
ALMA MATER STUDIORUM – UNIVERSITY OF BOLOGNA

SCHOOL OF ENGINEERING AND ARCHITECTURE

DIPARTMENT OF INFORMATION – SCIENCE AND ENGINEERING

(DISI)

Master’s Degree in Computer Science Engineering

Thesis

in

Distributed Systems M

Deployment and Orchestration in Cloud Native 5G

Networks with Kubernetes

Candidate: Supervisor:

Asma Noor Chiar.mo Prof. Paolo Bellavista

 Co-Supervisor:

 Chiar.mo Prof. Luca Foschini

 Prof. Ing. Domenico Scotece

Academic Year 2021/22

2 | P a g e

Table of Contents
Abstract ... 4

Key Words .. 4

1. Introduction ... 5

1.1 Motivations ... 5

1.2 Work Structure .. 7

2. Network Softwarisation .. 8

2.1 Software Defined Networking (SDN) .. 8

2.1.1 SDN Architecture ... 8

2.2 Network Functions Virtualisation and MANO ... 10

2.2.1. Network Services in NFV .. 12

2.3 Kubernetes .. 13

2.3.1 Introduction to Kubernetes ... 13

2.3.2 Kubernetes Components .. 15

2.3.3 Configurations .. 16

2.3.4 Workloads and Services ... 17

2.3.5 Storage .. 23

3. 5G Core – Structure and Implementations .. 27

3.1 Motivation ... 27

3.2 Evolution of the Network Infrastructure ... 30

3.3 5G Core Structure ... 32

3.4 5G Core Implementations ... 34

3.4.1 Open5GS .. 34

3.4.2 Free5GC ... 36

3.4.3 Magma Core ... 37

3.4.4 Comparison Between 5G Core Implementations 38

4. 5G System Deployment with Kubernetes .. 40

4.1 Solution Architecture .. 40

4.2 Cluster Deployment .. 41

4.2.1 Comparison Between Kind, Minikube and Rancher 42

4.2.2 Cluster with Rancher .. 43

4.3 5G Core Deployment .. 49

4.4 UERANSIM Deployment ... 55

3 | P a g e

5. Test Cases and Results ... 59

5.1 Case 1 – Failure and Scaling... 59

5.2 Case 2 – Deployments Comparison .. 61

5.3 Case 3 – Smart City .. 62

6. Conclusions and Future Work .. 67

References .. 69

4 | P a g e

Abstract

Software Defined Networking along with Network Function Virtualisation have

brought an evolution in the telecommunications laying out the bases for 5G

networks and its softwarisation. The separation between the data plane and the

control plane, along with having a decentralisation of the latter, have allowed to

have a better scalability and reliability while reducing the latency. A lot of effort

has been put into creating a distributed controller, but most of the solutions

provided by now have a monolithic approach that reduces the benefits of having a

software defined network. Disaggregating the controller and handling it as

microservices is the solution to problems faced when working with a monolithic

approach. Microservices enable the cloud native approach which is essential to

benefit from the architecture of the 5G Core defined by the 3GPP standards

development organisation. Applying the concept of NFV allows to have a

softwarised version of the entire network structure. The expectation is that the 5G

Core will be deployed on an orchestrated cloud infrastructure and in this thesis

work we aim to provide an application of this concept by using Kubernetes as an

implementation of the MANO standard. This means Kubernetes acts as a Network

Function Virtualisation Orchestrator (NFVO), Virtualised Network Function

Manager (VNFM) and Virtualised Infrastructure Manager (VIM) rather than just

a Network Function Virtualisation Infrastructure. While OSM has been adopted

for this purpose in various scenarios, this work proposes Kubernetes opposed to

OSM as the MANO standard implementation.

Key Words
SDN, NFV, Cloud Native, Kubernetes, 5GCore

Introduction

5 | P a g e

1. Introduction

A technological growth in end user and industrial devices has brought to the

production of a huge quantity of information, demand to optimised services and

processing capabilities resulting in the necessity to bring innovation into the

network infrastructure putting the basis to a new networking generation – 5G and

paradigms such as Software Defined Networking (SDN) and Network Function

Virtualisation (NFV). 5G is being seen as an opportunity for transformative change

with the transition to cloud infrastructure and a service-based architecture.

Software defined networking allows to decouple the control plane from the

data plane enabling the decentralisation of the controller handling it as collection

of microservices hosted according to a cloud-native approach. There has been an

ongoing effort to define some standard technologies to implement this concept but

all of them present some lacks leaving space to search for alternative approaches.

This thesis work proposes to host the core of 5G in a cloud native manner

appointing Kubernetes as the orchestrator of the modules.

The following subsections go into more detail about the motivations behind the

project work proposed in this thesis and the structure of the work that has been

done.

1.1 Motivations

The fifth generation (5G) aims to put the basis for a revolution in the

telecommunications industry thanks to its core characteristics such as extremely

low latency, ubiquitous connectivity and the big improvement in terms of data-

speed compared to its ancestor 4G. This allows to respond to an increasing demand

of resources in a very broad scenario of applications. The enlarging number of

mobile devices, wearable devices, demand of a reliable and fast connectivity

everywhere, from massive Internet-of-Things to broadcast like services has created

a gap that urges to be filled with a new generation of telecommunications. A key

revolutionary aspect of 5G is to provide support for very heterogenous services in

the same infrastructure even if the requirements of these diverse applications are

very different from one another. There are three main scenarios for which the new

generation has to provide services for: 1 – Ultra Reliable and Low Latency services

(URLLC) 2 – Enhanced Mobile Broadband (eMBB) that focuses on services in

need of high data rates 3 – Massive Internet-Of-Things (mIoT) consisting of a huge

number of devices requiring connectivity i.e. smart cities.

Introduction

6 | P a g e

 Because of these heterogenous requirements the network trafficking is

evolving into something much more complex compared to the past decades.

Support for all these different scenarios is achieved by introducing the concept of

Network Slicing. Network Slicing is a network architecture enabling the

multiplexing of different independent and virtualised logical networks that share

the same physical network infrastructure. Each slice is isolated from the others and

is tailored to respond to specific requirements. To achieve such an infrastructure

there are two main concepts that must be leveraged: Software Defined Networking

(SDN) and Network Function Virtualisation (NFV) that enable the implementation

of flexible and scalable network slices on top a common shared physical

infrastructure.

 Software Defined Networking is an architecture design that allows to make

a network more flexible and easier to manage by centralising and abstracting the

control plane from the data forwarding plane. An SDN architecture delivers a

centralised and programmable network made of different components such as a

controller - the core of the architecture responsible for centralised management and

control, automation and policy enforcement – and a southbound API allowing a

communication with the data plane made of switches, access points, routers etc.

There is also a northbound API that allows the connection towards an application

plane. This plane contains network applications that can introduce new network

features, it can also receive an abstracted and global view of the network from the

controllers and use that information to provide appropriate guidance to the control

layer. SDN aims to change the concept of network seen so far by centralising the

most difficult tasks to the control plane and making the data plane and its devices

as simple as possible. Network Functions Virtualisation is a networking paradigm

that proposes to shift from a traditional network infrastructure to a highly

virtualised one where both the computing and networking services are deployed as

virtual network functions. In other words, it is a softwarised implementation of

network functions.

There has been a lot of effort in the telecommunication world towards the

network virtualisation and after more than 100 specifications, ETSI has converged

to a standard called MANO defining the guidelines for network virtualisation,

management and orchestration of virtualised network functions (VNFs). One of

the main implementations of MANO is also ETSI-hosted and is called Open

Source MANO (OSM) – providing a programmable and automatic creation,

management and orchestration of VNFs with support to various VIMs and SDNs.

The 5G Core architecture has been designed to be cloud-native in the sense that it

should make use of Network Functions Virtualisation and Software Defined

Networking techniques and use service based interactions between control plane

Introduction

7 | P a g e

functions. A Service Based Architecture (SBA) aligns well with a microservices

view of network function composition.

Most of the solutions provided so far on the deployment of 5G Core use

OSM and different VIMs for the purpose of management, orchestration and

hosting. The main idea of this thesis work is to find an alternative to the

management and orchestration of the 5G Core components handling them as

VNFs. The key concept is to use Kubernetes for these purposes and test the

deployment under various scenarios. Kubernetes is an open source system for

automating deployment, scaling, and management of containerized applications.

The next section contains more details about the work, its structure and how this

document will lay out the different steps.

1.2 Work Structure

 To understand whether it is possible to use Kubernetes for 5G Core

deployment and orchestration and how this can be achieved, it is necessary to

understand very well the technology and its dependencies to have a fully working

deployment. The core components of 5G have a very well-defined structure and

require specific features from the hosting infrastructure so to function properly and

maintain the interconnections between the modules. Hence, the first focus is to

understand how to provide the requested properties with a very generic but widely

spread technology like Kubernetes. It is necessary to gain knowledge about the

technologies needed to have a successful deployment, how they could interact

between them and perform the role of orchestrator.

These concepts are discussed in chapter 2 providing more information about

the technologies at the basis of network softwarisation. It is also important to

understand what we are hosting, so the structure of the 5G Core, how its

components work and interact between them and which roles they cover. Chapter

3 contains this information, and it also lays out the differences of this generation

of telecommunication compared to the previous one. Moreover, it contains

references and description of the main implementations of 5G Core and a

comparison between them so to better understand which is more suitable for this

project. Chapter 4 lays out the infrastructure of the project and the interconnections

between the technologies used for this project. The document then concludes with

the achieved results and discusses future related work.

Network Softwarisation

8 | P a g e

2. Network Softwarisation

This chapter starts by introducing the technologies that have enabled a

softwarisation of the network such as SDN and VNF. It then moves towards the

MANO standard and a big chunk of the chapter is dedicated to Kubernetes as it is

the main technology used in this thesis work. Details about Kubernetes and 5G

Core deployment on top of it are given in chapter 4, for now we will focus on a

general overview of the technologies.

2.1 Software Defined Networking (SDN)

 Software Defined Networking is an approach to network management that

improves network performances and monitoring by enabling dynamic and

programmatically efficient configuration of the network resulting in a more cloud

computing like approach rather than a traditional network management one. SDN

aims to resolve the issues related to the traditional static architecture of the

networks putting the bases for a more flexible ones that responds to the

requirements of the current complex telecommunications scenarios. In the

traditional network architecture devices make traffic decisions and they forward

data from one interface to another, so they perform the roles of both the control

plane and data plane. Software Defined Networking centralises the network

intelligence in a centralised network component by separating the forwarding

process of network packets (data plane) from the routing process (control plane).

The latter consist of one or more components called controllers considered to be

the core of the SDN network where resides the whole intelligence of the

infrastructure. The control plane is implemented as software allowing a

programmatical and centralised organisation of the traffic. Another advantage that

comes from this approach is to have data forwarding devices not requiring any

intervention from the administrator to deliver the network services.

2.1.1 SDN Architecture

Figure 1 shows the architecture of a software defined network.

Network Softwarisation

9 | P a g e

Figure 1 - SDN Structure

We have three main layers:

• Application plane – SDN Applications are programs that explicitly,

directly, and programmatically communicate their network requirements

and desired network behaviour to the SDN Controller via a northbound

interface (NBI). In addition, they may consume an abstracted view of the

network for their internal decision-making purposes. SDN Applications

may themselves expose another layer of abstracted network control, thus

offering one or more higher-level NBIs through respective NBI agents.

• Control plane - The SDN Controller is a logically centralized entity in

charge of (i) translating the requirements from the SDN Application layer

down to the SDN data paths and (ii) providing the SDN Applications with

an abstract view of the network (which may include statistics and events).

An SDN Controller consists of one or more NBI Agents, the SDN Control

Logic, and the Control to Data-Plane Interface (CDPI) driver. Definition as

a logically centralized entity neither prescribes nor precludes

implementation details such as the federation of multiple controllers, the

hierarchical connection of controllers, communication interfaces between

controllers, nor virtualization or slicing of network resources.

• Data plane - responsible for processing data-carrying packets using a set of

rules specified by the control plane. The data plane may be implemented in

Network Softwarisation

10 | P a g e

physical hardware switches or in software implementations. The memory

capacity of hardware switches may limit the number of rules that can be

stored whereas software implementations may have higher capacity [1].

2.2 Network Functions Virtualisation and MANO

 Network Function Virtualisation aims to decouple the network functions

from the hardware by implementing them as a software package running on a

virtualised infrastructure. This collapses multiple functions into a single physical

server instead of installing expensive proprietary hardware, reducing in this way

the costs and the dependency on dedicated hardware appliances enhancing

scalability and customisation across the entire network. The following figure

describes the main idea of NFV:

Figure 2 - Comparison Between Traditional Network Approach and NFV Approach

NFV application fields mainly include switching elements, mobile network

nodes, traffic analysis, service assurance, content distribution networks (CDNs),

security functions and session border controller (SBC), among others. NFV uses

the virtualisation concept of three hardware resources: computing, storage and

network hardware [2].

The below figure shows the NFV architecture:

Network Softwarisation

11 | P a g e

Figure 3 - NFV Architecture

As shown in the image, there are three main modules:

• NFV Infrastructure (NFVI) – it includes the hardware resources, the

virtualisation layer and the virtual resources made of software instances of

hardware resources such as computing, storage and network. The

virtualisation layer abstracts the hardware resources and allows the

deployment of virtual resources on top of it.

• Virtual Network Functions (VNFs) – software implementations of network

functions running on the underlaying NFVI.

• NFV MANO – this module manages and orchestrates the VNFs and NFVI

and has three elements: an orchestrator, a VNF Manager and a Virtualised

Infrastructure Manager. The orchestrator is in direct contact with the

application layer and manages the package on-boarding, network services

lifecycle management, monitoring and fault management. The VNF

manager instead handles the lifecycle of each active VNF in the network.

The Virtualised Infrastructure Manager directly controls all physical

resources, manages images, creation, modification and deletion of resource

instances, monitoring and fault management.

Network Softwarisation

12 | P a g e

2.2.1. Network Services in NFV

 A network service can be viewed architecturally as a Forwarding Graph of

Virtual Network Functions (VNFFG) interconnected by supporting network

infrastructure. In other words, NS are a chain of VNFs and PNFs where PNFs are

Physical Network Functions similar to VNFs but more connected to the physical

layer [3].

Figure 4 shows the structure of an end-to-end network service:

Figure 4 - End-to-end Network Service

The service illustrated in the above image has a nested Network Function

Forwarding Graph, the endpoints are connected to the NFs via wired or wireless

network infrastructure resulting in a logical interface (dotted lines) between the

end point and a NF.

The deployment and operational behaviour requirements of each Network Service

is captured in a deployment template and stored during the Network Service on-

boarding process in a catalogue, for future selection for instantiation. The

deployment template fully describes the attributes and requirements necessary to

realize such a Network Service. Network Service Orchestration coordinates the

lifecycle of VNFs that jointly realize a Network Service. This includes (not limited

to) managing the associations between different VNFs, and when applicable

between VNFs and PNFs, the topology of the Network Service, and the VNFFGs

associated with the Network Service [4]. Network Services, when started, they

require the deployment template but also the name of the service and a description.

This results in a first phase of initialisation and configuration of the VFNs and the

required Virtual Links. In this phase resources are allocated to enable a fully

operating NS and the types of resources, and their interconnections depends on the

underlaying VIM. When working with OpenStack, it will create virtual machines

to host the VNFs, while working with Kubernetes will result in different Pods

Network Softwarisation

13 | P a g e

hosting VNFs. These concepts are very useful to perform a successful deployment

of network functions on Kubernetes, more details in chapter 4.

The whole NFV infrastructure is the definition of a concept that is open to

implementation, anyone willing to provide their own solution as implementation

of these components can do so and provide a way to deploy, manage and

orchestrate VNFs. ETSI has indeed provided a standard for management and

orchestration called MANO along with an ETSI-hosted implementation of this

standard called Open Source Mano (OSM). In the framework of this thesis work,

the goal is to understand whether Kubernetes can be used to perform the role of

the Virtualised Infrastructure Manager and Orchestrator. The next chapter provides

a detailed introduction about Kubernetes and its main characteristics while its

usage in the implementation will be discussed in chapter 4.

2.3 Kubernetes

This section lays out a detailed introduction to Kubernetes, the current

industry de facto standard container orchestrator. The below subsections contain

information about what Kubernetes is, how it works, its architecture and

components. Kubernetes has a wide range of components but here we will only

discuss the ones necessary for this thesis work.

2.3.1 Introduction to Kubernetes

 Kubernetes, also referred to as K8s, is a portable, extensible, open-source

platform for managing containerized workloads and services, that facilitates both

declarative configuration and automation.With K8s it is possible to orchestrate and

automate the deployment, scaling, load balancing of containers along with

grouping them into logical units [6].

 The use of a container orchestrator is very beneficial in complex scenarios

in which handling manually the instantiation and subsequent lifecycle

management of containers is not a trivial task. Indeed, the container

communication is not an easy task, scaling them to provide the required services

can be very complex to manage manually, the same applies when a node crashes

and needs to be fixed. Despite the benefits coming from applications

containerization, when the number of containers goes up considerably it becomes

very difficult to manage the portability aspect of that services in case of any fault.

Network Softwarisation

14 | P a g e

Therefore, container orchestration becomes essential for an effective management

of the infrastructure and Kubernetes provides a framework to run distributed

systems resiliently. It takes care of scaling and failover for the hosted applications,

along with providing deployment patterns, and much more.

Kubernetes main features:

• Service Discovery and Load Balancing – containers are exposes using the

DNS name or their IP address. If a certain container has a high load of traffic

towards it, K8s can load balance and distribute the network traffic so that

the deployment is stable.

• Storage Orchestration – it is possible to mount any storage system, be it

local storage, remote storage or public cloud providers.

• Automated Rollouts and Rollbacks – Kubernetes allows to provide a

description of the desired state of deployed containers and then it will

manage the cluster so to change the actual state to the desired state at a

controlled rate.

• Automated bin packing – it is possible to provide K8s with a cluster of nodes

that can be used to run containerised tasks. When it receives the instructions

on how much CPU and RAM it can use, then K8s will fit the container on

the available resources in a such a manner that allows the best usage of

resources.

• Self-healing - Kubernetes restarts containers that fail, replaces them, kills

containers that don't respond to the user-defined health check, and doesn't

advertise them to clients until they are ready to serve.

• Secret and configuration management - Kubernetes allows to store and

manage sensitive information, such as passwords, OAuth tokens, and SSH

keys. It is possible to deploy and update secrets and application

configuration without rebuilding the container images, and without

exposing secrets in the stack configuration.

Kubernetes is not a traditional PaaS system, but it provides some features

common to PaaS offering as it works at the container level rather than at a hardware

level. These features include the above-mentioned deployment, load balancing,

scaling but also logging, monitoring and alerting solutions. However, Kubernetes

is not monolithic, it lets the user decide what he requires the most preserving

flexibility where it is important. There is not a limit to the type of application that

K8s can support, be it a stateless, stateful or data processing workload Kubernetes

will support it. The main idea is that if an application can run in a container, then

it should run perfectly also on Kubernetes.

Network Softwarisation

15 | P a g e

2.3.2 Kubernetes Components

 A successful deployment of Kubernetes creates a cluster that is made of a

set of worker nodes that can run containerised applications. Each cluster consists

of at least one worker node. These nodes host the pods that are the components of

the application workload, we will discuss these later. All the nodes and pods in the

cluster are managed by the control plane. Below images shows the structure of a

Kubernetes cluster:

Control Plane Components

The components of the control plane make global decisions about the

cluster (for example, scheduling), as well as detecting and responding to cluster

events (for example, starting up a new pod when a deployment's replicas field is

unsatisfied). These components can be run on any machine in the cluster, however,

for simplicity they are put on the same machine.

• Kube-apiserver - exposes the Kubernetes API. The API server is the front

end for the Kubernetes control plane. The main implementation of a

Kubernetes API server is kube-apiserver. Kube-apiserver is designed to

scale horizontally so it scales by deploying more instances. It is possible to

Figure 5 - Kubernetes Cluster

https://kubernetes.io/docs/reference/generated/kube-apiserver/

Network Softwarisation

16 | P a g e

run several instances of kube-apiserver and balance traffic between those

instances.

• Etcd – it is a consistent and highly-available key value store that is used as

a backing store for all the cluster data. If the cluster uses etcd then we also

need a back up plan for this data as K8s does not handle data persistency.

• Kube-scheduler – this component observes for newly created Pods with no

assigned node and selects a node for them to run on. For scheduling, it takes

into consideration factors such as individual and collective resource

requirements, constraints, data locality, inter-workload interference and

deadline.

• Kube-Controller-Manager – component that runs controller processes.

Logically, each controller is a separate process, but to reduce complexity,

they are all compiled into a single binary and run in a single process. Some

examples of main controller are node controllers and job controllers.

• Cloud-Controller-Manager – it embeds cloud-specific control logic. It

allows to link the cluster to a cloud provider’s API, defines a separation

between the components that interact with the cluster and the ones that

interact with that cloud provider. When running Kubernetes on premises,

this component is not instantiated.

Node Components

• Kubelet - An agent that runs on each node in the cluster. It makes sure that

containers are running in a Pod. The kubelet takes a set of PodSpecs that

are provided through various mechanisms and ensures that the containers

described in those PodSpecs are running and healthy.

• Kube-proxy - it is a network proxy that has an instance running on each

node of the cluster implementing part of the Kubernetes Service concept

(services are discusses later in this chapter). This proxy maintains network

rules on the node and these rules allow the communication to the Pods from

network sessions residing either inside or outside the cluster.

• Container runtime – components responsible for running containers that

will be hosted inside Pods.

Kubernetes provides a command line tool for communicating with a Kubernetes

cluster's control plane using the Kubernetes API. This tool is called kubectl.

2.3.3 Configurations

Configuration files are the main tool for creating and configuring components in

Kubernetes Cluster. In fact, K8s objects can be created updated, and deleted using

Network Softwarisation

17 | P a g e

the configuration files and kubectl apply command. Configuration files are in

YAML format and have a well-defined structure.

The images below show two simple configuration files for two different cases - a

deployment and a service (these concepts will be discussed later):

Each configuration file has three parts:

• Metadata – here it is possible to define the name and eventually some labels.

This section defines what we are intending to create. In the image at the left

there is a Deployment while on the right there is a Service.

• Specification – contains all the configurations that we aim to provide for

that specific component that we are creating. The attributes are specific to

the kind of component that we are creating.

• Status – the desired one is defined by the specification section while the

actual status of the cluster is automatically generated by Kubernetes. The

desired status of the applications is defined by the admin in the

specifications, and then K8s compares this with the actual status of the

cluster. If these two are not equal, then Kubernetes tries to fix it and this is

the basis of the self-healing features discussed in the Kubernetes

introduction. In the above example, when creating the Deployment, the file

defines that the desired state requires 2 replicas of that Deployment. Then

K8s, as it updates the state continuously, will know if there are not 2 replicas

and, in that case, it will intervene and enforce the desired status. Information

about the status is stored in the etcd component, introduced in the

introduction section.

2.3.4 Workloads and Services

A workload can be defined as an application running on Kubernetes.

Whether the workload is a single component or several components interacting

and working together, on Kubernetes they run inside a set of pods. A Pod

represents a set of running containers on your cluster and provides an abstraction

Network Softwarisation

18 | P a g e

over these containers. This subsection goes into more details about the main

components of Kubernetes such as Pods, Services, and ConfigMaps.

Pods
Pods are the smallest computing unit that can be deployed and managed in a

Kubernetes cluster. It can be seen as a group of one or more containers that have

storage and network resources in common and a specification for how to run the

container. A Pod's contents are always co-located and co-scheduled and run in a

shared context. As said before, a pod provides an abstraction over the containers it

hosts inside. These containers run, of course, in a container runtime environment

and the main one that is used in Kubernetes is Docker, even if K8s supports also

others such as Containerd, CRI-O and Mirantis. In terms of Docker concepts, a

Pod can be seen as a group of Docker containers with shared namespaces and

filesystem volumes.

Usually there is a “one pod – one container” policy but this can vary depending

on the specific contexts. When it runs more containers then usually there is an idea

of maintaining together the tightly coupled ones. So, in general there are two main

ways to use Pods in a cluster:

• Pods that run a single container - the "one-container-per-Pod" model is the

most common Kubernetes use case; in this case, it is possible to think of a

Pod as a wrapper around a single container; Kubernetes manages Pods

rather than managing the containers directly.

• Pods that run multiple containers that need to work together - a Pod can

encapsulate an application composed of multiple co-located containers that

are tightly coupled and need to share resources. These co-located containers

form a single cohesive unit of service — for example, one container serving

data stored in a shared volume to the public, while a separate container

refreshes or updates those files. The Pod wraps these containers, storage

resources, and an ephemeral network identity together as a single unit.

Network Softwarisation

19 | P a g e

The below image shows the structure of a node and an example of a node that

contains a set of Pods and each of them can either be a single container Pod or

multiple containers one:

Figure 6 - Example of a Node

When a Pods is created, it is scheduled to run on a node and it remains there

until it finishes execution, it is deleted, evicted or the node fails. Pods are designed

as ephemeral and disposable entities, and this is the reason why it is very rare to

interact with them directly when deploying an application over a K8s cluster.

Workload resources can be used to create and manage multiple Pods and the

resource controller handles replication, rollout and automatic healing in case a Pod

fails. For example, if a Node fails, a controller notices that Pods on that Node have

stopped working and creates replacement Pods. The scheduler places the

replacement Pod onto a healthy Node.

Kubernetes provides several built-in workload resources:

• Deployment – allows to manage a stateless application workload on a

cluster. The idea being that each Pod does not maintain any state so it is

entirely interchangeable with another Pod of the deployment and can be

replaced if needed.

• StatefulSet – runs one or more related Pods that track state. If the workload

records data persistently then a StatefulSet can be used and it matches each

Pod with a PersistentVolume (this will be discussed later in the chapter).

The application running in the Pods of a StatefulSet can replicate data to

other Pods running in it to improve overall resilience.

Network Softwarisation

20 | P a g e

• DaemonSet – it defines Pods that provide node-local facilities, and these are

fundamental for the cluster to run properly. If the control plane detects a

node that is added to the cluster and matches the specification of a

DaemonSet, it schedules a Pod for that DaemonSet onto the new node.

• Job and CronJob – define tasks that run until completion and then stop.

Jobs represent one-off tasks while CronJobs are reoccurring ones depending

on a schedule.

Every Pod in the cluster is assigned an IP address that is unique inside the

cluster which means that there is no need to create explicit links between Pods or

manage container ports to host ports mapping. Here the concept it to think about

Pods treated like Virtual Machines or physical hosts from the perspective of port

application, naming, service discovery, load balancing, application configuration

and migration. Kubernetes IP addresses exist at the Pod scope - containers within

a Pod share their network namespaces - including their IP address and MAC

address. This means that containers within a Pod can all reach each other's ports

on localhost. Whenever a Pod is deleted, for example as a result of a failure, it is

replaced by another Pod but this one will have an IP address different than the

previous one and this affects the communication and service delivery of the

application running inside that Pod. For this reason, and to enable service delivery

both inside and outside of the cluster, Kubernetes introduces the concept of

Services.

Services

Services are an abstract way to expose an application running on a cluster

as a network service. As mentioned before, Pods are created and destroyed because

of many different reasons, one of the main ones is to match the desired state of a

cluster. They are not considered permanent resources, Pods running in the cluster

on a specific moment may be very different from the ones running in a successive

moment. At the creation time of a Pod, it is given a unique IP address which leads

to a problem: if a set of Pods (call them "backends") provides functionality to other

Pods (call them "frontends") inside the cluster, how do the frontends find out and

keep track of which IP address to connect to, so that they can use the backend part

of the workload? The concept of services overcome this issue.

In Kubernetes, a Service is an abstraction which defines a logical set of

Pods and a policy by which to access them (sometimes this pattern is called a

micro-service). Suppose to have a stateless image-processing back-end which runs

three replicas which are interchangeable – front-end can work with any of these

three to work. If the Pods that compose the back-end change, the front-end clients

Network Softwarisation

21 | P a g e

should not be aware of that change nor they should need to keep track of it. This

requires a decoupling that is provided by the Services.

A Service is a REST object, similar to a Pod, so it is possible to POST a Service

definition to the API Server within the cluster to create a new instance. Services

can be defined using the configuration files in YAML format, the below image

shows a possible configuration file to create a Service:

Figure 7 - Web Service Configuration File

Suppose to have a set of Pods containing an application MyApp and listening on a

TCP port 9376, this specification file created a service which target TCP port 9367

on any Pod with the label app=MyApp. The Kubernetes assigns this Service an IP

address which is used by the Service proxies.

When creating a Service, this can be either an internal service or an external one.

The internal services can be used for example to interact with a database, which

should be exposed internally within the cluster but for obvious reasons not

accessible from the outside. This changes when we need to expose some

functionalities towards the external world, and this results in the need to of having

an external service that is reachable from the outside. The external communication

is managed by another component called ingress. Ingress exposes HTTP and

HTTPS routes from outside the cluster to services within the cluster. Traffic

routing is controlled by rules defined on the Ingress resource. The following image

shows an ingress sending all its traffic to one Service:

Network Softwarisation

22 | P a g e

Figure 8 - Kubernetes Ingress

ConfigMap

When developing an application that will be deployed on a Kubernetes

cluster, there are several configurations that can be set, for example the address to

the mongo-db. Usually these configurations would be set in an external file, or an

external environmental variable but even if these are external, they would still be

part of the build. This becomes a problem when there are small changes that need

to be made and they result in a work overload as every time they would require to

re-build the application, push it to the Docker repository and then pull it again in

the Pod. This becomes a little tedious so for this purpose Kubernetes has a

component called ConfigMap.

A ConfigMap is an API object used to store non-confidential data in key-

value pairs. Pods can consume ConfigMaps as environment variables, command-

line arguments, or as configuration files in a volume. It allows to decouple

environment-specific configuration from container images, so that the applications

are easily portable. When writing a Pod spec it is possible to refer to a ConfigMap

and configure the container(s) in that Pod based on the data contained in the

ConfigMap.

 When a ConfigMap currently consumed in a volume is updated, projected

keys are eventually updated as well. The kubelet checks whether the mounted

ConfigMap is fresh on every periodic sync. The following snippet of code shows

an example of ConfigMap with the value database set to mongodb, and

database_uri, and keys set to the values in the YAML example code:

Network Softwarisation

23 | P a g e

Figure 9 - structure of a ConfigMap

2.3.5 Storage

 An application running on a Kubernetes cluster generates data that would

be lost in case there is a restart of the Pod or the container. Files in a container are

ephemeral which becomes a problem for non-trivial applications. When restarted,

the kubelet restarts the container with a clean state. More problems occur when

sharing files between containers running together in a Pod. In order to avoid these

issues, it is necessary to make the data persistent and to do so Kubernetes

introduces the concept of Volumes. This allows to attach a physical storage

resource to the Pods, and it can be either local to the cluster or external, for example

on a remote storage or cloud. The below image shows this set up:

Figure 10 - Storage in a Kubernetes Node

Network Softwarisation

24 | P a g e

Kubernetes itself does not manage any data persistency, it is up to the developer

or admin to manage, back-up and replicate the data in a persistent way. Kubernetes

Volumes allow to have data persistency and many types of volumes are supported.

When a Pod ceases to exit, Kubernetes destroys the ephemeral volumes, however

the persistent volumes are kept intact. Volumes can be seen as directories

accessible to the containers in a Pod. Managing storage is a distinct problem from

managing compute instances. For this purpose, Kubernetes has introduced the

PersistentVolume subsystem that provides an API for user and admins allowing to

abstract details of how the storage is provided from how it is consumed. There are

two API resources for this: PersistentVolume and PersistentVolumeClaim.

A PersistentVolume (PV) is a piece of storage that has been provisioned either

from the admin or dynamically. It is a resource in the cluster just like a node is a

cluster resource. PVs are volume plugins like Volumes but have a lifecycle

independent of any individual Pod that uses the PV. This API object captures the

details of the implementation of the storage or a cloud-provider-specific storage

system. A PersistentVolumeClaim (PVC) is a request for storage by a user. It is

similar to a Pod. Pods consume node resources and PVCs consume PV resources.

Pods can request specific levels of resources (CPU and Memory). Claims can

request specific size and access modes (e.g., they can be mounted ReadWriteOnce,

ReadOnlyMany or ReadWriteMany).

As mentioned earlier, K8s supports several types of volumes, either local

or for cloud, i.e. AWS EBS. The images below show examples of local (first

image) PersistentVolume creation and AWS EBS configuration example (bottom

image):

Figure 11 - Local Persistent Volume

Network Softwarisation

25 | P a g e

This YAML file creates a local volume of 50Gi with a ReadWriteOnce access

mode. There is also a persistentVolumeReclaimPolicy that defines the policy for

PersistenVolumeClaim. A PersistentVolumeClaim is used to mount a

PersistentVolume into a Pod. PersistentVolumeClaims are a way for users to

"claim" durable storage without knowing the details of the environment. (Details

discussed later in this subchapter).

Here instead we have a volume on the cloud (AWS) and when we create this in the

cluster, the AWS EBS must already exist beforehand to avoid failures.

A binding between PVs and PVCs is needed for the storage to work

properly. By specifying a PersistentVolume in a PersistentVolumeClaim, it is

possible to declare a binding between that specific PV and PVC. If the

PersistentVolume exists and has not reserved PersistentVolumeClaims through its

claimRef field, then the PV and PVC will be bound:

Figure 12 - AWS EBS Persistent Volume

Network Softwarisation

26 | P a g e

A volume, in its lifecycle can be in one of the following states:

• Available – free resource, not yet bound

• Bound – bound to a claim

• Released – the claim has been deleted and the resource is not reclaimed by

the cluster

• Failed – the volume has failed its automatic reclamation

Each PV has its own set of access modes, the ones supported in Kubernetes are:

• ReadWriteOnce – read-write by a single node (so Pods running on that

node)

• ReadOnlyMany – read only by many nodes

• ReadWriteMany – read write by many nodes

• ReadWriteOncePod – read write by a single Pod

After this introduction to the technologies that have enabled the network

softwarisation, the next chapters go into more details about 5G Core, its

implementation and then towards the deployment of the Core on a Kubernetes

cluster. More technologies used to achieve this goal will be described in the chapter

4.

Figure 13 - Definition of a PersistenVolume and PersistenVolumeClaim

5G Core – Structure and Implementations

27 | P a g e

3. 5G Core – Structure and Implementations

Fifth generation (5G) networks respond to the demands of a wide range of

heterogeneous use cases, including low latency services, mobile broadband users

and highly dense connectivity scenarios. These very diverse communication

contexts require a networking with a huge degree of flexibility, something not

found in the previous technologies with a black-box approach like 4G cellular

networks. The potential of 5th generation (5G) communications is being unleashed

into the fabric of cellular networks, enabling unprecedented technological

advancements in the networking hardware and software ecosystems [6][7]. This

chapter is a detailed description of the technology, the motivation that brought to

the next generation, the core of 5G and its implementations.

3.1 Motivation

 The previously mentioned demand of resources and services stems from an

increase in the number of devices that the technological world has experienced in

the last few years. The amount of these devices is predicted to rise in the near

future in an exponential way. Referring to only the IoT devices, it has been

estimated that the current 10 billion of these devices will surpass 25 billion by

2030. And by 2025 there will be more than 152.000 IoT devices connecting to the

Internet per minute [9].

The quantity of resources needed, and the amount of data produced

becomes even higher when considering all technological devices together and not

limiting to just the IoT ones. The introduction of new applications to satisfy the

demands of customers all over the globe requires a re-design of the network

infrastructure if the requirements differ substantially from what is supported. The

evolution from the previous generations reaching now the fifth generation has been

driven by the evolution of the supported applications and subsequently the new

demand in services.

 5G needs to support the traditional human-type applications such as high-

speed video streaming, VoIP etc. but it is not limited to that. In fact, it must enable

a wide range of applications coming from autonomous and communication among

sensors and actuators in scenarios like Industry 4.0 or Smart Cities. Intelligent

mobility is another field of application along with remote control which is another

service that allows to remotely control objects that are connected to the network.

This concept can be applied in many scenarios such as smart cities and health care

industry.

5G Core – Structure and Implementations

28 | P a g e

 The following image shows the evolution of the networks starting from 1G to 5G

and the supported applications over the generations:

Figure 14 - Network Generations Evolution

• 1G – it supported mobile phone and voice only

• 2G – mobile phone and text messages [2.5 data connectivity over mobile

networks through Wireless Application Protocol (WAP)]

• 3G – mobile phone and GPS

• 4G – mobile phone and minimal video streaming

• 5G – mobile phone and streaming, IoT, AI, VR, AR

The shift from 2G to 3G was mainly to introduce mobile Internet and some

additional functionalities to the pre-existing network. The architecture of 2G, also

known as GSM, was made of entities that all managed both the traffic (user plane)

and traffic control (control plane). 2.5G introduced data connectivity for mobile

networks and 3G mainly focused on overcoming the poor channel capacity of

2.5G. 4G was mainly motivated by the need of high-speed data connectivity for

mobile web browsing as well as to support real-time Internet traffic i.e. video

streaming.

4G presents some limitations from the architectural perspective. The static

deployment of vendor equipment and a use of monolithic functionality at specific

5G Core – Structure and Implementations

29 | P a g e

network locations inherited from the previous generation are some of the reasons

behind the limitations presented by the network infrastructure. The negative

aspects of 4G are:

• Inflexibility – due to the static deployment of vendor equipment as

mentioned before but also because of the use of proprietary black boxes and

monolithic functionalities. Updates require the replacement of existing

equipment even if still fit for purposes it serves.

• Complexity – network entities are involved both in user plane and control

plane.

• Centralised User and Control plane – this results in a waste of network

resources even if UEs do not have data to send and there is also a reduction

of the overall capacity of the network.

5G aims to overcome the limitations of the fourth generation along with providing

support for the diverse requirements needed by the scenarios previously

mentioned. Its capabilities are mainly:

• Flexibility and programmability – allowing fast reconfiguration, resiliency

and a dynamic network topology.

• Scalability – enabling service aware QoS, low latency and availability

supporting massive numbers of devices. Scalability also in terms of ease in

integration and interoperability with other technologies and protocols.

• Differentiated management of user and control plane – planes are

decoupled, it provides slice-based control plane and user plane functions

enabling ultra-low latency, QoS management and reliability.

Thanks to the above-mentioned characteristics, 5G networks is able to support the

diverse scenarios as mentioned before and shown in the below image:

5G Core – Structure and Implementations

30 | P a g e

Figure 15 - 5G Main Characteristics

Enhanced Mobile Broadband (eMBB) aims to serve more densely populated urban

centres with downlink speeds approaching 1 Gbps indoors and 300 Mbps outdoors.

Massive Machine Type Communications (mMTC) enables machine-to-machine

(M2M) and Internet of Things (IoT) applications that a new wave of mobile

customers could expect from their network without burdening the other classes of

service. Ultra-Reliable and Low Latency Communications (URLLC) would

address critical communication needs where bandwidth is not as important as

speed, i.e., end-to-end latency of 1 ms or less [12].

3.2 Evolution of the Network Infrastructure

 5G has brought a very different approach to the network infrastructure as it

changes the way components are deployed compared to the 4G. However, 5G will

be initially in a non-standalone mode and it will work in parallel to the 4G LTE

network. Over the next few years this will change as more and more the 5G

network infrastructure will expand enabling a standalone mode. The below image

shows these two modes:

5G Core – Structure and Implementations

31 | P a g e

Figure 16 - Standalone vs Non-Standalone Mode

In a non-standalone mode, a mobile device connecting to the network will

first connect to the 4G and then if 5G is available it will use it for additional

bandwidth. Whereas in the standalone mode the whole infrastructure will be

separated.

The below image allows to understand how different these two networks in

terms of deployment components distribution and coverage are:

Figure 17 - 4G and 5G Infrastructure Comparison

5G Core – Structure and Implementations

32 | P a g e

In 4G LTE network architecture the RAN and eNodeB are typically close

together and at the base station or near a cell tower running on a specialised

hardware. The core is monolithic, centralise and far from devices and the eNodeB.

This has been overcome in 5G, as mentioned before, the core has been

disaggregated and each function can run in an independent way on off-the-shelf

hardware without the need of having dedicated and difficult to change hardware.

In this way, 5G Core functions can be co-located with the applications in an edge

datacentre enabling short path communications thus improving the speed and

latency. What we have in this scenario are small data centres positioned at the edge

of the network, close to the cell towers. This allows to not only have a low latency

but also a high bandwidth. Moreover, with this approach it is possible to have the

previously mentioned network slicing. One slide may be dedicated to high

bandwidth, one to low latency and another one for massive IoT devices [11].

3.3 5G Core Structure

The mobile core network is responsible for many differentiated functions

such as session management, mobility authentication and security. All three

aspects of crucial importance when delivering a service [10]. All the network

generations, including 5G at first, used a point-to-point (P2P) architecture but with

the transition to cloud infrastructure and the need for diverse services have made

the P2P architecture not the best option anymore. P2P architectures contain a large

number of unique interfaces between functional elements, and each is connected

to multiple adjacent elements creating a complex connections map resulting in

dependencies between functions. These dependencies make it difficult to change

a deployed architecture but 5G needs a more dynamic and agile architecture like a

Service Based Architecture (SBA).

 SBA performs the decoupling mentioned previously in this document, it

separates the end-user service from the underlaying network and platform

infrastructure. The 5G Core architecture is designed to be cloud-native, it should

make use of Network Function Virtualisation and Software Defined Networking

and use service-based interactions between control plane functions. SBA aligns

very well with a microservices view of network function composition.

5G System is made of three main components: 5G Core, Radio Access

Network (RAN) and User Equipment (UE). The below image gives a

representation of the 5G system:

5G Core – Structure and Implementations

33 | P a g e

Figure 18 - 5G System

• User Equipment (UE) - like 5G smartphones or 5G cellular devices connect

over the 5G New Radio Access Network to the 5G core and further to Data

Networks (DN), like the Internet.

• gNB – a radio node that allows the UE to connect with the Core using the

air interface. The gNB provides the user plane and control plane

terminations towards UE.

• Access and Mobility Management Function (AMF) – manages access

control and mobility. It also includes Network Slice Selection Function

(NSSF).

• Session Management Function (SMF) – sets up and manages sessions

according to network policy.

• User Plane Function (UPF) – it can be deployed in various configurations

and locations according to the service type.

• Policy Control Function (PCF) – provides a policy framework

incorporating network slicing, roaming and mobility management.

• Unified Data Management (UDM) – stores subscriber data and profiles.

• NF Repository Function (NRF) – provides registration and discovery

functionality so that Network Functions (NFs) can discover each other and

communicate via APIs.

5G Core – Structure and Implementations

34 | P a g e

• Network Exposure Function (NEF) – an API gateway that allows external

users, such as enterprises or partner operators, the ability to monitor,

provision and enforce application policy for user inside the operator

network.

• Authentication Server Function (AUSF) – as the name implies, this is an

authentication server.

Now that the an overall introduction to 5G has been provided along with details

about the structure of the system and the core, the next chapter discusses the open

source implementations of the technology.

3.4 5G Core Implementations

This chapter provides an overview of the three main open-source

implementations of 5G Core: Open5GS, Free5GC and Magma. Then it attempts a

comparison between these three platforms in terms of architecture, implementation

and service features offered by each of them.

3.4.1 Open5GS

 The Open5GS platform consists of two core architecture segments – the

4G/5G non-standalone core and 5G standalone core. The below image shows both

options supported by Open5GS [13]:

Figure 19 - Open5GS Architecture

5G Core – Structure and Implementations

35 | P a g e

Open5GS 4G/5G NSA contains the following components: Mobility Management

Entity - MME; Home Subscriber Server - HSS; Policy and Charging Rules

Function - PCRF; Serving Gateway Control Plane - SGWC; Serving Gateway User

Plane - SGWU; Gateway Control Plane - PGWC; and Gateway User Plane -

PGWU. In this architecture, the core is physically divided into two main levels -

the control level and the user level. The MME is the main component of the control

plane axis in the core. It is responsible for managing mobility, paging, and carrier

sessions. The MME connects to the HSS, which generates SIM authentication

vectors and manages the subscriber profile. It also connects to the gateway server

control planes - SGWC and PGWC/SMF. All eNBs of the mobile network - 4G

base stations - are connected to the MME. The PCRF is the last component of the

control plane. It works between the PGWC/SMF and the HSS to calculate and

enforce subscriber policies.

The user plane is responsible for transporting user data packets between the

eNB/NSA gNB - 5G NSA base station - and the external WAN. SGWU and

PGWU/UPF are the main components of the user plane and both are connected to

their control plane counterparts, i.e., eNBs/NSA gNBs connect to SGWU, which

in turn connects to PGWU/UPF and WAN. All these components have

configuration files that contain IP/local interface names of the component and IP

addresses/DNS names of other components to which each component must

connect.

Open5GS 5G SA Core includes the following features: Access and Mobility

Management Function - AMF; Session Management Function - SMF; User Plane

Function - UPF; Authentication Server Function - AUSF; Repository Function -

NRF; Unified Data Management - UDM; Unified Data Repository - UDR; Policy

and Charging Function - PCF; Network Slice Selection Function - NSSF; and

Binding Support Function - BSF [12]. In the control plane, the functions are

configured to be registered in NRF. NRF helps in detecting other core functions.

AMF function acts as mobility and connectivity manager. The gNBs - 5G base

stations - connect to the AMF. UDM, AUSF and UDR perform similar operations

as 4G HSS, generate SIM authentication vectors and maintain subscriber profile.

The SMF is responsible for session management, which was previously the

responsibility of the 4G MME/SGWC/PGWC. The NSSF function provides a way

to select parts of the network. Ultimately, PCF is responsible for charging and

subscriber policy enforcement. In the 5G SA core, only one user plane function is

used, which makes it simpler compared to the 4G/5G NSA core. In it, the UPF

function connects to the SMF and also transports user data packets between the

gNB and the external WAN. Except for SMF and UPF, all configuration files for

5G Core – Structure and Implementations

36 | P a g e

the 5G SA main functions contain only the IP binding addresses/local interface

names of the function and the IP address/DNS names of the NRF [13].

3.4.2 Free5GC

Free5GC is an open-source project for the 5th generation mobile network

core - 5G. Currently, the largest contributions to the development of the Free5GC

platform come from National Chiao Tung University - NCTU. The Free5GC

implementation is based on NextEPC. Since the commercial 5G UE and 5G base

station - gNB - are not yet on the market, Free5GC uses 4G protocols to

communicate with the 4G UE and 4G base station - eNB [14].

So, the authentication protocol of this platform is still based on 4G. Currently,

Free5GC already implements some of the 5GC features required for its use. The

image below illustrates the changes made to the core architecture of the network

[14]:

Figure 20 - Free5GC Architecture

Here the structure is more simple compared to the Open5GS but is also less

complete in terms of elements of the core and the scenarios that can be covered by

this implementation.

5G Core – Structure and Implementations

37 | P a g e

3.4.3 Magma Core

Magma is an open-source software platform that gives network operators

an open, flexible and extendable mobile core network solution. The figure below

shows the high-level architecture of Magma [14]:

Figure 21 - Magma architecture

It has three main components:

• Access Gateway: The Access Gateway (AGW) provides network services

and policy enforcement. In an LTE network, the AGW implements an

evolved packet core (EPC), and a combination of an AAA and a PGW. It

works with existing, unmodified commercial radio hardware.

• Orchestrator: Orchestrator is a cloud service that provides a simple and

consistent way to configure and monitor the wireless network securely. The

Orchestrator can be hosted on a public/private cloud. The metrics acquired

through the platform allows you to see the analytics and traffic flows of the

wireless users through the Magma web UI.

• Federation Gateway: The Federation Gateway integrates the MNO core

network with Magma by using standard 3GPP interfaces to existing MNO

components. It acts as a proxy between the Magma AGW and the operator's

network and facilitates core functions, such as authentication, data plans,

policy enforcement, and charging to stay uniform between an existing

MNO network and the expanded network with Magma.

Magma provides network operators with an open, flexible and extensible

packet core for mobile networks. It also enables better connectivity by allowing

operators to offer mobile services independently of core network providers. It

5G Core – Structure and Implementations

38 | P a g e

enables more efficient network management with automated systems, with less

downtime, and improves predictability and agility for adding new features. It is

also possible to expand the licensed spectrum around constrained operators as it

allows the expansion of capacity and coverage through Wi-Fi and Citizens

Broadband Radio Service (CBRS). Finally, it allows interconnection between

existing Mobile Network Operators - MNOs and new infrastructure providers,

resulting in the expansion of rural infrastructure. Magma provides a single panel

for managing Magma-based networks. It provides services for configuring

gateways and eNodeBs, as well as an overview of status, events and metrics for

analysing the performance of the network and the devices connected to it. It is also

possible to configure and receive alerts for failures, overloads, etc. [14].

3.4.4 Comparison Between 5G Core Implementations

 A comparison between these three implementations allowed to understand

which one was the most suitable one for this thesis work. For all three

implementations it is important to consider different aspects such as infrastructure

issues, platform documentation, developer community engagement and code

maturity. Functional aspects such as mobility, scalability, reliability and latency

are important too.

Another important aspect to consider is the underlaying hardware needed

to support these implementations. The elements of all three components may differ

in terms of the equipment needed to deploy them. There can be elements deployed

over containers or over Virtual Machines. The below table shows how components

are deployed:

Open5GS Free5GC Magma

Containers (Docker) Virtual Machine Container (Docker) +

Bare Metal

 Documentation is another important factor when deploying a 5G core

infrastructure, the amount of documentation made available by the platforms and

community is crucial to have an easy and efficient provisioning of the components.

Open5GS and Magma provide a good quantity of instructions to perform the

deployment, configuration and upgrade in a well-defined manner. In Free5GC the

documentation has the disadvantage of not showing a chronological order of the

execution process making the whole process of deployment and configuration a

non-trivial task. Another important factor is how mature the code is and how active

the community is. All three platforms have an active community which helps to

improve the code, develop new features and fix bugs. The projects of all of them

5G Core – Structure and Implementations

39 | P a g e

are still under development but Open5GS and Magma are more advanced

compared to Free5GC.

When it comes to the control and user plane separation, both Open5GS and

Free5GC provide a complete separation between these two planes making the

functions independent. Magma does not support this separation yet. Its architecture

consists of a control plane and user plane that operate together at Access Gateway.

 As a consequence of these aspects, Open5GS has been selected for this

thesis work as it allows to have a clean separation between the control and user

plane, its deployment can be performed in a cloud-native way and has an active

community of contributors to the project along with a well defined and rich

documentation.

4. 5G System Deployment with Kubernetes

40 | P a g e

4. 5G System Deployment with Kubernetes

Applying a cloud native approach to 5G is essential to benefit from its structure

and achieve the flexibility needed in different scenarios like the ones already

mentioned in the previous chapter. Being cloud native implies that the obtained

solution is scalable, portable and can be dynamically managed and orchestrated.

However, being cloud native when working with telecommunication systems is

challenging as they have very specific requirements that haven’t been fulfilled and

tested yet or sometimes, in traditional orchestration frameworks, are not possible

to satisfy. While recently major MANO frameworks claim that they have become

cloud native, in reality this amounts to containerizing the MANO engines and

executing them on top of container orchestrators, such as K8s. The workflow

orientation, centralization of the management logic, and limited support for highly

dynamic workloads still permeate the MANO frameworks. This is the reason

behind a proposal of a new solution based entirely on Kubernetes [16].

This chapter provides an overview of the proposed solution and then it shifts

the focus on the implementation part giving details about the Kubernetes cluster,

deployment of 5G Core and UERANSIM.

 4.1 Solution Architecture

What we are proposing in this thesis work is to move towards other

technologies that allow to be cloud native in the true sense of the concept. MANO

is a standard so it can be implemented in a multitude of ways, the idea is to use

Kubernetes as the implementation of the management and orchestration module

defined in the ETSI MANO standard. Rather than having a deployment of

frameworks like OSM as entities running inside containers and acting as

orchestrator for VNFs, here the proposed solution is to have Kubernetes acting as

not just a Network Function Virtualisation Infrastructure (NFVI) but also as

Network Function Virtualisation Orchestrator (NFVO), VNF Manager and VIM.

This means having Kubernetes as a cloud native implementation opposed to the

existing MANO orchestration frameworks. In this way it is possible to have a more

portable and streamlined solution compared to having separate orchestration

engines on top of Kubernetes. The image below shows the solution architecture:

4. 5G System Deployment with Kubernetes

41 | P a g e

Figure 22 - Solution Infrastructure

As shown in the image, Kubernetes acts as an implementation of the MANO

standard. So, it covers the main three components on the right side. The whole

solution is hosted on a on-premises server with Ubuntu 18.04.6 LTS operating

system, kernel Linux 5.4.0-117-generic and x86-64 architecture.

As discussed in chapter 3, the core will be made of different components

representing VNFs and interacting one with another exploiting the inter-cluster

networking. When it comes to the lifecycle of the VNFs, Kubernetes will be

responsible for it. It will manage the creation of Pods, allocation of VNFs inside

the Pods and ensure that they are up and running. The number of instances of each

function can be decided also a priori with specification files as explained in chapter

2, while the load balancing will be directly performed by K8s.

4.2 Cluster Deployment

 There are different technologies that can be used to create a Kubernetes

cluster, and all differ in terms of the features they provide and scenarios they are

more suitable for. Some can be mainly used to define a cluster from command line

using configuration files while some others provide a very intuitive user interface

to manage the cluster. The main ones are Kind, Minikube, Rancher and K3S. In

this thesis work we have explored the first three to compare the differences

between them and understand which one can be the best option for this project.

4. 5G System Deployment with Kubernetes

42 | P a g e

The next section compares Kind, Minikube and Rancher and then the chapter will

focus on the deployment of the cluster.

4.2.1 Comparison Between Kind, Minikube and Rancher

 Kind runs local Kubernetes clusters inside Docker container nodes, so the

cluster is inside Docker containers which means that it has a fast start up speed

compared to having a solution that is based on VMs. It provides a quite easy and

straightforward way to create a cluster if the requirements are standard. Once kind

has been installed on the machine, it is possible to create a cluster by simply

running the “kind create cluster” command. At the same time, if there is a need of

specific role in the cluster or a cluster with multiple nodes for example, it is

possible to use configuration files to start the deployment. In case there is the

necessity to define some more options when deploying the cluster, it is possible to

use a configuration like the following:

kind: Cluster

apiVersion: kind.x-k8s.io/v1alpha4

nodes:

- role: control-plane

- role: worker

This allows to create a cluster that uses a specific apiVersion and creates two

nodes: one control plane and another worker node. This file would allow to extend

the cluster and add more worker nodes for example.

 Usually when loading the container images, they have to be pushed to the

registry and then they can be used and imported, but Kind allows to skip this step

and host local images directly into the cluster. This functionality makes testing and

development much quicker. Kind was in fact created to test Kubernetes but it can

also be used for local development. When working with it and deploying the 5G

core on top of a kind-created cluster, we have experienced issues related to a non-

trivial configuration of the cluster. In order to achieve a successful deployment and

a correctly running core from a functionality perspective, the cluster needed very

verbose and manual configuration which can easily lead to errors due to cluster

and network misconfigurations.

On the other hand, Minikube uses another approach based on exploiting a

VM that is essentially a single node Kubernetes cluster. It provides support for all

K8s features and a simple dashboard that can be used to have an overview of the

cluster. Minikube provides a command to launch from the command line that

allows to have a simple cluster made of a master node and a worker node: minikube

start.

4. 5G System Deployment with Kubernetes

43 | P a g e

 In both deployments, kubectl can be used to interact with the cluster be it

for check its state or make changes to its structure. There is no need to perform

extra steps, if the container images are ready to be used, it is possible to start the

application using a YAML file and running the following command:

 kubectl apply -f <YAML file>

The apply command manages application through files defining Kubernetes

resources. When the command runs, it crates and updates resources in the cluster.

 Minikube represents a tool which is more complete and easier to use

compared to Kind, but it still has some limitations as again the creation and

configuration of the cluster require some manual configuration. It still is a good

option to be used compared to kind but for several reasons like ease of

configuration in complex scenarios, completeness and variety of tools to deploy,

manage and monitor applications an even better option is Rancher.

 Rancher is one of the main tools for open-source cloud native Kubernetes

management and allows to manage and scale workload in a consistent way in any

environment [17]. The initial setup of a cluster is a little more complex compared

to Kind and Minikube, but it provides a more complete cluster in terms of network

configuration, overall management of the cluster and very well-defined and

intuitive user interface to interact with the it. It has a variety of tools to include

other platforms such as Helm for deployments or monitoring tools bases on

Prometheus just to mention some of the options. It is possible to interact with the

cluster via kubectl but also from the UI which makes the admin work much easier.

The next chapter explains how it is possible to create a cluster in Rancher and the

features needed for the project.

4.2.2 Cluster with Rancher

 To get started with Rancher and be able to create the cluster there are two

preliminary steps to be performed: have a Linux host and a supported version of

Docker running on it. In our case the host is a on-premises machine with the

previously mentioned features. The docker version is 20.10.16. To install and run

Rancher it is necessary to run the following command:

$ sudo docker run --privileged -d --restart=unless-stopped -p 80:80 -p 443:443 rancher/rancher

4. 5G System Deployment with Kubernetes

44 | P a g e

This command will result in the download of a set of images that are needed to run

Rancher:

Figure 23 - Cluster Creation

This will create the following container on the hosting machine:

Figure 24 - Docker Container Hosting Rancher

It is now possible to access the Rancher Server UI by opening up a browser and

connecting to the IP address or hostname where the command was launched. We

now need to create a password to access Rancher from the UI, and to do so we

need to run the following command:

docker logs <container-id> 2>&1 | grep "Bootstrap Password:"

 This allows to get the password from the hosting machine and then add it on

Rancher UI. Once this step has been completed the user can start to create a cluster

with the desired features. As shown in the below image, in the list of existing

clusters there is a cluster called “local” which is hosting Rancher and should not

be used for other purposes. Usually, only admins have access to that cluster and

4. 5G System Deployment with Kubernetes

45 | P a g e

other users should be prevented from accessing it as some permissions on that

cluster may give them unnecessary privileged access to other cluster as well.

 It is now possible to create a new cluster that will host the 5G System. For

this purpose, many are the available choices, for example Amazon EKS, Azure

AKS and Google GKE. But in our case, we have an on-premises server, so a

“custom cluster” is what we need. As mentioned before, one of the best features

of Rancher is that is allows to set-up different options for the cluster in the process

of creating it. It allows to choose the version of Rancher that the user needs

depending on the application requirements, it also allows to set-up a network

provider that will allow to manage and change the network connectivity inside the

cluster.

In this project it is necessary to make some changes to the network

connectivity inside the cluster and to do so we need to disable the default

configurations and enable a third-party plugin like calico. It makes the full network

connectivity more flexible and avoids having the complexity of many YAML files

configuring the network with NetworkPolicy API [18].

Figure 25- Clusters List

4. 5G System Deployment with Kubernetes

46 | P a g e

At the time of cluster creation, it is also possible to define the root directory

for Docker, so we know on the server machine where all the data related to Docker

is stored. Rancher also provides the possibility to select the roles of the node, in

our case all three roles will be covered by the node:

Once the settings are completed, Rancher provided the following command to run

from the command line so to start instantiating the cluster:

Figure 27 - Command to Instantiate the Cluster

This will then start the process of cluster creation and the following containers will

be created on the host (the image shows only the main containers, the deployment

has a set of other containers running as well):

Figure 26 - Node Options in Cluster

Figure 28 - Cluster Creation

4. 5G System Deployment with Kubernetes

47 | P a g e

On the User Interface it is possible to see the newly created cluster up and running:

Figure 29 - Cluster Created

The below image shows the features of the cluster needed for the deployment:

Figure 30 - Rancher Dashboard

4. 5G System Deployment with Kubernetes

48 | P a g e

4 Cores have been dedicated to the node along with more than 7GB of

memory. The dashboard shows an overview of the resource consumption

whenever a new deployment it performed on the cluster. This is very useful to have

a “live” knowledge about the resources’ status.

As mentioned previously, Rancher allows to manage from the dashboard

different aspects of the cluster. Managing the workload from the UI allows to

manage Pods and Deployments in an efficient manner compared to deploying from

command line. The below figure pictures the options provided on the UI to manage

not only Workloads but also services, storage and apps:

Figure 31 - Cluster Management Tools

 Even if in some instances the UI is very useful, the command line stays the

most powerful tool to communicate with the cluster and manage it. For this reason,

in the following chapters there are actions performed using both tools. In order to

enable kubectl to perform changes on the cluster, it is necessary to download the

kubeConfig file from the cluster dashboard and update it on the host machine.

Follows an example of a configuration file:

4. 5G System Deployment with Kubernetes

49 | P a g e

Figure 32 - KubeConfig File

Some parts of the configuration have been replaced by “…” only for the sake of

understanding better the format of the file. The file contains information about the

cluster, the IP address on which it is hosted, the users and a token to allows the

access from command line along with some contexts.

Now that the cluster has been successfully created, it is possible to start the 5G

System deployment. The next chapters show how to successfully deploy the 5G

Core and a UERANSIM so to have the entire system on a Kubernetes Cluster.

4.3 5G Core Deployment

 The deployment of the 5G Core has a certain complexity as the application

has many modules requiring very specific configurations, and this can very easily

lead to a complicated scenario. To avoid problems due to complex and big quantity

of configurations, helm has been used to manage the deployment.

 Helm is a tool for managing Kubernetes packages called charts which are a

collection of files that describe a related set of K8s resources [19]. Helm’s only

prerequisite is to have a Kubernetes cluster and charts needed to deploy the

application. Once it has been installed, it is important to initialise the helm chart

repository as this can be useful to build the dependencies when doing a

deployment:

helm repo add bitnami https://charts.bitnami.com/bitnami

https://charts.bitnami.com/bitnami

4. 5G System Deployment with Kubernetes

50 | P a g e

Once the dependencies have been built, it is possible to start the deployment of 5G

Core. We have YAML files for all components of the core: AMF, BSF, NRF, PCF,

SGWC, SMF, UDR, AUSF, HSS, MME, NSSF, PCRF, SGWU, UDM AND UPF.

All these files contain the configuration of these components and references to

dependant components. An example of these files is the amf.yaml one as shown

in the image below:

Figure 33 - example of AMF configuration file

This file contains many settings related to the hosting and communication

inside the cluster. Information about the PLMN is added here and will enable the

communication from UEs toward the network, forwarded by the gNodeB. Other

network and security configurations are also set here. Values for the parameters

are defined by some placeholders that will collect the information from an external

configuration file. In fact, there is also a configuration file that acts as central point

of configuration for all the component and will be used to set-up the whole core

system. Using this file, it is possible to provide the settings for the deployment and

make changes only to this file when an update is required, without the need to

configure again each YAML file for the core components. The configuration file

4. 5G System Deployment with Kubernetes

51 | P a g e

has a precise structure that must be kept to have a successful deployment and avoid

errors, this is the reason why a schema file is necessary. It is a json file that contains

the schema for the configurations and whenever there is a need for a specific

change in the configurations, the schema file must be changes too in order to avoid

any conversion problems of the parameters.

The most interesting configurations are for amf and mme components (they

are very similar, so the image below reports only the amf ones):

Figure 34 - AMF configuration

Where the most important fields are [20]:

• mcc: Mobile Country Code value of HPLMN (Home PLMN).

• mnc: Mobile Network Code value of HPLMN (Home PLMN). It can be

either 2 or 3 digits long.

• tac: Tracking Area Core value for the cell.

These parameters will be crucial when deploying the UERANSIM (explained

later).

Once the parameter in the configuration file have been set, it is possible to start the

deployment of the core with the following command:

 helm install <deployment_name> <charts>

This will start a set of Pods on the cluster and each of them will be running one

component of the core. Thanks to the configuration files mentioned above, YAML

4. 5G System Deployment with Kubernetes

52 | P a g e

files for the Pods will be created and will allow to initialise the Pods and host the

components inside them. An example of these file is provided in fig. 25, some

parts of the file have been removed to make it more readable and focus on the main

ones. Here we can find the ID of the container where the image is running, the IP

address of the Pod, different fields and the name of the containers. It is interesting

to notice that the ports that were defined in the configuration files mentioned above

are listed also here and used to configure the ports of the container and the

communication protocol. At the end of the file, we can find the status of the Pod.

This is the same status mentioned in the chapter 2 where we explain how

Kubernetes handles the scaling and components lifecycle depending on the

comparison between the actual and desired state.

Figure 35 - AMF Pod YAML

4. 5G System Deployment with Kubernetes

53 | P a g e

There are dependencies between the core elements to guarantee a correct

deployment, i.e. Pods will wait for the database to be available before starting. The

status and data from the cluster is saved into this database. As mentioned in the

previous chapter, Kubernetes does not handle data persistency, so this must be

done by the administrator. In the release there is a component called mongodb, it

will act as the database for the cluster and at this point the concepts of

PersistentVolume and PersistentVolumeClaim are very important. In fact, the

database creates a PersistentVolumeClaim that requires to be bound to a

PersistentVolume. This can be achieved either from the command line creating a

configuration file for PV or using the Rancher Dashboard. The following images

show how the PV is created in the latter case:

Figure 36 - PersistentVolume Creation (a)

There must be affinity in the name of the claim and the volume, here it is

called mongodb, so the claim will be able to understand which persistent volume

has been created for it. There are different options when creating the volume, it

can be hosted in local like in this case or on the cloud i.e. Amazon EBS Disk or

Azure Disk. It is also possible to define the capacity of the volume and a path to

the data.

4. 5G System Deployment with Kubernetes

54 | P a g e

Figure 37- PersistentVolume Creation (b)

In the customisation tab, there are different options to select from to have

the necessary features. In this case the access mode has been set to “many nodes

read-write” and the reference to the node has been put to the hosting machine.

Once the Pods are created, the dependencies satisfied and the volume claims

bound, then the deployment finishes successfully and all Pods are in a running and

ready state. We have now a cluster made of one physical node hosting all the

elements of a cluster, with a 5G Core running on top of it made of different

components interconnected one with another and waiting for requests from user

devices:

Figure 38 - Solution Architecture

4. 5G System Deployment with Kubernetes

55 | P a g e

4.4 UERANSIM Deployment

UERANSIM is an open-source implementation of 5G UE and RAN

(gNodeB) and to put it simply, it can be considered as a combination of a 5G

mobile phone and a base station. The “SIM” at the end of the term stands for

simulated, this implementation is used to simulate mobile phone devices and Radio

Access Network to test the 5G Core Network [21]. It is possible to have several

deployment options when it comes to the simulated UE and RAN. It is possible to

have UEs on bare metal while having a software defined version of the RAN or

have both elements implemented as software to be hosted in a container or a virtual

machine. In this project, the UERANSIM has been deployed using helm charts

and hosted on the Kubernetes cluster and all the components are implemented in

software. The scenario includes a gNodeB and 4 UEs that send requests to the

cluster. Both the UE and gNodeB have YAML configuration files to define the

parameters to be used in the deployment. The following image shows the most

interesting parts of these files:

An important thing to notice is the first field called supi, a supi defined a UE and

is made of different values put together:

IMSI = [mcc | mnc | msidsn] (In total 15 digits)

Where mcc and mnc are the exact same fields mentioned in the AMF

configuration, in order to have a successful communication between the

UERANSIM and 5G Core, these values must be the same in both deployments.

The msidsn value can be set to “0000000001”. Another important field is the

Figure 39 - UE Configuration File

4. 5G System Deployment with Kubernetes

56 | P a g e

gnbSearchList, this must be set to the IP address of the gNodeB otherwise the UE

will not be able to communicate with it.

When it comes to the gNodeB, the configuration file will be as follows:

Figure 40 - GNB Configuration File

Both mcc and mnc fields are set here as well as in the UEs and AMF. The

IP address of gNodeB will be automatically collected when the deployment is

performed and set to the IP address of the Pod hosting it. A very important

configuration section is amfConfigs, here are set both the IP address of the AMF

and the port on which it is listening. Without these parameters it would not be

possible to communicate with the Core. Please note that AMF is the only

component of the 5G Core that is reached by the UERANSIM. The UE will

connect to the gNodeB and it will in turn send the requests to the core.

As in the 5G Core deployment, here we have a general configuration file too. It

provides values to the placeholders in the ue.yaml and gnb.yaml files shown above:

Figure 41 - UE and gNodeB general configuration file

4. 5G System Deployment with Kubernetes

57 | P a g e

The deployment can be started with the same command used for the Core

deployment:

helm install <deployment_name> <charts>

The result will be two Pods, one hosting the gNodeB and another one the

UEs, all the user equipment created will be hosted within the same Pod and the

devices will send requests to the Core. First of all, gNodeB registers to AMF and

then UE send requests to the core, they get authenticated and register to it. The

following image shows the logs of AMF showing the registration of gNodeB and

requests from UE:

UERANSIM provides a TUN interface to enable UEs to have internet

connectivity, and this is done for each PDU session. Once a session is successfully

established, the UE creates a TUN interface and a routing table along with an IP

route. Then it is possible to test this with a ping: ping -I uesimtun1 google.com

Once the deployment has been successfully completed, we will have the following

solution structure:

Figure 43 - Solution with UERANSIM

Figure 42 - Successfult Deployment and Connection Logs

4. 5G System Deployment with Kubernetes

58 | P a g e

This chapter explained how a deployment of the 5G system can be

performed on a Kubernetes cluster. It is now possible to perform different tests on

the infrastructure and collect data about the cluster and its behaviour when

subjected to different scenarios. The next chapter shows the test cases and the

collected results.

5. Test Cases and Results

59 | P a g e

5. Test Cases and Results

This chapter is dedicated to lay out some tests performed on the cluster and

their outcome. First, it describes the behaviour and recovery time of the cluster in

case of failures and speed of scaling. Then, it compares two different deployments

scenarios of the 5G Core– one in full version and one in a more essential version

to represent an industry 4.0 scenario. A third test has been performed to gather

deployment measurements in a smart city scenario with another different structure

of the 5G Core.

5.1 Case 1 – Failure and Scaling

 This test case aims to understand the reaction of the cluster to a (or a set of)

failure(s) of Pods and to a scenario of scaling up. Because of several reasons, it

may happen that some pods face a failure in their lifecycle. But as we know,

Kubernetes is robust to failures. However, we need to understand how it responds

to these types of events and have a measurement of the time it would need to first

understand that there was a problem and then recover from it. Thanks to its

continuous monitoring of the current state of the cluster, it was noticeable that K8s

promptly reacts to a failure. When it comes to the time needed to the cluster to

recover from such failures, the below chart shows the measurements for each

element of the core:

Figure 44 - Failure Recovery Times of the Cluster

20
25

47.2

22
25

19

30

22
25

18 17

27

20
25

50

0

10

20

30

40

50

60

Core Elements

Ti
m

e
(s

)

Failure Recovery Time

AMF AUSF BSF HSS MME NRF NSSF PCF

PCRF SGWC SGWU SMF UDM UDR UPF

5. Test Cases and Results

60 | P a g e

When a Pod fails, Kubernetes promptly notices its failure and starts a back-

up Pod that will replace the failed one on the node. The time needed to create a

new Pod for each element is shown in the charts and as we can see it requires, for

most of the elements, less than 30 seconds to have a fully running back-up. The

only elements requiring more time compared to the rest of the core are the BSF

and USF. Whilst a Pod is running and there are some issues, the kubelet is able to

restart containers to handle the faults. Within a Pod, Kubernetes tracks different

container states and determines what action to take to make the Pod healthy again.

In order to respond to high volumes of requests or to have flexibility, it may

be required to scale up some elements of the core. This may also be applied only

for certain periods of time when the quantity of required resources is high and once

that period of time is over, it is possible to scale down again. Considering having

more replicas of the elements that may require scaling, the below chart shows the

time needed to perform the action. The scaling times are for obvious reasons lower

than the failure recovery times. The only element that requires a time much higher

than the other elements is again the BSF, but this is understandable as it has

dependencies to manage, i.e. with the nrf.

Figure 45 - Scaling Time per Unit of the Cluster

6

12

38

13 12

16

12
14 13

19

0

5

10

15

20

25

30

35

40

Core Elements

Ti
m

e
(s

)

Scaling Time per Unit

AMF AUSF BSF HSS NRF NSSF PCF SMF UDM UPF

5. Test Cases and Results

61 | P a g e

5.2 Case 2 – Deployments Comparison

This test case compares two different configurations of the core, one in the

full format made of all the components that have been used in the whole project

and explained already in the previous chapters, and another one made of only the

main elements needed for the core to work in a more essential scenario. An

example of where the second core could be deployed is an Industry 4.0 scenario,

here the infrastructure is static, does not require mobility and the communication

can be achieved with the essential core. In an industrial set-up, usually the

equipment is always the same, the mobility is very limited so a core with only the

main functional blocks works very well. The solution contains elements such as:

AMF. AUSF, NRF, NSSF, PCF, UDM, UDR, SMF and UPF.

The below image shows a comparison between the two deployments in terms of

time needed for the deployment, number of Pods created in the cluster, the cores

and memory consumption:

Figure 46 - Full Core Deployment Measurements

5. Test Cases and Results

62 | P a g e

Figure 47 - Compact Core Deployment Measurements

The time needed to deploy the Compact Core is nearly half compared to the

one needed for a full version of the core to be deployed. When it comes to the

resources instead, the number of Pods reduces in the second case but not as much

as one would expect. In reality, this number does make sense as there are several

Pods working in the background to support the deployment. So, the number

decreases only by the elements not needed in the compact deployment. The amount

of processing capacity that is needed in the second deployment is 0.4 units less

compared to the first deployment. The same applies to the memory, it falls from

4.97 GBs to 3.57GBs. This second deployment would certainly be useful in case

the resources at disposal are limited and the functional requirements are the

standard ones.

5.3 Case 3 – Smart City

 Smart Cities are characterised by huge numbers of devices in diverse

contexts such as IoT, eMobility, Services, Smart building etc. requiring great

mobility, flexibility and scalability from the network infrastructure. In these types

of scenarios there is a huge quantity of devices connecting to the network and on

a specific moment there can be hundreds of thousands of devices connected and

communicating data at the same time. These high numbers of devices become even

5. Test Cases and Results

63 | P a g e

bigger if we consider IoT and sensors distributed all over the city. The devices

require high mobility while the sensors need great throughput and the capacity to

manage huge quantity of data. To enable a support for these diverse contexts, 5G

introduces the concept of network slicing. By slicing a physical network into

several logical networks, each one can provide tailored services for a distinct

application scenario. 5G network slices represented by logically isolated and self-

contained networks are flexible enough and highly customizable to accommodate

diverse business-driven use cases simultaneously over the same network

infrastructure [22].

To support these requirements, the network must adapt to a less

conventional structure and provide replication to resources that can manage big

quantities of requests, support mobility and manage big quantities of data. This test

case re-creates a scenario like the one mentioned above and provides a deployment

of the 5G core that differs in terms of its control plane and user plane configuration.

Some elements of the core have been scaled up to enable the flexibility and

mobility of the infrastructure. In particular, replication has been applied to AMF

and SMF in the control plane while in the user plane to the UPF. The huge quantity

of user equipment connecting to the core requires replication of these elements,

especially UPF. The below image shows the structure of the deployment:

Figure 48 - Core Deployment in a Smart City Scenario

In this test case, there is a replication factor of 3, 5 and 10 for AMF, SMF

AND UPF. The below images show in each case the time needed to the

5. Test Cases and Results

64 | P a g e

deployment, the resources consumed in terms of created Pods, cores and memory

consumption:

Figure 49 - Replication Degree 3

The time needed for the deployment of with the case with replication degree 3 is a

little higher compared to the full core without replication. The number of pods goes

up to 39 compared to the 33 as 6 more replicas were added to get to 3 replicas for

each element. The core consumption goes up to 1.35 instead of the previous 1.11.

The same applied to the memory that reaches 5.17 which is the 67.4% of total

available memory.

5. Test Cases and Results

65 | P a g e

Figure 50 - Replication Degree 5

The resource consumption trend goes up in all cases as the test case required

the deployment of a higher number of components. As shown in the image above,

the number of Pod has gone up to 60 while the core consumption reached 1.55 but

still there is great margin as there are 4 cored dedicated to the cluster. The memory

has gone up to 5.25 but the difference compared to the previous value is only

0.08GB which is not a very high number.

Figure 51 - Replication Degree 10

5. Test Cases and Results

66 | P a g e

The last measurement instead is for a replication degree of 10, so all three

elements have 10 replicas working in the cluster in the control and user plane. The

time needed to finish the deployment has gone up to 4 minutes and 50 seconds, a

considerable change compared to the difference of deployment time in the first two

cases, but still overall it is an acceptable time for the deployment of a network core.

The processing resources usage has gone up to 1.55 but it is very much acceptable

as a value. The memory instead has reached a value of 5.47 which is a little high,

in total the memory usage is 71.3%. So, in case there were other replicas to be

instantiated, or more applications to be imported in the cluster, memory could

become an issue to resolve by allocating extra memory to the cluster.

These test cases have allowed to observe the behaviour of both the cluster

and the core under different circumstances and understand, from the point of view

of a provider, how things evolve in different scenarios. In particular, the first test

case highlights the recovery of the system in case of failures and in case scaling is

required. In the second test case it is interesting to see how an industrial core

deployment differs from a full core deployment in terms of time and resource

consumption. In the third and last test case instead, the structure has changed and

become more complex is respect to a normal full core deployment. Here, the

replication is applied to only some modules of the core allowing it to be more

flexible. In this case, like in the second test case, it was possible to observe the

time needed to perform the deployment along with the resource consumption but

in 3 different replication degrees.

6. Conclusions and Future Work

67 | P a g e

6. Conclusions and Future Work

This research and project work aimed to find an alternative the to existing

5G Core deployment solutions, moving towards a true cloud native approach to be

applied rather than a pseudo-cloud native one based on the distribution and hosting

of MANO implementations on the cloud. The idea was to use Kubernetes as an

implementation of MANO standard opposed to other pre-existing solutions. As a

result, we can conclude that Kubernetes cannot just act as a NFV Infrastructure

and VIM but also as an orchestrator and manager of Virtualised Network

Functions. The achievement of this project was to have a deployment of 5G Core

on top of a Kubernetes cluster and managing the deployment, lifecycle, failure

recovery, scaling, workload balancing etc. of VNFs directly by Kubernetes. The

outcome has allowed to understand how this technology is complete and suitable

for the above-mentioned purposes.

We started by understanding which technologies and paradigms allowed to

move towards the concept of software defined networking and which standards

have been put in place for this concept. It was then important to understand very

well the structure of 5G networks and how they differ from the previous ones. In

order to create deployments and test, it was necessary to comprehend what

scenarios required the introduction of a new generation of telecommunications.

Then, an in-depth study of the existing implementations and solutions allowed to

define the points where improvement could be made. Gathering knowledge about

novel but still well implemented and supported technologies allowed to create a

roadmap to introduce the cloud native concept into the 5G Networks.

We now have the 5G Core deployed on a Kubernetes cluster and managed

entirely by it. The core has been tested with UE and RAN defined in software. We

have a set of different configurations of the core that can be deployed on a

Kubernetes cluster depending on different scenarios that we want to test. This

allowed to understand how the cluster reacts in the different roles mentioned

above. Especially how it recovers from failures and how it reacts to the scaling of

hosted components. Applying the concept of differentiated services for different

usages, allowed to create tests for core deployment in an industrial context and a

smart city one. The results showed how dynamic the configuration of the core can

become to cover these diverse set-ups and how efficiently Kubernetes can manage

these changes with very low variations in terms of time of deployment and resource

consumption.

6. Conclusions and Future Work

68 | P a g e

In the future, this work can be certainly extended under various aspects. As

for now, the infrastructure has been tested from the prospective of a provider. One

possible work could be focused on enriching the user side, UE and RAN, and study

the deployment under different scenarios. This would allow to understand how the

cloud native 5G Core reacts to different requirements, i.e. huge quantity of requests

from as many devices in a smart city scenario. A second extension could consist

in the comparison of Open5GS with other implementations of the 5G Core such as

Free5GC and Magma. In this way, it would be possible to measure the time that is

needed for the core to be deployed, the performances against failures and scaling

requirements. Moreover, this would allow to gain knowledge about the limitations

of these implementations and understand which are the applications where each of

them is better compared to others. This comparison would enable dedicated core

deployments for different scenarios to fulfil at best the requirements.

Another extension to this work could be to have a multi-cluster solution as

Kubernetes would be able to manage a multi-cluster scenario. In this way the

distribution of the core could enable huge flexibility, dynamicity and scaling

capabilities.

These are some ideas of possible future works that can be performed taking

into consideration this thesis project work. Several other options can be found to

extend these concepts now that a first solution is available.

References

69 | P a g e

References
[1] Wang, An; Guo, Yang; Hao, Fang; Lakshman, T.; Chen, Songqing (2

December 2014). "Scotch: Elastically Scaling up SDN Control-Plane using

vSwitch based Overlay". ACM CoNEXT

[2] Trends on virtualisation with software defined networking and network

function virtualisation - Lorena Isabel Barona López,Ángel Leonardo

Valdivieso Caraguay,Luis Javier García Villalba,Diego López.

[3] Network Functions Virtualisation (NFV); Architectural Framework –

ETSI Group Specification.

[4] Network Functions Virtualisation (NFV); Management and

Orchestration – ETSI Group Specification.

[5] Kubernetes [Online] - https://kubernetes.io

[6] S. Parkvall, E. Dahlman, A. Furuskar, and M. Frenne, “NR: The New

5G Radio Access Technology,” IEEE Communications Standards

Magazine, vol. 1, no. 4, pp. 24–30, December 2017.

[7] Open, Programmable, and Virtualized 5G Networks: State-of-the-Art

and the Road Ahead. Leonardo Bonati, Michele Polese, Salvatore D’Oro,

Stefano Basagni, Tommaso Melodia Institute for the Wireless Internet of

Things, Northeastern University, Boston, MA 02115, USA

[8] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision

and challenges,” Internet Things J., vol. 3, pp. 637–646, 2016.

[9] Internet of Things statistics for 2022 - Taking Things Apart. [Online]

https://dataprot.net/statistics/iot-statistics/

[10] Service-Based Architecture for 5G Core Networks – Gabriel Brown,

Heavy Reading.

[11] What is 5G Network Architecture – Herald Rammet, Digi International

– 2021

[12] Analysis for Comparison of Framework for 5G Core Implementation.

Francisco Joaquim de Souza Neto, Edson Amatucci, Nadia Adel Nassif,

Pedro Augusto Marques Farias – ICISCT 2021.

https://kubernetes.io/
https://dataprot.net/statistics/iot-statistics/

References

70 | P a g e

[13] Open5GS [Online] https://open5gs.org/open5gs/docs/guide/01-

quickstart/

[14] Free5GC, “Roadmap of free5GC project,” Free5GC, 13 January 2019.

[Online]. Available: https://www.free5gc.org/roadmap. [Acesso em 10

June 2021].

[15] Magma [Online] https://docs.magmacore.org/docs/basics/introduction

[16] Toward True Cloud Native NFV MANO. David Breitgand, Vadim

Eisenberg , Nir Naaman, Nir Rozenbaum , Avi Weit - 2021 IEEE

[17] Rancher - https://rancher.com/why-rancher

[18] Calico by Tigera – [Online]

https://projectcalico.docs.tigera.io/about/about-calico

[19] Helm – [Online] https://helm.sh/docs/intro/quickstart/

[20] UERANSIM Configurations - [Online]

github.com/aligungr/UERANSIM/wiki/Configuration

[21] UERANSIM Implementation – [Online]

https://github.com/aligungr/UERANSIM

[22] An Overview of Network Slicing for 5G - Shunliang Zhang. IEEE

Wireless Communications • June 2019

https://open5gs.org/open5gs/docs/guide/01-quickstart/
https://open5gs.org/open5gs/docs/guide/01-quickstart/
https://docs.magmacore.org/docs/basics/introduction
https://rancher.com/why-rancher
https://projectcalico.docs.tigera.io/about/about-calico
https://helm.sh/docs/intro/quickstart/

