
Alma Mater Studiorum · Università di Bologna
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Abstract

In questo lavoro estendiamo concetti classici della geometria Riemanniana al fine di
risolvere le equazioni di Maxwell sul gruppo delle permutazioni S3.

Cominciamo dando la strutture algebriche di base e la definizione di calcolo differen-
ziale quantico con le principali proprietà. Generalizziamo poi concetti della geometria
Riemanniana, quali la metrica e l’algebra esterna, al caso quantico. Tutto ciò viene poi
applicato ai grafi dando la forma esplicita del calcolo differenziale quantico su K(V ),
della metrica e Laplaciano del secondo ordine e infine dell’algebra esterna.

A questo punto, riscriviamo le equazioni di Maxwell in forma geometrica compatta
usando gli operatori e concetti della geometria differenziale su varietà che abbiamo gen-
eralizzato in precedenza. In questo modo, considerando l’elettromagnetismo come teoria
di gauge, possiamo risolvere le equazioni di Maxwell su gruppi finiti oltre che su varietà
differenziabili. In particolare, noi le risolviamo su S3.
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Introduction

The Maxwell’s theory of Electromagnetism played a pivotal role in Physics. In fact,
it is the first unifying theory, treating electrical and magnetic phenomena at once. The
very first step towards the theory of General Relativity came by realising that Maxwell’s
equation are not invariant under Galilei’s transformation: the Lorentz’s transformations
were introduced and then the Special Relativity followed. This gave the foundations
for a more complete theory of gravity. The geometrical framework underlying such a
theory was different from the three Euclidean dimensions. Time was not just a parameter
anymore, but rather a real dimension. Einstein published the theory of General Relativity
in 1915 using differential geometry. What is special about this formalism is that it can
be generalised to be applied to discrete frameworks. This allows us to rewrite Maxwell’s
theory on graphs and develop a theory of gravity on a discrete setup.

In this work, we aim to solve Maxwell’s equations on graphs. To do so, we follow
three main steps. First, we begin by giving the fundamental algebraic structures on
which we develop the discussion.

Second, we rewrite differential geometry in a discrete framework, we call it a quantum
geometry. Starting from the generalisation of the concept of differential calculus, we
then extend the metric, the connection and the second-order differential operator to the
quantum framework. In addition, we discuss how the exterior algebra changes when
applied to the new setup. Finally, we write these objects and concepts on graphs, giving
their explicit form too.

In conclusion, we solve Maxwell’s theory on the permutation group S3, as a concrete
example of graph. To do so, we first rewrite Maxwell’s equations in the formalism of
differential geometry. We then note that seeing electromagnetism as a gauge theory
is much more immediate in this notation, and that it is a valuable method to solve
Maxwell’s equations. In conclusion, after recalling the results of the previous chapters,
we solve those very equations on a S3 by finding the gauge potential.
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Chapter 1

Algebraic structures

In this first chapter we introduce the mathematical language required for our further
discussion. The starting point is the concept of algebra, which is the foundation for the
rest of this work. We will then discuss modules, ideals, groups and actions. For more
details we invite the reader to consult [6], [8].

1.1 Algebras

In this section we introduce the most important structure: the algebra. An algebra is
a vector space together with an additional operator, the multiplication, with conditions
compatible with the vector space structure. In this work, whenever we refer to a field
K we imply that K is either the field of real numbers R or of complex numbers C. For
more details see [6] chapter 4 section 7.

Definition 1.1.1. Let K be a field. An algebra A over K is a vector space over K
equipped with a product operator • defined as follows

• : A× A −→ A

a, b −→ a · b ∀ a, b ∈ A

such that

a · (b+ c) = a · b+ a · c, (a+ b) · c = a · c+ b · c, ∀ a, b, c ∈ A.

From now on, we assume the existence of the multiplicative identity 1A that is an
element of the vector space A which does not affect the algebra product, i.e.

1A · a = a = a · 1A, ∀ a ∈ A
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Here are some examples of algebras to better understand the concept. This is the
starting point on which we will build further structures.

Example 1.1.2. 1. The algebra of the matrices. Consider the vector space of n× n
matrices with entries in the field K, i.e.

Mn,n(K) =


m1,1 m1,2 · · · m1,n

m2,1 m2,2 · · · m2,n
...

...
. . .

...
mn,1 mn,2 · · · mn,n


where the mi,j ∈ K. The algebra product is the usual rows by columns product,
defined by

• :Mn,n(K)×Mn,n(K) −→Mn,n(K)

M1,M2 −→M1 ·M2 ∀ M1,M2 ∈Mn,n(K).

The vector space Mn,n(K) of the square matrices over the field K, together with
the product rows by columns described above, forms an algebra called the algebra
of the matrices.

In this algebra, we define the multiplicative identity as the matrix identity I, i.e.

I =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


2. The polynomial algebra. Given the field K, consider the vector space A = K[X] of

polynomials of the form

p = p0 + p1X + p2X
2 + · · ·+ pnX

n + · · ·

where pi ∈ K. The product that we define in this case is the usual product of
polynomials, i.e.

• : A× A −→ A

a, b −→ a · b ∀ a, b ∈ A
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such that, given
a = a0 + a1X + a2X

2 + · · ·+ anX
n + · · ·

b = b0 + b1X + b2X
2 + · · ·+ bnX

n + · · ·

we have

a · b = a0 × b0 + (a1 × b0 + a0 × b1)X + (a0 × b2 + a1 × b1 + a2 × b0)X
2 + · · ·

The infinite dimensional vector space A = K[X], equipped with the product defined
above, forms an algebra called the polynomial algebra.

In this algebra, we define the multiplicative identity as the degree zero polynomials
with coefficient 1, i.e.

1A = 1

In general, the product is not necessarily commutative. Nevertheless, it is useful to
analyse the commutative case to first familiarise with the concept of algebra. For this
reasons, we provide definition and examples for the commutative case.

Definition 1.1.3. An algebra A is called commutative if the product operator is com-
mutative, i.e.

a · b = b · a

for all a, b ∈ A.

Example 1.1.4. We analyse the commutativity condition given above in the two cases
in example 1.1.2.

1. The algebra of the matrices. The product rows by columns that we defined is
clearly not commutative.

2. The polynomial algebra. The polynomial algebra is a commutative algebra. In fact,
by looking at the equation

a · b = a0 × b0 + (a1 × b0 + a0 × b1)X + (a0 × b2 + a1 × b1 + a2 × b0)X
2 + · · ·

we see that each of the coefficients of the polynomial involves commutative opera-
tions. In fact, the multiplication is the usual multiplication between scalars, hence
commutative. For this reason, the product a · b is commutative, as well as the
polynomial algebra.
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1.2 Subalgebras and homomorphisms

In this section, we define the notion of subalgebra and homomorphism between alge-
bras.

Definition 1.2.1. A vector subspace S of an algebra A is called subalgebra if it is itself
an algebra equipped with the same product as A.

This definition is intuitive and highlights that in some cases we can extract - from
the algebra - a vector subspace with the same properties as the algebra. Here are some
examples based on those in the previous section.

Example 1.2.2. 1. The algebra of the matrices. Consider the algebra of the square
matrices, there are a lot of examples of subalgebras with the same rows by columns
product. Some of them are

(a) Diagonal matrices;

(b) Upper (or lower) triangular matrices.

2. The algebra of polynomials. We give some examples of subalgebras in the algebra
of polynomials with the usual product.

(a) Take S as the degree zero polynomials. In this case, S coincides exactly with
K;

(b) S = {even degree polynomials}. Polynomials of even degree are a vector
subspace of K[X] and the product as defined before preserves the property
of the powers being even, therefore this is a subalgebra of the polynomial
algebra.

Now, we define a morphism between algebras that preserve the algebraic structure.

Definition 1.2.3. Let A and B be algebras over the same field K. A function F : A −→
B is called homomorphism between A and B if it has the following properties:

1. F (x+A y) = F (x) +B F (y);

2. F (kx) = kF (x), ∀k ∈ K;

3. F (x ·A y) = F (x) ·B F (y)

for all x, y ∈ A.
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In the definition above, the subscripts A and B have been assigned to the sum and
product operators to highlight that they are either in the algebra A or B, and thus
different in general. The first two properties define F as a K-linear map, while the third
provides a relation between the product in A and the product in B. For more details see
[5], [6], [8].

Although in this chapter we decided to use the notion of algebra as a starting point,
most of the resources cited here base their definitions on rings. The two approaches are
equivalent and additional details about this equivalence can be found in appendix A.

1.3 Modules

In this section, we give the definitions of module, submodule and homomorphism
between modules, together with some examples based on what we previously studied for
algebras.

Definition 1.3.1. Let A be an algebra. A (left) A-module E is a vector space over the
same field K equipped with a function

A× E −→ E

a, e −→ a · e

such that:

1. a · (e1 + e2) = a · e1 + a · e2, ei ∈ E;

2. (a+ b) · e = a · e+ b · e;

3. a(b · e) = (ab) · e;

for all a, b ∈ A and e ∈ E.

The definition above can easily be changed to give the definition of a right A-module.
In that case, the elements of the algebra A are multiplied to the elements of the module
E from the right. Despite this similarity, the two types are intrinsically different.

We note that the points from (1) to (3) equip the module with the distributive and
associative properties with respect to the multiplication by an element of the algebra.
In a way, this shows that the module is not only a vector space with the multiplication
by a scalar, but also with the multiplication by an element of the algebra. With this
interpretation in mind, one needs to consider the necessary precautions regarding the
side from which we multiply. For more details about modules see [6] chapter 4.
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Recall there is the multiplicative identity (1A) in the algebras we will work with. Let
E be a A-module and 1A ∈ A. We call E a unitary, or unital module if multiplying 1A
by an element of the module does not affect the element, i.e.

1A · e = e

e · 1A = e

for all e ∈ E (left or right module).

Observation 1.3.2. In general, algebras are not necessarily commutative. However, when
this is the case, a module acquire some interesting further properties. Let A be a com-
mutative algebra, i.e. ab = ba for all a, b ∈ A. Therefore a left A-module E has the
following additional property

a(b · e) = (ab) · e = (ba) · e = b(a · e).

We can then naturally define a right A-module using the left A-module, i.e.

a · e := e · a

for all a ∈ A and e ∈ E. This definition and the properties of the left A-module are
enough to show that the right A-module fulfils the requirements in definition 1.3.1. We
provide a proof for the property (3) only. We can write

(e · a)b = (a · e)b = b(a · e) = (ba) · e = (ab) · e = e · (ab)

for all a, b ∈ A and e ∈ E. One could also start from a right A-module and define the
left with an analogous reasoning. However, this is not the only way in which we can
define the missing module. For further details we refer the reader to [1] chapter 2 and
[6] chapter 5.

Here are some examples of module defined on the algebras of the previous section’s
examples.

Example 1.3.3. 1. The algebra of matrices.

a) Left module. Let A = Mn,n(K) be the algebra. We define a left A-module as
the vector space V of the column vectors of length n with the usual product
rows by columns.

m1,1 m1,2 · · · m1,n

m2,1 m2,2 · · · m2,n
...

...
. . .

...
mn,1 mn,2 · · · mn,n

×


v1
v2
...
vn

 =


v′1
v′2
...
v′n
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where mi,j, vi, v
′
i ∈ K. The explicit values of v′i are

v′i =
n∑

j=1

mijvj = mijvj

b) Right module Let A =Mn,n(K) be the algebra. We define the right A-module
as the vector space U of the row vectors of length n with the usual product
rows by columns.

(
u1 u2 · · · un

)
×


m1,1 m1,2 · · · m1,n

m2,1 m2,2 · · · m2,n
...

...
. . .

...
mn,1 mn,2 · · · mn,n

 =
(
u′1 u′2 · · · u′n

)

where mi,j, ui, u
′
i ∈ K. Again, the explicit values of u′i are

u′i =
n∑

j=1

ujmji = ujmji

2. The algebra of polynomials. Let A = K[X] be the algebra, thus commutative. For
this reason, we can naturally define the right module from the left module. Let
us take the example of En as the polynomials of minimum grade n with the usual
multiplication. The product of a generic polynomial by an element of En gives
another element of En. Therefore, En is an A-module with the usual product in
the algebra of polynomials.

We now define a case in which the module has both a right and a left action of the
algebra. We are using the word ’action’ to refer to the multiplication of the algebra to
the module from one side. At the end of this chapter we briefly explain why the two
words are interchangeable. From now on, we will use ’action’ for the sake of simplicity,
but remember that the concept of action is much more general.

Definition 1.3.4. Let A be an algebra. An A-bimodule E over the algebra is a module
on which A has a well-defined action both from the left and from the right, i.e.

(a · e) · b = a · (e · b)

for all a, b ∈ A and e ∈ E.

From this definition, it is easy to see that every algebra is a bimodule over itself.
Another rather important type of a module is the free-module. It is a module that

admits a basis. Along the line of [6], the definition of a free module is given by a
theorem, proven on [6], page 181. Before, we give the definition of cyclic module, an
object involved in the theorem.
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Definition 1.3.5. Let A be an algebra. Let C be a left (right) A-module. C is called
cyclic module if it is generated by one element.

We now have all the necessary ingredients to state the theorem.

Theorem 1.3.6. Let A be an algebra. The following conditions on a unitary A-module
F are equivalent:

1. F has nonempty basis;

2. F is the internal direct sum of a family of cyclic A-modules, each of which is
isomorphic as a left A-module to A;

3. F is A-module isomorphic to a direct sum of copies of the left A-module A;

4. there exists a nonempty set X and a function ι : X −→ F with the following
property: given any unitary A-module E and a function f : X −→ E, there exists
a unique A-module homomorphism f̄ : F −→ E such that f̄ ι = f .

Definition 1.3.7. Let A be an algebra. An A-module E is a free A-module if it satisfies
the equivalent conditions of theorem 1.2.4.

Observation 1.3.8. We can define two different dimensions for a module. Let E be a
free module over an algebra A. The dimension of E as a module over A is given by the
number of elements in the basis defined in the theorem above. On the other hand, we
can consider E as a vector space over a field K, same as A. In this case, the dimension
of E is intrinsically different and depends solely on the type of the elements of E. To
distinguish between the two, we refer to the first as

dimAE

and to the second as
dimKE.

An example of this duplicity can be found at the end of the next chapter.

Now we define the submodule, the homomorphism between modules and finally the
concept of ideal.

1.4 Submodules, homomorphisms and ideals

In this part, we provide the definition of submodule together with some examples
following the examples we gave for the module. In addition, we give the definition of
homomorphism between modules, and of the ideal.
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Definition 1.4.1. Let A be an algebra and E be a left (right) A-module. A submodule
S of E is a vector subspace of E such that

a · s ∈ S

for all a ∈ A and s ∈ S.

Here we give some examples for the submodule based on those we gave for the module,
example 1.3.3.

Example 1.4.2. 1. The algebra of matrices. The null vector

0 =


0
0
...
0

 =
(
0 0 · · · 0

)

is a trivial example of submodule.

2. The algebra K[X] of polynomials. Let K2[X] be the vector space of polynomials
of minimum grade 2 and bimodule of K[X]. All the vector subspaces Kj[X] with
j ∈ {3, 4, · · · } are submodules of K2[X].

We now provide the notion of homomorphism between modules. This is a morphism
that preserves the module structure.

Definition 1.4.3. Let A be an algebra and E and E ′ be (left) A-modules over A. A
function F : E −→ E ′ is an A-module homomorphism if

F (e1 + e2) = F (e1) + F (e2)

and
F (a · e1) = a · F (e1)

for all e1, e2 ∈ E and a ∈ A

For more details on modules, submodules and homomorphisms between modules see
[6] chapter 5. We then introduce a really important object in algebra: the ideal.

Definition 1.4.4. Let A be an algebra. Let I be a vector subspace of A. I is called left
ideal if

a · x ∈ I

for all a ∈ A, x ∈ I.
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An analogous definition can be given for right ideals and for biideals as well.
Although this definition looks similar to the one of submodule, there is a substantial

difference. The submodule is a vector subspace of a module, and in general it can be of
a different nature than the algebra. On the other hand, an ideal is a vector subspace of
the algebra itself. If one recalls that an algebra is a bimodule over itself, then one can
use the algebra as a module in the definition 1.4.1 and it will become equivalent to the
definition 1.4.4.

In addition, it is worth highlighting that the concept of ideal is stronger than the one
of subalgebra. In fact, the subalgebra requires the product between its elements to be
an element of the subalgebra. The ideal adds the requirement that the product of its
element with other elements of the algebra (not necessarily in the ideal) is an element of
the ideal.

1.5 Groups and actions

In this paragraph, we introduce the notion of group, subgroup and homomorphism
between groups. Then we provide a definition for action. We add these topics because
group theory and actions are largely used in theoretical physics. Moreover, the definition
of graphs is based on the concept of group. In addition, these objects are some of the
most important remaining tools in a discussion of algebraic structures. For more details
we refer to [6] chapter 1 and 2 and [8] chapter 1.

Definition 1.5.1. LetG be a nonempty set equipped with the following binary operation
on G

• : G×G→ G

(g1, g2) → g1g2

G is a group if it satisfies the following properties.

1. The binary operation is associative, i.e.

(g1g2)g3 = g1(g2g3)

for all gi ∈ G;

2. There exists a (two-sided) identity element e ∈ G such that

ge = eg = g

for all g ∈ G;

13



3. There exists a (two-sided) inverse element g−1 ∈ G such that

g−1g = gg−1 = e

for all g ∈ G.

If a nonempty set satisfies only the property (1), we call it a monoid. If a monoid
satisfies the property (2), we call it a semigroup. Those two more general structures are
useful to provide some result in this field without losing generality. In addition, we define
the commutative group.

Definition 1.5.2. Let G be a group. G is called commutative if its binary operation is
commutative, i.e.

g1g2 = g2g1

for all g1, g2 ∈ G.

We then proceed to define the subgroup and the homomorphism between groups.

Definition 1.5.3. Let S be a subset of a group G with the same binary operation. S is
a subgroup of G if it satisfies the properties in the definition 1.5.1.

As proved in [6] chapter 1 page 24, the identity element in a group is unique. There-
fore, given a group G with identity element e, then if S is a subgroup of G, e ∈ S, and
vice versa.

Definition 1.5.4. Let G and G′ be groups. A homomorphism of G into G′ is a mapping
F : G −→ G′ that satisfies the following properties.

1. It preserves the group binary operation, i.e.

F (xy) = F (x)F (y)

for all x, y ∈ G;

2. It maps the identity element of G into the identity element of G′, i.e.

F (e) = e′

for e ∈ G and e′ ∈ G′;

3. It maps the inverse of an element of G in the inverse of the image of that element,
i.e.

F (x−1) = F (x)−1

for all x ∈ G.

14



We now introduce the concept of group action. The concept of a group acting on
a set is incredibly useful to analyse algebraic objects. In the scope of our discussion,
the concept of action generalises the role of the modules, which we will discuss in the
following chapter.

Definition 1.5.5. Let G be a group and A be a set. A group action of G on A is a map

a : G× A −→ A

(g, a) −→ g · a

for all g ∈ G and a ∈ A, that satisfies the following properties.

1. g1(g2 · a) = (g1g2) · a;

2. e · a = a;

for all g1, g2 ∈ G and a ∈ A. e is the identity element of the group G.

In this chapter, we saw many algebraic structures as well as some recurrent patterns.
Let us consider the definition of module (1.3.1) and the definition of action (1.5.5). In
the first case, we have a vector space with the algebra ”acting” on one side. In the
second case, we have a set with a group acting on one side. One can express a vector
space as a set by adding some required properties, as well as express an algebra as a
group with some additional properties. Hence, we show that the concept of algebraic side
multiplication and action are interchangeable - with some precautions -. This justifies
the usage of the word ’act’ when referring to an algebra multiplied to a module from one
side. For more details on algebraic structures see [5], [6] and [8].
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Chapter 2

Quantum Differential Calculus

In this chapter, we want to introduce the generalisation of differential structures on
manifolds. We start from the differential calculus, and the concept of algebra of functions
on an ordinary differential manifold M, focusing on the example M = Rn. We then
proceed to the module of differential forms on M and we conclude with the definition
of Quantum Differential Calculus.

2.1 Differentiable functions on a manifold

Let M be a differentiable manifold, and A = C∞(M) the algebra of differentiable
functions on M. For the sake of simplicity, we pick Rn as the manifold, i.e. M = Rn,
the general case being a small variation.

This rather simple framework allows us to introduce the concept of first-order differ-
ential calculus in a familiar way.

Definition 2.1.1. We define d, called the exterior derivative, as a linear map

d : C∞(Rn) −→ Ω1

f −→ df

for all f ∈ C∞(Rn), satisfying the Leibniz identity, i.e.

d(fg) = (df)g + f(dg)

for all f, g ∈ C∞(Rn). Ω1 denotes the space of first-order differential forms, i.e.

Ω1 =
{∑

i∈[n]

aidxi | ai ∈ C∞(Rn)
}
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This map, together with some additional conditions, is uniquely defined and takes
the form

df =
n∑

i=1

∂f

∂xi
dxi

for all f ∈ C∞(Rn). For more on the exterior derivative and its uniqueness see [14]
section 1.2.

We recall an example.

Example 2.1.2. Differential 1-forms on R2. The pair (Ω1, d) with Ω1 and d defined as
follows

Ω1 =
{
f(x, y)dx+ g(x, y)dy, ∀f, g ∈ C∞(R2)

}
d : C∞(R2) → Ω1 such that d(f) = ∂xf · dx+ ∂yf · dy

The way in which we defined Ω1 allows us to show that it is isomorphic to{
(f, g)| f, g ∈ C∞(R2)

}
In other words, we showed Ω1 to be isomorphic to a free-module by providing a basis.

Ω1 is also isomorphic to

(C∞(R2))2 = C∞(R2)⊗ C∞(R2)

The property of being a free A-module allows us to define a dimension for Ω1 as a
A-bimodule. In this specific case the dimension is 2.

Now, we highlight the pivotal properties of this example. Firstly, we see that func-
tions of C∞(Rn) can be multiplied to elements of Ω1 from both sides, using the usual
multiplication. Then, we recall that the map d satisfies the Leibniz rule, and that every
element of Ω1 can be written as a linear combination of elements fdg with f, g ∈ C∞(Rn).
These very properties are characteristic of a first-order differential calculus, as we will
see. When we will abstract the concept of first-order differential calculus, they will con-
stitute core requirements. Overall, this example is one to keep in mind throughout the
discussion of Quantum Differential Calculus.

2.2 First-order differential calculus

In this section, we introduce the generalised concept of first-order differential calculus,
taking as a guidance the notion of exterior derivative. It is helpful to keep in mind the
first section as a motivating example for the properties discussed below. Let A be an
algebra, not necessarily commutative.
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Definition 2.2.1. A first-order differential calculus (FODC) over A is a pair (Ω1, d)
such that

• Ω1 is a A-bimodule;

• A linear map d : A −→ Ω1 satisfies the Leibniz rule, i.e.

d(ab) = (da)b+ a(db), ∀ a, b ∈ A;

• Ω1 = AdA = span {adb|a, b ∈ A}, surjectivity condition;

• ker d = K.1, connectedness condition.

A first-order differential calculus without the surjectivity condition is called generalised.

The third property allows us to ’move’ the element of A in A · dA · A from the right
to the left side. In other words, the surjectivity condition states that an element of Ω1

of the form

da · b, ∀a, b ∈ A

can be rewritten as
da · b =

∑
i

a′idb
′
i, ∀a′i, b′i ∈ A.

SinceA is not necessarily commutative, a left module is not necessarily a right module,
or vice versa. Actually, even if A is commutative, the right and left modules may be
defined differently from one another, recall observation 1.3.2. For these reasons, the
surjectivity property is non-trivial.

Observation 2.2.2. Here we show the first relevant difference between the commutative
and non-commutative cases. In the usual differential geometry, the left and the right
modules coincide, i.e. a · db = db · a for all a, b ∈ A. However, it is not reasonable to
impose this when A is non-commutative. In addition, applying d to the identity element
of the algebra gives d1 = 0.

We now provide the definition of a differentiable algebra map, as this is an important
tool to work with FODCs.

Definition 2.2.3. Let Φ : A→ B be an algebra map with A,B algebras equipped with
first-order differential calculi. Φ is called differentiable if there exists a bimodule map
Φ∗ : Ω

1
A → Ω1

B such that we have the following commuting square.

Ω1
A Ω1

B

A B

Φ∗

d

Φ

d
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From the surjectivity assumption on differential calculi, this is the same as saying
that Φ∗(xdy) := Φ(x)dΦ(y) gives a well-defined map from Ω1

A to Ω1
B.

2.3 Inner and Universal Calculus

In this section, we define the two most powerful concepts of this work: inner and uni-
versal differential calculi. A discussion after the definitions of these two objects explains
their respective importance.

In addition, we will see why we referred to differential calculi as quantum in the
first place. We use the word ”quantum” to mean that non-commutative operations are
involved. Although the two fields of quantum algebras and non-commutative algebras
do not overlap perfectly, in this section we assume interchangeability. As a matter of
fact, the content of this section is meaningful only if a quantum framework is taken into
consideration.

We begin with the inner differential calculus.

Definition 2.3.1. A FODC (Ω1, d) over an algebra A as in definition 2.2.1 is called
inner differential calculus if there exists a θ ∈ Ω1 such that

da = [θ, a] = θ · a− a · θ
for all a ∈ A.

This is a type of calculus with which it is easier to work. In fact, to calculate the
differential of an element of the algebra, one only needs to calculate the commutator
between that element with the θ. Note that there is a right and a left action in the
commutator. This calculation replaces the formal application of d to the element of the
algebra.

In addition, when a differential calculus is inner, it highlights another difference
between the commutative and non-commutative cases. Indeed, if we reconsider A =
C∞(M) and Ω1 = {differential forms}, then the da in the definition above is vanishing,
i.e. da = 0. We now give the definition of Universal Calculus through a proposition.

Proposition 2.3.2. Let A be an algebra over a field K with the multiplicative unity.

1. There exists a universal quantum differential calculus (Ω1
uni, d) given by

Ω1
uni = ker(·) ⊆ A⊗ A

where · is the usual multiplication in the algebra A, and d is defined by

d : A −→ Ω1
uni

a −→ 1⊗ a− a⊗ 1
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2. Any other quantum differential calculus is isomorphic to Ω1
uni/N , for some sub-

bimodule N ⊆ Ω1
uni;

3. If Ω1
uni is finite-dimensional then Ω1

uni is left and right-parallelisable.

Proof. Here we show that d satisfies the Leibniz rule.

d(ab) = 1⊗ ab− ab⊗ 1

(da)b+ adb = (1⊗ a− a⊗ 1)b+ a(1⊗ b− b⊗ a)

by making the product explicit we see

(da)b+ adb = 1⊗ ab− a⊗ b+ a⊗ b− ab⊗ 1

the two central terms cancel out, proving the Leibniz rule

(da)b+ adb = 1⊗ ab− ab⊗ 1 = d(ab)

For the proof of the other points see [3] page 5.

We provide a further discussion on the meaning of the first two points of the propo-
sition. The first point defines the differential calculus itself. The definition of d is such
that the result of applying d to any element of the algebra gives an element of the Ω1

uni,
i.e. da ∈ ker(·). The ” · ” product refers to the algebra product defined as

· : A⊗ A −→ A

a⊗ b −→ ab

for all a, b ∈ A. We use the tensor product to highlight the linearity of this product
whereas one may have expected bi-linearity if we used the usual multiplication. Here are
the two properties used in the proof for the Leibniz rule

a(b⊗ c) = ab⊗ c

(b⊗ c)d = b⊗ cd

for all a, b, c, d ∈ A.
The second point is the core property of the universal calculus. It explains why we

call this specific differential calculus ”universal”. This proposition states that for any
algebra, there exists a quantum differential calculus from which we can derive all the
other quantum differential calculi.
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The third point will not be discussed in further details, but we provide a side note.
The dimension in point (3) is the dimension of Ω1

uni as a vector space over K. This is
intrinsically different from the dimension of Ω1

uni as a free A-bimodule. In section 2.1,
the dimension of the differential calculus as free A-bimodule is

dimAΩ
1 = 2

whereas the dimension as a vector space over K is

dimK Ω1 = ∞.
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Chapter 3

Introduction to Quantum
Riemannian Geometry

In the previous chapter, we introduced the concept of quantum differential calculus
with in mind the motivating example of differential calculus on a manifold Rn. Along the
same lines, we want to define a generalisation of the concepts of Riemannian geometry. In
this chapter, we provide a generalised definition of metric g, connection ∇ and the second
order operator ∆, i.e. Laplacian. We will motivate these definitions keeping in mind the
example A = C∞(Rn), as we did before. Our aim is to give the tools to build a Quantum
Riemannian geometry framework on graphs. For the whole discussion about Riemannian
Geometry we invite the reader to consult [14] and [15], in particular the chapters 1, 2
and 3 of the second. For a complete discussion about Quantum Riemannian geometry
see the chapter 1 of [3] and the whole paper [10].

3.1 Metric

The metric on a Riemannian manifold has an important role, it is used to measure
the length of a vector. In tensor notation, after fixing local coordinate, we write

|U | = gijU
iU j

where gij is the metric tensor and U i are coordinates of a vector defined in the tangent
space of a manifold. For more details about our notation see chapter 1 of [14]. In
addition, the metric tensor is the foundation of the Einstein Field Equation. For further
physical details see [11, 4] and, for further mathematical details see [15]. In conclusion,
one should regard the metric tensor as an object that encodes the geometry of a manifold.

We are interested in showing how one can express the metric tensor in the quantum
framework of FODC. The first important tool is the notion of bimodule inner product.
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Definition 3.1.1. Let A be an algebra and Ω1 a quantum differential calculus over A.
We define the bimodule inner product (, ) : Ω1 ⊗A Ω1 → A as a bilinear map such that

(ω · a, η) = (ω, a · η), a(ω, η) = (a · ω, η), (ω, η)a = (ω, η · a)

for all a ∈ A and ω, η ∈ Ω1. We call (A,Ω1, d) a differential algebra.

Definition 3.1.2. Let (A,Ω1,d) be a differential calculus. An element g ∈ Ω1 ⊗A Ω1 is
a quantum metric if it is invertible in the following sense. There exist a bimodule inner
product

(, ) : Ω1 ⊗A Ω1 −→ A

such that

((ω, •)⊗ id)g = ω = (id⊗ (•, ω))g

for all ω ∈ Ω1.

We now provide a motivating example to explain the inverse property.

Observation 3.1.3. Euclidean differential Geometry. In this example, we first interpret
the role of the bimodule map by looking at its correspondent in Euclidean differen-
tial geometry. Then, we motivate the inverse property by showing how it holds in the
framework of C∞(Rn).

1. Let A = C∞(M). One could use the local coordinates for a generic manifold, but
here we pick M = Rn for the sake of simplicity. In this way, we can simply consider
global coordinates. We define the metric as

g : TM⊗ TM −→ C∞(Rn)

u, v −→ g(u, v) = gij

where TM is the tangent bundle. We assume that the tangent space is isomorphic
to its dual, i.e. TM ∼= T ∗M. Therefore, we induce the dual map

g∗ : T ∗M⊗ T ∗M −→ C∞(Rn)

where T ∗M is the dual of the tangent bundle. This environment provides an
interpretation of the bimodule map (, ). In fact, if ∂1, · · · , ∂n is a basis at each
point for the tangent space TPM, 1-forms dx1, · · · , dxn is a basis for the dual
T ∗
PM at each point. Hence we have an identification between T ∗

PM and Ω1. For
this reason, we identify the bimodule map with the dual metric map, i.e.
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g∗ : T ∗M ⊗ T ∗M −→ C∞(Rn)
(, ) : Ω1 ⊗ Ω1 −→ A

where A is the algebra on which we define Ω1. Finally, we interpret the bimodule
map as the inverse metric, i.e.

(, ) ⇐⇒ g∗

2. We now show the explicit form of the inverse condition when A = C∞(M). This
process will further justify why we interpret the bimodule map as the inverse metric.
Firstly, we recall that ω ∈ Ω1 can be written as ω = ωkdx

k.

Then, we rewrite the inverse condition and put this ω into it.

((ω, •)⊗ id)g = ω, ((ωkdx
k, •)⊗ id)g = ωkdx

k

Here, the • plays the role of a placeholder. We also recall the form of a metric
when A = C∞(Rn) and we choose canonical global coordinates x1, · · · , xn, i.e.
g = grsdx

r ⊗ dxs with r, s ≤ n. We proceed with the calculation.

((ωkdx
k, •)⊗ id)(grsdx

r ⊗ dxs) = ωkdx
k

(ωkdx
k, grsdx

r)(dxs) = ωkdx
k

ωkgrs(dx
k, dxr)dxs = ωkdx

k

Now, we recall the correspondence between (, ) and g∗ in this framework, i.e.

(dxk, dxr) = g∗kr.

Hence we can write

ωkgrs(dx
k, dxr)dxs = ωkdx

k

ωkgrsg
∗
krdx

s = ωkdx
k

The term g∗ is the inverse metric of g, therefore multiplying them together gives
the Kronecker delta with the two non-dummy indices, i.e. grsg

∗
kr = δks. Finally,

this gives us the wanted result

ωkgrsg
∗
krdx

s = ωkdx
k

ωkδksdx
s = ωkdx

k

ωkdx
k = ωkdx

k

where in the last step we simply did δksdx
s = dxk.
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3.2 Connection and Second-order differential oper-

ator

In this section, we define the notion of connection and the Laplace-Beltrami operator
in the Quantum Riemannian Geometry framework.

Definition 3.2.1. Let (A,Ω1, d) be a quantum differential calculus. We call linear
connection a linear map

∇ : Ω1 −→ Ω1 ⊗A Ω1

such that

∇(fω) = df ⊗ ω + f∇ω

for all ω ∈ Ω1 and f ∈ A.

This can be directly compared to the usual connection in differential geometry. We
refer to [15], chapters 6 and 9, for the Riemannian counterpart.

Then, we give the definition of the second-order differential operator.

Definition 3.2.2. Let (A,Ω1, d) be a quantum differential calculus and (, ) a bimodule
map as in definition 3.1.2. We call second-order differential operator a linear map

∆ : A −→ A

such that

∆(fg) = (∆f)g + f∆g + 2(df, dg)

for all f, g ∈ A.

To interpret the definition above, we provide an example in the motivating framework
A = C∞(Rn).

Example 3.2.3. Let A be C∞(Rn). Then the Laplace-Beltrami operator, i.e.

∆f =
1√
|g|
∂i(
√

|g|gij∂jf)

satisfies the property required in the definition above. The proof is the simple calculation,
see Appendix C.

In addition, we extend the definition so that we are able to define the quantum
Laplace-Beltrami operator.
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Definition 3.2.4. Let (A,Ω1, d) be a differential calculus, ∇ a bimodule connection
and (, ) a bimodule map as in definition 3.1.1. We define a quantum Laplace-Beltrami
operator

∆L = (, )∇d

We provide an additional feature of this operator.

Proposition 3.2.5. Let ∆L be a quantum Laplacian-Beltrami operator. Then ∆L is a
second-order differential operator according to definition 3.2.2.

Proof. We explicitly do the calculation. Recall that we have a bimodule connection, so
the formula in definition 3.2.1 is well-defined on the right product too, i.e.

∇(ωf) = ∇(ω)f + ω ⊗ df.

We will write ∆ = ∆L to ease the notation. Therefore we write

∆(fg) =(, )∇(df · g + f · dg)

=(, )

(
∇(df)g + df ⊗ dg + df ⊗ dg + f∇(dg)

)
Then, we distribute the bimodule linear map over the terms and we obtain

∆(fg) =(, )∇(df)g + (, )df ⊗ dg + (, )df ⊗ dg + (, )f∇(dg)

=������:∆f
(, )∇(df) · g + (, )df ⊗ dg + (, )df ⊗ dg + f ·������:∆g

(, )∇(dg)

Finally, recall the action of (, ), i.e.

(, ) : Ω1 ⊗ Ω1 −→ A

therefore we can conclude the proof, i.e.

∆(fg) =∆f · g + (, )df ⊗ dg + (, )df ⊗ dg + f ·∆g
=∆f · g + 2(df, dg) + f ·∆g

This shows that ∆ fulfils the requirements in definition 3.2.2, which means that the
quantum Laplace-Beltrami operator is a second-order differential operator.

We continue by giving an interesting observation regarding the inner case.
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Proposition 3.2.6. Let (A,Ω1, d) be a inner differential calculus (see definition 2.3.1)
via an element θ and (, ) a bimodule map. There exist two different second-order differ-
ential operators that we call associated Laplacians, i.e.

θ∆f = −2(df, θ)

∆θf = 2(θ, df)

for all f ∈ A.

Proof. The proof of the proposition above is the simple calculation to show that these
two differential operators satisfy the requirement in definition 3.2.2. Here we prove that

θ∆ is a second-order differential, the proof for ∆θ can be found [3] page 15.

θ∆(fg) =− 2(d(fg), θ)

=− 2(df · g + f · dg, θ)
=− 2(df · g, θ)− 2(f · dg, θ)
=− 2(df, gθ)− 2f(dg, θ)

=− 2(df, gθ)− 2f(dg, θ) + 2(df, θg)− 2(df, θg)

=− 2f(dg, θ)− 2(df, θg) + 2(df, θg − gθ)

Now consider θ∆f · g and f · θ∆g. They can be respectively written as

θ∆(f) · g = −2(df, θ)g = −2(df, θg)

and

f · θ∆g = f ·
(
− 2(dg, θ)

)
= −2f(dg, θ).

Therefore, we can identify them in the expression above and rewrite

θ∆(fg) = f · θ∆g + θ∆(f) · g + 2(df, θg − gθ)

Finally, recall that for an inner calculus dg = [θ, g]. This concludes the proof, i.e.

θ∆(fg) = f · θ∆g + θ∆(f) · g + 2(df, dg)

Above, we provided the definition and motivating examples of some generalised dif-
ferential tools.
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3.3 Exterior Algebra

The differential machinery described above and in the previous chapter has a key
application in the construction of the de Rham complex. A formal discussion of the de
Rham complex is not in the scope of the dissertation. Therefore we invite the reader
to consult [15] and [16] for further details. A de Rham complex can be thought of as a
chain

C∞(M) → Ω1(M) → · · · → Ωn(M) → 0

with the exterior derivative d : Ωi(M) −→ Ωi+1(M). In particular we consider Ω0(M) =
C∞(M) and Ωn(M) = C∞(M)dx1∧· · ·∧dxn. The space of all differential forms Ω(M) =
⊕n

i=1Ω
i(M) forms a graded algebra with the exterior product ∧.

Definition 3.3.1. A differential graded algebra or DGA on an algebra A is

1. A graded algebra Ω = ⊕n≥0Ω
n with Ω0 = A;

2. A map d : Ωn −→ Ωn+1 such that d2 = 0 and

d(ω ∧ ρ) = (dω) ∧ ρ+ (−1)nω ∧ dρ, ∀ ω, ρ ∈ Ω, ω ∈ Ωn;

3. A, dA generate Ω (surjectivity condition).

When the surjectivity condition holds we call it an exterior algebra on A.

We call a DGA non-degenerate if the wedge products ∧ : Ωm ⊗ Ω1 −→ Ωm+1 and
∧ : Ω1⊗Ωm −→ Ωm+1 are non-degenerate. For any DGA we define the volume dimension
as the largest n such that Ωn ̸= 0. This can be infinite. We will have a finite volume
dimension n with Ωn free with one generator both in the case we will discuss later as
well as in the case of Ωk(Rn) differential forms on Rn. We will refer to that element as
Vol. A DGA of volume dimension n is inner if there exists a θ ∈ Ω1 such that for all
m < n

dω = [θ, ω] := θ ∧ ω − (−1)mω ∧ θ, ∀ ω ∈ Ωm.

In the definition of DGA we identify Ω1 to be the first-order differential calculus
described previously. We would like to build the higher order differential calculi by
knowing the first-order only. This can be done by asking some additional properties to
the Ωn, n > 1 to have consistency in their definition.

Proposition 3.3.2. Every first-order calculus Ω1 on an algebra A has a ’maximal pro-
longation’ Ωmax to an exterior algebra, where for every relation

∑
i ai · dbi =

∑
j rj · dsj

in Ω1 with ai, bi, rj, sj ∈ A we impose the relation∑
i

dai ∧ dbi +
∑
j

drj ∧ dsj = 0
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in Ω2.

The relations above are for Ω2 only. However, they can immediately be extended to
higher degrees by computing the exterior product of elements of Ω1 with the relations
for Ω2, i.e. we can write a ∧ (

∑
i dai ∧ dbi +

∑
j drj ∧ dsj) = 0 when a ∧ (

∑
i aidbi) =

a ∧ (
∑

j rjdsj). This process can be repeated to build a DGA with consistency in the
definition of higher order differential forms.

Observation 3.3.3. A maximal prolongation Ωmax defined as in 3.3.2 is such that Ω1 is
embedded in Ωmax.

This observation is non-trivial and the proof of that can be found in [3] at page 24.
For more details about the concepts presented in this chapter we recommend [3] section
1.5 page 22.

There is also an additional condition that we naturally ask. In the example of M =
Rn with general canonical coordinates x1, · · · , xn, the metric tensor can be written as
g = gijdx

i⊗dxj. We impose ∧(g) =
∑

i,j gijdx
i∧dxj+gjidxj∧dxi and we recall that the

metric tensor is symmetric, i.e. gij = gji. Thus we can rewrite the symmetry condition as
∧(g) = 0. We will ask that these relations hold even for the quantum metric in definition
3.1.2.

In the following chapters, we cover the applications of these concepts into the frame-
work of graphs. This will be useful both to understand the definitions above and to
introduce the necessary tools to develop a naive theory of electromagnetism on an un-
usual framework.
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Chapter 4

Quantum Riemannian Geometry on
Graphs

In this chapter, we introduce the concept of graph and we apply the machinery
developed in the previous chapters. We do this in order to describe how the quantum
differential calculus is the perfect framework to introduce key concepts of Riemannian
geometry on graphs. The majority of the work here is taken from [3]. Thus, we invite
the reader to consult it for further details and additional content. We begin with a
small introduction to graphs, we define an algebra and a quantum differential calculus
on graphs, and then we give the definition of metric and Laplacian on graphs. Finally,
we provide the concept of the exterior algebra on a Cayley graph. We will use this very
setup when developing Maxwell’s theory on discrete sets.

4.1 Graphs

In this section, we introduce the notion of graph and the notation that we will use in
this chapter. We finish with the definition of digraph, defining the framework in which
we will discuss quantum differential geometry.

Definition 4.1.1. We call graph a pair (V,E) where V is a set of vertices and E is the
set of distinct edges that connect pair of vertices. The edges in E are then given by pairs
of vertices. We refer to the graph as (V,E).

A graph (V,E) is said directed if the edges are ordered pairs of vertices.

Example 4.1.2. 1. Example of a directed graph.
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The vertices and edges are V = {1, 2, 3} and E = {(1, 2), (2, 3), (1, 3)}.

1 2

3

2. The following is an example of undirected graph. In this case the direction of the
edges is not defined, and we use the notation of a simple line. Sometimes, we can
use a double arrow instead. In this example the vertices are V = {1, 2, 3, 4} and
the edges are E = {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2), (2, 4), (4, 2)}.

1

2

3

4

From now on we will work with directed graphs, and we will shorten it to digraphs.

4.2 Algebra of functions on a set

In this section, we define an algebra on a digraph and we provide a basis for it. We
are going to use this very algebra to create a differential structure on digraphs. Let us
start from the definition of this algebra. From now on we assume all our graphs to be
digraphs.

Definition 4.2.1. Let K be a field and V a finite set. We define the algebra K(V ) as
follows.

K(V ) = {f : V −→ K}

In other words, K(V ) is the algebra of all the functions that associate to each element
of V a value in K. An interesting property of this algebra is that it is finite dimensional.

Proposition 4.2.2. Let A = K(V ) be an algebra as defined above. It is a finite dimen-
sional vector space whose dimension is equal to the number of vertices of the graph, i.e.
dim(A) = number of elements of V .

This claim allows us to define a finite canonical basis for A as the next step shows.
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Proposition 4.2.3. Let A = K(V ) for a graph (V,E). We have

B = {δx,∀x ∈ V }, δx(y) =
{ 1 x = y

0 otherwise

for all x, y ∈ V , is a basis for A.

Given this proposition, we can write every f as a linear combination of all the δx, i.e.

f = f1δ1 + f2δ2 + · · ·+ fnδn =
n∑

i=1

fiδi

where fi ∈ K and δi is the basis function correspondent to the ith vertex.
We will use the algebra described above to define a quantum differential calculus on

digraphs.

4.3 Quantum Differential Calculus on K(V )

In this section, we start from the most important theorem that relates a quantum
differential calculus with digraphs. Then in its proof, we give an explicit expression for
such a calculus and finally we show that it is inner.

Theorem 4.3.1. Let V be a finite set and A = K(V ). There is a one-to-one correspon-
dence between Ω1, quantum differential calculus over A, and digraphs over V .

Ω1 FODC on A = K(V ) ⇐⇒ digraphs (V,E), Ω1 = K(E)

Before the proof, we make some comments. In [10] this theorem is presented as an
equivalence between categories. This means that the relation between quantum differ-
ential calculi and digraphs is much more than a one-to-one correspondence.

First, we define the objects involved in the proof of the theorem. Given a pair of
vertices x, y, we formally define ωx→y as the edge that connects them, i.e.

x

y

z

ω x
→
y

ω
y→

z

We can equivalently view ωx→y as the function
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ωx→y : E −→ K
(x, y) −→ 1
(x′, y′) −→ 0 ∀(x′, y′) ̸= (x, y)

so that K(E) = span{ωx→y} for all (x, y) ∈ E.
Now we define the action of elements of the algebra on the K(E). We want K(E) to

be Ω1, hence we need an A-bimodule additional structure.

Definition 4.3.2. Let f ∈ A be f : V −→ K. We now define the left and right action
of f over a generic edge ωx→y ∈ K(E) as

f · ωx→y = f(x)ωx→y

ωx→y · f = f(y)ωx→y

where f(x), f(y) ∈ K.

Sketch of the proof.

(⇐=) We define Ω1 = K(E) as above. Given A = K(V ) (we already have a set of vertices,
and a set E of edges between the vertices). Given the two definitions above for the
left and right action of the algebra, the Ω1 is an A-bimodule.

We now define the exterior derivative d for Ω1 to be a quantum differential calculus.
Let us define d : A −→ Ω1 as follows

df :=
∑
x→y

(f(y)− f(x))ωx→y

where x→ y under the summation symbol means for all the edges, i.e. ∀ ωx→y ∈ E.
We now check that this is a well-defined differential. To do so we check that it
satisfies the Leibniz rule. From the definition we have

d(fg) =
∑
x→y

(f(y)g(y)− f(x)g(x))ωx→y

and on the other hand we have
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d(f)g + f(dg) =
(∑

x→y

(f(y)− f(x))ωx→y

)
g + f

(∑
x→y

(g(y)− g(x))ωx→y

)
=
∑
x→y

(f(y)− f(x))(ωx→y · g) +
∑
x→y

(g(y)− g(x))(f · ωx→y)

=
∑
x→y

(f(y)− f(x))(g(y)ωx→y) +
∑
x→y

(g(y)− g(x))(f(x)ωx→y)

=
∑
x→y

(f(y)g(y)−�����f(x)g(y) +�����g(y)f(x) − f(x)g(x))ωx→y)

= d(fg)

The surjectivity condition for Ω is trivially obtained from how we defined the left
and right action and Ω itself. It is interesting to show what the effects of d over a
basis element of A = K(V ) are. Recalling proposition 4.2.3 we see

dδx =
∑
w→z

(δx(z)− δx(w)) ωw→z

the only way for this expression to be non-trivial is to consider the edges, whose
either starting or ending vertex is x. Therefore the summation becomes

dδx =
∑
w→x

ωw→x −
∑
x→z

ωx→z

Given this result, an interesting quantity to consider is the following

δydδx = δy ·
(∑

w→x

ωw→x −
∑
x→z

ωx→z

)
where we assumed x ̸= y. By explicitly computing the action of δy with the two
terms we obtain

δydδx =
∑
w→x

δy · ωw→x −
∑
x→z

δy · ωx→z

Recalling the definition of δy and the effect of the left action of the algebra we have

δydδx =
∑
w→x

δy(w) ωw→x −
∑
x→z

�
���*0

δy(x) ωx→z
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The only way for the first term not to vanish is for w to be equal to y. In that
case, δy(w) = δy(y) = 1, therefore we can write

δydδx = ωy→x

We need this last result to prove the theorem the other way around. In other
words, this expression allows us to find whether there is an edge between two given
vertices or not. This depends solely on the elements of the quantum differential
calculus expressed in terms of the basis of the algebra. For the proof of the other
way around, see [3] page 18.

□

When we are equipped with an algebra A = K(V ), there exists a universal quantum
differential calculus. Thanks to the theorem above, we can derive a digraph from that
quantum differential calculus that for now we call universal digraph. Since all the other
possible quantum differential calculus are derivable from the universal one, it means all
the possible digraphs can be derived from the universal digraph. For this reason, the
universal digraph is the digraph with all the possible edges, i.e. each vertex is once
connected to all the others, also known as complete digraph.

We now see a really interesting property of the quantum differential calculus as defined
above.

Proposition 4.3.3. Let (V,E) be a digraph. Given the algebra A = K(V ) and the
quantum differential calculus Ω1 = K(E) equipped with

df =
∑
x→y

(f(y)− f(x))ωx→y

for all x, y ∈ V . This quantum differential calculus is inner. In other words, there exists
θ ∈ Ω1 such that we can write

df = [θ, f ] = θ · f − f · θ

This proposition shows that a quantum differential calculus over a digraph is intrin-
sically non commutative because an element df ∈ Ω1 when Ω1 is inner, is non-trivial if
and only if the action of the algebra is non commutative. We now provide a proof for
the proposition.

Proof. Let us define θ as the sum of all the possible edges.

θ =
∑
x→y

ωx→y
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Now we need to prove that

df = θ · f − f · θ

By writing down the right hand side explicitly we see

θ · f − f · θ =
(∑

x→y

ωx→y

)
· f − f ·

(∑
x→y

ωx→y

)
=
∑
x→y

ωx→y · f −
∑
x→y

f · ωx→y

=
∑
x→y

f(y)ωx→y − f(x)ωx→y

=
∑
x→y

(f(y)− f(x))ωx→y

= df

It is worth remarking that in this example we built a quantum differential calculus
that is a bimodule of a commutative algebra. What is non-commutative is the action of
the algebra on Ω1. The inner property of this quantum differential calculus will come in
handy when we will define further differential structures.

In this last proposition we summarise the results obtained in this chapter to provide
a consistent environment on which we will define further differential tools.

Proposition 4.3.4. Let X be a finite set. Differential calculi Ω1(X) on the algebra
A = K(X) are inner and correspond to directed graphs on X, with

Ω1 = spanK ωx→y, f · ωx→y = f(x)ωx→y, ωx→y · f = ωx→yf(y)

df =
∑
x→y

(f(y)− f(x))ωx→y, θ =
∑
x→y

ωx→y

Now, to be able to do Riemannian geometry on graphs we need some additional
differential operators. Thus we give an explicit form to some of the objects introduced
in chapter 3. Then, we provide the machinery to introduce physical theories on this very
framework.
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4.4 Metric and Second-order Laplacian

We now introduce two fundamental objects: the metric and the second-order Lapla-
cian. We give their explicit form in a proposition, motivating the definition we have
given. However, we first define some notation to make the discussion clearer. Recall the
one-to-one correspondence between a digraph and a quantum differential calculus.

Definition 4.4.1. Let Ω1 be a FODC over a finite set. We call Ω1 symmetric if the
correspondent graph is an undirected graph which means that we have arrows in both
directions for every edge. An undirected graphs can then be regarded as ’bidirected’.

To introduce the metric along the lines of chapter 3, we first define the bimodule
inner product (, ).

Proposition 4.4.2. Let Ω1 be a FODC over a finite set. Any bimodule inner product
(, ) : Ω1 ⊗ Ω1 → A takes the form

(ωx→y, ωy′→x′) = λx→yδx,x′δy,y′δx

for some numbers λx→y called arrow weights.

For the proof that any of the inner products can be written in the form above see
[3]. We now establish a necessary and sufficient condition for a metric to exist in this
setting.

Proposition 4.4.3. Let Ω1 be a FODC over a finite set and (, ) be a bimodule inner
product as for definition 4.4.2. There exists a generalised quantum metric g if and only
if Ω1 is symmetric and the weights λx→y are all nonzero. In that case, we can write

g =
∑
x→y

gx→yωx→y ⊗A ωy→x

where

gx→y =
1

λy→x

.

In appendix D, we prove that this definition for g fulfils the requirement in definition
3.1.2. We now define the Second-order Laplacian in the framework of digraphs.

Proposition 4.4.4. Let Ω1 be a FODC over a finite set and (, ) be a bimodule inner
product. The induced Second-order Laplacian is given by

(∆θf)(x) = (θ∆f)(x) = 2
∑
y|x↔y

(f(x)− f(y))

with x, y ∈ X. We are summing over all y such that there is an arrow with y as one of
the edges.
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Proof. Recall the previous result,

∆θf = θ∆f = −2(df, θ).

Recall df from proposition 4.3.4, i.e.

df =
∑
x→y

(f(y)− f(x))ωx→y

then we write

−2(df, θ) =− 2
(∑

x→y

(f(y)− f(x))ωx→y,
∑
y′→x′

ωy′→x′

)
=− 2

∑
x→y

∑
y′→x′

(f(y)− f(x))

(
ωx→y, ωy′→x′

)
=− 2

∑
x→y

∑
y′→x′

(f(y)− f(x))λx→yδx,x′δy,y′δx

= 2
∑
x→y

∑
y→x

λx→y(f(x)− f(y))δx

Therefore

(∆θf)(x) = (θ∆f)(x) = −2(df, θ)(x) = 2
∑
x↔y

λx→y(f(x)− f(y))δx(x)

where the δx(x) fixes the value of x. We have

(∆θf)(x) = (θ∆f)(x) = −2(df, θ)(x) = 2
∑
y|x↔y

λx→y(f(x)− f(y))

4.5 Exterior Algebra of Finite Groups

In this section, we see the application of the concept of exterior algebra on finite
groups. Indeed, as we saw in section 4.3, a quantum differential calculus on a discrete
set is associated to a directed graph. In addition, a Ω1 on a graph is always inner
by θ =

∑
x→y ωx→y. We now see how to construct the maximal prolongation of the

first-order calculus.
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Proposition 4.5.1. Let Ω1(X) = K(E). Its maximal prolongation Ωmax(X) has rela-
tions ∑

y:p→y→q

ωp→y ∧ ωy→q = 0

for all p ̸= q with p ��→ q and

dωp→q =
∑
y:y→p

ωy→p ∧ ωp→q +
∑
y:q→y

ωp→q ∧ ωq→y

Again, the proof can be found on [3] page 29. As we saw at the end of the previous
chapter, it is natural to impose further relations so that the edge symmetric condition
holds, i.e. ∧(g) = 0.

4.6 Exterior Algebra on Cayley graphs

We now look at another type of graphs, the Cayley graphs.

Definition 4.6.1. Let G be a discrete group. A Cayley graph is a graph (G,E) in which
the edges have the form x → ax for all x ∈ G and a ∈ C for a fixed subset C ⊆ G \ e of
the group not containing the identity. This set C is the set of generators of the graph.

Recall the results in section 4.3, when G is at least finite and the first-order calculus
over G is a free module over a vector space Λ1 with basis

ea =
∑
x∈G

ωx→xa,

such that Ω1 = K(G) · Λ1.
Recall ωx→xa = δxdδxa, we assume that the group G itself can act on the algebra of

functions from the left and from the right. We define the left action as x ▷ δy = δxy and
the right action as δx ◁ y = δxy for all x, y ∈ G and δx basis element of K(G). A calculus
is called (right) left covariant if the action described above is extended to Ω1 in a way
that commutes with d, the exterior derivative.

We now proceed to an important result.

Proposition 4.6.2. Let G be a finite group. Left-covariant calculi Ω1(G) on K(G)
correspond to Cayley directed graphs based on subsets C ⊆ G \ e, with Λ1 the space of
left-invariant 1-forms, and with relations and exterior derivative

ea · f = Ra(f)ea, df =
∑
a∈C

(Ra(f)− f)ea

for f ∈ K(G). The calculus is inner by θ =
∑

a ea and bicovariant if and only if C is
stable under conjugation. Here Ra(f) = f((•)a).
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We do not provide a proof for this proposition, however it can be found in [3] section
1.7. Moreover, a precise explanation for what we mean by stable under conjugation is
not provided here. Whenever we will state the bicovariance of a calculus we just assume
the covariance under group action from both sides. For more details, we invite the reader
to consult [3].

Now we turn to exterior algebra on Cayley graphs.

Proposition 4.6.3. Every left-covariant calculus Ω1 on a finite group G has a natu-
ral left-covariant exterior algebra ΩL(G) generated by K(G) and an algebra ΛL of left-
invariant forms where the latter is generated by ea with the quadratic relations∑

a,b∈C:ab=z

ea ∧ eb = 0

for all z ∈ G \ {e}. This is also inner with the same θ as before. The exterior derivative
on degree 1 is given by

dec = θ ∧ ec + ec ∧ θ −
∑

a,b∈C:ab=c

ea ∧ eb

for all c ∈ C ⊆ G \ {e}

As we saw in the previous section, the possibly non symmetric Euclidean metric on
any symmetric graph is g =

∑
a∈C ea⊗ea−1 and hence has ∧(g) =

∑
ea∧ea−1 = θ∧θ. We

will set this to zero as an additional condition. Namely, this is equivalent to extending
the quadratic relations above to z ∈ G.

Now we provide the necessary notation to then discuss electromagnetism on S3 in
the following chapter.

Proposition 4.6.4. Let Ω(G) be the canonical bicovariant exterior algebra on a finite
group, as defined by a Cayley graph with generators C. Generalised quantum metrics g
exist if and only if C has inverses and takes the form

g =
∑
a∈C

caea ⊗ ea
−1, (ea, eb) =

δa−1,b

Ra(ca−1)

where ca ∈ K(G) are nowhere zero. This is edge-symmetric if and only if ca = Ra(ca−1)
for all a ∈ C and a quantum metric if and only if ca = ca−1 for all a ∈ C. The inner
element Laplacians are

θ∆ = ∆θ = −2
∑
a

1

Ra(c−1
a )

∂a
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This includes the canonical graph Euclidean metric where every edge has unit weight,
which for Ω(G) comes out as

g =
∑
a

ea ⊗ ea−1 , (ea, eb) = δa−1,b, θ∆ = ∆θ = −2
∑
a

∂a

Both of the last propositions are reported here without a proof. However, an inter-
ested reader can consult [3] for them, as well as further details and examples. We now
provide an example of all the concepts discussed above applied to the permutation group
S3.

Example 4.6.5. Let G = S3 with generators u, v, w and relations u2 = v2 = e and
uvu = vuv = w. To build the calculus we take C = {u, v, w}, the set of 2-cycles, that
result in the following Cayley graph.

e

u uv

w

v vu

u

v

u

v

u

v
w

From the graph, one can clearly see that u2 = v2 = e. This is reasonable because they
are permutations and repeating the same twice gives back the starting order. Then we
use the proposition 4.6.3 to express the relations between the left-invariant forms and
their differential. From the graph we see, w = uvu or w = vuv. We apply the first
equation in the proposition for z = uv and we obtain

eu ∧ ev + ev ∧ ew + ew ∧ eu = 0

because vw = v2uv = uv and wu = uvu2 = uv. Similarly for z = vu we have

ev ∧ eu + ew ∧ ev + eu ∧ ew = 0

.
From the extended conditions θ ∧ θ = 0 we pick z = e = u2 = v2 = w2 and therefore

we get
e2u = e2v = e2w = 0
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Then we calculate the first derivatives.

deu =θ ∧ eu + eu ∧ θ −
∑

a,b∈C:ab=u

ea ∧ eb

=�����:0
eu ∧ eu + ev ∧ eu + ew ∧ eu +�����:0

eu ∧ eu + eu ∧ ev + eu ∧ ew
=(ew ∧ eu + eu ∧ ev) + (ev ∧ eu + eu ∧ ew)
=− ev ∧ ew − ew ∧ ev

therefore we have
deu + ev ∧ ew + ew ∧ ev = 0.

Similarly,
dev + eu ∧ ew + ew ∧ eu = 0

dew + ev ∧ eu + eu ∧ ev = 0

From the equations above, applying the wedge operator with another element ei with
i = {u, v, w} we can extract the dimensions of the Ωs in the DGA. From the calculations
we got 1, 3, 4, 3, 1 for Ω0,Ω1, · · · ,Ω4. The volume element is

Vol := eu ∧ ev ∧ eu ∧ ew = ev ∧ eu ∧ ev ∧ ew = −ew ∧ eu ∧ ev ∧ eu = −ew ∧ ev ∧ eu ∧ ev.

The most general quantum metric, such that ∧(g) = 0, has the form

g = cueu ⊗ eu + cvev ⊗ ev + cwew ⊗ ew

with the coefficients always non-vanishing. The edge-symmetric condition is for cu =
Ru(cu−1) = Ru(cu) and can be rewritten in the form

Ru(cu)− cu = ∂ucu = 0

and similarly ∂vcv = ∂wcw = 0. In this example the canonical Laplacian is

∆θ = −2

(
1

cu
∂u +

1

cv
∂v +

1

cw
∂w
)

This operator has three eigenvalues that are respectively 0, 6 and 12. The identity
permutations 1 for example, gives

∂i1 = Ri1− 1 = 1− 1 = 0

for any permutation i = {u, v, w}. This means that 1 is an eigenvector of ∆θ with
eigenvalue 0. Furthermore, if we consider the function that gives back the sign of the
permutation of three elements we see

∂isign = Risign− sign = −2sign
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where the operator Ri is just applying an additional permutation i = {u, v, w} before
extracting the sign. Thus, it changes the sign. We can see that this function is an
eigenvalue of ∆θ with eigenvalue 12.

Finally, we analyse the following interesting function

ψx = 2δx − δxuv − δxvu

We apply ∆θ to it and we obtain

∆θψx = −2

[
2δxu − 2δx + 2δxv − 2δx + 2δxw − 2δx

− δxw + δxuv − δxu + δxuv − δxv + δxuv

− δxv + δxvu − δxw + δxvu − δxu + δxvu

]
= −2

[
− 6δx + 3δxuv + 3δxvu

]
= 6ψx

Hence, ψx is an eigenfuction of ∆θ with eigenvalue 6. Consider the elements of S3 being
in order {e, u, v, w, uv, vu}, then one may expect 6 possible ψx. The six functions are
related by ψe+ψuv+ψvu = 0 and ψu+ψv+ψw = 0, that reduce the number of independent
functions to four. This can be visualised in the following figure.

e

u uv

w

v vu

We are now equipped with all the necessary tools to develop a Maxwell’s theory of
electromagnetism on graphs.
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Chapter 5

Geometric form of Maxwell’s
equation

In this chapter, we start with the local form of Maxwell’s equations for a fixed frame
of reference, and then rewrite them in the formalism of differential geometry. This ap-
proach is convenient for two reasons. First, the geometrical formulation highlights some
symmetries and elegantly shows their invariance under gauge transformations. Second,
we express them in terms of operators that are immediately extended to the graph setting
we have introduced in the previous chapter.

We will first recall some notions of differential geometry that are necessary. Then,
we will introduce two operators to develop a Maxwell’s theory on the graph framework.
Finally, we will rewrite the equations in a geometric and compact way. For full discussion
about differential geometry on manifolds, we invite the reader to consult [14] and [15].

5.1 Forms and Wedge Product

We first introduce the exterior forms on Rn.
Let M be a manifold, and M = Rn for simplicity. Exterior one-forms at a point

x ∈ M are linear maps from the tensor space to M into real numbers R, i.e.

ω: TxM −→ R
v −→ ω(v)

We call the dual vector space T ∗
xM , the cotangent space of M at x.

We also introduce the notation for the partial derivative. The partial derivative is in
general defined as follows.

df =
∑
i

∂ifdx
i
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In case of f smooth function on Rn and {x1, x2, · · · , xn} a set of global coordinates,
the partial derivative by the component xi is given by ∂if = ∂

∂xif .
If the smooth n-manifold M is not euclidean, then an atlas of local charts must be

constructed. In our discussion, an euclidean manifold is enough, however we recommend
the reader to consult [14] and [15] for the general case.

Given the definition of directional derivative of a smooth function f over Rn, i.e.

df(v)|x = v(f)(x) =
n∑

i=1

vi∂if |x

we rewrite the vector v on Rn as v =
∑n

i=1 v
i∂i. Moreover, a vector field V on Rn can

be written as
∑

i v
i(x)∂i. Thus, ∂i form a basis for TxM .

Using the directional derivative, we see that dxi form a basis for the dual vector space
with respect to ∂i, i.e. T

∗
xM = span{dxi} for i = [n]. For this reason we write a one-form

ω ∈ T ∗
xM as

ω =
n∑

i=1

ωidx
i

A one-form ω is said to be smooth if it is defined on all points of M and if ω(V ) is
smooth for all vector fields V ∈ V(M).

The one-form can be extended to k-forms, but we need an additional object. There
exists a skew-symmetric, associative produce of exterior forms that we call exterior prod-
uct or wedge product. A simplified way to introduce it is by its action on vectors. For
example,

(dxi ∧ dxj)(v, w) = viwj − vjwi = det

(
vi wi

vj wj

)
In this way, it can easily be extended to three or more factors, i.e.

(dxi ∧ dxj ∧ dxk)(u, v, w) = det

ui vi wi

uj vj wj

uk vk wk

 .

The set of dxi ∧ dxj for all combinations of i and j such that i ̸= j provides a basis for
arbitrary smooth 2-forms, i.e.

ω =
∑
i<j

ωij(x)dx
i ∧ dxj.

The skew-symmetry limits the number of basis elements to
(
n
2

)
. This construct can easily

be extended to an arbitrary (finite) number of factors, i.e.

ω =
∑

i1<···<ik

ωi1,··· ,ik(x)dx
i1 ∧ · · · ∧ dxik , k = 3, ..., n
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where ωi1,··· ,ik(x) are again smooth functions on Rn. We usually denote the space of the
k-forms over a manifold M as Λk(M), i.e. ω ∈ Λk(M). The dimension of this space is
given by the combinations of elements dxi without repeating them. Therefore

dimΛk(M) =

(
n

k

)
Using the notation of the previous chapters, one can see that ω ∈ Ω1.

5.2 Exterior Derivative and Wedge product

The electric and magnetic fields in the Maxwell’s equation will be rewritten as k-forms
and therefore we now need to recall the action of the exterior derivative on k-forms. The
exterior derivative d maps k-forms to (k + 1)-forms, i.e.

d : Λk(M) −→ Λk+1(M)
ω −→ dω

In addition, the exterior derivative fulfils a graded Leibniz rule. When applied to the
wedge product of a r-form ω and a s-form σ (r, s ≤ n) the result is

d(ω ∧ σ) = (dω) ∧ σ + (−1)r ω ∧ (dσ).

As we will see, the exterior derivative is a generalisation of the total derivative for
functions, and of the gradient, the curl and the divergence for vector fields in Rn. Thus,
it is the object we need to generalise the Maxwell’s equations.

The remarkable result, which is vital for the rest of the discussion, is that the exterior
derivative applied twice always yields zero, i.e.

d ◦ d = 0

Finally, we introduce some notation.
Let ω be a k-form. We call it closed if the application of the exterior derivative to it

yields zero, i.e.

dω = 0, ω ∈ Λk(M)

Let η be a (k + 1)-form. We say η is exact if it is the exterior derivative of a k-form,
i.e.

η = dω, η ∈ Λk+1(M), ω ∈ Λk(M).

Clearly, every exact form is also a closed form. For further details and proofs on
differential geometry see [14] and [15].

Finally, in the following example we briefly show how the exterior derivative replaces
the divergence and curl of a vector field in R3.
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5.3 Hodge operator

We now introduce the hodge operator. Let V be a finite-dimensional vector space
equipped with a non-degenerate scalar product (, ). We recall from linear algebra that
the scalar product on V induces a scalar product on its dual V ∗ through a linear map L
such that

L: V −→ V ∗

v −→ L(v) = Lv

where Lvw = (v, w) for all v, w ∈ V . The non-degeneracy of (, ) implies kerL = 0.
Because dimV = dimV ∗, then L is an isomorphism. Since we assume the scalar product
on V to be non-degenerate we define a scalar product on V ∗ as

(v∗, w∗)V ∗ = (L−1v,L−1)V

for every v, w ∈ V given L(v) = v∗ and L(w) = w∗. Consider now the space Λk(V ∗)
where its elements are a linear combination of elements of the type α1 ∧ α2 ∧ · · · ∧ αk.
There exists a unique scalar product defined on Λk(V ∗) such that

(α1 ∧ α2 ∧ · · · ∧ αk, γ1 ∧ γ2 ∧ · · · ∧ γk) = det

(
(αi, γi)

)
.

(see [2], page 670). There is an additional notion that we need to introduce to define
the Hodge operator, the orientation of a basis. Let V be a n-dimensional vector space
equipped with a non-degenerate scalar product. Let also B1 and B2 be two orthonormal
basis for V . There exists a unique linear map L from B1 to B2 such that detL is either
+1 or −1. This means that we can identify two equivalence classes. Explicitly, if the map
between two basis has detL = +1 then the two basis are in the same equivalence class.
On the other hand, if detL = −1 the two basis are in different equivalence classes. Now
we define the orientation of the basis by assigning +1 to an equivalence class and −1 to
the other, arbitrarily. Consider now the space Λn(V ∗) with two basis B1 = e1 ∧ · · · ∧ en
and B2 = f1 ∧ · · · ∧ fn. They differ by a value detL = ±1 where L is the change of basis
matrix.

Finally, a non-degenerate scalar product together with the choice of orientation of V
determines a unique e1 ∧ · · · ∧ en ∈ Λn(V ∗). We refer to this element as σ.

Consider now differential forms on the manifold Rn with global coordinates x1, · · · , xn.
The conclusion above implies that for each point x ∈ Rn, we get a unique element of
Λn(T ∗

xM), namely a n-form. We define

Vol = dx1 ∧ dx2 ∧ · · · ∧ dxn.

Now we have all the ingredients necessary to introduce the ⃝∗ -operator, usually known
as Hodge operator.
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First, we show that a wedge operator, together with the choice of Vol ∈ Λn(V ∗),
assigns to each λ ∈ Λk(V ∗) a linear function on Λn−k(V ∗). If we pick ω ∈ Λn−k(V ∗) then
λ ∧ ω is an element of Λn(V ∗), hence a multiple of Vol. This means we can write

λ ∧ ω = f(ω)Vol

Therefore, each λ ∈ Λk(V ∗) identifies a linear map

λ : Λn−k(V ∗) −→ R
ω −→ f(ω)

There is a unique element, that we shall denote ⃝∗λ, which determines the same function
f(ω) from Λn−k(V ∗) to R via the scalar product. Thus, given λ ∈ Λk(V ∗), we uniquely
define ⃝∗λ ∈ Λn−k(V ∗) by the condition

λ ∧ ω = (⃝∗λ, ω)Vol
for all ω ∈ Λn−k(V ∗). Note that if we change orientation the sign of Vol changes and
hence the sign of ⃝∗λ as well. In the cases of k = 0, n, we define 1 as the basis element of
Λ0(V ∗), with scalar product (1, 1) = 1 and the trivial wedge product 1∧ ω = ω = ω ∧ 1.

The general way to calculate it is to apply the condition above using basis elements of
Λn−k(V ∗) as ω in turns. In fact, once λ is a basis element of Λk(V ∗) then the calculation
is easier.

We now provide an example in the R4 Minkowski space, thus with the Lorentz scalar
product.

Example 5.3.1. Consider the four-dimensional spacetime with the Lorentz scalar prod-
uct. The basis for Λ1(V ) is {dt, dx, dy, dz} with (dt, dt) = 1 and (dx, dx) = (dy, dy) =
(dz, dz) = −1, and σ = dt ∧ dx ∧ dy ∧ dz. From the definition we see

⃝∗ (dt ∧ dx ∧ dy ∧ dz) = 1.

In addition, using the equation for a scalar product between differential forms in the
previous page we have

(Vol,Vol) = det


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 = −1

hence
⃝∗1 = −Vol.

Now we proceed to the other differential forms. Recall that any switch of two factors in
a differential form comes with a change of sign, i.e.
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dx1 ∧ dx2 ∧ · · · ∧ dxi ∧ dxi+1 ∧ · · · ∧ dxn = (−1)dx1 ∧ dx2 ∧ · · · ∧ dxi+1 ∧ dxi ∧ · · · ∧ dxn

this is true in the specific case of the usual differential geometry. However the wedge
product is much more general as we will see later when we develop differential geometry
on a graph.

(dt ∧ dx ∧ dy) ∧ dz = (⃝∗ (dt ∧ dx ∧ dy), dz)σ =⇒ ⃝∗ (dt ∧ dx ∧ dy) = −dz
Similarly =⇒ ⃝∗ (dt ∧ dx ∧ dz) = dy

=⇒ ⃝∗ (dt ∧ dy ∧ dz) = −dx
=⇒ ⃝∗ (dx ∧ dy ∧ dz) = −dt

(dt ∧ dx) ∧ (dy ∧ dz) = (⃝∗ (dt ∧ dx), (dy ∧ dz))σ =⇒ ⃝∗ (dt ∧ dx) = dy ∧ dz
Similarly =⇒ ⃝∗ (dt ∧ dy) = −dx ∧ dz

=⇒ ⃝∗ (dt ∧ dz) = dx ∧ dy
(dx ∧ dy) ∧ (dt ∧ dz) = (⃝∗ (dx ∧ dy), (dt ∧ dz))σ =⇒ ⃝∗ (dx ∧ dy) = −dt ∧ dz

=⇒ ⃝∗ (dx ∧ dz) = dt ∧ dy
=⇒ ⃝∗ (dy ∧ dz) = −dt ∧ dx

dt ∧ (dx ∧ dy ∧ dz) = (⃝∗dt, dx ∧ dy ∧ dz)σ =⇒ ⃝∗dt = −dx ∧ dy ∧ dz
Similarly =⇒ ⃝∗dx = −dt ∧ dy ∧ dz

=⇒ ⃝∗dy = dt ∧ dx ∧ dz
=⇒ ⃝∗dz = −dt ∧ dx ∧ dy

5.4 Codifferential and Laplace-de Rham operator

In this section, we introduce the codifferential and the Laplace-de Rham operator.
They are a combination of the exterior derivative and the Hodge operator. The codif-
ferential and the exterior derivative d play a pivotal role in the geometric expression of
Maxwell’s equations.

Definition 5.4.1. Let d denote the exterior derivative and ⃝∗ denote the Hodge dual on
Rn. The codifferential is a linear map from Λk to Λk−1, i.e.

δ : Λk −→ Λk−1

ω −→ δω

The action of this operator is defined by

δ = (−1)n(k+1)+1 ⃝∗ d⃝∗ .

In addition, we call the Laplace-de Rham operator the sum of the combined operations
d ◦ δ and δ ◦ d, i.e.
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∆LdR := d ◦ δ + δ ◦ d

Recall that the exterior derivative raises the order of the differential form, whereas
the codifferential lowers it. Thus, the Laplace-de Rham operator doesn’t affect the order
of the differential form, i.e.

∆LdR : Λk −→ Λk

In the next section, we show how we can use the formalism of differential geometry
and the operator just defined to rewrite the Maxwell’s equations in a geometric form.

5.5 Classical Maxwell’s equations in compact geo-

metric form

Now we turn to Maxwell’s equations. Our aim is to write the Maxwell’s equations
in a geometric form. We begin with their integral and local form for a fixed frame of
reference. Then, by expressing the Lorentz force law as a relativistic Newton’s second
law, we will introduce a field strength tensor F µν . We will use that tensor to express the
Maxwell’s field equations in tensorial notation. Finally, we will use differential geometry
to highlight the geometric structure of the equations.

Let S be a surface and V a volume embedded in Rn.

Electronic Gauss’ law
‚

∂V
(D(t,x) · n)dσ = fG

˝
V
ρ(t,x)d3x

Faraday’s law
¸
∂S

E(t,x) · ds = −fF ∂
∂t

˜
S
B(t,x) · n(t,x)dσ

Magnetic Gauss’ law
‚

S
(B(t,x) · n)dσ = 0

Biot-Savart’s law
¸
∂S

H(t,x) · ds− fBS

fG

∂
∂t

˜
S
(D(t,x) · n)dσ = fBS

˜
S
(j(t,x) · n)dσ

Recall the Maxwell’s equations in local form. We will show that introducing the
exterior derivative allows us to rewrite the equations in a more elegant way.

Electronic Gauss’ law ∇ ·D(t,x) = fGρ(t,x)

Faraday’s law ∇× E(t,x) = −fF ∂
∂t
B(t,x)

Magnetic Gauss’ law ∇ ·B(t,x) = 0

Biot-Savart’s law ∇×H(t,x)− fBS

fG

∂
∂t
D(t,x) = fBSj(t,x)
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The constants fG, fF and fBS depend on the system of unit. If we pick the SI-system
then their fixed values are fG = fF = fBS = 1. On the other hand, with Gaussian units
the constants’ values are fF = 1/c, fG = 4π and fBS = 4π/c. The question of units is
no further discussed here, we invite the interested reader to consult [7, 12]. From now
on we will use Gaussian units.

Consider now the integral Faraday’s law. The closed curve ∂S is a one dimensional
manifold embedded in R3. Consider the path integral, it must be the integral of a one-
form along ∂S, and consequently on R3. It seems natural to associate the electric field
to a one-form, i.e.

ωE := E1(t,x)dx
1 + E2(t,x)dx

2 + E3(t,x)dx
3.

Similarly, we naturally associate the field B to a two-forms, i.e.

ωB := B1(t,x)dx
2 ∧ dx3 +B2(t,x)dx

3 ∧ dx1 +B3(t,x)dx
1 ∧ dx2.

Following a similar argument but applied to the electronic Gauss’ law, we write

ωD := D1(t,x)dx
2 ∧ dx3 +D2(t,x)dx

3 ∧ dx1 +D3(t,x)dx
1 ∧ dx2,

and lastly, for the Biot-Savart law we express H as a one-form, i.e.

ωH := H1(t,x)dx
1 +H2(t,x)dx

2 +H3(t,x)dx
3.

In conclusion, we express the source terms in the inhomogeneous equations as k-forms
as well. Namely,

ωρ := ρ(t,x)dx1 ∧ dx2 ∧ dx3

ωj := j1(t,x)dx
2 ∧ dx3 + j2(t,x)dx

3 ∧ dx1 + j3(t,x)dx
1 ∧ dx2.

Given this notation, we can express the Maxwell’s equations in terms of k-forms.
By doing that we unify the expression of the curl and divergence under the exterior
derivative.

Electronic Gauss’ law dωD = 4πωρ

Faraday’s law dωE + 1
c
∂
∂t
ωB = 0

Magnetic Gauss’ law dωB = 0

Biot-Savart’s law dωH − 1
c
∂
∂t
ωD = 4π

c
ωj

The right hand side of Maxwell’s equations is either zero or a source term. Those
very source terms undergo motion according to Lorentz force law. In fact, one needs that
force law to have a complete theory of electromagnetism. We then rewrite that equation
in a tensorial way.
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5.6 Field Strength Tensor

In this section, we introduce the Field Strength tensor via a discussion on relativistic
kinematics. This tensor will be useful to give a compact form to Maxwell’s equations.
This section follows the discussion in [12] section 2.3.

Consider a particle with mass m. As far as the Standard Model is concerned, all the
charged particles are massive. We define two Frames of Reference, a first one in which
the particle is at rest, K0, and a second one in which the particle is moving at constant
speed v, that we call K.

The four-momentum in K0 is P|K0 = (mc,0)T , whereas K is P|K = (1
c
E,p)T , with

p = mγv. The two momenta are related by a boost operator LP, i.e.

LP =
1

mc2

(
E cpT

cp mc2I3 + c2

E+mc2
ppT

)
.

The force inK0 is given bymẍ = FN(x) whereas inK is f(x) = LPFN(x). Therefore,
a Lorentz covariant version of the Newton’s second law reads

m
d2

dτ 2
x(τ) = m

d

dτ
u(τ) = f(x)

where the components of f(x) are(
f 0

f

)
=

(
γ 1

c
γvT

1
c
γv I3 + γ2

c2(γ+1)
vvT

)(
0
FN

)
=

(
1
c
γ(v · FN)

FN + γ2

c2(γ+1)
(v · FN)v

)
Recall u(τ)|K = (γc, γp)T , the equations of motion above, that can be written explicitly
as

mc
dγ

dt
=

1

c
(FN · v)

�γ
d

dt
p = �γFN +

1

c
v×

(
γ�γ

c(γ + 1)
(v× FN)

)
If we consider the force on a non-moving charged particle, i.e. FN = qE, then the
boosted Lorentz force equations read

mγ
d

dt
(γc) =

γ

c
v · dp

dt
=
γ

c
v ·
(
qE(t,x) +

q

c
v×B(t,x)

)
= γ

1

c
qE · v

mγ
d

dt
(γv) = γ

(
qE(t,x) +

q

c
v×B(t,x)

)
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the left hand side can be written covariantly mduµ

dτ
, the right hand side can also be

expressed in term of the four-velocity. Let us introduce

F µν(x) :=


0 −E1(x) −E2(x) −E3(x)

E1(x) 0 −B3(x) B2(x)
E2(x) B3(x) 0 −B1(x)
E3(x) −B2(x) B1(x) 0

 , x = (t,x)T

and let this field act on uν = gνµu
µ = γ(c,−x)T . In this way, we generalise the equations

of motion to a relativistic compact expression, i.e.

m
duµ

dτ
=
q

c
F µνuν .

5.7 Maxwell’s equations in compact tensorial form

The field strength tensor is extremely useful to express Maxwell’s equations in a more
compact way. In fact, we can directly rewrite the homogeneous equations as follow

∂λF µν + ∂µF νλ + ∂νF λµ = 0, µ ̸= ν ̸= λ ∈ (0, 1, 2, 3)

One may also introduce a Levi-Civita symbol in 4 dimensions to make the equation
even more compact. Let ϵµνστ have the following properties,

ϵµνστ =

{+1 µνστ = 0123
+1 even permutations of 0123
−1 odd permutations of 0123

In this case, the homogeneous Maxwell’s equations become

ϵµνστ∂
νF στ (x) = 0, µ = 0, 1, 2, 3

A similar discussion can be done for the inhomogeneous equations. However, we
first need to translate the source terms in a single Lorentz invariant vector. Multiple
approaches can be taken. Recall the charge conservation in local form, i.e.

∂ρ(x)

∂t
+∇ · j(x) = 0, x = (t,x)T .

Consider the operator ∂ν = ( ∂
∂(ct)

, ∂
∂x
, ∂
∂y
, ∂
∂z
), we can include all the information of the

source terms in a single tensor, i.e.

jν = (cρ(x), j(x))T .
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Hence, we write the conservation equation as

∂νj
ν = 0.

A different and deeper approach to this matter can be found on [12] page 129.
Now, to rewrite the left hand side, we introduce a new tensor similarly to what we

did for F µν but using the fields D and H. We define

Fµν(x) :=


0 −D1(x) −D2(x) −D3(x)

D1(x) 0 −H3(x) H2(x)
D2(x) H3(x) 0 −H1(x)
D3(x) −H2(x) H1(x) 0

 , x = (t,x)T

Then, the inhomogeneous Maxwell’s equations in Gaussian units can be written as

∂µFµν(x) =
4π

c
jν , ν = 0, 1, 2, 3

The explicit calculation to verify that those are the Maxwell’s equations can be found in
[12] section 2.3.

5.8 Compact geometric form of Maxwell’s equations

In the previous paragraph, we saw that the formulation with the two tensors F µν

and Fµν is convenient. We aim to incorporate them in the geometric expression of the
Maxwell’s equations.

First, we set ourselves in the R4 Minkowski space with metric g = diag(1,−1,−1,−1).
In the previous section, we simply extended the operators, now a more formal approach is
taken. A basis for k-forms is given by wedge products of elements dxµ with µ = 0, 1, 2, 3.
We define the two-form

ωF :=
∑
µ<ν

Fµνdx
µ ∧ dxν

where the covariant components Fµν can be obtained by contracting F µν twice with the
Minkowski metric tensor. If one sticks to the frame of reference in which we defined F µν ,
the explicit expression for Fµν is

Fµν =


0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0

 .

Recall the k-forms associated to E and to B. It naturally follows that we express ωF

in terms of them, i.e.
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ωF = dx0 ∧ ωE − ωB.

Similarly, we define the two-form correspondent to Fµν .

ωF :=
∑
µ<ν

Fµνdx
µ ∧ dxν

At this point, we have all the necessary ingredients to rewrite the Maxwell’s equations.
We recall the result of applying the exterior derivative to a two-form. We can write the
homogeneous Maxwell’s equations in terms of the simple exterior derivative of the ωF

two-form, i.e.
dωF = 0

For the inhomogeneous equations we need some additional steps. First, we pick
dx0 ∧ dx1 ∧ dx2 ∧ dx3 as a basis for Λ4. Let us apply the Hodge operator to ωF ,

⃝∗ωF(x) =
∑
µ<ν

Fµν(x)

(
⃝∗ (dxµ ∧ dxν)

)
=
∑
µ<ν

Fµν(x)

(
1

2
gµλgνρϵλρστdx

σ ∧ dxτ
)

=
1

2

∑
µ<ν

Fλρ(x)ϵλρστdx
σ ∧ dxτ ,

then we apply the exterior derivative,

d(⃝∗ωF)(x) =
1

4
ϵλρστ∂αFλρ(x)(dxα ∧ dxσ ∧ dxτ ).

Note that the index α needs to be different from both σ and τ . In addition, thanks
to the presence of the term ϵλρστ , λ and ρ also need to be different from both σ and
τ . Therefore we can either have λ = α or ρ = α. This is made clearer by applying the
second star operator to the last result, i.e.

⃝∗d⃝∗ ωF(x) =
1

4
ϵλρστ∂αFλρ(x)

(
⃝∗ (dxα ∧ dxσ ∧ dxτ )

)
=
1

4
ϵλρστ∂αFλρ(x)

(
ϵβγδηg

βαgγσgδτdxη
)

=
1

4
∂αFλρ(x)ϵλρστϵ

αστδgδηdx
η

Consider now the two Levi-Civita symbols, we can write

ϵλρστϵ
αστδ = ϵστλρϵ

σταδ = −2(δαλδ
δ
ρ − δαρ δ

δ
λ).

Using this expression in the result before yields

⃝∗d⃝∗ ωF = −1

2
∂αFλρ(x)(δαλδ

δ
ρ − δαρ δ

δ
λ)gδηdx

η =− 1

2

(
∂λFλδ(x)− ∂αF δα(x)

)
gδηdx

η

=− ∂λFλδ(x)gδηdx
η

55



Recall the definition 5.4 of codifferential, and consider n = 4 and k = 2 for that definition.
Then we can write the last result simply as

δωF = ∂λFλδ(x)gδηdx
η.

Now we discuss the right hand side of the inhomogeneous equation. In a previous
result we were able to write the source terms as a single tensor, i.e.

jν = (cρ(x), j(x))T .

On the other hand, we wrote the source terms as a three-form for the density of charge
and a two-form for the current density. We can immediately associate a three-form to
the source term by extending the current two-forms including the time differential

ωj =
1

3!
ϵµαβγj

µdxα ∧ dxβ ∧ dxγ

If we take the dual to this expression we obtain

⃝∗ωj =
1

3!
ϵµαβγj

µϵαβγδgδηdx
η,

then we consider the two Levi-Civita symbols contraction as before

ϵµαβγϵ
αβγδ = 3!δδµ.

Finally, we can write

⃝∗ωj = jµgδηdx
η

Recall the inhomogeous Maxwell’s equations in tensorial formalism from the previous
section and consider the latter result and the previous expression obtained for the left
hand side. We can finally write the inhomogeous Maxwell’s equations as

δωF =
4π

c
⃝∗ ωj.

We can improve the Maxwell’s equations when we express them in vacuum. In this
case, the relations between the fields D, H and E, B in Gaussian units are simply D = E
and H = B. For this reason, the F µν and Fµν have the same expression. If we change
slightly the notation so that ωF ≡ F and ωj ≡ j, we can express the Maxwell’s equations
in vacuum in an elegant and compact form.

Homogeneous dF = 0
Inhomogenous δF = J

where J = 4π
c
⃝∗ j. This is the most compact geometric form that the Maxwell’s equations

can get when expressed in vacuum. The tools of differential geometry help us to highlight
that gauge invariance of those equations. This will be covered in the next chapter.
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Chapter 6

Maxwell’s electromagnetism as a
gauge theory on graphs

In this chapter, we will discuss the gauge invariance of Maxwell’s equations (ME).
This gives an alternative method to solve them. We will then rewrite the equations in
the framework of graphs. Finally, we will provide the example of Maxwell’s theory on
the permutation group S3.

We begin with a brief recall of gauge invariance of ME in local form. Then we will
follow the same path as the previous chapter: first use tensor expression and finally
k-forms.

6.1 The classical Vector and scalar potential

Here we recall the vector and scalar potentials in the classical electromagnetic theory.
For more details see [7] sections 6.2 and 6.3 and [12] section 1.6. We begin by recalling
the ME in local form in vacuum expressed in Gaussian units.

∇× E(t,x) = −1
c
∂
∂t
B(t,x) ∇ · E(t,x) = 4πρ(t,x)

∇ ·B(t,x) = 0 ∇×B(t,x)− 1
c
∂
∂t
E(t,x) = 4π

c
j(t,x)

Recall that the divergence of the curl of a vector gives zero. From the magnetic ho-
mogeneous equation we can say B = ∇ × A where A is a vector potential with no
additional requirements so far. The other homogeneous equation can be rewritten as
∇ × (E + 1

c
∂A
∂t
) = 0. Recall now that the curl of the gradient of a vector is vanishing,

then we can say E = −∇Φ− 1
c
∂A
∂t

where the minus in front of the gradient is a convention.
We now rewrite the ME in terms of A and Φ. The two homogeneous equations are

simply vanishing. The two inhomogeneous ones can be rewritten as
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∇2Φ +
1

c

∂

∂t
∇ ·A = −4πρ

∇2A− 1

c2
∂2A

∂t2
−∇

(
∇ ·A+

1

c

∂Φ

∂t

)
= −4π

c
j

Hence, we reduced the number of equations to two. However they are still coupled. In
order to relax this coupling we can make a further consideration. The field B is invariant
with respect to the sum of a gradient of a scalar function, i.e.

A → A′ = A+∇Λ.

To leave E unchanged, we immediately transform the scalar potential as follows

Φ → Φ′ = Φ+
∂Λ

∂t
.

As long as the vector and scalar potential are modified with a scalar function via the two
gauge transformations above, the Maxwell’s equations remain unchanged. This gives us
freedom to define the potentials without changing the electromagnetic fields. In other
words, we can freely pick a Λ ∈ C∞(R3) without affecting the physics as long as the
potentials transform as above.

We call gauge the condition that we ask the two potentials to satisfy. The two most
common gauge choices are the Lorenz Gauge and the Coulomb gauge. The first asks the
potentials to satisfy the condition

∇ ·A′ +
1

c

∂Φ′

∂t
= 0

That is equivalent to asking the scalar function Λ, defined as above, to satisfy

∇2Λ− 1

c

∂2Λ

∂t2
= −

(
∇ ·A+

1

c

∂Φ

∂t

)
.

The second requires the vector potential to satisfy

∇ ·A′ = 0

That is equivalent to asking
∇2Λ = −∇ ·A.

These two different gauges are used in different setups and for different reasons. For
more details consult [7] section 6.3. We provide them here as a familiar reference. In
the next two sections we will discuss the look of these very same steps when we use the
tensor (and geometric) form of ME rather than the local one.
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6.2 Vector and scalar potential in tensor form

Recall the vacuum Maxwell’s equations in tensor compact form, i.e.

ϵµνστ∂
νF στ (x) = 0

∂νF
νµ(x) =

4π

c
jµ

for µ = 0, 1, 2, 3. In this notation, we need to proceed with the two potentials as we did
with the sources. We combine them in a single tensor, i.e.

A(x) = (Φ(x),A(x))T .

Recall the partial derivative operator in Minkowski space as defined in the previous
section, i.e.

∂µ = (
1

c

∂

∂t
,−∇).

In this way, the field strength tensor can easily be defined in terms of the four-potential

F µν = ∂µAν − ∂νAµ.

This is an equivalent but more compact formulation than what we had before. As a
matter of fact, for ν = 0 we have

F i0 = Ei = ∂iA0 − ∂0Ai

=− ∂iΦ− 1

c

∂A

∂t

where we used ∂i = gij∂j with g
ij = diag(+,−,−,−). Note that for µ = 3 and ν = 2 we

have

F 32 = B1 =∂3A2 − ∂2A3

=− ∂3A
2 + ∂2A

3 = (∇×A)1

and similarly we obtain the other components of B = ∇×A.
Both gauge transformations for scalar and for vector potentials can be written with

a single expression, i.e.
Aµ → A′µ = Aµ − ∂µΛ

where Λ is a well-behaved scalar field. We can see from the definition of F µν and the com-
mutativity of the partial derivative that the field is invariant to this gauge transformation
of A.
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When we consider the tensor potential, the homogeneous ME are simply vanishing,
whereas the inhomogeneous read

□Aν + ∂ν(∂µA
µ) =

4π

c
jν

where □ = ∂µ∂
µ = 1

c2
∂
∂t

− ∆. This is equivalent to the result obtained in the previous
section.

With this notation, the Lorenz gauge condition is expressed by

∂µA
µ = 0, µ = 0, 1, 2, 3

whereas the Coulomb condition is simply

∂iA
i = 0, i = 1, 2, 3.

6.3 Vector and scalar potentials in geometric form

The previous step from usual to tensor notation was pretty much a rewriting. On
the other hand, expressing something in geometric form is a deeper conceptual step. In
fact, we will be able to use the operators of differential geometry defined on graphs to
develop the theory on that very framework.

Recall the vacuum Maxwell’s equation in geometric form, i.e.

dF = 0

δF = J

Now, we write the potential as a 1-form by using its covariant components Aν =
gνλA

λ, i.e.
ωA := Aνdx

ν

using the Einstein convention for the sum. By applying the exterior derivative we get

dωA = ∂µAνdx
µ ∧ dxν

=
∑
µ<ν

(∂µAν − ∂νAµ)dx
µ ∧ dxν .

We now recognise Fµν = ∂µAν − ∂νAµ and therefore we obtain

ωF = dωA ⇐⇒ F = dA

This means that we see F as an exact 2-form.
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Recall d ◦ d = 0, in this formulation the homogeneous ME are trivially satisfied. On
the other hand, rewriting the inhomogeneous equations is more laborious. The explicit
calculation can be found in [12] pages 148-149. The final form of the inhomogeneous
equations is

∆LdRωA − d ◦ δωA = J ⇐⇒ ∆LdRA− d ◦ δA = J

where J = 4π
c
jν . If we explicit the coordinates we get

□Aν − ∂ν(∂
µAµ) =

4π

c
jν

that can be recovered to the equations in the previous section by just applying the inverse
metric appropriately to match the indices.

In this framework, the gauge transformations can easily be written as

ωA → ω′
A = ωA + dΛ.

One can immediately see that ωF = dωA remains invariant to an addition of an exact
form to the gauge potential ωA.

The gauge condition that is usually picked in this setup is the Coulomb gauge. With
this notation, it takes the form δωA = 0. Thus, the conditions on Λ are

δω′
A = 0 = δωA + δdΛ

In the latter section we developed the tools to solve the Maxwell’s equations in
geometric form using gauge theory. In the next section, we will use these tools to find
the expression for the gauge potential when we solve the Maxwell’s equations in the
graphs framework.

6.4 Maxwell’s theory on graphs

The methods developed so far in this chapter can be used to extend Maxwell’s theory
on discrete groups and graphs. Recall the Maxwell’s equations in geometric compact form

dF = 0, δF = J

There are various methods to solve these equations. In our case, we decide to consider
the electromagnetic field F as a modulo exact form, i.e. F = dα with α ∈ Ω1. With
some precautions, we can already work this theory in nice cases armed only with an
exterior algebra over an algebra A and a quantum metric, and the calculus will typically
be inner. We will look at the case where A = C(G) in a discrete group G and Ω(G)
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bicovariant calculus which is inner with θ =
∑

a ea, as we saw previously. We consider
the Euclidean metric with coefficients in the basis denoted by ηa,b = δa,b−1 , i.e.

g =
∑
a∈C

δa,a−1ea ⊗ ea−1

where C ⊆ G \ {e} as in proposition 4.6.4. We assume that there is up to scale a unique
top form Vol, which we take as a n-fold product of the ea basis elements. For the volume
form to be central we need the degrees of these elements to multiply to e in the group.
In this setting we define the antisymmetric tensor ϵ by

ea1 ∧ · · · ∧ ean = ϵa1,··· ,anVol

which is either zero or a1a2 · · · an = e in G by centrality. From this tensor we define the
Hodge star by

⃝∗ (ea1 ∧ · · · ∧ eam) =
∑
b,c

d−1
m ϵa1···ambm+1···bnη

bm+1cm+1 · · · ηbncnecn ∧ · · · ∧ ecm+1

=
∑

am+1,··· ,an

d−1
m ϵa1···anea−1

n
∧ · · · ∧ ea−1

m+1
.

for some normalisation constants dm. From this definition, the Hodge operator extends
as a bimodule map. In nice cases, we can choose the constants so that ⃝∗ 2 = ϵmid, where
ϵm = ±1, depending on the degree m. For the rest of the discussion, we assume this
is true. We also write a⃝∗ = ⃝∗ a to ease the notation. Note that by definition we have
Vol⃝∗ = 1 and that

e⃝∗a ∧ eb = ϵ1dn−1η
a,bVol, ea ∧ e⃝∗b = (−1)n−1ϵ1dn−1η

a,bVol

holds in our discussion. In this case we find

de⃝∗a = θe⃝∗a − (−1)n−1e⃝∗a θ = 0

Therefore the ea are coclosed, i.e. e
⃝∗
a are closed. We write an n−1-forms as β =

∑
a β

ae⃝∗a ,
and find

dβ =
∑
a,b

∂bβaeb ∧ e⃝∗a = ϵ1dn−1(−1)n−1(
∑
a

∂a
−1

βa)Vol

From this and from ∂a
−1
∂a = −∂a − ∂a

−1
and ∆θ = −2

∑
a ∂

a, it follows that

⃝∗d⃝∗ d = ϵ1dn−1(−1)n−1∆θ

on functions. When G is finite, we define
´
f =

∑
x∈G f(x) as the analogue of integration.

We extend this to n-forms by
´
fVol =

´
f and by our assumptions we find that

´
dβ = 0
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for any n − 1-form β. This can be shown by the explicit calculation, recall x ∈ G and
a ∈ C the set of generators of the group,

ˆ
dβ =

∑
x

dβ =
∑
x

ϵ1dn−1(−1)n−1
∑
a

∂a
−1

β(x)

we ignore the coefficients and consider the sum only∑
x,a

∂a
−1

β(x) =
∑
x,a

(Ra−1 − id)β(x) =
∑
x,a

β(xa−1)− β(x).

The argument of the sum doesn’t necessarily vanish, however since xa−1 and x are all
the elements in the G, the total sum gives zero. Thus

´
dβ = 0.

Proposition 6.4.1. Assume the above nice properties of ⃝∗ , that Hn−1
dR (G) = Cθ⃝∗ , and

that G is finite. Then J =
∑

a J
aea ∈ Ω1 is coexact if and only if∑

a

∂a
−1

Ja = 0,

ˆ ∑
a

Ja = 0

Any solution ψ of the wave equation ∆θψ = m2ψ generates such a source

Ja = 2(∂aψ̄)ψ − ∂a(ψ̄ψ) +
m2

|G||C|

ˆ
ψ̄ψ

Ja being the ’current associated to ψ.

Proof. We write here the proof for the first claim. A complete proof can be found in [3]
page 67.

By our cohomology assumptions on Hn−1
dR , if J is coexact, i.e. dJ⃝∗ = 0, then we can

write µθ⃝∗ + dβ for some complex constant µ and some n− 2-form β. We have θ⃝∗ ∧ θ =
ϵ1dn−1|C|Vol by the nice properties of ⃝∗ as defined before, while

´
dβ∧θ =

´
d(β∧θ) = 0,

so imposing
´
J⃝∗ ∧ θ = 0 forces µ = 0. Hence J⃝∗ is exact. So the requirements

dJ⃝∗ = 0,

ˆ
J⃝∗ ∧ θ = 0

imply J⃝∗ is exact. The converse is clear, therefore these two conditions are equivalent
to J being coexact. Under our assumptions, we can rewrite these requirements to match
the expression in the proposition by writing

dJ⃝∗ = ϵ1dn−1(−1)n−1(
∑
a

∂a
−1

J⃝∗ a)Vol, J⃝∗ ∧ θ = ϵ1dn−1(
∑
a

Ja)Vol.
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J being coexact is necessary to solve the Maxwell’s equations and it means that
J⃝∗ = d(F⃝∗ ) for some 2-form F . If this is exact, then we will have a ’gauge potential’
α such that ⃝∗d ⃝∗ dα = J , as desired. These steps mirror the classical treatment of
electromagnetism. Now, we impose the ’Coulomb gauge fixing’ δα = 0 that however
does not completely fix the freedom of the freedom in α. Parallel to our treatment of J ,
it makes sense to ask the stronger version, i.e. that α is coexact.

⃝∗d⃝∗ d : Ω1
coexact → Ω1

coexact

then becomes an operator on the space of coexact 1-forms to itself. This is what we aim
to diagonalise to solve Maxwell’s theory. This discussion and more details can be found
in [3] section 1.8.

6.5 Maxwell’s theory on the Permutation Group S3

In this section. we discuss the Maxwell’s theory applied to S3. More details can be
found in [3] page 68 and in [13]. Recall the result of example 4.6.5. We consider the
group G = {e, u, v, w, uv, vu} with |G| = 6 and the generators C = {u, v, w} with |C| = 3.
There we have a DGA with 12 total non zero elements. In particular, the basis picked
for each degree of the DGA are

Ω1 = span{eu, ev, ew}, Ω2 = span{eu ∧ ev, ev ∧ eu, ev ∧ ew, ew ∧ ev}

Ω3 = span{ew ∧ eu ∧ ev, eu ∧ ev ∧ ew, ev ∧ ew ∧ eu}

We also have 12 non zero values for the ϵa1,··· ,an introduced in the previous section, i.e.

ϵuvuw = ϵvuvw = 1, ϵwuvu = ϵwvuv = −1

and their cyclic rotations under u→ v → w → u. We also set

d0 = 12, d1 = 4, d2 =
√
3, d3 = 1, d4 = 1

to give the Hodge star as ⃝∗1 = −Vol, ⃝∗Vol = 1 and

⃝∗ eu = ew ∧ eu ∧ ev, ⃝∗ ev = eu ∧ ev ∧ ew, ⃝∗ ew = ev ∧ ew ∧ eu,

⃝∗ (eu ∧ ev) = − 1√
3
(eu ∧ ev + 2ev ∧ ew), ⃝∗ (ev ∧ ew) =

1√
3
(ev ∧ ew + 2eu ∧ ev)

⃝∗ (ev ∧ eu) =
1√
3
(ev ∧ eu + 2ew ∧ ev), ⃝∗ (ew ∧ ev) = − 1√

3
(ew ∧ ev + 2ev ∧ eu)

⃝∗ (ew ∧ eu ∧ ev) = −eu, ⃝∗ (eu ∧ ev ∧ ew) = −ev, ⃝∗ (ev ∧ ew ∧ eu) = −ew
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The natural normalisation constants are such that ⃝∗⃝∗ = −id. The nice properties
we assumed before hold. In addition, we assume that the cohomology condition in
proposition 6.4.1 holds for the Maxwell’s theory. We are solving ⃝∗d ⃝∗ dα = J and we
ask α to be coexact. From the results in [3] page 69, the eigenvalues of ⃝∗d ⃝∗ d on
Ω1

coeaxct are −6,−12,−18, each with 4-dimensional eigenspaces, the total space being 12-
dimensional. The 18 dimensions for the choice of the three components of α are reduced
to 12 by the coexactedness ’gauge fixing’.

Now we pick ψ to be the scalar wave function. If ψ is an eigenfunction of ∆θ with
eigenvalues −m2, then

Ja = 2(∂aψ̄)ψ − ∂a(ψ̄ψ) +
m2

18

ˆ
ψ̄ψ

obeys the source conservation conditions. Recall the example 4.6.5, the constant function
and the sign function both generate zero source. On the other hand, the m2 = 6 modes
do not. In particular, the ’point source’ wave function ψx at any point x ∈ S3 gives a
source

Ja
x = 1− 3δx − 3δxa

as an element of Ω1
coexact. This can be obtained by substituing ψx in the equation of Ja

x

as a function of ψ, i.e.

Ja = �������:0
2(Ra)(ψ̄)ψ − 2 id(ψ̄)ψ −Ra(ψ̄ψ) + ψ̄ψ +

6

18�
�

���
6ˆ

ψ̄ψ = 2−Ra(ψ̄ψ)− ψ̄ψ

Though we can define the source on the six different points of the graph, the six functions
are not independent. In fact, we immediately see that Jxu + Jxv + Jxw = 0 from which
we derive

Ju + Jv + Jw = 0, Je + Juv + Jvu = 0

that shows a destructive interference. Thus, we have 4 possible independent sources.
From the direct calculation we see that Jx is an eigenfunction of ⃝∗d⃝∗ d with eigenvalue
−12, and hence we can write a gauge potential α = − 1

12
Jx, whose components are

αa = Ja
x .

Recall that F = dα and the choice for the basis of Ω2. We then calculate the explicit
components of F .

dα = d(
∑
a

αaea) =
∑
a

d(αaea)

where αa ∈ Ω0 and ea ∈ Ω1. The exterior derivative fulfils a graded Leibniz rule as the
differential geometry case. Thus, we write

dα =
∑
a

[
(dαa) ∧ ea + αadea

]
.
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Then, we recall
dαa = ∂bαaeb = (Rb − id)αaeb = (Rbα

a − αa)eb

and

dea = θ ∧ ea + ea ∧ θ =
∑
b|b ̸=a

(
eb ∧ ea + ea ∧ eb

)
By plugging these results in the equation above for dα we get

α =
∑
a,b

[
(Rbα

a − αa)eb ∧ ea + αa(eb ∧ ea + ea ∧ eb)
]

=
∑
a,b

[
(Rbα

a −��α
a +��α

a )eb ∧ ea + αaea ∧ eb
]

=
∑
a,b

(Rbα
a)ea ∧ eb + αbeb ∧ ea)

=
∑
a,b

(Rbα
a + αb)eb ∧ ea

Therefore we have F ba = (Rbα
a + αb). However, the choice of Ω2 basis implies the

following consideration.

F =
∑
a,b

F abea ∧ eb

=F uveu ∧ ev + F uweu ∧ ew + F vuev ∧ eu + F vwev ∧ ew + Fwuew ∧ eu + Fwvew ∧ ev
=(F uv − Fwu)eu ∧ ev + (F vu − F uw)ev ∧ eu + (F vw − Fwu)ev ∧ ew + (Fwv − F uw)ew ∧ ev

Therefore, the components of F are

F uv = Ruα
v + αu −Rwα

u − αw, F vu = Rvα
u + αv −Ruα

w − αu

F vw = Rvα
w + αv −Rwα

u − αw, Fwv = Rwα
v + αw −Ruα

w − αu

Recall αa = − 1
12
(1−3δx−3δxa). Finally, the components of F on S3 with our assumptions

are

F uv =
1

2
(δxu − δxw), F vu =

1

2
(δxv − δxu), F vw =

1

2
(δxv − δxw), Fwv =

1

2
(δxw − δxu)

Consider now F in differential geometry. The electric field and the magnetic field
components are related via the Hodge operator, i.e. ⃝∗FE = FB. Following the same
considerations we can naturally divide the F on S3 accordingly.

FE = (F uv, F vu), FB = (F vw, Fwv)
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Appendix A

Alternative definition of module and
algebra

Almost all the resources cited in the first chapter use slightly different definitions that
rely on other algebraic structures (rings or monoids). For this reason a quick comparison
is given here.

A.1 Introduction

Most of the citations use rings as a starting point for the definitions we gave above,
for this reason the direct comparison may appear doubtful. In the following section a
brief extension on this regard is provided.

A group is a set together with a binary operation that has associativity, the identity
element and the inverse element. For more see section 1.4 and [6] chapter 1,[8] chapter
1.

A ring is a nonempty set R with two binary operations (addition and multiplication)
such that (R,+) is an abelian group and the multiplication is associative and distributive
on both sides, see [6] page 115. A definition of module may be given starting from rings.

Definition A.1.1 (Alternative). Let A be a ring. A (left) A-module E is an additive
abelian group together with a function A× E −→ E (the image of (a,e) being denoted
by a.e) such that

1. a.(e1 + e2) = a.e1 + a.e2

2. (a+ b).e1 = a.e1 + b.e1

3. a(b.e1) = (ab).e1 for all a, b ∈ A and ei ∈ E.
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If A has an identity element 1A and 1A.e = e for all e ∈ E then E is said to be an unitary
A-module.

The unitary module over a ring structure is really close to a vector field. All the
properties for the addition are already present because E is an additive abelian group
and the properties for the multiplication by an element of the ring (scalar) are provided
by the definition above. The only property that is left to be added to the definition to
make E a vector field is the inverse of the element in the ring A.

Definition A.1.2. Let A be a unitary ring. A is called division ring if there exists
a−1 for all a ∈ A \ {0}. Where 0 is the addition identity (assumed 0 ̸= 1, 1 being the
multiplicative identity).

If A is a commutative division unitary ring then it is a field, and finally a unitary
(left) A-module is a (left) vector space over a field A.

A.2 Algebra

We now see how the definition of algebra changes once the notions above are used as
a starting point.

Definition A.2.1. Let K be a commutative ring with identity. A K-algebra A is a ring
A such that:

1. (A,+) is a unitary (left) K-module

2. k(ab) = a(kb) ∀k ∈ K, a, b ∈ A

For more see [6] page 227.

Firstly, in the definition 1.1.1, K was a field (or a commutative division unitary
ring), therefore unitary (left) K-module (A) is a vector space. Secondly, A was a vector
space in definition 1.1.1. Recall A being a ring, the second property in the definition
above asks for the multiplication between the field and the vector space (and ring) to
be compatible with the product of the ring. This concludes the comparison between the
two definitions and shows that they perfectly overlap considering the constraints that
apply for our discussion.

A.3 Module

We have given the definition of algebra based on the quickly introduced concept of
rings and groups. Now we see that the definition A.1.1 is equivalent to 1.3.1 once A is
an algebra.
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First of all, the additional properties that a ring needs to have in order to become
an algebra are expressed in the definition A.2.1. Looking now at E, it is a vector space
in 1.3.1 and an additive abelian group in A.1.1. The abelian additive group shares the
same properties for the addition in a vector space, see [9] chapter 1 for vector space and
[6, 8] for groups. The properties that are missing regard the product. We will work
with unitary algebras, in which case there exists a 1A (identity element for the product).
Recall the definition A.1.1 point 4 and the algebra being a vector space, then

λ1A.e = λ ? e

is valid for all λ ∈ K and e ∈ E. The question mark highlights the fact that we need
to define the product between an element of K with an element of E. Once defined, the
module (additive abelian group) acquires the properties that were missing.

Proof. We want to prove that the following properties are inherited by an additive abelian
group once we define a valid product for all the elements of a field. Let K be a field and
V be a vector space. The properties are

1. a(bv⃗) = (ab)v⃗

2. 1Kv⃗ = v⃗

3. (a+ b)v⃗ = av⃗ + bv⃗

4. a(v⃗ + u⃗) = av⃗ + au⃗

for all a, b ∈ K and v⃗, u⃗ ∈ V . We now proceed to prove that they are valid for an
A-module over an algebra as in definition A.1.1.

1. Recall the property 3 in definition A.1.1 and the algebra A being a vector space
over K, we can write:

λ(µe) = λ1A(µ1A.e) = (λ1Aµ1A).e = (λµ)e

2. Recall the property 4 in definition A.1.1 and the algebra being a vector space over
K, then trivially:

1Ke = 1K1A.e = 1A.e = e

3. Recall the property 2 in definition A.1.1 and the algebra A being a vector space
over K, we can write:

(λ+ µ)e = (λ1A + µ1A).e = λ1A.e+ µ1A.e = λe+ µe

4. Similarly to the previous point but recalling the property 1 instead of 2.

This simple proof concludes the comparison between the two definitions of module
that have been given.
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Appendix B

Einstein Cosmological Field
Equations

The following are the field equations for cosmological general relativity

Gij + Λgij = Rij −
1

2
Rgij + Λgij = κTij

where Rij is the Ricci tensor and Tij the energy-momentum tensor. We see how the
left hand side of the equation, usually called geometrical side, depends solely on the
metric tensor and its first and second derivative. One should recall the definition of the
Ricci tensor to see its dependency on the metric tensor, see [4] chapter 3 and 4.
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Appendix C

Laplace-Beltrami in C∞(Rn)

The Laplace-Beltrami operator in C∞(Rn) satisfies the condition for a second-order
differential operator in the general case of a quantum differential algebra, as in definition
3.2.2. Here we give the explicit calculation.

Proof. Given the Laplace-Beltrami operator ∆f , i.e.

∆f =
1√
|g|
∂i(
√

|g|gij∂jf)

we apply it to two functions f, h ∈ C∞(Rn).

∆fh =
1√
|g|
∂i

(√
|g|gij∂j(fh)

)
=

1√
|g|
∂i

(√
|g|gij((∂jf)h+ f∂jh)

)
=

1√
|g|
∂i

(√
|g|gij(∂jf)h

)
+

1√
|g|
∂i

(√
|g|gijf∂jh

)
=

1√
|g|
∂i

(
h ·
√

|g|gij∂jf
)
+

1√
|g|
∂i

(
f ·
√
|g|gij∂jh

)
=

1

�
�
�√
|g|
∂ih ·

�
�
�√
|g|gij∂jf + h · 1√

|g|
∂i

(√
|g|gij∂jf

)
+

1

�
�
�√
|g|
∂if ·

�
�
�√
|g|gij∂jh+

+ f · 1√
|g|
∂i

(√
|g|gij∂jh

)

=
������������:∆f

1√
|g|
∂i

(√
|g|gij∂jf

)
· h+ f ·

������������:∆h
1√
|g|
∂i

(√
|g|gij∂jh

)
+ gij∂ih∂jf + gij∂jh∂if

=(∆f)h+ f∆h+ 2gij∂ih∂jf
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Let us consider the last term. Recall g∗ij := gij and the correspondence between (, ) and
g∗ shown in section 3.1. Therefore we can write

gij∂ih∂jf = g∗ij∂ih∂jf = (dxi, dxj)∂ih∂jf.

Now, we recall the properties of the bimodule map, as for definition 3.1.2. Therefore
we write

gij∂ih∂jf =(dxi, dxj)∂ih∂jf

=(dxi, dxj∂ih∂jf)

=(dxi, ∂ihdx
j∂jf)

=(dxi∂ih, dx
j∂jf)

=(∂ihdx
i, ∂jfdx

j)

=(dh, df)

Finally, we can write
∆(fh) = (∆f)h+ f∆h+ 2gij∂ih∂jf

∆(fh) = (∆f)h+ f∆h+ 2(dh, df)

Although the commutativity of the product in this framework makes calculation easy,
we formally show all the meaningful steps.
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Appendix D

Inverse condition of the metric on
bidirected graphs

Proof. Recall the metric in proposition 4.4.3, i.e.

g =
∑
x→y

gx→yωx→y ⊗A ωy→x

where

gx→y =
1

λy→x

∈ K

and the inverse condition in definition 3.1.2, i.e.

((ω, •)⊗ id)g = ω = (id⊗ (•, ω)).
For the sake of simplicity we only prove the left hand side, but the other side can be

similarly proven. First, we recall ω ∈ Ω1(X) therefore we can write

ω = ωx′→y′

where x′, y′ ∈ X fixed.
Then we do the calculation

ω =((ω, •)⊗ id)g

ωx′→y′ =((ωx′→y′ , •)⊗ id)
(∑

x→y

gx→yωx→y ⊗A ωy→x

)
=
∑
x→y

(ωx′→y′ , gx→yωx→y) · ωy→x

=
∑
x→y

gx→y(ωx′→y′ , ωx→y) · ωy→x
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Recall proposition 4.4.2, i.e.

(ωx→y, ωy′→x′) = λx→yδx,x′δy,y′δx

therefore we can write

ωx′→y′ =
∑
x→y

gx→yλx′→y′δx′,yδy′,xδx′ · ωy→x

The deltas with two indices are true Kronecker deltas, therefore they fix the free
variables y and x to the fixed value x′ and y′, respectively. The sum is thus not a sum
anymore and we obtain

ωx′→y′ =gy′→x′λx′→y′δx′ · ωx′→y′

=gy′→x′λx′→y′����:1
δx′(x′) ωx′→y′

=
1

����λx′→y′
����λx′→y′ωx′→y′

=ωx′→y′
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