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Abstract

Nowadays, the concept of information has become crucial in physics. Moreover, be-
cause our best theory to make predictions about the universe is quantum mechanics,
it becomes crucial to develop a quantum version of information theory. This central-
ity is confirmed by the fact that black holes do have entropy. In this work, elements
of quantum information and quantum communication theory are given and some are
illustrated by referring to highly idealized quantum models of black hole mechanics.
In the first chapter all the quantum-mechanical tools for quantum communication
and information theory are given. Later, we discuss about quantum information
theory and we arrive at the Bekenstein’s bound on amount of information enclosed
in a spatial region. We address the problem by using a quantum idealized black
hole mechanics model assisted by thermodynamics. In the last chapter, we deal
with the problem of finding an achievable rate for quantum communication and we
use again an idealized quantum model of black hole in order to illustrate elements of
the theory. Lastly, a short summary of black hole physics is given in the appendix.





Sommario

Oggigiorno il concetto di informazione è diventato cruciale in fisica, pertanto, sic-
come la migliore teoria che abbiamo per compiere predizioni riguardo l’universo è la
meccanica quantistica, assume una particolare importanza lo sviluppo di una ver-
sione quantistica della teoria dell’informazione. Questa centralità è confermata dal
fatto che i buchi neri hanno entropia. Per questo motivo, in questo lavoro sono pre-
sentati elementi di teoria dell’informazione quantistica e della comunicazione quan-
tistica e alcuni sono illustrati riferendosi a modelli quantistici altamente idealizzati
della meccanica di buco nero. In particolare, nel primo capitolo sono forniti tutti
gli strumenti quanto-meccanici per la teoria dell’informazione e della comunicazione
quantistica. Successivamente, viene affrontata la teoria dell’informazione quantis-
tica e viene trovato il limite di Bekenstein alla quantità di informazione chiudibile
entro una qualunque regione spaziale. Tale questione viene trattata utilizzando un
modello quantistico idealizzato della meccanica di buco nero supportato dalla ter-
modinamica. Nell’ultimo capitolo, viene esaminato il problema di trovare un tasso
raggiungibile per la comunicazione quantistica facendo nuovamente uso di un mod-
ello quantistico idealizzato di un buco nero, al fine di illustrare elementi della teoria.
Infine, un breve sommario della fisica dei buchi neri è fornito in appendice.
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Introduction

When we hear about physics, we might not think immediately about information.
Whereas, at present day, our best theory of the microscopic world- quantum me-
chanics, that describes how atoms and particles interact through the forces of nature
and makes incredibly precise experimental predictions- is based on the foundations
of probability and entropy. This makes it an inferential theory. That is, rather
than being a description of the behavior of the universe, this theory describes how
observers can make optimal predictions about the universe. In such a scenario, in-
formation plays a critical role. To be more specific, with information we denote
the number of yes/no questions we need to get answered to fully specify a physical
system. For this reason, we use to collect the answers of these questions in strings
of bits, each of which can assume value 0 or 1. What is more, there are little hints,
such as the fact that black holes have entropy, that continue to suggest that in-
formation is fundamental to physics in general. The upshot is that information is
physical and strongly related to the state of a physical system, so that the evolution
of a physical process has to tell us about information. In fact, as states evolves, the
information they own has to be transformed without being lost. Thus, information,
and therefore every bit, is indestructible. That is the most important law of physics.
Correspondingly, one might also reproduce (through another transformation oper-
ation) at one point either exactly or approximately a certain piece of information
(i.e., a message) with meaning at another point. The fact that the message has a
meaning denotes that it refer to or is correlated according to some system (i.e., the
code-system) with certain physical or conceptual entities [1]. This is the problem of
communication which introduces us to some interesting issues, such as how many
bits do occur in order to send a message and how many so that this message could be
correctable after being somehow corrupted the transfer process. Both this issues are
addressed by the two source coding and noisy channel coding Shannon’s theorems.
In such a picture, there must be included the fact that essentially the universe is
quantum mechanical. Therefore, the classical ideas about information would need
revision under the new physics and has to considers features like quantum states non
distinguishability and entanglement entropy. Moreover, since acquiring information
causes disturbance by quantum theory statements, we cannot make a perfect copy
of a quantum state [2] since we could measure an observable of the copy without
disturbing the original, defeating the principle of disturbance.
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In a quantum context, in order to quantify how much we do not know about
the informative content of a physical state, we use Von Neumann entropy, therefore
quantum information theory is inevitably related with but also illuminates ther-
modynamics. Of the utmost importance is the case of black holes, where the laws
of mechanics are surprisingly similar to the thermodynamical ones. In particular,
the never-decreasing-area law is the same as the second law for entropy. Moreover,
Bekenstein proposed that this link between the horizon area and entropy was not
only formal [3]. Therefore, we find that physics, through thermodynamics, imposes
a limit on information that can be encoded in a spatial region (that might also not
be occupied by a black hole). That is the Bekenstein’s entropy bound which can
also be obtained from quantum information tools and statements.

Entropy has also an important role in quantum communication theory. In fact,
the highest achievable quantity of information that can be shipped through a quan-
tum communication channel by using a single qubit (i.e., the quantum mechanical
generalization of a bit) which allows to obtain an errorless transmission, is the chan-
nel capacity. Entropy enters in this topic because the capacity is related to the
conditional entropy between the message source and receiver systems. A formula
for such a capacity can be found and demonstrated by using a simple principle that
assume that the transmitted data will with high probability be decoupled from the
channel’s environment. This principle constitutes a special tool that can be applied
and used also for simplified real representations of quantum channels with noise.
By this way, the information retrieval from evaporating black holes can be studied
and it is such an fascinating situation to inspect in order to see all the quantum
information theory power applied.

Therefore, in this work many central points of both classical and quantum infor-
mation theory are discussed. We start by doing a brief review of quantum mechanics,
inspecting how the axioms of the theory change under the transition from closed to
open quantum systems [4][5]. The difference is essentially in how much we know
about the system resulting from considering or not its environment. Then, we focus
ourselves mainly on open quantum systems as they are more realistic. Qubits and
their geometrical interpretation through Bloch sphere are widely discussed, while
particular attention is given to the reformulation of the state evolution concept
in open systems which becomes a quantum channel that allows states to decohere
and switch from pure into mixed [6]. From this, we put in evidence the basis of
entanglement-assisted communication, by explaining how entanglement enhances
and redefines protocols used for communication [7]. At this point, we have all we
need in our hands in order to study information and how to manipulate it. In the
second chapter, giving a brief introduction of classical Shannon theory, we soon come
to its quantum definition and so we introduce the Von Neumann entropy [8]. This
inevitably leads to thermodynamics, moreover links between this and information
theory are discussed talking about the Bekenstein bound on information. In the
last chapter, we inspect quantum channel capacity and the so called decoupling ap-
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proach reaching the final application using a black hole as a quantum channel with
high erasure probability [9]. More in detail, we studied information retrieval from a
black hole that has already radiated more than half of its initial number of degrees
of freedom. To conclude, from black holes physics we have that if bits are forever,
information get lost when they fall into a black hole. This was Hawking’s central
point in 1976 when he created the information paradox [10]. In order to briefly an-
swer to this open question and to furnish a brief review about black holes dynamics,
an Appendix has been added to this work. It is important to underline that the
purpose for this appendix is not to furnish accurate relativistic features of black hole
physics, which are beyond the possibilities of such a work. Instead, it aims to focus
attention on the quantum properties of black holes, and try to give a review of the
developments originated from the reformulation of black hole’s mechanics in terms
of thermodynamics.





Chapter 1

Foundations of Quantum
theory

Now we need to be more specific about the mathematical description of quantum
information and its correlations with quantum system evolution. A brief introduc-
tion to the foundations of quantum mechanics is provided. Indeed, we introduce
the fundamental points of the theory (state, observable, measurement, dynamics
and system composition) starting from considering a closed system and later an
open system. The motivation for studying closed and open systems is that all re-
alistic systems are open, as it is impossible to perfectly isolate them from their
environment, but, to understand the behavior of an open system, we should regard
its combination with its environment as a closed system. Then, we wonder how
the system would behaves without considering its environment. Closed quantum
systems are easier to study and for that we start from this.

1.1 Closed Quantum Systems

Quantum theory is the mathematical model that represents the physical world.
According to this, each physical system is associated with a vector space over the
complex numbers called Hilbert space H, equipped with an inner product which
defines a norm which turns H into a complete metric space. A pure state of a
quantum system is an equivalence class of vectors in H (i.e., a ray) that differ
by multiplication by a nonzero complex scalar. That holds in perfectly isolated
quantum systems (i.e., Closed Quantum Systems, later denoted as CQS). Using
Dirac’s bra-ket notation, vectors in H are denoted with |ψ〉 (namely, we say ket
psi). By convention, we can choose a representative of the equivalence class that
has unit norm. Therefore, pure states correspond to unit vectors in H and the set
of all pure states corresponds to the unit sphere in the Hilbert space.
The general principle of quantum superposition applies to the states: whenever the
system is definitely in one state, we can consider it as being partly in each of two
or more other states [11]. Hence, if a basis is chosen in a finite-dimensional Hilbert
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space, any ket |ψ〉 can be expressed as a linear combination of basis element |ki〉
(assuming them to be orthonormal without loss of generality) as

|ψ〉 =
∑
i

ci |ki〉 (1.1)

where ci are complex numbers. As we consider normalized states |ψ〉, we must
have

∑
i |ci|

2 = 1. The meaning of normalization could be expressed in terms of
quantum-mechanical probability, as the total probability of the system has to be
|| |ψ〉 ||2 = 〈ψ|ψ〉 = 1. For this reason, we have that |ψ〉 = eiθ |ψ〉. However, the
members of the above equation are not interchangeable in combinations of different
states (see Open Quantum Systems (OQS)), therefore we say that global phase
factors are unphysical, but relative phase factors are physical and relevant.

Every state encodes information about physical quantities belonging to the sys-
tem that can be in principle measured; these are the observables. In quantum
mechanics, an observable is a self-adjoint operator A in H. For this, its eigen-
states form a complete orthonormal basis of the Hilbert space and can therefore be
identified with the |ki〉 (with eigenvalues ai). We have

A =
∑
i

aiEi (1.2)

where the Ei are the orthogonal projection onto the space of eigenvectors corre-
sponding to eigenvalues ai’s ([4], section 2.1).

The process in which information about the state of a physical system is ac-
quired by an observer is called measurement. The measurement of an observable A

prepares an eigenstate of A, and the observer learns the value of the corresponding
eigenvalue. So, measurements in closed quantum systems are orthogonal projection.
For example, using orthonormality of the |ki〉 and (1.1), the probability that the
outcome ai is obtained from a measurement of |ψ〉, is

Prob(ai) = 〈ψ|Ei|ψ〉 = |ci|2 (1.3)

In closed quantum systems, the evolution of states over time is described by a
unitary operator U(t′, t). It transforms the initial state at time t into a final state
at time t′. Infinitesimal time evolution is governed by the Schrödinger equation

d

dt
|ψ〉 = −iH(t) |ψ〉

that can be expressed to first order as: |ψ(t+ dt)〉 = (I− iH(t)dt) |ψ〉.
Therefore, the operator I − iH(t)dt is unitary and the evolution governed by the
Schrödinger equation over a finite interval is also unitary.

If we have a composite system AB and the Hilbert space of the system A is
HA, while the Hilbert space of the system B is HB, then the Hilbert space of the
composite system AB is the tensor product

HA ⊗HB
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Fixed a basis {|i〉A} for HA and a basis {|j〉B} for HB, the most general state in
HA ⊗HB has the form

|ψ〉AB =
∑
i,j

cij |i〉A ⊗ |j〉B (1.4)

We say it is separable if we can rightly rewrite

|ψ〉AB =
∑
i,j

cAi c
B
j |i〉A ⊗ |j〉B =

∑
i

cAi |i〉A ⊗
∑
j

cBj |j〉B = |ψ〉A ⊗ |φ〉B (1.5)

If a state cannot be expressed as a direct product of pure states in HA and HB, we
say it is entangled.

To resume, all the fundamental assumptions of quantum mechanics for closed
quantum systems are:

(1) A state is a ray in H;

(2) An observable is a self-adjoint operator on H;

(3) A measurement is an orthogonal projection;

(4) Time evolution is unitary;

(5) A composite system AB is described by the tensor product HA ⊗HB.

1.2 Open Quantum systems

1.2.1 The density operator

If we confine our attention only on a part of larger quantum system, then we are
considering an OQS. Considering the closed system AB, that is a quantum system
A interacting with its environment B, then the information of the system A is loss
in the environment. Therefore, AB is a CQS described by a pure state, but A is
not. In this case, assumptions (1-4) need not to be satisfied ([5]: section 2.3.1). We
have partial ignorance of the preparation of A. In particular, the state of A could
be a weighted superpositions of different pure states, up to obtaining a statistical
ensemble of different state vectors. In this case we call this a mixed state (remember
that relative phase factors are physical, hence |φ〉+ |ψ〉 6= |φ〉+ eiθ |ψ〉). It occurs a
new mathematical description for such states. This is encoded in the density matrix
(or density operator) ρ. It is a self-adjoint, positive matrix with unit trace (because
we chose normalized states). Every density matrix can be expressed in the basis in
which it is diagonal as a sum of pure states

ρ =
∑
i

wi |ai〉 〈ai| (1.6)
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where the wi are positive-valued probabilities and they sum up to 1, while the
vectors ai are unit vectors of H. The upshot is that we can interpret ρ representing
an ensemble were pure states |ai〉 are prepared with probability wi.

Another case in which mixed states arise is entanglement. As in (1.5), in an
entangled state AB is not possible to find a coefficient matrix so that cij = cAi c

B
j .

So, it is impossible to describe the subsystem of an entangled system as a pure state
(in the form (1.1)). Quantum entanglement prevents the complete knowledge about
the subsystem by making some or all of the coefficients of the superposition (1.1)
inaccessible.

However, density matrices are not only involved in the description of mixed
states. For example, the partial ignorance of a state preparation, does not exclude
that there could theoretically be another person who knows the full history of A,
and therefore describe the state of the subsystem as a pure state. When |ψ〉A of A
is pure, then the density matrix is the projection onto the one-dimensional space
spanned by |ψ〉A

ρA = |ψ〉A 〈ψ|A (1.7)

Therefore, there is only one term in the sum (1.6). Hence, the density operator is
said pure and

ρ2 = ρ (1.8)

Follows that mixed quantum state has two or more terms in the sum (1.6) and in this
case (1.8) does not hold. Consequently, we say that ρ is an incoherent mixture of the
states |ai〉. In fact, the relative phases of the |ai〉 are experimentally inaccessible.
For what said, the entanglement between A and B destroys the coherence of a
superposition of states of A, so that some of the phases in the superposition become
inaccessible if we look at A alone.

1.2.2 Projective measurements and tracing operations

Measurement in quantum mechanics have particularly simple rules in terms of den-
sity matrices. We start by defining O as an alphabet set of all possible outcomes
of the measurements. A projection-valued measure (PVM) is the simplest quantum
measurement, defined as a complete set of positive semi-definite Hermitian matrices
{Ei, i ∈ O}, describing elementary projectors, so that EaEb = δabEa; the ones
of (1.2) [12]. Also in (1.2) we saw the probability of obtaining outcome ai for a
measurement performed on a pure state. For a mixed state described by ρA, the
probability distribution over the outcomes can be computed from the density oper-
ator. Therefore, we can rewrite (1.3) as

Prob (ai) = tr (EiρA) (1.9)

The average of the eigenvalues of an observable A, weighted by the above prob-
abilities, is the expectation value of that observable

〈A〉 = tr (AρA) (1.10)
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where we see that it is possible to express the expectation value of an observable as
the result of a trace operation. Actually, considering a bipartite quantum system
in HA ⊗ HB, the equation (1.10) provides only a compact way to characterize a
measurement performed on one of the subsystems, we choose A. An orthonormal
basis for the composite space can be found in {|i〉A ⊗ |j〉B}. Therefore one can
rightly rewrite the projectors Ei as

|i〉 〈i| ⊗ IB (1.11)

were |i〉 〈i| are the orthogonal projector onto the one-dimensional space spanned
by |i〉 and IB is the identity operator acting on B. Consequently, an observable
A acting on A is more precisely expressed by considering the action of a suitable
composite operator on the larger system AB

A⊗ IB (1.12)

A normalized pure state |ψ〉 ofAB can be expressed as (1.4), were now
∑

i,j |cij |
2 =

1 is inevitably. The expectation value of A in this state is

〈A〉 = 〈ψ|A⊗ IB|ψ〉 =
∑
µ,ν

c∗µν (〈µ|A ⊗ 〈ν|B) (A⊗ IB)
∑
i,j

cij (|i〉A ⊗ |j〉B)

=
∑
i,µ,j

c∗µjcij 〈µ|A|i〉 = tr (AρA) (1.13)

recovering (1.10). Here we used orthogonality for kets of the basis of system B.
Note that from the last line we can build up an expression for the density operator

of the subsystem A

ρA =
∑
i,µ,j

c∗µjcij |i〉 〈µ| ≡ trB (|ψ〉 〈ψ|) (1.14)

Here, we find ρA by performing a partial trace over subsystem B of the density
operator of the whole AB (in this case, a ray). That is, a linear map that takes an
operator MAB on HA ⊗HB to an operator on HA.

Purification

We have already seen that a mixed state of any quantum system can be realized as
an ensemble of pure states (1.6). Moreover, this could happens in an infinite number
of different ways, all of which have exactly the same consequences for any conceivable
observation of the system. Therefore, although the preparation of a pure state is
unambiguous (for the state ρ = |ψ〉 〈ψ|, measurement of the projection E = |ψ〉 〈ψ|
is guaranteed to have outcome one), for mixed state it is always ambiguous ([5]:
section 2.5). Later, we will study how ambiguous it can be.

In addition, a mixed quantum state on a given quantum system described by a
Hilbert space HA, can be always represented as the partial trace of a pure quantum
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state on a larger bipartite system HA ⊗ HB. We call this pure quantum state
the purification of ρA. In fact, by considering a generic (possibly mixed) quantum
state of the form (1.6) denoted by ρA (where the |ai〉 are not necessarily mutually
orthogonal, this time), a bipartite pure state |φ〉AB which purifies ρA is of the form

|φ〉AB =
∑
i

√
wi |ai〉A ⊗ |bi〉B (1.15)

where vectors |bi〉B ∈ HB are mutually orthonormal. Then, from (1.14) with (1.15),
follows that

ρA = trB(|φ〉AB 〈φ|AB) (1.16)

There are infinitely many purifications of a given mixed state, as the space HB
and the basis {|ai〉} and consequently {|bi〉} can be chosen arbitrarily. All of this
purifications only differ by a unitary transformation acting on HB∣∣φ′〉

AB
= (I ⊗UB) |φ〉AB (1.17)

where we recall (1.12). Given a purification |φ〉AB of ρA, a measurement in system
B that projects onto the {|bi〉} basis, produces outcome |bi〉 with probability wi,
and will prepare with the same probability the pure state |ai〉 〈ai| of system A,
realizing one ensemble interpretation of ρA. Moreover, from the relation (1.17), we
can choose a purifying system |φ〉AB, such that anyone of the ensembles of the mixed
state ρA can be realized by making different measurements on |φ〉AB (i.e., measuring
a suitable observable of B, as in ). That is the HJW theorem ([5]: section 2.5.5).

1.2.3 Qubits

The fundamental unit of classical information is the bit, which takes only two possible
values {0,1}. The corresponding unit of quantum information is the ’quantum bit’
or qubit, which is a vector in a two-dimensional H. According to the convention,
we represent the elements of an orthonormal basis in this space as |0〉 and |1〉.
Therefore, the general state of a qubit, according to quantum mechanics, is usually
a coherent superposition of both

|ψ〉 = a |0〉+ b |1〉 , |a|2 + |b|2 = 1, a, b ∈ C (1.18)

According to (1.3), a measurement will projects the state onto the kets of the basis,
and the outcome is not deterministic. For example, the probability that we obtain
exactly the result |0〉 is |a|2. Therefore, the measurement irrevocably disturbs the
state by destroying its coherence, except in the cases a = 0 and b = 0. That means
there is no way we can recover both the values of a and b after we performed a
measurement.

In this regard, a qubit differs from a classical bit. In fact, we can measure a
classical bit without disturbing it and deciphering all information it encodes by
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measuring it only once. Indeed, by exploiting the geometrical interpretation of a
qubit state (1.18), it is natural to interpret it as the spin state of an object with
spin-12 ([5], subsection 2.2.1). Then |0〉 and |1〉 become the spin up |↑〉 and spin down
|↓〉 states along a particular axis. Moreover, its quantum state is characterized by a
unit vector n̂, the spin’s direction in a three-dimensional space (we say, a Cartesian
space). Therefore, from the coefficients a and b results the orientation of the spin
in this three-dimensional space (as they encode the polar angle θ and the azimuthal
angle φ). We recover that coefficients’ relative phase also has a physical significance
and that we can determine |ψ〉 only by measuring along both the spin axis. In fact,
that is equivalent to determine the unit vector n̂: altogether measurements along x,
y, z are required.

Bloch sphere and maximally mixed state

Exploring deeply the geometrical representation, in (1.18) we have the complex co-
efficients a and b. Therefore, we expect |ψ〉 to have four degree of freedom. However,
the relation between a and b in (1.18) gets one. This means, there must exists a
suitable change of coordinates so that the system of coefficients has only three de-
gree of freedom. The following expression fulfils the requirement (these are the Hopf
coordinates) ([5]: section 2.3.2).

a = eiδ cos θ/2 b = ei(δ+φ) sin θ/2 (1.19)

Because eiδ has no physical observable consequences (remind (1.3) and |eiδ|2 = 1),
and by arbitrary choose for a to be real, we obtain

|ψ〉 =

(
cos θ/2

eiφ sin θ/2

)
=

(
e−iφ/2 cos θ/2

eiφ/2 sin θ/2

)
(1.20)

From this we may explicitly compute

ρ = |ψ〉 〈ψ| =
(

cos2 θ/2 cos θ/2 sin θ/2e−iφ

cos θ/2 sin θ/2eiφ sin2 θ/2

)
=

1

2
(I + n̂ · ~σ) (1.21)

were n̂ = (sin θ cosφ, sin θ sinφ, cos θ) and ~σ is a vector whose components are the
traceless Pauli matrices. In fact, every single qubit system can be described by
a 2 × 2 self-adjoint matrix that can be expanded in the basis {I, ~σ1, ~σ2, ~σ3} ([5]:
section 2.3.2). That is called the Bloch parametrization for qubit pure states, that
can be represented by any point on the unit surface. Notice that, as (1.6) holds, for
mixed states we have that ρ2 =

∑
iw

2
i <

∑
iwi = 1. Therefore, n̂ can be replaced

with a vector ~P so that ~P 2 < 1. Consequently, also mixed states can be represented
with internal points on the unit three-dimensional ball called Bloch Sphere. We
see a perfect correspondence between the density matrix of a qubit and the points
contained into the Bloch sphere, with 0 ≤ |~P | < 1 for mixed states (internal points)
and |~P | = 1 for pure states (surface points).
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It is now become easy to answer the question about how ambiguous the prepa-
ration of mixed states could be. In fact, the more a state is mixed, the more it
is ambiguous its preparation. In order to comprehend this, notice that from the
properties of ρ it follows immediately that, given two density matrices ρ1 and ρ2,
we can always construct another density matrix as a convex linear combination of
the two

ρ (λ) = λρ1 + (1− λ)ρ2 (1.22)

For a point 0 < |~P | < 1 interior to the Bloch sphere, we have

ρ
(
~P
)

= λρ (n̂1) + (1− λ)ρ (n̂2) (1.23)

if ~P = λn̂1 + (1− λ) n̂2. In other words, if ~P lies somewhere on the line cord
with extremal points the pure states indicated by n̂1 and n̂2 ([5]: section 2.5.1). It
follows that, the more ~P is ’internal’ (n̂1 and n̂2 are close to be opposed), the more
are the different ways trough ρ

(
~P
)
can be expressed as pure states combination.

Consequently, from what said and (1.21), we have that the maximal ambiguity
preparation is reached for the limit situation of the maximally mixed state of a
single qubit

ρ =
1

2
I (1.24)

In this case |~P | = 0 and this state can be prepared as an ensemble of pure states
in an infinite variety of ways. Therefore, in (1.24), ρ conveys no information at all
about the state preparation. The purity of a state can be visualized as the degree
in which it is close to the surface of the sphere. It is denoted with tr

(
ρ2
)
≤ 1 and

it is one only for pure states.

1.2.4 Schmidt decomposition and Maximal Entanglement

As we could notice, one of the situations which cause mixed states to arise is entan-
glement between two systems. We already discussed about entanglement, but now
we approach this argument from another point of view. It is, in fact, possible to
decompose a bipartite pure state, like (1.4), in a very usefull form.

We can rewrite a vector in HA ⊗HB using its Schmidt decomposition

|ψ〉AB =
∑
i

√
wi |ai〉A ⊗

∣∣b′i〉B (1.25)

were wi are the same probabilities as in (1.6). The orthonormal schmidt basis |ai〉A
is chosen to be the basis in which ρA is diagonal. The other orthonormal basis

∣∣b′i〉B
is obtained by comparing (1.6) with (1.7), resulting from the partial trace over B
performed with respect to (1.4) ([5]: section 2.4)∣∣b′i〉B = wi

−1/2
∑
j

cij |bj〉B
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where we always consider at least one i to perform Schmidt decomposition, so that
wi 6= 0. It is possible to say if a state is entangled by studying its Schmidt decompo-
sition. The strictly positive values

√
wi, in (1.25), are the Schmidt coefficients. The

number of Schmidt coefficients, counted with its multiplicity, is the Schmidt number.
Taking up the statement that if a sum like (1.6) has more than one terms, then it
would describe a mixed state, we can see that a pure state |ψ〉AB is entangled if and
only if its Schmidt number is greater than one. Otherwise, it is separable and its
subsystems A and B are pure. It turns out that, by increasing the Schmidt num-
ber of a state, we create entanglement. However, the Schmidt number is preserved
under local unitary transformations on system A or system B alone. therefore,
entanglement cannot be created locally ([5]: section 2.4).

Another important result coming from Schmidt decomposition is that, by con-
sidering ρ = |ψ〉 〈ψ|AB, its partial trace, with respect to either system A or B, is a
diagonal density matrix whose nonzero diagonal elements are wi. In other words, ρA
and ρB have the same nonzero eigenvalues and a different number of zero eigenvalues
only if dim (HA) 6= dim (HB). It is possible to recover the Schmidt decomposition
of |ψ〉AB by diagonalyzing ρA and ρB and then pairing up the eigenstates |ai〉A and∣∣b′i〉B which share the same eigenvalue wi. If ρA has no degenerate nonzero eigenval-
ues, then there is a unique decomposition for |ψ〉AB. Conversely, if degeneration for
nonzero eigenvalues of ρA occurs, we need more information about which

∣∣b′i〉B gets
paired with each |ai〉A, causing ambiguity. In fact, there will exists unitary change
of Schmidt basis that will give a valid decomposition. In the maximal degeneration
case, in which ρA and ρB are maximally mixed, so that schmidt coefficients are all
equal to one, the state |ψ〉AB is said to be maximally entangled. Therefore, unitary
transformation will give a valid decomposition ([5]: section 2.4). In general, the
Schmidt decomposition |ψ〉AB corresponds to the purification (1.15) of ρA in the
special case in which the |ai〉 are orthonormal. So, in the case of maximal degener-
ation, we recover the HJW theorem as a simple corollary of Schmidt decomposition
([5]: section 2.5.5). Considering dim (HA) = dim (HB) = d, if we have d terms in
the sum (1.25) all the wi will be equal to 1√

d
, then, fixed a schmidt basis, the state

|ψ〉AB is said to be maximally entangled and it will yield maximally mixed operators
ρA = ρB = 1

dI when take partial traces.

1.2.5 Fidelity of Quantum States

It is possible to measure the distinguishability of two quantum states as the deviation
from one of their fidelity. For two pure states, |φ〉 and |ψ〉, the fidelity is given by
their overlap

F (|φ〉 , |ψ〉) = | 〈φ|ψ〉 |2 (1.26)

In fact, it can be thought as the probability that an input state |φ〉 passes the ’|ψ〉’
test, which is the measurement in the basis |ψ〉,

∣∣ψ⊥〉. More in general, for two
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density operator, ρ and σ, the fidelity is defined by ([5]: section 2.6.1)

F (ρ,σ) ≡
(

tr

√
ρ

1
2σρ

1
2

)2

= (tr
√
ρσ)2 (1.27)

where the last equality results from properties of the unique positive square root for
a positive semidefinite matrix. From (1.27) and using the Bloch parametrization,
we can obtain an explicit formula for the fidelity in the case of two states of a qubit
with polarizations ~P and ~Q (1.21) ([6]: section 3.8, result from exercise 3.7)

F (~P , ~Q) =
1

2

(
1 + ~P · ~Q+

√
(1− ~P 2)(1− ~Q2)

)
(1.28)

Considering pure qubit states |φ〉 and |ψ〉, we assign them polarizations ~P and ~Q.
Until now, the state |φ〉 is somewhere on the Bloch sphere. We might as well orient
the sphere so that his direction ~P became the ẑ direction. With an angle θ between
the two states on the Bloch sphere, from (1.28) we have F (~P , ~Q) = 1

2(1 + cos θ).
Moreover, on the average, a guess state |φ〉 will match |ψ〉 with fidelity

〈F 〉 =
1

4π

∫ 2π

0

dφ

∫ π

0

dθ sin θ
1

2
(1 + cos θ) =

1

2
(1.29)

In order to improve the guess, we might make a measurement of |φ〉, say, along the
ẑ axis. Given the result k ∈ {0, 1}, our guess is then the state |k〉. The fidelity
thus becomes Fk(|k〉 , |ψ〉) = | 〈k|ψ〉 |2, depending on the value of k, causing this
to occur with probability pk = | 〈k|ψ〉 |2. So, averaging over all possible outcomes
for k, we have F =

∑
k pkFk =

∑
k | 〈k|ψ〉 |

4. Therefore, averaging over a generic
|ψ〉 = cos θ2 |0〉+ eiφ sin

θ
2
|1〉 from (1.20), the fidelity is

〈F 〉 =
1

4π

∫ 2π

0

dφ

∫ π

0

dθ sin θ

(
cos4

θ

2
+ sin4 θ

2

)
=

2

3
(1.30)

Thus making the measurement increases the fidelity of the guess.

1.2.6 Generalized measurements and POVM

We already introduced PVM performed on a subsystem A of larger system. However,
we can perform a PVM on the whole AB. In that case, the effect on A alone need
not be an orthogonal projection.

We start considering B to be an ancilla system of A (this name means B is used
to achieve a desired goal). We also define set of orthogonal projectors {Ei, i ∈ O} as
in subsection 1.2.2. Performing a unitary transformation U on AB, such as a time
evolution operation, we entangle the two subsystems. So, by observing the ancilla
in its fiducial basis, we can perform any conceivable orthogonal measurement on the
system A. However, in general the unitary transformation could picks out a different
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preferred basis than the fiducial one. Then the measurement of B causes non orthog-
onal states of A. Such a measurement, is said generalized and it is powered by some
special nonnegative operators, called POVM (Positive Operator-Valued Measure).
That is, a complete set of positive semi-definite Hermitian matrices {F i, i ∈ O} on
a Hilbert space HA. We also introduce the Kraus operators {M i, i ∈ O} so that

F i = M †
iM i (1.31)

Being |φ〉 ∈ HA ⊗HB and |ψ〉 ∈ HA, by expanding the action of U in the basis for
B, we have

U : |φ〉AB = |ψ〉A ⊗ |0〉B 7→
∣∣φ′〉

AB
=
∑
i

M i |ψ〉A ⊗ |i〉B (1.32)

Since U is unitary, we have
∑

iM
†
iM i = 1. Remember that MaM b = δabMa

does not hold in general, so, in contrast to an orthogonal measurement, the post-
measurement states are typically not orthogonal. If we are considering that subsys-
tem A is described by ρA, in the Heisenberg picture we have that a POVM arises
when a PVM is performed on AB. In fact the relation

F i = U †EiU (1.33)

holds [12]. The Kraus decomposition (1.31) is unique unless unitary operator U i.
In this case also holds that

M i = U i

√
F i (1.34)

Therefore, the probability of obtaining outcome i with this PVM, and the state
suitably transformed by the unitary, is the same as the probability of obtaining it
with the original POVM

Prob (i) = tr
(
U †ρAUEi

)
= tr

(
ρAU

† [IA ⊗ |i〉 〈i|B]U
)

= tr

(
ρA

(∑
i

√
F j
†
A
⊗ 〈j|B

)
[IA ⊗ |i〉 〈i|B]

(∑
i

√
F kA ⊗ |k〉B

))
= tr

(
ρA
√
F iAIA

√
F iA

)
= tr (ρAF i) (1.35)

where we obtained the expression of U from (1.32), the expression for Ei from (1.11)
and we used (1.34). Furthermore, if two such measurements are performed in rapid
succession, the outcomes need not to be the same. Moreover, the post-measurement
state corresponding to outcome i is arbitrary, since we are free to choose the unitary
U i in (1.34) however we please for each possible outcome ([6]: section 3.1.2).

No cloning theorem

Another interesting thing regarding the non orthogonal states, is that they cannot be
distinguished without being disturbed. More explicitly, there not exists, in general, a
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quantum Xerox machine; that is the No cloning theorem [2], widely used in Quantum
Cryptography.

It deals with the fact that does not exist any unitary U in HA ⊗HB, such that

U (|φ〉A |e〉B) = eiθ(φ,e) |φ〉A |φ〉B (1.36)

where |φ〉 and |e〉 are all normalized states and θ is a real number depending on the
two states. In fact, due to unitarity of U , it holds that

〈ψ|φ〉 〈e|e〉 = ei[θ(φ,e)−θ(ψ,e)] 〈ψ|φ〉2 (1.37)

Since |e〉 is assumed to be normalized, we have

| 〈ψ|φ〉 | = | 〈ψ|φ〉 |2 (1.38)

This implies that either | 〈ψ|φ〉 | = 1 or | 〈ψ|φ〉 | = 0, causing the existence of a
unitary like U only for states which represent the same ray or orthogonal states.
Hence, no unitary machine can make a copy of both ψ and φ if they are distinct non
orthogonal states. Therefore, a single universal U cannot clone a general quantum
state. This proves the no cloning theorem.

1.2.7 Quantum channels

If a state of a bipartite system undergoes unitary evolution, we describe the evolution
of A alone by a linear map ε called quantum channel. We may imagine to measure
B in its basis, but failing to record the outcome, so we are forced to average over all
of the possible post-measurement states, weighted by their probabilities ([6]: section
3.2.1). Therefore, the result for a state ρA of A ∈ HA is a linear map, so that

ε (ρA) =
∑
i

M †
iρAM i (1.39)

It easy to verify that ε is a linear map that preserves hermiticity, positivity and trace.
Quantum channels are important in giving formalism to discuss decoherence [6], the
evolution of pure states into mixed ones. In fact, if the sum (1.39) has only one
term, then the evolution of ρA is unitary and the channel is said pure. Otherwise,
the channel transforms pure initial states of A to mixed ones ([6]: section 3.2.1). For
example, in (1.35) we see that the operation U †ρAU induces a non-pure channel, as
the time evolution operator is unitary only if acting on the whole AB. In particular,
exploiting the action of the channel, we have that pure states of A become entangled
with B under the joint unitary transformation described by (1.32), and therefore
the state of A becomes mixed when we trace out B. In (1.33), we notice the same
thing, but represented in the Heisenberg picture, where states are stationary and
operators evolve instead. The maps induced is the dual ε∗ of ε ([6]: section 3.2.3).
For a general operator A, we have

ε∗ (A) =
∑
i

M †
iAM i (1.40)
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Another name for ε is TPCP map, which means trace-preserving completely positive
map. If an ancilla B of arbitrary finite dimension n is coupled to the system A, then
the induced map ε ⊗ In, where In is the identity map on the ancilla, must also
be positive. Therefore, for complete positivity to hold it is required that ε ⊗ In is
positive for all n. We say ε⊗ In maps AB to A′B.

Channel-state duality and relative state method

The evolution of A is in general non-unitary. We are therefore entitled to imagine
that A is a part of an extended system which evolves unitarily. Such as evolution
law can be encoded in a quantum channel. In fact every channel has its unitary
representation ([6]: section 3.2). To study this, we introduce the ancilla B having the
same dimension d as A. Therefore ε, being completely positive, maps a maximally
entangled state on AB to a density operator on A′B. So, we have

∣∣φ̃〉
AB

=

d−1∑
i=0

|i〉A ⊗ |i〉B (1.41)

were we used unconventional normalization for the sake of simplicity (the tilde de-
notes that). We also have

(ε⊗ In)
∣∣φ̃〉 〈φ̃∣∣

AB
=
∑
a

∣∣ψ̃a〉 〈ψ̃a∣∣A′B
(1.42)

where the probability of each state are absorbed by the normalization. Conversely,
we may associate with any density operator on A′B a corresponding channel taking
A to A′. This is the Choi-Jamiolkowski isomorphism or channel-state duality. To
verify this, we notice that

|ϕ〉A =
∑
i

ci |i〉A =
∑
i

ci
(
B

〈
i
∣∣φ̃〉AB) = B

〈
ϕ∗
∣∣φ̃〉AB (1.43)

Then the channel is recovered from the density matrix of A′B

ε (A〈ϕ|ϕ〉A)) =
∑
a

(〈
ϕ∗
∣∣ψ̃a〉 〈ψ̃a∣∣ϕ∗〉)A′ (1.44)

after defining the Kraus operators as

Ma |ϕ〉A = B

〈
ϕ∗
∣∣ψ̃〉A′B (1.45)

This scheme for extracting the action on |ϕ〉A using its dual 〈ϕ∗|B is called the
relative state method.
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1.2.8 Axioms revisited

With the theory of OQS, we can rightly rewrite axioms 1, 3 and 4 of (1.1) in a more
general formulation:

(1) A state is a density operator in H;

(3) A measurement is a positive operator-valued measure (POVM);

(4) Time evolution is described by a trace-preserving completely positive map
(TPCP map).

1.3 Entanglement-assisted communication

1.3.1 Hidden Quantum Information and LOCC

Quantum entanglement features quantum information and it can be established
under specific condition.

We start considering what a maximally entangled state of two qubits is∣∣φ+〉
AB

=
1√
2

(|00〉AB + |11〉AB) (1.46)

Tracing over qubit B we obtain a multiple of the identity operator that has every
state as an eigenstate. Therefore, any local measurement on A or B will generate a
random bit giving no information about the preparation. Conversely, in the case of
a single qubit we could store a bit by preparing, say, either |↑n̂〉 or |↓n̂〉 and recover
it by measuring the qubit along the n̂-axis. We would, therefore, be able to encode
two bits of classical information in two qubits, but in

∣∣φ+〉 this information seems
to remain hidden by measuring A or B. In fact, consider

∣∣φ+〉 to be one member of
a basis of four mutually orthogonal and maximally entangled states for two qubits∣∣φ±〉 =

1√
2

(|00〉 ± |11〉)
∣∣ψ±〉 =

1√
2

(|01〉 ± |10〉) (1.47)

If we encode one bit as the parity bit (|φ〉 or |ψ〉) and the other as the phase bit
(+ or −), then all we can do locally is to manipulate this information by applying
σ1 or σ3 in one member of the entangled pair. Indeed, this will flip the phase bit or
the parity bit stored in the whole entangled state, respectively ([7]: section 4.1.1).
In fact, as for HJW theorem, we can always perform local unitary transformation
that changes one maximally entangled state to any other maximally entangled state
(only acting on HA or HB separately, NOT on HA ⊗ HB). Nevertheless, remains
that neither one can read this information. In fact, it is possible to infer one bit
encoded in the entangled state by measuring the same bit on each qubit separately.
But, it is impossible to recover one bit in the entangled state without disturbing
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the other one. Indeed, the entangled basis states are common eigenstates of two
commuting observables whose eigenvalues are the phase bit and the parity bit

σ
(A)
1 ⊗ σ(B)

1 σ
(A)
3 ⊗ σ(B)

3 (1.48)

These operators commute, but they cannot be measured simultaneously by per-
forming local measurement on both qubits separately. In fact, we have both σ(A)

i

and σ(B)
i commute with σ(A)

i ⊗ σ(B)
i , but not with σ(A)

j ⊗ σ(B)
j , where i 6= j and

i, j = 1, 3. ([7]: section 4.1.1). Despite this, there exists a way to rotate the en-
tangled basis (1.47) to unentangled basis {|00〉 , |01〉 , |10〉 , |11〉} and then measuring
both bits we can learn the value of both the phase bit and parity bit encoded in∣∣φ+〉

AB
. The upshot is that exists a transformation that establishes or removes

entanglement (by running it backward). This transformation is composed by a local
part, that is a unitary H performed on the first qubit (Hadamard transform)

H =
1√
2

(σ1 + σ3) (1.49)

and by a nonlocal part CNOT that removes or establishes entanglement and re-
quires both qubits are in the same position at the same time to act (the controlled -
NOT transformation)

CNOT : |a, b〉 → |a, a⊕ b〉 (1.50)

where a, b = 0, 1 are the basis states and a⊕ b denotes addition modulo 2. In fact,
we see that for a state |00〉 the transformation acts in two steps, applying H to the
first qubit and eventually flips the second qubit depending on the outcome of H
(this performed by CNOT )

|00〉 → 1√
2

(|0〉+ |1〉) |0〉 →
∣∣φ+〉 (1.51)

Hence, an entangled state is obtained. By using the quantum circuit notation (to
be read from left to right), where qubits are denoted as horizontal lines, we have

|0〉 H

|0〉
∣∣φ+〉 (1.52)

Similarly, we can reverse the circuit and transform an entangled two-qubit state into
an unentangled one.

From all of this examples, we see that local operations and classical communi-
cations (LOCC) will not suffice for create entanglement among distantly separated
pairs, or extract information encoded in it.
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1.3.2 Dense Coding and Quantum Teleportation

Although by using LOCC is impossible to reveal all the information encoded in
entangled states, that could be used to enhance the transmission of classical infor-
mation. This procedure is named Dense Coding. We start by introducing the two
friends Alice and Bob who share a quantum channel. Alice want to send a message
to Bob using qubits in place of classical bits (cbits), by preparing them, say, either
|↑z〉 or |↓z〉 and then letting Bob to measure along ẑ to infer the choice she made. In
first place, sending one qubit at a time, no matter how she prepares it and no matter
how Bob measures it, no more than one cbit can be carried by each qubit (even in
the qubits are entangled with one another) ([7]: section 4.4.1). Despite this, in some
special conditions Alice can transmits two classical bits by sending a single qubit to
Bob, exploiting Dense Coding. More specifically, it is necessary for them to share
an entangled pair of qubits in a maximally entangled state, for example

∣∣φ+〉
AB

.
The maximal entanglement condition is needed to grant quantum channel to have
perfect fidelity F = 1 ([7]: section 4.4.3). However, this state must be prepared by
either of them and later one one member of the entangle pair must be shipped to
the other. Then, Alice and Bob actually need to use the channel twice to exchange
two bits of information. Hence, also in Dense Coding we recover that each qubit
convey a cbit of information. Anyway, the upshot is that the first qubit is shipped
long before anyone knew what the message was going, making possible to send two
cbits by only using the channel once when needed.
More in detail, Alice can transmits the second cbit of information by carrying out
a specific protocol on her entangled qubit (ebit). She can perform one of four possi-
ble unitary transformations, consequently changing

∣∣φ+〉
AB

to one of four mutually
orthogonal states of (1.47). Respectively, we have

I (she does nothing) → obtains
∣∣φ+〉

AB

σ1 (180◦ rotation about x̂-axis) → obtains
∣∣ψ+
〉
AB

σ2 (180◦ rotation about ŷ-axis) → obtains
∣∣ψ−〉

AB
(up to a phase)

σ3 (180◦ rotation about ẑ-axis) → obtains
∣∣φ−〉

AB

Now, she send her qubit to Bob, who receives and perform an orthogonal collective
measurement on the pair that projects onto the maximally entangled basis. The
measurement outcome unambiguously distinguishes which one of the four possible
actions Alice committed. Therefore, a single qubit transmitted by Alice successfully
carried two bits of classical information (the other cbits is encoded in the prepara-
tion of the qubit). An important feature of Dense Coding is that the shipper need
not worry that an eavesdropper will intercept the transmitted qubit and decipher
the message. In fact, the shipped qubit is a part of a maximally entangled state,
therefore its density matrix is ρA = 1

2IA, and so carries no information at all. All
the information is encoded in entanglement between A and B, and therefore cannot
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be recovered locally.

Surprisingly, it is also possible to perform the converse of Dense Coding, that
is, send two classical bits to convey a qubit. This procedure is named Quantum
teleportation. In fact, to measure a qubit along ~n-axis and later tell the outcome to
Bob so that he prepares his qubit accordingly, does not suffice for Alice to transmit
her qubit. Indeed, by measuring along ~n-axis, Bob’s state will match Alice’s qubit
with a Fidelity given by (1.30). However, they can achieve Fidelity F = 1 by
following this protocol: Alice combines the qubit |ψ〉C she wants to send to Bob
with her half of the |φAB〉 pair. That is possible by measuring the Bell states of A
and C, which means to measures the two commuting observables

σC1 ⊗ σA1 , σC3 ⊗ σA3 (1.53)

that project into one of the four maximally entangled states
∣∣φ±〉

CA
,
∣∣ψ±〉

CA
. In

fact, in [7]: section 4.4.2, is calculated that

|ψ〉C
∣∣φ+〉

AB
=

1

2

∣∣φ+〉
CA
|ψ〉B +

1

2

∣∣ψ+
〉
CA
σ1 |ψ〉B + (1.54)

1

2

∣∣ψ−〉
CA

(−iσ2) |ψ〉B +
1

2

∣∣φ−〉
CA
σ3 |ψ〉B (1.55)

Consequently, the results of Bell measurement are shipped to Bob, conveyed by two
classical bits. This unequivocally select one of the four terms of (1.54). At this
point, for (1.54), Bob knows the action he has to perform on a random qubit |ψ〉B
in order to transform it into a perfect copy of |ψ〉C .
Finally, we note that the teleportation procedure is fully consistent with the no
cloning principle, as for when a copy of |ψ〉C appears on Bob’s hands after he
performed one of the four suitable unitaries, the original |ψ〉C had to be destroyed
by Alice’s measurement which establishes correlation between A and C.





Chapter 2

Dawn of Quantum Information
Theory

In this chapter we will be occupied with generalizing Claude Shannon’s great classical
contributions to a quantum settings. We start discussing about Shannon entropy
and its relevance on classical information theory [1]. Moreover, we will see how
it naturally deals with the problem of data compression in Shannon’s information
theory. So, we will study how much one can decrease the redundancy incorporated
in the message (source coding theorem). In particular, entropy provides a suitable
way to quantify redundancy.

One of the major thrusts of Shannon’s Quantum Information Theory is to trans-
mit classical and quantum information through noisy quantum channels. To study
this, we start inspecting classical information theory and focusing on the rate that
allows us to communicate reliably over a noisy channel (noisy channel coding theo-
rem). We will always consider an asymptotic setting when considering features of
information theory. So, the same quantum channel or state is used many times,
ignoring practical issues.

2.1 Shannon Theory

When we refer to a “message”, we mean a string of letters, where each of them is
chosen from an alphabet of k possible letters. Consider that each letter x is picked
up by sampling from a probability distribution X , that associates a probability p(x)

to each letter
X = {x, p(x)} (2.1)

where 0 ≤ p ≤ 1 holds. Since the letter are statistically independent and identically
distributed, the particular string of letters or bits ~x = {x1x2 . . . xn} occurs with
probability

p(x1x2 . . . xn) =

n∏
i=1

p(xi) (2.2)
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Hence, for n very large, every typical string will contain the letter x about np(x)

times. A string is said atypical if p = 1
2 , while for every other allowed values of p it

is said typical. The number of distinct strings is given by the multinomial coefficient
n!∏

x(np(x))!
, and, from the Stirling approximation log2 n! ≈ n log2 n−n log2 e, we have

log2
n!∏

x(np(x))!
≈ nH(X ) with H(X ) = −

∑
x

p(x) log2 p(x) (2.3)

where logarithms with base 2 are more convenient for expressing a quantity of infor-
mation in bits. Slightly above, H(X ) is the Shannon entropy of the ensemble with
probability distribution given by (2.1). Therefore, the number of typical strings is of
order 2nH(X ). To convey all the information carried by a string of n bits, it suffices
to choose a block code that assigns a nonnegative integer to each of the typical n
letter strings. So, it needs to distinguish about 2nH(X ) messages and every infor-
mation in a string of n letters can be expressed using a string of nH(X ) bits. In
this sense a letter x chosen from the ensemble carries, on the average, H(X ) bits
of information. Since o ≤ H(X ) ≤ 1 for o ≤ p(x) ≤ 1, and H(X ) = 1 only if
p(x) = 1

2 , the block code shorten the message for any typical sequence. Information
is therefore compressed. To conclude, the probability for a message to be atypical
becomes negligible asymptotically, for very large values of n ([8]: section 10.1.1).

From what said, we ave now able to generalize the concept of typical strings to
δ-typical strings. Still remain n-letter strings, with large values of n. These, are
featured by a probability p(~x) satisfying

2−n(H+δ) ≤ p(~x) ≤ 2−n(H−δ) (2.4)

being δ > 0. Therefore, all sequences can be encoded in a block code with length
n(H + δ). For large n, thanks to the Asymptotic Equipartition Property (demon-
strated in [13]), a δ-typical string tend to become a typical one, so the probability
for a given sequence to be δ-typical become arbitrary close to one

psuccess ≥ 1− ε (2.5)

where ε > 0 and is small. Conversely, we want to compress even further and we
fix a positive constant δ′, so that every message is encoded in H − δ′ bits. We see
that only 2n(H−δ

′) typical messages with probability no higher than 2−n(H−δ) can
be correctly decoded. However, we can make ε and δ small as we please, so psuccess
becomes very small for n → ∞. That is Shannon’s source coding theorem which
asserts that a compression rate H(X )+o(1) is achievable, while H(X )−Ω(1) is not.
Here, o(1) denotes a positive quantity which can be chosen as small as we please,
while Ω(1) denotes a positive constant.

If two information source X and Y are correlated, then we have a δ-joint dis-
tribution XY = {(x, y), pXY(x, y)}. Therefore, the marginal distribution X can be
denoted as

X = {x, pX (x) =
∑
y

p(x, y)} (2.6)
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and similarly for Y . A distribution is δ-jointly typical if

2−n(H(X )+δ) ≤ p(~x) ≤ 2−n(H(X )−δ)

2−n(H(Y)+δ) ≤ p(~y) ≤ 2−n(H(Y)−δ)

2−n(H(XY)+δ) ≤ p(~x, ~y) ≤ 2−n(H(XY)−δ) (2.7)

From the Bayes’ rule we obtain the conditional probability p(x|y), which defines the
conditional entropy of X given Y

H(X|Y) = H(XY)−H(Y) = −
∑
x,y

p(x, y) log2 p(x|y) (2.8)

This quantifies the remaining ignorance about x when y is known. This gap therefore
needs H(X|Y) bits to be bridged. Moreover, because XY is a joint distribution,
by observing one random variable, say y, we always know something of the other
random variable x. The correlation between X and Y is thus quantified by the
mutual information I(X ;Y), which is symmetric and nonnegative (it is zero only if
the distribution are completely uncorrelated). Nevertheless, the concept of mutual
information is intimately linked to that of entropy of a random variable, in fact we
have

I(X ;Y) = H(X )−H(X|Y) = H(Y)−H(Y|X ) = I(Y ;X ) (2.9)

Therefore, because in a joint distribution situation the mutual information is always
positive, holds that H(X ) ≥ H(X|Y) ≥ 0. Hence we notice that, by sampling over
Y , the ignorance about X ’s outcomes is reduced, and for that they can be further
compressed.

2.1.1 Noisy channel coding

In classical information theory, to allow Alice to communicate with Bob, there occurs
a channel through which encoded information has to pass. In real situations, this
channel is also affected by transmission errors, making sometimes hard to reconstruct
the original message. We start fixing an ensemble X = {x, p(x)} for the input
letters, and generate the codewords for a length-n code with a certain rate R (i.e.,
how many bits of error-free information are encoded in a physical bit transmitted
trough a channel subject to a certain level of random data transmission errors)
and the code is known both by the sender, say, Alice and the receiver Bob. The
upshot is that we are interested in optimizing this rate and, in order to do that, is
necessary to generate the code in a suitable way. At this point, the communication
channel transforms the code following certain rules (each channel is featured by
specific actions it does on the code) producing an output message ~y ∈ Y that can be
conveniently decoded, retrieving the original message. In this process some errors
can occur with a specific channel error probability. Also some noise can corrupt the
message causing errors. In this case, we say we have a noisy channel and we cannot
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always decode with success a message sent over a noisy channel. However, Shannon
stated that, as long as there is some correlation between the channel’s input and
output, we can convey an encoded nR-bit message without errors by sending one
of the 2nR n-letter codewords using the channel n → ∞ times. Where the rate R
has an optimal nonzero value, that can be achieved, and corresponds to the mutual
information I(X ;Y). That is the noisy channel coding theorem.
Therefore, the channel is characterized by p(y|x), the conditional probability that
the letter y is received when the letter x is sent ([8]: section 10.1.4).

Binary symmetric channel

In order to study how to achieve the optimal R value, we start considering a binary
alphabet {0, 1} and the binary symmetric channel. In this type of communication
each bit could be flipped with probability p, otherwise it can be received correctly
with probability 1− p, so the conditional probabilities for each case are

p(0|0) = 1− p p(0|1) = p

p(1|0) = p p(1|1) = 1− p (2.10)

For each n, the code contains 2k codewords among the 2n possible strings of length
n, and the rate R is defined as

R =
k

n
(2.11)

For any n-bit input message, we expect about np bits to be flipped, in fact selected
and sent one of the 2nR codewords, it diffuses into one of about 2nH(p) typical output
strings, occupying an error sphere of Hamming radius np and center in the input
string [8]. To protect against errors, we should use a code such as its codewords
are separable, that means the Hamming distance between two codewords is enough
to permit the error spheres of two different codewords to not overlap. Otherwise,
two different inputs will sometimes yield the same output, causing decoding errors
to occur. A necessary condition for realizing this is to have no more than the total
number of output message bits for the total number of strings contained in all of
the 2nR spheres

2nH(p)2nR ≤ 2n (2.12)

which implies
R ≤ 1−H(p) = C(p) (2.13)

Therefore, C(p), which is the channel capacity, is the optimal rate for reliable trans-
mission over the noisy channel. Shannon’s most ingenious idea was that the rate
C(p) can be achieved by an average over random codes. The easiest way to perform
this is to generate the 2nR random codewords by sampling a total of 2nR times from
the distribution X n (i.e., sampling over X n times). To send nR bits of information,
Alice chooses one of the codewords and sends it to Bob by using the channel n
times. In order to decode the message, Bob draws an Hamming sphere with a ra-
dius slightly large than np that contains 2n(H(p)+δ) strings. If the sphere contains a
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unique codeword, Bob decodes accordingly, otherwise he decodes arbitrarily. Since
the sphere is large enough to contain with high probability, in an asymptotically
regime, the codeword sent by Alice, only remains to worry about the sphere might
accidentally contain another codeword. Another time, we find that the probability
that the sphere contains one of the 2nR − 1 invalid codewords is no more than

2nR
2n(H(p)+δ)

2n
= 2−n(C(p)−R−δ) (2.14)

Since δ may be as small as we please, we can choose R = C(p) + c, with c a positive
constant, and this probability goes to zero as n→∞. At this point, the proof works
for a fixed message. But we can assure this probability goes to zero asymptotically
for every codeword ([8]: section 10.1.4).

Channel capacity

Now consider to apply this random coding argument to more general alphabets
and channels. The input ensemble X , together with the conditional probability
characterizing the channel, determines the joint ensemble XY for each letter sent,
due to the identity p(x, y) = p(y|x)p(x). In order to reconstruct the message received
by Bob, one has to use the notion of joint typicality in (2.7). When Bob receives an
n-letter message ~y, he determines whether there exists an n-letter initial message
~x, so that ~x is jointly typical with ~y. If this happens, Bob decodes accordingly,
otherwise he decodes arbitrarily.
In order to compute the probability of a decoding error to occur, we notice that
by applying the strong law of large numbers to (2.7), the probability for a (~x, ~y) of
being jointly δ-typical is given by (2.5). Therefore, it only remains to ensure that
the probability p(~x′, ~y) of any other codeword ~x′ to be jointly δ-typical with ~y will
vanish asymptotically (note that every (~x′, ~y) is δ-typical with probability (2.5)).
From (2.7), we find that the number Nj of jointly δ-typical (~x, ~y) is

Nj ≤ 2n(H(XY)+δ) (2.15)

Moreover, because the samples are independent, the probability of drawing two
codewords factorizes as p(~x′, ~x) = p(~x′)p(~x). Consequently, the channel output ~y,
when ~x is sent, is independent from ~x′ and p(~x′, ~y) = p(~x′)p(~y). Therefore, from
(2.7), we have∑

jointly (~x′,~y) couples

p(~x′)p(~y) ≤ Nj2
−n(H(X )−δ)2−n(H(Y)−δ) ≤ 2−n(I(X ;Y)−3δ) (2.16)

Finally, considering 2nR codewords independently generated by sampling n-times
from X , the probability became

2nR2−n(I(X ;Y)−3δ) = 2n(R−I(X ;Y)+3δ) (2.17)
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Since we can choose δ as small as we please, we can write R = I(X ;Y) − c, with
c > 0 is a constant. Therefore we have demonstrated that this probability approach
to zero asymptotically ([8]: section 10.1.4). That induces the definition of channel
capacity

C = sup
X
I(X ;Y) (2.18)

This allows to interpret the mutual information as the information per letter we
can transmit over the channel. In this sense the mutual information quantifies the
information gained about X when we have access to Y . Notice that we have obtained
a formula for the capacity just for a single use of the channel, although the capacity
is achieved by many letters messages.
Ultimately, the demonstration Shannon provides of R = I(X ;Y)−c being reachable
averaging over random codes, is non constructive. Since a random code has no
structure or pattern, to encode and decode requires an exponentially large code
book. It is very interesting and useful to look for codes which can be efficiently
encoded and decoded, and come close to achieve the capacity.

2.2 Von Neumann Entropy

We start now to generalize the considerations above to quantum information. Firstly,
image that the letter of a message are picked up from an ensemble of quantum states
{σ(x)}, each occurring with a specific a priori probability p(x). As said in Chapter
1, all the probabilities of the measurement outcomes without knowing nothing about
the system, are specified by the density operator ρ =

∑
x p(x)σ(x). For a POVM

the probability of outcome ai is given by (1.9). Therefore, for any density operator,
we define the Von Neumann entropy as:

H(ρ) = −tr(ρ logρ). (2.19)

Now we consider a basis {ai} that diagonalizes ρ as in (1.6). Hence, the vector
of eigenvalues of the density operator λ(ρ) is a probability distribution and, with
simple calculations, the Von Neumann entropy of ρ is just the Shannon entropy of
this distribution

H(ρ) = H(λ(ρ)) (2.20)

The central issue in quantum information theory is that states are nonorthogonal
in general and therefore they cannot be perfectly distinguished. But, drawing from
an alphabet of mutually orthogonal and therefore completely distinguishable pure
quantum states {|ϕ(x)〉 , p(x)}, an n-letter message can be compressed, without
decoding errors, to a one of H(ρ) qubits per letter. In fact, the density operator of
this ensemble ρ =

∑
x p(x) |ϕ(x)〉 〈ϕ(x)| has the property to be ρ⊗n = ρ⊗ · · · ⊗ ρ

and it turns out that the message can be compressed to a Hilbert space so that
dimH = 2n(H(ρ)+o(1)) asymptotically ([8]: sections 10.3). That is the Quantum
Source Coding Theorem. Moreover, in this case also holds that H(ρ) = H(X ),
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causing the Von Neumann entropy to quantify the maximal classical information
per letter gained by making the best possible measurement. Finally, since for a pure
state the density matrix is idempotent, the entropy H(ρ) vanishes, so it gives us the
departure of a system from being a pure state by quantifying its entanglement ([8]:
section 10.2). In fact, considering the case where ρ has d non-vanishing eigenvalues,
holds that H(ρ) ≤ log d, with equality when all the nonzero eigenvalues are equal.
This causes for the entropy of a maximally mixed state to be maximized. Moreover,
by investigating more deeply, if ρAB is a bipartite pure state, then H(A) = H(B)

as ρA and ρB share the same eigenvalues.
Nevertheless, a natural definition of quantum mutual information comes from (2.9)
by substituting the Von Neumann entropy.
At this point, is useful to introduce the relative entropy. In a classical context, the
relative entropy of a probability distribution {p(x)} relative to {q(x)} is defined as

D(p‖q) ≡
∑
x

p(x)(log p(x)− log q(x)) (2.21)

and one can easily demonstrate (using the disequation log x ≤ x− 1, for x positive
and real, where we have equality only if x = 1) thatD(p‖q) ≥ 0, where equality holds
if and only if the probability distributions are identical. Therefore, we accordingly
define the quantum relative entropy of ρ with respect to σ as

D(ρ‖σ) = trρ(logρ− logσ) (2.22)

which, denoting {pi} as the eigenvalues of ρ and {pi} as the ones of σ, operatively
becomes

D(ρ‖σ) =
∑
i

pi

(
log pi −

∑
a

Dia log qa

)
(2.23)

Here, Dia is a double stochastic matrix (its entries are nonnegative real numbers
and each column or row is a probability distribution). With a little extra effort (an
approach to the proof is given in [8]: exercise 10.1), one could find that

D(ρ‖σ) ≥ 0 (2.24)

with equality if and only if ρ = σ. This property is known as the positivity of
quantum relative entropy. Another important property is called monotonicity :

D(ρA‖σA) ≤ D(ρAB‖σAB) (2.25)

2.2.1 Entropy and thermodynamics

The concept of entropy first entered science through the study of thermodynamics
and is important to see how quantum information theory can illuminates it. More-
over, nonnegativity and monotonicity of quantum relative entropy strongly relates
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to ideas in thermodynamics.
First of all, we consider an approach where the evolution of the full system is uni-
tary, but not the one of the subsystem is not, and it can be accurately described by
a thermal ensemble at late times. Therefore, if information is initially encoded lo-
cally into a non-equilibrium state, becomes more and more non local as the system
evolves, eventually becoming invisible to an observer on the subsystem. For this
reasons, the state of an open system with Hamiltonian H is expected to be close to
the thermal Gibbs state

ρB =
e−βH

tr
(
e−βH

) (2.26)

where kT = β−1 is the temperature. For an arbitrary ρ we define the free energy as

F (ρ) = E(ρ)− β−1S(ρ) (2.27)

and E(ρ) = 〈H〉ρ is the expectation value of the Hamiltonian in this state. Using
the positivity of relative entropy, we can easily demonstrate that, at a temperature
β−1, the Gibbs state has the lowest possible free energy. In fact, we have

F (ρ) = tr(ρH)− β−1H(ρ) = β−1 trρ(logρ+ βH)

F (ρβ) = −β−1 log
(
tr e−βH

)
= β−1 tr(βH) (2.28)

and therefore the relative entropy of ρ and ρβ is

D(ρ‖ρβ) = β(F (ρ)− F (ρβ)) ≥ 0 (2.29)

Moreover, using monotonicity of relative entropy and the fact that the joint unitary
evolution of the system induces a quantum channelN acting on the system alone, de-
scends that a quantum channel cannot increase relative entropy D(N (ρ)‖N (ρβ)) ≤
D(ρ‖ρβ). Furthermore, we also expect that N preserves the Gibbs equilibrium
state. This yields an alternative version of the second law of thermodynamics ([8]:
section 10.2.5)

D(N (ρ)‖N (ρβ)) = β(F (N (ρ))− F (ρβ)) ≤ β(F (ρ)− F (ρβ)) = D(ρ‖ρβ) (2.30)

and hence
F (N (ρ)) ≤ F (ρ) (2.31)

Thus, the free energy of a non-equilibrium state is monotonically decreasing under
open-state evolution.

2.2.2 Bekenstein’s entropy bound

A very interesting application for what said above can be found in quantum field
theory formulation of Bekenstein’s bound on entropy. More specifically, the bound
is formulated as an inequality relating the energy and the entropy in a bounded



2.2. VON NEUMANN ENTROPY 41

spatial region. The idea Bekenstein’s had of such a bound was motivated by issues
about black hole thermodynamics and gravitational physics, but it can be formulated
without reference to gravitation (we briefly see why), and follows from properties
of relative entropy. However, a sketch of the black hole thermodynamics and the
original formulation of this bound are central points in the Appendix A of this work.
We start considering a two-dimensional plane in which we draw an edge, defining
a region. According to quantum field theory, in the vacuum state virtual processes
can occur. That is, couples of particle and antiparticle are created in vacuum and
they annihilate in a time so short that, because of ∆E∆t ∼ ~, a violation of energy-
momentum relation can occur. Because that continuously happens, there are infinite
contributes to the ’vacuum energy’ guaranteed by these processes, causing for the
entropy of a region to be infinite in quantum field theory. Therefore, if we want to
define a suitable ’vacuum state’ being a finite energy state, quantum field theory
offers us the possibility to subtract this background energy caused by virtual pro-
cesses. Operatively, this corresponds to a rescaling of the Hamiltonian H , which
becomes K after setting the temperature to unity. Hence, although the vacuum is
a pure state, when we consider only a region of a plane its marginal state becomes
highly mixed because of the entanglement between it and its complement. So, the
vacuum mixed state is

ρ0 =
e−K

tr(e−K)
(2.32)

Then, for any state ρ, the positivity of relative entropy yields

H(ρ)−H(ρ0) ≤ tr(ρK)− tr(ρ0K) (2.33)

Therefore the difference between the entropy of a given state of the region and its
’vacuum entropy’ is bounded above by the same difference between (modular) en-
ergies. This is a form of Bekenstein’s bound. What is noteworthy is that K is
dimensionless and extensive, therefore (in units with ~ = c = 1) can be interpreted
as ER, where R is the linear size of the region. The justification of this fact in-
volves relativistic quantum field theory and is beyond the aim of this work and
is not given here. The upshot is that the entropy of a two-dimensional region is
bounded by O(ER) and therefore by the edge of the region. This statement, with a
dimension more, yield the other version of Bekenstein’s bound given for black holes
which involves the area A of the event horizon. The formula is (A.1), and it is
widely justified and discussed, together with the whole Bekenstein’s bound in ’black
holes language’, in the section A.1.1. Another important consideration that can be
made on (2.33), is that, considering the Hawking Radiation process, the right-hand
side can be negative. In fact, when couples of virtual particles are created in the
correspondence of the event horizon and the particle with energy E runs out of the
gravitational field of the black hole by tunnelling, the other one, with energy −E,
falls into the black hole by decreasing its total energy. Therefore, if we perform the
energy subtraction we obtain a negative result. This implies that the Hawking’s
phenomenon causes entropy of a region to decrease, and this is possible (remember
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the connection between entropy of a region and its boundary) only by reducing its
surface. Therefore, black holes actually evaporates and decrease their size with time.
More details in A.1.2, where also a better description of Hawking radiation is given.



Chapter 3

Quantum Channel Capacities
and Decoupling

At this point of the work, we want to deepen some general aspects related to quantum
channels. The concept of decoupling will also be a main theme in this chapter and
we will see how it can be applied in the study of an informative process considering
an idealized model of black hole dynamics. The application of quantum information
we will provide will be fundamental in order to understand some complex aspects
of this theory and relate black holes physics to quantum information theory.
First of all, we want to focus a little more on a property of Von Neumann entropy.
For a bipartite system holds the triangle inequality ([8]: section 10.2.1)

H(AB) ≥ |H(A)−H(B)| (3.1)

which strongly contrast with the classical equivalent H(AB) ≥ H(A), H(B). This
causes that in a bipartite pure system, one has H(A) = H(B) > 0 and therefore
H(AB) = 0. Conversely, this situation can classically occur only if H(A), H(B) = 0.
Hence, in the definition of Von Neumann conditional entropy, if ρAB is an entangled
bipartite pure state, one could have that

H(A|B) = H(AB)−H(B) = −H(B) < 0 (3.2)

This happens due to the stronger-than-classical correlation force for entangled pure
quantum states. The negative of the conditional quantum entropy is so impor-
tant in quantum information theory that it even has a special name: the coherent
information. For ρAB, the coherent information from A to B is as follows

I(A〉B)ρ ≡ H(B)ρ −H(AB)ρ (3.3)
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3.1 Quantum Capacity Theorem and Decoupling ap-
proach

We want now to find a regularized formula for the quantum capacity of a quantum
channel Q(NA→B). Firstly, remember that a quantum channel NA→B is a TPCP
map from the spaceHA toHB. Alice uses the channel n times for sharing a quantum
state with Bob. She prepares ψ in a code subspace H(n) ⊆ H⊗nA and sends it to
Bob, which applies a decoder in order to recover ψ. Remember also that the rate
is the number of qubits sent per channel use, and basically it is achievable if there
exists a sequence of codes with rate at least R − δ and Bob’s state ρ has a fidelity
〈ψ|ρ|ψ〉 ≥ 1 − ε, for every ε, δ > 0. Moreover, recall that any channel NA→B has
an isometric Stinespring dilatation UA→BE , where E is the channel environment
([6]: section 3.3.2). Furthermore, suppose now the input code state is ρA. In order
to deliver a pure state trough the channel, it has a purification by introducing a
reference system R, such that ρA = tr(|ψ〉 〈ψ|). Applying the channel’s dilatation to
ψRA, we obtain an output state φRBE . Therefore, for the class of degradable channels
([6]: section 3.2), the one-shot coherent information is our best characterization for
quantum capacity ([8]: section 10.7.1)

Q(N ) = max
A

(I(R〉B)φRBE) (3.4)

where the maximum is taken over the all possible input density operator {ρ}.
An approach to proving the quantum capacity formula (3.4), is the decoupling

approach [14]. Suppose that ρ is a quantum code state and Alice wants to share its
purification ψRA in the reference system with Bob. In order to do that she ships
her state trough the dilatation UA→BE . As a result, we have a tripartite pure
entangled state φRBE . Then, if the reduced state ψRE on the reference system and
environment system is approximately decoupled (i.e., is almost a product state),
meaning that

‖ψRE − ψR ⊗ σE‖1 ≤ ε (3.5)

where σE is some arbitrary state, we found that Bob is able to recover perfectly the
action of the channel dilatation UA→BE on the pure state ψRA. (In (3.5), the trace
norm ‖X‖1 of an operator X is the sum of its singular values). In order to under-
stand why this happens, let us suppose that the state is exactly decoupled (exact
correctability corresponds to exact decoupling, but likewise approximate correctabil-
ity corresponds to approximate decoupling ([8]: section 10.7.2)). Then, one purifi-
cation of the state ψRE is the state φRBE that results after the channel acts. Since
all purifications are equal up to a unitary, another purification for ψRE = ψR ⊗ σE
is

ψ̃RB1
⊗ σB2E (3.6)

where B decomposes into B = B1B2. Moreover, ψ̃RB1
is the original state that

Alice sends trough the channel and σB2E is some other state that purifies the state
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σE of the environment. Since all purifications are related by isometries, and since
Bob holds in B1 the purification of the state of R and in B2 the one of E, there
exists some unitary UB→B1B2 such that

UB→B1B2 |ψ〉RBE = |ψ〉RB1
⊗ |σ〉B2E (3.7)

Then, this unitary is Bob’s decoder. Thus, the decoupling condition implies the
existence of a decoder for Bob. Moreover, by admitting that Bob holds in B1 the
purification of the state of R, a consequence of the decoupling condition is that

H(R) = I(R〉A)ψ = I(R〉B1)ψ̃ (3.8)

Therefore, we have demonstrated, in the case of perfect decoupling, that the coherent
information that Bob receives and is able to decode is exactly the same that Alice
transmits. And therefore, the number of qubits sent per channel use is exactly the
coherent information from R to B. That proves (3.4) in this special situation.

We may chose the initial state to be a maximally entangled state φRA. Then, if
the resulting φRBE has a marginal state RE which factorizes, then, by the relative
state method in 1.2.7, we conclude that any state in the code space can be sent to
Bob and decoded with perfect fidelity.

To conclude, we found that purified quantum information sent trough a noisy
channel is exactly correctable if and only if the reference system is completely un-
correlated with the channel’s environment. That is the decoupling principle.

3.2 The Decoupling Inequality

We proved that (3.4) is an upper bound on the capacity by using the decoupling
approach. In particular, we argued that it is sufficient to design codes which remain
decoupled from the environment in order to perfectly recover the initial message
sent trough the channel, and we said that only exact correctability corresponds
to exact decoupling, but also approximate correctability works with approximate
decoupling. Moreover, we found that this machine works accordingly to (3.5), that
can be considered as a sufficient condition of decoupling from environment.
At this point, we introduce that, as for classical Shannon theory, achievable rates for
quantum protocols are derived by using random codes ([8]: section 10.8). However,
this similarity is superficial and the condition of decoupling under this condition
needs to be tailored by introducing a way to decouple a uniformly random subspace
of a subspace of the input. Following this idea, we reach the decoupling inequality
or the One-shot decoupling theorem . Let us try to clarify this point by making an
example: suppose that Alice has a quantum state σAE in sharing with Eve’s system
E, where A in an n-qubit system, correlated with E, so that I(A;E) > 0. Now, we
wonder how is the amount of qubits that Alice has to discard so that the subsystem
she retains has a negligible correlation with E. At this point is necessary to formalize
what it means to discard a random qubit. Suppose that A has a dimension |A|, and
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A is decomposed into two subsystems A1 and A2, then discards A1 and retains A2.
Therefore, discarting a random subsystem with dimension A1 is the same thing as
applying a random unitary U before discarting the fixed subsystem A1. More in
detail, to choose a random subsystem to discard is the same of averagingU uniformly
over the group of unitary |A| × |A| matrices. We denote the expectation value of a
function f(U) in this conditions, as E[f(U)]. Alternatively, when unitaries U are
uniformly distributed, we describe E[f(U)] as the integral over the unitary group
using the Haar measure on the group ([8]: section 10.9). When U is applied to A,
and then discard A1, the marginal state of A2E is

σA2E(U) = trA1

(
(UA ⊗ IE)σAE(U †A ⊗ IE)

)
(3.9)

Therefore, we reach the decoupling inequality that express how close σA2E is to a
product state when we average over U . Hence, it rewrites (3.5)

E
[
‖σA2E(U)− σmax

A2
⊗ σE‖1

]
≤
√
|A2| · |E|
|A1|

tr(σ2
AE) (3.10)

where σmax
A2

= I/|A2| is the maximally mixed state on A2. A complete proof of this
inequality can be found in [14] or alternatively in [8]: section 10.9.1. Anyway, to
give the main ideas of the demonstration, we start considering the Cauchy-Schwartz
inequality and the concavity of the square-root function

E
[
‖σA2E(U)− σmax

A2
⊗ σE‖1

]
≤ E

[√
|A2||E|‖σA2E(U)− σmax

A2
⊗ σE‖22

]
≤
√
|A2||E|Var [σA2E ] (3.11)

where in the last line we use the variance of σA2E

Var [σA2E ] = E
[
‖σA2E(U)− σmax

A2
⊗ σE‖22

]
= E

[
tr(σ2

A2E)
]
− 1

|A2|
tr(σ2

E) (3.12)

Therefore, it only suffices to prove that

E
[
tr(σ2

A2E)
]
≤ 1

|A2|
tr(σ2

E) +
1

|A1|
tr(σ2

AE) (3.13)

in order to prove (3.10) as desired. In [8] and [14] we see this can be performed in
two slightly different ways.

To conclude, we show that, provided the dimension of the discarded part |A1| is
sufficiently small with respect to the retained part |A2|, the transmitted data will
with high probability be decoupled from the channel’s environment. Moreover, all
what said yields an inequality that specifies a sufficient condition for decoupling
when the average input is close to a product state. From this, it is possible to
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compute the quantum capacity of an arbitrary quantum channel as far as the code
randomness is expressed by the randomness with which Alice selects and discards a
qubit from A2 (forming A1) in order to decouple it from Eve’s one.
The last thing to highlight is that, from (3.10), by randomly choosing a pure state
of the bipartite system A = A1A2, where |A1|/|A2| � 1 we obtain codes (all the
possible n-qubit systems of dimension |A2|) which are maximally entangled with a
uniformly random subspace |A1| of A. Thus, the code system, full of information,
and the discarted qubit system are maximally entangled with high probability under
certain conditions regarding their dimensions according to a slightly modified version
of (3.10). This will be fundamental for results obtained in the next paragraph.

3.3 Black holes as mirrors

At the end of the work, we consider an application of the decoupling inequality in
a highly idealized model of black hole dynamics ([9]; [8]: section 10.9.5). Suppose
Alice holds a k-qubit system A which she wants to conceal from Bob. She decides
to discard her qubits by throwing them into a large black hole B, that is an (n−k)-
qubit system, which grows to n qubits after merging with A, where n is much larger
than k. Black holes are not completely black, in fact they emit Hawking radiation
(see Appendix section A.1.2). Qubits leak out of an evaporating black hole very
slowly, at a rate given by (A.11) which scales like n−1/2. Consequently, we notice
that from (A.13) descends that the black hole radiates away a significant part of its
qubits after a time which is O(n3/2). Therefore, for black holes of a mass close to
the solar mass, the evaporation process takes about 1068 years to complete (A.1.2).
Although Alice’s qubits might not remain secret forever, they will be safe from Bob
for at least a so long time. Unfortunately for Alice, in this case we consider a very
old black hole. In fact, it has been evaporating for so long that it has already
radiated away more than half of its qubits. We assume that the internal dynamics
of the black hole is a deterministic unitary transformation that accurately mixes the
infalling information with the black hole’s preexisting (n−k)-qubit state. Then, the
black hole’s qubits are released, one by one, in the Hawking radiation. In the whole
process is fundamental to consider how the entanglement of the black hole with the
emitted radiation evolves.
The world can be divided into two subsystems: the black hole’s internal system B

and radiated system E. The relative size of these subsystems varies with time as the
black hole evaporates. Furthermore, let us assume that the joint state of the black
hole B and its emitted radiation E is pure. Because the black hole B is so old, |B|
is much smaller than the dimension of the radiation system and, for what we saw
in the previous section 3.2, we expect the state of B to be very nearly maximally
mixed with high probability. Therefore, we claim that B and E are very nearly
maximally entangled. Consider also the system A to be maximally entangled with
a reference system RA which also consists of a purification for A, causing RAA to
be pure. We also assume that |RA| = |A|. Right after Alice tosses in her qubits, the
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n-qubit black hole system AB (remind that is impossible to distinguish individual
parts of A from the ones of B in AB) is maximally entangled with the system RAE;
here E is the previously emitted Hawking radiation and we assume that it has been
collected and now controlled by Bob.

We wonder if Bob would capable of recover the initial message Alice tossed in
black holes, and we claim that, for almost any unitary transformation, Bob needs to
wait for only a few more than k qubits to be emitted to reach the scope. In fact, as
Bob noticed, the black hole continues to emit Hawking radiation until, after a while,
s additional qubits (the subsystem Ã of AB) have been emitted, with n− s qubits
(the subsystem ÃB) still retained by the black hole. It is important to specify that
we suppose that Ã is chosen uniformly at random (is an Haar random subsystem
of the whole system), and that |Ã| > |A|. That is, we immagine that AB is divided
into two parts, one s-qubit part and another with n − s qubits. Then, a unitary
transformation V AB chosen uniformly with respect to the Haar measure on the
group of unitaries acting on n-qubits strings U(2n) is applied to AB. After this
operation, the s-qubit system is identified as Ã.

Figure 3.1: Image elaborated from the one in [9], illustrating the process of infor-
mation recovery from black holes evaporation. First of all, because the black hole
is very old and the radiative process is going on for so long, |B| � |E| and they
are maximally mixed. System A, maximally entangled with RA, is thrown into B,
mixed up and later transformed by V AB. Bob waits until a system |Ã|, slightly
greater than |A|, is discarted by emitted radiation. With EÃ nearly maximally
entangled with RA, Bob holds Alice initial information on his hand.

As the radiative process go on, the correlations between the evaporating black
hole ÃB and the reference system RA gradually weaken, therefore me might say
they are decoupling. Once Ã is large enough, the surviving correlation of RA with
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ÃB becomes negligible, according to (3.10). At that point, since the overall state of
ÃBRAÃE is pure, the state of the reference system RA is very nearly purified by the
radiation system ÃE that Bob controls, as depicted in figure 3.1. More precisely,
Bob can succeed in recovering the purification of RA by applying a suitable decoding
map to a subsystem of EÃ. This because of |Ã| > |A| and the decoupling inequality.
In other words, Alice’s quantum information is now property of Bob.

Because the radiated qubits are random, we can determine the conditions of de-
coupling to occur between RA and ÃB using the decoupling inequality. Let ψABRAE

be the pure density operator of ABRAE. We denote with σABRA the marginal state
σABRA = trE(ψABRAE). The marginal density operator on ÃBRA is

σ
ÃBRA

(V AB) = tr
[
σABRA(V AB)

]
, where σABRA(V AB) is given by (3.9).

The inequality so becomes

E
[
‖σ

ÃBRA
(V AB)− σmax

ÃB
⊗ σRA‖1

]
≤

√
|ÃB| · |RA|
|Ã|

tr(σ2
ABRA

)

≤

√
|AB| · |RA|
|Ã|2

tr(σ2
ABRA

) (3.14)

where we used the fact that |ÃB| = |AB|/|Ã|. Moreover, in the case we are cur-
rently considering, AB is maximally entangled with RAE causing for σABRA to be
maximally mixed on a system of dimension |AB|/|RA|. Therefore we have

tr
(
σ2
ABRA

)
= |RA|/|AB| (3.15)

hence the Haar-averaged L1 distance of σ
ÃBRA

from a product state is bounded
above by √

|RA|2

|Ã|2
=
|A|
|Ã|

(3.16)

where we used that |RA| = |A|. Thus, if Bob waits for only s = k + c qubits of
Hawking radiation to be emitted after k-qubit system A getting tossed into black
hole, Bob can decode with fidelity F ≥ 1− |A|/|Ã| = 1− 2k/2s = 1− 2c.

Therefore, in order to decode Alice’s secret, Bob needs only s qubits more after
Alice’s attempt to conceal A from him. And Bob, who is an excellent physicist,
knows the black hole thermodynamics enough to infer the right encoding unitary
V AB, that he uses to find the decoding map.

So far we assumed that the system Ã is a randomly selected subsystem of AB.
For a real black hole this is incorrect, but things are believed to be similar to this
approximation thanks to the internal dynamics that mixes quantum information
quite rapidly relying on a process known as fast scrambling procedure. We have
treated in greater detail this argument on the section A.1.3 of the Appendix, where
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we also specified that for a black hole of temperature T , it takes a time ~/kT for each
qubit to be emitted in the Hawking radiation, and a time longer by only a factor of
log(n) for the dynamics to mix the degrees of freedom sufficiently for decoupling to
hold with reasonable accuracy. Follows that, for a solar mass black hole, the qubits
Alice wanted to conceal from Bob, are revealed after just a few milliseconds after
she deposits them. Much faster than the 1067 years she had hoped for. Because
Bob holds the system E and knows the right decoding map to apply to a subsystem
of ÃE, the black hole seems to behave like an information mirror and Alice qubits
are bounced right back. Therefore, putting ourselves in an immediate scrambling
situation due to the age of the black hole (it has already radiated away more than
half of its initial entropy), we should ask: if Alice’s quantum state persists behind the
horizon and that state is also encoded in the outgoing Hawking radiation received by
Bob, can Alice or Bob verify the cloning? In fact, we know from No-cloning theorem
in 1.2.6, that no quantum xeroxing machines are allowed to exist, but the analyzed
situation seems to violate this theorem. The answer to the question is complex, but
we limit ourselves to assume that no violation of the No-cloning theorem occurs if
no one is capable to demonstrate it. We have deeply talked about this issue in the
section A.2 of the Appendix, where we introduced the black hole complementarity
concept as a way to avoid this quandary. In fact, one chooses not to be bothered
by quantum cloning if it occurs where no one can ever find out. According to this
philosophy, we may accept for now that Alice (if she falls into the black hole) and
Bob (if he stays outside) have sharply contrasting descriptions of the same physical
process, both corresponding to the truth.

In the case Alice would have thrown her qubits into a young black hole (i.e.,
before half of the black hole’s initial entropy has been radiated away) we have that
maximal entanglement between E and B does not occur yet and the initial state
B is a pure state, then σABRA is also pure, and the Haar-averaged L1 distance of
σ
ÃBRA

from a product state is bounded above by√
|ABRA|
|Ã|2

=
2n+k

|22s|
= 2−c (3.17)

after s = 1
2(n+ k) + c qubits are emitted. This means that only after having waited

for k+2c more qubits than the ones still residing in the black hole, he can succeed in
decoding Alice’s k qubits with fidelity F ≥ 1− 2−c. In fact, Alice’s k-qubit system
has nothing special and Bob can decode any k-qubits he chooses from among the n
of the initial black hole. That because the system RA will however be very nearly
maximally mixed with a k-qubit subsystem of ÃE. All Bob has to do is to chose k
qubits of ÃE and perform a decoding operation on ÃE that maps those k-qubits to
the system A.

Although there is far more to say about how black holes behave in quantum
information processes that involves them, we will not delve further into this topic.



Conclusions and Overviews

The purpose for this work is to offer some knowledge of fundamental aspects of
quantum information theory. We tried to reach this by giving a brief introduction
of quantum mechanical aspects that are crucial for understanding information the-
ory. Later, we have analyzed how it is possible to pass from classical to quantum
information theory, underlining how many of the central points of classical infor-
mation theory are found to have quantum analogs. Starting from this, we have
illustrated bounds on entropy, and therefore on classical information, encoded in
quantum systems. Introducing quantum channels, we have also discussed bounds
on quantum information sent reliably over a noisy quantum channel. In the last
situation, we studied information retrieval from evaporating black holes, assuming
that the internal dynamics of a black hole is unitary and rapidly mixing, and as-
suming that the retriever has unlimited control over the emitted Hawking radiation.
What came out is that if the black hole has already evaporated more than half of
its initial degrees of freedom, then additional quantum information deposited in the
black hole is revealed in the Hawking radiation very rapidly. Information deposited
prior to this point remains concealed until the previous situation occurs, and then
emerges quickly.
We also have seen how black holes physics is strongly related to quantum information
theory. In fact, we saw for Bekenstein entropy bound that black hole physics and
thermodynamics allows us to reach more easily an important bound on information.
But also in the last ’mirror black hole’ application information theory allows us to
use powerful tools and principles in order to reach conditions for black hole to be
approximately considered a mirror for information, under certain conditions about
the radiative process.
There is far more to say about quantum information theory and about the util-
ity that tools developed for studying informative processes are used in quantum
communication theory and other areas. For instance, all what we discussed about
quantum channel capacity and about the decoupling principle provides a method to
find achievable rates for certain quantum protocols or scheme for entangled-assisted
quantum communication. Moreover, this introduces to quantum computation. We
can be confident, though, that the concepts and applications discussed in this work
leads to a good, though basic, comprehension of aspects of quantum information
theory, hoping that it lights up the curiosity and passion for further studies.





Appendix A

Summary of black holes physics

In the previous section, we considered a highly idealized model of black hole dynam-
ics using results usually motivated by gravitational physics, but formulated without
reference to gravitation [15]. Therefore, this appendix wants to suggest another way
to approach black holes entropy, some of the entropy bounds that have been inferred
from it, and furnish a brief description of black hole thermodynamics. In addition
to this, is discussed a universal relation between geometry and information; this
also allows to mention different point of views assumed by scientific debate to inter-
pret these arguments. The entropy bound discussed are independent of the specific
characteristics and composition of matter systems. However, they apply only when
gravity is weak. Throughout this appendix, Planck length will be used

l2p =
G~
c3

= 2.59 · 10−66cm2

(a thousand-trillion-trillion-trillion-trillion-trillion Plank areas would fit on the sur-
face of a proton.) Here G is Newton’s constant, ~ is Planck’s constant and c is the
speed of light. Also Boltzman’s constant kB is used in the following lines.

A.1 Black hole thermodynamics

Black hole is basically a region of space-time separated from the rest by a sort of
one-way surface called event horizon. If you cross this horizon into this strongly
gravitating region, there is no way out. Vice versa, if you stay outside this region,
you will fine. Essentially, a place where information falls in and became inaccessible
after passing through the horizon. The notion of black hole entropy is motivated by
two results in general relativity [16].

Theorem A.1.1 (Area). The area of a black-hole event horizon never decreases
with time δA ≥ 0.

The demonstration uses topological techniques beyond the scope of this work.
Moreover, if two black holes merge, the final area will exceed the sum of the initial
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areas. The theorem suggests an analogy between black hole area and thermodynamic
entropy, as both are never decreasing quantities. Regarding this area increase as a
kind of compensation for the loss of entropy of matter entropy threw into a black
hole, Bekenstein suggested that a black hole actually carries an entropy equal to its
horizon area, reaching the formula [17]

SBH =
A

4
(A.1)

where the area is expressed in Planck units. We have already seen (section 2.2.2)
that, according to Bekenstein, the entropy in a bounded spatial region must be
S = O(ER) (with E the energy of matter enclosed in this region, and R the spherical
radius of the region). Otherwise, one could violate the second law of thermodynamics
by throwing extra material into the region and still obtain a final-state entropy level
lower than the initial one. In the next section, we will see that this boundary also
could be expressed as a spherical entropy bound for matter systems, thanks to (A.1).

Theorem A.1.2 (No hair). A stationary black hole is characterized by only three
quantities: mass M , angular momentum J , and charge Q.

From this point, is possible to generalize classical laws of thermodynamics in the
context of black holes mechanics. This extension yield to the reformulation of the
zeroth, the first and the third law, as the second law is already encoded in the Area
theorem.

Theorem A.1.3 (Zeroth Law or superficial gravity costance). A black hole has the
same superficial gravity κ everywhere on the event horizon, it remains constant [18].

In fact, it depends only on M , J , Q. The definition of κ used in following lines
is κ = (4M)−1. Here the analogy with the Zeroth principle of thermodynamics
is between κ and the the quantity called temperature which remains constant in a
situation of thermodynamic equilibrium.

Theorem A.1.4 (Third Law). To convert an ordinary black hole (κ 6= 0 to an
extremal one (for which κ = 0), requires infinite steps [19].

This is in analogy to the Nernst law, which states that the temperature of ab-
solute zero cannot be reached with finite number thermodynamic transformations.
Further, as black holes have a mass M (no hair theorem) and entropy S, they also
must have a temperature T

dM = TdSBH (A.2)

Einstein’s relations imply

Theorem A.1.5 (First Law).
dM =

κ

8π
dA (A.3)

where the entropy is the horizon area and κ plays the role of temperature.
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At first, was this similarity between (A.2) and (A.3) to suggest an identification
between quantities characterizing black holes and thermodynamic quantities.

T ∝ κ, S ∝ A

However, no physical meaning has long been given to the proportions above, since
a black hole equipped with κ, also must has a non-zero temperature, so it must
radiate. Conversely, a black hole is by definition black body, which absorbs every
radiation threw into it without radiating, so its temperature must be exactly zero. In
addition to this, standing Nernst theorem, a body at absolute zero has null entropy
SBH = 0. So, a process of a complex matter system collapsing to form a final-black-
hole state appears to violate the second law of thermodynamics. Hence, Bekenstein
[3] proposed that the second law of thermodynamics holds only for the sum of matter
entropy Sext and black-hole entropy SBH

Theorem A.1.6 (Generalized Second Law). δ(Sext + SBH) ≥ 0

The GSL still remains a formal argument, for reasoning above. In fact, according
to thermodynamics, a black hole with entropy SBH should radiate with a black-body
spectrum corresponding to the temperature

TBH = α · κ (A.4)

Throughout the dimensional analysis it turns out that the constant α should have
dimensions of a temperature multiplied by a mass [16]. By solely invoking kB, G,
and c in calculations, is impossible to fulfil this requirement. Similarly, to satisfy
the proportionality between entropy and area, a constant β is needed.

SBH = β · A (A.5)

As entropy has the dimensions of kB, this constant must be an energy dividing a
temperature and a length squared. Once again, only kB, G, and c do not suffice.
So, dimension of ~ is needed. In fact, looking for quantum corrections to black-
hole physics, Hawking found that black holes do really radiate with a spectrum at
a temperature given by (A.4) [17]. So, the entropy and temperature of a black
hole are no less real than its mass. Another process related to this is the Hawking
evaporation of a black hole, explained in the next section. Although these types of
processes were not anticipated when Bekenstein proposed black hole entropy and
the GSL, it is calculated that GSL holds also in these cases [3].

A.1.1 Bekenstein and spherical bound for entropy of matter
systems

Here, we will see a different way to address the problem of limiting entropy and
information into an enclosed space, with respect to the one in section 2.2.2. When
information is dropped into a black hole, its entropy Sext vanishes to an external
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observer. But the entropy of a black hole increases in virtue of (A.1), because the
black hole gains mass, then area. Thus, it is at least conceivable that total entropy
δ(Sext + SBH) does not decrease in the process. Though, to ensure that GSL also
holds in this situation, should exists a universal bound on the entropy of the matter
system. Consider a weakly gravitating matter system of total energy E. Let R be
the radius of the smallest sphere that contains the system. We want to collapse our
system into a black hole adding as little energy as possible to it, so as to minimize the
increase of the horizon’s area and thus optimizing the tightness of the entropy bound
(Geroch process). Using this idea, it turns out that black-hole entropy increases by

δSBH ≤
2πkBER

~c

By the GSL, this increase must at least compensate for the lost matter entropy:
δSBH − Sext ≥ 0. Hence, Bekenstein argued [20]:

Sext ≤
2πkBER

~c (A.6)

That is the Bekenstein bound , in a similar formulation to the one given in Chap-
ter 3. Note that Newton’s constant does not enter. Instead of dropping a thermo-
dynamic system into an existing black hole via the Geroch process, one may also
consider the Susskind process, in which the system is converted to a black hole. In
this case we consider a system of a certain mass enclosed in a circumscribing sphere
of area A. The mass of the system must be less than the massM of a black hole with
the same horizon area A. Otherwise, the system would also be collapsed into a black
hole. We expect the system converts into a black hole of surface A by collapsing
a shell of mass M − E onto the system. The total initial entropy is only given by
Sext of the system, while the final one is a black hole, given by (A.1). As the initial
entropy must not exceed the initial entropy, holds that:

Sext ≤
A

4
(A.7)

That is the spherical entropy bound , which is saturated only by a black hole, so
it is the most entropic object one can put inside a given spherical surface.

In order to be more accurate, we could speak about information rather than
systems made of matter. It is important to see that exists an upper limit for the
information stored in an enclosed space. Consider an empty room (except air), one
can associate pieces of information to air molecules inside this space. To increase
the amount of information, one could tightly pack up these molecules against each
other so they cannot be treated as a gas anymore. Going further, molecules can
be broken up into atoms and then nuclei and even into smaller things such as
protons and neutrons and quarks. In quantum field theory there is no limit to
this process, and one could reach every infinitesimal scale; so, there is an infinite
amount of information in any region of space. The uncertainty principle ∆E∆t ∼ ~
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explains that the amount of energy needed to build a feature of size ∆x is inversely
proportional to that size, so in our analogy smaller letters are heavier. Finally, we
reach the general result that the more information we want to put into our room, the
more energy we have to put into the room (and is found that the energy increases
dramatically as I refine my resolution). Up to this point we have neglected gravity,
which really poses a limit on the amount of mass you can have in the room, just by
specify how large the room is in light of spherical entropy bound. In fact, increasing
more and more the mass in a given volume we face gravitational instability, then
a Susskind process occurs and the room is converted into a black hole. So, we
obtained there is an upper limit to the energy in the room, then a limit on the
entropy, consequently a limit on the amount of information that we could store in
the room. There are general statements that tell us about the information at most
expected to store in a region, irrespective of the system considered. In fact, black
holes have an entropy, then an information content, and it is given by the surface
area of the horizon. So, in a general context, every boundaries discussed above are
determined by (A.1). We will explore more in detail this point in the subsection
A.1.3.

A.1.2 Hawking radiation and evaporation

The solution to the entropy paradox was given by the discovery that black holes
radiate via quantum process [17]. Hawking showed by semi-classical calculation of
quantum theory in curved spaces, that the temperature corresponding to the emitted
black-body spectrum is of the same type of (A.4). The point is that, according
to quantum field theory, the void is characterized by quantum fluctuations which
originate virtual couples of particle-antiparticle nonstop created and immediately
destroyed. This virtual processes holds by virtue of Heisenberg uncertainty principle,
which allows to force-mediating particles to have high quantities of energy for little
time. Assuming that a couple is created in close proximity to event horizon. One
particle has positive energy E, while the other has negative energy −E. Now, we
consider that generally the couple is annihilated within a time interval ∆t, but next
to the event horizon could happen that the particle with negative energy crosses the
horizon earlier than ∆t ∼ ~

E pass. Beyond the horizon the negative energy particle
will reduce the black-hole total energy M by a value E. Whereas, the positive
energy particle can freely escape on the outside, constituting a detectable radiation.
For a black hole, the Schwarzschild gravitational potential represents a barrier to
overcome by particles in order to escape from black hole. In this case a virtual couple
is converted into a real one at the expense of black-hole energy. This could happen
by tunnel effect, a process exponentially dependent on the height of the barrier. So
particles with l 6= 0 have very few probability to run away. Therefore, radiation will
result in more than 90% of l = 0 particles [16].
Surprisingly, it turned out that these probabilities of particles succeeding in going
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beyond the horizon by tunnel effect, furnish a distribution

N(ω) =
1

e8πωGM/c3 − 1
(A.8)

of the form of the Planck distribution for a boson thermal radiation.

N(ω) =
1

e~ω/kBTBH − 1

Therefore, the black body must radiate at a temperature

TBH =
~c3

8πGMkB
(A.9)

Finally, (A.4) and (A.5) can be reformulated with constants exploited

TBH =
~c3κ

2πGkB
(A.10a)

SBH =
kBc

3

G~
A

4
(A.10b)

So, in units of Plank length squared, from the second (A.10b) we recover (A.1),
demonstrating again that black holes really radiate and this process yields to Beken-
stein entropy bound. A general rule is that the more a black hole is massive, the
less it irradiates. Therefore, its temperature is intended to increase and its mass
to decrease, boosting the phenomenon of radiation. We can estimate the lifetime
of a black hole by imaging the whole process as quasi-static. According to Stefan-
Boltzmann law, the radiant power is proportional to the radiant Area A and to T 4

BH .
Considering also that a particle steal an energy of ~/8πM from the black hole, we
reach a differential equation describing the variation of the black hole’s mass with
respect to time

dM

dt
= −γ

m3
p

tp

1

M2
(A.11)

where mp =
√

~c/G ∼ 1019GeV is the Planck mass, tp =
√
~G/c ∼ 10−44sec is

the Planck time and γ ∼ 10−5 is an adimensional constant. Integrating (A.11), we
obtain

M(t) =

(
M3

0 −
3γm3

p

tp
t

)1/3

(A.12)

and therefore the black hole will be evaporated in a time

tev =
tp
3γ

(
M0

mp

)3

(A.13)

So, the evaporation time is tev ∼ 1066−69 years for stellar black holes with typical
masses of 3 − 10 times solar mass. Consequently, one could say that the time
involved by a black hole in expelling a significant fraction of qubits (i.e., radiate
away a significant part of its mass) is of the order O(n3/2).
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A.1.3 Quantum states of a black hole and thermalization

The number of degrees of freedom of a quantum-mechanical system N is the loga-
rithm of the dimension D of its Hilbert space H:

N = lnD = ln dim(H) (A.14)

Entropy measures the number of allowed quantum states for a system. For a black
hole that just fits inside a region with area A, its entropy is given by (A.1) and this
clearly saturates the spherical entropy bound (A.7) for a system, but more generally
for an enclosed spacial region. So, the number of degrees of freedom in a region
bounded by a sphere of area A is given by

N =
A

4

Therefore, the number of states is (Bekenstein limit)

D = eA/4 (A.15)

Hence, using the spherical entropy bound, we have concluded that A/4 degrees of
freedom are sufficient to fully describe any system enclosed by a sphere A. It is also
possible to demonstrate that any attempt to excite more than A/4 of these degrees
of freedom is thwarted by gravitational collapse. From an external point of view,
the most entropic object that fits in an enclosed space is a black hole of area A, with
A/4 degree of freedom.

All this information seems to be distributed in a random manner over the horizon
surface. In fact, considering that clack holes do have a temperature, behind the black
body distribution of the frequency of the emitted particles by Hawking radiation,
there might conceal a thermal agitation of this degrees of freedom which causes
for them to be in a constant state of agitated motion, to be very chaotic and so
causing for the information to be randomly distributed among the horizon surface.
From a certain point of view, the information inside a black hole could run into
a ’thermalization’ process that is worthy to be studied in depth. It consists of
simultaneous destruction and random recomposition in the form of uncorrelated
degrees of freedom in the event horizon surface of an information signal, that later
will be radiated away in the form of black body radiation. Is important to consider
that this processes can happen so rapidly that they can be considered as one strongly
related to thermal agitation and black hole’s temperature, hence we talk about
thermalization. Moreover, the sum of all this degrees of freedom conveys the same
information as before running into black hole, the difference is that now everything
has been rapidly mixed up by the internal dynamics of the black hole. This result is
known as the fast scrambling conjecture. Moreover, relying on this conjecture, for a
black hole of temperature T , each qubit takes a time of order of ~/kT to be emitted
and a black holes takes a time logarithmic in its entropy O (ln [dim(H)]) to scramble
information, and no system in nature can scramble faster [21]. Therefore, from this
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point of view, it seems that information inside a black hole is randomly distributed
among the horizon surface in the form of a disordered hologram of what originally
was tossed into the black hole. From this point take place the holographic principle,
but to give a complete and accurate description of this is far beyond the aim of this
appendix, therefore we limit ourselves to say that in a certain way, the black hole
horizon might be considered as an hologram of what is inside.

A.2 The problem of unitarity and black hole com-
plementarity

It seems fascinating to investigate what really happens when final stages of black
hole evaporation occurs. In fact, at some point the mass M become of the same
magnitude of the Planck mass mp with a size of Plank length cubed. At this point a
great conceptual paradox rises. The matter system, which collapses to form a black
hole, contains a great amount of information. This seems to vanish once crossed the
horizon. One could argue that the Hawking radiation process returns this informa-
tion back, but it is not so. This process constitutes of thermal isotropic-scattering
particles, so does not contain ordered information. Thus, it appears that information
is lost when threw into a black hole and this cannot happens, because of the principle
of conservation of information. A more compelling consideration deals with quan-
tum unitarity. Quantum-mechanical evolution preserves information, as it takes a
pure state to a pure state. But, consider a region described by a Hilbert space of
dimension eV , and suppose that region was converted to a black hole. According to
Bekenstein limit, the region is now described by a Hilbert space of dimension eA/4

(with V > A/4). The number of states would have decreased, and it would be im-
possible to recover the initial state from the final one. Thus, it seems that unitarity
is not preserved in the presence of black holes. However, unitarity must be restored
in a complete quantum gravity theory. There have been many answers to this ques-
tion and part of the debate developed around this is well known as ’the black hole
war’. From one side we have Hawking, who has claimed for years that a quantum
theory of gravitation could violate unitarity. In fact, is not understood in detail how
Hawking radiation carries away information. However, it seems inevitable that the
evaporation of a black hole-its slow conversion into a cloud of thermalized radiation
is not a unitary process. From the other side, Susskind, Thorlacius and Uglum
(et al. such as Preskill and Page) resolved the information paradox arguing that
when a black hole evaporates unitarily, the same quantum information would seem
to be present both inside (as the original system matter that collapsed) and outside
the black hole (in the form of Hawking radiation) [15]. However, the simultaneous
presence of two copies could not be possible because of the No Cloning theorem,
which forbids the ’xeroxing’ of information. The upshot is that there are two differ-
ent complementary descriptions of black-hole, corresponding to an infalling and an
outstanding observer. It turns out that each point of view is self-consistent, since
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no single observer can see both copies of the information simultaneously. But, a
description of these views is neither logically consistent nor practically testable.
To understand, we could consider two friends Alice and Bob sharing two copies of the
same code. We assume Alice could cross the horizon and continue to fall recognizing
nothing out of the ordinary; but also, Alice could be thermalized (via Hawking radi-
ation process) at the horizon and then radiated back out as photons visible to Bob,
the outstanding observer. As stated, both these realities are true. Let’s push this
situation a little bit further by assuming that the thermalization occurs just as Alice
crosses the horizon. In this moment Bob takes a look at Alice in order to see her
copy of the code. This means that he shines electromagnetic radiation on her which
bounces off into his eyes. Because of gravity increase as horizon approaches, the
more photons are shipped near the horizon, the more it takes them to return back
and their frequency decrease. That because of gravity. Exactly in the horizon their
redshift is infinite: all their energy is used to escape from gravitational field. So,
Bob has to shot Alice with short enough wavelengths photons (to resist redshift and
return to him) that will themselves thermalize her and her message. Furthermore,
assume that Alice quietly crosses horizon and Bob wants to jump into the black hole
to read Alice’s copy of the code. The second copy can only be observed if it has not
already hit the singularity inside the black hole by the time Bob crosses the horizon.
It is showed that the energy required for a single photon to evade the singularity for
so long is exponential in the square of the black hole mass. In other words, there is
far too little energy in the black hole to communicate even one bit of information
to an infalling observer in possession of outside data. Note that an important role
is now given to observer also in quantum gravity. The black-hole complementarity
is thus exposed and explained as a way to interpret the formation and evaporation
of a black hole as a unitary process, at the expense of locality.
Anyway, is studied that black-hole complementarity holds in asymptotically flat
spacetimes. So, seems that a complete answer to information paradox has already
to be given. Recent developments regards the framework of quantum states entan-
glement as the one from which answers to this problem could be found.
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