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Abstract

Nella letteratura economica e di teoria dei giochi vi è un dibattito aperto
sulla possibilità di emergenza di comportamenti anticompetitivi da parte
di algoritmi di determinazione automatica dei prezzi di mercato. L’obiettivo
di questa tesi è sviluppare un modello di reinforcement learning di tipo
actor-critic con entropy regularization per impostare i prezzi in un gioco
dinamico di competizione oligopolistica con prezzi continui. Il mod-
ello che propongo esibisce in modo coerente comportamenti cooperativi
supportati da meccanismi di punizione che scoraggiano la deviazione
dall’equilibrio raggiunto a convergenza. Il comportamento di questo
modello durante l’apprendimento e a convergenza avvenuta aiuta inoltre
a interpretare le azioni compiute da Q-learning tabellare e altri algoritmi
di prezzo in condizioni simili. I risultati sono robusti alla variazione del
numero di agenti in competizione e al tipo di deviazione dall’equilibrio
ottenuto a convergenza, punendo anche deviazioni a prezzi più alti.
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Abstract

In the economics, game theory, and competition policy literature, there
is an open debate on whether autonomous pricing algorithms are able
to exhibit cooperative behavior in reasonable timescales. I develop an
entropy-regularized actor-critic deep reinforcement learning model able
to price goods in an oligopolistic competition game with continuous
prices. The model I propose reliably shows cooperative behavior that
is supported by reward-punishment schemes that discourage deviations
from the point of convergence. The behavior of this model during learn-
ing and at convergence also helps interpret the behavior of tabular Q-
learning and other pricing algorithms under similar conditions. Results
are robust to variations in the number of agents competing and the type
of deviation from the convergence outcome, even punishing deviations
to higher prices, even if introducing more firms in the market leads to
slower learning.
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Chapter 1

Introduction

Reinforcement learning is a research field in machine learning whose developments
led to advancements in the control of complex systems such as robots, appliances, ve-
hicles, and video game AI. One application of reinforcement learning that is heavily
debated in both the computer science literature and other fields such as economics is
how reinforcement learning algorithms behave in multi-agent environments, be they
cooperative or competitive. Specifically, a recent research question in economics
asks whether firms employing models able to automatically price goods and services
may pose a threat to consumers by learning anticompetitive, cooperative behavior.

Most workhorse models of competition in economics resemble traditional social
dilemmas such as the prisoner’s dilemma. Firms have an incentive to keep prices
high to increase profits, a practice known as collusion. However, demand for lower-
priced goods is higher so firms also have the option of undercutting one another.
This is what drives competition and what antitrust laws seek to encourage, as lower
prices are beneficial to consumers in general. However, antitrust laws generally do
not punish high prices per se, rather targeting collusion that results from an ex-
plicit agreement between firms’ executives. Results in algorithmic game theory and
economics prove that, even without communication, autonomous agents are able
to reach tacit, robust, and sustained collusive behaviors in many social dilemmas.
However, current results apply only to relatively simple social dilemmas that do not
closely resemble competitive environments or require a very long time for collusion
to emerge, enough that it is possible to argue that it would never surface in real
situations once the model is taken out of the lab: the time it takes to observe the
effect of a price change on demand is much longer than what it takes to perform
computations.

The main contribution of this work is to develop a model that achieves collusive
outcomes in a standard model of a competitive market in which firms can choose any
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2 CHAPTER 1. INTRODUCTION

price from a continuous bounded interval, and that reaches convergence very quickly
compared to previous literature, with still notable room for further improvement.

The rest of this work is organized as follows. Chapter 2 aims at explaining the
concepts required to understand the environment at hand and the model I develop.
Chapter 3 outlines relevant previous work in the field of reinforcement learning, some
of its applications to game theory and multi-agent systems, and the state of current
research in the economics literature concerning algorithmic collusion. Chapter 4
describes the model I propose and the economic environment that defines the Markov
decision process that agents are learning to solve. Chapter 5 details how agents
behave and how their behavior changes during learning. It also dissects the strategies
they employ to maintain cooperative behavior. Finally, chapter 6 sums up my
contribution and provides directions for future work.



Chapter 2

Background

Most of this chapter is based on well-known textbooks in game theory and rein-
forcement learning, such as Tadelis (2013), Bertsekas (2019) and Sutton and Barto
(2018). For ease of exposition, I do not cite these textbooks every time I reference
them.

I use capital letters for random variables, bold capital letters for matrices, lower case
letters for the values of random variables and for scalar functions, and calligraphic
letters for sets. I write quantities that are required to be real-valued vectors in bold
and in lower case, even if they are random variables. The only exceptions to this
notation are the strategy sets S and the history sets H in a stage game. I denote
them with a non-calligraphic capital letter to avoid confusion with the notation used
later for the state set in a Markov decision process and for the Shannon entropy of
a distribution, as well as to remain consistent with the notation in Tadelis (2013).

2.1 Normal-form games

A normal-form game is a formalization of one-shot decision-making that aims at
framing a problem of multiple rational agents seeking to obtain the outcome that
they prefer the most from a set of possible outcomes. In a normal-form game, agents
choose strategies that are evaluated according to payoffs. Payoffs are numerical
values the sum of which the agents want to maximize.

A normal-form game is defined by a set of agents, a set of payoff functions Πi (one
for each agent), and a set of pure strategies Si (one for each agent). A pure strategy
is a deterministic plan of action. Pure strategies may be numerical values, e.g. the
quantity of a certain good to sell, or elements of some finite set of discrete choices,
e.g. the card to play in a card game.

Definition 2.1.1. The strategy set Si of a player contains all possible strategies of

3



4 CHAPTER 2. BACKGROUND

that player. The strategy set S of a normal-form game is the Cartesian product of
the pure strategy sets of all agents.

Definition 2.1.2. A payoff function Πi : S → R maps a combination of the strate-
gies chosen by agents to a payoff value.

Definition 2.1.3. The strategy si ∈ Si is agent i’s best response to its opponents’
strategies s−i ∈ S−i if Πi(si, s−i) ≥ Πi(s

′
i, s−i) ∀ s′i ∈ Si.

A special case of normal-form games that have an intuitive graphical representation
are bimatrix games (Littman and Stone, 2001). A bimatrix game is a normal form
game with two agents defined by two matrices M1,M2 ∈ Rm×n. The two agents
are denoted “row” and “column” agents since their actions correspond to a row
index i and a column index j. The row agent receives payoff M1,ij and the column
agent receives payoff M2,ij. Therefore, the two matrices define two strategy sets
Si = {1, ...,m}, S−i = {1, ..., n} for the row and column agent respectively, and two
payoff functions that map indices (strategies) to payoffs (elements of the matrices).

Definition 2.1.4. A game is of complete information if all agents have knowledge
of all players’ payoff functions Πi and strategy sets Si.

Note that, for a bimatrix game, complete information amounts to each agent know-
ing its own payoff matrix as well as that of the other agent.

For the purpose of analyzing agents’ behavior in games and formally defining notions
of cooperation, betrayal, competition, and so on, a fundamental concept is that of
the Nash equilibrium.

Definition 2.1.5. The pure-strategy profile s∗ ∈ S is a Nash equilibrium of a
normal-form game if s∗i is a best response to s∗−i for all i ∈ {1..n} where n is
the number of players, i.e.

Π(s∗i , s
∗
−i) ≥ Π(s′i, s

∗
−i) ∀ s′ ∈ Si, i ∈ {1..n} (2.1)

2.2 Repeated stage games

Normal-form games can only effectively describe a limited set of real-world events,
namely those where the outcomes have consequences only in the short run and do
not influence future events. A more general model of decision-making is a sequence
of normal-form games, known as a multi-stage game.

Definition 2.2.1. A multi-stage game is a finite or infinite sequence of independent,
well-defined normal-form games.

These normal-form games are played sequentially by the same players; the total
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payoffs from the multi-stage games are the sum of the payoffs from all past games.
After each stage is completed, both agents observe the outcomes. Outcomes may or
may not be common knowledge.

Multi-stage games can potentially be played an infinite number of times. If we
assume that agents are maximizing their total payoffs, then the sum of payoffs may
eventually be infinite, so the maximization problem would not be well-defined. For
this reason, we assume agents are maximizing the sum of discounted payoffs instead,
with a discount factor γ ∈ [0, 1) that places a higher weight on payoffs received in
the current timestep than in future steps. If Πi,t is agent i’s payoff from the outcome
of the stage game played in timestep t, then the total discounted payoff is

∞∑
t=0

γtΠi,t (2.2)

If γ ∈ [0, 1) and Πi,t ∈ R is bounded above, this sum is finite.

Repeated stage games are a special case of multi-stage games.

Definition 2.2.2. A repeated stage game is a multi-stage game where the same
normal-form game is being played at every stage.

In repeated stage games, agents may condition strategies on their own past actions
and that of other agents. Therefore, the definition of a strategy in the context of
repeated stage games differs from the one for a normal-form game, as strategies may
be conditioned on histories.

Definition 2.2.3. A history ht is an ordered set of all the actions played by all
agents up to timestep t.

The set Ht contains all possible histories ht ∈ Ht of length t. The set H contains
all possible histories of any length.

Definition 2.2.4. A pure strategy for agent i in a repeated stage game is a mapping
si : H → S that maps histories into strategies of the repeated normal-form game.

Definition 2.2.5. A behavioral strategy for agent i is a probability distribution
σi : H → ∆S that maps histories into stochastic choices of actions of the repeated
normal-form game.

2.3 Markov decision processes

A Markov decision process is a formalization of sequential decision-making that aims
at framing a problem of learning from interaction. In a Markov decision process,
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an agent interacts with an environment and periodically receives some rewards,
numerical values analogue to payoffs in repeated stage games.

Definition 2.3.1. An environment is defined by:

• a set of states S

• a set of actions A

• a probability distribution over transition to the next state given the current
state and current action Pr(St+1 = s′|St = s, At = a) with s, s′ ∈ S, a ∈ A

• a probability distribution over numerical rewards given the current state and
current action Pr(Rt+1 = r|St = s, At = a) with s ∈ S, a ∈ A, r ∈ R ⊆ R

Markov decision processes can be called as such if they respect the Markov assump-
tion.

Definition 2.3.2. Markov assumption: state transitions only depend on the cur-
rent state and the actions taken by the agents, i.e. Pr(St+1 = s|St, St−1, ..., S0) =

Pr(St+1 = s|St)

As a consequence of the Markov assumption, it is possible to define a function that
expresses transition probabilities given the current state and actions. This function
can be either a probability density function or a probability mass function, depending
on whether the state and action spaces are discrete or continuous.

Definition 2.3.3. A finite Markov decision process is a Markov decision process
where S,A,R are finite sets and p(s′, r|s, a) = Pr(St+1 = s′ ∧ Rt+1 = r|St =

s, At = a) is a well-defined discrete joint probability distribution of rewards and
state transition.

Most textbooks on reinforcement learning, such as Sutton and Barto (2018), focus
on finite Markov decision processes because of their better tractability and ease of
intuition. However, I choose to expand on the textbook notions and concern this
section with the more general case in which the state and action spaces are con-
tinuous, referencing an array of different sources that treat these cases, attempting
to unify notation. All proofs and computations carry over from the continuous to
the discrete case by replacing integrals with summations and probability density
functions with probability mass functions; in cases where the parallel is not clear, I
refer the reader to the relevant sections of Sutton and Barto (2018), Rao and Jelvis
(2022) and van Hasselt (2012).

Definition 2.3.4. A policy π : S → R is a mapping from states to probabilities
of selecting each possible action. If the agent is following policy π at time t, then
π(a|s) is a probability density function, conditional on the current state St = s,
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whose support is the action space A.

Note that π is an ordinary function; the conditional probability symbol serves to
note that it defines a probability distribution over A for each state s ∈ S.

There is substantial overlap between the environment of a Markov decision process
and one of a repeated stage game.

For example, let there be a decision process in which:

• the action set A coincides with the set of strategies S of a repeated stage game

• the state set S coincides with the set of histories Hn of length n the same
repeated stage game

• the rewards are given by the payoff function Π : S → R ⊂ R of a given agent
in the same repeated stage game

• the transition probability distribution p is degenerate, deterministically map-
ping the current history and agents’ joint actions to a new history

• players of the repeated stage game condition their strategies only on current
history ht (of length n)

Then, from the point of view of a single player, the other players’ policies define
a probability distribution that is a function of the current state. A policy in this
process represents the same concept as a behavioral strategy in the repeated game.
If n is not equal to t at every t, this means that memory is bounded, i.e. agents
do not have perfect recall of all past actions and therefore cannot condition their
behavioral strategies on all of them. The process becomes a k-th order Markov
decision process, that is the next state depends not only on the current state and
actions but on k previous states that allow for reconstructing the entire history of
actions and, therefore, the policy of the agents playing the game.

2.4 Reinforcement learning

Reinforcement learning algorithms are a class of algorithms concerned with learning
a policy that maximizes total reward in a Markov decision process. As in repeated
stage games, the time horizon may be infinite, so what is actually maximized in this
case is the total discounted reward.

A fundamental step in defining effective reinforcement learning algorithms is de-
signing a process to estimate a value function, that is a function that estimates how
“desirable” it is for an agent to be in a specific state, in terms of the potential reward
it can expect from being in that state.
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Definition 2.4.1. The value function vπ : S → R is the expected total reward that
the agent receives starting in state s and following policy π from that point on.

Formally,

vπ(s) = Eπ

[
∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s

]
∀ s ∈ S (2.3)

where Eπ denotes the expectation of a random variable given that the agent follows
policy π. Like in Sutton and Barto (2018), I denote the reward received by taking
action At in state St as Rt+1, to emphasize the fact that the reward and the next
state St+1 are jointly determined.

Note that the value function may easily be written recursively. Assuming a deter-
ministic reward function R : S × A → R and defining the transition function T as
in van Hasselt (2012) so that

∫
S′⊂S

T (s′|s, a)ds′ = Pr(St+1 ∈ S ′|St = s, At = a) (2.4)

(note that T is a probability density function), we can write:

vπ(s) = Eπ

[
∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s

]

= Eπ

[
Rt+1 +

∞∑
k=1

γkRt+k+1

∣∣∣∣∣St = s

]

=

∫
A
π(a|s)

∫
S
T (s′|s, a)

[
R(s, a) + γEπ

[
∞∑
k=1

γkRt+k+1|St+1 = s′

]]
ds′da

=

∫
A
π(a|s)

∫
S
T (s′|s, a)[R(s, a) + γvπ(s

′)]ds′da (2.5)

With eq. (2.5) being called the Bellman equation for the value function. Solving
it amounts to finding v∗, its unique solution. Existence and uniqueness of v∗ are
proven for finite Markov decision processes in Szepesvári (2010) and for continuous-
space/action and discrete-time Markov decision processes in Bertsekas (2019).

The Bellman equation is often written more compactly with the help of the Bellman
operator.
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Definition 2.4.2. The Bellman operator T is defined so that

T vπ(s) =

∫
A
π(a|s)

∫
S
T (s′|s, a)[R(s, a) + γvπ(s

′)]ds′da (2.6)

The Bellman equation can then be written as

vπ(s) = T vπ(s) (2.7)

Having defined the value function, it is immediate to define its precursor, the action-
value function, that is the desirability of taking a certain action in a given state.

Definition 2.4.3. The action-value function qπ : S × A → R is the expected total
reward that the agent receives starting in state s, taking action a, and following
policy π from that point on.

Formally,

qπ(s, a) = Eπ

[
∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s, At = a

]
∀ (s, a) ∈ S ×A (2.8)

Note that the value function can be recovered from the action-value function by
taking its expected value over actions weighted by policy π, so the Bellman equation
may be defined for the value function by simple algebra on the equivalence

vπ(s) = Eπ[q(s, At)] =

∫
A
π(a|s)q(s, a)da (2.9)

The objective of reinforcement learning algorithms is to learn the optimal policy
π∗(s, a). The optimal policy is the policy that maximizes the value and action-value
function for all possible states. The optimal policy need not be unique, but all
optimal policies share the same optimal value function v∗(s) and optimal action-
value function q∗(s, a).

It is important to notice that the value and action-value functions take a single state
(and action) as their argument, but they consider all future rewards in their value.
This means that a policy that simply selects the optimal action in any state, i.e.
π∗(a|s) = max

a∈A
q∗(s, a) is the optimal policy.

If everything about the environment is known, the optimal action-value function may
be found through dynamic programming (Bertsekas, 2012). In most cases, however,
dynamic programming methods may be inapplicable for a variety of reasons, like the
curse of dimensionality : the computational complexity of dynamic programming is
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exponential in the dimension of the state space, if the state space is discrete, and
these methods become completely inapplicable in a problem with continuous state
spaces. Another very common problem is that of unknown environment dynamics :
in the majority of cases it is not trivial to have a perfect model of the system, and the
only available information is experience, most commonly in the form of a sequence
of tuples (St, At, Rt+1, St+1) that must be used to estimate environment dynamics.

In such cases, the objective becomes to approximate the optimal policy, a task that
can be carried out either directly, via policy gradient methods, or by estimating the
optimal value or action-value functions. This latter approach, while computation-
ally easier to tackle, is conceptually more convoluted as it formulates the problem
of reinforcement learning as a two-stage problem. There is a prediction aspect, esti-
mating the optimal value or action-value function, and a control aspect, the usage
of the estimated value or action-value function to decide upon a policy.

2.5 Temporal-difference methods

Generalized policy iteration refers to the interaction of the approximation processes
for the policy and the value function. A generalized policy iteration process pro-
gressively drives the current policy estimation towards a policy that is greedy with
respect to the current value function estimation, while it also drives the current value
function estimation towards consistency with the current estimated policy. It can
be proven (Bertsekas, 1987) that iterating over value functions in such a way that
vk(s) ≥ vk−1(s) ∀ s ∈ S, k ∈ N converges to the optimal value function. Therefore,
driving the policy estimation towards being greedy with respect to a value function
estimation that is being constantly improved eventually results in both the policy
and the value function converging towards optimality.

A way to implement generalized policy iteration is to estimate the action-value
function and to always play the greedy policy with respect to said function, that is
πk(s) = argmax

a∈A
qk(s, a). However, following a strictly greedy policy with respect to

a bad action-value function estimation may prevent the latter from improving and
thus impede convergence. To help the estimation effectively traverse the space of
possible action-value function, it is necessary to maintain exploration of the action
spaces, which means sometimes not choosing the greedy action. A simple method to
maintain exploration is, at each timestep, to only take the greedy action with some
probability 1−ε, and otherwise, with probability ε, sample an action uniformly from
the action space. This is known as an ε-greedy policy. To ensure that the policy
eventually converges to the greedy policy, it is possible to decay the exploration
probability ε in such a way that εt → 0 as t → ∞.
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Definition 2.5.1. Temporal-difference methods are a class of reinforcement learn-
ing algorithms that learn to estimate the optimal action-value function and use some
form of generalized policy iteration to control the agent in its interaction with the
environment.

In its simplest form, a general temporal-difference estimation of the value function
v̂(St) is updated as

v̂k+1(St) = v̂k(St) + α[Rt+1 + γv̂k(St+1)− v̂k(St)] (2.10)

where α ∈ (0, 1) is a learning rate and γ is the discount factor. If the state space is
finite, v̂(s) can be a vector whose cell corresponding to the current state is updated
at each timestep with this rule. This algorithm is known as TD(0) and can be proven
(Sutton, 1988) to converge to the same answer, independently of the parameter α,
if the latter parameter is sufficiently small. TD(0) does not learn a policy nor an
action-value function but is instrumental in understanding the two most commonly
used and cited temporal-difference methods, that is Sarsa and Q-learning.

TD(0) considers transitions from state to state and learns the values of states; the
case of transitions from state-action pair to state-action pair allows for learning the
values of such pairs and is formally identical. The theorems assuring the convergence
of state values under TD(0) also apply to the corresponding algorithm for action
values:

q̂k+1(St, At) = q̂k(St, At) + α[Rt+1 + γq̂k(St+1, At+1)− q̂k(St, At)] (2.11)

which is commonly seen written as a convex combination of current and past expe-
rience, i.e.

q̂k+1(St, At) = (1− α)q̂k(St, At) + α[Rt+1 + γq̂k(St+1, At+1)] (2.12)

This algorithm, with q̂(s, a) being a matrix, was proposed in Rummery and Niran-
jan (1994) as Modified Connectionist Q-learning and is known as Sarsa, because it
requires knowledge of the tuple (St, At, Rt+1, St+1, At+1).

Sarsa is actually an evolution of Q-learning, an algorithm proposed earlier by Watkins
(1989) that has a slightly different update rule:

q̂k+1(St, At) = (1− α)q̂k(St, At) + α[Rt+1 + γmax
a∈A

q̂k(St+1, a)] (2.13)

Note that, while Sarsa’s updates depend on the policy that is being followed, those
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of Q-learning only depend on the action-value estimation, i.e. there is no need to
know At+1. This allows for approximating the optimal value function independent of
the policy being followed. For this reason, Sarsa is known as an on-policy algorithm,
while Q-learning is an off-policy algorithm because the policy it uses for its updates
is different from the policy that the agent is currently following.

Both algorithms converge to the optimal action-value function under an ε-greedy
policy with decaying exploration, but Sarsa tends to enjoy a better online perfor-
mance in general, at the cost of slower convergence.

Temporal-difference methods are said to be bootstrapping.

Definition 2.5.2. A bootstrapping reinforcement learning algorithm uses update
rules that include current estimates of value or action-value functions instead of
relying exclusively on actual rewards.

This is important because bootstrapping off-policy algorithms, when combined with
function approximation approaches, often exhibit divergent and unstable behavior.
The combination of bootstrapping, off-policy algorithms, and function approxima-
tion is known as the deadly triad. Methods such as using a separate, target neural
network to perform bootstrapping (van Hasselt et al., 2018), estimating two different
action-value function to reduce maximization bias (van Hasselt, 2010) and multi-
step bootstrapping (Watkins, 1989) are effective countermeasures for the divergence
induced by bootstrapping.

2.6 Function approximation

Temporal-difference methods have historically been defined as approximating the
action-value function by holding current estimates in a matrix and updating one
cell at a time through their update rules. However, this approach quickly becomes
unfeasible as state and action spaces grow and are inapplicable to continuous state
and/or action spaces. Moreover, it results in algorithms that by design learn very
slowly, since they update only one cell at a time and it takes a large amount of
experience to converge to the optimal policy. In general, if reinforcement learning
is to be used for real-world control tasks such as driving vehicles or controlling
complex systems, algorithms need to be able to learn policies that can generalize to
previously-unseen states and do not require a large amount of experience to converge,
since experience is in general costly to obtain. Tabular temporal-difference methods,
while simple to implement, are not able to perform either task well.

Temporal-difference methods may be adapted to not use a table, but a learned
model instead, such as a linear estimation, a decision tree, or an artificial neural
network. Algorithms that estimate a functional form of the value function, action-
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value function, or policy are known as function approximation approaches. Besides
enhancing the formulation of temporal-difference methods, function approximation
allows for introducing a new paradigm of RL, that is policy gradient methods that
optimize a functional form of the policy directly.

Before introducing policy gradient methods, it is worth noting that the ordering
of policies is partial (Naik et al., 2019) under function approximation for infinite-
horizon tasks. That is, if there is no natural “ending” to a task, the definition given
above for the optimal policy (maximizing the sum of discounted returns) does not
allow for comparison between any two pairs of policies: some policies may achieve
higher rewards in some state and lower in others. In principle, this is not an issue
with tabular methods because they can represent potentially any policy and it can
be proven that there exists one that maximizes value at every state simultaneously.

However, this is not feasible under function approximation, and even more so given
a continuous state variable. The space of possible policies is so large that in most
cases the optimal policy is not representable, so the objective becomes to find the
best representable policy.

Naik et al. (2019) show that in the case of methods requiring function approximation,
finding the best representative policy in terms of discounted reward is not a well-
defined optimization problem. They suggest that a metric that can be maximized
with stochastic gradient ascent is average reward. This metric can be defined if the
Markov decision process is ergodic.

Definition 2.6.1. A Markov decision process is ergodic if for any policy π(s|a) there
exists a steady-state distribution of states µπ(s) = lim

t→∞
Pr[St = s|(A0, ..., At−1 ∼ π)]

that is independent of the initial state S0.

Definition 2.6.2. Average reward r(π) represents the average reward by state weighted
by how much time the agent spends in that state upon convergence, i.e.

r(π) = lim
t→∞

E [Rt|(A0, ..., At−1 ∼ π(θ)), S0] (2.14)

=

∫
S
µπ(s)

∫
A
π(a|s)

∫
S
R(s, a)T (s′|s, a)ds′ da ds (2.15)

Under the average-reward maximization problem, value and action-value functions
are redefined in their differential formulation:

vπ(s) = Eπ

[
∞∑
k=0

(Rt+k+1 − r(π))

∣∣∣∣∣St = s

]
(2.16)
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qπ(s, a) = Eπ

[
∞∑
k=0

(Rt+k+1 − r(π))

∣∣∣∣∣St = s, At = a

]
(2.17)

The average reward can be estimated by keeping a running average that is initially
equal to 0 and is then updated as

r̄t+1(π) = (1− λ)r̄t(π) + λ(Rt+1 + v̂(s′)− v̂(s)) (2.18)

or, using the action-value function instead,

r̄t+1(π) = (1− λ)r̄t(π) + λ(Rt+1 + q̂(s′, a′)− q̂(s, a)) (2.19)

where λ ∈ (0, 1) is a learning rate, St+1 = s′, St = s, At = a,At+1 = a′, and a′ = π(s′)

is given by the current policy estimation.

Note that these formulas do not merely represent a running average of rewards but
include the TD error δ = Rt+1 − r̄t + q̂(St+1, At+1)− q̂(St, At). The reason for this
is that it ensures convergence: by updating the estimate as r̄t+1 = r̄t + βδ, once
action-value function estimation converges we get

δ = Rt+1 − r̄t + q̂(St+1, At+1)− q̂(St, At)

= Rt+1 − r̄t + (Rt+2 − r(π∗) +Rt+3 − r(π∗) + ...)− (Rt+1 − r(π∗) +Rt+2 − r(π∗) + ...)

= Rt+1 − r̄t − (Rt+1 − r(π∗))

= r(π∗)− r̄t

Therefore, the estimation converges to the average reward of the optimal policy,
since it is being updated as r̄t+1 = (1− λ)r̄t + λr(π∗).

I refer to the policy maximizing the objective function r(π), as the optimal policy,
even though under function approximation it is technically the optimal representable
policy.

2.7 Policy gradient methods

Policy gradient methods focus on learning a parameterized policy π(a|s;θ), where
θ ∈ Rd′ is a parameter vector, and π(a|s;θ) is a conditional probability density
function on the current state whose support is A. Policy gradient methods involve
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performing stochastic gradient ascent on some performance measure J(θ), so that
every update step has the form

θt+1 = θt + α∇̂J(θt) (2.20)

where α is a learning rate and ∇̂J(θt) is a stochastic estimate that is equal to the
gradient of J in expectation.

Value (or action-value) function estimation, with the value function parameterized
by w ∈ Rd as vπ(s,w), might still take place, but vπ is not required to select
actions and is only used in computing the performance measure J . Algorithms that
estimate a value function are usually called actor-critic methods, where the “actor”
is the policy and the “critic” is the value function.

Policy gradient methods have an important theoretical advantage. Action-value
methods greedily (or ε-greedily) select the “best” action according to a learned
action-value function, so a single update to the action-value function estimation
discontinuously changes the learned policy. On the other hand, the updates to a
parameterized policy make action probability change smoothly, so stronger conver-
gence guarantees are available in the form of the policy gradient theorem. This
theorem gives an explicit expression for the gradient of the parameterized policy
that is easy to compute. It is usually stated for the discounted return formulation
of reinforcement learning but holds for the average reward formulation too (Sutton
et al., 1999).

Theorem 2.7.1. Policy gradient theorem. Let J(θ) be a performance measure
of a parameterized policy π that is defined as the discounted value function of the
initial state, i.e.

J(θ) = vπ(θ)(S0) = Eπ(θ)[
∞∑
t=0

γtRt+1]

or as the average reward rate as in eq. (2.15), i.e.

J(θ) = r(π(θ)) = lim
t→∞

E [Rt|(A0, ..., At−1 ∼ π(θ)), S0]

Then, its gradient ∇J(θ) is equal to

∇J(θ) =

∫
S
µπ(s)

∫
A
qπ(s, a)∇π(a|s;θ)da ds (2.21)

The policy gradient theorem makes it possible to perform gradient ascent on J by
computing the gradient of the policy with respect to its parameter vector, which is
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a relatively easy computation, and estimating an action-value function, a task that
can be carried out, for example, through function approximation.

Note that most policy gradient methods proposed in the literature mention the
discounted return formulation of the policy gradient theorem in their formulation,
but actually update their parameters using estimates that do not approximate the
performance measure gradient (Nota and Thomas, 2020), possibly leading to sub-
optimal results. This issue does not concern my work since I am optimizing in the
average-reward formulation and I do not use a discount factor for the rewards or the
state distribution.



Chapter 3

Related work

The majority of deep reinforcement learning algorithms in the literature make use
of one or more among stochastic policies (if they concern continuous action spaces)
replay memory (if they are off-policy) and target networks.

This section addresses these concepts and specifies the algorithm I am using, soft
actor-critic (Haarnoja et al., 2018b,a). It is currently the state of the art in re-
inforcement learning for continuous control and employs entropy regularization to
maintain exploration and ensure good generalization capabilities.

3.1 Actor-critic methods in continuous action spaces

Algorithms that estimate both a parameterized policy and an action-value function,
using the latter estimate to learn the former, are actually among the earliest algo-
rithms studied in the literature. However, work on off-policy actor-critic learning
is more recent (Degris et al., 2019) and kicked off an entire strand of reinforcement
learning literature (Schulman et al., 2015, 2017; Fujimoto et al., 2018; Haarnoja et
al., 2018b) concerned with solving the control problem in discrete and continuous
action and state spaces.

In general, actor-critic methods are a class of policy gradient methods that learn a
policy π(a|s) that maximizes its own evaluation according to an action-value func-
tion estimation q̂(s, a), that is itself a learned approximation to actual expected
differential (or discounted) reward. That is, actor-critic methods learn to jointly
optimize (under the discounted or average-reward formulation) the objectives

max
θ

Eπ(θ) [q̂(s, a;w)] (3.1)

17
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min
w

Eπ(θ)

[
1

2
(q̂(s, a;w)− q(s, a))2

]
(3.2)

Maximizing the first objective while improving action-value function approxima-
tion amounts to maximizing the performance measure J(θ), defined above in the
discounted or differential cases. Optimization, in the case of neural-network-based
function approximation, is carried out through usual stochastic gradient descent and
backpropagation.

Parameterizing the policy with a real-valued vector is a very important paradigm
shift since it allows for using an actor-critic method in continuous action spaces.
In discrete action spaces, learning a policy means learning a vector of probabilities
whose dimension is the number of discrete actions. In continuous action spaces,
the number of actions is uncountably infinite. While learning to approximate the
probability density function might be feasible in principle, in practice it is much
more reasonable to either learn a deterministic mapping of spaces to actions, the
approach used in deep deterministic policy gradient (Lillicrap et al., 2021), or fix
a probability distribution and learn its parameters. The latter is how soft actor-
critic methods proceed. In particular, actions are given by sampling from a normal
distribution whose mean and variance are state-dependent and parameterized by
the parameter vector θ, i.e.

At ∼ N(µ(s;θ), σ(s;θ)) (3.3)

where µ, σ : S×Rd′ → R are parameterized function approximations. Most modern
actor-critic methods, including soft actor-critic, usually approximate action statistics
and value functions using neural networks.

In principle, actions sampled for a normal distribution are unbounded, as the density
function of a normal distribution is never zero. In practice, the probability for
very low or high values is numerically zero, but it is often desirable (like in our
case) to force actions inside a chosen interval. To do so, Haarnoja et al. (2018b)
propose applying a squashing function to the normally-distributed network output
whose range is a bounded interval, such as the hyperbolic tangent function whose
range is [−1, 1]. The formulation of the probability density function of the resulting
distribution is shown and proved in the appendices of Haarnoja et al. (2018b).

3.2 Reducing estimation variance

In general, convergence proofs for stochastic gradient descent require that the sam-
ples in each batch be independent and identically distributed, so that the estima-
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tor obtained equals the actual function gradient in expectation. However, this is
assumption is violated when optimizing on subsequent experiences such as what
happens in temporal-difference learning, since any two subsequent tuples (s, a, r, s′)
and (s′, a′, r′′, s′′) are correlated with one another and share one element, the middle
state s′.

Replay memory, also known as experience replay, was first introduced by Lin (1992)
to solve this issue. This method stores the agent’s experience at each timestep in a
replay buffer containing tuples (St, At, Rt+1, St+1). A buffer usually has a maximum
size β and older experiences are removed and substituted with newer experiences in
a first-in-first-out fashion once the buffer is full.

At each timestep, having a replay memory allows for performing multiple gradient
ascent steps based on a batch of experiences sampled uniformly at random from the
replay buffer.

Instead of St+1 becoming the new state for the next update as it would in the usual
form of temporal-difference learning, a new unconnected experience is drawn from
the replay memory to supply data for the next update. Off-policy algorithms do not
need to be applied along connected trajectories, and the possibility to use each stored
experience for many updates allows for more efficient learning from experience.

Experience replay reduces the variance of the updates because successive updates
are not correlated with one another as they would be if gradient descent was per-
formed on subsequent experience tuples where the last element of the first tuple is
always the first element of the second tuple. By removing the dependence of suc-
cessive experiences on the current weights, experience replay eliminates one source
of instability.

Moreover, experience replay allows for more efficient parallel computation, for exam-
ple by using graphic processing units (GPUs) as is standard practice in supervised
machine learning.

It is important to note that replay buffers have been conceived with Markov decision
processes in mind. In a multi-agent environment where all agents are learning, taking
an action in a given state many periods ago probably did not give out the same
reward as it does now because the agent is still learning, which makes the parameter
β a proxy for the degree of “smoothing the non-stationarity” of the environment,
at least theoretically, by reducing the variance of the updates while increasing their
bias.

In addition to the content of the experiences themselves, another source of corre-
lated output is bootstrapping itself. The objective function in eq. (3.7) is used to
optimized action-value function estimation but includes the estimation itself. Again,
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this translates into a correlation between inputs and impedes convergence. To solve
this other issue, Mnih et al. (2015) propose computing the TD error using a separate
network parameterized by u, with u0 = w0 at t = 0. u is then updated as an expo-
nential moving average between u and w, i.e. ut+1 = λut + (1− λ)wt+1, where λ is
a learning rate. This detaches the optimization target from the current estimation,
thus allowing for smoother convergence, while only introducing a very slight lag in
action-value function estimation if λ is small enough. Usually, this hyperparameter
is in the order of 0.001, but models are not overly sensitive to it. As an alternative,
Mnih et al. (2015) also explore setting u = w every few periods, observing very
similar results.

Note that, in the average-reward formulation, the TD error has to be computed
with the target network to make average reward estimation consistent (proof that
eq. (2.19) converges to average reward is provided in the previous chapter).

3.3 Entropy regularization

Soft actor-critic methods (Haarnoja et al., 2018b) propose a different formulation
of action-value function and policy estimation. They learn a stochastic policy π(θ)

that maximizes rewards subject to a soft entropy constraint H{π(θ)} = H̄, where
H is defined as the Shannon differential entropy of a continuous distribution

H{f(x)} = −
∫ ∞

−∞
f(x) log xdx = −Ef [log x] (3.4)

Intuitively, this number is 0 is the distribution is deterministic and has a maximum
equal to log(b − a) at the uniform distribution with support [a, b]. To enforce the
entropy constraint, the authors reformulate the action-value function as the soft
action-value function (they use the discounted formulation, but the average-reward
formulation is identical)

qπ,soft(s, a) = Eπ

[(
∞∑
k=0

Rt+k+1 − r(π) + α log π(At+k|St+k)

)∣∣∣∣∣St = s, At = a

]
(3.5)

and reformulate the optimization problem to:

max
θ

Eπ(θ) [q̂(s, a;w) + α log π(a|s;θ)] (3.6)
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min
w

Eπ(θ)

[
1

2
(q̂(s, a;w)− qπ,soft(s, a))

2

]
(3.7)

with α being called the temperature and determining the relative weights of the two
terms of the new objective function. From here on, learning proceeds as usual with
stochastic gradient descent and backpropagation.

Note that here and in table B.1 I define the target entropy as a positive number
since I employ the usual definition of Shannon entropy with a minus sign in front
and redefine eq. (3.6) and eq. (3.7) to be consistent. This is the only difference
between my definition and that of Haarnoja et al. (2018b), but signs are reversed
in the code to match theirs for ease of understanding when compared with other
implementations.

Entropy does not represent a sort of “variety” of the policy and has no meaning in the
case of a deterministic policy, like those learned by DDPG (Lillicrap et al., 2021) or
PPO (Schulman et al., 2017). Rather, it is linked to the exploration-by-distribution-
learning inherent to algorithms that learn to estimate a probability distribution
of actions given state instead of a deterministic function. Confusingly, the term
“distributional RL” in the literature does not refer to such a class of algorithms but
rather to algorithms such as Rainbow (Hessel et al., 2018) that learn to estimate a
distribution of rewards rather than actions, that is the non-determinism lies in q(·)
and not π(·).

3.4 Machine learning and cooperative behavior

Autonomous pricing is increasingly used across industries, powered by the rise in
online shopping (Chen et al., 2016). Most likely, many of the algorithms that firms
actually employ are not based on model-free reinforcement learning, since it is rea-
sonable to assume that firms are able to estimate market characteristics and, there-
fore, desire to inform their pricing strategies with as much information as possible.
Moreover, classical (i.e. not based on machine learning) algorithms from control the-
ory are able to achieve impressive feats in fields such as robotics (Tassa et al., 2012;
Kuindersma et al., 2015) without suffering from the brittleness and non-determinism
inherent to machine learning and especially to (unsupervised) reinforcement learn-
ing.

Nevertheless, the reinforcement learning setting is interesting because it provides an
environment in which there is almost no information and, importantly, no concep-
tion of an adversary, thus it is very easy for firms to justify their use and label them
as non-collusive. However, collusion seems to emerge even in such an information-
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starved environment. Calvano et al. (2020) develop a tabular Q-learning model
applied to repeated competition in a Bertrand model of the market with logit de-
mand and constant marginal costs, showing that collusive behavior with reward-
punishment schemes emerges after around one million timesteps. Their results are
robust to linear and stochastic demand systems, variations of market parameters,
multiple firms, and different formulations of the action set, but the time scale of
convergence is so long (in the order of millions of timesteps) that it is unreasonable
to expect similar strategies to be deployed in real markets. Recently, Furlan (2022)
showed that even if agents do not have perfect recall of past actions they are never-
theless able to coordinate on collusive prices, and the only way to ensure collusion
does not emerge is by making the opponent’s price completely unobservable, which
makes agents unable to punish deviations and leads to Nash equilibrium pricing. His
work supports the view of algorithmic collusion as a behavior that does not require
much information and that is a natural results of optimizing to maximize profit in
a price competition environment. Klein (2021) extends the results of Calvano et
al. (2020) to a model of sequential pricing, showing that in such a setting agents
converge on either stable or cyclical supra-competitive pricing. It is interesting to
note that the cyclical behavior emerges if the set of prices is large, but the cycles
are of the Edgeworth kind from Maskin and Tirole (1988) and not symmetrical.
A hypothesis for the emergence of symmetrical cycles is that they are the results
of algorithms “wanting” to play a price that is in the middle of the cycle, but this
does not explain the emergence of asymmetric and finite-duration Edgeworth-type
cycles. Hettich (2021) shows that applying discrete-action/state function approxi-
mation approaches, specifically DQN (Mnih et al., 2015), to the simultaneous-play
case leads to faster convergence, even though the improvement is still not sufficient
to justify the emergence of collusion in a reasonable time in most real markets, and
DQN still shares the limitations of tabular Q-learning, such as a discrete action set.

There are further studies on cooperative outcomes obtained by reinforcement learn-
ing in games, even from an economic perspective. For example, Siallagan et al.
(2013) shows that agents using aspiration learning, a form of reinforcement learning
that chooses actions by comparing them to a learned measure of “payoff to aspire to”,
leads to collusive outcomes in some Cournot oligopolies. However, in this case, there
is no memory of rivals’ past actions, which means that cooperation is brittle and
only emerges because algorithms are matched and learn to never deviate. A human
player or a smarter algorithm, knowing this, may exploit the cooperating associate.
A similar model applied to the prisoner’s dilemma, Karandikar et al. (1998), showed
cooperative behavior in a setting in which agents could only remember their own
actions, which however still does not allow for detecting deviations.

Concerning model-based learning, Asker et al. (2021) argue that endowing Q-learning
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with information about market structure makes it significantly more sensitive to
structure itself. In their analysis, they propose a different formulation of the tabular
Q-learning update rule that updates an entire row of their Q-matrix at once, by
knowing the demand function and computing exact counterfactual profits, a process
they call “synchronous update”. They show that in this case, myopic agents (γ = 0)
converge to Nash equilibrium prices very rapidly, which is expected since by updat-
ing all cells in a row, prices are necessarily skewed downwards since for any price
above the Nash equilibrium, undercutting is profitable in the immediate. Agents
ignore future consequences if γ = 0, and the update rule in eq. (2.13) reduces to
a moving average that converges to the one-shot payoff. In the case of non-zero
discount factors, their modified Q-learning achieves behavior similar to standard
tabular Q-learning, but with lower profit gains. This behavior remains even if the
all-actions update is merely informed by the fact that demand curves are downward
sloping, and not by an exact knowledge of the profit functions. Again, this behavior
is arguably expected since it makes agents more myopic to the evolution of the rival’s
strategy, reducing the variance in the action-value function estimation (because in
expectation updates effectively have a learned baseline, such as in Williams 1992)
while introducing bias towards the current policy.

Still on the topic of model-based cooperative learning, but from a non-economic
perspective, Crandall et al. (2018) show that an aspiration-based meta-algorithm
that manages an ensemble of models, coming from both classical game theory and
machine learning, is able to reach cooperative outcomes when associated with a
human player or a similar algorithm. However, the games they use as benchmarks
are in general very small, with complete information, discrete actions, and little
to no concept of state, and therefore are quite different from how a competitive
market is modeled in economics. More complex algorithms such as counterfactual
regret minimization have successfully been applied to poker (Moravčík et al., 2017),
a game that has state, complete but imperfect information, stochastic behavior, and
a much more complex structure. In general, however, the model-based literature on
game theory seems to focus on discrete action spaces rather than continuous ones,
where reinforcement learning shows suboptimal results compared to model-based
control laws (Mania et al., 2018), and a vast literature coming from control theory
is available. This is reasonable since many well-known game theory problems and
applications, from the classic prisoner’s dilemma to video games, effectively have
discrete action spaces, but is arguably a bad fit for simulating competitive markets.

On the empirical side, Assad et al. (2020) provide evidence of the effect of Au-
tonomous pricing on market prices for gasoline pumps in Germany, showing that
they consistently lead to higher prices when matched with one another. To this
date, to the best of my knowledge, there are no empirical studies on the behavior of
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deployed pricing algorithms when faced with an exogenous price cut that is not due
to a demand shock, i.e. responses to deviations from a collusive equilibrium. Both
Assad et al. (2020) and Byrne and de Roos (2019) show a timescale of collusion in
the order of a few years, which is interesting since, as shown in the following sections,
allowing for a few daily fluctuations in price makes it possible to get a comparable
timescale of collusion with policy gradient methods. This realistic timescale as well
as other behavior analyzed in the following section, such as convergence with persis-
tent exploration, also match some of the gaps that critics of the idea of the possibility
of algorithmic collusion, such as Schwalbe (2018), have pointed out and that have
not been yet taken care of by tabular Q-learning and may call for a re-evaluation
of the issue of algorithmic collusion, especially since model-free deep reinforcement
learning does not benefit from any of the improvements that sensible model-based
learning would bring.



Chapter 4

Methodologies

Having specified soft actor-critic, in this chapter I specify and argue in favor of
several architectural specifications that simplify the model and allow for more robust
behavior in a multi-agent context. I also describe the economic model underlying the
environment in which agents are learning and the characteristics that make policy
gradient methods a fitting choice.

Concerning technical details, I developed this model in Python 3.9.12 using PyTorch
1.11.0. I ran experiments on Ubuntu 20.04 on Windows Subsystem for Linux 2
running on a system equipped with an Intel Xeon Silver 4210 CPU and two NVIDIA
GeForce RTX 2080 Ti GPUs. This setup was kindly provided by the Department of
Economics at Bologna University. I release the code1 under the GNU Affero General
Public License v3.0.

4.1 Economic environment

I follow the economic environment of Calvano et al. (2020) and call pricing game
a repeated stage game in which firms set market prices for various heterogeneous
goods and observe their profits in discrete timesteps. The action space is defined by
the prices set by the n agents, the state space is defined by the past actions of all
agents, and the reward is given by profits under a model of price competition with
logit demand and constant marginal costs. In economics, a model of the market
with firms competing on prices is known as a Bertrand competition model.

In a given timestep t, prices are defined as a positive real vector pt. Each of the n

firms produces a distinct product i. Demand for product i is given by

1https://github.com/kmfrick/Algorithmic_Pricing_ActorCritic
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qi,t =
e

ai−pi,t
µ∑n

j=1 e
aj−pj,t

µ + e
a0
µ

(4.1)

Parameters ai capture vertical differentiation, that is the difference in demand for
products that comes from some asymmetry in their inherent “quality”. Conversely,
parameter µ quantifies horizontal differentiation, that is differences between prod-
ucts that cannot be measured objectively and come down to individual tastes.

and profits, which correspond to the reward received by the agent, are given by

Ri,t+1 = (pi,t − ci)qi,t (4.2)

where ci is the marginal cost of producing a single unit of a good. Note that the
reward for actions taken in timestep t is accrued in timestep t + 1, following the
notation in Sutton and Barto (2018). This notation, while it might be regarded as
confusing, is standard in most of the reinforcement learning literature.

When firm are symmetrical, i.e. ai = aj = a ∀ i, j ∈ {1..n}, and the game is treated
as as being one-shot, the Nash equilibrium is the unique fixed point (Anderson et
al., 1992) of the equation

pN = c+
µ

1− (n+ e
a0−a+p

µ )−1
(4.3)

and it is possible to define the full collusion (monopoly) price vector as

pM = max
p

∑
i

(pi − ci)qi (4.4)

In the symmetric firm case, this reduces to a single-function unconstrained maxi-
mization problem

pM = max
p

n(p− c)
e

a−p
µ

ne
a−p
µ + e

a0
µ

(4.5)

Two issues require attention in defining a Markov decision process from the pricing
game.

The first issue is the size of the state space. If n agents remembered all prices
played by themselves and all of their opponents in all discrete timesteps up to t, the
state space would be a vector of dimension n2t, making any computation completely
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unfeasible after a handful of timesteps. To solve this issue, I define the state space as
the set of histories of length p < t, i.e. agents have a bounded memory, resulting in
a state space of dimension np. Unless otherwise specified, I focus on the case where
p = 1, that is, agents only remember the last price that their and their associates
played.

Note that as soon as memory is bounded, the process does not respect the Markov
assumption as usually stated, therefore applying reinforcement learning algorithms
to play repeated stage games may be considered improper. However, models used in
applied science usually have some degree of fuzziness that is allowed in the validity
of their assumptions, and reinforcement learning is no exception. This is true, for
example, in linear regression, where diagnostic plots serve the purpose of evaluating
the degree of correctness of the assumptions on the data set that is being considered.
To the same extent, applying reinforcement learning algorithms intended for Markov
processes may not be soundly theoretically grounded, they may be empirically be
found to be effective and provide incentive for further theoretical research.

The second issue is that, in a competitive market, firms are free to set their prices to
any positive real number. From the point of view of a single reinforcement learning
agent that sets a firm’s prices after having observed the others’, this means that
the action and state space are potentially equal to R and Rn respectively. However,
temporal-difference algorithms assume discrete action and state spaces. Discretizing
the state and action space as in Calvano et al. (2020) can be an effective workaround
for this issue, and allows to treat the game as any other bimatrix game, where
results from the preceding literature, like Littman and Stone (2001), may still apply.
However, discretization entails a loss of information. Temporal-difference methods
applied to a discretized price grid have no way of knowing the ordering of prices: the
topological structure of the state and action spaces is lost. The use of policy gradient
algorithms removes this requirement, as the policy estimation can be parameterized
with any parameter vector θ ∈ Rd.

To characterize emerging collusion under autonomous pricing as “tacit”, I want to
ensure that there is no possibility of communication between the two agents, or
any other information that could potentially be described as nudging the algorithms
towards collusive behavior. For this reason, I do not make any assumptions about
complete information and let agents learn in a completely unsupervised and model-
free context. I do not make the agents share any parameters, do not inject any
knowledge about the environment, and only let agents observe their own profits
and their and their associates’ market prices. The only objective of the algorithms
is to maximize the expected reward, subject to the maximum entropy constraint.
This leads us to the issue of sample complexity, which is also debated, conversely, as
“sample efficiency” and is the root of the very long timescale of collusion observed
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by Calvano et al. (2020).

Definition 4.1.1. Sample complexity is the number of samples (state-action-reward-
next state tuples) that an algorithm requires to achieve convergence or satisfactory
performance.

It is the RL analogue of computational complexity for classical algorithms, and
does a better job of highlighting the main bottleneck in their execution, which in
general is not the learning itself but the collection of experience and feedback. In
this regard, the pricing game serves as a very good illustrative example. Rainbow
(Hessel et al., 2018) is a model for Markov decision processes with discrete state and
action spaces that achieves human performance at about forty million timesteps,
defined as frames in a video game. In Calvano et al. (2020), convergence takes
hundreds of thousands to millions of timesteps. However, video game frames are
cheap to generate, while demand for goods is not. Once a firm sets its price for a
good, it takes time for it to observe demand and, therefore, profit. While this time
span may vary between industries and markets, cases where it is comparable to the
execution time of a gradient descent step are extremely rare and arguably limited
to high-frequency trading in financial markets. This means that whatever algorithm
the firm may be using, a timestep does not only last for the length of time required
for the algorithm to run, but there is a sizable delay in observing the reward. If this
delay is in the order of one hour, the million timesteps necessary for convergence in
the work of Calvano et al. (2020) amount to more than one hundred years of real-life
time. The main contribution I bring is showing that it is possible to significantly
improve sample efficiency on the pricing game without changing the formulation of
the pricing game in a manner that requires more information, or assumptions. In
addition, I discuss possibilities for achieving even higher sample efficiency through
model-based learning in the conclusions.

4.2 Specifications of the algorithm

Constructing a reinforcement learning model implies tuning many implicit hyper-
parameters in the form of architectural choices, and since the release of the first
paper on soft actor-critic (Haarnoja et al., 2018b) various improvements have been
proposed that are both specific to soft-actor critic and generally applicable to ma-
chine learning architectures. Machine learning is a very active research field, but
models in deep reinforcement learning do not necessarily benefit from architectural
improvements that have been developed for supervised learning. For example, batch
normalization has been found to induce gradient explosion (Yang et al., 2019), a
catastrophic phenomenon in the context of reinforcement learning. Another exam-
ple is the activation function for the hidden layers. While in supervised learning
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ReLUs usually result in faster training as they do not suffer from vanishing gradi-
ents, Andrychowicz et al. (2020) show that using tanh activations in reinforcement
learning stabilizes training and improves convergence, and this behavior probably
stems exactly from the behavior of gradients induced by tanh activations. On neu-
rons with tanh activations, gradients decrease for extremely high or low values of
neuron outputs, thus providing an alternative to the gradient clipping that is usually
performed (see for example Mnih et al. 2015).

It is worth noting that temporal-difference methods are not exempt from this “archi-
tecture tuning”, as they do not only require tuning of the learning and exploration
rates but entail a choice of an exploration strategy, as well as between on- or off-
policy learning and whether or not to implement bias/variance reduction techniques
such as n-step return or double Q-learning.

When constructing the model I used, I followed the principle of Occam’s razor and
preferred removing components to adding them. For example, adding a separate
value function estimation like in Haarnoja et al. (2018b) introduces an additional
layer of complexity whose benefit is unclear. Since the TD error may be formulated
in terms of an action-value function estimation, I decided not to employ a separate
value network and compute the TD error as Rt+1−r̃t(π)+q̂(s′, a′)−q̂(s, a) (Haarnoja
et al., 2018a).

I train the actor network using gradient ascent on the entropy-regularized policy
objective, but remove the entropy regularization term from the critic network loss,
a modification that has been found to lead to more stable convergence (Yu et al.,
2022). I also employ an actor network whose layers are one-eighth of the size of
those in the critic network and use the default initialization for weights and biases,
i.e. with zero bias and random weights sampled from U

(
−
√

1
d
,
√

1
d

)
, d being the

number of input features.

I use neural networks with two hidden layers with tanh nonlinearities and employ
two Q-networks to reduce overestimation of the action-value function (van Hasselt,
2010). The estimate q̂(s, a) is thus given by min

q̂1,q̂2
{q̂1(s, a), q̂2(s, a)}

These architectural choices lead to a relatively simple model and have been empiri-
cally found to improve convergence, even though at the moment there is no formal
explanation for their effectiveness. In the literature, a hypothesis that has been
put forward, also mentioned above, is that smaller networks and saturating acti-
vations reduce variance in neural network weights, outputs and gradients. This is
undesirable in supervised learning as it slows down training but helps achieve con-
vergence and stabilize training curves in the heavily non-stationary environment of
reinforcement learning (Andrychowicz et al., 2020).
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Agents do not discount rewards, and they keep a running estimate of average reward
as in eq. (2.19). The action-value estimations required are computed using the target
network.

To ensure prices are above marginal cost, I scale the actor network output x ∈
(−1, 1) as a = pN − ξ + x+1

2
(pM − pN + 2ξ), which means that the action space is

A = (pN − ξ, pM + ξ) and the state space is S = An, with n being the number of
agents. I enforce an entropy constraint equal to H̄ = dim(A) = 1, following the
heuristic in Haarnoja et al. (2018a).

The critic network has an input layer of size dim(A) + dim(S) = n + 1. The input
layer is followed by two hidden layers of size M with tanh activation functions and
an output layer of size 1. The actor network has the same structure, but the input
layer is of size dim(S) = n, the output layer is of size 2 (mean and variance of a
normal distribution) and the hidden layers are of size M/8.

I use the Adam stochastic optimizer (Kingma, D.P. et al., 2015) to perform gradient
descent, with a constant step size λA for the actor and λC for the critic and entropy.
I perform updates at every step, sampling batches of size B from a replay buffer of
maximum length β, implemented in C++ for performance (Yamada, 2019). For the
first B steps, I let agents play entirely random actions.

This configuration translates into multiple hyperparameters, all of which have to
be tuned. However, the model being simple means that in general, once the order
of magnitude has been found, results are robust to changes to hyperparameters
that remain in the same order of magnitude. Since an exhaustive grid search is
not feasible due to the runtime of a single experiment, which takes about one hour
on an RTX 2080 GPU, I ran a sequential model-based optimization search using
Optuna (Akiba et al., 2019). Even if the effectiveness of such a search is debated,
there is no reason why it should perform worse than random search, which has been
shown to perform better than grid search (Bergstra and Bengio, 2012) in finding
good hyperparameters for neural networks.

To ensure reproducibility, I fix the random seeds used in the simulations and include
them in the code.



Chapter 5

Results

In this chapter, I describe the evolution of payoffs obtained in the environment at
hand by the algorithms specified in the previous chapter. I also analyze what kind
of policies they end up learning, whether they can be described as collusive policies
and the reasons for their emergence.

Collusive outcomes may be the result of simply failing to learn the optimal strategy.
That is, agents may simply observe that, in general, higher prices tend to correspond
to higher profits and drive their policies towards blindly setting high prices regardless
of what the opponent is doing. If all agents behave like this, collusion may seem to
emerge. However, this is not an equilibrium since collusion is not supported by any
punishment and such a strategy could be easily exploited by an opposing firm by
undercutting the blind-pricing agent. The aim of this section is therefore to show
that collusive outcomes are the result of learning the optimal policy for the given
environment and that agents respond optimally if the associate deviates in any way.

Reported results have been obtained using the hyperparameters specified in ta-
ble B.1, but they are robust to changes in these hyperparameters that do not exceed
an order of magnitude. In terms of economic characteristics, to enable comparisons
with the tabular Q-learning of Calvano et al. (2020), I fix a0 = 0, µ = 0.25, a1 =

a2 = 2. I use a slightly larger action space than they do, setting ξ = 0.1.

Note that it is difficult to define convergence as in Calvano et al. (2020) when
using policy gradient algorithms, for a variety of reasons. First, since prices are
continuous and agents’ policies are required to have a constant, non-zero entropy, it
is not trivial to define when they have “stabilized”: soft actor-critic, by definition,
converges to a stochastic policy that does not maximize average profit only but also
factors in the entropy of the learned policy, therefore it can never converge to a
stationary policy, or to one with arbitrarily low variance. Second, algorithms using
replay buffers and neural networks are prone to catastrophic forgetting if learning

31
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continues indefinitely (and it usually does so since there is no learning rate decay),
which means that in general, they always diverge given enough time. Both factors
essentially stem from the fact that exploration is not decaying as it often does
when using tabular methods. Usually, the reinforcement learning literature deems
convergence as achieved if reward exceeds some predefined threshold for a certain
number of timesteps, usually an index of how well humans do in this task. Afterward,
exploration is turned off and final performance is evaluated. However, setting market
prices so as to collude with no information or communication is not a task that
humans usually perform. We can note that, robustly across sessions, average profit
gains surpass 50% (the profit gains obtained by random pricing) after a handful of
iterations, and in general remain higher than 75% throughout simulations. However,
algorithms may still be optimizing their strategies from the replay buffer while profit
gains are stable, so evaluating performance as soon as profit exceeds some threshold
would not be representative of the actual behavior of the algorithms. In general,
it would be up to the firm to decide when the algorithm has achieved satisfactory
performance and can be deployed without exploration. Therefore, I decide to define
convergence on a data-driven basis, finding “chaotic” sessions by applying techniques
for outlier detections to the sample variance of end-of-learning profits. Moreover,
plots of impulse-response behavior and visualizations of the learned policies during
learning allow us to understand agents’ training process.

5.1 Training curves

To ease exposition and abstract from market characteristics, I define profit gains in
a similar way to Calvano et al. (2020):

∆ =
r − ΠN

ΠM − ΠN

(5.1)

where r is the average reward obtained at convergence, ΠN is the Bertrand-Nash
static equilibrium profit, and ΠM is profit under full collusion, or monopoly profit.
∆ is 1 in case of perfect collusion (monopoly pricing) and 0 in case of Bertrand-Nash
play. Since my state space is slightly larger than Calvano et al. (2020), profit gains
have a wider range. Note that profits themselves cannot be negative because the
lowest price agents can set is higher than marginal cost; however, if profits are lower
than Nash equilibrium profits, ∆ is negative.

The training curve of the representative experiment, showing profit gains over 40000
time steps, is plotted in fig. 5.1.

We can see that both agents reach profit gains of around 0.8 after about 5000
timesteps and remain more or less stable afterward. Interestingly, as soon as agents
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Figure 5.1: Profit gains over time. Moving average over 1000 steps. Shaded area
represents standard deviation.

Figure 5.2: Profit gains over the first 10000 time steps. Moving average over 1000
steps. Shaded area represents standard deviation.

are allowed to use their policy network (remember that, for the first 512 timesteps,
they play entirely random prices) they start to raise prices. This behavior is not
observed with tabular Q-learning, with agents initially undercutting themselves and
rising prices gradually. Figure 5.2 zooms in on the first 10000 timesteps, and fig. 5.3
shows mean profit gains between the two agents. Both figures confirm that indeed
profit gains rise very rapidly and reliably.

Keeping in mind the discussion of convergence from above, and that the standard
deviation of prices seems low in general, we could indeed argue that algorithms
have converged to collusive strategies after about 10000 timesteps, two orders of
magnitude faster than what Calvano et al. (2020) observed with tabular Q-learning.
Moreover, as compared to tabular Q-learning, price cycles almost never surface.
Cycles occurred only five times across more than 100 experiments, and those cases
were characterized by high variance in prices throughout learning, so they could
easily be characterized as a lack of convergence (see the discussion on chaotic sessions
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Figure 5.3: Mean profit gains over time. Moving average over 1000 steps. Shaded
area represents standard deviation.

below). This supports the view that price cycles are an artifact of discretization and
disappear when treating the problem in continuous action spaces.

All this being said, it is important to remember that collusion may not be determined
by actual collusive strategy but by failure to learn an optimal policy and mere blind
pricing. Therefore, the next two sections are devoted to quantifying what have
algorithms learned.

5.2 Visualizing learned policies

Using neural networks to represent policies and action-value function means positing
that there exist functional forms of the two, since we know that neural networks are
in fact universal function approximators (Hornik et al., 1989). Using continuous
pricing in a game with two agents and one-period memory allows for visualizing
this functional form through a heatmap, with observed prices p1, p2 as the axes, and
the color being proportional to the price to be set. This is possible since, in this
environment, a policy is effectively a function π : R2 → R.
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Figure 5.4: Heatmap of the two agents’ learned policies after 40000 timesteps.

Figure 5.4 shows a heatmap corresponding to the policies learned by two agents after
40000 timesteps. We can see that agents exhibit symmetrical learning behavior that
leads to high but not perfectly collusive prices, as well as the emergence of reward-
and-punishment schemes. Both agents learn to play high prices if their associate
is doing so, and there appears to be a zone of very high prices that corresponds
to the point where profit gains stabilize, with resulting profit gains of around 0.8.
Agents learn that it is profitable to undercut the associate when it is playing very
high prices, which explains why they do not reach full collusion. However, they
also learn not to undercut unless the other player is doing the same. Heatmaps are
symmetrical, with the “collusive zone” lying on opposite sides of a line that is at an
angle of slightly less than 45 degrees with respect to the axis of the opposing player
so that the zone with the highest prices overlaps in the two plots. Punishment gets
harsher with more learning, as is shown by fig. 5.5 and the “collusive zone” becomes
smaller and with a steeper descent. Evolution appears to stop after 40000 periods,
which is reasonable since by this point a replay buffer of 20000 periods is filled
with experiences from policies that are almost stationary, and agents are merely
reinforcing their behavior by learning from very similar experiences.

5.3 Response to deviations

Having verified learning behavior, one key question in reinforcement learning is how
the learned policy generalizes to unseen behaviors. This same question arises in
economics, where a collusive strategy is sustained only if it is not optimal to deviate
from it, i.e. if the non-deviating agent acts in such a way as to punish deviations
and render them unprofitable. As stated earlier, if agents learned to merely play
high prices, this would not be collusion but a failure to learn the optimal strategy
and firms may expect rivals to take advantage of their algorithms’ blindness and
undercut them. To understand whether agents learned optimal behavior even off
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Figure 5.5: Heatmap of the two agents’ learned policies after 10000 timesteps.

Figure 5.6: Response to a unilateral deviation to the static best response to the
rival’s last price after 40000 timesteps.

the path of equilibrium, I plot agents’ responses to deviations and see how they
evolve during learning.

The figures and tables that follow have been constructed by letting agents play
with exploration and learning disabled for 1000 periods, then making one of the
two agents defect to the static best-response to the last price played by the rival.
Section 5.3 shows this impulse response.

We can see that after 40000 timesteps, a reward-and-punishment scheme emerges
that is harsh enough to effectively deter deviation in the majority of cases, as shown
by table 5.1. Moreover, as shown by section 5.3, this scheme emerges very early
during learning, even though punishments are not harsh enough.
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Figure 5.7: Response to a unilateral deviation to the static best response to the
rival’s last price after 10000 timesteps.

Figure 5.8: Distribution of mean profit gains after 40000 timesteps.

5.4 Performance across random seeds

Usually, deep reinforcement learning algorithms tend to exhibit notable brittleness
and high variance, which is usually masked by averaging across random seeds but
emerges when the standard deviation is visualized. To understand the degree of
brittleness, as well as what and how algorithms are learning, we can look at the
distribution of profit gains, deviation behavior, and deviation profits.

Section 5.4 shows that indeed, in the vast majority of sessions profit gains are over
80%, with very few outliers and no session seeing profit gains below 65%. Keep in
mind that, with the price range agents are allowed to employ, random pricing leads
to 50% profit gains.

To discern whether the averaging of impulse responses is masking more complex
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(a) Non-deviating agent (b) Deviating agent

Figure 5.9: Box plot of the prices played during and after a deviation from the
equilibrium reached after 40000 timesteps.

behavior, we can inspect the distribution of the difference between the price played
just before the deviation and the price played in the subsequent timesteps, shown
in fig. 5.9.

These box plots confirm that the reward-punishment scheme is actually emerging
on the vast majority of runs and is not just a result of averaging chaotic impulse
responses. They also show that reward and punishment are much more stable and
with lower variance than what is obtained by tabular Q-learning. Prices rarely
surpass the starting equilibrium level and exhibit much lower variance overall; when
they do surpass the equilibrium level, the difference is slim.

Analyzing the variance of prices if exploration is turned off also brings to light
long-term behavior during learning. Variance is slightly higher overall towards the
beginning of training (after 10000 timesteps) which is expected. Variance is also
higher towards the end (after 70000 timesteps), which may be an early symptom
of catastrophic forgetting - again, an expected behavior since there is no learning
rate decay. However, this forgetting is not so catastrophic after all: it only results
in a slight deviation from the equilibrium price right before the deviation, and
an imperfect return to cooperation afterward, that nevertheless does not impact
collusion in a quantitatively relevant manner.

5.5 Discounted and differential return on deviation

Finally, we can look at the distribution of discounted and differential profits orig-
inating from a deviation, shown by the histogram in fig. 5.10 and fig. 5.11 I also
report mean values and quartiles for profit gains and shares of profitable deviations
in the discounted and differential case in table 5.1.

To enable comparisons with the tabular Q-learning of Calvano et al. (2020), I use a
discount factor γ = 0.95 in evaluating discounted profit. However, this is an entirely
exogenous choice and clearly more deviations become profitable when the discount
factor falls since learning does not take into account the discount factor as it does
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Figure 5.10: Distribution of discounted deviation profits after 40000 timesteps.

Figure 5.11: Distribution of differential deviation profits after 40000 timesteps.

in Calvano et al. (2020). In the limit where γ = 0, any deviation is regarded as
profitable, so no collusion is possible; when instead γ = 1, discounted profits are
analogous to differential profits since the quantity Rt − r(π) becomes 0 as t → ∞ if
policy estimation converged and exploration is disabled.

Looking at discounted profits is particularly interesting since, as far as the agent
is concerned, future payoffs are not discounted in the average reward formulation.
As Naik et al. (2019) show, it is not a well-defined optimization problem to max-
imize discounted payoffs under function approximation. For this reason, evaluat-
ing average-reward reinforcement learning agents based on how they minimize dis-
counted loss from a deviation is not entirely fair, as they were not optimized for
this objective. Remarkably, they perform well nevertheless, with about 80% of the
deviations being unprofitable in the discounted case and the median deviation being
unprofitable after only 40000 timesteps. As shown by fig. 5.10, the distribution of
deviation gains exhibits a large mass near 0 profits (most of it on the left side), but
a few outliers are enough to make the mean a very unreliable statistic.
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5.5.1 Different deviations

The static best-response is not the only deviation possible. In principle, agents could
deviate to any other price, and all such deviations should be punished by a truly
collusive strategy. Some examples of deviations are: deviation to monopoly price,
an upwards deviation that disrupts equilibrium and should therefore be punished,
however “advantageous” for the other agent; deviation to marginal cost, similar to the
optimal punishment in Abreu (1986); deviation to the Nash equilibrium price, the
harshest reasonable punishment in a Bertrand setting. Responses to these deviations
are reported in table 5.2, with the static BR reported for comparison.

5.6 Chaotic sessions

To give a more quantitative and applicable definition of convergence, I employ the
usual definition of “outliers” in profit gains and deviation profits as sessions whose
value is outside the range [Q1− 3

2
IQR,Q3+ 3

2
IQR], where Q1, Q3 are the 25th and

75th percentile and IQR is the interquartile range. These are sessions that exhibit
chaotic behavior, wildly fluctuating prices, and so on. I show the fraction of these
sessions, as well as the condition of the 75th percentile, median and 25th percentile
in table 5.3.

We can see that the percentage of these values falls under 1% for profit gains and
under 5% for deviation profits after around 40000 timesteps, while from table 5.1
we can see that this amount of timesteps is sufficient to make at least 75% of devi-
ations unprofitable from the differential point of view, while 10000 more timesteps
are needed to get the same number unprofitable discounted deviations. It is worth
noting, however, that excluding these outliers from the analysis of deviation profits
makes the central mass of the distribution more apparent and moves the mean sig-
nificantly closer to the median, and that these outliers usually lie on the right side
of the distribution and not the left. Therefore, the mean profit obtained by devi-
ating is an unreliable statistic that is skewed towards profitable deviations. This is
expected behavior, since forcing one agent to respond optimally in just one period
brings a substantial improvement in a chaotic session with heavily suboptimal pric-
ing by both agents. Therefore, 40000 timesteps may be regarded as a reasonable
threshold to define a convergent session: policy gradient methods, in this context,
converge to collusive outcomes two orders of magnitude faster than the tabular Q-
learning described in Calvano et al. (2020). If a timestep lasts one hour in real life,
we get a timescale of collusion that is about a year long, which matches results in
the empirical literature such as Byrne and de Roos (2019); Assad et al. (2020).
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Figure 5.12: Profit gains over time in a game with three agents. Shaded area
represents standard deviation.

5.7 Number of agents

The competition model at hand leads to the conclusion that markets with more
firms are harder to collude in, because collusion profits are lower and therefore it is
more tempting to deviate as punishment is weaker. Indeed, profit gain decreases to
about 75% when three agents are competing, as shown by fig. 5.12. This result is
consistent with what is obtained by tabular Q-learning but requires no adjustments
to the exploration strategy.

However, the general behavior remains the same, albeit with slower learning. Reward-
punishment schemes take slightly more time to emerge and there is a higher variance
in impulse responses, as shown by figures 5.13 and 5.14. Moreover, a larger fraction
of deviations is profitable, although the other results lead to believe that this is
merely an artifact of slower learning and as learning progresses, more would become
unprofitable.

With more than three agents, e.g. n = 4, profit gains are lower (mean profit gains of
about 70%) and learning is slower still, with reward-punishment schemes emerging
but taking an even longer time to make the majority of deviations to the static
best-response unprofitable.
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Figure 5.13: Responses to a unilateral deviation to the static best response to the
rivals’ last prices, with 3 agents, after 70000 timesteps. For non-deviating agents, I
show mean prices.

(a) Non-deviating agents (mean) (b) Deviating agent

Figure 5.14: Box plot of the prices played during and after a deviation from the
equilibrium reached after 70000 timesteps, with 3 agents.
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Table 5.1: Responses to deviation during learning.

Statistic Mean Pctl(75) Median Pctl(25)

t = 10000

Deviation gain (discounted, %) 4.697 5.434 2.180 1.113
Deviation gain (differential) 7.046 0.425 0.176 0.074
Unprofitable deviation (differential) 0.035 0 0 0
Unprofitable deviation (discounted) 0.009 0 0 0

t = 20000

Deviation gain (discounted, %) 1.233 1.468 0.523 0.106
Deviation gain (differential) 1.147 0.114 0.021 −0.010
Unprofitable deviation (differential) 0.336 1 0 0
Unprofitable deviation (discounted) 0.186 0 0 0

t = 30000

Deviation gain (discounted, %) 0.278 0.393 −0.069 −0.294
Deviation gain (differential) 0.593 0.014 −0.018 −0.043
Unprofitable deviation (differential) 0.664 1 1 0
Unprofitable deviation (discounted) 0.540 1 1 0

t = 40000

Deviation gain (discounted, %) 0.277 0.132 −0.116 −0.302
Deviation gain (differential) −0.215 −0.000 −0.024 −0.044
Unprofitable deviation (differential) 0.752 1 1 1
Unprofitable deviation (discounted) 0.637 1 1 0

t = 50000

Deviation gain (discounted, %) 0.448 −0.023 −0.208 −0.396
Deviation gain (differential) 0.601 −0.017 −0.043 −0.066
Unprofitable deviation (differential) 0.876 1 1 1
Unprofitable deviation (discounted) 0.788 1 1 1

t = 60000

Deviation gain (discounted, %) −0.019 −0.077 −0.246 −0.428
Deviation gain (differential) −0.550 −0.024 −0.052 −0.077
Unprofitable deviation (differential) 0.903 1 1 1
Unprofitable deviation (discounted) 0.814 1 1 1

t = 70000

Deviation gain (discounted, %) 0.311 −0.063 −0.255 −0.390
Deviation gain (differential) −0.257 −0.032 −0.053 −0.077
Unprofitable deviation (differential) 0.867 1 1 1
Unprofitable deviation (discounted) 0.832 1 1 1
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Table 5.2: Responses to various deviations.

Statistic Mean Pctl(75) Median Pctl(25)

Deviation type = Static BR

Deviation gain (discounted, %) 0.311 -0.063 -0.255 -0.39
Deviation gain (differential) -0.257 -0.032 -0.053 -0.077
Unprofitable deviation (differiential) 0.867 1 1 1
Unprofitable deviation (discounted) 0.832 1 1 1

Deviation type = Bertrand-Nash

Deviation gain (discounted, %) -0.591 -0.582 -0.695 -0.904
Deviation gain (differential) -1.302 -0.068 -0.087 -0.119
Unprofitable deviation (differiential) 0.92 1 1 1
Unprofitable deviation (discounted) 0.929 1 1 1

Deviation type = Marginal cost

Deviation gain (discounted, %) -5.863 -5.934 -6.178 -6.508
Deviation gain (differential) -0.734 -0.426 -0.454 -0.489
Unprofitable deviation (differiential) 0.965 1 1 1
Unprofitable deviation (discounted) 0.982 1 1 1

Deviation type = Monopoly

Deviation gain (discounted, %) -0.66 -0.267 -0.676 -1.258
Deviation gain (differential) -0.66 -0.042 -0.073 -0.119
Unprofitable deviation (differiential) 0.858 1 1 1
Unprofitable deviation (discounted) 0.85 1 1 1
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Table 5.3: Share of chaotic sessions during learning.

Statistic Mean

t = 10000

Outlier in profit gains 0.106
Outlier in deviation profits (differential) 0.201
Outlier in deviation profits (discounted) 0.162

t = 20000

Outlier in profit gains 0.142
Outlier in deviation profits (differential) 0.228
Outlier in deviation profits (discounted) 0.053

t = 30000

Outlier in profit gains 0.053
Outlier in deviation profits (differential) 0.111
Outlier in deviation profits (discounted) 0.031

t = 40000

Outlier in profit gains 0.009
Outlier in deviation profits (differential) 0.024
Outlier in deviation profits (discounted) 0.022

t = 50000

Outlier in profit gains 0.009
Outlier in deviation profits (differential) 0.06
Outlier in deviation profits (discounted) 0.02

t = 60000

Outlier in profit gains 0.009
Outlier in deviation profits (differential) 0.042
Outlier in deviation profits (discounted) 0.033

t = 70000

Outlier in profit gains 0.009
Outlier in deviation profits (differential) 0.058
Outlier in deviation profits (discounted) 0.018
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Chapter 6

Conclusions and future work

In this work, I show that policy gradient maximum-entropy reinforcement learn-
ing algorithms using neural networks as function approximators may autonomously
learn collusive strategies in a repeated pricing game significantly faster than tabular
strategies. Agents begin to raise prices as soon as they are allowed to, a behavior
that is not exhibited by tabular Q-learning. Learned policies are able to sustain
collusion through reward-punishment schemes that make it unprofitable to deviate
from the collusive equilibrium.

From an engineering perspective, I conclude with potential directions for future
research in the field of reinforcement learning applied to multi-agent continuous-
state/action repeated games.

The basic formulation even of complex reinforcement learning algorithms often leaves
room for tweaks that improve performance, within the same class of algorithms. Ex-
amples of such enhancements are Munchausen reinforcement learning (Vieillard et
al., 2020), improved experience replay buffers (Wang and Ross, 2019), and deeper
networks (Sinha et al., 2020). In addition, there is a strand of literature that is con-
cerned precisely with the applications of reinforcement learning in non-stationary
(Xie et al., 2022; Paternain et al., 2020) and competitive and cooperative environ-
ments (Kim et al., 2021; Yang and Wang, 2021). Integrating newer developments in
entropy-regularized actor-critic methods or introducing more complexity and infor-
mation in the game by employing algorithms that are aware of the non-stationarity
of agents’ policies may be a promising direction for future research on model-free
pricing algorithms.

In addition, it is worth noting that, as with tabular temporal-difference meth-
ods, there are no known proofs of convergence for policy-gradient methods in non-
stationary environments, except for a handful of special cases. However, as the
pricing game is relatively simple, it may constitute a special case where reinforce-
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ment learning can be proven to converge, and a deeper theoretical analysis of this
context is an interesting direction for future research that may be of interest to both
computer scientists and economists.

From an economic perspective, instead, I conclude by noting that reinforcement
learning algorithms are, in general and as of the time of writing, suboptimal choices
for control problems, especially non-stationary ones, compared to model-based op-
timal control.

Research in the field is often based on flawed assumptions (Nota and Thomas, 2020;
Naik et al., 2019) and most problems that are studied in the literature are non-
Markovian, or at least non-first-order-Markovian, just like the one I studied. When
a model of the environment is available, trivial random search performs better than
policy gradient methods, which can be shown to be equivalent to random search in
this context (Mania et al., 2018). Therefore, the fact that reinforcement learning
algorithms are able to reach collusive agreements quickly is not to be taken to mean
that firms may collude by actually using reinforcement learning. On the contrary,
firms that employ pricing algorithms are probably not using reinforcement learning
precisely because better algorithms are available that may achieve even higher prof-
its in a shorter amount of time, for example by estimating demand functions and
imposing the desired level of profit gains over the competitive outcome.

The fact that deep reinforcement learning is effective here works to show that price
competition is a relatively simple control task. Even brittle algorithms that have a
very limited set of information are able to solve it quickly in a cooperative manner
without being swayed towards collusion. Therefore, regulation limiting algorithmic
complexity or information availability may be argued to not be on the right track
to actually limit collusion.

Usually, algorithms that achieve sample-efficient control are model-based and use
regret minimization, tree search, and similar techniques that require complete infor-
mation. These algorithms are able to converge in a handful of timesteps, and some
have also been applied to games of cooperation. Some examples are Crandall et
al. (2018); Crandall (2014); Moravčík et al. (2017). Developing similar algorithms
to be applied to the pricing game is an interesting direction for future work. In
addition, once such studies are available, another interesting direction is to compare
the behavior of model-free and model-based algorithms with panel data on prices,
to understand which kind of technology is actually deployed when firms employ
algorithmic pricing and orient future research in competition policy.
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Appendix A

Formulation of the policy gradient
theorem

The formulation of the policy gradient theorem used by most of the literature is
derived from eq. (2.21) by noting that, in a stationary Markov decision process,
the steady-state distribution µπ is induced by the policy π. Dropping the explicit
dependence of π on θ for clarity, we have that

∫
S
µπ(s)f(s)ds =

∫
S
T (s′|s, a)

∫
A
π(a|s)f(s′)dads′ = Eπ[f(St)] (A.1)

and we can therefore express the integral as an expected value on the random variable
St, as in

∇J(θ) =

∫
S
µπ(s)

∫
A
qπ(s, a)∇π(a|s)da ds = Eπ

[∫
A
qπ(St, a)∇π(a|St)da

]
(A.2)

Then we can multiply and divide the equation by π(a|St) to get

∇J(θ) = Eπ

[∫
A
qπ(St, a)π(a|St)

∇π(a|St)

π(a|St)
da

]
(A.3)

This integral now also represents an expected value weighted by π:

∫
A
qπ(St, a)π(a|St)

∇π(a|St)

π(a|St)
da = Eπ

[
qπ(St, At)

∇π(At|St)

π(At|St)

]
(A.4)

Therefore we can write it out as an expectation, drop the double expected value
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and, since since ∇x/x = ∇ log x, we can write:

∇J(θ) = Eπ

[
qπ(St, At)

∇π(At|St)

π(At|St)

]
= Eπ [qπ(St, At)∇ log π(At|St)] (A.5)



Appendix B

Hyperparameters for the
representative experiment

Symbol Hyperparameter Value
H̄ Target entropy 1
M Hidden layer size (critic network) 2048
B Batch size 512
β Replay buffer size 20000
λA Actor optimizer learning rate 1 · 10−3

λC Critic optimizer learning rate 3 · 10−5

λR Average reward estimation learning rate 0.03

Table B.1: Hyperparameters of the representative experiment
.
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