the frequency spectrum of the O-U

process converges to

S(ν) =
σ̄2

2π
(4.16)

i.e completely flat spectrum. For its correlation function we obtain in this

limit

C(τ) = σ̄2δ(τ) (4.17)

Here δ(τ) denotes the Dirac delta function (zero everywhere except at τ = 0

where it is infinitely high such that
∫
< δ(τ)dτ = 1).

As is clear from the frequency spectrum and correlation function, a δ-correlated

process has a flat spectrum. This property is at the origin of the name White

noise for such processes; all frequencies are present with equal power as in

white light. The O-U process is a Gaussian process, a property which is

conserved in the limiting procedure. For this reason, the limiting process for

τcor → 0 of the O-U process is known as Gaussian white noise and is in the

following denoted σ̄ξt (where ξt is the standard Gaussian white noise with

E[ξt] = 0 and E[ξtξt+τ ] = δ(τ)).

Gaussian white noise is an extremely irregular process. It jumps widely

around; its realizations are nowhere continuous. Clearly there are other

kinds of white noise besides the Gaussian one; it is not difficult to character-

ize a white-noise process since its defining feature is that it is a completely

random process, i.e it has independent values at every instant of time, and

has infinite variance. In other words, any process whose correlation function

is proportional to a Dirac delta function qualifies as white noise.

It is easy to obtain all possible white noises. Consider a process Vt with

stationary independent increments, as for instance, the Wiener process Wt

or the Poisson process νt. Then the random variables (Vt+h − Vt)/h and

(Vs+h − Vs)/h are independent random variables for h sufficiently small and

t > s. This property would also be conserved in the limit h → 0 if it could

be properly defined. Thus is tempting to think of white noise as the time

derivative of a process with stationary independent increments; the Gaussian

white noise would be the time derivative of the Wiener process and differ-

81



entiating the Poisson process would yield, in this spirit, the Poisson white

noise.

Hence, the important result is that there is a one to one relation between

white-noise processes and ordinary processes with white stationary indepen-

dent increments namely, ”white noise = (d/dt) (processes with stationary

independent increments)”. Since the latter class of processes is completely

known [I.I74], so is then the ensemble of possible white noises. Though Gaus-

sian white noise is so very irregular, it is extremely useful to model rapidly

fluctuating phenomena. Not surprisingly, in view of its properties, true white

noise of course does not occur in nature. However, as can be seen by their

spectra, lots of natural noises are white to a very good approximation.

4.2.3 Phenomenological modeling of macroscopic sys-

tems

These considerations put the final touch to the phenomenological modeling

of macroscopic systems, subjected to rapidly fluctuating environment. In the

idealization of δ-correlated external noise, the system is described by a SDE

of the form:

Ẋ = h(Xt) + λg(Xt) + σg(Xt)ξt = fλ(Xt) + σg(Xt)ξt (4.18)

where we have suppressed the bar over σ to denote the intensity of the Gaus-

sian white noise. What are the advantages of neglecting the small memory

effects of the environment?

Suppose the following situation: the state of the system at time t has been

determined accurately to be x. For the external parameter λt only its prob-

ability law is known, for instance that it is gaussian distributed. Consider

the situation under a more realistic than white noise, e.g. let ξt be an O-U

process. Then for a short time h into the future, the state of the system will

be given by

Xt+h = x+ fλ(x) + σg(x)ξth (4.19)

Of course, it would be convenient if the future stochastic evolution of the

system could be predicted solely on the basis of the information we possess

at the present time t on the state x of the system and on the environmental
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conditions as represented by the probability of ξt. In mathematical terms,

the probability that the system is in state y at some future time t+h should

depend only on the present state x and the stationary probability density

Ps(z) describing the environment, but not on the past history. Such a sit-

uation is the closest stochastic analog to the deterministic situation, where

X(t) in (4.4) is completely determined, once the initial condition X(0) is

given. This property is a verbal description of the defining feature of Markov

processes.

Definition: Markov chain

Let χ = (x1, ...., xn) be the set of a finite number of discrete states. The

stochastic process X = (Xt, t ∈ <+) is a continuous time Markov chain if it

satisfies the following Markov property

P (Xt = xj|Xs = xi) = P (Xt = xj|Xr1 = xi1 , ....Xrn = xin , Xs = xi) (4.20)

for 0 ≤ r1 ≤ .... ≤ rn < s < t and all xi1 ...xin , xi, xj ∈ χ.

Definition: Markov process

The stochastic process X = (Xt, t ∈ <+) is a (continuous time continuous

state) Markov process if it satisfies the following Markov property:

P (Xt ∈ B|Xs = x) = P (Xt ∈ B|Xr1 = x1, ....Xrn = xn, Xs = x) (4.21)

for all Borel subsets B ⊂ < , time instants 0 ≤ r1 ≤ .... ≤ rn ≤ s ≤ t and all

x1...xn, x for which the conditional probabilities are defined.

For fixed s,x and t the transition probability P (Xt ∈ B|Xs = x) is a proba-

bility measure on the sigma algebra B of Borel subsets of < such that

P (Xt ∈ B|Xs = x) =

∫
B

p(s, x; t, y)dy (4.22)

for all B ∈ B. The quantity p(s, x; t, .) is the transition density.

From the Markov property it follows that

p(s, x; t, y) =

∫ ∞
−∞

p(s, x; τ, z)p(τ, z; t, y)dz (4.23)

for all s ≤ τ ≤ t and x, y ∈ <. This equation is known as the Chapman

Kolmogorov equation.
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It’s important to say that the system can have the above property only

if the environment is indeed already completely characterized by its one-

dimensional density ps(z) and not, as is generally the case, by the infinite

hierarchy of its n-dimensional probability densities. The only class for which

this is true are the processes with independent values at every instant of

time, since for completely random processes

p(z1, t1; ...; zn, tn) = Πn
i=1ps(zi). (4.24)

So, if the environment had a finite memory, the information of the past would

indeed improve our prediction capabilities of the feature stochastic evolution

of the system. These heuristic considerations suggest that the system is

Markovian if and only if the external fluctuations are white. The following

theorem holds: ”the process Xt, being a solution of (4.18) is Markovian, if

and only if the external noise ξt is white”. This result explains the impor-

tance and appeal of the white-noise idealization. If the system, coupled to

a fluctuating environment, can be described by a Markov process, then we

have the full arsenal of tools developed to deal with such stochastic processes

at our disposition.

4.3 Noise induced non-equilibrium phase tran-

sitions

We want now to describe a new class of non equilibrium phase transitions,

namely changes in the macroscopic behavior of non linear systems induced

by external noise. First of all it’s important the choice of systems:

• We shall consider systems spatially homogeneous.

• We shall consider macroscopically large systems and assume they have

reached the thermodynamic equilibrium.

• We shall consider systems which can be described by one intensive

variable (to have exact analytical results).
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Then, the influence of the environment on the macroscopic properties of the

system is described on the level of the phenomenological equation via the

external parameters λ. If the system is coupled to a fluctuating environment,

then these parameters become in turn stochastic quantities. They can be

represented by stationary stochastic processes λt:

λt = λ+ σξt (4.25)

where λ represents the average state of the environment, ξt the fluctuations

around λ (ξt has zero mean value and intensity σ2). Including it in the

phenomenological description we get the Stochastic differential equation:

Ẋ = fλ(t)(X(t)) = h(Xt) + λg(X(t)) + σξtg(X(t)) (4.26)

The models for environmental fluctuations can be chosen among the most

simple and basic classes of stochastic processes, Gaussian (for continuous

varying external parameters) and Poisson processes (for discrete external

parameters). Integrating the equation above we get:

Xt = X0 +

∫ t

0

fλ(Xs)ds+ σ

∫ t

0

g(Xs)ξsds (4.27)

Formulated in this manner, the question is now how to arrive at the consistent

definition of the stochastic integral
∫
g(Xs)ξsds which is the main source of

confusion. The problem is that though a sense can be given to this integral

and thus to the SDE (4.26), in spite of the extremely irregular nature of the

white noise, there is no unique way to define it, precisely because white noise

is so irregular. There are two different ways to define this integral, Ito and

Stratonovich, they give different results. Both definitions are based on the

heuristic relation that integration of Gaussian white noise yields Brownian

motion, which we shall denote by Wt. Therefore the above integral can be

written ∫
g(Xs)ξsds =

∫
g(Xs)dWs (4.28)

The integral on the right hand side is then defined , as in the case of an

ordinary integral, by the limit of the approximating sums∫
g(Ws)dWs = lim

∑
g(Wtj−1

)(Wti −Wti−1) (4.29)
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in the Ito sense and in the Stratonovich sense∫
g(Ws)dWs = lim

∑
g(
Wti−1

+Wti

2
)(Wti −Wti−1). (4.30)

So, the only difference is the choice of the evaluation point. Ito chooses the

left-hand pointWti−1
in the partition of the time interval, whereas Stratonovich

opts for the middle point
(Wti−1+Wti )

2
. For an ordinary (deterministic) inte-

gral, ∫
U(X)dX = lim

∑
U(X̃i)(Xi −Xi−1), (4.31)

any evaluation point X̃i, as long as X̃i ∈ [Xi−1, Xi) can be chosen; the limit

is independent to it. Due to the extremely wild behavior of the Gaussian

noise, this is no longer true for the stochastic integral. The limit of the

approximating sums depends on the evaluation point; Ito and Stratonovich

yield different answers for the same integral:

Ito :
∫ t

0
WsdWs = 1

2
(W 2

t −W 2
0 )− t

2

Stratonovich:
∫ t

0
WsdWs =

(W 2
t −W 2

0 )

2

Both the Ito and Stratonovich definitions are mathematically correct and

can serve as the basis for a consistent calculus.

Systems coupled to a rapidly fluctuating environment can be modeled by

Markov processes that are solutions of the stochastic differential equations.

The description of (4.26) can be based on:

Ito SDE: dXt = [h(Xt) + λg(Xt)]dt+ σg(Xt)dWt

Stratonovich SDE: dXt = [h(Xt) + λg(Xt)]dt+ σg(X) ◦ dWt

In those two cases, the transition probability density p(y, t|x) can be

found using the Fokker Plank equation:

Ito: ∂tp(y, t|x) = −∂yfλ(y)p(y, t|x) + σ2

2
∂yyg

2(y)p(y, t|x)
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Stratonovich: ∂tp(y, t|x) = −∂y[fλ(y)+σ2

2
g′(y)g(y)]p(y, t|x)+σ2

2
∂yyg

2(y)p(y, t|x)

4.3.1 Stationary solution of the Fokker-Plank equation

(FPE)

Since environment fluctuations can be modeled by a stationary random pro-

cess, we expect that in general a system subjected to external noise for suffi-

ciently long time will also settle down to stationary behavior. It means that,

on time goes to infinity, the system will attain a probability density ps(x)

whose shape does not change any more with time. Now, we shall determine

the stationary probability density ps(x) which characterizes the steady-state

behavior of the system under external white noise.

ps(x) is the stationary solution of the FPE which can be written in the form:

∂tp(x, t|x0, 0) + ∂xJ(x, t|x0, 0) = 0 (4.32)

where J(x, t|x0, 0) = f(x)p(x, t|x0, 0)− σ2

2
∂xg

2(x)p(x, t|x0, 0). The stationary

FPE then reads: ∂xJs(x) = 0 and implies that the stationary probability

current is constant on the space [b1, b2]: Js(x) = const for x ∈ [b1, b2]. In the

stationary case, we have the probability current in the interior of the space

equal to the current across the boundaries which we call J:

J = Js(x) = Js(b1) = Js(b2) (4.33)

Now,

−f(x)ps(x) +
σ2

2
∂xg

2(x)ps(x) = −J (4.34)

which solving gives

ps(x) =
N

g2(x)
exp(

2

σ2

∫ x f(u)

g2(u)
du)− 2

σ2g2(x)
J

∫ x

exp(
2

σ2

∫ x

z

f(u)

g2(u)
du)dz

(4.35)

where N is determined by the normalization condition, J is the probability

current at the boundaries of the state space and depends on the nature of

the boundaries.
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It must be observed that, when the boundaries are natural (J = 0) [W.H84]

we get

ps(x) =
N

g2(x)
exp(

2

σ2

∫ x f(u)

g2(u)
du) (4.36)

To be a stationary probability density, has to be normalizable:

N−1 =

∫ b2

b1

1

g2(x)
exp(

2

σ2

∫ x f(u)

g2(u)
du) <∞ (4.37)

If one of the boundaries is attracting, regular or absorbing [W.H84], then

ps(x) = 0 for x ∈ (b1, b2), no regular stationary probability density exists.

For a diffusion process corresponding to Stratonovich SDE:

dXt = f(Xt)dt+ σg(X) ◦ dWt (4.38)

the stationary probability density for natural boundaries is:

ps(x) =
N

g(x)
exp(

2

σ2

∫ x f(u)

g2(u)
du) (4.39)

In general: The stationary behavior of a system describe by SDE

dXt = f(Xt)dt+ σg(X)dWt (4.40)

is given by:

ps(x) = Ng−ν(x)exp(
2

σ2

∫ x f(u)

g2(u)
du) (4.41)

if J = 0, ν = 1 gives the Stratonovich interpretation , ν = 2 the Ito version.

It may happen that a SDE interpreted according to Ito admits a stationary

solution while interpreted according to Stratonovich it does not, or vice versa,

since the formula for ps(x) differ by a factor g−1(x). If such a discrepancy

occurs, in general it signals that the model used to describe the system has

some dangerous or pathological features and one has to be doubly careful in

justifying the modeling procedure.

Theorem: If the diffusion process Xt is started with a probability density

that differs from the stationary one, it will approach the stationary density

as time tends to infinity limt→∞p(x, t) = ps(x).
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4.3.2 The neighborhood of deterministic behavior: ad-

ditive and small multiplicative noise

Consider a non linear macroscopic system which has been coupled with his

environment for a sufficiently long time to have settled down to a stationary

state. If the surroundings are varying, then the steady states of the systems

are zeros of the RHS of the deterministic equation:

Ẋ = h(X) + λg(X) (4.42)

Here we shall also suppose that the deterministic system is stable in the

sense that the solution X(t) does not blow up to infinity. To be precise,

∀X0 ∈ (b1, b2)∃C <∞, dependent on λ, such that

|X(t)| ≤ C ∀t (4.43)

if X0 = 0. This is fulfilled if a K > 0 exists such that:

h(x) + λg(x) < 0 ∀x > K (4.44)

and

h(x) + λg(x) > 0 ∀x < −K (4.45)

If X is a concentration like variable and has to be non negative, then RHS

of (4.42) has to obeys the following condition:

h(0) + λg(0) ≥ 0 ∀λ (4.46)

If both b1, b2 are finite, we require h(b1) + λg(b1) ≥ 0 and h(b2) + λg(b2) ≤ 0

for all λ. The solution of the first order, one-variable differential equation,

is a monotone function with respect to time since Ẋ takes one and only one

well-defined value for every x. Thus (4.43) implies that (4.42) admits only

one steady state.

If it admits more than one steady state , then stable and unstable ones

alternate. If there are two ore more stable stationary states, then the state

space divides in nonoverlapping regions, the ”basin of attraction” of the

various stable states. This is very easily seen if we write the phenomenological

equation in the form

Ẋ = −∂XVλ(X), where Vλ(x) = −
∫ x

[h(z) + λg(z)]dz (4.47)
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is called the potential of (4.42). The steady states are the extrema of the

potential Vλ(x) and the normal modes ω(X̄) of the linear stability analysis

are given by

ω(X̄) = ∂XXVλ(X̄) (4.48)

Hence, the stable steady states correspond to the minima of Vλ(x) and the

unstable steady states to the maxima.

We want now to analyze how the stationary behavior of a system is modified

in a fluctuating environment. In this case, the ”state” of the system is given

by a random variable.

The system is described by a degenerate random variable of the form

X(ω) = X̄i if X(0)(ω) ∈ A(X̄i) (4.49)

where A(X̄i) denotes the basin of attraction of the ith steady state. We

characterize this (degenerate) random variable by its probability law:

• In the deterministic case: the stationary probability density consist of

”delta peaks” centered on the steady state X̄i. The weight of the delta

peaks is given by the initial preparation of the system.

• In the stochastic case: external noise has a disorganizing influence. The

probability density has a maximum at the coordinate that corresponds

to the minimum of the potential and has a certain spread around it,

depending on the strength of the external noise. If there is more than

one minimum and if there is no effective upper bound on the external

fluctuations, then we expect a multimodal probability density with

peaks corresponding to the various minima of the potential.

A general picture emerges. The state of the system, i.e. the random variable,

is given by an interplay between the dynamics of the system and the external

fluctuations.

case 1: the intensity of the white noise is extremely small i.e σ � 1

Defining

U(x) =

∫ x f(u)

g2(u)
du (4.50)
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we can write from (4.41) as

ps(x) = Nexp[
2

σ2
U(x̄m)]exp[

2

σ2
[U(x)− U(x̄m)− νσ2

2
lng(x)]]. (4.51)

Here x̄m is the location of the highest maximum of U(x), which we suppose

to lie in the interior of the state space (b1, b2):

U(x) < U(x̄m) for x 6= x̄m.

If σ2 tends to zero and x 6= x̄m, the second factor becomes exponentially

small, so that the dominant contribution to the stationary probability density

comes from a neighborhood of the order of σ2 around the highest maximum

of U(x).

case 2: the external noise is additive: (g(x) = const = c)

U(x) = − 1

c2
Vλ(x) (4.52)

The highest maximum of U(x) and of the probability density ps(x) coincides

with the position of the deepest potential well for all σ2, x̄m = x̄; no shift

occurs.

case 3: the external noise is multiplicative:

U(x) 6= − 1

c2
Vλ(x) (4.53)

The highest maximum of U(x) is not necessarily the one with the deepest

potential well in the deterministic description.

Hence, the criterion of absolute stability for the deterministic steady states

depends explicitly on the nature of the random perturbations the system is

subjected to.

4.3.3 Transition phenomena in a fluctuating environ-

ment

We now analyze the stationary behavior of the macroscopic systems for ar-

bitrary noise intensities. What do we mean by a transition in a macroscopic

system coupled to a random environment and how do we detect such transi-

tions?
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Definition: Transition

A transition occurs precisely at that point in the parameter space, consisting

of the mean value of the external noise, its variance its correlation time etc..

where the functional form of the mapping from the sample space Ω into the

state space [b1, b2] changes qualitatively. This corresponds to a qualitative

change in the probability law characterizing the random variable.

In our case, this probability law is given by (4.41), the exact expression for

the stationary probability density of a system subjected to Gaussian white

noise. How can we detect such qualitative change?

The natural way is look at the deterministic situation for guidance and try

to extend the criteria used there to the stochastic case.

• In the deterministic case: a non equilibrium phase transition occur

when the potential Vλ(x) changes qualitatively. For instance, the num-

ber of local extrema changes. This fact has found its precise formulation

in catastrophe theory.

• In the stochastic case: is natural to consider the extrema of the station-

ary probability density ps(x) as indicators for a transitions. This choice

is not only the most direct extension of the deterministic concepts, but

also the most appropriate compared with other possibilities that come

to mind in the stochastic case as the moments of the distribution.

Example: Consider the time-dependent Landau equation, often used

to describe equilibrium critical phenomena:

dXt = (λXt −X3
t )dt+ σdWt

In the deterministic case, σ = 0, a critical point occurs at λ = 0.

For λ negative the system has only one steady state, x̄ = 0, i.e the

potential Vλ(x) has only one minimum. For λ positive, x̄ = 0 becomes

a maximum of Vλ(x) and two minima develop at x̄ = ±λ 1
2 , i.e the

system now has to stable and one unstable steady states.

In the stochastic case, which corresponds to additive noise here, the

steady state behavior of the system is described by a random variable

whose probability law is given by

ps(x) = Nexp[−Vλ(x)/σ2].
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It is obvious that also in the stochastic case a qualitative change in the

steady state occurs at λ = 0. This transition is accurately reflected by

the behavior of the extrema of ps(x). If however the moment are used,

no transition phenomenon is detected. Clearly, it is not the mean value

that corresponds to the macroscopic states or phases of the system,

but the maxima of ps(x). This example confirms that the most direct

extension of the deterministic concepts as presented above is also the

most appropriate. A qualitative change in steady-state behavior is

unambiguously reflected in the extrema of the probability density. (The

only exception is the transition from a degenerate to a genuine random

variable. Here the variance is the best indicator.)

Since a transition occurs if the steady states of the system as given by the

random variable changes qualitatively, the extrema of the stationary proba-

bility density are merely a practical way to monitor such a qualitative change.

The number and position of the extrema of ps(x) in the stochastic case and

Vλ(x) in the deterministic case are the most distinguishing features of the

steady state behavior of the system.

In summary:

1. A transition occurs when the functional form of the random variable

describing the steady state of the system changes qualitatively.

2. This qualitative change is most directly reflected by the extrema of the

stationary probability law, except if the transition is due to a change

in the nature of boundary.

3. The physical significance of the extrema, apart from being the most ap-

propriate indicator of transition, is their correspondence to the macro-

scopic phases of the system. The extrema are the order parameter of

the transition.

The extrema of ps(x) are easily found from:

[h(xm) + λg(xm)]− ν σ
2

2
g(xm)g′(xm) = 0 (4.54)
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basic equation for an analysis of the influence of rapid external noise on the

steady state behavior of macroscopic non-linear systems.

The basic equation (4.54) contains two terms. The one in brackets, set equal

to zero, corresponds to the equation for the deterministic steady states (4.42).

The second term describes the influence of external noise. We have again to

distinguish between two cases:

1. Additive noise (g(x) = 1): the influence of the environment fluctu-

ations does not depend on the state of the system. Consequently, the

extrema of ps(x) always coincide with the deterministic steady states,

independent of the intensity of the external white noise. Hence, addi-

tive external white noise does not modify qualitatively the stationary

behavior of one-variable systems.

2. Multiplicative noise (g(x) 6= 1): the effect of the environment fluc-

tuations does depend on the state of the system. If σ2 is sufficiently

small, then the roots of (4.54) do not differ in number and position from

the deterministic steady states. The external noise is not sufficiently

strong to change the potential qualitatively. If, however, the intensity

σ2 of the noise increases, then we come to a point where the second

term in (4.54) can no longer be neglected. In fact, if σ2 is sufficiently

large, the extrema of ps(x) can be essentially different in number and

position from the deterministic steady state, provided g(x) is nonlinear

in a suitable way f(x) = h(x) + λg(x) is a polynomial of degree n and

g′(x)g(x) a polynomial of degree m grater than n. When σ2 crosses

a certain threshold value the shape of ps(x), i.e the random variable

describing the stationary behavior of the system, can change drasti-

cally; a transition occurs. In addition to the disorganizing effect, which

it shares with the additive noise, multiplicative noise can create new

states, it can induce new non-equilibrium phase transitions which are

no expected from the usual phenomenological descriptions. These are

simply called noise-induced-transitions.
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4.3.4 Time dependent behavior of Fokker-Planck Equa-

tions

The preceding sections dealt with the stationary behavior of non linear sys-

tems coupled to a fluctuating environment. Sometimes it can be more in-

teresting to observe the transient behavior of such systems instead of the

stationary one. This problem is considerably harder than the analysis of sta-

tionary behavior and in general no explicit formula for the time dependent

solution of the FPE exists, even for one variable systems, in contrast with

the stationary solution.

The exact time-dependent solution of a SDE can be easily obtained only if the

drift and diffusion coefficients are linear functions. It is thus worthwhile for

a study of transient behavior to determine those non linear SDE’s which can

be transformed into a linear SDE by a bijective change of variable because

, for some systems belonging to this class, it is possible to derive the exact

time-dependent solution of the corresponding FPE in an explicit manner.

4.4 Numerical simulation of SDE:

Eulero-Maruyama method

In my thesis we will work with some SDEs. There are different methods

to solve SDEs analytically but we will not see these here. Instead, I will

now explain how to apply a simple numerical method to SDE: the Eulero-

Maruyama method which is the one I used in my numerical simulations.

A scalar, autonomous SDE can be written in integral form as

Xt = X0 +

∫ t

0

f(Xs)ds+

∫ t

0

g(Xs)dWs, 0 ≤ t ≤ T. (4.55)

Here, f and g are scalar functions and the initial condition X0 is a random

variable. The second integral on the right-hand side of (4.55) is to be taken

with respect to Brownian motion, and we assume that the Ito version is

used. The solution Xt is a random variable for each t. We do not attempt

to explain further what it means for Xt to be a solution to (4.55) instead

we define a numerical method for solving it, and we may then regard the
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solution Xt as the random variable that arises when we take the zero step

size limit in the numerical method.

It is usual to rewrite (4.55) in differential equation form as

dXt = f(Xt)dt+ g(Xt)dWt, X(0) = X0, 0 ≤ t ≤ T. (4.56)

This is nothing more than a compact way of saying that Xt solves (4.55). To

keep with convention, we will emphasize the SDE form (4.56) rather than

the integral form (4.55). (Note that we are not allowed to write dWt

dt
, since

Brownian motion is nowhere differentiable with probability 1.)

If g = 0 and X0 is constant, then the problem becomes deterministic, and

(4.56) reduces to the ordinary differential equation dXt
dt

= f(Xt), with X(0) =

X0.

To apply a numerical method to (4.56) over [0, T ], we first discretize the

interval. Let ∆t = T/L for some positive integer L, and τj = j∆t . Our

numerical approximation will be denoted Xj.

The Eulero Maruyama (EM) method takes the form:

Xj = Xj−1 + f(Xj−1)∆t+ g(Xj−1)(W (τj)−W (τj−1)), j = 1, 2, ..., L (4.57)

To understand where (4.57) comes from, notice from the integral form (4.55)

that

X(τj) = X(τj−1) +

∫ τj

τj−1

f(Xs)ds+

∫ τj

τj−1

g(Xs)dWs. (4.58)

Each of the three terms on the right-hand side of (4.57) approximates the

corresponding term on the right-hand side of (4.58). We also note that in the

deterministic case (g = 0 and X0 constant), (4.57) reduces to Eulero method.
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Chapter 5

Bounded noises

Traditionally, stochastic dynamical systems used in the physical sciences have

involved Gaussian noise. In recent times, however, it has been recognized

that the assumption of Gaussianity is not appropriate in some cases. The

Gaussian noise is unbounded, i.e., there exists a positive chance of having very

large values. Strictly speaking, this fact contradicts the very nature of a real

physical quantity which is always bounded. Studies of dynamical systems

with non-Gaussian continuous noise are much more complicated,especially

analytically. Although the literature devoted to the study of bounded noises

is far more limited than that concerning the Gaussian noise, in recent years

a number of interesting works have appeared [TW01, BC05].

Since the noise-induced transitions are dependent on the kind of density of

noise adopted [Fue07], we will now consider two different kind of ”Bounded

Noises”. The first is derived by applying a bounded function to a Wiener

process, the second through an Ito Stochastic differential equation nonlinear

in the diffusion term.

The first bounded noise we consider is the so called sine-Wiener noise [BC05]

given by

ν(t) = Bsen(

√
2

τcorr
W (t)) (5.1)

W ′ = ξ(t) (5.2)

where B is a constant, τcorr is the correlation time, ξ(t) is a white noise.

The sine-Wiener noise, as it is easy to verify, is such that < ν(t) >= 0

97



,< ν2(t) >= B2/2 and

< ν(t)ν(t+ z) >=
B2

2
exp

(
−z
τ

)(
1− exp

(
−4

t

τ

))
,

where z ≥ 0.

The second is the Cai-Lin-Suzuki family of noises [CS05, CK04], which is

derived by a Langevin equation of the form:

ν ′(t) = −ην +D(ν)ζ(t), (5.3)

D(ν) ≥ 0 is a function such that D(|B|) = 0, and ζ(t) is a gaussian noise

with zero mean and unitary variance. We shall further assume that D(ν) is

a symmetric function.

As a consequence, the noise ν is then non-gaussian with zero mean, autocor-

relation time τ = 1/η and it satisfies the following bounds: −B < ν(t) < B.

In the particular case [CS05] where

D(ν) =

√
η

δ + 1
(B2 − ν2)

The stationary density of ν is:

Pst(ν) = N

(
1− ν2

B2

)δ
+

where N is a normalization constant. Note that the density vanishes for

ν ≤ −B and ν ≥ B.

Cai Noise we consider is given by:

ν(t) = −1

τ
νdt+

1

τ
A(B2 − ν2)δdW (t) (5.4)

ν(0) = ν0 (5.5)

where τ describes noise’s correlation time, B noise’s amplitude, A, δ are pa-

rameters, dW (t) is a Wiener process.

98



5.1.1 Sine Wiener noise 5.1.2 Cai noise

Figure 5.1: Bounded Sine Wiener noise (left figure) and bounded Cai noise

(right figure),with amplitude B = 1 and correlation time τ = 0.1.

5.2.1 Sine Wiener noise 5.2.2 Cai noise

Figure 5.2: Bounded Sine Wiener noise (left figure) and bounded Cai noise

(right figure),with amplitude B = 1 and correlation time τ = 1.
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Chapter 6

Bounded-noise-induced

transitions in a tumor-immune

system interplay

The objective of my simulations is to investigate the phenomenon of evasion

of tumor cells from immune control at a temporal mesoscale. Of course in

the very short term if either the tumor is lowly immunogenic or the level of

IS is per se slow (i.e because of immunodeficiency [CJ01]) it is obvious that

the transformed cells can easily and in short time evade control.

Over the long temporal range not only those slow evolutionary processes but

also the IS degradation due to natural senescence [V.A01] can explain long-

term evasions. However, middle term evasions are presumably representative

of the vast majority of case of immune surveillance failure.

An important factor that has been extensively investigated is the influence

of the fluctuations in the proliferation rates of a tumor [W.H84] [W.H77]

[A.d07]. Those fluctuations, however, play a dual role since they can also

trigger the elimination of the neoplasm.

Given the complexity and multistability of the T-IS interplay, we think that

a natural approach is to investigate the role of statistical fluctuations of im-

mune levels that might trigger noise-induced transitions. Moreover , from

modeling point of view, the extreme intricacy of the interactions between

tumor cells and immune effectors further justifies the inclusion of noise on a
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deterministic model of T-IS interplay in order to take into account a plethora

of relevant phenomena such as the variable strength of the neoantigens in

stimulating the immune response, the expression or absence of expression of

molecules needed for T cell activation, the dynamics of Treg cells that gen-

erate a state of tolerance to cancer.

In our simulations we have considered the tumor-immune system model al-

ready seen in chapter 3 introducing two different kind of ”Bounded Noises”:

Sine Wiener and Cai noise, with parameters values describing more aggres-

sive tumor.

A point to be stressed is that the classical theory of noise induced transitions

[W.H84] is an asymptotic theory that refers to the study of the qualitative

changes in stationary probability densities: Pst(x) = limt→∞P (x, t), where x

stands, in biological applications of this theory, for some biological property

such as the size of a cellular population, or the viral load or the average activ-

ity. Here, of course, we shall assume that x denotes the tumor size. However,

whatever asymptotic study might be, if the velocity of convergence of the

stationary density is slow,it is in contradiction with the basic fact that living

beings have a finite lifespan. Thus the lifespan of the host organisms must

be a natural limit to our numerical investigations, which makes the velocity

of convergence to Pst(x) an essential parameter. If this velocity is slow and

the attractor is practically reached in times that are excessively greater than

the average lifespan of the organisms in study, one has to investigate the

possible qualitative changes of P (x, t) during its transitory, namely at some

given realistic times. For this reason we focused here on transitory analysis

of P (x, t). Indeed, noise has been introduced on various parameters observ-

ing the probability density at time T = 100 corresponding , in dimensional

time unity, to 3 years about, both in case of Sine Wiener and Cai noise per-

turbations. It must be observed that all simulations have been done using

Matlab 7.0.4.

Recall: Kuznetsov model for the interaction between a population of tumor

cells and IS cells is given by the equations:

x′ = xα(1− bx)− φyx (6.1)

y′ =
βx

η + x
y − (µ0 + µ1x)y + σ (6.2)
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where x describes the number of tumor cells, y the number of IS effectors, α,

b, φ, β, η, µ0, µ1, σ are parameters.

6.1 Perturbation on parameter φ

I performed some simulations of the new system, obtained from (6.1), (6.2)

simply adding noise ν to the parameter φ, in both form of Sine Wiener and

Cai:

x′ = xα(1− bx)− (φ+ ν)yx (6.3)

y′ =
βx

η + x
y − (µ0 + µ1x)y + σ (6.4)

Before introducing noise, I did some simulations of the deterministic model

for parameters values fitted from real data of chimeric mice, aggressive tumor:

α = 1.636, b = 0.002, φ = 1, β = 1.131, η = 20.19, µ1 = 10 ∗ (0.00311),

µ0 = 0.3743,σ = 0.1181.

Varying φ values I found φtangent and φeradication which describe, respectively,

φ values that makes x nullcline tangent to y nullcline and x nullcline go to

zero. These values are given by: φtangent = 4.108 and φeradication = 49.269(see

figures 6.1.1, 6.1.2).

Now Choosing φ = 4.2, close to φtangent, so that the equilibrium point

may be quite metastable, I performed a series of some simulations.

6.1.1 φtangent = 4.108 6.1.2 φeradication = 49.269
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The following tables and figures show the results obtained by varying the

amplitude of the noise (B) and its correlation time (τ):

SW noise:
Amplitude (B) Correlation time (τ) Comments

0.01 0.1 //*

0.01 0.5 //

0.01 1 //

0.01 6 //

0.08 0.1 Evident oscillations

0.08 0.5 Evident oscillations

0.08 1 Evident oscillations

0.08 3 Evident oscillations

0.095 0.1 Evident oscillations

0.095 0.8 Evident oscillations

0.095 3 Evident oscillations

0.1 1 Evident oscillations

0.2 1 Evident oscillations

0.2 2 Evident oscillations

0.2 3 Evident oscillations

0.2 8 Evident oscillations

0.5 1 Evident oscillations

0.8 0.1 Evident oscillations

0.8 1 Evident oscillations

1 1 Evident begins

1.2 1 Evasion

1.4 1 Evasion

1.6 1 Evasion

* No relevant observations.
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Cai noise:
Amplitude (B) Correlation time (τ) Comments

0.01 0.1 //

0.01 0.5 //

0.01 1 //

0.01 6 //

0.08 0.1 Evident oscillations

0.08 0.5 Evident oscillations

0.08 1 Evident oscillations

0.08 3 Evident oscillations

0.095 0.1 Evident oscillations

0.095 0.8 Evident oscillations

0.095 3 Evident oscillations

0.1 1 Evident oscillations

0.2 1 Evident oscillations

0.2 2 Evident oscillations

0.2 3 Evident oscillations

0.2 8 Evident oscillations

0.5 1 Evident oscillations

0.8 0,1 Evident oscillations

0.8 1 Evident oscillations

1 1 Evasion begins

1.2 1 Evasion begins

1.4 1 Evasion

1.6 1 Evasion

Observations:

Introducing a Sine Wiener noise, for some values of amplitude and correlation

time, I can notice a clear evasion from the point of microscopic equilibrium

to the macroscopic one as it is evident in the figures (6.3.1) (6.4.1) (6.5.1)

(6.6.1) (6.7.1) (6.8.1). Introducing a Cai noise, as well, for some values of

amplitude and correlation time, evasion is clear. See figures (6.5.2), (6.6.2)

(6.7.2) (6.8.2).
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Perturbation on parameter φ

6.1.3 Sine Wiener noise 6.1.4 Cai noise

Figure 6.1: Xfinal probability density over 5000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 1 and correlation time τ = 1, added on parameter φ. Starting

values are those of microscopic equilibrium point (x, y) = (4.83, 0.38).

6.2.1 Sine Wiener noise 6.2.2 Cai noise

Figure 6.2: Xfinal probability density over 5000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 1 and correlation time τ = 1, added on parameter φ. Starting

values are (x, y) = (0.1, 2).
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6.3.1 Sine Wiener noise 6.3.2 Cai noise

Figure 6.3: Xfinal probability density over 5000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with am-

plitude B = 1.2 and correlation time τ = 1, added on parameter φ. Starting

values are those of microscopic equilibrium point (x, y) = (4.83, 0.38).

6.4.1 Sine Wiener noise 6.4.2 Cai noise

Figure 6.4: Xfinal probability density over 5000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 1.2 and correlation time τ = 1, added on parameter φ.

Starting values are (x, y) = (0.1, 2).
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6.5.1 Sine Wiener noise 6.5.2 Cai noise

Figure 6.5: Xfinal probability density over 5000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with am-

plitude B = 1.4 and correlation time τ = 1, added on parameter φ. Starting

values are those of microscopic equilibrium point (x, y) = (4.83, 0.38).

6.6.1 Sine Wiener noise 6.6.2 Cai noise

Figure 6.6: Xfinal probability density over 5000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 1.4 and correlation time τ = 1, added on parameter φ.

Starting values are (x, y) = (0.1, 2).
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6.7.1 Sine Wiener noise 6.7.2 Cai noise

Figure 6.7: Xfinal probability density over 5000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with am-

plitude B = 1.6 and correlation time τ = 1, added on parameter φ. Starting

values are those of microscopic equilibrium point (x, y) = (4.83, 0.38).

6.8.1 Sine Wiener noise 6.8.2 Cai noise

Figure 6.8: Xfinal probability density over 5000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 1.6 and correlation time τ = 1, added on parameter φ.

Starting values are (x, y) = (0.1, 2).
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6.2 Perturbation on parameter β

I performed some simulations of the new system obtained from (6.1), (6.2)

simply adding noise ν to the parameter β, in both form of Sine Wiener and

Cai:

x′ = xα(1− bx)− φyx (6.5)

y′ =
(β + ν)x

η + x
y − (µ0 + µ1x)y + σ (6.6)

The following tables show the results obtained by varying the amplitude

of the noise (B) and its correlation time (τ):

SW noise:
Amplitude (B) Correlation time (τ) Comments

1 1 //

1.6 1 //

2 1 //

2 1.2 //

2 2 //

2.5 1 //

2.5 1.2 //

2.5 2 //

3 1 //

3 1.5 //

3 3 //

4 1.5 //

4 2 //

5 2 //

10 3 //

10 8 Evident oscillations

10 10 Evident oscillations

15 3 Evident oscillations

20 3 Evident oscillations
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Cai noise:
Amplitude (B) Correlation time (τ) Comments

1 1 //

1.6 1 //

2 1 //

2 1.2 //

2 2 //

2.5 1 //

2.5 1.2 //

2.5 2 //

3 1 //

3 1.5 //

3 3 //

4 1.5 //

4 2 //

5 2 //

10 3 //

10 8 Evident oscillations

10 10 Evident oscillations

15 3 Evident oscillations

20 3 Evident oscillations

Observation: Introducing an additive SW / Cai noise to the parameter

β there are no relevant changes in the model behavior.

6.3 Perturbation on parameter η

I performed some simulations of the new system obtained from (6.1), (6.2)

simply adding noise ν to the parameter η, in both form of Sine Wiener and

Cai:

x′ = xα(1− bx)− φyx (6.7)

y′ =
βx

(η + ν) + x
y − (µ0 + µ1x)y + σ (6.8)
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The following tables show the results obtained by varying the amplitude

of the noise (B) and its correlation time (τ):

SW noise:
Amplitude (B) Correlation time (τ) Comments

1 1 //

1 2 //

1 5 //

1 10 //

2 1 //

2 2 //

2 5 //

2 10 //

5 1 //

5 2 //

5 5 //

5 10 //

10 1 //

10 2 //

10 5 //

10 10 Evident oscillations

20 5 Evident oscillations

20 10 Evident oscillations

30 5 Evident oscillations

30 10 Evident oscillations
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Cai noise:
Amplitude (B) Correlation time (τ) Comments

1 1 //

1 2 //

1 5 //

1 10 //

2 1 //

2 2 //

2 5 //

2 10 //

5 1 //

5 2 //

5 5 //

5 10 //

10 1 //

10 2 //

10 5 Evident oscillations

10 10 Evident oscillations

20 5 Evident oscillations

20 10 Evident oscillations

30 5 Evident oscillations

30 10 Evident oscillations

Observation: Introducing an additive SW / Cai noise to the parameter

η there are no relevant changes in the model behavior.

6.4 Perturbation on parameter σ

I performed some simulations of the new system obtained from (6.1), (6.2)

simply adding noise ν to the parameter σ, in both form of Sine Wiener and

Cai:

x′ = xα(1− bx)− φyx (6.9)

y′ =
βx

η + x
y − (µ0 + µ1x)y + (σ + ν) (6.10)
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The following tables and figures show the results obtained by varying the

amplitude of the noise (B) and its correlation time (τ):

SW noise:
Amplitude (B) Correlation time (τ) Comments

0.01 0.1 //

0.01 0.5 //

0.03 0.5 //

0.03 0.8 Evasion begins

0.04 0.2 Evasion begins

0.04 0.4 Evasion

0.05 0.2 Evasion

0.05 0.5 Evasion

0.08 0.1 Evasion

0.08 0.5 Evasion

0.1 0.1 Evasion

0.1 0.5 Evasion

0.1 1 Evasion

0.11 0.1 Evasion

0.118 0.1 Evasion
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Cai noise:
Amplitude (B) Correlation time (τ) Comments

0.01 0.1 //

0.01 0.5 //

0.03 0.5 //

0.03 0.8 //

0.04 0.2 //

0.04 0.4 //

0.05 0.2 //

0.05 0.5 //

0.08 0.1 //

0.08 0.5 //

0.1 0.1 //

0.1 0.5 //

0.1 1 //

0.11 0.1 //

0.118 0.1 //

Observation: Introducing a Sine Wiener noise, for some values of am-

plitude and correlation time, I can notice a clear evasion from the point of

microscopic equilibrium to the macroscopic one as it is evident in the figures

(6.13.1) (6.14.1) (6.15.1) (6.16.1) (6.17.1) (6.18.1) (6.19.1) (6.20.1) (6.21.1)

(6.22.1). Introducing a Cai noise, instead, there are no relevant changes in

model behavior.
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Perturbation on parameter σ

6.9.1 Sine Wiener noise 6.9.2 Cai noise

Figure 6.9: Xfinal probability density over 5000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with am-

plitude B = 0.03 and correlation time τ = 0.8, added on parameter σ. Start-

ing values are those of microscopic equilibrium point (x, y) = (4.83, 0.38).

6.10.1 Sine Wiener noise 6.10.2 Cai noise

Figure 6.10: Xfinal probability density over 5000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.03 and correlation time τ = 0.8, added on parameter

σ.Starting values are (x, y) = (0.1, 2).
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6.11.1 Sine Wiener noise 6.11.2 Cai noise

Figure 6.11: Xfinal probability density over 5000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with am-

plitude B = 0.04 and correlation time τ = 0.2, added on parameter σ. Start-

ing values are those of microscopic equilibrium point (x, y) = (4.83, 0.38).

6.12.1 Sine Wiener noise 6.12.2 Cai noise

Figure 6.12: Xfinal probability density over 5000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.04 and correlation time τ = 0.2, added on parameter

σ.Starting values are (x, y) = (0.1, 2).
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6.13.1 Sine Wiener noise 6.13.2 Cai noise

Figure 6.13: Xfinal probability density over 5000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with am-

plitude B = 0.04 and correlation time τ = 0.4, added on parameter σ. Start-

ing values are those of microscopic equilibrium point (x, y) = (4.83, 0.38).

6.14.1 Sine Wiener noise 6.14.2 Cai noise

Figure 6.14: Xfinal probability density over 5000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.04 and correlation time τ = 0.4, added on parameter

σ.Starting values are (x, y) = (0.1, 2).
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6.15.1 Sine Wiener noise 6.15.2 Cai noise

Figure 6.15: Xfinal probability density over 5000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with am-

plitudeB = 0.1 and correlation time τ = 0.1, added on parameter σ. Starting

values are those of microscopic equilibrium point (x, y) = (4.83, 0.38).

6.16.1 Sine Wiener noise 6.16.2 Cai noise

Figure 6.16: Xfinal probability density over 5000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with am-

plitude B = 0.1 and correlation time τ = 0.1, added on parameter σ.Starting

values are (x, y) = (0.1, 2).
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6.17.1 Sine Wiener noise 6.17.2 Cai noise

Figure 6.17: Xfinal probability density over 5000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with am-

plitude B = 0.1 and correlation time τ = 1, added on parameter σ. Starting

values are those of microscopic equilibrium point (x, y) = (4.83, 0.38).

6.18.1 Sine Wiener noise 6.18.2 Cai noise

Figure 6.18: Xfinal probability density over 5000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with am-

plitude B = 0.1 and correlation time τ = 1, added on parameter σ.Starting

values are (x, y) = (0.1, 2).

120



6.19.1 Sine Wiener noise 6.19.2 Cai noise

Figure 6.19: Xfinal probability density over 5000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with am-

plitude B = 0.11 and correlation time τ = 0.1, added on parameter σ. Start-

ing values are those of microscopic equilibrium point (x, y) = (4.83, 0.38).

6.20.1 Sine Wiener noise 6.20.2 Cai noise

Figure 6.20: Xfinal probability density over 5000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.11 and correlation time τ = 0.1, added on parameter σ.

Starting values are (x, y) = (0.1, 2).
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6.21.1 Sine Wiener noise 6.21.2 Cai noise

Figure 6.21: Xfinal probability density over 5000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with am-

plitudeB = 0.118 and correlation time τ = 0.1, added on parameter σ. Start-

ing values are those of microscopic equilibrium point (x, y) = (4.83, 0.38).

6.22.1 Sine Wiener noise 6.22.2 Cai noise

Figure 6.22: Xfinal probability density over 5000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.118 and correlation time τ = 0.1, added on parameter

σ.Starting values are (x, y) = (0.1, 2).
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6.5 Other simulations

Clearly, the noise can be inserted in many different ways within the model

considered.

Including a multiplicative factor (1+ν) to the parameter b we get the system:

x′ = xα(1− b(1 + ν)x)− φyx (6.11)

y′ =
βx

η + x
y − (µ0 + µ1x)y + σ (6.12)

123



The following tables show the results obtained by varying the amplitude

of the noise (B) and its correlation time (τ):

SW noise:
Amplitude (B) Correlation time (τ) Comments

0.02 0.01 //

0.05 0.01 //

0.05 0.1 //

0.05 1 //

0.08 0.01 //

0.08 0.1 //

0.08 1 //

0.1 0.01 //

0.1 0.1 //

0.1 1 //

0.3 0.05 //

0.3 0.5 //

0.3 2 //

0.5 0.05 //

0.5 0.3 //

0.5 1 //

0.8 0.05 //

0.8 0.5 //

0.8 1 //

1 0.02 //

1 0.3 //

1 1 //

3 0.2 //

3 1 //

3 3 //

5 1 //

5 5 Evident oscillations

10 5 Evident oscillations
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Cai noise:
Amplitude (B) Correlation time (τ) Comments

0.02 0.01 //

0.05 0.01 //

0.05 0.1 //

0.05 1 //

0.08 0.01 //

0.08 0.1 //

0.08 1 //

0.1 0.01 //

0.1 0.1 //

0.1 1 //

0.3 0.05 //

0.3 0.5 //

0.3 2 //

0.5 0.05 //

0.5 0.3 //

0.5 1 //

0.8 0.05 //

0.8 0.5 //

0.8 1 //

1 0.02 //

1 0.3 //

1 1 //

3 0.2 //

3 1 //

3 3 Evident oscillations

5 1 Evident oscillations

5 5 Evident oscillations

10 5 Evident oscillations

Observation: There are no relevant changes in the model behavior.
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Including a multiplicative factor (1 + ν) to x we get the system:

x′ = xα(1− bx)− φyx (6.13)

y′ =
βx

η + x(1 + ν)
y − (µ0 + µ1x)y + σ (6.14)

The following tables show the results obtained by varying the amplitude

of the noise (B) and its correlation time (τ):

SW noise:
Amplitude (B) Correlation time (τ) Comments

0.01 0.01 //

0.01 0.1 //

0.05 0.1 //

0.05 1 //

0.08 1 //

0.08 3 //

0.1 1 //

0.1 3 //

0.5 1 //

0.5 5 //

1 0.1 //

1 1 //
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Cai noise:
Amplitude (B) Correlation time (τ) Comments

0.01 0.01 //

0.01 0.1 //

0.05 0.1 //

0.05 1 //

0.08 1 //

0.08 3 //

0.1 1 //

0.1 3 //

0.5 1 //

0.5 5 //

1 0.1 //

1 1 //

Observation: There are no relevant changes in the model behavior.
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6.6 Conclusions

As we can see from the results, the statistical fluctuations does not make the

tumor evade in all cases.

In the case of perturbations on the parameter φ , for B = 1.2, 1.4, 1.6 and

τ = 1 there is transition to bimodality with a considerable probability of

tumor explosion in both cases of SW and Cai noise. We recall that the bi-

ological meaning of this parameter is the rate of killing tumor cells by the

immune system effectors.

The introduction of perturbations on parameter σ shows a behavior that

depends on the kind of noise, since there is a remarkable difference between

the responses to SW and Cai noises. In the case of SW perturbations, we

observed transitions to bimodality with a considerable probability of tumor

explosion for noise amplitude and correlation time values: B = 0.03 ,τ = 0.8

; B = 0.04, τ = 0.2, 0.4 ; B = 0.05, τ = 0.2, 0.5 ; B = 0.08, τ = 0.1, 0.5 ;

B = 0.1, τ = 0.1, 0.5 ; B = 0.11, τ = 0.1 ; B = 0.118, τ = 0.1. Using Cai

noise, on the contrary, there are not relevant changes in model behavior. We

recall that the biological meaning of the parameter σ is the local influx of

immune system effectors.

Clearly, transitions depend on the noise model adopted. These observation,

confirming the biological intuition, suggest that SW fluctuations easily in-

duce immunoevasion while Cai fluctuations are generally filtered out or have

small effects.

In the case of perturbations on parameter β, η and other simulations there

are not relevant changes on model behavior.

In conclusion, our results seem to show that these perturbations may con-

tribute to triggering the tumor escape but-generally speaking-not so easy.

We showed that limiting the analysis at finite significant time (T=100), the

transition to larger values is not reached if the oscillation B of the noise is

too small or if the autocorrelation time τ is small.
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Chapter 7

Non-clonal resistance to

chemotherapy induced by its

stochastical fluctuations

We have seen in the previous chapter that, introducing a bounded noise-

band stochastic perturbation in a model of tumor-immune system interplay

may dramatically modify the behavior of its solutions. The above mentioned

analysis was in absence of the delivery of therapies, and was valid for highly

to moderately immunogenic tumors, which are able to trigger the action of

the immune system. Here we study a quite opposite case: the introduc-

tion of bounded perturbation in a simple but realistic novel mathematical

model of tumor growth in presence of the delivering of a constant continuous

chemotherapy.

The large rate of relapses during chemotherapeutic treatments of tumors is

generally explained through the paradigm Clonal Resistance (CR).1 However,

in last decade, a number of biophysical investigations [JTT99, DC01, Jai01]

revealed that a significant fraction of cases of resistance to therapy is actually

linked to phenomena that may, broadly speaking, be defined as physical resis-

tance (PR) to drugs. Perhaps the most important among these phenomena

are: a limited ability of the drug to penetrate into the tumoral tissue because

1Clonal Resistance: the emergence through fast mutations of drug-insensitive cells in

a tumor under chemotherapy.[DG09]
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of a poor or nonlinear diffusivity [AT09] and the anomalous binding of the

drug molecule to the surface of tumor cells or to extracellular matrix [GJ00].

This means that resistance cannot only be imputed to a sort of Darwinian

evolution of the cancerous population through the birth of new clones, but

also to the pharmacodynamics of the molecules of the drugs in the tumor.

Here we want to stress two possible different ways of insurgence of resistance

due to a nonlinear population interplay with noise. The presence of multiple

equilibria in the model, can make the stochastic bounded fluctuations that

affect both the carrying capacity of the tumor or the drug level in the blood,

cause the transition from a low equilibrium to a far larger value, not com-

patible with the life of the host. We propose to frame the above phenomena

as a new and non-clonal kind of resistance to chemotherapy.

7.1 Model of tumor growth in presence of

chemotherapy

Let us consider a tumor - solid or non-solid - whose size (biomass, number of

viable cells, etc..) at time t is denoted as X, and which is growing according

to a classical growth law [Whe98]:

X ′ = f

(
X

K

)
X,

where K > 0 and f(u) is a decreasing function of u for which f(1) = 0.

The value K is usually called carrying capacity, which depends on the avail-

able nutrients and/or space, for which the tumor cells compete. Another

important parameter is the value α = f(0), which we shall call ”the baseline

growth rate” (BGR), which can be read as a measure of the intrinsic growth

rate of the tumor, in absence of any competition. Of course, since f(u) is

decreasing, the BGR is also the maximal growth rate.

Two well known growth laws are the Gompertz law where f(X) = pLog(K/X),

and the generalized logistic f(X) = α(1 − (X/K)a) with a > 0. Note that

in the Gompertz case, the BGR is infinite, which is not realistic.

Let the tumor be under the delivering of a cytotoxic therapy with a drug

whose blood concentration, denoted by c(t), may be periodic or constant.
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Which is the effect of c(t) on the tumor growth? The log-kill hypothesis

[H.E86] prescribes that the rate of tumor cells killing is proportional to the

product c(t)X(t):

X ′ = f

(
X

K

)
X − γc(t)X(t). (7.1)

In the case of a bounded intrinsic growth rate, i.e. f(0) <∞, the condition

< c(t) >> f(0)/γ implies that X(t)→ 0, independently from X(0) > 0.

However, since seventies Norton and Simon [L.Na, L.Nb] stressed as a po-

tential pitfall of the log-kill hypothesis the fact that the relative killing rate

is simply taken proportional to c(t). According to the log-kill hypothesis,

the same drug concentration is indeed able to kill the same relative number

of cells per unit time independently of the tumor burden. Moreover, the

absolute velocity of regression caused by c(t) would be greater in the larger

tumors. This is often unrealistic. On the contrary, in clinics it is often ob-

served that the effort to make a large tumor regress is considerable greater,

whereas hystologically similar tumors of small volumes are curable using the

same delivered quantity of the chemotherapeutic agent. A possible cause

of this fact is the development of clones of cells that are resistant to the

delivered agent. However, since the reduced drug effectiveness may also be

present in the very first phases of a therapy, Norton and Simon [L.Na, L.Nb]

summarized this observation, by assuming that the parameter γ is not con-

stant but it is a decreasing function of X: γ(X), with γ′(X) < 0, leading to

the following non-logkill model:

X ′ = f

(
X

K

)
X − γ(X)c(t)X, X(0) = X0. (7.2)

In particular, Norton and Simon proposed that γ(X) be proportional to

f(X/K) [L.Na, L.Nb], which we shall not assume here. We thus consider

generic decreasing γ(X).

It is trivial to verify that if 〈c(t)〉 > α/γ(0) then the tumor free equilibrium

Xe = 0 is locally stable, whereas in case of constant continuous infusion,

c(t) = C, if γ(X)C > f(X/K) then the tumor free equilibrium Xe = 0 is

globally stable. In the general case, since γ(K) > f(1) = 0, if α > γ(0)C

there will be an odd number N of equilibria : X1(C,K),. . . ,XN(C,K). It is

easy matter to verify that the odd-numbered equilibria, X1(C,K),. . . XN(C,K)
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are locally stable, whereas the even numbered points X2(C,K),. . . ,XN−1(C, )

are unstable. By varying C or K one may get one ore more hysteresis bifur-

cations.

Let us suppose that γ(X)C be such that three equilibria are present. Then

standard analysis reveals that X1(C,K) and X3(C,K) will be locally stable

and X2(C,K) will be unstable, and it follows that X(t) → X1(C,K) for all

X0 ∈ (0, X2(C,K)). This means that the chemotherapy, although it does

not eliminate the neoplasm, is at least able to control the tumor size keeping

it at a low level. This result might seem a good suboptimal result in absence

of insurgence of clonal resistance.

7.2 Bounded noises introduction in the model

Apart from the clonal resistance, we shall show that the target tumor may

equally escape from the therapeutic control through stochastic fluctuation of

either the carrying capacity or the drug concentration.

As far as the carrying capacity K is, this parameter summarizes many impor-

tant phenomena related to the availability of nutrients. For example, in case

of solid tumors K depends on the growth of the neoplasia-induced vessels,

whose rate constant are unlikely constant. Moreover, the growth of tumor

depends on the general energy intake of the host organism etc..

As a consequence we shall assume that the carrying capacity is a function of

time that oscillates around an average value Km > 0:

K(t) = Km(1 + νK(t)) > 0. (7.3)

where νK(t) is a noise. We will consider both Sine Wiener and Cai noise.

As far as the chemotherapy is concerned, therapies that guarantee a constant

drug density profile as well as effectiveness do not exist in the reality, since

the drug concentration will be affected by stochastic oscillations:

c(t) = Cm(1 + νC(t)) > 0, (7.4)

where νC(t) is a noise and Cm is the average value of the drug concentration

profile.
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Thus, here we shall study the following stochastic equation:

X ′ = f

(
X

Km(1 + νK(t))

)
X − γ(X)Cm(1 + νC(t))X. (7.5)

The noisy nature of one or both the carrying capacity and the drug density in

conjunction with the inherent bistability of the tumor-therapy system, thus,

suggests that there might be the insurgence of noise-induced transitions from

the ”small” steady state X1(Cm, Km) toward the macroscopic equilibrium

state X3(Cm, K), as in other important bistable systems.

These transition would be caused by the presence of hysteresis bifurcations

that, as it is well known [J.H91], are characterized by the existence of two

values of the bifurcation parameter such that infinitesimal changes in the

value of this parameter imply that the behavior of the solution has a sudden

change. This means that near those two points the behavior of the system

is extremely sensitive to any kind of perturbations. As a result the treat-

ment requires that the fluctuations be explicitly incorporated into the model

[W.H84, W.H77].

These observations led Horsthemke and Lefever to define the theory of noise-

induced transitions (NIT) [W.H84] that investigate the phase transitions

induced by zero-mean noises in non-equilibrium systems. Such transitions

depend on the characteristics of the noise, such as its variance, and have the

effect of changing the nature of the stationary probability density function

of state variables, for example from unimodal to bimodal, or vice-versa. The

NIT theory is of the utmost interest in biomedicine, since “in-vivo the en-

vironmental situations are... extremely complex and thus likely to present

important fluctuations” [R.L79].

A classical approach consists in assuming that the stochastic perturbations

are gaussian white or colored noises. This, however, is an inappropriate so-

lution in our case for two reasons.

The first reason is that the system in study depends nonlinearly from one of

the two stochastically perturbed parameters: the carrying capacity K.

The second reason involves the fluctuations affecting C. Indeed, let us con-

sider the model (7.8) with νK(t) = 0 and let us allow that νC(t) is a gaussian

noise, implying:

dX = F (X/K)dt− γ(X)Cm(dt+ ξ(t)
√
dt),
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where ξ(t) are Gaussian random numbers.

Since the noise is unbounded, there will be a non-null probability that Cm(dt+

ξ(t)
√
dt) < 0.

In other words, there would be a non-null probability that a cytotoxic-

chemotherapy may add neoplastic cells to its target tumor, which is a non-

sense. As a consequence the gaussian noise should be avoided to investigate

the effects of fluctuations of chemotherapy. Note that also extremely large

killing rates per time units are not possible, which precludes not only gaus-

sian noises, but also lognormal noises.

For these reasons, we shall assume that both νK(t) and νC(t) are bounded

noises, i.e. that it exists a B > 0 such that |ν(t)| < B < +∞.

Since the noise-induced transitions are dependent on the kind of density of

noise adopted [Fue07], we shall assume two kind of bounded noise: The sine-

Wiener noise and The Cai noise [CS05].

To make as simple as possible our model, in our simulations we shall assume

that the tumor growth law, in absence of therapies, a generalized logistic law:

f(X/K) = α(1 − (X/K)a), where 0 < a ≤ 1. As far as γ(x) is concerned,

in absence of experimental data that may suggest some biologically plausible

γ(X), we used in our simulation a Hill-like function, which is ubiquitary in

biological modelling, and which in our case reads:

γ(X) = A
1

1 +
(
X
X∗

)n ,
where 0 < X∗ < K is a typical size tuning the action of the chemotherapy,

and n > 0 is a parameter that tunes the shape of the function (e.g. for

n >> 1 and X ≥ 0 it holds: γ(X) ≈ Heaviside(X∗ −X) ). The parameter

A embeds the baseline effectiveness of the drug dose profile c(t) for small size

tumors. Moreover, we shall non-dimensionalize the model by assuming that

Km = 1 and that α = 1, i.e. we assume that the reference size is the average

carrying capacity and that the reference time unit is the characteristic time

of growth of the tumor for small tumor size (where X ′ ≈ αX).

A major point to be stressed is that the classical theory of noise induced tran-

sitions [W.H84] is an asymptotic theory that refers to the study of the qual-

itative changes in stationary probability densities: Pst(x) = limt→∞P (x, t).

However, whatever asymptotic study might be, if the velocity of convergence
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of the stationary density is slow,it is in contradiction with the basic fact that

living beings have a finite lifespan. Thus the lifespan of the host organisms

must be a natural limit to our numerical investigations, which makes the ve-

locity of convergence to Pst(x) an essential parameter. If this velocity is slow

and the attractor is practically reached in times that are excessively greater

than the average lifespan of the organisms in study, one has to investigate the

possible qualitative changes of P (x, t) during its transitory, namely at some

given realistic times. For this reason we focused here on transitory analysis

of P (x, t). Indeed, noise has been introduced on carrying capacity and drug

concentration observing the probability density at time T = 66 correspond-

ing , in dimensional time unity, to 1 year about, both in case of Sine Wiener

and Cai noise perturbations. It must be observed that all simulations have

been done using Matlab 7.0.4.

7.3 Numerical simulations

In our simulations we considered as reference host organism for the tumor

the mouse (lifespan is 3 years about and in average tumor growth times is in

days). Namely, since the average lifespan of a mice is 3 years, since tumors

are diseases of later ages, and, finally, chemotherapies have a finite length, we

shall calculate the stationary density at one year. Since the time-dimensional

baseline growth rate of lymphoma in chimeric mice is 0.18 days−1, we shall

consider the transitory behaviors at t = 66 adimensional time units.

We considered 4 different sets of parameters and calculated the transitory

density at one year starting from the microscopic equilibrium point.

These are the sets considered:

1set: a = 1, X∗ = 0.25, n = 6, X0 = 0.105

2set: a = 1, X∗ = 0.25, n = 10, X0 = 0.100

3set: a = 2/3, X∗ = 0.262, n = 2, X0 = 0.045

4set: a = 1.1, X∗ = 0.25, n = 10, X0 = 0.123
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Bounded SW and Cai noise on carrying capacity

The first step in my numerical simulations is given by the introduction of

Sine Wiener / Cai noise on the carrying capacity: K(t). Hence we shall

study the following stochastic equation:

X ′ = f

(
X

Km(1 + νK(t))

)
X − γ(X)CmX. (7.6)

The following tables and figures show the results obtained by varying the

amplitude of the noise (B) and its correlation time (τ):

SW noise:
Amplitude (B) Correlation time (τ) 1 set* 2 set 3 set 4 set

0.01 0.1 // // // //

0.01 1 // // // //

0.01 5 // // // //

0.08 0.1 // // // //

0.08 1 // // // //

0.08 5 // // // //

0.1 0.1 // // // //

0.1 1 // // // //

0.1 5 // // // //

0.2 0.1 // // // //

0.2 1 Evasion // // //

0.2 5 Evasion // // //

0.3 0.1 // // // //

0.3 1 Evasion // Evasion //

0.3 5 Evasion // Evasion Evasion

0.4 0.1 // // // //

0.4 1 Evasion // Evasion //

0.45 0.1 Evasion // // //

0.5 0.1 Evasion // // //

0.5 1 Evasion // Evasion Evasion

0.5 5 Evasion // Evasion Evasion

0.8 1 Evasion Evasion Evasion Evasion
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Cai noise:
Amplitude (B) Correlation time (τ) 1 set 2 set 3 set 4 set

0.01 0.1 // // // //

0.01 1 // // // //

0.01 5 // // // //

0.08 0.1 // // // //

0.08 1 // // // //

0.08 5 // // // //

0.1 0.1 // // // //

0.1 1 // // // //

0.1 5 // // // //

0.2 0.1 // // // //

0.2 1 // // // //

0.2 5 // // // //

0.3 0.1 // // // //

0.3 1 // // // //

0.3 5 // // // //

0.4 0.1 // // // //

0.4 1 // // // //

0.45 0.1 // // // //

0.5 0.1 // // // //

0.5 1 Evasion // // Evasion

0.5 5 Evasion // // //

0.8 1 Evasion // Evasion Evasion

*1 set: a = 1, X∗ = 0.25, n = 6, X0 = 0.105

2 set: a = 1, X∗ = 0.25, n = 10, X0 = 0.100

3 set: a = 2/3, X∗ = 0.262, n = 2, X0 = 0.045

4 set: a = 1.1, X∗ = 0.25, n = 10, X0 = 0.123

Observations:

Introducing a SW noise, for some values of amplitude and correlation time,

I can notice a clear evasion from the point of microscopic equilibrium to the

macroscopic one (see figures). Introducing a Cai noise, as well, for some

values of amplitude and correlation time, evasion is clear.
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Perturbation on carrying capacity K

7.1.1 Sine Wiener noise 7.1.2 Cai noise

Figure 7.1: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.2 and correlation time τ = 1, added on carrying capacity.

Starting value is the microscopic equilibrium point x = 0.105.

7.2.1 Sine Wiener noise 7.2.2 Cai noise

Figure 7.2: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.2 and correlation time τ = 1, added on carrying capacity.

Starting value is the microscopic equilibrium point x = 0.1.
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7.3.1 Sine Wiener noise 7.3.2 Cai noise

Figure 7.3: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.2 and correlation time τ = 1, added on carrying capacity.

Starting value is the microscopic equilibrium point x = 0.045.

7.4.1 Sine Wiener noise 7.4.2 Cai noise

Figure 7.4: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.2 and correlation time τ = 1, added on carrying capacity.

Starting value is the microscopic equilibrium point x = 0.123.
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7.5.1 Sine Wiener noise 7.5.2 Cai noise

Figure 7.5: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.3 and correlation time τ = 5, added on carrying capacity.

Starting value is the microscopic equilibrium point x = 0.105.

7.6.1 Sine Wiener noise 7.6.2 Cai noise

Figure 7.6: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.3 and correlation time τ = 5, added on carrying capacity.

Starting value is the microscopic equilibrium point x = 0.1.
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7.7.1 Sine Wiener noise 7.7.2 Cai noise

Figure 7.7: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.3 and correlation time τ = 5, added on carrying capacity.

Starting value is the microscopic equilibrium point x = 0.045.

7.8.1 Sine Wiener noise 7.8.2 Cai noise

Figure 7.8: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.3 and correlation time τ = 5, added on carrying capacity.

Starting value is the microscopic equilibrium point x = 0.123.
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7.9.1 Sine Wiener noise 7.9.2 Cai noise

Figure 7.9: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.4 and correlation time τ = 1, added on carrying capacity.

Starting value is the microscopic equilibrium point x = 0.105.

7.10.1 Sine Wiener noise 7.10.2 Cai noise

Figure 7.10: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.4 and correlation time τ = 1, added on carrying capacity.

Starting value is the microscopic equilibrium point x = 0.1.
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7.11.1 Sine Wiener noise 7.11.2 Cai noise

Figure 7.11: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.4 and correlation time τ = 1, added on carrying capacity.

Starting value is the microscopic equilibrium point x = 0.045.

7.12.1 Sine Wiener noise 7.12.2 Cai noise

Figure 7.12: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.4 and correlation time τ = 1, added on carrying capacity.

Starting value is the microscopic equilibrium point x = 0.123.
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7.13.1 Sine Wiener noise 7.13.2 Cai noise

Figure 7.13: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.5 and correlation time τ = 1, added on carrying capacity.

Starting value is the microscopic equilibrium point x = 0.105.

7.14.1 Sine Wiener noise 7.14.2 Cai noise

Figure 7.14: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.5 and correlation time τ = 1, added on carrying capacity.

Starting value is the microscopic equilibrium point x = 0.1.
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7.15.1 Sine Wiener noise 7.15.2 Cai noise

Figure 7.15: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.5 and correlation time τ = 1, added on carrying capacity.

Starting value is the microscopic equilibrium point x = 0.045.

7.16.1 Sine Wiener noise 7.16.2 Cai noise

Figure 7.16: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.5 and correlation time τ = 1, added on carrying capacity.

Starting value is the microscopic equilibrium point x = 0.123.
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7.17.1 Sine Wiener noise 7.17.2 Cai noise

Figure 7.17: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.5 and correlation time τ = 5, added on carrying capacity.

Starting value is the microscopic equilibrium point x = 0.105.

7.18.1 Sine Wiener noise 7.18.2 Cai noise

Figure 7.18: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.5 and correlation time τ = 5, added on carrying capacity.

Starting value is the microscopic equilibrium point x = 0.1.
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7.19.1 Sine Wiener noise 7.19.2 Cai noise

Figure 7.19: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.5 and correlation time τ = 5, added on carrying capacity.

Starting value is the microscopic equilibrium point x = 0.045.

7.20.1 Sine Wiener noise 7.20.2 Cai noise

Figure 7.20: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.5 and correlation time τ = 5, added on carrying capacity.

Starting value is the microscopic equilibrium point x = 0.123.
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7.21.1 Sine Wiener noise 7.21.2 Cai noise

Figure 7.21: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.8 and correlation time τ = 1, added on carrying capacity.

Starting value is the microscopic equilibrium point x = 0.105.

7.22.1 Sine Wiener noise 7.22.2 Cai noise

Figure 7.22: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.8 and correlation time τ = 1, added on carrying capacity.

Starting value is the microscopic equilibrium point x = 0.1.
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7.23.1 Sine Wiener noise 7.23.2 Cai noise

Figure 7.23: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.8 and correlation time τ = 1, added on carrying capacity.

Starting value is the microscopic equilibrium point x = 0.045.

7.24.1 Sine Wiener noise 7.24.2 Cai noise

Figure 7.24: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.8 and correlation time τ = 1, added on carrying capacity.

Starting value is the microscopic equilibrium point x = 0.123.
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Bounded SW and Cai noise on the drug concentration

The second step in my numerical simulations is given by the introduction of

Sine Wiener / Cai noise on drug concentration: C(t). Hence we shall study

the following stochastic equation:

X ′ = f

(
X

Km

)
X − γ(X)Cm(1 + νC(t))X. (7.7)

The following tables and figures show the results obtained by varying the

amplitude of the noise (B) and its correlation time (τ):

SW noise:
Amplitude (B) Correlation time (τ) 1 set 2 set 3 set 4 set

0.001 0.1 // // // //

0.001 1 // // // //

0.01 0.1 // // // //

0.01 1 // // // //

0.03 0.1 // // // //

0.03 1 Evasion // // //

0.04 0.1 // // // //

0.04 1 Evasion // Evasion Evasion

0.05 0.1 Evasion // // //

0.05 1 Evasion // Evasion Evasion

0.08 0.1 Evasion // Evasion Evasion

0.08 1 Evasion Evasion Evasion Evasion

0.1 1 Evasion Evasion Evasion Evasion

0.15 1 Evasion Evasion Evasion Evasion

0.2 1 Evasion Evasion Evasion Evasion

0.3 1 Evasion Evasion Evasion Evasion

0.5 1 Evasion Evasion Evasion Evasion
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Cai noise:
Amplitude (B) Correlation time (τ) 1 set 2 set 3 set 4 set

0.001 0.1 // // // //

0.001 1 // // // //

0.01 0.1 // // // //

0.01 1 // // // //

0.03 0.1 // // // //

0.03 1 // // // //

0.04 0.1 // // // //

0.04 1 // // // //

0.05 0.1 // // // //

0.05 1 // // // //

0.08 0.1 // // // //

0.08 1 // // // //

0.1 1 // // // //

0.15 1 Evasion // // //

0.2 1 Evasion // Evasion Evasion

0.3 1 Evasion Evasion Evasion Evasion

0.5 1 Evasion Evasion Evasion Evasion

Observations:

Introducing a Sine Wiener noise, for some values of amplitude and correlation

time, I can notice a clear evasion from the point of microscopic equilibrium

to the macroscopic one as it is evident in the following figures. Introducing a

Cai noise, as well, for some values of amplitude and correlation time, evasion

is clear.
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Perturbation on drug concentration C

7.25.1 Sine Wiener noise 7.25.2 Cai noise

Figure 7.25: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.05 and correlation time τ = 1, added on drug concentration.

Starting value is the microscopic equilibrium point x = 0.105.

7.26.1 Sine Wiener noise 7.26.2 Cai noise

Figure 7.26: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.05 and correlation time τ = 1, added on drug concentration.

Starting value is the microscopic equilibrium point x = 0.1.
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7.27.1 Sine Wiener noise 7.27.2 Cai noise

Figure 7.27: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.05 and correlation time τ = 1, added on drug concentration.

Starting value is the microscopic equilibrium point x = 0.045.

7.28.1 Sine Wiener noise 7.28.2 Cai noise

Figure 7.28: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.05 and correlation time τ = 1, added on drug concentration.

Starting value is the microscopic equilibrium point x = 0.123.
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7.29.1 Sine Wiener noise 7.29.2 Cai noise

Figure 7.29: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with am-

plitude B = 0.08 and correlation time τ = 0, 1, added on drug concentration.

Starting value is the microscopic equilibrium point x = 0.105.

7.30.1 Sine Wiener noise 7.30.2 Cai noise

Figure 7.30: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with am-

plitude B = 0.08 and correlation time τ = 0, 1, added on drug concentration.

Starting value is the microscopic equilibrium point x = 0.1.
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7.31.1 Sine Wiener noise 7.31.2 Cai noise

Figure 7.31: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with am-

plitude B = 0.08 and correlation time τ = 0, 1, added on drug concentration.

Starting value is the microscopic equilibrium point x = 0.045.

7.32.1 Sine Wiener noise 7.32.2 Cai noise

Figure 7.32: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with am-

plitude B = 0.08 and correlation time τ = 0, 1, added on drug concentration.

Starting value is the microscopic equilibrium point x = 0.123.

155



7.33.1 Sine Wiener noise 7.33.2 Cai noise

Figure 7.33: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.15 and correlation time τ = 1, added on drug concentration.

Starting value is the microscopic equilibrium point x = 0.105.

7.34.1 Sine Wiener noise 7.34.2 Cai noise

Figure 7.34: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.15 and correlation time τ = 1, added on drug concentration.

Starting value is the microscopic equilibrium point x = 0.1.
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7.35.1 Sine Wiener noise 7.35.2 Cai noise

Figure 7.35: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.15 and correlation time τ = 1, added on drug concentration.

Starting value is the microscopic equilibrium point x = 0.045.

7.36.1 Sine Wiener noise 7.36.2 Cai noise

Figure 7.36: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.15 and correlation time τ = 1, added on drug concentration.

Starting value is the microscopic equilibrium point x = 0.123.
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7.37.1 Sine Wiener noise 7.37.2 Cai noise

Figure 7.37: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.2 and correlation time τ = 1, added on drug concentration.

Starting value is the microscopic equilibrium point x = 0.105.

7.38.1 Sine Wiener noise 7.38.2 Cai noise

Figure 7.38: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.2 and correlation time τ = 1, added on drug concentration.

Starting value is the microscopic equilibrium point x = 0.1.

158



7.39.1 Sine Wiener noise 7.39.2 Cai noise

Figure 7.39: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.2 and correlation time τ = 1, added on drug concentration.

Starting value is the microscopic equilibrium point x = 0.045.

7.40.1 Sine Wiener noise 7.40.2 Cai noise

Figure 7.40: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.2 and correlation time τ = 1, added on drug concentration.

Starting value is the microscopic equilibrium point x = 0.123.
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7.41.1 Sine Wiener noise 7.41.2 Cai noise

Figure 7.41: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.3 and correlation time τ = 1, added on drug concentration.

Starting value is the microscopic equilibrium point x = 0.105.

7.42.1 Sine Wiener noise 7.42.2 Cai noise

Figure 7.42: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.3 and correlation time τ = 1, added on drug concentration.

Starting value is the microscopic equilibrium point x = 0.1.
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7.43.1 Sine Wiener noise 7.43.2 Cai noise

Figure 7.43: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.3 and correlation time τ = 1, added on drug concentration.

Starting value is the microscopic equilibrium point x = 0.045.

7.44.1 Sine Wiener noise 7.44.2 Cai noise

Figure 7.44: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.3 and correlation time τ = 1, added on drug concentration.

Starting value is the microscopic equilibrium point x = 0.123.
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7.45.1 Sine Wiener noise 7.45.2 Cai noise

Figure 7.45: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.5 and correlation time τ = 1, added on drug concentration.

Starting value is the microscopic equilibrium point x = 0.105.

7.46.1 Sine Wiener noise 7.46.2 Cai noise

Figure 7.46: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.5 and correlation time τ = 1, added on drug concentration.

Starting value is the microscopic equilibrium point x = 0.1.
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7.47.1 Sine Wiener noise 7.47.2 Cai noise

Figure 7.47: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.5 and correlation time τ = 1, added on drug concentration.

Starting value is the microscopic equilibrium point x = 0.045.

7.48.1 Sine Wiener noise 7.48.2 Cai noise

Figure 7.48: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure),with

amplitude B = 0.5 and correlation time τ = 1, added on drug concentration.

Starting value is the microscopic equilibrium point x = 0.123.
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Bounded SW and Cai noise in both carrying capacity and drug

density

The last step in my numerical simulations is given by the introduction of Sine

Wiener / Cai noise on both carrying capacity K(t) and drug concentration

C(t). Hence we shall study the following stochastic equation:

X ′ = f

(
X

Km(1 + νK(t))

)
X − γ(X)Cm(1 + νC(t))X. (7.8)

The following tables and figures show the results obtained by varying the

amplitude of the noise (B) and its correlation time (τ):

SW noise:
Bc Bk τc τk 1 set 2 set 3 set 4 set

0.01 0.01 0.1 0.1 // // // //

0.01 0.01 1 1 // // // //

0.01 0.01 1 5 // // // //

0.02 0.02 1 1 // // // //

0.02 0.02 1 1 // // // //

0.02 0.02 1 5 // // // //

0.03 0.03 0.1 0.1 // // // //

0.03 0.03 1 1 Evasion // Evasion //

0.05 0.05 0.1 0.1 Evasion // // //

0.05 0.05 1 1 Evasion // Evasion Evasion

0.05 0.05 1 5 Evasion // Evasion Evasion

0.1 0.04 1 0.1 Evasion Evasion Evasion Evasion

0.2 0.04 1 0.1 Evasion Evasion Evasion Evasion
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Cai noise:
Bc Bk τc τk 1 set 2 set 3 set 4 set

0.01 0.01 0.1 0.1 // // // //

0.01 0.01 1 1 // // // //

0.01 0.01 1 5 // // // //

0.02 0.02 1 1 // // // //

0.02 0.02 1 1 // // // //

0.02 0.02 1 5 // // // //

0.03 0.03 0.1 0.1 // // // //

0.03 0.03 1 1 // // // //

0.05 0.05 0.1 0.1 // // // //

0.05 0.05 1 1 // // // //

0.05 0.05 1 5 // // // //

0.1 0.04 1 0.1 // // // //

0.2 0.04 1 0.1 Evasion // Evasion Evasion

165



Perturbation on carrying capacity K and drug concentration C

7.49.1 Sine Wiener noise 7.49.2 Cai noise

Figure 7.49: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure)added on

carrying capacity, with amplitude Bk = 0.02 and correlation time τk = 5, and

drug concentration, with amplitude Bc = 0.02 and correlation time τc = 1,.

Starting value is the microscopic equilibrium point x = 0.105.

7.50.1 Sine Wiener noise 7.50.2 Cai noise

Figure 7.50: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure)added on

carrying capacity, with amplitude Bk = 0.02 and correlation time τk = 5, and

drug concentration, with amplitude Bc = 0.02 and correlation time τc = 1.

Starting value is the microscopic equilibrium point x = 0.1.
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7.51.1 Sine Wiener noise 7.51.2 Cai noise

Figure 7.51: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure)added on

carrying capacity, with amplitude Bk = 0.02 and correlation time τk = 5, and

drug concentration, with amplitude Bc = 0.02 and correlation time τc = 1.

Starting value is the microscopic equilibrium point x = 0.045.

7.52.1 Sine Wiener noise 7.52.2 Cai noise

Figure 7.52: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure)added on

carrying capacity, with amplitude Bk = 0.02 and correlation time τk = 5, and

drug concentration, with amplitude Bc = 0.02 and correlation time τc = 1.

Starting value is the microscopic equilibrium point x = 0.123.
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7.53.1 Sine Wiener noise 7.53.2 Cai noise

Figure 7.53: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure)added on

carrying capacity, with amplitude Bk = 0.05 and correlation time τk = 0.1,

and drug concentration, with amplitude Bc = 0.05 and correlation time

τc = 0.1,. Starting value is the microscopic equilibrium point x = 0.105.

7.54.1 Sine Wiener noise 7.54.2 Cai noise

Figure 7.54: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure)added on

carrying capacity, with amplitude Bk = 0.05 and correlation time τk = 0.1,

and drug concentration, with amplitude Bc = 0.05 and correlation time

τc = 0, 1. Starting value is the microscopic equilibrium point x = 0.1.
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7.55.1 Sine Wiener noise 7.55.2 Cai noise

Figure 7.55: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure)added on

carrying capacity, with amplitude Bk = 0.05 and correlation time τk = 0.1,

and drug concentration, with amplitude Bc = 0.05 and correlation time

τc = 0.1. Starting value is the microscopic equilibrium point x = 0.045.

7.56.1 Sine Wiener noise 7.56.2 Cai noise

Figure 7.56: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure)added on

carrying capacity, with amplitude Bk = 0.05 and correlation time τk = 0.1,

and drug concentration, with amplitude Bc = 0.05 and correlation time

τc = 0.1. Starting value is the microscopic equilibrium point x = 0.123.
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7.57.1 Sine Wiener noise 7.57.2 Cai noise

Figure 7.57: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure)added on

carrying capacity, with amplitude Bk = 0.05 and correlation time τk = 1, and

drug concentration, with amplitude Bc = 0.05 and correlation time τc = 1,.

Starting value is the microscopic equilibrium point x = 0.105.

7.58.1 Sine Wiener noise 7.58.2 Cai noise

Figure 7.58: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure)added on

carrying capacity, with amplitude Bk = 0.05 and correlation time τk = 1, and

drug concentration, with amplitude Bc = 0.05 and correlation time τc = 1.

Starting value is the microscopic equilibrium point x = 0.1.
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7.59.1 Sine Wiener noise 7.59.2 Cai noise

Figure 7.59: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure)added on

carrying capacity, with amplitude Bk = 0.05 and correlation time τk = 1, and

drug concentration, with amplitude Bc = 0.05 and correlation time τc = 1.

Starting value is the microscopic equilibrium point x = 0.045.

7.60.1 Sine Wiener noise 7.60.2 Cai noise

Figure 7.60: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure)added on

carrying capacity, with amplitude Bk = 0.05 and correlation time τk = 1, and

drug concentration, with amplitude Bc = 0.05 and correlation time τc = 1.

Starting value is the microscopic equilibrium point x = 0.123.
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7.61.1 Sine Wiener noise 7.61.2 Cai noise

Figure 7.61: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure)added on

carrying capacity, with amplitude Bk = 0.05 and correlation time τk = 5, and

drug concentration, with amplitude Bc = 0.05 and correlation time τc = 1,.

Starting value is the microscopic equilibrium point x = 0.105.

7.62.1 Sine Wiener noise 7.62.2 Cai noise

Figure 7.62: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure)added on

carrying capacity, with amplitude Bk = 0.05 and correlation time τk = 5, and

drug concentration, with amplitude Bc = 0.05 and correlation time τc = 1.

Starting value is the microscopic equilibrium point x = 0.1.
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7.63.1 Sine Wiener noise 7.63.2 Cai noise

Figure 7.63: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure)added on

carrying capacity, with amplitude Bk = 0.05 and correlation time τk = 5, and

drug concentration, with amplitude Bc = 0.05 and correlation time τc = 1.

Starting value is the microscopic equilibrium point x = 0.045.

7.64.1 Sine Wiener noise 7.64.2 Cai noise

Figure 7.64: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure)added on

carrying capacity, with amplitude Bk = 0.05 and correlation time τk = 5, and

drug concentration, with amplitude Bc = 0.05 and correlation time τc = 1.

Starting value is the microscopic equilibrium point x = 0.123.
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7.65.1 Sine Wiener noise 7.65.2 Cai noise

Figure 7.65: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure)added on

carrying capacity, with amplitude Bk = 0.04 and correlation time τk = 0.1,

and drug concentration, with amplitude Bc = 0.1 and correlation time τc =

1,. Starting value is the microscopic equilibrium point x = 0.105.

7.66.1 Sine Wiener noise 7.66.2 Cai noise

Figure 7.66: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure)added on

carrying capacity, with amplitude Bk = 0.04 and correlation time τk = 0, 1,

and drug concentration, with amplitude Bc = 0.1 and correlation time τc = 1.

Starting value is the microscopic equilibrium point x = 0.1.
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7.67.1 Sine Wiener noise 7.67.2 Cai noise

Figure 7.67: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure)added on

carrying capacity, with amplitude Bk = 0.04 and correlation time τk = 0, 1,

and drug concentration, with amplitude Bc = 0.1 and correlation time τc = 1.

Starting value is the microscopic equilibrium point x = 0.045.

7.68.1 Sine Wiener noise 7.68.2 Cai noise

Figure 7.68: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure)added on

carrying capacity, with amplitude Bk = 0.04 and correlation time τk = 0, 1,

and drug concentration, with amplitude Bc = 0.1 and correlation time τc = 1.

Starting value is the microscopic equilibrium point x = 0.123.
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7.69.1 Sine Wiener noise 7.69.2 Cai noise

Figure 7.69: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure)added on

carrying capacity, with amplitude Bk = 0.04 and correlation time τk = 0.1,

and drug concentration, with amplitude Bc = 0.2 and correlation time τc =

1,. Starting value is the microscopic equilibrium point x = 0.105.

7.70.1 Sine Wiener noise 7.70.2 Cai noise

Figure 7.70: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure)added on

carrying capacity, with amplitude Bk = 0.04 and correlation time τk = 0, 1,

and drug concentration, with amplitude Bc = 0.2 and correlation time τc = 1.

Starting value is the microscopic equilibrium point x = 0.1.
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7.71.1 Sine Wiener noise 7.71.2 Cai noise

Figure 7.71: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure)added on

carrying capacity, with amplitude Bk = 0.04 and correlation time τk = 0, 1,

and drug concentration, with amplitude Bc = 0.2 and correlation time τc = 1.

Starting value is the microscopic equilibrium point x = 0.045.

7.72.1 Sine Wiener noise 7.72.2 Cai noise

Figure 7.72: Xfinal probability density over 1000 simulations with bounded

Sine Wiener noise (left figure) and bounded Cai noise (right figure)added on

carrying capacity, with amplitude Bk = 0.04 and correlation time τk = 0, 1,

and drug concentration, with amplitude Bc = 0.2 and correlation time τc = 1.

Starting value is the microscopic equilibrium point x = 0.123.
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7.4 Conclusions

As we can see from the results, the statistical fluctuations does not make the

tumor evade in all cases.

In the case of perturbations on the carrying capacity we may summarize as

follows the results of our simulations for the various parametric sets:

• 1 set: In the case of SW noise, starting from equilibrium point X0 =

0.105 for B = 0.2, τ = 1, 5; B = 0.3, τ = 1, 5; B = 0.4, τ = 1;

B = 0.45, τ = 0, 1; B = 0.5, τ = 0.1, 1, 5; B = 0.8, τ = 1 there is transi-

tion to bimodality with a considerable probability of tumor explosion.

In the case of Cai noise we observe transition only for B = 0.5, τ = 1, 5;

B = 0.8, τ = 1.

• 2 set: In the case of SW noise, starting from equilibrium point X0 =

0.100 for B = 0.8, τ = 1 there is transition to bimodality with a con-

siderable probability of tumor explosion. In the case of Cai noise we

do not observe transition in any case.

• 3 set: In the case of SW noise, starting from equilibrium point X0 =

0.045 for B = 0.3, τ = 1, 5; B = 0.4, τ = 1; B = 0.5, τ = 1, 5;

B = 0.8, τ = 1 there is transition to bimodality with a considerable

probability of tumor explosion. In the case of Cai noise we observe

transition only for B = 0.8, τ = 1.

• 4 set: In the case of SW noise, starting from equilibrium point X0 =

0.123 for B = 0.3, τ = 5; B = 0.5, τ = 1, 5; B = 0.8, τ = 1 there is tran-

sition to bimodality with a considerable probability of tumor explosion.

In the case of Cai noise we observe transition only for B = 0.5, τ = 1;

B = 0.8, τ = 1.
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Similarly, in the case of perturbations on the drug concentration we have

that:

• 1 set: In the case of SW noise, starting from equilibrium point X0 =

0.105 for B = 0.03, τ = 1; B = 0.04, τ = 1; B = 0.05, τ = 0.1, 1;

B = 0, 08, τ = 0.1, 1; B = 0.1, τ = 1; B = 0.15, τ = 1; B = 0.2, τ = 1;

B = 0.3, τ = 1; B = 0.5, τ = 1, there is transition to bimodality

with a considerable probability of tumor explosion. In the case of Cai

noise we observe transition only for B = 0.15, τ = 1; B = 0.2, τ = 1;

B = 0.3, τ = 1; B = 0.5, τ = 1.

• 2 set: In the case of SW noise, starting from equilibrium point X0 =

0.100 for B = 0, 08, τ = 0.1, 1; B = 0.1, τ = 1; B = 0.15, τ = 1;

B = 0.2, τ = 1; B = 0.3, τ = 1; B = 0.5, τ = 1, there is transition

to bimodality with a considerable probability of tumor explosion. In

the case of Cai noise we observe transition only for B = 0.3, τ = 1;

B = 0.5, τ = 1.

• 3 set: In the case of SW noise, starting from equilibrium point X0 =

0.045 for B = 0.04, τ = 1; B = 0.05, τ = 1; B = 0, 08, τ = 0.1, 1;

B = 0.1, τ = 1; B = 0.15, τ = 1; B = 0.2, τ = 1; B = 0.3, τ = 1;

B = 0.5, τ = 1, there is transition to bimodality with a considerable

probability of tumor explosion. In the case of Cai noise we observe

transition only for B = 0.2, τ = 1; B = 0.3, τ = 1; B = 0.5, τ = 1.

• 4 set: In the case of SW noise, starting from equilibrium point X0 =

0.045 for B = 0.04, τ = 1; B = 0.05, τ = 1; B = 0, 08, τ = 0.1, 1;

B = 0.1, τ = 1; B = 0.15, τ = 1; B = 0.2, τ = 1; B = 0.3, τ = 1;

B = 0.5, τ = 1, there is transition to bimodality with a considerable

probability of tumor explosion. In the case of Cai noise we observe

transition only for B = 0.2, τ = 1; B = 0.3, τ = 1; B = 0.5, τ = 1.
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Clearly, transitions depend on the noise model adopted and also on the

initial point considered. This observation also holds by considering stochastic

perturbations on both carrying capacity and drug density.

From a biological point of view, we may say that:

• The stochastic fluctuations that unavoidably arise in the tumor micro-

environment, which are modeled by means of bounded noises perturb-

ing the tumoral carrying capacity, may cause the escape of the tumor

from the control imposed by the chemotherapy;

• Stochastic oscillations in chemotherapy level joined with nonlinear tu-

mor size-dependent effectiveness of the delivered agent may induce tu-

mor relapse;

• Synergistic effects are possible;

Note that none of the above mechanisms is related to emergence of resistent

clones in the tumor cells population.

In conclusion, our results seem to show that stochastic perturbations may

contribute to triggering the tumor escape, although less easily than one

might predict by assuming a Gaussian noise. Also here, as in our immuno-

oncological simulations, one can observe that, limiting the analysis at finite

significant time (T=66), the transition to larger values is not reached if the

oscillation B of the noise is too small or if the autocorrelation time τ is small.
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