
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE

Corso di Laurea in Informatica

Latent representations

for traditional music
analysis and generation

Relatore:
Chiar.mo Prof.
Maurizio Gabbrielli

Correlatore:
Dott. Luca Casini

Presentata da:
Marco Amerotti

Sessione I
Anno Accademico 2021/2022

“μίμησιν μὲν γὰρ δὴ καὶ ἀπεικασίαν
τὰ παρὰ πάντων ἡμῶν ῥηθέντα χρεών

που γενέσθαι”

— Plato, Critias 107b

Tutto ciò che ognuno di noi potrà
mai dire sarà in un qualche modo

imitazione e rappresentazione.

All that is said by any of us can only
be imitation and representation.

Contents

Sommario 7

Abstract 9

Introduction 10

Outline 12

1 Background 13
1.1 RNNs and GRUs . 13
1.2 Autoencoders . 14
1.3 Variational Autoencoders (VAEs) . 15

1.3.1 ELBO loss function . 16
1.3.2 β-VAEs . 16
1.3.3 Annealing . 17

1.4 Uniform Manifold Approximation and Projection for Dimension Reduction 17

2 Models and data 18
2.1 Main dataset . 18
2.2 Models . 19

2.2.1 folktune-VAE . 20
2.2.2 folkbar-VAE . 22

3 Results 26
3.1 Tune projection . 26

3.1.1 folktune-VAE 2/16 . 27
3.1.2 folktune-VAE 4/32 . 29
3.1.3 folktune-VAE 8/64 . 30
3.1.4 folktune-VAE 16/128 . 30
3.1.5 folktune-VAE 32/256 . 31
3.1.6 Conclusions . 31

3.2 Distance-based tune type recognition . 32

1

3.2.1 folktune-VAE 2/16 . 33
3.2.2 folktune-VAE 4/32 . 34
3.2.3 folktune-VAE 8/64 . 35
3.2.4 folktune-VAE 16/128 . 36
3.2.5 folktune-VAE 32/256 . 37
3.2.6 Conclusions . 38

3.3 Bar projection . 38
3.3.1 folkbar-VAE 2/16 . 38
3.3.2 folkbar-VAE 4/32 . 39
3.3.3 folkbar-VAE 8/64 . 39
3.3.4 folkbar-VAE 16/128 . 40
3.3.5 folkbar-VAE 32/256 . 40
3.3.6 Conclusions . 40

3.4 Similarity of bars within tunes . 41
3.4.1 folkbar-VAE 2/16 . 43
3.4.2 folkbar-VAE 4/32 . 44
3.4.3 folkbar-VAE 8/64 . 45
3.4.4 folkbar-VAE 16/128 . 46
3.4.5 folkbar-VAE 32/256 . 46
3.4.6 Conclusions . 47

3.5 Generation . 47
3.5.1 folktune-VAE 2/16 . 47
3.5.2 folktune-VAE 32/256 . 49

4 Conclusion 52
4.1 Future work . 53
4.2 Acknowledgments . 54

Introduction 55

Bibliography 62

2

List of Figures

1.1 The autoencoder architecture. 15

2.1 The musical notation associated with the ABC notation above. 19
2.2 The general architecture of folktune-VAE. 20
2.3 folktune-VAE validation ELBO loss (a) and KL-Divergence (b) for each

trained model. 22
2.4 folkbar-VAE validation ELBO loss (a) and KL-Divergence (b) for each

trained model. 25

3.1 folktune-VAE 2/16 learned latent space by key signature. 27
3.2 folktune-VAE 2/16 learned latent space by time signature. 28
3.3 folktune-VAE 4/32 learned latent space by key (a) and time (b) signature. 29
3.4 folktune-VAE 8/64 learned latent space by key (a) and time (b) signature. 30
3.5 folktune-VAE 16/128 learned latent space by key (a) and time (b) signature. 30
3.6 folktune-VAE 32/256 learned latent space by key (a) and time (b) signature. 31
3.7 folktune-VAE 2/16 learned latent space with reels and distance values

from the centroid by key (a & b) and time (c & d) signature. 33
3.8 folktune-VAE 4/32 learned latent space with reels and distance values

from the centroid by key (a & b) and time (c & d) signature. 34
3.9 folktune-VAE 8/64 learned latent space with reels and distance values

from the centroid by key (a & b) and time (c & d) signature. 35
3.10 folktune-VAE 16/128 learned latent space with reels and distance values

from the centroid by key (a & b) and time (c & d) signature. 36
3.11 folktune-VAE 32/256 learned latent space with reels and distance values

from the centroid by key (a & b) and time (c & d) signature. 37
3.12 folkbar-VAE 2/16 learned latent space by key (a) and time (b) signature

and harmonic function (c). 38
3.13 folkbar-VAE 4/32 learned latent space by key (a) and time (b) signature

and harmonic function (c). 39
3.14 folkbar-VAE 8/64 learned latent space by key (a) and time (b) signature

and harmonic function (c). 39

3

3.15 folkbar-VAE 16/128 learned latent space by key (a) and time (b) signature
and harmonic function (c). 40

3.16 folkbar-VAE 32/256 learned latent space by key (a) and time (b) signature
and harmonic function (c). 40

3.17 Sequence of points corresponding to bars belonging to tune test-69 pro-
jected in latent space. 41

3.18 Sheet music associated with the ABC notation of tune test-69. 42
3.19 folkbar-VAE 2/16 heatmap of distances between unseeded (a) and seeded

(b) pairs of latent projections of bars in tune test-69. 43
3.20 folkbar-VAE 4/32 heatmap of distances between unseeded (a) and seeded

(b) pairs of latent projections of bars in tune test-69. 44
3.21 folkbar-VAE 8/64 heatmap of distances between unseeded (a) and seeded

(b) pairs of latent projections of bars in tune test-69. 45
3.22 folkbar-VAE 16/128 heatmap of distances between unseeded (a) and seeded

(b) pairs of latent projections of bars in tune test-69. 46
3.23 folkbar-VAE 32/256 heatmap of distances between unseeded (a) and seeded

(b) pairs of latent projections of bars in tune test-69. 46
3.24 Tune generated by folktune-VAE 2/16 with greedy sampling. 48
3.25 Tune generated by folktune-VAE 2/16 with top-k sampling, k=10, tem-

perature 1 . 48
3.26 Tune generated by folktune-VAE 2/16 with top-p sampling, p=0.9, tem-

perature 1 . 49
3.27 Tune generated by folktune-VAE 32/256 with greedy sampling. 50
3.28 Tune generated by folktune-VAE 32/256 with top-k sampling, k=10, tem-

perature 1. 50
3.29 Tune generated by folktune-VAE 32/256 with top-p sampling, p=0.9, tem-

perature 1. 51

4.1 Tune generated by folktune-VAE 32/256 with greedy sampling, temprea-
ture 1. 55

4.2 Tune generated by folktune-VAE 32/256 with greedy sampling, temprea-
ture 1. 56

4.3 Tune generated by folktune-VAE 32/256 with top-p sampling, p=0.8, tem-
perature 1.25. 56

4.4 Tune generated by folktune-VAE 32/256 with top-p sampling, p=0.8, tem-
perature 1.25. 57

4.5 Tune generated by folktune-VAE 32/256 with top-p sampling, p=0.8, tem-
perature 1.25. 57

4.6 Tune generated by folktune-VAE 32/256 with top-k sampling, k=5, tem-
perature 2. 58

4

4.7 Tune generated by folktune-VAE 32/256 with top-p sampling, p=0.5, tem-
perature 1.5. 58

4.8 Tune generated by folktune-VAE 32/256 with top-p sampling, p=0.5, tem-
perature 1.5. 59

4.9 Latent path of bars belonging to tune test-69 projected in latent space by
key (a) and time (b) signature and harmonic function (c), folkbar-VAE
2/16. 60

4.10 Latent path of bars belonging to tune test-69 projected in latent space by
key (a) and time (b) signature and harmonic function (c), folkbar-VAE
4/32. 60

4.11 Latent path of bars belonging to tune test-69 projected in latent space by
key (a) and time (b) signature and harmonic function (c), folkbar-VAE
8/64. 61

4.12 Latent path of bars belonging to tune test-69 projected in latent space by
key (a) and time (b) signature and harmonic function (c), folkbar-VAE
16/128. 61

4.13 Latent path of bars belonging to tune test-69 projected in latent space by
key (a) and time (b) signature and harmonic function (c), folkbar-VAE
32/256. 62

5

List of Tables

2.1 Number of tunes in the dataset by key signature. 19
2.2 Number of tunes in the dataset by time signature. 19
2.3 Harmonic function of chords built on scale degrees. 24
2.4 Score system used to estimate a bar’s harmonic function. 24

3.1 Number of reels by key signature. 32

6

Sommario

In questo lavoro analizziamo l’uso di modelli generativi basati su reti neurali artificiali
applicati alla musica tradizionale irlandese.
Come il linguaggio naturale, il linguaggio musicale segue regole e pattern precisi: si
potrebbe, ad esempio, pensare di creare un modello iterativo basato su tali regole; la
difficoltà sta nel formalizzarle per concetti di alto livello, come “una frase di senso com-
piuto” oppure “una buona melodia”. Avendo a disposizione un ampio dataset di melodie
folk irlandesi, abbiamo deciso di utilizzare il machine learning, e in particolare il deep
learning, che è lo stato dell’arte in ambito generativo per il linguaggio naturale e la mu-
sica.
In particolare, siamo interessati a un modello che possa sia generare, sia analizzare ma-
teriale musicale: abbiamo dunque deciso di costruire i nostri modelli a partire dai Vari-
ational Autoencoders [9], modelli generativi deep che apprendono una rappresentazione
interna dei dati sui quali sono allenati, rappresentazione che noi intendiamo sfruttare per
l’analisi di materiale musicale.
Apportando alcune modifiche a un modello esistente per il linguaggio naturale [1], abbi-
amo allenato due famiglie di modelli:

• folktune-VAE: un modello allenato sul dataset originale di melodie irlandesi;

• folkbar-VAE: un modello allenato su un dataset di singole battute appartenenti a
melodie del dataset originale, generato da quest’ultimo.

Per ognuno di questi, abbiamo considerato 5 variazioni di dimensioni crescenti. Abbiamo
quindi utilizzato il primo tipo per generare nuove melodie e analizzare la rappresentazione
interna delle melodie del dataset; il secondo per analizzare la struttura di una singola
melodia come successione delle sue battute, anche qui sfruttando la rappresentazione
interna di queste. In particolare, abbiamo condotto i seguenti esperimenti:

• abbiamo analizzato la rappresentazione interna di melodie e battute in termini di
tonalità e metro, considerando, nel caso di singole battute, una stima della loro
funzione armonica;

• abbiamo analizzato differenze e somiglianze tra la rappresentazione di melodie del

7

nostro dataset e melodie in uno stile specifico (“reels”) provenienti da un altro
dataset;

• abbiamo calcolato la distanza tra le rappresentazioni di singole battute di una
melodia, cercando di ottenere informazioni sulla somiglianza di tali battute e sulla
struttura generale del passo scelto.

Per concludere, presentiamo alcuni esempi generativi di melodie complete.
Nonostante i risultati generativi si siano rivelati interessanti e musicalmente coerenti,
non siamo riusciti a trovare collegamenti significativi tra la rappresentazione interna im-
parata dai nostri modelli e concetti di teoria musicale.
In generale, abbiamo trovato correlazioni molto deboli tra melodie in una data tonalità
o in un dato metro, che si sono rivelate ancora meno forti analizzando singole battute.
Abbiamo potuto identificare una somiglianza tra le rappresentazioni dei reels, ma non
abbiamo riscontrato significativa separazione da altri tipi di melodie. L’analisi delle rap-
presentazioni di melodie come sequenza di battute ha mostrato che le rappresentazioni
imparate sono troppo generiche per poter evidenziare concetti propriamente musicali nei
dati analizzati.
Inoltre, abbiamo riscontrato un peggioramento della qualità di queste rappresentazioni
all’aumentare delle dimensioni dei modelli allenati.
Possiamo concludere che la rappresentazione interna analizzata non è interessante da un
punto di vista musicale e non può quindi essere analizzata con le finalità che ci eravamo
preposti, nonostante ci siano buoni risultati da un punto di vista generativo. In partico-
lare, i modelli che presentano una migliore rappresentazione interna forniscono risultati
generativi peggiori.
In definitiva, crediamo che l’attenzione a l’uno o l’altro aspetto sia inerentemente dipen-
dente dagli scopi e dalle intenzioni dell’utente finale di questi sistemi.

8

Abstract

We create and study a generative model for Irish traditional music based on Variational
Autoencoders and analyze the learned latent space trying to find musically significant
correlations in the latent codes’ distributions in order to perform musical analysis on
data. We train two kinds of models: one trained on a dataset of Irish folk melodies, one
trained on bars extrapolated from the melodies dataset, each one in five variations of
increasing size. We conduct the following experiments: we inspect the latent space of
tunes and bars in relation to key, time signature, and estimated harmonic function of bars;
we search for links between tunes in a particular style (i.e. “reels”) and their positioning
in latent space relative to other tunes; we compute distances between embedded bars
in a tune to gain insight into the model’s understanding of the similarity between bars.
Finally, we show and evaluate generative examples. We find that the learned latent space
does not explicitly encode musical information and is thus unusable for musical analysis
of data, while generative results are generally good and not strictly dependent on the
musical coherence of the model’s internal representation.

9

Introduction

In the following work, we study the use of generative models based on artificial neural
networks applied to Irish folk music.
Similar to natural language, music follows specific rules and patterns: for example, one
could think to create an iterative rule-based system, but such an approach quickly be-
comes impractical because of the difficulty of specifying such rules for high-level concepts
(e.g. “a meaningful sentence”, “a good melody” etc). Having a large dataset of Irish
folk music at our disposal, we chose to use machine learning, which does not require an
explicit formulation of rules but rather infers them from data. In particular, we use deep
learning, which is the state of the art for both natural language and musical generation.
Inspired by “The Ai Music Generation Challenge 2022”1, we were interested in creating
a model capable of both generating and analyzing musical material: as such, we chose
Variational Autoencoders as a starting point, because they are generative models and
they learn an internal representation of the training data that we aim to use for musical
analysis.
We expect to find meaningful links between the model’s internal representation and the
musical properties of the data while being able to generate plausible and interesting Irish
folk music.
Music has often entered the realm of computer science [4]: from Hiller & Isaacson’s Illiac
Suite in 1958 [6] to the most recent deep models, algorithmic and AI-driven musical
composition already has a long history. A variety of approaches have been proposed,
from expert systems to Markov Chains; two of the most effective results come from
Google’s Magenta team, which created MusicVAE [11] and Music Transformer [8]. These
models are really good at representation and generation of musical excerpts and have
been a source of inspiration for numerous works, including the following. The code, data
and checkpoints we used are publicily publicly available on GitHub2.

1www.github.com/boblsturm/aimusicgenerationchallenge2022
2www.github.com/amerotz/latent-representations-for-traditional-music-analysis-and-generation

10

Irish traditional music

By Irish traditional music, we mean a collection of tunes and melodies, mostly mono-
phonic, with no specific harmonic accompaniment, native to Ireland and built up in
centuries of continuous playing and composition. It is usually performed in “sessions”,
where several musicians play the same melody at once, at times backed by a rhythm
section (for example a pianist or a guitarist, or an accordion).
This paper focuses on this particular genre of music for a few reasons:

• the presence of an extensive, homogeneous, and cleaned dataset of Irish traditional
music in ABC notation;

• a previous history of being used in AI composition and analysis;

• its monophonic structure, allowing us to consider only one voice;

• the regularity of tune structures (mostly AB or ABC) and the repeating elements
and clichés among melodies.

All of this allows us to easily build and train models and simplifies the process of analyzing
generated material.
Moreover, each melody in the dataset is stored in ABC Notation Format, which is a
textual, human-readable encoding for musical notation; this allows the repurposing of
existing text-based models with few modifications.
As stated before, other works have targeted the problem of Irish folk music generation.

folk-rnn

Folk-rnn [12] [5] is a recurrent neural network that generates Irish traditional music and
is freely available to the public at www.folkrnn.org. It has seen various iterations and
it is the model the dataset we used was created for.

Tradformer

Tradformer [2] is another model for musical generation based on transformers. It has
been trained on the same dataset and produced very convincing and musical results.
It has also been employed in the task of generating Swedish-style folk tunes, yielding
interesting results.

11

www.folkrnn.org
www.folkrnn.org

Outline

This work is structured as follows:

• Chapter 1: we introduce the fundamental concepts and techniques involved in our
analysis;

• Chapter 2: we show the dataset we used and describe the models we trained, along
with implementation considerations and training plots;

• Chapter 3: we show experimental results concerning our models’ internal represen-
tation and generative examples;

• Chapter 4: we draw conclusions on the total results of our experiments.

12

Chapter 1

Background

We briefly describe the techniques and deep architectures we used.

1.1 RNNs and GRUs

Recurrent Neural Networks (RNNs) are a family of neural networks for processing se-
quential data. In an RNN, the state at each time step is dependent on the state at the
previous one, and weights are shared across time steps. Thus, given a sequence, the
output at the final time step is dependent on the whole input sequence. The ability
to remember previously seen tokens and subsequences makes RNNs extremely useful in
music-related tasks, where being able to recognize and produce both local and global
repeated patterns is a crucial and desired skill.
A problem to which standard RNNs are vulnerable is gradient vanishing or explosion
during backpropagation: that is, the convergence to zero or total divergence of the long-
term gradients, due to the finite precision of the numbers involved. To circumvent this
issue, Long Short-Term Memory networks (LSTMs) [7] have been proposed and have
proved to be effective in a variety of applications.
In our implementation, we make use of a particular type of RNN called Gated Recurring
Units (GRUs) [3], which is a variation of the LSTM pattern. GRUs are LSTMs capable of
“forgetting” and resetting at appropriate times, for example in continuous input streams
without explicitly marked sequence ends.
The recurring units are required in order to compress the input training sequence into a
single vector for the next layers.
For each element in the input sequence, each GRU layer computes the following function:

rt = σ(Wirxt + bir +Whrh(t−1) + bhr)

zt = σ(Wizxt + biz +Whzh(t−1) + bhz)

13

nt = tanh(Winxt + bin + rt ∗ (Whnh(t−1) + bhn))

ht = (1− zt) ∗ nt + zt ∗ h(t−1)

where

• ht is the hidden state at time t;

• xt is the input at time t;

• h(t−1) is the hidden state of the layer at time t − 1 or the initial hidden state at
time 0;

• rt, zt, and nt are the reset, update, and new gates, respectively;

• σ is the sigmoid function;

• ∗ is the Hadamard product.

1.2 Autoencoders

Autoencoders are deep neural networks that operate on this principle: they try to copy
their input to their output by passing it through a bottleneck layer, smaller than the input
and output dimensions. While this may seem of doubtful usefulness, the bottleneck layer
is really what we are interested in: being forced to reconstruct a target from a reduced
version of it, the network often learns useful properties of the data.
Moreover, if we consider the output of the bottleneck layer as a point in some n-
dimensional vector space, we find out that similar points tend to be mapped closed
together. This vector space is often called “latent space”.
The network can then be conceived as made of two parts:

1. an encoder, which processes an input sequence into a point in the learned latent
space;

2. a decoder, which tries to map a latent point to its original data point.

This allows interesting operations on data, such as interpolation or other arithmetical
operations between latent points, giving us new points which can be decoded back to
what the network thinks their precursor should be. Thus we can generate new data or
“steer” existing data towards particular regions of the latent space that encode particular
features, with a technique known as “attribute vector arithmetic” [11].

14

Figure 1.1: The autoencoder architecture.

All of the above assumes the existence of a learned latent space of an appropriate dimen-
sion for the complexity of the data, in which latent points are fairly well distributed and
there are no large “empty” gaps. While we can always enlarge or reduce the bottleneck
layer, as long as we keep it smaller than the original dimension, the irregular point dis-
tribution is harder to address and very common in practice. This may result in sampling
latent points which are too far from true data points to be decoded meaningfully.

1.3 Variational Autoencoders (VAEs)

To solve the issue mentioned above, Variational Autoencoders (VAEs) [9] have been
developed. VAEs share the same architectural features as standard Autoencoders, but
encode data points into a distribution of points in latent space, rather than a single
point.
The encoder learns two vectors that represent the mean and variance of a normal distri-
bution in latent space.
The decoder samples a random point from such distribution that will then be used
to reconstruct the original input. Since the sampling operation is not differentiable,
we used the so-called “reparametrization trick”: a sample is drawn from a standard
Gaussian distribution and is then combined with the aforementioned mean and variance.
During backpropagation, mean and variance vectors are adjusted accordingly, ignoring
the stochastic operation.
This has the effect of generating a space of distributions over data points that can overlap
and create a more significant latent space. Points that would have been isolated with a
vanilla Autoencoder approach may now appear between more distributions and would

15

be decoded in a more meaningful way.
A special kind of loss function is used, by the name of Evidence Lower Bound (ELBO)
loss.

1.3.1 ELBO loss function

The ELBO loss function allows us to backpropagate considering both the reconstruction
error between input and output and the distance between the model’s distribution of
data and the data’s distribution.
In our approach, we employed the following ELBO loss function:

L(θ;x) = −KL(qθ(z|x)||p(z)) + Eqθ(z|x)[log pθ(x|z)]

where

• x is an input;

• z is the model’s learned code for x;

• KL is the Kullback-Leibler divergence, which is a way of representing the difference
between two distributions [9];

• qθ(z|x) is the model’s approximate posterior distribution over z;

• p(z) is the model’s prior distribution over z; in this case, a standard Gaussian;

• pθ(x|z) is the likelihood of x conditioned on z;

• Eqθ(z|x)[log pθ(x|z)] is the expected value of pθ(x|z) with respect to qθ(z|x).

1.3.2 β-VAEs

The two-term structure of the ELBO loss allows for tweaks in order to prioritize the
reconstruction or distribution error. This is achieved through a weighted Kullback-
Leibler Divergence with a parameter β, whence the name. The new loss function follows
this equation:

L(θ;x) = β · −KL(qθ(z|x)||p(z) + Eqθ(z|x)[log pθ(x|z)]

where β is the weight we defined.

16

1.3.3 Annealing

The weight β mentioned above can be fixed during the whole training process, or gradu-
ally increased at each step, with the idea of emphasizing reconstruction accuracy in the
first epochs and focusing later on the minimization of the Kullback-Leibler Divergence.
Such a process is known as “annealing” and has been used in training our models.
In particular, we initialize the weight of the KL-divergence at 0 and bring it to 1 following
a sigmoid contour during the first epochs of training. This contour is a function of the
current time step, defined as follows:

1

1 + e−k·(t−x0)

where

• t is the current time step;

• k is a parameter that encodes the “steepness” of the contour;

• x0 is the inflection point (i.e. time step) of the sigmoid.

During training, we used k = 0.0025 and x0 = 2500.

1.4 Uniform Manifold Approximation and Projec-

tion for Dimension Reduction

Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP) [10]
is a technique for projecting high-dimensional spaces into lower-dimensional ones. The
goal is to obtain a projection of the original space which is its closest lower-dimensional
topological equivalent. We employ this technique to visualize the high-dimensional
learned latent space in two dimensions.

17

Chapter 2

Models and data

We show the dataset we used and how we processed it, followed by the types of models
we have trained and their training plots.

2.1 Main dataset

As mentioned before, the training data we used is a collection of Irish folk tunes in
ABC notation format, available with folk-rnn’s release on GitHub1. These are already
tokenized and arranged in a text file. There are multiple versions of this dataset, which
include tune titles, omit repetitions, transpose to other keys, etc. We opted for the
second iteration of this dataset, which contains more than 20,000 tunes transposed to C
without titles, with meter and C mode indication.
Transposing tunes to C incentivizes the model to learn structures and patterns tied to
scale degrees more than to individual notes.
This is what a standard tune looks like in the source dataset:

M:6/8

K:Cmaj

|: E 2 G G E G | A c A G 2 F | E 2 D D C D | E 2 C C2 D |

E 2 G G E G | A /2 B /2 c A G 2 G | A B c d c B |1 c 2 G A 2 G :|

|2 c 3 c 2 d |: e 3 e d c | f 2 d d c d | e g e e d c |

g ^f g a g =f | e 3 e d c | f 2 d d B G |1 A A /2 B /2 c d B G |

c 3 c 2 d :| |2 A B c d c B | c 2 G A 2 G |

and this is the musical notation associated with it.

1www.github.com/IraKorshunova/folk-rnn

18

Figure 2.1: The musical notation associated with the ABC notation above.

We performed a minimal amount of cleaning removing tunes that exceeded a length of
256 tokens and that presented rare tokens (less than 100 total occurrences); we discarded
less than 10% of the total tunes.
The final dataset is structured as follows:

Key signature Cmaj Cmix Cmin Cdor Total

Number of tunes 14,260 1,432 2,876 2,702 21,270

Table 2.1: Number of tunes in the dataset by key signature.

Time signature 2/4 3/4 4/4 6/8 9/8 12/8 3/2 Total

Number of tunes 1,637 1,576 11,044 5,562 801 475 175 21,270

Table 2.2: Number of tunes in the dataset by time signature.

2.2 Models

We have trained a variety of models of multiple sizes and experimented with other
configuration parameters, such as KL-Divergence weight and batch size.
We have trained two kinds of models: one on full tunes, as in the source dataset, and one
on individual bars, generated from the same data by splitting each tune into a collection
of bars. We trained this last model in order to analyze the paths created by sequences
of points in latent space corresponding to bars belonging to a tune.

19

All models stem from a PyTorch implementation of a natural language processing model
called Sentence-VAE [1], which we have tweaked to meet our goals.
SentenceVAE is an RNN-based variational autoencoder generative model that encodes
latent representations of entire sentences. This allows encoding properties of the entirety
of the sentence, such as style, topic, and other high-level syntactic features. It consists of
a two-layer encoder RNN and a three-layer decoder RNN which acts on natural language
sentences. Each word is represented using a learned dictionary of embedded vectors. It
is able to encode sentences and interpolate between latent points, decoding those back
to new sentences with a certain degree of meaningfulness.
The textual format of our dataset and the elegance and simplicity of SentenceVAE al-
lowed us to apply it to Irish folk tunes out of the box, with interesting and promising
preliminary results.
However, being interested in musical analysis, we deemed necessary to adapt part of its
architecture to treat musical data.

2.2.1 folktune-VAE

We first turned our attention to training our first model on the entirety of our tune
dataset, using 80/10/10 train/validation/test splits. We will refer to this kind of model
as “folktune-VAE” from now on, attaching “latent space size / hidden size” when needed.
Since we know a priori the contents of our dataset, and thus the tokens that are present,
we substituted the learned word embedding with one-hot encoding. Our dictionary
counts 119 tokens, including the model’s auxiliary tokens (such as padding, start/end of
stream, etc).
Having limited time and computing power at our disposal, we settled on a two-layer
encoder GRU and a two-layer decoder GRU, while trying different hidden and latent
sizes.

Figure 2.2: The general architecture of folktune-VAE.

20

The general architecture of folktune-VAE.
To analyze how the model’s size affected the latent space and the reconstruction, we
trained the following models:

• 2-dimensional latent space, 16-dimensional hidden size;

• 4-dimensional latent space, 32-dimensional hidden size;

• 8-dimensional latent space, 64-dimensional hidden size;

• 16-dimensional latent space, 128-dimensional hidden size;

• 32-dimensional latent space, 256-dimensional hidden size.

This particular choice of values seemed appropriate because of the aforementioned trade-
off between computing resources and time. Moreover, it is sensible to start with the
smallest model possible and gradually increase its size, recording the changes in perfor-
mance that occur and how large those are.
We trained each model for 20 epochs, which preliminary experiments showed to be
enough for the model to settle, without noteworthy improvements in terms of loss beyond
this point.
We also conducted preliminary verifications on what the most useful batch size would
be and obtained the least loss models with a value of 32, which we choose to keep for all
the models above. We used a learning rate of 0.001 and the Adam optimizer.
We trained each model with annealing of the KL-Divergence.

21

Training plots

(a) (b)

Figure 2.3: folktune-VAE validation ELBO loss (a) and KL-Divergence (b) for each
trained model.

As the figures show, increasing the model’s size causes a lower ELBO and reconstruction
loss in general.
Analyzing the KL-divergence trend, we see that smaller models, namely folktune-VAE
16/128 and 4/32, seem to outperform larger ones. We will successively inspect if this
inferior loss value corresponds to an actual better understanding of the data’s distribution
by such models. Since the KL-divergence is responsible for the structure of the latent
space, we speculate that the aforementioned models will show a more coherent latent
space.
We used the last checkpoint for each model since it has the lowest loss value in all cases.

2.2.2 folkbar-VAE

Using the same structure of folktune-VAE, we trained a series of models on individual
bars, with the intent of analyzing relationships between bars in a given tune. We obtained
our bars dataset by splitting the original tunes into bars and removing key and time
signature indications. We processed each original split individually so that there is a
correspondence between train, validation, and test data between this model and folktune-
VAE. We will use the name “folkbar-VAE” with the usual latent space size and hidden
size indications.
Each model was trained for 20 epochs and with the same parameters as before. As we did
with complete tunes, we considered only bars not exceeding 32 total tokens, in practice

22

excluding only a few examples from our generated bars’ dataset.
We stored key and time signatures separately with each bar to allow further analysis.
Using measures instead of complete tunes as our training data, we find it sensible to
analyze what the harmonic context of a single bar is: in order to do so, we store an
estimate of the bar’s harmonic function, computed with the following procedure.

Harmonic function estimate of individual bars

By the harmonic function of a bar, we mean the “role” that is played by that bar in the
piece based on the implied harmony of its notes.
We can rely on Irish folk music being strongly tonal and thus employing basic and
traditional harmonic rules, which in essence are tied to the concept of Tonic, Plagal, and
Dominant harmonic functions. Without delving too deep into music theory, we can say
that:

• the Tonic function is the harmonic function of “home” chords, that is, the root
chord of the key and its minor relative, and does not suggest any movement towards
other chords;

• the Dominant function, on the contrary, is the function of the most unstable chords
in the key, namely the chords on the fifth and seventh degrees of the scale, which
provide a strong sensation of movement towards the Tonic;

• the Plagal (or Subdominant) function is the function of chords that suggest a
movement toward both the Tonic and the Dominant chords, that is the second and
the fourth degrees of the scale.

The third degree of the scale usually has a more ambiguous role, which is highly de-
pendent on context; as such, it is often employed as a passing chord between “stronger”
chords.
Having made said simplifications, we assign to each bar one of the aforementioned func-
tions with a score-based system:

• we initially assign a score of 0 for each harmonic function;

• we iterate through the pitches in the bar and associate them with the chords in
which they appear;

• we add one point to each function that appears at least once in the chords’ harmonic
functions.

23

We then simply choose the harmonic function with the highest total score. For each
pitch, the number of points per function is defined by the following tables:

Chord Function

I Tonic
II Plagal
III Tonic
IV Plagal
V Dominant
VI Tonic
VII Dominant

Table 2.3: Harmonic function of chords built on scale degrees.

Pitch Tonic Plagal Dominant Chords

C 1 1 0 I, IV, VI
D 0 1 1 II, V, VII
E 1 0 0 I, III, VI
F 0 1 1 II, IV, VII
G 1 0 1 I, III, V
A 1 1 0 II, IV, VI
B 1 0 1 III, V, VII

Table 2.4: Score system used to estimate a bar’s harmonic function.

We arbitrarily decided to consider the chord on the III degree as a Tonic chord, which
appeared to be a more appropriate general function than Dominant or Plagal in this
kind of music.

24

Training plots

(a) (b)

Figure 2.4: folkbar-VAE validation ELBO loss (a) and KL-Divergence (b) for each trained
model.

According to the validation ELBO loss, bigger models should perform better and should
considerably outperform the smaller ones. We can see that the loss starts to rise to-
wards the end, signaling that less training would have been enough to reach the lowest
loss checkpoint. This did not happen when working with complete tunes, which is ex-
pected, considering the inevitable inferior complexity of single measures with respect to
a complete musical piece. Moreover, our bars dataset counts a lot more single training
examples than the tunes dataset, given that usually, each piece contains around 16 bars.
The KL-Divergence follows the same trend. In order to meaningfully evaluate the bars’
latent space, we chose the best checkpoint for each model.

25

Chapter 3

Results

In the following section, we analyze a variety of experimental results concerning the
structure of folktune-VAE and folkbar-VAE’s learned latent space. We conducted the
experiments below:

• an analysis of folktune-VAE’s latent space by projecting individual tunes;

• an analysis of how tunes belonging to a specific genre are projected relative to
other tunes in folktune-VAE’s latent space;

• an analysis of folkbar-VAE’s latent space by projecting individual bars;

• an analysis of distances between latent bars belonging to a given tune in folkbar-
VAE’s latent space.

All of the above aim to understand whether folktune-VAE and folkbar-VAE’s internal
representations are musically meaningful and could thus be used for the purpose of
musical analysis.

3.1 Tune projection

We start our analysis by taking a general look at the latent space of tunes and trying to
understand its characteristics.
We projected tunes by feeding them into the model, which gives us a latent point for
each tune. We then run the UMAP algorithm for dimensionality reduction, obtaining
the two-dimensional projection of such points.
The plotted tunes are a subset of the dataset chosen with a stratified selection of 200
tunes for each key and time signature. When there were less than 200 tunes for a certain
value, we considered the minimum amount of tunes for each category to be represented
equally.

26

In the exceptional case of folktune-VAE 2/16, which already maps tunes into two-
dimensional latent points, we provide the original latent space mapping instead of its
UMAP projection, being dimensionality reduction the only reason behind the use of this
algorithm.

3.1.1 folktune-VAE 2/16

Figure 3.1: folktune-VAE 2/16 learned latent space by key signature.

The model seems to have learned some kind of distinction between different C modes,
although not very clear. Given that ABC notation does not explicitly mark accidentals
when already implied by the key field, this suggests that there are patterns or figures
more common within tunes of a given mode.
C Major seems to be best separated from the other keys: one possible interpretation
may be the presence of the B natural as the leading tone, which allows specific melodic

27

and harmonic patterns that are weaker in the other modes, where we instead have a B
flat.
There is no clear distinction between C Dorian, C Minor, and C Myxolidian, and no
particular similarity between the first two, which both employ an E flat instead of an
E natural. This may be explained by the quality of the median being less influential
in melodic patterns: its relationship with the tonic remains consonant and it does not
appear in the subdominant and dominant triads, which have a prominent role in this
kind of music.

Figure 3.2: folktune-VAE 2/16 learned latent space by time signature.

No particular distinction seems to arise when considering time signatures. Certain areas
are more populated by tunes in specific time signatures than others, but there is a
considerable amount of overlap.
The only exception is the cluster of tunes in 2

4
: we speculate that this is due to the

general inferior tokenwise length of these tunes, which accommodate only two beats per
bar.

28

3.1.2 folktune-VAE 4/32

(a) (b)

Figure 3.3: folktune-VAE 4/32 learned latent space by key (a) and time (b) signature.

There is a lot of overlap between point sets, which leads to no interesting interpretation
of the latent space.
There seems to be a relative abundance of 2

4
tunes on the left side and of 3

4
tunes on the

right side, while other time signatures are equally spread throughout.
We exclude tune length and binary/ternary divisions being a significant factor, given the
equal distribution of other time signatures in the plot, but we cannot trace this behavior
to any significant musical feature.

29

3.1.3 folktune-VAE 8/64

(a) (b)

Figure 3.4: folktune-VAE 8/64 learned latent space by key (a) and time (b) signature.

No new interesting musical considerations arise from this model’s results.

3.1.4 folktune-VAE 16/128

(a) (b)

Figure 3.5: folktune-VAE 16/128 learned latent space by key (a) and time (b) signature.

30

There seems to be a tendency for tunes to accumulate towards the outer bounds of the
plotted region, regardless of time or key signature. We speculate it could be an artifact
caused by the UMAP processing step.

3.1.5 folktune-VAE 32/256

(a) (b)

Figure 3.6: folktune-VAE 32/256 learned latent space by key (a) and time (b) signature.

The previously noted tendency seems to be accentuated by this model’s projection. We
can see groups of tunes in 12

8
and 3

2
clustered together, although not clearly separated.

3.1.6 Conclusions

These results are more or less in line with what we predicted when examining the KL-
Divergence of the trained models: in fact, bigger models do not seem able to show us any
interesting musical properties of the data, while we could distinguish different groups of
similar points in folktune-VAE 2/16 and 4/32.
The model that performs best should be 8/64, which could not give us any useful musical
information instead. It is however evident that its points are fairly well distributed
and that there are no particular clusters or gaps, which could account for the low KL-
divergence value, even though this does not seem to reveal anything in terms of key or
time signature distribution. It is possible that a per-tune analysis could give us more
insight into this particular latent space, but such an analysis is beyond the scope of this
work.

31

3.2 Distance-based tune type recognition

With the goal of recognizing different tune types, we speculate on the idea of using the
distance between latent encoded tunes to highlight belonging to a specific musical genre.
We turned our attention to a particular kind of Irish tune called “reel”. A reel is a tune
composed in 4

4
, usually of binary structure, played with even beats.

Relying on this metrical feature as a possible discriminator and on the presence of an
Irish reels dataset in ABC format (not included in our training data), we investigate
whether the learned space of our models actually encodes high-level musical features,
such as tune type.
We cleaned and formatted the reels dataset in order for it to be compatible with our
already trained models. The final reel collection counts 348 tunes. By definition, each
reel is in 4

4
time signature; key signatures are distributed as follows:

Cmaj Cmix Cmin Cdor Total

Number of reels 256 15 58 18 348

Table 3.1: Number of reels by key signature.

We then projected each reel into latent space and calculated the centroid of this collection
of points as follows:

C =
x0 + ...+ xn−1

n

where xi is a latent point corresponding to a reel.
We then calculated the Euclidean distance between each reel and the centroid C.
Similarly, we repeated the process with a stratified selection of pieces, with a number of
tunes equal to the number of reels for each category. When a certain category counted
fewer tunes than there are reels, we considered the maximum number of tunes that could
represent each class equally. We then encoded them as latent points and computed their
Euclidean distances from the centroid.
We plotted both the latent space projection of all encoded points and the distribution
of euclidean distance values for each category compared with the reels’ distribution.
We provide plots for each trained folktune-VAE model. As before, points encoded by
folktune-VAE 2/16 were not subject to UMAP dimensionality reduction.

32

http://john-chambers.us/~jc/music/book/ONeills/1001/
http://john-chambers.us/~jc/music/book/ONeills/1001/

3.2.1 folktune-VAE 2/16

(a) (b)

(c) (d)

Figure 3.7: folktune-VAE 2/16 learned latent space with reels and distance values from
the centroid by key (a & b) and time (c & d) signature.

Tunes in C Major seem to be linked to reels more than tunes in other C modes, which is
traceable to C Major being the most common key signature among reels. Reels appear
to be fairly evenly distributed between time signatures: we expected the 4

4
distance

distribution to follow the reels more distinctively than others instead. The large spike
corresponding to tunes in 2

4
highlights the cluster on the right.

The centroid lies almost exactly in the center of the whole projection.

33

3.2.2 folktune-VAE 4/32

(a) (b)

(c) (d)

Figure 3.8: folktune-VAE 4/32 learned latent space with reels and distance values from
the centroid by key (a & b) and time (c & d) signature.

There does not seem to be any correlation between reels and key signature, although
reels tend to be encoded in the upper half of the point set, together with C Major tunes.
No significant time signature correlation is noted.

34

3.2.3 folktune-VAE 8/64

(a) (b)

(c) (d)

Figure 3.9: folktune-VAE 8/64 learned latent space with reels and distance values from
the centroid by key (a & b) and time (c & d) signature.

The considerable amount of overlap does not highlight any musical feature. Reels tend to
occupy a somewhat limited region of the plotted space, which is reflected by the centroid
being slightly offset from the center.

35

3.2.4 folktune-VAE 16/128

(a) (b)

(c) (d)

Figure 3.10: folktune-VAE 16/128 learned latent space with reels and distance values
from the centroid by key (a & b) and time (c & d) signature.

Again, the considerable amount of overlap does not highlight any musical feature.

36

3.2.5 folktune-VAE 32/256

(a) (b)

(c) (d)

Figure 3.11: folktune-VAE 32/256 learned latent space with reels and distance values
from the centroid by key (a & b) and time (c & d) signature.

We encounter the same alleged UMAP artifacts as before. Reels are grouped together
in both projections.
In terms of key signature, there is a weak correlation between C Major tunes and reels.
The time signature distance histogram does not show interesting tendencies apart from
the 2

4
and 12

8
spike. An inspection of the latent projection shows that reels and tunes in

4
4
loosely accumulate in the same region.

37

3.2.6 Conclusions

We see that in almost all projections, reels have been mapped to points close to each
other. This is an interesting result, as it suggests that there are some global properties of
reels as a musical form that our model was able to recognize, although not very clearly.
The occurrence of other tunes in 4

4
as fairly distant points from reels allows us to say

that our model is looking at something more than simply meter; at the same time, this
tells us that there is no strong association between 4

4
meter and reels when there should

be a major and obvious link, given that 4
4
time is a distinctive feature of such tune type.

Almost all models seem to have found some kind of relationship between 2
4
tunes, which

are often grouped together.

3.3 Bar projection

Using the same approach as before, we now inspect the latent space generated by the
folkbar-VAE models, which encode individual bars as latent points. Along with the usual
key and time signature projections, we provide a novel stratified selection of bars based
on their estimated harmonic function. We used the best checkpoint for each model.

3.3.1 folkbar-VAE 2/16

(a) (b) (c)

Figure 3.12: folkbar-VAE 2/16 learned latent space by key (a) and time (b) signature
and harmonic function (c).

The time signature projection only shows some signs of separation between bars of dif-
ferent meters, specifically grouping together bars in “long” meters, such as 12

8
, 9

8
and

3
2
. We speculate that this is due to the greater length of those bars with respect to the

other time signatures.

38

3.3.2 folkbar-VAE 4/32

(a) (b) (c)

Figure 3.13: folkbar-VAE 4/32 learned latent space by key (a) and time (b) signature
and harmonic function (c).

We continue to see the time signature distinction made above. No other notable changes
are present. This trend remains unchanged in the following plots too.

3.3.3 folkbar-VAE 8/64

(a) (b) (c)

Figure 3.14: folkbar-VAE 8/64 learned latent space by key (a) and time (b) signature
and harmonic function (c).

39

3.3.4 folkbar-VAE 16/128

(a) (b) (c)

Figure 3.15: folkbar-VAE 16/128 learned latent space by key (a) and time (b) signature
and harmonic function (c).

3.3.5 folkbar-VAE 32/256

(a) (b) (c)

Figure 3.16: folkbar-VAE 32/256 learned latent space by key (a) and time (b) signature
and harmonic function (c).

As in folktune-VAE 32/256, this model’s UMAP projection suffers from the already
observed artifact of points being pushed outwards, away from the center.

3.3.6 Conclusions

Analysis of the learned latent space does not provide us with useful insight into its
structure. The only consisting distinction throughout models is between 12

8
, 9

8
and 3

2

bars and other time signatures. This family of models does not appear to be capable of
learning useful associations in terms of key and time signature and estimated harmonic
function.

40

3.4 Similarity of bars within tunes

We originally intended to project a complete tune as a sequence of connected latent
points corresponding to its bars and inspect the path that they generate. We divided a
tune into bars and projected each one as a latent point. We then plotted and connected
them in the same order as the corresponding bars in the source. We hoped to gain
an interesting insight into the tune’s structure and internal repetitions and similarities;
however, this analysis did not prove to be as meaningful as we hoped.
As we can see in the following plot, the path created by the sequence of encoded bars
does not provide us with useful information on the tune structure. We marked the points
corresponding to the start and end of the tune with a star and an “X” respectively. We
provide the full series of plots by key signature, meter and function for each model in
the Appendix.

Figure 3.17: Sequence of points corresponding to bars belonging to tune test-69 projected
in latent space.

41

Put aside these uninteresting results, we tried a different approach to highlight a tune’s
structure and inner similarities. As before, we divided a tune into bars and projected
them into latent points with each model. We then computed the Euclidean distance
between each possible couple of bars and visualized it as a heatmap.
Irish traditional music makes ample use of repetitions and standard motifs and figures:
we expect to see similar bars encoded to points near to each other and, in particular,
identical bars should ideally be mapped to the same point and we should see very low
distance values when comparing such bars.
We arbitrarily chose tune #69 from the test split as our test tune.
This is the tune’s ABC notation:

M:6/8

K:Cmaj

|: d | e 2 d c 2 C | E G G A G E | G A c d c A | d e d d e f |

e 2 d c 2 C | E G G A G E | G A /2 B /2 c d c A | c d B c 2 :|

|: d | e d e g 2 e | g a e g e d | c 2 e d c A |1 d e d d B d |

e d e g 2 e | g a e g e d | c 2 e d c A | c d B c 2 :|

|2 d e d d B f | e 2 d c 2 C | E G G A G E | G A c d c A | c d B c 2 |

and this is the sheet music it represents.

Figure 3.18: Sheet music associated with the ABC notation of tune test-69.

For each folkbar-VAE model we provide two plots: one where latent bar points have been
randomly sampled by the model without any seed indication and one where we seeded

42

the model with torch.manual seed(0) right before forwarding each bar into the model.
This last variation essentially removes sampling randomness and ensures that identical
bars are mapped to identical points; while this is not generally how one would use such
models, it allows us to see correlations between bars at a glance.
We can then compare the plots and see if these correlations are preserved: for each
bar, models with a good understanding of the bars’ space should learn a distribution
“sharp” enough that sampled latent codes inhabit a limited region of the latent space
and are projected into points near to each other. On the contrary, “bad” models will
learn broad distributions for each bar, and the resulting latent codes will be on average
equally distant from each other.

3.4.1 folkbar-VAE 2/16

(a) (b)

Figure 3.19: folkbar-VAE 2/16 heatmap of distances between unseeded (a) and seeded
(b) pairs of latent projections of bars in tune test-69.

We can immediately see that the seeded projection labels all bars as almost identical to
each other. The most notable feature is the bright stripe corresponding to bar 9, which
is the short upbeat bar right before the effective tune start. A similar thing happens
for bar 7, which is the only bar containing 16th notes, and bar 17, which contains fewer
notes than usual, compensated by the upbeat bar at the start when repeating the section.
This is not standard musical practice and should be considered incorrect; however, it is
common when notating folk tunes to adopt such a notation, that ultimately does not
affect the intelligibility of the melody or our models.
We find the relationships above in the first graph too, but in a less evident way due to
the randomness introduced by sampling.

43

3.4.2 folkbar-VAE 4/32

(a) (b)

Figure 3.20: folkbar-VAE 4/32 heatmap of distances between unseeded (a) and seeded
(b) pairs of latent projections of bars in tune test-69.

The seeded projection highlights a pattern of rectangles and squares of height 3 repeat-
ing after one or more different bars. We can easily trace this pattern to the repeated
ascending and descending figures and the reprises of the main theme throughout the
tune. In particular, bar 7, containing the first repetition token, is the furthest from the
single-note upbeat bars.
Strangely, we do not see these relationships in the first plot: they are shadowed by the
higher distance values of other bars, such as bars 6 and 19. Nevertheless, we did not
expect these bars to be so far from the others, even from identical bars that repeat in the
tune. This signals that the model has learned too broad distributions of bars in order
for sampled points to be close to each other.

44

3.4.3 folkbar-VAE 8/64

(a) (b)

Figure 3.21: folkbar-VAE 8/64 heatmap of distances between unseeded (a) and seeded
(b) pairs of latent projections of bars in tune test-69.

While the seeded plot continues to show the patterns we have already seen, the unseeded
one shows average values for each couple. This model appears to almost ignore bars’
similarity. This trend continues and is accentuated in the remaining models, which have
even less understanding of bars’ similarity in terms of Euclidean distance between latent
points.

45

3.4.4 folkbar-VAE 16/128

(a) (b)

Figure 3.22: folkbar-VAE 16/128 heatmap of distances between unseeded (a) and seeded
(b) pairs of latent projections of bars in tune test-69.

3.4.5 folkbar-VAE 32/256

(a) (b)

Figure 3.23: folkbar-VAE 32/256 heatmap of distances between unseeded (a) and seeded
(b) pairs of latent projections of bars in tune test-69.

46

3.4.6 Conclusions

Contrary to what one would expect, but in an analogous way to what we have seen
with the folktune-VAE models, bigger models do not necessarily bring improvements.
In fact, what we have seen shows an opposite trend, with the best results achieved by
the lower-dimensional models and far worse results achieved by higher-dimensional ones.
We speculate that these models were too big for bars consisting of at most 32 tokens
in order to learn useful associations: trivially, the 32-dimensional latent space model
folkbar-VAE 32/256 could have learned embeddings in which each component of the
32-dimensional code is mapped to the token occupying that position in the input bar.
Such an “alphabetical” encoding obviously does not convey musical meaning, at least in
the way we are interested in.

3.5 Generation

In the following section, we show some generative results.
We sampled a random latent code x and asked the decoder to generate a tune with it.
We implemented greedy, TOP-k, and TOP-p sampling with temperature.
We used both our worst and best models in terms of ELBO loss, which are folktune-VAE
2/16 and folktune-VAE 32/256 respectively.

3.5.1 folktune-VAE 2/16

This is the worst model in terms of ELBO loss.
The following sampled pieces show musical features and patterns that are common in
Irish folk music. However, tunes lack any kind of high-level structure and melodies
resemble more a random juxtaposition of melodic fragments rather than a coherent
musical piece.
The model has learned to “count” notes in bars correctly, although not reliably. Nev-
ertheless, the rhythmic patterns it generates are unusual and not consistent throughout
the piece.
We expected such results because of the reduced size of this model.

M:4/4

K:Cdor

|:c>decc2c>d|e>fg2g2g>f|e>fg>fe>dc>B|c>de>fg>fe>d|

c>Bc>de>dc>B|c>Bc>de>fg>f|e>fg>fe>dc>B|c>Bc>de>fg>f|

e>fg>fe>dc>B|c>Bc>de>fg>f|e>fg>fe>dc>B|c>Bc>de>fg>f|

e>fg>fe>dc>B|c>Bc>de>fg>f|e>fg>fe>dc>B|c>Bc>de>fg>f|

e>fg>fe>dc>B|c>Bc>de>fg>f|e>fg>fe>dc>B|c>Bc>de>fg

47

Figure 3.24: Tune generated by folktune-VAE 2/16 with greedy sampling.

M:4/4

K:Cmaj

|:c2cAA2cG|(3GAdc2eG2f|e2dd3dB|c2d2BAF2|

F3FD2C2|AGABA2c2|(3GFD ED3D2|CEG2G2F2|

F3CA,2C2|E4D2C2|G2c3B2G|E2D2D2A2|C3E2C2A:|

Figure 3.25: Tune generated by folktune-VAE 2/16 with top-k sampling, k=10, temper-
ature 1

M:2/4

K:Cmaj

CG CG|A>B c2|Gc cG|FD ED/2D/2|EF G>c|AG A>G|A2 AA|

c>A B/2c/2A|GE Gc| dc BG|AG ED|EG ce|g/2e/2e/2c cG|c3:|

|2(3GFE FG|e/2d/2c de/2c/2|ed ce|cd ec|e/2f/2g/2e/2 ec|c3c|

48

Figure 3.26: Tune generated by folktune-VAE 2/16 with top-p sampling, p=0.9, tem-
perature 1

3.5.2 folktune-VAE 32/256

This is the largest and best model we have trained on complete tunes.
We can immediately see characteristic melodic and rhythmic features used consistently
in the scope of a piece, even with reprises and variations. The model reliably counts
notes in bars.
Tunes show a high-level musical structure: we see the first bar being recalled every 2
or 4 bars and melodic phrases imply a constant Tonic to Dominant or Tonic to Plagal
harmonic movement, which is common practice and the desired feature in this genre of
music.
We expected this model to perform best due to its size; however, we are not sure of
how large of a contribution the internal representation makes to generation, given that
we could not see any interesting results in this model’s latent space analysis. We would
not be surprised if the very large decoder RNN completely ignores the latent code after
generating the first few tokens and carries on with learned probabilities as any other
RNN.
Nevertheless, from a purely generative point of view, these results are interesting and
musically pleasing.

M:4/4

K:Cmaj

|:GF|ECC2EGcG|ECC2DEFD|ECC2EGcG|ECDC DEFD|

ECC2EGcG|ECDC A,CCE|F3G ABcA|GEDEC3:|

|:G|c2cG cGEG|cGEC DCA,G,|C2EG cGEG|cGEC DCA,G,

|C2EG cGEG|cGEC DCA,G,|C2EG cGEG|FDB,DC3:|

49

Figure 3.27: Tune generated by folktune-VAE 32/256 with greedy sampling.

M:9/8

K:Cmaj

|:CB,C EDC EGc|ECE EDC A,CE|cBc GEC EDC|DED DEC B,3:|

|:CDE GFE FGE|AcA GFD cBA|GEG cAF cAG|EDE CEG A2G:|

Figure 3.28: Tune generated by folktune-VAE 32/256 with top-k sampling, k=10, tem-
perature 1.

M:2/4

K:Cdor

|:Gc cB/2c/2|dc B2|c/2c/2cc2|dc cd|ed cB|G2 c2|dc Bd|c2c2:|

|:gc' bg|fd ec|BB/2c/2 df|ec cB|G2 c>d|eg fd|c>d cB|G2:|

50

Figure 3.29: Tune generated by folktune-VAE 32/256 with top-p sampling, p=0.9, tem-
perature 1.

51

Chapter 4

Conclusion

The goal of this work was to create a generative model for Irish traditional music which
could also provide a meaningful representation of data for musical analysis. As such, we
chose to use Variational Autoencoders.
Using a text-based model for natural language as a starting point, we trained two types
of models:

• folktune-VAE: trained on a dataset of Irish folk melodies, with an analytic and
generative purpose;

• folkbar-VAE: trained on bars extrapolated from the melodies dataset, in order to
analyze tunes as a collection of bars.

For each type, we trained five variations of progressively increasing size.
We then tried to explore their internal representation from various musically significant
points of view:

• we inspected the latent space of tunes and bars in relation to key, time signature,
and estimated harmonic function of bars;

• we searched for links between tunes in a particular style (i.e. “reels”) and their
positioning in latent space relative to other tunes;

• we computed distances between embedded bars in a tune to gain insight into the
model’s understanding of the similarity between bars.

Finally, we showed and evaluated generative examples.
While we can say that we met our generative goal with the largest folktune-VAE model,
we could not find significant links between the models’ internal representations and our
understanding of music theory.

52

We found very weak correlations between the latent representations of tunes with the
same key or time signature, even weaker when analyzing individual bars. We could see
that specific-style tunes had a tendency to group in certain regions of the latent space,
but without being clearly separated from other tunes. The analysis of the Euclidean
distance between embeddings of bars belonging to a tune showed that our model learned
very broad latent distributions that overlap too much in order to highlight the musical
properties of the data.
The larger the evaluated model, the less we could find musically significant internal
representations, even though generally lower validation loss values for bigger models
would suggest the opposite. We found the KL-Divergence to be partly responsible for
this behavior.
We can conclude that the internal representation of the analyzed models is not musically
significant and cannot be used to perform any kind of musical analysis or genre recogni-
tion task, even when the same model yields good generative results. This suggests that
learned latent codes are not of vital importance for the decoder, which can minimize
the ELBO loss more easily by focusing on the reconstruction term rather than on the
KL-divergence; in fact, the models that could give us some kind of musical information
on data are also the ones that perform worse in the generation task. Nevertheless, this
very issue allows the model to generate coherent and interesting pieces when of a big
enough size. The importance of one or the other aspect is ultimately dependent on the
user of such models and their goals.

4.1 Future work

There are endless possibilities to try and improve the musical meaningfulness of our
models. We cite the ones we considered when realizing this work:

• one could use it as a β-VAE and cap the weight of the KL-divergence to values less
than 1 or use cyclical annealing;

• one could train a conditioned VAE by concatenating information to be explicitly
encoded in latent space to each latent code;

• one could concatenate the latent code to each hidden layer of the decoder GRU for
each time step in order for it to be more influential on the decoded sequence.

Our implementation supports both conditioning and realization as β-VAE. We have
briefly experimented with such approaches, but we considered them to be beyond the
scope of this work.

53

4.2 Acknowledgments

We thank the supervisor Maurizio Gabbrielli, who allowed and supported the writing of
this thesis; the co-rapporteur Luca Casini, who provided great technical and theoretical
aid; Bob L.T. Sturm, the supervisor during the traineeship at the Royal Institute of Tech-
nology of Stockholm that inspired this work, together with Nicolas Jonason, Laura Cros
Vila, Joris Grouwels and everyone at MUSAiC, who greatly supported and contributed
to the core ideas behind this work.

54

Appendix

Other generative examples

M:6/8

K:Cmaj

|:G|c2c cBc|d2d def|edc cGc|c2d e2f|g2g gfe|d2c Bcd|e2c f2d|ecc c2:|

|:d|ecc gcc|agf gec|d2c def|ecc c2g|agf gec|def edc|gec cde|dcB c2:|

|:f|ecc ecc|gcc ecc|gcc ecc|dcd ecc|Gcc ecc|gcc ecc|gcc ecc|dcc c2:|

Figure 4.1: Tune generated by folktune-VAE 32/256 with greedy sampling, tempreature
1.

55

M:6/8

K:Cmaj

|:G|c2G E2G|cGE C2G|cGc e2d|cBA G2E|FEF G2F|EGc edc|BGG G2G|AGF E2:|

|:G|cBc G2E|FGA G2E|FEF G2F|EDC D2G|cGc edc|BGG G2d|ecc d2B|c3c2:|

|:f|ecc G2c|ece g2f|ecc dcB|cBc G2F|EFG cGc|ecc G2c|ecc f2d|ecc c2:|

Figure 4.2: Tune generated by folktune-VAE 32/256 with greedy sampling, tempreature
1.

M:9/8

K:Cmin

|:E2D ECB, CDE|E2F GEC B,CD|E2C CDE CDE|EDE FDB,C3:|

|:G3 GBd edc|A/2B/2cA BAB def|g2e dcB cBA|G2F DB,C DED:|

|:G2G cGc edc|g2e fed ede|f/2g/2ff edc BAB|GFE BGBc2G:|

Figure 4.3: Tune generated by folktune-VAE 32/256 with top-p sampling, p=0.8, tem-
perature 1.25.

56

M:4/4

K:Cmaj

|:c2ec GFED|C2EC G,CEG|cege cege|defe defd|

cGec GFED|CEGE F2EF|G2Bd cdeg|1fdBG c2eg:||2fdcB c2cd

|:ecc2 ecgc|ecc2 acge|f2fg fdde|1fagf eccA|efec f2gf:||2gfed eccB|

Figure 4.4: Tune generated by folktune-VAE 32/256 with top-p sampling, p=0.8, tem-
perature 1.25.

M:4/4

K:Cmaj

|E3F GAGF|ECDE FGAB|c2Bc AFDE|FGAF EDD2|

CDEF GcBG|FDBD c2Bc|AFDF EFGE|FDEC D2CD:|

|:cBcd edcB|AcGE D3c|BdcB AGFA|GEFD ECCE|

GccB c3d|edce dBAB|cBcG AGFD|1DCB,D C2GF:||2DCDB,C4|

Figure 4.5: Tune generated by folktune-VAE 32/256 with top-p sampling, p=0.8, tem-
perature 1.25.

57

M:12/8

K:Cmin

ef|:e2c d3 d3ed|c3d2e dc2cBG|1edec2Gc3e2g:||2e2d cBG Bc2d2ed2e:|

|:f2de2fg3gab|c'bag3a2f agf|d2c deg fedc3:|

Figure 4.6: Tune generated by folktune-VAE 32/256 with top-k sampling, k=5, temper-
ature 2.

M:6/8

K:Cmaj

|:G|ECC GCC|AGE CDE|GAc GEC|DED D2G|

ECC GCC|ECC G2c|AGE CDE|GAG G2:|

|:E/2G/2|AGE cGE|GAG GED|EGG GEC|DDD DE/2F/2G|

AGE GEC|EGc c2A|GEG AGE|GAB c2:|

Figure 4.7: Tune generated by folktune-VAE 32/256 with top-p sampling, p=0.5, tem-
perature 1.5.

58

M:6/8

K:Cmaj

|:G,|C>DC E>FG|A>GA G2C|D>ED DE/2F/2G|A>GAB>AG|

E>FG C>DC|D>ED D2E|F>EF G>AG|F>ED C2:|

|:F|E>FG c2G|A>Gc c2G|A>GE C2C|D>EF G2F|

E>FG A>GE|FDB, C2G,|C>DE E>FG|c>GA GEC|F>GA G2E|C>DEC2:|

Figure 4.8: Tune generated by folktune-VAE 32/256 with top-p sampling, p=0.5, tem-
perature 1.5.

59

Tune projection as latent paths

folkbar-VAE 2/16

(a) (b) (c)

Figure 4.9: Latent path of bars belonging to tune test-69 projected in latent space by
key (a) and time (b) signature and harmonic function (c), folkbar-VAE 2/16.

folkbar-VAE 4/32

(a) (b) (c)

Figure 4.10: Latent path of bars belonging to tune test-69 projected in latent space by
key (a) and time (b) signature and harmonic function (c), folkbar-VAE 4/32.

60

folkbar-VAE 8/64

(a) (b) (c)

Figure 4.11: Latent path of bars belonging to tune test-69 projected in latent space by
key (a) and time (b) signature and harmonic function (c), folkbar-VAE 8/64.

folkbar-VAE 16/128

(a) (b) (c)

Figure 4.12: Latent path of bars belonging to tune test-69 projected in latent space by
key (a) and time (b) signature and harmonic function (c), folkbar-VAE 16/128.

61

folkbar-VAE 32/256

(a) (b) (c)

Figure 4.13: Latent path of bars belonging to tune test-69 projected in latent space by
key (a) and time (b) signature and harmonic function (c), folkbar-VAE 32/256.

62

Bibliography

[1] Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Józefowicz,
and Samy Bengio. Generating Sentences from a Continuous Space. CoRR,
abs/1511.06349, 2015. arXiv: 1511.06349.

[2] L. Casini and B. L. T. Sturm. Tradformer: A Transformer Model of Traditional
Music. In Proc. Int. Joint Conf. Artificial Intell., 2022.

[3] KyungHyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio.
On the Properties of Neural Machine Translation: Encoder-Decoder Approaches.
CoRR, abs/1409.1259, 2014. arXiv: 1409.1259.

[4] J. D. Fernandez and F. Vico. AI Methods in Algorithmic Composition: A Compre-
hensive Survey. J. Artificial Intell. Res., 48(1):513–582, October 2013.

[5] E. Hallstrom, S. Mossmyr, B. L. Sturm, V. H. Vegeborn, and J. Wedin. From Jigs
and Reels to Schottisar och Polskor: Generating Scandinavian-like Folk Music with
Deep Recurrent Networks. In Proc. Sound and Music Computing Conf., 2019.

[6] Lejaren Hiller, Leonard M. Isaacson, and Lejaren Hiller. Experimental music: com-
position with an electronic computer. Greenwood Press, Westport, Conn, 1979.

[7] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-term Memory. Neural com-
putation, 9:1735–80, December 1997.

[8] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Cur-
tis Hawthorne, Andrew M Dai, Matthew D Hoffman, and Douglas Eck. Mu-
sic Transformer: Generating Music with Long-Term Structure. arXiv preprint
arXiv:1809.04281, 2018.

[9] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes, 2013.

[10] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold ap-
proximation and projection for dimension reduction, 2018.

63

[11] Adam Roberts, Jesse H. Engel, Colin Raffel, Curtis Hawthorne, and Douglas Eck.
A Hierarchical Latent Vector Model for Learning Long-Term Structure in Music.
CoRR, abs/1803.05428, 2018. arXiv: 1803.05428.

[12] B. L. Sturm, J. F. Santos, O. Ben-Tal, and I. Korshunova. Music Transcription Mod-
elling and Composition Using Deep Learning. In Proc. Conf. Computer Simulation
of Musical Creativity, Huddersfield, UK, 2016.

64

	Sommario
	Abstract
	Introduction
	Outline
	Background
	RNNs and GRUs
	Autoencoders
	Variational Autoencoders (VAEs)
	ELBO loss function
	-VAEs
	Annealing

	Uniform Manifold Approximation and Projection for Dimension Reduction

	Models and data
	Main dataset
	Models
	folktune-VAE
	folkbar-VAE

	Results
	Tune projection
	folktune-VAE 2/16
	folktune-VAE 4/32
	folktune-VAE 8/64
	folktune-VAE 16/128
	folktune-VAE 32/256
	Conclusions

	Distance-based tune type recognition
	folktune-VAE 2/16
	folktune-VAE 4/32
	folktune-VAE 8/64
	folktune-VAE 16/128
	folktune-VAE 32/256
	Conclusions

	Bar projection
	folkbar-VAE 2/16
	folkbar-VAE 4/32
	folkbar-VAE 8/64
	folkbar-VAE 16/128
	folkbar-VAE 32/256
	Conclusions

	Similarity of bars within tunes
	folkbar-VAE 2/16
	folkbar-VAE 4/32
	folkbar-VAE 8/64
	folkbar-VAE 16/128
	folkbar-VAE 32/256
	Conclusions

	Generation
	folktune-VAE 2/16
	folktune-VAE 32/256

	Conclusion
	Future work
	Acknowledgments

	Introduction
	Bibliography

