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Sommario

La classificazione dei documenti (DC) è un problema scientifico che mira ad assegnare

un documento a una o più classi o categorie. I problemi che possono essere generalizzati

in DC sono scontrati ogni giorno: dal filtraggio di spam alla classificazione di genere

la gente risolve questi problemi manualmente o automaticamente. Informatica è prin-

cipalmente focalizzata alla classificazione di documenti automatica (ADC) che cerca di

fare l’assegnazione in modo automatico. La formulazione di strategia per risolvere questo

problema richiede la scelta di tecniche adatte da una ampia gamma di scelte a ogni passo

della strategia. Questo implica il numero enorme di possibili approcci che possono essere

presi per questo problema.

Linguistica, psicologia e psicolinguistica ci forniscono informazioni delle associazioni di

parole che possono essere usate nella scelta di caratteristiche (feature selection). Oggi,

molteplici metodi sono usati per questo motivo tra cui TF-IDF, BoW, Word2Vec ecc.

Quando si decide che caratteristiche scegliere da un documento, uno dovrebbe fare at-

tenzione a farlo in modo che le classi sono effettivamente distinguibili usando quelle

caratteristiche.

Lo scopo di questa tesi è di presentare un nuovo approccio alla classificazione del testo us-

ando le coppie verbo-oggetto. Noi esploreremo una possibile strategia che usa la presenza

delle coppie verbo-oggetto rilevanti in documenti come caratteristiche e il classificatore

Naive Bayes come classificatore su cui il modello è allenato.
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Introduction

Document classification (DC) is a scientific problem that aims to assign a document

to one or more classes or categories. The problems that can be generalized in DC are

faced every day: from spam filtering to genre classification people resolve these problems

either manually or automatically. Computer science is mostly focused on Automatic

document classification (ADC) which tries to do the assignment in automatic way. The

strategy formulation for resolving this problem requires choosing adequate techniques

from wide spectrum of choices at each step of the strategy. This implies the enormous

number of possible approaches that can be made to this problem.

Linguistics, psychology and psycholinguistics provide us with information about word

associations that can be used in feature selection. Today, multiple methods are used for

this purpose including TF-IDF, BoW, Word2Vec etc. When deciding which features to

select from a document, one should pay attention to make classes effectively distinguish-

able by them.

The aim of this thesis is to present a new approach to document classification using

verb-object pairs. We will explore one possible strategy that uses the presence of rele-

vant verb-object pairs in documents as features and a Naive Bayes classifier as a classifier

on which the model is trained.

The Chapter 1 will provide reader with more information about Natural Language Pro-

cessing and necessary knowledge about document classification for understanding the

strategy. It will also give the basic information about psycholinguistics that lay behind

the decision to use verb-object pairs in afterwards.

After that, in Chapter 2 we will go through some important results in theory that will

iii



iv INTRODUCTION

combine with knowledge from the previous chapter help us to eventually define our strat-

egy.

In Chapter 3 the theoretical model will be tested in a case study. The case study is based

on SDG Detector, a software based on the studied strategy that evaluates the presence

of UN Sustainable Development Goal (SDG) indicators in documents.

We will then assess the accuracy of the classifier which will eventually allow us to make

remarks and draw the conclusions in Chapter 4 which is also the final. The final chapter

will also propose some further research that can be made.
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Chapter 1

Background

In this chapter, we will introduce the reader to some important concepts that will

be useful for the understanding of the approach proposed by the thesis. They are not

independent of each other and all of them share the same core, computer science and

linguistics.

1.1 Natural language processing

Natural language processing (henceforth, NLP) is an applied sub-field of computa-

tional linguistics that is concerned with the processing of natural language by computer.

The idea of creating a machine being able to comprehend human language existed for

centuries before the emergence of NLP in the 1950s. The first important result was

Turing test [1] that aims to decide if a machine’s intelligence is equivalent to human

by evaluating the ability of the computer to communicate in human language. In 1966,

an early NLP system that simulated a Rogerian psychotherapist called ELIZA [2] was

developed successfully. ELIZA was, in fact, one of the first chatbots ever developed and

it was also one of the first attempts to convince the user that it speaks with a human

and thereby pass the Turing test. Since 1980s, machine learning algorithms became

more and more used by developers. The victory of IBM’s DeepBlue in chess against

Gary Kasparov presented a motivation to continue the research in AI. In 2006, they

eventually created Watson, a question-answering computer that was able to compete on

1



2 1. Background

the quiz show Jeopardy! winning the first prize. In recent years, the surge of intelligent

virtual assistants which use speech recognition (one of the important tasks of NLP) like

Samsung’s Bixby or Amazon Alexa is notable. Nowadays, NLP systems are widespread,

we can use them for accomplishing the simple tasks like making a web search through

virtual assistants or some more complex job like analysis of text collections in academic

work.

1.1.1 NLP tasks

The state-of-the-art NLP systems are capable of solving different language processing

tasks. We will address some of them in this subsection.

Tokenization

Tokenization is the process during which a string is being broken up in parts (called

tokens) following a certain rule. The most significant type of tokenization is word seg-

mentation, which represents the process of dividing a text in its words and punctuation.

This task is usually performed before any other because it results necessary for further

text manipulation.

Example: ”I am a student at the University of Bologna.” −→ [’I’, ’am’, ’a’, ’student’, ’at’,

’the’, ’University’, ’of’, ’Bologna’, ’.’]

Part-of-speech tagging

Part-of-speech tagging (henceforth, POS tagging) is the process of labeling words in

text with corresponding part of speech. Of course, before performing this task, we need

to tokenize the text we want to tag. At first sight, this can seem easier than it is in

reality because one could think that it is possible to map every word of a dictionary to

only one POS tag. In fact, there are many words in English and other natural languages

that are ambiguous in their POS. There are many approaches to this task, from simple

rules [3] to hidden Markov chains [4] and Trigrams’n’Tags [5].

Example 1 : ” I︸︷︷︸
PRP

study︸ ︷︷ ︸
VBP

at︸︷︷︸
IN

the︸︷︷︸
DT

University︸ ︷︷ ︸
NNP

of︸︷︷︸
IN

Bologna︸ ︷︷ ︸
NNP

.︸︷︷︸

.

”
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Example 2 : ” I︸︷︷︸
PRP

did︸︷︷︸
VBD

my︸︷︷︸
PRP$

study︸ ︷︷ ︸
NN

at︸︷︷︸
IN

the︸︷︷︸
DT

University︸ ︷︷ ︸
NNP

of︸︷︷︸
IN

Bologna︸ ︷︷ ︸
NNP

.︸︷︷︸

.

”

As we can see, in the first example the word study is tagged with VBP which represents

a verb that is in non-3rd person singular form and in the second example it is marked as

NN which stands for a singular noun. The tags used in these examples are more famous

as Penn POS tags [6].

Stemming

Stemming is the process of transforming words into their base form also called word

stems. It has many applications, for example we can use it to count the occurrences of

a term independently of the form it takes.

Example: Words study, studies and studying have the same stem: studi.

Lemmatization

Lemmatization is the process of reducing a word in lemma, i.e., its dictionary form.

It is closely related to stemming, but in the case of stemming we do not have any knowl-

edge about the context in which the word appears, but when it comes to lemmatization,

we take in consideration its POS tag and the context. These additional checks obvi-

ously make lemmatization slower because it does not use the hard-coded rules but more

complex procedures. This is a tradeoff because the results from the lemmatization are

usually more useful because of the better insight on a single word during the reduction.

Example: The word studying if considered a noun will remain the same after lemmati-

zation, but if lemmatized as a verb it will become study.

Parse trees

Formal grammar of a language is used to form strings composed of the language’s

alphabet that respect the language’s syntax. Parse trees are the tree representations of

the syntactic structure of a sentence or string according to some formal grammar. They

are widely used in computational linguistics, and their construction is one of the tasks

that are performed by modern NLP systems. There are two types of formal grammars

they can be built on: phrase structure grammars and dependency grammars. The former
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are concerned with how words and sequences of words combine to form constituents, and

the latter are instead focused on how words relate to other words [7]. If a sentence can

be interpreted in more than one way by a grammar it is called ambiguous and for each

interpretation one parsing tree can be built. The set of these trees is called parse forest.

S

NP

NNP

I

VP

VBP

study

PP

IN

at

NP

NP

DT

the

NNP

University

PP

IN

of

NP

NNP

Bologna

Figure 1.1: Example of constituency-based parse tree

Constituency-based parse trees which are based on phrase structure grammars have

terminal categories as leaf nodes and non-terminal categories as interior node. In Figure

1.1 we can see an example of constituency-based tree that is built from the sentence ”I

study at the University of Bologna”. Leaf nodes (we do not consider words) are terminal

categories: NNP represents singular proper noun, VBP verb of non-3rd person singular

present, IN preposition or subordinating conjunction and DT determiner. We have also

interior nodes: S represents sentence, VP verb phrase, NP noun phrase and PP preposi-

tional phrase. Leaf nodes can be seen as result of simple POS tagging and abbreviations

used in this example are part of Penn POS tags [6].
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study

I University

at the Bologna

of

.

I study at the University of Bologna .

nsubj

punct

obl

case

det

nmod

case

Figure 1.2: Example of dependency-based parse tree (left) and dependency graph (right)

Dependency-based parse trees are based on dependency grammars. In such a tree all

nodes contain terminal elements and they can be represented using a dependency graph

too. In Figure 1.2 both representations are presented for the same example from Figure

1.1. The parse tree visualization is simple, it contains only terminals, i.e. words and

punctuation. On the other hand, in dependency graph we named the relations between

the words using Universal Dependencies (UD) relations abbreviations [8]. UD is ”a

framework for morphosyntactic annotation of human language” [9]. UD v2 recognizes

37 universal syntactic relations and is widely used due to its cross-linguistic consistency

and availability. Some of those relations are present in this graph: nsubj stands for

nominal subject, punct for punctuation, obl for oblique nominal, case for case marking,

det for determiner and nmod for nominal modifier.

1.1.2 NLP toolkits

Nowadays, many NLP toolkits are available to use. The vast majority of them is

made for Python programming language. Python is a programming language known

for its simplicity but also capability of performing the most complex tasks in spheres of

industry and scientific research. Some of the most popular NLP toolkits are: NLTK [7],

spaCy [10] and Stanza (more famous as Python interface to Stanford CoreNLP) [11]. All

of them can perform tasks we have previously seen with many others. It is difficult to

make any comparison at the level of toolkit because their performances differ depending
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on tasks. There are also some more ”exterior” elements in which we can compare toolkits,

like cross-linguistic support.

1.2 Document classification

In the introduction, we defined document classification as a scientific problem that

aims to assign a document to one or more classes or categories. In this section, we

will describe the problem in more detailed way and present possible strategies for the

resolution.

1.2.1 Description of the problem

People encounter DC problems on a daily basis, but most of them are resolved auto-

matically by software that uses NLP mechanisms. Whether it is to filter spam mails or

to label books by genre, one should generally go through the same process.

Let’s first see how a human would resolve this problem manually. We will take the ex-

ample of book labeling to make it more illustrative without losing the generality of the

problem. First, we need a finite set G of genres which we will use to label the books.

Another requirement is that the person that is responsible for classification needs to be

well-informed about the characteristics of each of the genres, otherwise it would not be

able to recognize it. There are two ways how one can get informed about it: by reading

already labeled books from each genre or through reading the descriptors of each of gen-

res. Here we meet first limitations, reading the books from a genre can make us aware of

key differences in contents between the books of different genres and the efficiency of the

descriptor is limited by its precision. In practice, one usually undertakes some kind of hy-

brid approach that combines these two ways of informing. In DC, content characteristics

that provide us with information useful for the problem are called features. For example

we can treat the presence of aliens and fictional worlds in a novel as a feature that tells us

it may be labeled as science fiction novel. The sole presence of fictional worlds could also

make us consider other genres like ordinary fiction or fantasy, but in any case it would

still be a restriction of the initial set of genres. Some problems have peculiarities like the

one we are examining, for example some books usually have summaries which can be
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sufficient for content analysis. This can be of course a tradeoff because it would increase

uncertainty of the result comparing to the case in which analyze the whole book. After

we have extracted the features from the content, we can analyze them and conclude to

which genre we want to assign the book.

We can go through another example in order to convince the reader in the generality of

the problem. Email filtering has been of great interest in recent years, and it is another

very illustrative DC problem. Suppose we want to filter out fraudulent mails. Similarly

as in the case of book labeling, we can learn about them from some concise descriptions

or learn about them by reading the examples. Many deceptive mails have similar forms,

a famous example is lottery scam. Most of them would have a variation of the sentence

”You won!” as the title, so we could use it as one of the features. Nowadays, the recog-

nition of this kind of spam is trivial for spam filters.

As the reader may have noted, the process of classification is pretty straightforward if we

do not take peculiarities into account. Because of this, the process can be automatized.

1.2.2 Automatic document classification strategy

As the name suggests, automatic document classification (ADC) is concerned with

resolving DC problems automatically. Today some problems like spam filtering are al-

most completely delegated to computer thanks to the progress of NLP mechanisms and

scientific research in the areas of computer science and computational linguistics.

ADC solutions rely mostly on classifier models that are used to predict the label of the

document which is given in input. If we need previously some information in the form

of data for constructing classifier model, we will call such document classification super-

vised. In the recent years, other two types of classification were the subject of interest

for researchers: unsupervised and semi-supervised document classification. Unsuper-

vised classification can construct classifier model without any data and semi-supervised

need few already labeled data.

We can use a generic strategy [12] for ADC illustrated by a process diagram in Figure

1.3. The generic strategy is composed of six steps and it shows the process of the deriva-

tion of classifier from a training set of documents. The strategy is obviously made for

supervised document classification. The first step is the preparation of a training set of
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documents. If we want to train a supervised classifier we need a lot of already labeled

documents, so this step is very important. One part of that documents will also be

used as testing data. The second step is preprocessing and its task is to transform the

training set of documents in dataset. After that, we have to extract the useful features of

documents. After the selecting of appropriate machine learning model for classification,

we can train it using the features and labels to train classifier. Eventually, we test the

classifier to assess its accuracy.

Training set

of documents

Apply

preprocessing

Extract

features

Select appropriate

ML model for classification

Train

classifier

Test

classifier

Figure 1.3: Generic ADC strategy

Now we will see more technical details about these steps.

Preparation of the set of documents

At the beginning of the process, we need to prepare a set of documents we will

eventually use to train and test the classifier we want to train. We will denote with

the term corpus a structured set of texts that usually have already passed some kind

of preprocessing. Many available toolkits come with their own corpus package that can

be very useful. For example, NLTK has its nltk.corpus package that contains dozens of

different corpora. If the available corpora are not sufficient to the user it usually resorts

to search of alternative datasets online, for example using DBpedia. The last and the

most complex way of the preparation of the set is requiring the user to create it by

itself. This can be done in many ways and its difficulty depends on the approach that is

undertaken. The user can create it using some kind of data scraping like web scraping.

In that case, the user has to write the program that will collect the useful documents

from the internet. At the end, in case that there are no useful resources on the internet

the user could overcome the problem by doing data collection which can also be a very
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difficult job.

Preprocessing of documents

In many experiments already preprocessed corpora can suffice the user’s needs, but

in the case it wants to work with scraped data it is necessary. If the data contains

superfluous information, it can attenuate the efficiency of the classifier. We can think

of an example where we get an HTML document using web scraping methods. After

the scraping, we cannot perform instantly NLP tasks on such a document because it

contains tags and other elements irrelevant for further analysis. If we do not remove it,

the text could be misinterpreted in for example, feature selection.

Many Python packages appear to be useful for this task. If we want to do web scraping,

we can use Beautiful Soup. It successfully parses HTML and XML files. A user can also

get text cleaned from tags using a simple function, which makes that part of preprocess-

ing simple. Another useful library in Python is re which allows us to manipulate text

using regular expressions. Regular expressions are simple way of extracting sequences

from text that match a pattern required by the user. Sometimes, the preprocessing in-

volves the elimination of stop-words, commonly used function words, like definite and

indefinite articles or auxiliary verbs. These operations allow us to work with cleaned

instead of raw content. If the cleaned text has a canonical form, we can speak also about

the normalization of text.

The following operations usually depend on what the feature extraction process looks

like. If we need to check the presence of words in text, one of the standard procedures

would be text tokenization. If our features depend on syntactic relations in sentences

we will need to do parse dependency-based trees which requires previously tokenization.

This part of preprocessing could also require some other NLP tasks, and most of toolkits

come with functions that allow their performing.

The preprocessing can be really complex, and sometimes it is rather convenient to store

preprocessed information if it is likely to be reused commonly. Say our feature extractor

checks if words of a certain text are present in one which is evaluated, it will be com-

putationally more efficient to store the list of words from that text and load it when

demanded than to extract them on every evaluation.
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Feature extraction

Feature extraction is a very important part of the strategy. Features represent char-

acteristics of text that help the classifier to differentiate various types of text. Therefore,

the features have to be informative.

One of the traditional models for feature extraction is Bag of Words (BoW). So far, in

our examples, we commonly used a simplified version of this model without naming it.

The idea of BoW is to present the frequencies of certain words as the feature of a text.

We can keep track of the occurrences or presence of each word in two different ways,

depending on what is our goal. If the number of occurrences does not matter, each word

can be represented by a Boolean, true if present in text, otherwise false. If the number

does matter, we can simply represent words as integers that denote how many times the

word appears in text.

Example: For text: ”I study at the University of Bologna. I am currently enrolled in the

third year.” and BoW [’I’, ’study’, ’Bologna’, ’work’] we will have the following result

array: [2, 1, 1, 0] (Word I occurs 2 times, study and Bologna occur one time each and

work is not present in the text). In the case of the array of presences, we will have [True,

True, True, False] because all words but work appear in the text.

Another commonly used method is term frequency-inverse document frequency (TF-

IDF) [13] which is similar to the previous method because of the term frequency part.

TF-IDF tends to reduce the significance of common words in documents. For example,

the presence of stop words is not very informative feature, and they appear in most of

the documents so by using the TF-IDF we ignore them. We can calculate the TF-IDF

weight of term using the following formula:

Wd = f(w, d) log( |D|
f(w,D)

)

where Wd is the weight we are looking for, f is occurrence function that in the case

when the second argument is a single document d returns the number of the occurrences

of word w in d and in the case when the second argument is corpora D it returns the

number of documents in which word w is present. We use | · | to denote the cardinality

of a set.

Even we can exploit syntactic relations from the preprocessing phase, it does not imply

that we necessarily catch the semantics, so in recent years modes to do so emerged. One
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of the best examples is Word2Vec that is based on the work of Mikolov et al. [14].

Machine learning models

Now we will see some machine learning techniques used in text classification. They

are important because they define how the classifier will be constructed and how it will

predict the label of input text.

One of the most simple classifiers is Naive Bayes classifier (NBC) which is based on Bayes

theorem. Bayes theorem can be given through the following equation

P (A|B) =
P (B|A)P (A)

P (B)

where P (A|B) is probability that event A will occur given that B is true. We can now

adapt this formula to our needs, so we can get the probability that a document d is of a

class c that belongs to the predefined set of classes C:

P (c|d) = P (d|c)P (c)

P (d)
=

P (d1, ..., dn|c)P (c)

P (d)

where {d1, ..., dn} is the set of document features of d. Now we can define the result of

classification as follows:

argmax
c∈C

P (c|d) = argmax
c∈C

P (d1, ..., dn|c)P (c) = argmax
c∈C

P (c)
n∏

i=1

P (di|c)

where in the first equation we left out 1
P (d)

because we can assume that it is constant and

does not have any effect on the result and in the second equation P (d1, ..., dn|c) became

a product of a sequence because of naive assumption that the features are mutually

independent. There are also some variations of NBC like Multinomial NBC which can

be used when we want to take for example the number of occurrences of words in account.

Another famous model is Support Vector Machine (SVM) [15] which seeks to find the

maximum margin hyperplane that divides two convex hulls of points (feature vectors)

belonging to one class. Because it works on the sets of classes with only two classes,

this was traditionally a binary classifier. Through years, a multi-class version evolved

using Multiple SVM (MSVM). There is no standard implementation of MSVM, but an
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actual

value

Prediction outcome

p n total

p′ True

Positive

False

Negative
P′

n′ False

Positive

True

Negative
N′

total P N

Figure 1.4: Example of confusion matrix

empirical study presented the superiority of pairwise coupling approach to MSVM [16].

Modern classifiers are using deep learning [17], but the traditional ones are still used

widely.

Training and testing

Training and testing are the final part of ADC, and they use feature set obtained

previously. The feature set can be viewed as a vector of couples ⟨d, l⟩ where d is the vector
of document features and l is the label assigned to that document. At this point, we

have to decide how to do the cross validation of data. Cross-validation methods are used

to assess learning algorithm performances by dividing data in two parts: one used for

learning (training set) and the other to validate (testing set) [18]. We will mention two

cross-validation methods: holdout method and k-fold cross-validation method. Holdout

method consists of splitting the feature set in two distinct sets: training set and testing

set. In k-fold cross-validation, we divide feature set into k equally sized segments. The

division is followed by k iterations of training and testing where at each iteration a

different segment is chosen for testing set and the remaining segments are used as training

set. It is known that when we have small datasets, it is better to use k-fold cross-

validation in order to achieve more accurate results. There is also a special case of k-fold
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cross-validation called leave-one-out cross-validation (LOOCV). LOOCV is considered a

special case because its configuration parameter k is equal to the length of the evaluated

feature set. It is especially used when the data is rare [19] and its pros is that there is

almost no bias in evaluation phase, but it can produce very large variance [18]. Bias is

an error caused by wrong assumptions in the used algorithm, while variance is an error

caused by small variations in the training set. The high variance in LOOCV is expected

due to famous bias-variance tradeoff [20] which states that the increase of bias implies

the reduction of variance. It is also time-consuming which can be a problem when we

use larger dataset. We also do not need to repeat the evaluation as it will not produce

any better results [21].

The training part depends on which machine learning model we have chosen. In the case

of NBC it is the determination of conditional and class probabilities, while in the case

of SVM it is the approximation of hyperplane. In each case we are using the data from

the training set to calculate the values and there are multiple ways to do so. Because of

this, NBC and SVM can be seen as families of classifiers rather than single classifying

methods. For example, in some cases class probabilities in NBC are not equal and cannot

be obtained by simple formula P (c) = 1
|C| where c is a certain class in the set of classes

C.

One of the most used ways of testing is using the confusion matrix. The confusion matrix

is constructed in the following way: each row of the matrix represents the actual label

of tested instances, and each column represents the predicted label of tested instances.

If we use k-fold cross-validation method, then the final confusion matrix is the sum of

confusion matrices constructed at each iteration of the method. We can see an example

of confusion matrix for a binary classifier with two classes, positive and negative, in

Figure 1.4. We can say that True Positives (TP) and True Negatives (TN) are correctly

predicted, and our goal is to maximize their share in total tests. We can express that

using formula:

ACC =
TP + TN

P +N

where P is the total number of Positives and N is the total number of Negatives. The

value calculated by this formula is also called the accuracy of classifier. We are also

interested to see balanced accuracy in cases when we have unequal numbers of tests per
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class. The balanced accuracy is given by the following formula:

BA =
TPR + TNR

2

where TPR is True Negative Rate (TP
P
) and TNR is True Negative Rate (TN

N
). Another

interesting coefficient for measuring binary classifier quality is Matthews correlation co-

efficient (MCC) [22]. We can calculate MCC as follows:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

where FP is the number of False Positives and FN is the number of False Negatives.

Recent research showed that MCC maintains consistency through comparison with some

other metrics [23]. MCC values range from -1 to 1 and the coefficients close to 1 show

almost perfect prediction, the coefficients close to -1 show almost worst possible predic-

tion and the coefficients around 0 show that the model behaves randomly [24].

We will now introduce Cohen’s kappa which is another important coefficient in classifi-

cation statistics and is calculated in the following way [25]:

κ =
2× (TP × TN − FP × FN)

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

There is discussion what magnitudes of kappa show ”good agreement”. We will for

simplicity use Landis and Koch’s guidelines [26] that consider magnitude over 0.81 as

almost perfect, 0.61 to 0.80 as substantial, 0.41 to 0.60 as moderate, 0.21 to 0.40 as fair,

0.00 to 0.20 as slight and below 0.00 as poor.

Many other evaluation metrics exist, but they suffer from different problems. Some of

them leave out important parameters like False Negatives, or it is difficult to decide what

values of coefficients can be considered acceptable (which is also the case with Cohen’s

kappa sometimes).

1.3 Psycholinguistics

In this section, we will introduce some important results from psycholinguistics that

will be useful for the following part of the thesis. Psycholinguistics is the study of the
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relationship between linguistic behavior and psychological processes. It originates with

Chomsky’s critical review of B.F. Skinner’s work Verbal Behavior (1957) [27][28]. This

discipline has a wide spectrum of study, and we will focus on language comprehension.

1.3.1 Word associations

Word associations can be useful to DC problems for several reasons. The first reason

would be the possibility to measure the connection of each word in text to each class.

Methods for quantifying those word associations already exist [29] and they were the sub-

ject of study in the past. Another reason is the result that some syntactic relations like

verb-object contain significant mutual information (MI). MI is defined as the measure of

mutual dependence between two random variables. Existence of pairs of words that have

MI can affect the accuracy of some classifiers. For example, NBC assumes that features

are mutually independent. However, an empirical study showed that existence of such

connections is not directly correlated with the accuracy [30], but still the assumption

of mutual independence is questioned. This limitation of word was noted, and some

approaches do not use them. One possible alternative is the use of n-grams. n-grams

are n-character slices of a longer string. The character n is usually replaced with some

number that would represent the dimension of slices, for example a 2-gram (or bi-gram)

would be a two character long slice of a string [31]. The problem with n-grams are that

they do not have to capture sensible slices, but rather a random group of words. Syn-

tactic n-grams (sn-grams) [32] tend to overcome this problem by creating n-grams over

syntactic relations instead of slicing sentences directly. For better understanding, say

we want to obtain all the possible sn-grams from the example we illustrated in Figure

1.2. We can identify four distinct sn-grams (we will not count path with punctuation): I

study, study at University, study the University, study University of Bologna. The value

of n would determine the size of these slices.

Most of the toolkits allow to user to extract n-grams efficiently. Extraction of sn-grams

requires from the user to create a parse tree before executing n-gram extraction.
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1.3.2 WordNet

Another important practical result of this discipline is WordNet [33]. WordNet is a

lexical database of semantic relations between words created in Cognitive Science Labo-

ratory of Princeton University. It was first created only for English language, but soon it

was expanded to other languages. In this large database, words are grouped into synsets

(sets of cognitive synonyms). For example, words predominate and prevail can be found

in the same synset. This can be very useful in text classification because we can group

terms by their meaning.

WordNet initially introduced six semantic relations: synonymy, antonymy, hyponymy,

meronymy, troponymy and entailment. Synonymy is the most important semantic re-

lation between two words that share at least one sense in common because synsets are

based on it. Antonyms are words of opposite meaning and their relation is, just like

synonymy, symmetric. Hyponymy is used to represent a word as subordinate to some

other word, called hypernym. The existence of hyponymy allows us to organize nouns in

hierarchical structures because they usually have only one hypernym. Meronyms denote

nouns that are part of some more complex noun called holonym. We can think of word

lip as meronym and its holonym would be mouth. In troponymy one verb is a manner of

another. An example would be verb march which is a manner of verb walk. Entailment

is a relation between two verbs that necessarily and unidirectionally entail one another.

WordNet also contains cross-POS relations that include morphosemantic links. An ex-

ample of such relation would be RESULT relation between words slicing and slice.

To this date, WordNet 3.0 has 155287 unique strings, 117659 distinct synsets and 206941

word-sense pairs [34]. Some words are polysemous (have more than one meaning) and

as a consequence belong to more than one synset. The most polysemous POS are verbs,

with 2.17 average polysemy when we include monosemous words and 3.57 when we

exclude them. Polysemous nouns have greater average polysemy than adjectives and

adverbs. but still have smaller average polysemy than these two POS when we include

monosemous nouns in the calculation too. Totally we have 128391 monosemous and

26896 polysemous words with 79450 senses.

NLTK comes with WordNet package, so it can be used together with other tools we have

seen so far without any problems.
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Proposed Strategy

After introducing some important concepts, we can now proceed to the presentation

of the strategy that will use verb-object pairs as features. We will do it step by step,

following the generic strategy we defined in subsection 1.2.2. We will not go in technical

details, but we will rather develop the strategy theoretically. The tasks we have seen

until now can be performed by tools provided by NLP toolkits, so by basing the strategy

on them, we can assume that the strategy is implementable.

2.1 Motivation

One could ask why verb-object pairs? As we have seen in the section about psycholin-

guistics, verb-object pairs can contain significant mutual information. By capturing these

pairs, we would enclose that information and get a much more informative feature than

a single word. We can make an example of sentence: Tomorrow I am going to drink

some coffee. We can extract the pair drink-coffee which is proved to have significant

mutual information [29] and use it as feature. The pairs also seem to have much larger

degree of mutual independence from single words. Also, the pairs could provide us with

more information about classes we want to use for classifying because they represent

complete actions while words can frequently mislead when taken from context and be

also polysemous.

17
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2.2 Strategy step-by-step

2.2.1 Dataset

The first step is defining how dataset needed for the strategy should look like. The

first and only obligatory requirement for the dataset is, like in any other ADC strategy,

the set of already labeled documents which will be afterwards transformed into feature

set.

Other dataset requirement could be task-related. For example, let’s assume that each

class from a set of classes has a list of verb-object pairs that are highly correlated to

it. Having in dataset those lists would be useful in feature selection because knowing

the relevant words a priori would save the classification process from some extra work

of approximating them through various methods (like TF-IDF). One could make simi-

lar list for words in the case of BoW model, so addition to dataset is not approach related.

2.2.2 Preprocessing

At the beginning of the preprocessing part, we will normalize the content of docu-

ments. The canonical form for this purpose will be the text cleaned from any tags or

elements that do not belong to human language. This implies that data will be cleaned

if any data scraping has been done. No additional work is needed for the preprocessing

of texts from corpora.

After that, the only operation we will need to do is tokenization. Obviously for extract-

ing verb-object pairs we will need to do tree parsing, but for efficiency we will leave that

work for later to be done on each evaluated sentence during feature extraction phase.

We will do this way because we do not want to fill the memory with parse trees that will

be used only once, during the passage through the sentence from which tree was derived.

No other tasks need to be performed at this point.
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Algorithm 1 Feature extraction

function FExtract(doc)

features← [ ]

for all s ∈ doc.sentences() do

pt← parseTree(s)

features.push(lemmatize(pt.getPairs()))

end for

return features

end function

2.2.3 Feature extraction

Now we are ready to define our feature extraction function. The function will take

document text as parameter and will return the array of features where every feature

will be a pair where the first element will be verb-object pair and the second element

will be Boolean that will be True if the pair is present in the text, otherwise False.

To make this function more efficient, we first create an empty vector where we store the

features, and we visit each sentence using a loop. Each sentence should be parsed into a

dependency-based or constituency-based tree. If we decide for the former we will simply

look if there is direct or indirect object relation going from some verb, and then we will

simply extract these two words. This could also be seen also as some special case of

s2-gram. The extraction of the pair from constituency-based tree is based on looking up

the tree for every noun in the sentence if there is a verb and in that case that verb and

noun are extracted [35][11]. After the lemmatization of the extracted pairs we can push

them into the features vector. Algorithm 1 shows the pseudocode of feature extraction

function. The getPairs() function depends on the type of parse tree we have chosen.

Our next goal is to keep only relevant pairs for the training, so we should eliminate those

superfluous. There are several ways to do so, and we could use some techniques we used

on words like TF-IDF where our term would be the pair. Another approach would use

the additional data we described at the first step. Thanks to the additional data, we

could eliminate irrelevant pairs efficiently.

At the end of this phase, we have a feature set of relevant verb-object pairs.
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2.2.4 Model training and testing

The next decision to be made is to choose a machine learning model that suits

the problem. We could use Naive Bayes Classifier because we suppose that we have

greater mutual independence of features than in the case of BoW model. What NBC

classifier should be used depends on the task. If the number of occurrences of each pair

is important, we should use a Multinomial Naive Bayes Classifier.

After the model is chosen we can proceed to training of model - the process completely

independent of the strategy and finally to testing. The testing could be done using the

four coefficients we have seen previously in 1.2.2.

The strategy can be visualized using the following diagram:

Prepare training

set of documents

Clean data

and tokenize documents

Extract

verb-object pairs

Select appropriate

Naive Bayes Classifier

Train

classifier

Test classifier

using ACC, BA, κ and MCC
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Case Study

In this case, we will cover the case study of the previously proposed strategy. Our real-

world context will be an ADC problem that we will resolve using the implementation

of the strategy. The results from testing phase will be afterwards used for making

conclusions.

3.1 Description of task

The task we will resolve is to verify the presence of Sustainable Development Goal

(SDG) indicators in documents.

SDGs are defined by United Nations (UN) in 2015, and they are intended to be achieved

by 2030. The UN published 17 SDGs together with their targets and indicators. Each

SDG contains several targets, and each target is monitored by from one up to four

indicators. The goals are listed in the following order:

1. No Poverty

2. Zero Hunger

3. Good Health and Well-being,

4. Quality Education

5. Gender Equality

21
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6. Clean Water and Sanitation

7. Affordable and Clean Energy

8. Decent Work and Economic Growth

9. Industry, Innovation and Infrastructure

10. Reduced Inequality

11. Sustainable Cities and Communities

12. Responsible Consumption and Production

13. Climate Action

14. Life Below Water

15. Life On Land

16. Peace, Justice, and Strong Institutions

17. Partnerships for the Goals.

2030 Development Agenda was adopted by 193 countries in 2015. The commitment to

the SDGs by countries was passed to all institutions and companies in society. This

motivates the need for software that would be able to analyze documents and check

their compliance with SDGs. Sustainable development has become the important part of

Corporate social responsibility (CSR) [36]. Through the years many guidelines emerged,

and we can single out environmental, social, and corporate governance (ESG) approach

as of special interest for sustainable development.

We will not use any of the already present guidelines like ESG for resolving our task, but

we will use only the information available from 2030 Development Agenda that includes

SDG definitions and their targets. Our only task will be to check which from 17 goals

are promoted in a queried document. We will assume that the analyzed documents are

trustworthy, and no fact checking will be implemented. In reality, this would be needed

sometimes because of various spins like greenwashing. Greenwashing can be defined as
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the behavior in which a corporation with poor environmental performance communicates

positively about its environmental performance [37].

3.2 Description of software

In this section, we will describe SDG Detector, a software used for the resolution of

the previous task. The software was developed by my colleague Stefano Colamonaco and

me during an internship at the University of Bologna.

Before we commence with the description of code, we will mention what information we

were able to use for its implementation. The first useful resource was 2030 Development

Agenda that contained the list of all SDGs and their targets explained. Another useful

resource was a dataset of verb-object verb lists for each SDG. As we have seen in the

previous chapter, this reduces work relative to term relevance check because we have al-

ready such a list. We also had positively and negatively labeled documents for each SDG

that we used for training and testing. You can see the numbers relative to the dataset

in Table 3.1. It is important to mention that verb-object lists were constructed using

an experimental method, which is the argument of Colamonaco’s thesis. Firstly, using

web scraping techniques and internet as the source of information 130 labeled documents

were scraped. After that for every goal a list was created and verb-object pairs from doc-

uments were put in them. Certain pairs were considered irrelevant, so a blacklist of pairs

that should be ignored was made. At the end, the number of documents was elevated

to 572. The share of documents from which verb-object pairs were extracted in final

documents is 22.73% so this can affect the results negatively because of bias. The bias

can be a consequence of the fact that these two knowledge bases were not constructed

independently, so we should have that in mind when analyzing the results.

Now we can proceed to the description of the code, which was written in Python for

reasons we explained in the first chapter. The documents are in canonical form, so we do

not need any kind of normalization. The only preprocessing required is the tokenization,

as explained in the proposal of the strategy. We used NLTK for performing the task of

tokenization.

The next step was the implementation of an algorithm for feature extraction. Constituency-
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Dataset

SDG number verb-object pairs positively la-

beled documents

negatively la-

beled documents

1 335 16 16

2 107 18 18

3 344 16 16

4 197 18 18

5 212 17 17

6 189 18 18

7 79 18 18

8 174 16 16

9 141 18 18

10 135 18 18

11 327 18 18

12 220 15 15

13 54 18 18

14 179 17 17

15 72 18 18

16 166 17 17

17 80 10 10

Table 3.1: Tabular view of numbers relative to used dataset
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based tree parsing approach was chosen for tree parsing, and it was done using Stanza’s

parser. The main difference from the algorithm presented as Algorithm 1 and the im-

plementation was another parameter g which is an integer that represents the SDG for

which we are doing feature extraction. Before the pushing of lemmatized pairs obtained

from the parse tree, it was controlled if they are present in the verb-object list of the g-th

goal. In the negative case, another control was made if there was any verb-object pair

in the list whose verb’s synset contained the evaluated verb and noun’s synset contained

the evaluated noun. If any of these two controls was passed positively, the pair was

pushed, otherwise it was rejected and the algorithm would have proceeded to the eval-

uation of the next sentence. Lemmatization was performed using WordNetLemmatizer

from nltk.stem package that contains NLTK stemmers. Synset checks were made using

WordNet Interface from nltk.corpus.

Feature sets are a vector containing 17 another vectors which represented a feature set

for each goal. Before the training phase, they were filled with features extracted from

labeled documents. The goals were used to decide where to push obtained features to

pair with the labels, which are in Boolean form. The labels denote if SDG indicators are

present in the document.

There are 17 binary classifiers in total, one for each SDG. Each classifier was trained

as a NBC model using the correlated feature set. The model is trained using NLTK’s

Naive Bayes Classifier implementation. Python’s pickle module was useful for storing

the trained models so if we want to run the program we do not have to wait for new

training. Also, the software is available as notebook interface written for Jupyter Note-

book. This version increases interactivity.

Figure 3.1 contains an example of document classification using the software we have

just described. After the passing of document and goal number to the feature extrac-

tion function, we extract verb-object pairs and put them in feature set vector if they

are present in verb-object list for the requested goal (green background) or we discard

them (red label). Finally, we pass the feature set alongside with the goal number to the

classifier and get the result.
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Figure 3.1: An example of document classification using SDG Detector

3.3 Testing

In this section, we will evaluate the models using the methods we have seen in 1.2.2.

As the reader may have noted, the dataset used for training and testing is very small,

and each goal has on average 33.65 documents that can be used for testing. Because of

this, we will use leave-one-out cross-validation (LOOCV). It is time-consuming, but in

our case it is not a problem because of the dimension of dataset.

Testing was done using KFold from scikit-learn’s sklearn.model_selection package.

In order to use it, the transformation of feature set into a numpy.array was needed,

so NumPy was imported. Scikit-learn and NumPy are Python libraries. The former

contains machine learning algorithm and the latter is used usually for array and matrix

manipulation.

In Table 3.2 are reported the values of the resulting confusion matrix. First thing

we can note is that we have False Positives only in two classifiers, for SDGs 8 and 14.

Also, it is notable that the model for SDG 14 is the only one that fails to satisfy TP +

TN > FP + FN inequation. The first observation justifies the need for prediction bias

check. Prediction bias is the quantity that describes how different average predictions

are from average actual labels. We can see that in some cases like of the classifier for

the 14th goal it labels 35 out of 36 documents as negative which is 97.22% and in reality

only 50% of them are negative, so the calculated prediction bias for that classifier is
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Confusion matrix values

SDG number True Posi-

tives

False Nega-

tives

True Nega-

tives

False Posi-

tives

1 4 12 16 0

2 2 16 18 0

3 3 13 16 0

4 1 17 18 0

5 15 2 17 0

6 3 15 18 0

7 3 15 18 0

8 11 5 6 10

9 4 14 18 0

10 6 12 12 0

11 17 1 18 0

12 12 3 15 0

13 6 12 18 0

14 14 3 0 17

15 1 17 18 0

16 13 4 17 0

17 9 1 10 0

Table 3.2: Distribution of test results for each goal
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97.22% − 50% = 47.22%. It is also notable that the prediction bias is always towards

negative labels, except in the case of the classifiers for the 8th and the 14th goal. For the

following goals we have the classifiers with prediction biases greater than 40%: 2, 3, 4,

6, 7, 14 and 15. Prediction bias is commonly a consequence of biased sample. If we take

in consideration that the dataset was created using an experimental method, we can say

that this kind of behavior was expected.

We should now decide what coefficients to calculate using this table in order to assess

the classifiers. We will calculate accuracy, Cohen’s kappa and Matthews correlation

coefficient. The values will be interpreted in the following way: accuracy values over 0.50

are acceptable (because that means it performs better than random guessing) and those

closer to 1.00 are almost perfect, for κ values we will use Landis and Koch’s guidelines

and MCC values over 0.50 are good as they are closer to 1.00 which represent perfect

performance than to 0.00 which represent randomness. We will not calculate balanced

accuracy because it would have the same value as accuracy because the numbers of the

positively labeled documents and the negatively labeled documents are equal:

BA =
TP
P

+ TN
N

2
P=N
=

TP + TN

2P
=

TP + TN

P +N
= ACC

The calculated coefficient values can be found in Table 3.3.

As we could observe before the calculation, the classifiers for all goals, except for the

14th, have acceptable performances when it comes to accuracy measurements. Seven of

them scored in the range of values from 0.51 to 0.60 which can be seen as acceptable but

low confident performance. Four of them scored between 0.61 and 0.85, so we can call

these classifiers fair to moderate. At the end, five of them had scores over 0.85 which

is very good. Average accuracy is 67.8%. Note that there is no standard evaluating

method for accuracy values and that this one presented here is arbitrary.

Using Landis and Koch’s guidelines we can assert that there is one classifier with poor,

seven classifiers with slight, four with fair, two with substantial and three with almost

perfect performances. Average value of κ is 0.356, so we can say that classifiers have fair

performances.

Assessment of Matthews correlation coefficient show that most of the classifiers fall into

a domain that goes from -0.5 to 0.5 which expresses more random behavior (because
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Coefficient values

SDG number ACC κ MCC

1 0.625 0.250 0.378

2 0.556 0.111 0.242

3 0.594 0.187 0.322

4 0.528 0.056 0.169

5 0.941 0.882 0.888

6 0.583 0.167 0.301

7 0.583 0.167 0.301

8 0.531 0.062 0.066

9 0.611 0.222 0.353

10 0.667 0.333 0.447

11 0.972 0.944 0.946

12 0.900 0.800 0.816

13 0.667 0.333 0.447

14 0.412 -0.176 -0.311

15 0.528 0.056 0.169

16 0.882 0.765 0.787

17 0.950 0.900 0.904

Mean 0.678 0.356 0.425

Table 3.3: Coefficient values calculated from test results
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those coefficients are closer to 0 than to extremes -1 and 1). Even twelve of them belong

to this category, but only one of them is in the range that goes from -0.5 to 0 which

is the sign of poor performance. On average, MCC equals to 0.425, slightly below 0.5

threshold.

Although on average our strategy did not succeed in going over the 0.5 threshold for

MCC, we can say it was quite successful. If we leave out goals that have prediction bias

greater than 40% we have on average the following values: 0.77 for accuracy, 0.55 for κ

and 0.6 for MCC. Obviously, these results are much better than before. MCC is greater

than 0.5, we have almost substantial performance according to κ and accuracy is much

closer to the perfect one than previously.

If we leave out these goals, we are also much closer to the symmetric distribution of

coefficients. This is implied by the comparison of the absolute differences of mean and

median values. The calculated mean and median values of coefficients are reported

together with their absolute differences in Table 3.4.

Coefficient values

Case ACC κ MCC

Mean - all goals 0.6782 0.3564 0.4250

Median - all

goals

0.6110 0.2220 0.3530

Difference - all

goals

0.0672 0.1344 0.0720

Mean - biased

left out

0.7746 0.5491 0.6032

Median - biased

left out

0.7745 0.5490 0.6170

Difference - bi-

ased left out

0.0001 0.0001 0.0138

Table 3.4: Mean, median and absolute difference between mean and median coefficient

values
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Conclusions

In this thesis, we discussed a possible approach to document classification using verb-

object pairs. We started by giving some important theoretical foundations and afterwards

we built the strategy proposed by thesis step-by step. At the end, we evaluated the

strategy using a case study where we resolved the problem of document classification

according to the presence of SDG indicators.

The case study, which is the focal point of this thesis, presented some interesting results.

The coefficients we obtained during the testing phase can be considered acceptable. If

we leave out data that causes prediction bias, we get the coefficient distribution that

is almost normal. In that case we got great accuracy equal to 77%. Cohen’s κ value

was equal to 0.55 which means the classifier on average had a moderate performance.

Matthews correlation coefficient was equal to 0.6 which clearly showed that the classifiers

do not perform randomly and has very positive correlation by being closer to 1 which

represents total positive correlation than to 0 which represents randomness.

The results are encouraging, not only for this specific approach, but also for the testing

of document classification approaches using some of many other informative syntactic

relations that could potentially have excellent results. Further study of this approach

could include its testing on a dataset of much bigger dimension and its comparison to

the other approaches with independently constructed knowledge bases. It could also

compare the use of different machine learning algorithms for classification.
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