Nonlinear modelling of non-structural masonry walls under a low-intensity earthquake motion: calibration through a parametric study

Masini, Laura (2022) Nonlinear modelling of non-structural masonry walls under a low-intensity earthquake motion: calibration through a parametric study. [Laurea magistrale], Università di Bologna, Corso di Studio in Civil engineering [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore. (Contatta l'autore)

Abstract

This thesis aims to understand the behavior of a low-rise unreinforced masonry building (URM), the typical residential house in the Netherlands, when subjected to low-intensity earthquakes. In fact, in the last decades, the Groningen region was hit by several shallow earthquakes caused by the extraction of natural gas. In particular, the focus is addressed to the internal non-structural walls and to their interaction with the structural parts of the building. A simple and cost-efficient 2D FEM model is developed, focused on the interfaces representing mortar layers that are present between the non-structural walls and the rest of the structure. As a reference for geometries and materials, it has been taken into consideration a prototype that was built in full-scale at the EUCENTRE laboratory of Pavia (Italy). Firstly, a quasi-static analysis is performed by gradually applying a prescribed displacement on the roof floor of the structure. Sensitivity analyses are conducted on some key parameters characterizing mortar. This analysis allows for the calibration of their values and the evaluation of the reliability of the model. Successively, a transient analysis is performed to effectively subject the model to a seismic action and hence also evaluate the mechanical response of the building over time. Moreover, it was possible to compare the results of this analysis with the displacements recorded in the experimental tests by creating a model representing the entire considered structure. As a result, some conditions for the model calibration are defined. The reliability of the model is then confirmed by both the reasonable results obtained from the sensitivity analysis and the compatibility of the values obtained for the top displacement of the roof floor of the experimental test, and the same value acquired from the structural model.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Masini, Laura
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Structural Engineering
Ordinamento Cds
DM270
Parole chiave
masonry,earthquake,interface,FEM,transient,Diana,sensitivity,model,nonstructural walls,seismic
Data di discussione della Tesi
20 Luglio 2022
URI

Altri metadati

Gestione del documento: Visualizza il documento

^