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Abstract

Activation functions within neural networks play a crucial role in Deep

Learning since they allow to learn complex and non-trivial patterns in

the data. However, the ability to approximate non-linear functions is

a significant limitation when implementing neural networks in a quan-

tum computer to solve typical machine learning tasks. The main burden

lies in the unitarity constraint of quantum operators, which forbids non-

linearity and poses a considerable obstacle to developing such non-linear

functions in a quantum setting. Nevertheless, several attempts have been

made to tackle the realization of the quantum activation function in the

literature. Recently, the idea of the QSplines has been proposed to ap-

proximate a non-linear activation function by implementing the quantum

version of the spline functions. Yet, QSplines suffers from various draw-

backs. Firstly, the final function estimation requires a post-processing

step; thus, the value of the activation function is not available directly as

a quantum state. Secondly, QSplines need many error-corrected qubits

and a very long quantum circuits to be executed. These constraints do

not allow the adoption of the QSplines on near-term quantum devices

and limit their generalization capabilities. This thesis aims to overcome

these limitations by leveraging hybrid quantum-classical computation.

In particular, a few different methods for Variational Quantum Splines

are proposed and implemented, to pave the way for the development of

complete quantum activation functions and unlock the full potential of

quantum neural networks in the field of quantum machine learning.
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Introduction

The discoveries of quantum mechanics from the early decades of the twen-

tieth century, combined with the power of the computational theories

and computer science capable of changing the human life for decades, led

Feynman [8] and Manin [20] to propose the concept of Quantum Comput-

ing as early as the 80s. More thoroughly, quantum physics phenomena

like superposition, entanglement and interference have been exploited to

give rise to a new computational approach which was based on the so

called Qubits, rather than the classic binary bits. Qubits can assume

not only values like 0 and 1, but also a combination of them, achieving a

stronger computational power. Quantum Computation began attracting

attentions thanks to quantum algorithms capable of solving problems,

intractable by their classic counterparts. The most known algorithm,

which represented an epochal turning point was the “Shor’s Algorithm”,

able to solve integer factorization in polynomial time [35].

In the last decades, given the enormous success of AI and Machine

Learning, many studies have been done to exploit the quantum com-

putation power for Machine Learning, giving the birth to the Quantum

Machine Learning (QML). The new QML algorithms based on NISQ

(Noisy Intermediate-Scale Quantum) devices proved their efficiency in

specific tasks, while the ones based on fault tolerant devices have yet to
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wait until the the development of such great scale quantum computers.

This thesis focuses on the development of a methodology that can

pave the way for the use of nonlinear activation functions in the field

of QML. Indeed, in the literature there’s a huge lack concerning quan-

tum activation functions and it is well known how fundamental these

nonlinear functions are for Machine Learning and AI. The main problem

and obstacle to develop such functions lies in the unitarity and linearity

nature of quantum operators, the bricks of quantum computing.

Macaluso et al [18] proposed a non-linear approximation method

based on “Quantum Splines” to move towards quantum activation func-

tions. However, the QSpline method had some limitations such as: ex-

ploitation of fault-tolerant algorithms, post-processing steps and lack of

generalization.

The proposal of this thesis overcomes such limits: in the first place

(Variational QSplines) it extends the QSplines method with a Varia-

tional Algorithm (NISQ-based) and eliminates the need to apply post-

processing steps to obtain the result of the activation function estima-

tion. Secondly (Generalized Variational QSplines), the methodology is

expanded in a more generalized fashion with a new formulation, taking

full advantage of the nowadays available quantum algorithms.

The thesis is divided as follows:

• Chapter 2: Introduction to Quantum Computation and Quantum

Machine Learning.

• Chapter 3: Discussion about the related works and foundations of

this thesis.

• Chapter 4: Divided in two parts for the Variational QSplines and

the Generalized Variational QSplines methods, this section de-

scribes the methodologies and the implementations developed in

this thesis work.
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• Chapter 5: Discussion on the experiments, results and drawbacks

obtained with the two proposed methods.

• Chapter 6: Conclusions



Chapter 2

Background

In this Chapter the basics of Quantum Computing will be explained,

from the Postulates of Quantum Mechanics to Quantum Circuits and

devices. Then, the chapter moves to Quantum Machine Learning, the

field of this thesis project, by analyzing methods and models.

2.1 Quantum Computing

The history of quantum computing begins in the 1980s, when Feyn-

man[8] and Manin [20] proposed to combine the discoveries of quantum

mechanics, developed in the early decades of the twentieth century, with

the theory of computation, which also brought innovation and progress

through the studies of Turing, Von Neumann and many others. In the last

thirty years, a lot of quantum algorithms have been created and many

researches proved how, theoretically, Quantum Computers are able to

solve certain problems intractable for classical computers. In parallel,

there has also been strong technological progress in the development of

these quantum computers, especially with regard to small devices that

will be able to be used in specific contexts. However, most of quantum al-

gorithms assume a perfect working quantum machine, that is something

we will not have soon. Besides this, in the last years, there has been
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tremendous progress in the experimental developments of quantum com-

puters, with the possibility to access small machines that it is reasonable

to think will be useful in future for specific cases.

2.1.1 Quantum Mechanics

In order to understand how the Quantum Computation works it is nec-

essary to deal with the basics and the Four Postulates of the Quantum

Mechanics. Before stating these crucial concepts, it is also important

to introduce the mathematical notation, the Dirac or Bra-ket notation,

commonly used to describe them. This notation is very useful when the

vector space concerned is an Hilbert Space, like the one used to represent

Quantum Systems.

In the Dirac notation one n-dimensional vector, the so called “ket”,

and its dual, the “bra”, are written as:

𝑣 = |𝑣⟩ =



𝑣0

𝑣1

. . .

𝑣𝑛−1


⟨𝑣 | = 𝑣† =

[
𝑣0 𝑣1 . . . 𝑣𝑛−1

]
(2.1)

The “bra” is the “adjoint” of the “ket”, a row vector made up of the

complex conjugates of the elements of the “ket”. In general, let’s provide

the complete definition of “adjoint” operators. Given a linear operator

𝐴 on a Hilbert space 𝑉 , it exists a unique operator 𝐴†, called “adjoint”,

s.t. for all |𝑣⟩ and |𝑤⟩ from 𝑉 :

( |𝑣⟩ , 𝐴 |𝑤⟩) = (𝐴† |𝑣⟩ , |𝑤⟩). (2.2)

An operator is called “Hermitian”, when it is the “adjoint” of itself.

Now let’s define some basic concepts of the Hilbert Space with the
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Dirac notation which will be very useful dealing with Quantum Compu-

tation:

• Inner Product:

⟨𝑎 |𝑏⟩ = 𝑎†𝑏 = 𝑎0𝑏0 + 𝑎1𝑏1 + · · · + 𝑎𝑛−1𝑏𝑛−1. (2.3)

• 2-Norm:

∥ |𝑣⟩ ∥2 =
√
⟨𝑣 |𝑣⟩. (2.4)

• Tensor Product:

|𝑎⟩ ⊗ |𝑏⟩ =



𝑎1𝑏1

𝑎1𝑏2
...

𝑎1𝑏𝑛

𝑎2𝑏1
...

𝑎2𝑏𝑛

𝑎𝑚𝑏1
...

𝑎𝑚𝑏𝑛



(2.5)

Now, it is possible to state the four postulates of the Quantum Me-

chanics and their relation with Quantum Computation and Information

[26].

Postulate 1

Associated to any isolated physical system is a complex vector space with

inner product (that is, a Hilbert space) known as the “state space” of the

system. The system is completely described by its state vector, which is

a unit vector in the system’s state space.
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The first postulate gives the basis for the definition of the fundamental

Quantum Computation concept, the qubit. It is the simplest quantum

mechanical system and has a two-dimensional state space. Given |0⟩ and

|1⟩, forming an orthonormal basis for the state space, an arbitrary state

vector in the state space can be written as:

|𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ (2.6)

where 𝛼 and 𝛽 are complex numbers. The condition that |𝜓⟩ is a

unit vector, ⟨𝜓 |𝜓⟩ = 1, is equivalent to |𝛼 |2 + |𝛽 |2 = 1 and it’s called

normalization condition for state vectors.

Postulate 2

The evolution of a closed quantum system is described by a unitary

transformation. That is, the state |𝜓⟩ of the system at time 𝑡1 is related

to the state |𝜓′⟩ of the system at time 𝑡2 by a unitary operator 𝑈 which

depends only on the times 𝑡1 and 𝑡2,

|𝜓′⟩ = 𝑈 |𝜓⟩ . (2.7)

Concerning the Quantum Computing field, the second postulate in-

troduces the concept of “quantum gate”, the equivalent of the unitary

operator, or unitary matrix. Furthermore, like the first postulate, it

doesn’t provide any information about the quantum system.

Postulate 3

Quantum measurements are described by a collection {𝑀𝑚} of measure-

ment operators. These are operators acting on the state space of the

system being measured. The index 𝑚 refers to the measurement out-

comes that may occur in the experiment. If the state of the quantum

system is |𝜓⟩ immediately before the measurement then the probability
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that result m occurs is given by:

𝑝(𝑚) = ⟨𝜓 |𝑀†𝑚𝑀𝑚 |𝜓⟩ (2.8)

and the state of the system after the measurement is:

𝑀𝑚 |𝜓⟩√
⟨𝜓 |𝑀†𝑚𝑀𝑚 |𝜓⟩

. (2.9)

The measurement operators satisfy the completeness equation :

∑
𝑚

𝑀†𝑚𝑀𝑚 = 𝐼 (2.10)

and it expresses that the probabilities sum to one:

1 =
∑
𝑚

𝑝(𝑚) =
∑
𝑚

⟨𝜓 |𝑀†𝑚𝑀𝑚 |𝜓⟩ . (2.11)

The third postulate describes the effects of measurement on quan-

tum systems and thus, on quantum circuits. The possibility to measure

an observable at the end of a quantum circuit is crucial to quantum

computation and its utility.

Postulate 4

The state space of a composite physical system is the tensor product of

the state spaces of the component physical systems. Moreover, if we have

systems numbered 1 through 𝑛, and system number 𝑖 is prepared in the

state |𝜓𝑖⟩, then the joint state of the total system is |𝜓1⟩⊗ |𝜓2⟩⊗· · ·⊗ |𝜓𝑛⟩.

Finally, the fourth postulate shows the relation between state spaces

of systems which are components of an overall state space.

Now, given the four Postulates, it is possible to describe three main

properties of Quantum Computing: “superposition”, “entanglement” and
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“interference”.

Quantum superposition states that multiple quantum states can be

superposed together returning another quantum state. Furthermore, ev-

ery quantum state can be represented as a sum of distinct states. Dealing

with quantum computing, this property shows how a quantum system

exists in all its basis states at the same time and thus, allows to evaluate

a function simultaneously on different inputs.

A state that can’t be written as a product of states of its compo-

nent systems, is called an entangled state. Furthermore, if the quantum

state of a composite system cannot be described individually, the mea-

surement of an observable from a sub-system determines simultaneously

the value of the other sub-systems. Entanglement is a crucial for quan-

tum computing applications like quantum teleportation and superdense

coding.

Quantum interference derives from the dual wave-particle nature of

quantum systems, but differs from classic interference because in quan-

tum mechanics a wave function can interact with itself, is a complex

function and the interference effect depends on the absolute value of the

wave function squared rather then the amplitudes of two waves.

2.1.2 Qubits

As already mentioned through the first postulate, the qubit is the fun-

damental unit of Quantum Computing and Information. The main dif-

ference between qubits and classical bits relies on the fact that the qubit

not only can have one of the two basis values, but also a superposition

of them; in other words a linear combination of |0⟩ and |1⟩:

|𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ (2.12)

where 𝛼 and 𝛽 are called “amplitudes” and are complex numbers.
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According to the Third Postulate, the probability to measure |0⟩ is |𝛼 |2

and the probability to measure |1⟩ is |𝛽 |2. Moreover, the state of a qubit

is a unit-vector in the two dimensional complex vector space. This is

due to the fact that, given the two possible states, the sum of their

probabilities have to sum to one. The equation 2.12 can be also written

as:

|𝜓⟩ = 𝑒𝑖𝛿 (cos (𝜃/2) |0⟩ + 𝑒𝑖𝜙 sin (𝜃/2) |1⟩). (2.13)

It is important to notice that, in 2.13, the term 𝑒𝑖𝛿 has no observable

physical consequences. Indeed, according to the Born Rule, the term 𝑒𝑖𝛿

becomes equal to 1 dealing with the outcome of a measurement. For this

reason:

𝛼 = cos 𝜃/2, (2.14)

𝛽 = 𝑒𝑖𝜙 sin 𝜃/2. (2.15)

In 2.15 𝑒𝑖𝜙 corresponds to the so called “relative phase”.

The two-dimensional complex vector space mentioned above is the so

called Bloch Sphere 2.1.

Figure 2.1: Bloch Sphere
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When dealing with multiple qubits, the related state space grows by

the power of 2; mathematically, given 𝑛 qubits, the associated Hilbert

Space will be 2𝑛-dimensional. For this reason, the state vector of a com-

posite system made up of 𝑛 qubits can be mathematically represented

as explained by the fourth postulate of quantum mechanics. A simple

way to understand the potential of the quantum computation with re-

spect to the classical one, consists in considering the dimension of a state

space generated by 200 qubits: 2200 is way bigger than the atoms in the

universe.

Before going into the deepening of the Quantum Circuits and Quan-

tum Devices, it is useful to introduce the basic quantum gates, the

“bricks” of Quantum Computation.

2.1.3 Quantum Gates

In order to understand complex quantum circuits it is important to firstly

start with the simplest units, the single qubit gates. Since a given qubit is

represented as a vector, a single qubit gate (or mathematically, a unitary

operator) corresponds to a 2×2 matrix. It is important to underline that

is possible to apply only unitary operators to a single qubit. This fact

derives from what explained with the first two postulates of Quantum

Mechanics: the qubit state after the application of an arbitrary unitary

operator must keep the normalization condition for state vectors.

Now let’s define the most used and known single qubit gates:

• the Identity:

𝐼 =


1 0

0 1

 (2.16)



2.1 Quantum Computing 12

• the Pauli matrices 𝑋,𝑌, 𝑍 :

𝑋 =


0 1

1 0

 𝑌 =


0 −𝑖

𝑖 0

 𝑍 =


1 0

0 −1

 (2.17)

• the Hadamard gate:

𝐻 =
1
√

2


1 1

1 −1

 . (2.18)

The Pauli matrix 𝑋 is the quantum equivalent of classic logic operator

𝑁𝑂𝑇 . Indeed, given a quantum state 𝜓 = 𝛼 |0⟩ + 𝛽 |1⟩ the 𝑋 operator is

able to switch its basis states:

𝑋 |𝜓⟩ = 𝑋

𝛼

𝛽

 =


𝛽

𝛼

 = 𝛽 |0⟩ + 𝛼 |1⟩ . (2.19)

Instead, the Pauli Y applies 𝜋 rotations around the y-axis, while the

Z gate applies a rotation of 𝜋 around the z-axis. Let’s see some examples

of the application of the Hadamard gate to some qubit basis states and

its ability to create superposition:

𝐻 |0⟩ = |0⟩ + |1⟩√
2

= |+⟩ , (2.20)

𝐻 |1⟩ = |0⟩ − |1⟩√
2

= |−⟩ . (2.21)

With the Pauli matrices it is possible to create an other group of

interesting matrices, the “rotation operators” about the 𝑥, �̂� and 𝑧 axis:

• Rotation Operators 𝑅𝑥 , 𝑅𝑦, 𝑅𝑧:

𝑅𝑥 = 𝑒
−𝑖𝜃𝑋/2 =


cos(𝜃/2) −𝑖 sin(𝜃/2)

−𝑖 sin(𝜃/2) cos(𝜃/2)

 (2.22)
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𝑅𝑦 = 𝑒
−𝑖𝜃𝑌/2 =


cos(𝜃/2) − sin(𝜃/2)

sin(𝜃/2) cos(𝜃/2)

 (2.23)

𝑅𝑧 = 𝑒
−𝑖𝜃𝑍/2 =


𝑒−𝑖𝜃/2 0

0 𝑒𝑖𝜃/2

 (2.24)

Now let’s explain some essential relations and properties to deal with

more complex quantum gates:

Theorem 1 [26] An arbitrary single qubit unitary operator U can be ex-

pressed, given 𝛼, 𝛽, 𝛾 and 𝛿, as:

𝑈 = 𝑒𝑖𝛼𝑅�̂� (𝜃) = 𝑒𝑖𝛼𝑅𝑥 (𝛽)𝑅�̂� (𝛾)𝑅𝑧 (𝛿). (2.25)

This expression is crucial to prove that:

Corollary 1 [26] Given a unitary operator 𝑈 and the Pauli operator 𝑋,

then exist unitary operators 𝐴, 𝐵, 𝐶 on a single qubit such that 𝐴𝐵𝐶 = 𝐼

and 𝑈 = 𝑒𝑖𝛼𝐴𝑋𝐵𝑋𝐶 .

Just as for classical computation, also for the quantum one condi-

tional operations are essential. A classical example consists in “if 𝐴 then

do 𝐵, else 𝐶”. The most known controlled gate is the Controlled-NOT

operation (also called CX):

𝐶𝑁𝑂𝑇 =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


(2.26)

𝐶𝑁𝑂𝑇 : |𝑐⟩ |𝑡⟩ −→ |𝑐⟩ |𝑡 ⊕ 𝑐⟩ (2.27)

Trivially, from 2.27 and 2.26: if the control qubit 𝑐 is set to |1⟩ then

the target qubit 𝑡 is flipped, otherwise it doesn’t change. The control
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qubit instead never changes. Given the CNOT example, it is possible to

extend the concept to a more general case.

An arbitrary Unitary Controlled Operation U, given a 2-qubit sys-

tem with a control qubit 𝑐 and a target qubit 𝑡, applies the following

transformation:

𝐶 (𝑈) : |𝑐⟩ |𝑡⟩ −→ |𝑐⟩𝑈𝑐 |𝑡⟩ (2.28)

and, by means of circuits, it is represented as:

𝐻
(2.29)

The controlled operation concept can also be extended to a multi

qubit system thanks to Corollary 1. Given a system with 𝑛 +𝑚 qubits, a

unitary operator U acting over 𝑚 target qubits and 𝑛 control qubits:

𝐶𝑛 (𝑈) |𝑥1, .., 𝑥𝑛⟩ |𝜓⟩ = |𝑥1, .., 𝑥𝑛⟩𝑈𝑥1,..,𝑥𝑛 |𝜓⟩ (2.30)

The operator U is applied to the last m qubits (targets) if the first n

(control) qubits are all equal to one; otherwise, nothing is done.

Other multi-qubit gates can be realized following the basic principles

explained previously:

• the SWAP gate:

(2.31)



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


(2.32)
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• the CZ gate:

(2.33)



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


(2.34)

• For an exhaustive review on all the remaining multiple quantum

gates see [26]

2.1.4 Measurement

Measurement is one of the most important concepts to study and create

Quantum Circuits and derives from the third Postulate of Quantum Me-

chanics 2.8. It consists basically in transforming quantum information

into classical one, in order to analyze and understand the output of the

circuits.

|𝜓⟩ (2.35)

Below are stated two crucial properties of quantum measurement:

• Measurements can always be moved from an intermediate stage of

a quantum circuit to the end of the circuit.

• Any unterminated quantum wires (qubits which are not measured)

at the end of a quantum circuit may be assumed to be measured.

When we measure an observable on a quantum system, the final result

is one eigenvalue of the observable. Thus, once we measure, the state

vector of the system becomes one of the eigenvectors of the observable

measured. To provide the output of a quantum cirucuit, we compute the
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expectation value of a measurement. Thus, given the observale M, the

expectation value will be:

𝐸 (𝑀) =
∑
𝑚

𝑚𝑝𝑚 =
∑
𝑚

𝑚 ⟨𝜓 |𝑃𝑚 |𝜓⟩ = ⟨𝜓 |𝑀 |𝜓⟩ . (2.36)

It is important to notice that the equalities above derive by the pro-

jective measurements properties (more insights in [26]) and the third

Postulate.

In practice, while a classic bit can be accessed directly, for a qubit it

is possible to get only a portion of the information it can encode. Fur-

thermore, as already told through the first and the third postulates, we

measure only the probability to get the state |0⟩, |𝛼 |2, or the probability

to get the state |1⟩, |𝛽 |2. An important typology of single qubit mea-

surement is the so called “measurement in the computational basis”. It

has two outcomes depending on the two quantum operators 𝑀0 = |0⟩⟨0|

and 𝑀1 = |1⟩⟨1|. Both operators are Hermitian and together satisfy the

completeness equation. Given |𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩, the probability to get 0

as outcome will be:

𝑝(0) = ⟨𝜓 |𝑀†0𝑀0 |𝜓⟩ = ⟨𝜓 |𝑀0 |𝜓⟩ = |𝛼 |2 (2.37)

2.1.5 Quantum Circuits

Quantum circuits are models for quantum computation and the com-

putation itself consists in a sequence of gates and measurements acting

over the qubits of the system. In the Quantum circuits representation

each line correspond to a qubit, and moving from left to right along the

horizontal line we have the evolution of the quantum state in time. Let’s

now describe a classic and important circuit used in this thesis project,

the Hadamard Test [2.38].
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|0⟩𝑎 𝐻 𝐻

|𝜓⟩𝑛 𝑈

(2.38)

This circuit, given a unitary operator 𝑈 acting over the space of

the quantum state |𝜓⟩, computes the real part of the expected value

⟨𝜓 |𝑈 |𝜓⟩. The first Hadamard Gate on the ancilla qubit(the one indexed

with 𝑎) creates a superposition and consequently, the quantum state of

the system becomes:

|𝜙1⟩𝑛+1 = (𝐻 ⊗ 𝐼𝑛) |0⟩ |𝜓⟩𝑛 =
1
√

2
( |0⟩ + |1⟩) ⊗ |𝜓⟩ . (2.39)

Secondly, as discussed previously, the operator U acts on the target qubit

controlled by the ancilla qubit:

|𝜙2⟩𝑛+1 = 𝐶𝑈 |𝜙1⟩𝑛+1 =
1
√

2
( |0⟩ ⊗ |𝜓⟩𝑛 + |1⟩ ⊗ 𝑈 |𝜓⟩𝑛). (2.40)

Then another Hadamard gate is applied to the ancilla qubit:

|𝜙3⟩𝑛+1 = (𝐻⊗𝐼𝑛) |𝜙2⟩𝑛+1 =
1
√

2
( |0⟩⊗(𝐼+𝑈) |𝜓⟩𝑛+|1⟩⊗(𝐼−𝑈) |𝜓⟩𝑛) (2.41)

. Lastly, by measurement, the probabilities to get the states |0⟩ and |1⟩

are respectively:

𝑝( |0⟩) = 1
4
⟨𝜓 | (𝐼 +𝑈†)(𝐼 +𝑈) |𝜓⟩ (2.42)

𝑝( |1⟩) = 1
4
⟨𝜓 | (𝐼 −𝑈†)(𝐼 −𝑈) |𝜓⟩ (2.43)

.

Finally, the expected value will be the difference of the two probabil-

ities, Re ⟨𝜓 |𝑈 |𝜓⟩.

Another important circuit is the Swap Test 2.44, a building block for



2.1 Quantum Computing 18

quantum algorithms for inference [33] that can be seen as a particular

case of the Hadamard Test.

|0⟩𝑎 𝐻 𝐻

|𝜓⟩

|𝜙⟩

(2.44)

This circuits behaves like the Hadamard test: in this case the controlled

operation CU, is replaced by a Fredkin (also known as controlled SWAP)

gate controlled by the ancilla qubit and acting over two quantum registers

|𝜓⟩ and |𝜙⟩.

𝐶𝑆𝑊𝐴𝑃
1
√

2
( |0, 𝜓, 𝜙⟩ + |1, 𝜓, 𝜙⟩) = 1

√
2
( |0, 𝜓, 𝜙⟩ + |1, 𝜙, 𝜓⟩) (2.45)

Following the evolution of the quantum states through the circuit, as

done for the Hadamard test, we get the probability to have the state |0⟩:

𝑝( |0⟩) = 1
2
+ 1

2
| ⟨𝜙 |𝜓⟩ |2. (2.46)

As it is possible to forecast from 2.46, with the Swap Test routine it is

also possible to extract the dot-product between two quantum states, but

at a cost of classical post-processing steps.

2.1.6 Quantum Devices

Now that all the basics of quantum computing and information have

been explained it is also essential to underline some technological aspects

related to quantum devices, focusing on long-term fault-tolerant quantum

computers and near-term ones.
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Fault-Tolerant Quantum Devices

Fault-tolerant devices are able to deliver uninterrupted service, even in

the case of the failure of one or more components.

In order to build a quantum fault tolerant device, besides the number

of qubits, it’s important to guarantee their quality, accuracy and preserve

their isolation while controlling the quantum system itself. Unfortunately

quantum decoherence [37] represents a huge problem for the creation of

quantum computers, since the nowadays technologies have still troubles

in keeping both isolation and control for quantum devices. Therefore,

large scale quantum computers, producing an amount of noise larger

than the signals and thus, without a concrete error-correction, are not

yet a reality.

NISQ Devices

As aforementioned, large scale fault tolerant quantum devices are not

available nowadays, but a strong progress in the development of small-

scale ones have been achieved. Indeed, the Noisy Intermediate-Scale

Quantum (NISQ) [30] devices have become increasingly important for

real world-application and studies. Obviously those devices as far from

being an alternative to their classic counterparts and at the same time

they cannot even execute many theorized quantum algorithms. Never-

theless, the NISQ devices are very important to face many real-world

applications and also to test models which will be hopefully outstanding

and relevant with future technologies. In the next section, one of the

most promising and interesting fields of Quantum Computing, as well as

scope of this thesis project, will be introduced.
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2.2 Quantum Machine Learning

In this section, as the title suggests, the Quantum Machine Learning

(QML) field is discussed, starting from the Classical Machine Learning

and the Hybrid Variational algorithms concepts, to the nowadays fron-

tiers of QML.

2.2.1 Introduction

There are two main approaches for Quantum Machine Learning, which

can be differentiated depending on the kind of devices that is exploited

for the task: NISQ [5] and faul-tolerant [32], both briefly described in

the previous section. The main difference between the two approaches is

that NISQ-based QML algorithms already have an immediate impact on

real-world applications [13, 7], while fault-tolerant QML algorithms are

more traditional and suffer from the same limitations of their technology

base.

The Quantum Machine Learning goal is to combine the efficiency

of quantum computing, which proved its information processing power

in many cases of study [26], with the Machine Learning data process-

ing, already known for its success in a huge amount of everyday tasks

and researches, like image and speech recognition, pattern identification

or strategy optimisation. Even if the quantum nature of the quantum

computing algorithms makes them less clear and interpretable than their

classical counterparts by means of information accessibility, many re-

searchers believe that, once the physical technologies will allow to imple-

ment it, the quantum computing power will be able to revolutionize the

intelligent data processing field [34]. Going practically, nowadays there

are two main ways to merge quantum computing and machine learning:

one consists in the application of well-known machine learning models to
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improve quantum computing theory, while the other involves the adapta-

tion of classic algorithms to quantum computers. The actual thesis work

proposal lies in the latter branch since it deals with the implementation

of quantum non-linear activation functions, one of the most important

elements for Deep Learning and Neural Networks models. For this pur-

pose, in the next subsection, the basic notions of Machine Learning and

Neural Networks will be explained.

2.2.2 Classic Machine Learning

Machine Learning (ML) is a really wide sub-field of Artificial Intelligence,

made up of a huge amount of methods and featured by as many appli-

cations. The goal of ML is to develop algorithms s.t. computers become

able to learn patterns from a set of data by training them and without

being explicitly programmed. It is mainly divided in three typologies:

• Supervised Learning - defined by the usage of labelled datasets and

trained algorithms able to predict the outcomes (the labels) from

the inputs (Examples: Classification, Regression).

• Unsupervised Learning - based on unlabelled datasets, its trained

algorithms identify patterns from the input data (Examples: Clus-

tering, Dimensionality Reduction).

• Reinforcement Learning - the trained algorithms are able to learn

the optimal behavior in an environment in order to maximize a

defined reward (Examples: QLearning).

Neural Networks(NNs) are ML computational models slightly in-

spired by biological neural networks. Although successful in many prac-

tical applications, the power of neural networks cannot be fully exploited.

For example, the Universal Approximation Theorem [11], according to

which neural networks can estimate any continuous bounded function,
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Figure 2.2: Artificial Neuron. Here 𝜑 is the activation function instead
of 𝜎.

is never exploited in practice due to the unfeasibility of training models

with an exponentially large number of neurons in the hidden layer.

The basic unit of a Neural Network is the single neuron [24] 2.2, whose

output 𝑦 is computed as the sum of the weighted inputs and the bias,

passed through the so called activation function 𝜎:

𝑦 = 𝑓 (𝑥,𝑊) = 𝜎(
𝑁∑
𝑖=1

𝑥𝑖𝑤𝑖 + 𝑏𝑖). (2.47)

It is important to notice that here 𝑓 is not the desired function to estimate

with a ML model, it is just the function describing the single neuron. In

most cases activation functions are non linear and thus able to adapt

with different kind of data and scenarios, to perform better predictions.

Figure 2.3: On the left a non linearly separable data distribution. On
the right, the application of a neuron with a ReLU activation function
over the same data in the so-called hidden space.
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From the figure 2.3 it is possible to see a simplified example to explain

the utility of non-linear activation functions. On the left we have non-

linearly distributed data. With a linear activation function is not possible

to linearly separate the red from the blue points. By applying a non-linear

activation function, like the “ReLU” function 2.48 (or Rectified Linear

Unit), we are able to move data points in a different space where they

become linearly separable (like in the image on the right 2.3).

𝜙(𝑥) = 𝑚𝑎𝑥(0, 𝑥). (2.48)

A more precise and deeper explanation about this topic (the XOR

learning case) and Deep Learning in general can be found in [9].

Beyond the ReLU, there are many other non linear activation func-

tions. Below we report the three remaining functions we used in this

thesis work and from 2.4 it is possible to visualize them:

• The Sigmoid:

𝜙(𝑥) = 1
1 + 𝑒−𝑥 (2.49)

• The Hyperbolic Tangent or “Tanh”:

𝜙(𝑥) = 2
1 + 𝑒−2𝑥 − 1 (2.50)

• The The Exponential Linear Unit or “Elu”:

𝜙(𝑥) =

𝑥 if 𝑥 > 0

𝛼(𝑒𝑥 − 1) if 𝑥 ≤ 0
(2.51)
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Figure 2.4: The four activation function stuided in this thesis project.

2.2.3 Hybrid Algorithms

Algorithms exploiting both classical and quantum computation are called

hybrid algorithms [6] and have demonstrated a huge success in the Quan-

tum Computation field. In particular, they showed their strength with

QML by giving the chance to use NISQ devices instead of fault-tolerant

ones and thus, become significant in real scenarios. Among these we can

mention some very known algorithms like for example the Variational

Quantum Eigensolver [28], used for chemistry applications, and hybrid

algorithms for quantum simulations [14].

Figure 2.5: Hybrid quantum-classical approach for supervised learning
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In general, as 2.5 shows, the classical part of these hybrid systems

is exploited for the pre/post processing computations, evaluations and

learning procedures, while the quantum part can be related to the “state

preparation” (which will be discussed later), functions estimations and

quantum measurements.

2.2.4 Supervised QML

Schuld and Petruccione [33] offer a clear and complete study about the

Supervised Quantum Machine Learning field and it’s the main reference

of this sub-section. Additionally, also Benedetti et al. [2] gives a deep

review about the Parametrized Quantum Circuits (PQC) for machine

learning models, their typology and structure. We will focus now on the

supervised models, used to tackle tasks like classification and regression.

Given a dataset 𝐷 = {(𝑥 (𝑖) , 𝑦 (𝑖))}𝑁𝑖=1 and a function 𝑓 : 𝑋 → 𝑌 able to

map every 𝑥 (𝑖)𝜖𝑋 to its related target 𝑦 (𝑖)𝜖𝑌 , the goal of a supervised

learning algorithm is to find the optimal parameter set 𝜃∗ s.t.:

𝜃∗ = argmin𝜃
1
𝑁

𝑁∑
𝑖=1

𝐿 ( 𝑓 (𝑥 (𝑖) , 𝜃), 𝑦 (𝑖)) + 𝑅(𝜃) (2.52)

where 𝐿 is the loss function to measure the error of the 𝑓 estimation and

𝑅 the regularization penalty function for undesired parameters values.

Hybrid quantum-classical algorithms for supervised learning follow

the following schema:

• The Quantum circuit preparates the input data 𝑥 (𝑖) encoding it in

a quantum state
��𝑥 (𝑖)〉 through a quantum operator and computes

the learning model’s output 𝑓 (𝑥 (𝑖) , 𝜃).

• The Classic part of the algorithm evaluates the error through a cost

function and updates the parameters 𝜃 depending on the error.

The most common approach to design the quantum part consists
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Figure 2.6: Image from [16]

basically in a first part, concerning the data encoding circuit able to

translate the classical data 𝑋 in quantum information and a second part

to estimate the output of the function 𝑓 . The two most known ways

to tackle this task are the Variational Quantum Models(VQM) and the

Quantum Kernel Estimation (QKE).

Variational Quantum Models

As aforementioned, for this kind of PQCs we have a data encoding cir-

cuit 𝑈𝜙(𝑥) able to encode x in a quantum state |𝑥⟩ and the Variational

part 𝑊 (𝜃), also called Ansatz, used to compute the observables to be

measured, in order to obtain the model’s output.

|0⟩⊗𝑛 𝑈𝜙(𝑥)
𝑊 (𝜃)

⟨𝑀⟩

|0⟩⊗𝑚
(2.53)

By increasing the number of qubits the Hilbert Space of the system in-

creases exponentially and thus, the complexity of the gradient estima-

tion to update the parameters grows. Indeed, with VQMs we have the

so called Barren Plateaus problem: more the qubits used in the system,
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lower the probability to have a non-zero gradient along any direction [23].

Quantum Kernel Estimation

The idea behind QKE, or Kernel Methods, is to use a similarity function,

or kernel, 𝐾 (𝑥, 𝑥′) in order to compute an inner product between two

point 𝑥 and 𝑥′ in a feature space different from the one the two points

belong to. The data encoding routine 𝑈𝜙 can be seen as a feature map

which project the two data points to an higher order space vector where

they can be more easy to classify thanks to a more explicit representation.

So given a kernel 𝐾 (𝑥, 𝑥′) s.t.:

𝑓 (𝑥, 𝑤) =
𝑁∑
𝑖=1

𝑤𝑖𝐾 (𝑥, 𝑥′) (2.54)

the goal of the QKE is to learn, classically, the set of weights 𝑤𝑖 such that

𝑓 produces correct forecasts. By means of quantum circuits the QKE is

implemented through the already explained swap test routine:

|0⟩𝑎 𝐻 𝐻 ⟨𝑍⟩

|0⟩⊗𝑛 𝑈𝜙(𝑥)

|0⟩⊗𝑛 𝑈𝜙(𝑥 ′)

(2.55)

where:

⟨𝑍⟩ = | ⟨0|𝑈†
𝜙(𝑥 ′)𝑈𝜙(𝑥) |0⟩ |

2. (2.56)

By measuring the ancilla qubit |0⟩𝑎 of this swap test routine, it is possible

to evaluate the kernel product and thus, through a classic optimization

part to find those 𝑤 which minimize the error of the model. With respect

to Variational Circuits, exploiting Kernel methods there is no need to deal

with barren plateaus or to design Ansatzs [31].
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2.2.5 State Preparation

|0⟩⊗𝑛 𝑆(𝑥) |𝑥⟩ (2.57)

In the previous sub-section we already mentioned data encoding cir-

cuits without investigate them further. The state preparation process,

namely the development of quantum circuits able to encode classic data

in quantum states, is a crucial part of QML, as we saw with Variational

Models and Kernel Methods. There are many ways to “prepare a state”,

but here we will discuss the two most known, namely Basis Encoding

and Amplitude Encoding [33].

Basis Encoding

The Basis Encoding routine associates to a classic binary string a com-

putational basis state of a n-qubit system. In this way, each classic bit

is related to a qubit and consequently it is possible to perform quantum

computation in parallel on all possible bit sequences thanks to the super-

position property. The amplitude associated to each basis state doesn’t

encode information but gives the the probability to get the result of the

computation for the measurement. For this reason, if we use this state

preparation routine, the objective of the algorithm is to have as higher

amplitude the one related to the basis state encoding the solution.

Given classic data in binary form, (𝑏1, .., 𝑏𝑑) s.t. 𝑏𝑖𝜖{0, 1}, the equiv-

alent quantum state obtained through a basis encoding routine will be:

|𝑥⟩ = |𝑏1, .., 𝑏𝑑⟩ , (2.58)

where the number of qubits 𝑛𝑞 is equal to 𝑑. For example, a classic bit

string 001 will be encoded as |001⟩.
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Amplitude Encoding

Amplitude encoding, differently from the basis encoding routine, asso-

ciates the required classical information to the amplitudes of the quantum

state of the system and there are many ways to realize it. Given a classic

data vector 𝑥 𝜖 𝑅2𝑛 s.t. ∥𝑥∥2 = 1, it can be represented with the following

quantum state obtained with an amplitude encoding routine:

|𝑥⟩ =
2𝑛∑
𝑖=1

𝑥𝑖 |𝑖⟩ . (2.59)

Concerning instead a classical matrix 𝐴𝜖C2𝑛×2𝑚 with entries 𝑎𝑖 𝑗 s.t. ∑
𝑖 𝑗 |𝑎𝑖 𝑗 |2 =

1, it can be encoded as follows:

|𝜓𝐴⟩ =
2𝑛∑
𝑖=1

2𝑚∑
𝑗=1
𝑎𝑖 𝑗 |𝑖⟩ | 𝑗⟩ (2.60)

An important feature of this state preparation typology is that, since

the result of the computation of an algorithm can be encoded in one

specific amplitude of the quantum system, the number of measurements

scales with the number of the amplitudes differently from the basis en-

coding, where we have to measure all the qubits to get the desired result.

One important example of amplitude encoding, as well as the one used

for this thesis methods’ implementation, is the Mottonen State Prepa-

ration [25]: its routine consists in the reverse operation of mapping the

desired quantum state |𝜓⟩ to |0⟩⊗𝑛 through a quantum circuits featured

by multiple controlled rotations.

2.2.6 Quantum Neural Networks

Mangini et al.[19] provide a comprehensive review of the actual attempts

to reproduce, in a Quantum computing fashion, already existing Neural
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Network models. In this subsection the QNN concept and some mod-

els will be mentioned. Comparing classical Neural Networks and PQCs,

there can be found similarities: in both models we have a sequential infor-

mation processing through parametrized layers and an iterative classical

optimization procedure. For this reason it is possible to formulate a

Quantum Neural Network as a PQC with multiple repetitions of layers:

𝑈𝑄𝑁𝑁 (𝜃) =
1∏
𝑖=𝐿

𝑈𝑖 (𝜃𝑖)𝑊𝑖 = 𝑈𝐿 (𝜃𝐿)𝑊𝐿 ...𝑈1(𝜃1)𝑊1 (2.61)

where 𝑈 (𝜃) are variational gates, 𝐿 is the number of layers and𝑊𝑖 are

fixed quantum operations. In order to develop such QNNs an equivalent

of the well known classic learning Universal Approximation Theorem

[11] is needed. Many studies have been done in order to reproduce,

in a quantum way, already existing NN models: concerning generative

models there’s a quantum formulation of the famous GANs [38], the

already discussed Kernel methods, a quantum version for the Single Layer

Perceptron [16], for Ensembles [17] and many others.

Another crucial topic for the development of QNNs is linked to the

Activation Functions, fundamental feature of NNs neurons to deal with

non linearly separable data. With Quantum Circuits, due to their unitary

nature, is not possible to reproduce non linear functions and thus, neither

the desired activation functions. The following chapter will discuss an

attempt to create those functions with Quantum Circuits and lays the

foundations of this thesis project contribution as well as mention the

most important related works.



Chapter 3

Related Works

3.1 Fault-Tolerant Quantum Splines

In this section the Quantum Splines [18] work will be revised, since it is

the starting point for the main contribution of this thesis project. The

goal of the QSpline project was to tackle the Non-Linear Approximation

problem through Quantum Splines, to overcome the linearity constraint

linked to the unitarity of quantum systems and finally, to realize a quan-

tum circuit able to generate Quantum Activation Functions. Before go-

ing into details of the QSpline idea, it is necessary to mention Regression

Splines [12] and the HHL algorithm [10].

3.1.1 Regression Splines

Regression splines [12] are basis functions that can be interpreted as a

combination of polynomials and step functions and can be used, just

like other regression methods, to model non-linearities and fit the data.

Given a set of input data 𝑋 and a set of outputs 𝑌 let’s recall the classic

regression problem:

𝑌 = 𝑓 (𝑋, 𝛽) + 𝜖, (3.1)
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where the goal is to find the function 𝑓 that better fits the data, with a

certain error 𝜖 . The Regression Spline approach involves the division of

the range of X into K regions and, for each of these regions, a polynomial

function have to fit the data and satisfy some smoothing conditions at

the boundaries, the so called 𝑘𝑛𝑜𝑡𝑠.

As already told, the regression splines are basis functions, which can

be understood as a way to augment the input feature X through some

transformations ℎ𝑚 and thus, allow to use linear models over the trans-

formed input ℎ𝑚 (𝑋).

𝑓 (𝑋, 𝛽) =
𝑀∑
𝑚=1

𝛽𝑚ℎ𝑚 (𝑋) (3.2)

In particular, a B-spline [4] (B comes from basis) is a spline function

that has minimal support with respect to a given degree, smoothness,

and domain partition. Any spline function 𝑆𝑑 of degree 𝑑, on a given

set of knots can be expressed as a linear combination of B-splines 𝐵𝑖,𝑑 of

that degree:

𝑆𝑑 (𝑥) =
∑
𝑖

𝛼𝑖𝐵𝑖,𝑑 (𝑥). (3.3)

Given a function 𝑓 , its support is a subset of its domain containing

elements not mapped to zero.

In the case of regression b-splines, the basis function will be a trun-

cated power basis function:

ℎ(𝑥, 𝜉) = (𝑥 − 𝜉) 𝑗+ =

(𝑥 − 𝜉) 𝑗 , if 𝑥 > 𝜉

0, otherwise
(3.4)

where 𝜉 is the knot and j the degree.

The regression splines are used for the QSpline work to approximate

a non-linear function 𝑦 given a matrix 𝑆, containing the basis expansion
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of the inputs 𝑏(𝑥𝑖), and the related spline coefficients 𝛽:

𝑦 = 𝑆𝛽 (3.5)

where:

𝑦𝑖 =
∑
𝑘

𝛽𝑘𝑏𝑘 (𝑥𝑖). (3.6)

So, given the matrix S and the vector y, to compute the spline coef-

ficients a Quantum Linear Problem Solver is needed.

3.1.2 HHL

The Harrow, Hassidim and LLoyd (HHL) algorithm [10] is a quantum

algorithm able to solve a linear problem of equations 𝐴𝑥 = 𝑏: given an

hermitian matrix 𝐴 and a vector 𝑏, it is able to find 𝑥 in polynomial

time.

Given a 𝑁𝑥𝑁 hermitian matrix A, it can be decomposed as follows:

𝐴 =
𝑁−1∑
𝑗=0

𝜆 𝑗
��𝑢 𝑗 〉 〈

𝑢 𝑗
�� (3.7)

,

where
��𝑢 𝑗 〉 is the eigenvector of A; if A is invertible then:

𝐴−1 =
𝑁−1∑
𝑗=0

𝜆−1
𝑗

��𝑢 𝑗 〉 〈
𝑢 𝑗

�� (3.8)

,

|𝑏⟩ =
𝑁−1∑
𝑗=0

𝑏 𝑗
��𝑢 𝑗 〉 (3.9)

.

Given 3.8 and 3.9 the solution vector will be:
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|𝑥⟩ = 𝐴 |𝑏⟩ =
𝑁−1∑
𝑗=0

𝜆−1
𝑗 𝑏 𝑗

��𝑢 𝑗 〉 (3.10)

.

Considering that is possible to prepare the state |𝑏⟩, the solution

|𝑥⟩ can be found by applying a unitary transformation 𝑒−𝑖𝐴𝑡 . Given the

mathematical background described above, let’s explain now the main

flow of the HHL algorithm. The Quantum Circuit for the algorithm 3.11

is made up of three registers: one for the binary representation of the

eigenvalues of A, one for the solution |𝑥⟩ and one for the ancilla.

|0⟩𝑎
Eigenvalue Inversion

|1⟩𝑎

|0⟩⊗𝑛
𝑄𝑃𝐸 𝑄𝑃𝐸†

|0⟩⊗𝑛

|𝑏⟩ |𝑥⟩

(3.11)

Then the following main steps are executed:

• Loading the data. |𝑏⟩ is encoded through a state preparation rou-

tine.

• Quantum Phase Estimation 𝑄𝑃𝐸 [26]. Considering the represen-

tation of the unitary operator U:

𝑈 = 𝑒𝑖𝐴𝑡 :=
𝑁−1∑
𝑗=0

𝑒𝑖𝜆 𝑗 𝑡
��𝑢 𝑗 〉 〈

𝑢 𝑗
�� (3.12)

, then the QPE allows the transformation below:

|0⟩ ⊗ |𝑏⟩ ⊗ |0⟩ 𝑄𝑃𝐸−−−−→
𝑁−1∑
𝑗=0

𝑏 𝑗
��𝜆 𝑗 〉 ��𝑢 𝑗 〉𝑛 ⊗ |0⟩ (3.13)
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• Eigenvalue inversion. This procedure applies a conditioned rotation

by exploiting the auxiliary qubit:

𝑁−1∑
𝑗=0

𝑏 𝑗
��𝜆 𝑗 〉 ��𝑢 𝑗 〉𝑛 ⊗ |0⟩ −→ 𝑁−1∑

𝑗=0
𝑏 𝑗

��𝜆 𝑗 〉 ��𝑢 𝑗 〉𝑛 (√
1 − 𝐶

2

𝜆2
𝑗

|0⟩ + 𝐶
𝜆 𝑗
|1⟩

)
(3.14)

• 𝑄𝑃𝐸†. Application of the inverse of the QPE to isolate the solution

and obtain the state:

𝑁−1∑
𝑗=0

𝑏 𝑗
��𝑢 𝑗 〉𝑛 (√

1 − 𝐶
2

𝜆2
𝑗

|0⟩ + 𝐶
𝜆 𝑗
|1⟩

)
(3.15)

• Measuring (Rejection Sampling). Finally, measuring the ancilla, if

we obtain |1⟩ the result will be inversely proportional to 𝜆 𝑗 and the

state will correspond to the solution of the system.

However, the HHL has a strong limitation [1]: even if it seems to be

promising with future large-scale computers, with nowadays NISQ com-

puters it can be executed only with small-scale problems (2 × 2). Now

that the preliminary concepts have been explained, namely the Regres-

sion Splines and the HHL algorithm, in the following section the heart

of the QSpline project will be uncovered.

3.1.3 QSplines

As already mentioned at the beginning of this section, the aim of the

QSplines is to move beyond linearity and succeed in approximating non-

linear functions (e.g. Activation Functions for Neural Networks) through

Quantum Splines. In this subsection the main steps of this work will be

described.

In order to represent the non-linear function it is used a B-Spline

regression and the goal is to find the optimal set of parameters, the set of
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spline coefficients, to minimize the Residual Sum of Squares. The process

to find those parameters can be seen as a ridge regression problem where

observed variables are augmented with polynomials.

Since the polynomial basis function used have degree equal to 1,

in each interval bounded by each subsequent pair of knots the data is

fitted by a line. The vector 𝑌 = {𝑦1, .., 𝑦𝐾}, containing the values of

the non-linear function to approximate, will be related to the inputs

𝑋 = {𝑥1, .., 𝑥𝐾} through the following linear system:

𝑌1×𝐾 = 𝑆𝐾×𝐾𝛽1×𝐾 =⇒



𝑦1

𝑦2

. . .

𝑦𝐾


=



𝑆1 0 . . . 0

0 𝑆2 . . . 0

. . . . . . . . . . . .

0 0 . . . 𝑆𝐾





𝛽1

𝛽2

. . .

𝛽𝐾


. (3.16)

where 𝑆 contains 𝐾 𝑆𝑘 diagonal matrices representing the B-Spline basis

expansion of the inputs [𝑥𝑘,0, 𝑥𝑘,1] and 𝛽 is the vector of the splines coef-

ficients. To find the solution of this linear system, the spline coefficients,

the HHL algorithm is used.

𝑆𝑘 |𝛽𝑘⟩ = |𝑦𝑘⟩
𝐻𝐻𝐿
====⇒ |𝛽𝑘⟩ ≈ 𝑆−1

𝑘 |𝑦𝑘⟩ (3.17)

Afterwords, the spline coefficients have to interact with the inputs to

produce the estimates of 𝑌 . For this purpose, the swap-test routine is

exploited:

|𝛽𝑘⟩
��𝑥𝑖,𝑘 〉 |0⟩ 𝑠𝑤𝑎𝑝−𝑡𝑒𝑠𝑡

=========⇒ |𝑎⟩ |𝑏⟩
�� 𝑓𝑖,𝑘〉 (3.18)

.

By measuring the amplitudes of the ancilla qubit of the swap-test

quantum circuit 2.44, we can find the estimate 𝑌 of the non-linear func-

tion evaluated in 𝑋. Due to the nature of the swap-test routine, to

retrieve the final estimation the following post-processing procedure is
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needed: �� 𝑓𝑖,𝑘〉 = 𝛼 |0⟩ + 𝛽 |1⟩ (3.19)

𝛼 =
1
2
+ | �̂�𝑖,𝑘 |

2

2
. (3.20)

Results

In the following table we have the Residual Sum of Squares (RSS) of both

hybrid and full quantum methods with respect to the true activation

functions studied: Sigmoid, Tanh, ReLU and Elu. In the hybrid case the

product to compute �̂�𝑖,𝑘 is done classically, while for the full quantum

case instead through the swap test.

Activation QSplines QSplines
function (hybrid) (full quantum)
Sigmoid 0.01 .75

Tanh 0.06 1.12
ReLU 0.14 8.16
Elu 0.12 7.06

Table 3.1: RSS scores. Fault-Tolerant QSplines

The results for the estimations of hybrid and full quantum QSplines

are illustrated respectively in Fig. 3.1 and in Fig. 3.2, both taken from

[18].

Discussion

The QSpline approach explained, suffers from the drawbacks and the

limitations of the two quantum procedures applied: the inability of the

HHL to deal with large linear systems on NISQ devices and the post

processing process to extract the dot product after the swap-test. Indeed,

if the goal is to realize a quantum activation function, then the values of 𝑌

should come directly from the quantum state and not through a classical

post processing step. Furthermore, the proposed QSplines require ad-hoc
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Figure 3.1: Hybrid QSpline.

Figure 3.2: Full QSpline.

formulation for the basis expansion matrix and cannot be generalized

easily.
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3.2 VQLS - Variational Quantum Linear Solver

.

The most part of nowadays quantum algorithms for linear problems

solving, just like the HHL [10], cannot be implemented on NISQ devices,

due to the depth of their circuits. Prieto et al.[3], with their Variational

Quantum Linear Solver(VQLS) algorithm, proposed a method to solve

linear systems of equations with a variational hybrid quantum-classical

approach, executable on near-term quantum computers. The VQLS al-

gorithm, given a matrix 𝐴 and a vector 𝑏 is able to prepare a state |𝑥⟩

such that:

𝐴 |𝑥⟩ ∝ |𝑏⟩ (3.21)

where:

|𝑥⟩ =
∑
𝑖 𝑥𝑖 |𝑖⟩

∥∑𝑖 𝑥𝑖 |𝑖⟩ ∥2
, (3.22)

|𝑏⟩ =
∑
𝑖 𝑏𝑖 |𝑖⟩

∥∑𝑖 𝑏𝑖 |𝑖⟩ ∥2
. (3.23)

In order to understand the VQLS algorithm and how it is able to

prepare a state linked to the solution of a linear problem, it is necessary

to discuss its main flow.

Starting with the inputs of the algorithm, the matrix 𝐴 is written as

a linear combination of unitary matrices 𝐴𝑙 :

𝐴 =
𝐿∑
𝑙=0

𝐴𝑙𝑐𝑙 (3.24)

where 𝑐𝑙 are complex numbers. Then the vector 𝑏 is prepared through a

proper sequence of gates 𝑈, such that 𝑈 |0⟩ = |𝑏⟩ ∝ 𝑏.

Another crucial part of the algorithm is the Variational Circuit, or



3.2 VQLS - Variational Quantum Linear Solver 40

Ansatz, able to prepare the solution |𝑥⟩:

𝑉 (𝜃) |0⟩ = |𝑥(𝜃)⟩ . (3.25)

From here is already possible to broadly perceive how the hybrid quantum-

classical approach works: the classical part of the computation optimizes

a cost function by adjusting the 𝜃 parameters of the variational circuit.

A reasonable cost function for this algorithm should measure the over-

lap between |𝜓⟩ = 𝐴 |𝑥(𝜃)⟩ and |𝑏⟩. In other words the state prepared by

the Ansatz, the desired solution, ”multiplied” by 𝐴, should match with

the state |𝑏⟩. Mathematically the global cost function should follow the

relation:

𝐶𝐺 = 1 − | ⟨𝑏 |Ψ⟩ |2 (3.26)

where |Ψ⟩ = |𝜓⟩ /
√
⟨𝜓 |𝜓⟩. Equivalently |Ψ⟩ should match |𝑏⟩:

Ψ =
𝐴 |𝑥(𝜃)⟩

⟨𝑥(𝜃) |𝐴†𝐴|𝑥(𝜃)⟩
≈ |𝑏⟩ . (3.27)

Since this global function has gradients that vanish exponentially with

the number of qubits [3], a local version of it was proposed. Starting

from the explicit version of 3.26,

𝐶𝐺 = 1 −
∑
𝑙,𝑙 ′ 𝑐𝑙𝑐

∗
𝑙 ′ ⟨0|𝑉†𝐴

†
𝑙 ′𝑈 |0⟩ ⟨0|𝑈

†𝐴𝑙𝑉 |0⟩∑
𝑙,𝑙 ′ 𝑐𝑙𝑐

∗
𝑙 ′ ⟨0|𝑉

†𝐴†𝑙 ′𝐴𝑙𝑉 |0⟩
(3.28)

if we substitue the projector |0⟩⟨0| from 3.28 with 1
2 −

1
2𝑛

∑𝑛−1
𝑗=0 𝑍 𝑗 , a

local version of 3.26 is obtained:

𝐶𝐿 =
1
2
− 1

2𝑛

∑𝑛−1
𝑗=0

∑
𝑙,𝑙 ′ 𝑐𝑙𝑐

∗
𝑙 ′ ⟨0|𝑉†𝐴

†
𝑙 ′𝑈𝑍 𝑗𝑈

†𝐴𝑙𝑉 |0⟩∑
𝑙,𝑙 ′ 𝑐𝑙𝑐

∗
𝑙 ′ ⟨0|𝑉

†𝐴†𝑙 ′𝐴𝑙𝑉 |0⟩
. (3.29)

This new formulation of 𝐶 is called local in the sense that the numer-

ator of the cost function expression can be computed “qubit-by-qubit”

(due to the sum of over 𝑗) and not globally over the whole system.
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The last expression can be rewritten as:

𝐶𝐿 =
1
2
− 1

2𝑛

∑𝑛−1
𝑗=0

∑
𝑙,𝑙 ′ 𝑐𝑙𝑐

∗
𝑙 ′𝜇𝑙,𝑙 ′, 𝑗∑

𝑙,𝑙 ′ 𝑐𝑙𝑐
∗
𝑙 ′𝜇𝑙,𝑙 ′,−1

(3.30)

where

𝜇𝑙,𝑙 ′, 𝑗 = ⟨0|𝑉†𝐴†𝑙 ′𝑈𝑍 𝑗𝑈
†𝐴𝑙𝑉 |0⟩ . (3.31)

𝜇𝑙,𝑙 ′,−1 stands for the same expression 3.31 where 𝑍 𝑗 is replaced with

the identity and thus, 𝜇𝑙,𝑙 ′,−1 corresponds to ⟨0|𝑉†𝐴†𝑙 ′𝐴𝑙𝑉 |0⟩.

Thanks to this version of the local cost function, it is possible to

compute it through the following Hadamard Test:

|0⟩𝑎 𝐻 𝐻

|0⟩⊗𝑛 𝑉 (𝜃) 𝐴𝑙 𝑈† 𝑍 𝑗 𝑈 𝐴†𝑙 ′

(3.32)

So, this Local Hadamard test is used to compute 𝜇𝑙,𝑙 ′, 𝑗 for all the com-

binations of the variables 𝑙, 𝑙′ and 𝑗 to compute the total expected value

of the cost function. It is important to notice how the circuit changes

depending on 𝑙, 𝑙′: each time there can be different gates representing

different unitary matrices 𝐴𝑙 . The variational circuit 𝑉 (𝜃) proposed by

the VQLS paper is a Fixed-structure layered Hardware-Eficient Ansatz.

Furthermore, for each layer there are controlled-Z gates working on alter-

nating pairs of neighboring qubits and each one of them is preceded and

followed by a qubit rotation around the y-axis. From 3.33 it is possible

to see an example of the proposed Ansatz, in the case of 𝑛 = 3 qubits:
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𝑅𝑦 (𝜃1) 𝑅𝑦 (𝜃4) 𝑅𝑦 (𝜃7)

𝑅𝑦 (𝜃2) 𝑅𝑦 (𝜃5) 𝑅𝑦 (𝜃8)

𝑅𝑦 (𝜃3) 𝑅𝑦 (𝜃6) 𝑅𝑦 (𝜃9)

(3.33)

where 𝜃1, .., 𝜃9 are the variational parameters to optimize through the

VQLS.

Given the value of the cost function, the classical part of the hybrid

approach has to minimize it by changing the parameters of the Ansatz.

The paper [27] gives an exhaustive analysis about the possible optimizers,

depending on the number of qubits and the level of noise in the simulation

(State vector, QASM or QASM+Noise).

Once the cost function is minimized, we get the optimal parameters

𝜃𝑜𝑝𝑡 and then the Ansatz is able to prepare the state
��𝑥(𝜃𝑜𝑝𝑡)〉:

𝑉 (𝜃𝑜𝑝𝑡) |0⟩ = |𝑥⟩ =
𝑥

∥𝑥∥2
. (3.34)
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3.3 Quantum Activation Functions for Quantum Neu-

ral Networks

In a recent paper proposed by Maronese et al. [22] the same problem

of this thesis project was tackled with a completely different approach.

They developed a Quantum Perceptron through a 𝑛-to-2𝑛 encoding model

featured by inputs, weights and bias belonging to the real interval from

−1 to 1. The algorithm proposed is able to produce activation func-

tions exploiting only reversible operations and an iterative computation

of all the powers of the inner product up to an order 𝑑. The estimation

of the activation function is done, given those powers, following its 𝑑𝑡ℎ
order Taylor series. One drawback of this approach consists in the de-

pendence of the desired Activation Function’s number of qubits on the

related Quantum Perceptron and its number of inputs: for each input

they need one qubit. Furthermore, the quantum circuit able to produce

an Activation Function’s output requires 𝑛 + 𝑑 qubits, where 𝑛 depends

on the inputs and 𝑑 on the order of the polynomial. Therefore, given 1

input for the SLP, the final circuit should have at least 𝑑+1 qubits and all

the experiments with real Activation Functions they made have at least

𝑑 = 3 and at most 𝑑 = 10, requiring a lot of qubits. This thesis work

proposes a method that, as well as being shallower by means of number

of gates and circuit depth (once that the Ansatz has been optimized),

doesn’t depend on the SLP number of inputs and is able to produce an

Activation Function’s output with 3 qubit.

Now that we have resumed all the Quantum Machine Learning fun-

damentals and all the related topics and works, in the next chapter the

contributions of this thesis work will be discussed.
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3.4 Contribution

The contribution of this dissertation is divided into two parts. The first

part proposes the QSplines[18] in the context of hybrid quantum-classical

computation and reinterprets it via a variational approach without post-

processing steps. The second and most important part proposes a gen-

eralized version of QSplines, with a novel basis expansion matrix for-

mulation, making a step forward in the research of quantum activation

functions. Importantly, the advantages of the proposed methodologies

are two fold. Firstly, the proposed VQSplines overcome the unitarity

constraint of quantum computation using near-term quantum devices.

Secondly, VQSplines fill the gap for quantum activation function in the

context of MAQA framework [16, 15], which aims to leverage the theoret-

ical property of a classical neural network to be a Universal approximator

and deliver its quantum counterpart.



Chapter 4

Variational Quantum Splines

Divided in two parts, this chapter contains the methodologies and im-

plementations of this thesis project contributions.

4.1 A Variational algorithm for QSplines

In this section a Variational approach to the QSplines [18], named Var-

tional QSplines (VQSplines), will be described. The motivation behind

this work relies upon the drawbacks about the HHL algorithm [10] and

the swap test analyzed in the previous chapter 2.1.5. The goal is to

realize a a full quantum circuit, through an hybrid quantum-classical

procedure, able to estimate a non-linear function. For this purpose, just

like the QSplines method, the final circuit will be made up of a first

part computing the spline coefficients and a second one able to prepare a

state containing the inner-product which should represent the non-linear

function estimation.
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4.1.1 Methodology

Let’s recall the Linear System of equations proposed by Macaluso et

al.[18] and showed in the previous chapter:

𝑌1×𝐾 = 𝑆𝐾×𝐾𝛽1×𝐾 =⇒



𝑦1

𝑦2

. . .

𝑦𝐾


=



𝑆1 0 . . . 0

0 𝑆2 . . . 0

. . . . . . . . . . . .

0 0 . . . 𝑆𝐾





𝛽1

𝛽2

. . .

𝛽𝐾


. (4.1)

The problem can be solved exploiting B-Splines and Diagonal Block

Matrix properties by decomposing it in 𝐾 2𝑥2 linear systems given a

set of knots 𝑇 s.t. 𝑑𝑖𝑚(𝑇) = 𝐾. Subsequently, the pseudocode pro-

cedure 1 used to decompose the problem in the 𝐾 𝑆𝑘 matrices (given

the inputs set 𝑋, the estimations set 𝑌 and the knots set 𝑇) is called

“SubSystemsMatrices(𝑋,𝑌, 𝑇)”.

In 4.1 each element of 𝑌 is a couple of values of the non linear function

(𝑦𝑘 = [𝑦𝑘,0, 𝑦𝑘,1]), 𝑆𝑘 represents the basis expansion of the inputs 𝑥𝑘,0, 𝑥𝑘,1
[4.2] and 𝛽𝑘 is the couple of the spline coefficients related to the 𝑘𝑡ℎ sub-

problem. In this approach only polynomials of degree 1 are used for the

basis expansion.

𝑆𝑘 =


1 𝑥𝑘,0

1 𝑥𝑘,1

 (4.2)

Thus, each time we have to solve the following linear sub-system:

𝑦𝑘 = 𝑆𝑘 𝛽𝑘 =


𝑦𝑘,0

𝑦𝑘,1

 =


1 𝑥𝑘,0

1 𝑥𝑘,1



𝛽𝑘,0

𝛽𝑘,1

 =


𝛽𝑘,0 + 𝛽𝑘,1 ∗ 𝑥𝑘,0
𝛽𝑘,0 + 𝛽𝑘,1 ∗ 𝑥𝑘,1

 . (4.3)

A first limitation can be already forecasted: for each couple of sub-

sequents 𝑦𝑖 and 𝑦𝑖+1 from 𝑌 , due to the composition of the problem 𝑦 𝑗 ,0

is equal to 𝑦𝑖,1. Reasonably, once we’ll employ quantum circuits to solve
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separated sub-systems and estimate separately each couple �̂�𝑘 , the above

mentioned condition will be difficult to satisfy, but let’s continue the

explanation of the method.

To solve these linear systems, the VQLS algorithm is adopted rather

than the HHL. The former, with respect to the latter, can be implemented

on NISQ devices even for large systems and is also faster. As already

mentioned in the Chapter 3 (3.22, 3.23), the vector 𝑦𝑘 , in order to solve

the linear system, has to be normalized (4.4), and so will be the solution

vector 𝛽𝑘 .

𝑦′𝑘 = 𝑦𝑘/∥𝑦𝑘 ∥2 (4.4)

The VQLS algorithm is able to compute the weights for its Ansatz

and uses them to produce the solution of the linear system 𝛽𝑘 , the desired

B-spline coefficients:

𝑆𝑘
��𝛽′𝑘〉 = ��𝑦′𝑘〉 𝑉𝑄𝐿𝑆

=====⇒
��𝛽′𝑘〉 = 𝛽′𝑘,0 |0⟩ + 𝛽′𝑘,1 |1⟩ ≈ 𝑆−1

𝑘

��𝑦′𝑘〉 (4.5)

Afterwards, the coefficients 𝛽𝑘 have to interact with the 𝑥𝑘 point to

produce the desired output 𝑦𝑘 4.3. According to [21] it is possible to

compute the inner product between the two quantum states:

��𝛽′𝑘〉 = 𝐴 |0⟩𝑛 , (4.6)

��𝑥′𝑘〉 = 𝐵 |0⟩𝑛 . (4.7)

A and B are the amplitude encoding routines for the coefficients 𝛽

and the vector 𝑥′ respectively; 𝑥′ stands for the normalized vector, used

to apply the inner product. The equation 4.8 describes the final state of

the inner product quantum circuit, while 4.9 shows the relation between

the amplitude in the state |0⟩ and the desired product.
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𝐵†𝐴 |0⟩𝑛 = 𝑎𝑜 |0⟩𝑛 +
𝑁−1∑
𝑖=1

𝑎𝑖 |𝑖⟩𝑛 (4.8)

�̂�𝑘 = 𝑎0 =
〈
𝑥′𝑘

��𝛽′𝑘〉 = 〈
𝑥′𝑘

�� 𝐵𝐵† ��𝛽′𝑘〉 = ⟨0| 𝐵†𝐴 |0⟩ (4.9)

It is important to underline that this kind of inner-product, w.r.t

to the swap test, encodes the final value directly in the amplitude of

the state |0⟩ and doesn’t need the post-processing step used by [18] and

discussed in section 2.1.5. Finally, by computing all the single estimates

�̂�𝑘 we get the final set of estimations 𝑌 . After this general description of

the proposed method, summarized in the algorithm 1, let’s now move to

its practical implementation.

Algorithm 1 VQSplines pseudocode. 𝐼: maximum number of iterations.
𝑋 fixed inputs. 𝑌 classic outputs. 𝑇 knots set. 𝜖 is a lower bound for the
variation of the cost function: if for a certain number of steps Δ𝐶𝐿 < 𝜖
the cost function is in its minima and thus, following the “or” condition,
the optimization procedure is stopped.
𝑆𝐾×𝐾 ← SubSystemsMatrices(𝑋,𝑌, 𝑇)
for 𝑘 in 𝐾 do
𝜃𝑘 ← Initialize()
|𝑦𝑘⟩ ← Mottonen(𝑦𝑘)
while 𝑖 < 𝐼 ∨ Δ𝐶𝐿 < 𝜖 do
𝐶𝐿 (𝜃𝑘 ) ← HadamardTest(𝜃𝑘 ,𝑆𝑘 ,|𝑦𝑘⟩)
𝜃𝑘 ← Update(𝜃𝑘)

end while
|𝛽𝑘⟩ ← Ansatz(𝜃𝑘)
𝛽.append(𝛽𝑘)

end for
for 𝑥𝑘 , 𝛽𝑘 in 𝑋, 𝛽 do

for 𝑖 in 𝑙𝑒𝑛(𝑥𝑘 ) do
𝑥′𝑘,𝑖 ← [1, 𝑥𝑘,𝑖]
�̂�𝑘,𝑖 ← InnerProduct(𝑥′𝑘,𝑖,𝛽𝑘)
𝑌 .append(�̂�𝑘,𝑖)

end for
end for
return 𝑌
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4.1.2 Implementation

In this sub section the Quantum Circuits and the process exploited to

implement the Variational QSplines are described. The K sub-problems

described previously can be solved with only one qubit with the VQLS,

since we need only one qubit to encode a bidimensional vector like 𝑦𝑘
and 𝛽𝑘 .

The VQLS algorithm used to solve the aforementioned 2×2 systems is

based on a simple Hadamard test (pseudocode 1: “HadamardTest(𝜃,𝑆𝑘 ,𝑦𝑘)”):

|0⟩𝑎 𝐻 𝐻

|0⟩ 𝑉 (𝜃) 𝐴𝑙 𝑈† 𝑍 𝑗 𝑈 𝐴†𝑙 ′

(4.10)

• 𝑉 (𝜃) is the following Variational Circuit or Ansatz (pseudocode 1:

“Ansatz(𝜃)”):

|0⟩ 𝐻 𝑅𝑦 (𝜃) (4.11)

So, there is one weight for each sub-system.

• 𝐴𝑙 are the gates used to encode the information related to the 𝑆𝑘
matrix 3.24. In particular, the matrix 𝑆𝑘 can be decomposed by

means of a linear combination of unitary matrices:

𝑆𝑘 =


1 𝑎

1 𝑏

 =
3∑
𝑙=0

𝐴𝑙𝑐𝑙 = 𝐼𝑐0 + 𝑋𝑐1 + 𝑍𝑐2 + 𝑅𝑦 (3𝜋)𝑐3 (4.12)

where 𝐼, 𝑋 and 𝑍 are the known Pauli Matrices and 𝑅𝑦 is the y-

rotation matrix. The coefficients of the linear combination are

computed as follows:

𝑐0 = (𝑏 + 1)/2 (4.13)

𝑐1 = (𝑎 + 1)/2 (4.14)
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𝑐2 = (1 − 𝑏)/2 (4.15)

𝑐3 = (𝑎 − 1)/2 (4.16)

• 𝑈 is the amplitude encoding routine used to encode 𝑦′𝑘 to
��𝑦′𝑘〉, the

Mottonen State Preparation [25] (pseudocode 1: “Mottonen(𝑦𝑘)”):

𝑈 |0⟩ =
��𝑦′𝑘〉 (4.17)

.

Following the VQLS schema, the circuit (4.10) computes the expected

real value of the cost function used to optimize the weights 𝜃 for the

Ansatz(4.11). As a results of the VQLS, we obtain a quantum state

whose amplitudes encode the solution of the linear system (4.18).

𝑉 (𝜃𝑘,𝑜𝑝𝑡) |0⟩ =
��𝛽′𝑘〉 = 𝛽′𝑘,0 |0⟩ + 𝛽′𝑘,1 |1⟩ (4.18)

The optimization part of this work, relying on the classic computation

part of the Hybrid Approach behind Variational Models, is carried out

with the COBYLA optimizer [29], suggested by [27] for VQLS state vec-

tor simulations.

Combining the VQLS and the quantum Inner Product, there’s no

need to measure the coefficients from the Ansatz and then encode them

through the routine A (4.9) for the inner product: the optimization part

of the VQLS algorithm returns the weights for the Ansatz, thus the latter

can be used directly instead of the amplitude encoding routine.

To implement the Inner product (pseudocode 1: “InnerProduct(𝑥,𝛽)”),

the equation 4.9 will change. Looking at the last part of the 4.3 expres-

sion, the inner product will be computed between 𝛽′𝑘 = [𝛽′𝑘,0, 𝛽′𝑘,1] and
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𝑥′𝑘,𝑖, which is [1, 𝑥𝑘,𝑖] normalized(4.19).

𝑥′𝑘,𝑖 =
[
1 𝑥𝑘,𝑖

]
/∥[1 𝑥𝑘,𝑖] ∥2 (4.19)

So the Inner Product circuit will be the following one:

|0⟩ 𝑉 (𝜃𝑘,𝑜𝑝𝑡) 𝐵† 𝑎 |0⟩ + 𝑏 |1⟩ (4.20)

𝑎 = ⟨0| 𝐵†𝑉 (𝜃𝑘,𝑜𝑝𝑡) |0⟩ =
〈
𝑥′𝑘,𝑖

���𝛽′𝑘,𝑖〉 (4.21)

Thus, the amplitude 𝑎 is associated to the estimation of the 𝑦𝑘,𝑖 value:

�̂�𝑘,𝑖 =
〈
𝑥′𝑘,𝑖

���𝛽′𝑘,𝑖〉 ≈ 𝛽′𝑘,0 + 𝛽′𝑘,1 ∗ 𝑥′𝑘,𝑖 (4.22)

So, this Variational QSpline method can be summed up by looking

at the schema below:

...

...

|0⟩ 𝑉 (𝜃1,𝑜𝑝𝑡) 𝐵†1 �̂�1 |0⟩ + ..

|0⟩ 𝑉 (𝜃𝑘,𝑜𝑝𝑡) 𝐵†𝑘 �̂�𝑘 |0⟩ + ..

|0⟩ 𝑉 (𝜃𝐾,𝑜𝑝𝑡) 𝐵†𝐾 �̂�𝐾 |0⟩ + ..

(4.23)

The final quantum state
���̂�𝑘,𝑖〉, as already mentioned, suffers from two

kind of normalizations: one introduced to solve the linear system (4.4)

and one used to apply the inner product (4.19). The former causes an

error for the coefficients 𝛽𝑘 and the latter over the final product. Thus,

the real final value is related to the approximation through the following
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Method P.D. Linear Quantum Post
Problem Solver Product Processing

QSplines [18] ✓ HHL [10] Swap Test 2.44 ✓
VQSplines ✓ VQLS [3] Inner Product [21] ×

Table 4.1: Comparison between the QSplines and Variational QSplines
(VQS) approaches. (P.D. stands for Problem Decomposition)

expression:

𝑦𝑘,𝑖 ≈ ∥𝑦𝑘,𝑖∥2∥[1 𝑥𝑘,𝑖]∥2 �̂�𝑘,𝑖 (4.24)

Before going into the second part of this thesis work, it is important

to notice one important thing concerning the encoding of the vector 𝑥′𝑘,𝑖.

If the value of 𝑥𝑘,𝑖 is negative than
���𝑥′𝑘,𝑖〉 will be encoded through complex

amplitudes and final result of the inner product 𝑎 (4.21) will be imagi-

nary. For this reason, the inner product circuit is modified when dealing

with points belonging to negative part of the axis 𝑥: by adding a 𝑅𝑧 (𝜋)

gate in the 4.20 circuit the imaginary amplitude 𝑎 becomes real.

Due to the construction of the problem, the final estimation result

will suffer, in addition to the normalizations penalties, from the initial

decomposition of the matrix S: for each 𝑘𝑡ℎ problem the method will fit a

line between two points without a general comprehension of the 𝑌 estima-

tion problem. The effect of this penalty will be shown and discussed in

the Experiments Chapter (5). From the table 4.1 it is possible to compare

the QSplines approach with the proposed Variational QSplines. In the

next section we provide a more general method to estimate a non-linear

function, without the Linear Problem decomposition and executing the

VQLS only once, instead of 𝐾 times.
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4.2 Generalized Variational QSplines

While the first section of this chapter was focused on the variational

implementation of the QSplines[18] work, this section explains a general-

ized way to tackle the same problem facing directly the linear system for

the spline coefficients estimation, without decomposing it in 𝐾 subprob-

lems and suitable for every number of qubits. As already done for the

first part of the contributions, the proposed approach is shown through

methodology and implementation.

4.2.1 Methodology

Let’s recall the De Boor [4] recursive B-Spline definition and the related

basis expansion, with knots list 𝑇 = [𝜉1, .., 𝜉𝑖, 𝜉𝑖+1, .., 𝜉𝑇 ]:

𝐵𝑖,0(𝑥) =


1 if 𝜉𝑖 ≤ 𝑥 < 𝜉𝑖+1

0 otherwise
(4.25)

𝐵𝑖,𝑑 (𝑥) = 𝜔𝑖,𝑑𝐵𝑖,𝑑−1(𝑥) + (1 − 𝜔𝑖+1,𝑑 (𝑥))𝐵𝑖+1,𝑑−1(𝑥) (4.26)

where:

𝜔𝑖,𝑑 (𝑥) =


𝑥−𝜉𝑖
𝜉𝑖+𝑑−𝜉𝑖 if 𝜉𝑖+𝑑 ≠ 𝜉𝑖

0 otherwise.
(4.27)

Given this definition, as already explained in the Regression Spline

section from the Chapter 3, a non linear function 𝑓 can be computed

through its output estimates𝑌 = {𝑦1, .., 𝑦𝐾} given its inputs 𝑋 = {𝑥1, .., 𝑥𝐾}:

𝑌 = 𝑓 (𝑋, 𝛽) = 𝑆(𝑋)𝛽 (4.28)

where S is the matrix containing the B-Spline basis expansion of the

inputs 𝑋 and 𝛽 = {𝛽1, .., 𝛽𝐾} are the spline coefficients.

Now the Linear System describing the relation between the estimates
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of the activation function 𝑌 , the matrix 𝑆 and the spline coefficients 𝛽

will be the following one:

𝑌1×𝐾 = 𝑆𝐾×𝐾𝛽1×𝐾 =⇒



𝑦1

𝑦2
...

𝑦𝐾


=



𝐵0,𝑑 (𝑥1) . . . 𝐵𝑙,𝑑 (𝑥1)

𝐵0,𝑑 (𝑥2) . . . 𝐵𝑙,𝑑 (𝑥2)
...

. . .
...

𝐵0,𝑑 (𝑥𝐾) . . . 𝐵𝑙,𝑑 (𝑥𝐾)





𝛽1

𝛽2
...

𝛽𝐾


(4.29)

where 𝑙 = 𝑑𝑖𝑚(𝑇) − 𝑑 − 1, 𝑑 is the degree of the Bspline and T the set

of knots. With 𝑑 = 1, 𝑙 will be equal to 𝑑𝑖𝑚(𝑇) − 2.

In order to apply this formalization to our QSpline problem and thus,

to apply the VQLS algorithm, the basis expansion matrix 𝑆 has to be

square and non singular.

Therefore the length of 𝑇 has to be suited to the number of coefficients

and to the inputs 𝑋: 𝐾 = 𝑙 = 𝑑𝑖𝑚(𝑇) − 2. By computing all the 𝐵𝑖,𝑑=1(𝑥)

functions for all inputs 𝑥 belonging to the interval [0, 1], w.r.t. a proper

𝑇 set, the linear system will be:



𝑦1

𝑦2

𝑦3

𝑦4

. . .

𝑦𝑘−1

𝑦𝐾



=



1 0 . . . . . . 0 0

0 1 − 𝑥2 𝑥2 . . . . . . 0

. . . 0 1 − 𝑥3 𝑥3 . . . . . .

. . . . . . 0 1 − 𝑥4 . . . . . .

. . . . . . . . . . . . . . . . . .

0 . . . . . . . . . 1 − 𝑥𝐾−1 𝑥𝐾−1

0 0 . . . . . . 0 1





𝛽1

𝛽2

𝛽3

𝛽4

. . .

𝛽𝐾−1

𝛽𝐾



(4.30)

The 𝑆 matrix is computed considering that the inputs 𝑋 belong to

an interval from 0 to 1, thus 𝑥1 = 0. Following the De Boor B-Spline

definition, the last element in the 𝑆 matrix diagonal should be zero and

the matrix non-square and thus, non-invertible. For this reason, the last
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element is set to one necessarily. The pseudocode procedure 2 to build

the 𝑆 matrix is called “BasisExpansionMatrix”. This 4.30 system can

be therefore solved thorugh the VQLS algorithm, obtaining a quantum

state whose amplitudes encode the B-spline coefficients 𝛽𝑖 4.31.

|𝛽⟩ = 𝑉𝑄𝐿𝑆(𝑆,𝑌 ) =
𝐾∑
𝑖=1

𝛽𝑖 |𝑖⟩ . (4.31)

Then, given this new linear system representation, the 𝑌 = {�̂�1, .., �̂�𝐾}

estimates can be mathematically derived as follows:

�̂�𝑖 = 𝛽𝑖 (1 − 𝑥𝑖) + 𝛽𝑖+1𝑥𝑖 . (4.32)

and computed as usual with the Inner product proposed by [21] between

the quantum states encoding the rows of the 𝑆 matrix and the quantum

state |𝛽⟩.

The final �̂�𝑖 estimates could be also encoded, given a unitary operator

𝑃 acting over |𝛽⟩, by the amplitudes of the following quantum state:

��𝑌 〉
= 𝑃 |𝛽⟩ =

𝐾−1∑
𝑖=1
(𝛽𝑖 (1 − 𝑥𝑖) + 𝛽𝑖+1𝑥𝑖) |𝑖⟩ + 𝛽𝐾 |𝐾⟩ , (4.33)

so a possible future work could consist in the development of such op-

erator 𝑃. From 2 it is possible to sum up the Generalized Variartional

QSplines approach.

Until now, the goal of this thesis contribution was to produce a quan-

tum non-linear function by computing its estimates 𝑌 = {�̂�1, .., �̂�𝐾} from

a fixed set of inputs 𝑋 = {𝑥1, .., 𝑥𝐾}. Now, exploiting what has been

done so far, the objective is to produce a generic single output 𝑦 𝑗 of a

non-linear function 𝑓 s.t. 𝑦 𝑗 = 𝑓 (𝑥 𝑗 ). The construction of the 𝑆 matrix

allows to do that by considering which knots interval the input belongs

to: each 𝑆 row is built considering the input 𝑥𝑖 B-spline basis expansion

w.r.t. the knots set for each 𝑥𝑖 from 𝑋. Therefore, given another point 𝑥 𝑗 ,
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Algorithm 2 GVQSplines pseudocode. 𝐼: maximum number of iterations.
𝑅 rows of the 𝑆 matrix. 𝑋 fixed inputs. 𝑌 classic outputs. 𝑇 knots set.
𝜖 is a lower bound for the variation of the cost function: if for a certain
number of steps Δ𝐶𝐿 < 𝜖 the cost function is in its minima and thus,
following the “or” condition, the optimization procedure is stopped.
𝑆 ← BasisExpansionMatrix(𝑋,𝑌, 𝑇)
𝜃 ← Initialize()
|𝑌⟩ ← Mottonen(𝑌)
while 𝑖 < 𝐼 ∨ Δ𝐶𝐿 < 𝜖 do
𝐶𝐿 (𝜃) ← HadamardTest(𝜃,𝑆,|𝑌⟩)
𝜃 ← Update(𝜃)

end while
|𝛽⟩ ← Ansatz(𝜃)
for 𝑟 in 𝑅 do
|𝑟⟩ ← Mottonen(𝑟)
�̂�𝑘 ← InnerProduct(𝑟,𝛽)
𝑌 .append(�̂�𝑘)

end for
return 𝑌

its correspondent row will have the same structure of the row related to

the point 𝑥𝑖 from 𝑋 lying in the same knots interval. Assuming a generic

input 𝑥 𝑗 encoded in the amplitude of one qubit, it is possible to extend

it, through a mapping quantum circuit 𝑀, to its Basis expansions “row”

[0, .., 1 − 𝑥 𝑗 , 𝑥 𝑗 , .., 0]:

��𝑥 𝑗 〉 = (1 − 𝑥 𝑗 ) |0⟩ + 𝑥 𝑗 |1⟩ 𝑀
==⇒

���𝑥′𝑗 〉
𝑛
= (1 − 𝑥 𝑗 ) |𝑠⟩ + 𝑥 𝑗 |𝑠 + 1⟩ (4.34)

where 𝑠 and 𝑠+1 are the basis state corresponding to the two subsequent

non-zero elements of the 𝑆 rows. Let’s make an example with 3 qubits.

Given a point 𝑥 𝑗 belonging to the same knots interval of 𝑥2, and the latter

row representation:

[0, 1 − 𝑥2, 𝑥2, 0, 0, 0, 0, 0], (4.35)
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the circuit 𝑀 will map 𝑥 𝑗 to:

[0, 1 − 𝑥 𝑗 , 𝑥 𝑗 , 0, 0, 0, 0, 0] (4.36)

where 𝑠 = 1 and thus,|𝑠⟩ = |001⟩ and |𝑠 + 1⟩ = |010⟩. Then, in order

to obtain �̂� 𝑗 we have to apply the dot-product between the row and the

𝛽 coefficients computed through the 𝑆 matrix and the VQLS. Summing

up, the proposed Generalized Variational QSplines method is able from

one side to produce a non-linear function 𝑓 by means of its fixed output

estimates 𝑌 and, on the other side, to return 𝑓 (𝑥) given a generic input

𝑥.

4.2.2 Implementation

Differently from the Variational QSplines approach 4.23 here we don’t

need to apply 𝐾 times the VQLS and use consequently 𝐾 Ansatzs: now

we optimize and use just one Ansatz able to prepare alone a quantum

state whose amplitudes encode all the spline coefficients. Subsequently

this state is used to compute the inner product with the rows of the

matrix S (encoded through the routines 𝐵𝑖) and return the �̂�𝑖 estimates

describing 𝑌 .

. . .

...

. . .

...

. . .

𝐵†1 �̂�1 |0⟩𝑛 + ..

|0⟩⊗𝑛 𝑉 (𝜃𝑜𝑝𝑡) 𝐵†𝑘 �̂�𝑘 |0⟩𝑛 + ..

𝐵†𝐾 �̂�𝐾 |0⟩𝑛 + ..

(4.37)
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Now let’s discuss the actual implementation of the VQLS algorithm,

this time more incisive than previously. Indeed, as already told, it is

able to solve a linear system larger than 2 × 2 on NISQ devices, differ-

ently from the HHL. Exploiting this new methodology, given a number

of knots such that the matrix for the basis expansion is a 2𝑛 × 2𝑛 matrix,

the VQLS algorithm can be applied with a number of qubits equal to

𝑛. Therefore the Hadamard test 4.10 has 𝑛 + 1 qubits: 𝑛 to exploit the

operators (𝑉 (𝜃),𝐴 and 𝑈) and one for the ancilla qubit. The variational

circuits choice follows the proposals from [3] and [27], while the 𝐴𝑙 gates

coefficients are computed similarly. The 𝑆 matrix can be seen as a Di-

agonal Block matrix, where each 𝑆𝑘 2 × 2 matrix can be decomposed

as:

𝑆𝑘 =


1 − 𝑎 𝑎

0 1 − 𝑏

 =
3∑
𝑙=0

𝐴𝑙𝑐𝑘,𝑙 = 𝐼𝑐𝑘,0+𝑋𝑐𝑘,1+𝑍𝑐𝑘,2+𝑅𝑦 (3𝜋)𝑐𝑘,3 (4.38)

where the coefficients of the linear combination are computed as follows:

𝑐0 = 1 − 𝑎/2 − 𝑏/2 (4.39)

𝑐1 = 𝑎/2 (4.40)

𝑐2 = (𝑏 − 𝑎)/2 (4.41)

𝑐3 = 𝑎/2 (4.42)

In this method the 𝑆 matrix is decomposed only to compute regularly

the unitary gates coefficients, to represent the full matrix by means of

quantum circuits and apply the VQLS, not to apply the algorithm K

times to sub-matrices as done before. Moreover, the operator U is still

realized exploiting the Mottonen State Preparation [25]. The only dif-

ference w.r.t. the first approach is that now U encodes the full vector
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𝑌 , rather than its portions. Nevertheless the normalization of 𝑌 is still

required and the resulting penalty will be discussed in the next chapter

5. With this new formulation, we’re able to solve only one linear system

and encode all the spline coefficients in a unique quantum state by using

one Ansatz 𝑉 (𝜃) 4.31.

Concerning the estimation of the 𝑦 values 4.32, we don’t use one

quantum circuit to encode them in the amplitudes of a unique quantum

state (as described in 4.33). However the same Inner Product circuit

used before is exploited: the product to obtain �̂�𝑖 is done row-by-column

acting over the full matrix, preparing, as done before, the 𝛽 vector with

the current Ansatz and the row of the matrix with the Mottonen State

Preparation (4.37). From the Table 4.2 we have a summary concerning

the QSplines [18] and the two proposed methods. With the VQSplines

we have overcome the post-processing step required by the swap test and

tackled the problem with a Variational Algorithm, namely the VQLS.

Moving then to the GVQSplines, the VQLS properties are exploited,

through a new matrix espansion matrix formulation, to avoid the Linear

System decomposition. It is important to underline that, before dis-

cussing the results of this approach, the new methodology is consistent

to every linear 𝐾 × 𝐾 system choice satisfying the following relation:

𝐾 = 2𝑛 = 𝑑𝑖𝑚(𝑇) − 2 (4.43)

where 𝑛 is the number of qubits and 𝑇 a proper knots set.

Method P.D. Linear Quantum Post
Problem Solver Product Processing

QSplines [18] ✓ HHL [10] Swap Test 2.44 ✓
VQSplines4.1 ✓ VQLS [3] Inner Product [21] ×
GVQSplines × VQLS [3] Inner Product [21] ×

Table 4.2: Comparison between the QSplines, the Variational QSPlines
(VQSplines) and the Generalized Variational QSplines (GVQSplines) ap-
proaches. (P.D. stands for Problem Decomposition)
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Quantum B-Spline Expansion

The implementation of the mapping circuit, used to map an input 𝑥𝑖 to

its basis expansion row form and multiply it by the 𝛽 vector, consists

basically in a simple sequence of quantum gates U (X,CNOT, CSWAP..)

s.t.:

𝑥𝑘 |0⟩ + (1 − 𝑥𝑘 ) |1⟩ = |𝑥𝑘⟩
𝑈 (𝑇)

��𝑥′𝑘〉𝑛
|0⟩⊗(𝑛−1)

(4.44)

where 𝑛 is the number of qubits used for the application of the method

and
��𝑥′𝑘〉 is a 𝑛 dimensional quantum state which amplitudes (𝐾) encode

the elements of the relative row of the 𝑆 matrix. The sequence U depends

on 𝑇 and, in particular, on which interval [𝜉𝑖, 𝜉𝑖+1] contains the value

of the input 𝑥𝑘 , since, due to the construction of the model, the knots

intervals determine the basis expansion of the inputs. As usual, according

to [21], the output �̂�𝑘 will be encoded by the quantum state at the end

of the following circuit:

|𝑥𝑖⟩ 𝑀 (𝑇) 𝑉†(𝜃𝑜𝑝𝑡) �̂�𝑖 |0⟩ + .. (4.45)

where 𝑀 is the mapping circuit 4.44 depending on the set 𝑇 . The

only difference w.r.t. the other quantum product circuits used in this

methodology 4.37 is that here is the Ansatz to be transposed rather than

the gate encoding the row.



Chapter 5

Experiments

While in the previous chapter were shown the two contributions of this

thesis, namely the Variational QSplines 4.1 and the Generalized Varia-

tional QSplines 4.2, this chapter describes the experiments made and the

practical results obtained with the proposed methods.

5.1 Experimental Settings

Before getting into the experiments, the methodologies are implemented

throguh Pennylane 1(0.20.0 version), a cross-platform Python library for

quantum machine learning. Secondly, more known python libraries such

as scipy, numpy and pandas are also exploited.

1https://pennylane.ai/

https://pennylane.ai/
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5.2 Variational QSplines Part

In this section the Variational QSplines methodology explained previ-

ously will be applied to some classic activation functions used in Neural

Networks. Many experimental details will be shown, different perfor-

mances will be compared to vary intervals’ size and thus, to vary num-

ber of steps used to compute the activation functions. Subsequently the

consequences of the normalizations required (4.4,4.19) are investigated.

5.2.1 Baseline

The VQSplines method was tested with four activation functions (sig-

moid, tanh, elu and relu), 1 qubit and 20 knots.

Figure 5.1: Number of knots: 20. Optimizer: COBYLA. Top-left:
Sigmoid, Top-right: Tanh, Bottom-left: Elu, Bottom-right: Relu

From 5.1 it is evident how the four activation functions are likely and,
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concerning the sigmoid and the tanh in particular, estimated better than

the fault-tolerant QSplines [18] full quantum 3.2. In the following table is

shown a comparison by means of Residual Sum Of Squares (RSS) between

the fault-tolerant QSplines and the proposed Variational QSplines.

Activation QSplines VQSplines
function (full quantum)
Sigmoid .75 .32

Tanh 1.12 1.53
ReLU 8.16 .38
Elu 7.06 1.35

Table 5.1: RSS scores. Fault-Tolerant QSplines and VQSplines. For the
VQSplines there’s no hybrid version.

5.2.2 Number of Knots

Secondly, the numer of knots was doubled achieving a smoother estima-

tion 5.2.

However, some errors at the boundaries are still present as well as

poor predictions for 𝑦𝑘 < 0 in the elu case. In the latter case, the norm

of 𝑦𝑘 = [𝑦𝑘,0, 𝑦𝑘,1] is always very low and thus, following 4.4, increases

the error of the estimation. The error on the boundaries will be explained

in the following sub-sections.

5.2.3 Condition Number

Looking at the boundaries the estimation performances are worse and

unsatisfactory, but this problem can be easily explained. One important

thing to notice when dealing with linear problems of equations, is the

condition number of the matrix to invert. According to [36], given a

linear system 𝑏 = 𝐴𝑥, the “condition number” 𝜅(𝐴) provides a measure

of how much the matrix 𝐴 is ill-conditioned:

𝜅(𝐴) = ∥𝐴∥∥𝐴−1∥ = 𝜇𝑚𝑎𝑥
𝜇𝑚𝑖𝑛

≥ 1 (5.1)
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Figure 5.2: FULL VQSplines. Number of knots: 40. Optimizer:
COBYLA. Top-left: Sigmoid, Top-right: Tanh, Bottom-left: Elu,
Bottom-right: Relu

where the second equality from 5.1 is valid if the norm used is the 𝐿2

norm and 𝜇𝑚𝑎𝑥 and 𝜇𝑚𝑖𝑛 are the maximal and minimal singular values

of 𝐴 respectively [36]. Larger the condition number of the matrix 𝐴,

higher will be the probability to obtain numerical errors solving the linear

system, since ill-conditioned systems converge slowly. This can be easily

explained considering the following example from [36]:

𝐴 =


1 𝑎

𝑎 1

 , (5.2)

if 𝑎 → 1 then the condition number 𝜅(𝐴) → +∞ and 𝐴 is ill-conditioned.

Indeed in the case 𝑎 = 1, the system cannot be solved since 𝐴 has

𝑟𝑎𝑛𝑘 (𝐴) = 1, hence it is not invertible. For those reasons, closer the
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matrix 𝐴 to the non-invertibility condition, slower will be the procedure

to invert it and thus, to solve the linear system 𝐴𝑥 = 𝑏. By looking at

5.3 the subsystems where the condition number is higher are the same

where the estimated function is worse: at the boundaries of the functions

(5.1,5.2).

Figure 5.3: Condition number. VQSplines 𝑆𝐾×𝐾 matrix . The x-axis
corresponds to the 𝑥𝑘 inputs and the related 𝑆𝑘 matrix, while the y-axis
to the condition number.

By changing the optimizer of the VQLS algorithm from “COBYLA”to

”BFGS”, the error on the boundaries seems to be a little bit mitigated

5.4.

5.2.4 The ReLU case

Originally, the ReLU function was featured by unstable estimations for

𝑥 < 0 5.5. Indeed in those cases the associated sub system 4.3 becomes

the following homogeneous system:


0

0

 =


1 𝑥𝑘,0

1 𝑥𝑘,1



𝛽𝑘,0

𝛽𝑘,1

 . (5.3)

Due to the VQLS, 𝑦𝑘 = [𝑦𝑘,0, 𝑦𝑘,1] = [0, 0] is normalized and therefore

becomes [1/
√

2, 1/
√

2]. Consequently, the quantum circuit returns as
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Figure 5.4: VQSplines. Number of knots: 40. Optimizer: BFGS. Top-
left: Sigmoid, Top-right: Tanh, Bottom-left: Elu, Bottom-right: Relu

Figure 5.5: ReLu with 𝑦𝑘 = [0, 0] for 𝑥 < 0

solution 𝛽𝑘 ≈ [−1, 0] instead of [0, 0]. For this reason, in all previous

experiments, all the 𝑦𝑘 = [0, 0] were set to 𝑦𝑘 = [10−5, 10−4] achieving

the already shown quantum ReLU function 5.1. With the Generalized

Variational QSplines this problem disappears.
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5.2.5 VQLS and Product Normalization cases

As we have discussed in the previous chapter about the 𝑘𝑡ℎ subsystem, the

effects of the two normalizations applied in the method are analyzed. By

considering the case when both 𝑦𝑘,0 and 𝑦𝑘,1 are close to zero, the norm

term ∥𝑦𝑘 ∥2 becomes really significant in the final prediction estimation

(4.24). Indeed the more the norm is far from 1, heavier will be the impact

of the normalization on the estimation. This can be verified by looking

at the activation functions plots. This error is reduced where the norm is

closer to one and where the curve is “more linear”. The same reasoning

can be done for the second source of normalization 4.19 given by the inner

product. When ∥ [1, 𝑥𝑖] ∥2 becomes larger than 1 this penalty decreases

the value of the estimation �̂�𝑘 w.r.t. the true 𝑦𝑘 : from 𝑥𝑖 = .5 onwards,

the activation functions manifest a decreasing (or dumping) pattern w.r.t.

the desired output. Following 4.4 if we multiply the outcome of the

inner product 4.9 by the norm of the original 𝑦𝑘 , the error from the

VQLS normalization decreases significantly. In 5.6 we can see the ReLU

example, just to visualize the VQLS normalization penaly effect.

Figure 5.6: ReLU estimation “denormalized”.

As aforementioned in the Variational QSplines section 4.1, the de-

composition of the 𝑆 matrix in 2 × 2 sub-matrices, combined with the

normalizations required, lead the method to produce final estimates with
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a “zig-zag” pattern. As we will see in the next section, this behaviour

disappears with the Genralized Variational QSplines method.

5.3 Generalized Variational QSplines

In this section, the experiments done and the results obtained with the

Generalized Variational QSplines method are analyzed. As done for the

Variational QSplines case, four activation functions are tested. In the

first part the VQLS 𝛽 coefficients computation are evaluated. It is called

“hybrid approach” since in this preliminary part the inner product to

produce the 𝑌 is done classically. Subsequently, in the second and third

parts the full quantum approach (where both the spline coefficients and

the inner product are computed in a quantum fashion) is investigated,

without and with normalizing the estimates 𝑌 respectively. In all the

following experiments we tackle 8×8 linear systems with 3 qubit quantum

circuits, the COBYLA optimizer and the following Ansatz already shown

in Chapter 2 which we report again here for clarity:

𝑅𝑦 (𝜃1) 𝑅𝑦 (𝜃4) 𝑅𝑦 (𝜃7)

𝑅𝑦 (𝜃2) 𝑅𝑦 (𝜃5) 𝑅𝑦 (𝜃8)

𝑅𝑦 (𝜃3) 𝑅𝑦 (𝜃6) 𝑅𝑦 (𝜃9)

(5.4)

where 𝜃1, .., 𝜃9 are the variational parameters to optimize through

the VQLS. The 𝑆 matrix 4.30 is the same for all the activation functions

tested and it is computed taking as 𝑇 and 𝑋 knots and inputs sets be-

longing to the interval [0, 1]. Each input 𝑥𝑖 belongs to a knots interval

[𝜉𝑖, 𝜉𝑖+1].
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5.3.1 VQLS Evaluation - Hybrid Approach

Figure 5.7: Hybrid Spline. The spline coefficients are computed in
a quantum fashion thorugh VQLS, while the inner product is com-
puted classically. Top-left: Sigmoid, Top-right: Tanh, Bottom-left: Elu,
Bottom-right: Relu

In 5.7 we report a “hybrid” spline non linear function estimation,

where the 𝛽 spline coefficients are computed with the proposed basis ex-

pansion matrix 𝑆 and the VQLS, while the “row-by-column” product is

done classically. This intermediate result is shown to verify the good-

ness of the new methodology in calculating spline coefficients related to a

nonlinear function. Indeed, the curves obtained with the quantum coeffi-

cients, even if scaled, are very promising. Nevertheless, the penalty effect

of the normalization due to the VQLS usage, already explained in the

previous sections, is preponderant. This time the normalization penalty

is more effective because we are considering the full linear system and
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the full vector of the estimation 𝑌 rather than 𝐾 subsystems. Farther

from 1 is ∥𝑌 ∥2, larger will be the error on the final estimation.

5.3.2 Full Quantum Approach

Following instead the complete methodology explained in the previous

chapter 4.37, we apply the quantum inner product [21] to produce the

final estimates 𝑌 achieving full quantum spline non linear functions 5.8.

Figure 5.8: Full Quantum Spline. Both spline coefficients and the inner
product are computed in a quantum fashion. Top-left: Sigmoid, Top-
right: Tanh, Bottom-left: Elu, Bottom-right: Relu

Just like in the Variational QSpline method, the normalization re-

quired by the Inner Product circuit, this time used to encode the rows of

𝑆, affects again the final estimation. Obviously, it is less strong consid-

ering input values closer to 0, since the coefficients are very low. Instead,

higher the inputs 𝑥𝑖𝜖𝑋 farther the final the estimation from the hybrid
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curve, where the product is computed classically. The overestimation

problem can be explained looking at the 𝑆 matrix built with the current

setup sets 𝑇 and 𝑋: once we normalize the row to compute the quantum

product, the values 1 − 𝑥𝑖, 𝑥𝑖 on the new row become bigger than before.

Instead, the first and last 𝑆 rows norms are always 1 due to the construc-

tion of the matrix and thus, the first and the last estimations, �̂�0 and �̂�𝐾
will be equal to the first and the last elements of the spline coefficients

array 𝛽0 and 𝛽𝐾 . Summing up, except for the first and the last row, each

“row-by-column” product will return an output estimate �̂�𝑘 bigger than

the desired 𝑦𝑘 . In the table below we can see the differences in the RSS

scores w.r.t. the true activation functions of the hybrid and full quantum

approaches:

Activation GVQSplines GVQSplines
function (hybrid) (full quantum)
Sigmoid .47 .28

Tanh .26 .13
ReLU .18 .38
Elu .02 .12

Table 5.2: RSS scores. Hybrid GVQSplines and Full Quantum GVQS-
plines.

Instead in the following table a final comparison in terms of RSS w.r.t.

the true activation functions between QSplines, Variational QSplines and

Generalized Variational QSplines is shown.

Activation QSplines VQSplines GVQSplines
function (full quantum) (full quantum)
Sigmoid .75 .32 .28

Tanh 1.12 1.53 .13
ReLU 8.16 .38 .38
Elu 7.06 1.35 .12

Table 5.3: RSS scores. Fault-Tolerant QSplines, VQSplines and GVQS-
plines. For the VQSplines there’s no hybrid version.
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5.3.3 Full Quantum and Hybrid Approaches - Normalized

case

As already discussed previously, by considering normalized activation

functions estimations 𝑌 s.t. ∥𝑌 ∥2 = 1, the final result should be more

precise. Let’s see what happens in this case where the normalization error

due to the VQLS should disappear. For this case only sigmoid and tanh

were reported, since elu and relu had already a 𝑌 set s.t. ∥𝑌 ∥2 ≈ 1. From

5.9 it is possible to confirm and visualize the efficiency of the Generalized

Variational QSpline methodology. The proposed 𝑆 matrix fits the desired

task, indeed the coefficients computed with the VQSL (solving the 𝑌 = 𝑆𝛽

system) are related to 𝑌 estimations which very close to the classic ones

𝑌 .

Figure 5.9: Scaled Hybrid Spline. Left: Sigmoid, Right: Tanh

Although the error over the 𝛽 coefficients has been reduced by nor-

malizing 𝑌 , the overestimation of the curves is still present for the hybrid

approach 5.9 and even bigger for the full quantum one 5.10 due to the

quantum product. Indeed, the latter leads always to an overestimation of

the non-linear function for the full quantum approach w.r.t. the hybrid

one. Indeed, the same reasoning done w.r.t. the 𝑆 matrix’s rows in the

previous subsection is still valid here and explains the overestimation.
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Figure 5.10: Scaled Full Quantum Spline. Left: Sigmoid, Right: Tanh

5.3.4 Quantum B-Spline Expansion

In the Generalized Variational QSplines section 4.2, a method to estimate

the generic output of a non-linear activation function is explained. Basi-

cally, it follows the same procedure described to return the estimations

𝑌 , indeed it exploits the same Ansatz optimized through the VQLS. The

difference lies in the circuit encoding the inputs: for the estimation 𝑌

we used an amplitude encoding routine to encode the rows of the matrix

𝑆; here we need a mapping circuit that, given a generic input encoded

in 1 qubit, returns its row representation as explained in the previous

chapter. To test the mapping circuit realized to estimate the output of

an activation function given a generic input encoded in one qubit, 10

equally distributed inputs (different from the inputs 𝑋 and the knots 𝑇

used to build 𝑆) from the interval [0, 1] were provided to the circuit 4.45.

In 5.11 we have the sigmoid and elu cases: the outputs from generic

inputs follow the behaviour of the curves obtained before with the fixed

inputs 𝑋 5.10. One drawback of this method could be found by increasing

the number of inputs 5.12. Indeed in 5.11 we had one generic input in

each knots interval, but if we increase the number of knots in order to

have more than one input for each interval the normalization leads to
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Figure 5.11: QSigmoid and QElu, given 10 generic inputs.

undesired decreasing patterns for the estimations �̂�𝑘 for 𝑥𝑘 > .6.

Figure 5.12: QSigmoid and QElu, given 20 generic inputs.

More practically, let’s suppose to have two inputs 𝑥𝑘 and 𝑥 𝑗 belonging

to the same knots interval and such that 𝑥 𝑗 > 𝑥𝑘 > .6. Due to the map-

ping circuit construction they will be related to the same row structure

of the 𝑆 matrix. However, since ∥1 − 𝑥𝑘 , 𝑥𝑘 ∥2 < ∥1 − 𝑥 𝑗 , 𝑥 𝑗 ∥2 the normal-

ization penalty for the quantum product leads to achieve �̂�𝑘 > �̂� 𝑗 even

if for the true values 𝑦𝑘 < 𝑦 𝑗 . Obviously, concerning inputs lower than

.5 we have the opposite pattern: ∥1 − 𝑥𝑘 , 𝑥𝑘 ∥2 > ∥1 − 𝑥 𝑗 , 𝑥 𝑗 ∥2 and thus,

�̂�𝑘 < �̂� 𝑗 . For our purposes this is tolerable (since we have monotonically

increasing activation functions), but for an activation function with a de-

creasing pattern for 𝑥𝑘 < .6 it is problematic as well as the case explained

before. For these reasons, the mapping circuit can be changed to map all
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the inputs belonging to the same knots interval directly to the same row

representation, rather than keep the 𝑥𝑖 row’s structure and encode in the

row representation the input values 1 − 𝑥𝑘 , 𝑥𝑘 as done actually. In this

way, we could get the same estimation �̂�𝑘 for all the inputs belonging to

same knots interval.

Figure 5.13: QSigmoid and QElu, where for each generic input, we encode
its related knots interval rather than the input itself.

From 5.13 we can see an example of the desired circuit. A new formu-

lation M has not yet been implemented, indeed the plots are computed

by encoding the knots as input of the product instead of the input itself

𝑥𝑘 . By developing a new mapping circuit 𝑀 able to encode directly a

generic input 𝑥𝑘 to a fixed quantum state depending on the related knots

interval together with an increased number of knots, we could get a very

promising improvement.

5.3.5 Considerations

The optimization part of the VQLS, since now we have 3 qubits instead

of 1 and the Ansatz is featured by 9 weights, is clearly slower. In order to

reduce the number of necessary steps to minimize the cost function, all

the weights are initialized to −𝜋 rather than randomly, as done instead

in the Variational QSPlines approach. Looking forward, by increasing

the number of Knots, and according to 4.43 the number of qubits, the
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final result should be more precise and fit better the desired activation

function.

In this new approach we don’t have anymore the “zig-zag” pattern

due to the decomposition of the problem; moreover here we optimize

only one Ansatz 𝑉 (𝜃) able alone to produce all the spline coefficients,

rather than many. Summing up, even if the normalization penalties are

really significant, the shape of the final curve is very likely thanks to

the proposed methodology. Therefore, the purpose of this thesis project,

namely to achieve non linear functions through quantum circuits, has

been quite well fulfilled.



Chapter 6

Conclusions

Quantum Machine Learning (QML) has recently attracted ever-increasing

attention and promises to impact various applications by leveraging quan-

tum computational power and novel algorithmic models, such as Varia-

tional Algorithms. However, although QML models offer several theo-

retical advantages with respect to their classical counterparts, the field

is still in its infancy, and its practical benefits need further investigation.

This dissertation moves toward the adoption of QML algorithms to

solve complex pattern recognition tasks. In particular, we showed that

it is possible to circumvent the constraint of unitarity in quantum com-

putation by presenting a more efficient version of the QSplines, whose

implementation falls within the context of hybrid quantum-classical com-

putation. In other words, the proposed method doesn’t require error-

corrected qubits and allows the approximation of non-linear functions

using actual quantum technology. Furthermore, the same method can be

employed as a subroutine to approximate non-linear activation functions

in quantum neural networks, which is a compulsory stage for achieving

universal approximation by means of the Quantum Single Layer Percep-

tron, as discussed in Macaluso et al.[16] in the context of the MAQA

framework [15].

In practice, the contribution of the thesis is two folds. The first part
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proposes the Variation Quantum Splines (VQSplines), a reformulation

of the fault-tolerant QSplines[18] in a variational quantum setting that

avoids the use of the HHL as a subroutine. The VQSplines have been

successfully implemented using Pennylane to approximate non-linear ac-

tivation functions typically adopted in classical Neural Networks. Ad-

ditionally, in the second part of the thesis, the generalized method for

VQSplines is discussed (GVQSplines 4.2). The benefit of this new for-

mulation lies in the ability of GVQSplines to be completely independent

of the specific structure of the spline matrix since it leverages de Boor

[4] B-Spline as a classical baseline formulation. In fact, while the VQS-

plines method (as the fault-tolerant QSplines) requires decomposing the

problem in 𝐾 sub-problems and applying the algorithm 𝐾 times, the

GVQSplines instead, with a new basis expansion matrix formulation in-

spired by the B-Spline definition, avoids the linear system decomposition

and allows to tackle the problem of the matrix inversion in an end-to-

end manner, with one single linear system and a number of qubits which

is related to the number of knots. For instance, with three qubits and

only one execution of the VQLS algorithm, the GVQSplines can estimate

non-linear functions better than the previous VQSplines, where only one

qubit was used at the expense of 𝐾 execution of the VQLS. The main

drawback of the GVQSplines consists in the normalization conditions of

quantum states and quantum algorithms, discussed in the chapter 4 and

verified in the chapter 5. Despite that, both contributions consistently

improved the previous fault-tolerant attempt to develop quantum acti-

vation functions. Moreover, this thesis work lays the foundation for a

concrete application of a new model combining the already mentioned

qSLP with quantum non-linear activation functions.
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