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Abstract

In this work, a prospective study conducted at the IRCCS Istituto delle Scienze
Neurologiche di Bologna (Bologna, Italy) is presented. The aim was to inves-
tigate the brain functional connectivity of a cohort of patients (N=23) suffer-
ing from persistent olfactory dysfunction after SARS-CoV-2 infection (so-called
Post-COVID-19 syndrome), as compared to a matching group of healthy con-
trols (N=26). In particular, starting from individual resting state functional
Magnetic Resonance Imaging (rs-fMRI) data, different advanced analytical ap-
proaches were adopted in order to find potential alterations in the connectivity
patterns of patients’ brains. Analyses were conducted both at a whole-brain
level and with a special focus on those brain regions directly or indirectly in-
volved in the processing of olfactory stimuli (i.e. the Olfactory Network). Sta-
tistical correlations between functional connectivity alterations and the results
of olfactory and neuropsychological tests were investigated, to explore also the
associations with cognitive processes.
The three approaches implemented for the analysis were the seed-based corre-
lation analysis, the group-level Independent Component Analysis (both inves-
tigating the correlation patterns of core Olfactory areas with the rest of the
brain), and a graph-theoretical analysis of brain connectivity (implemented for
both the whole-brain graph and for the olfactory network). Each of these ap-
proaches has been already applied in the context of rs-fMRI, but due to their
relative novelty many implementation details and methodologies are not stan-
dardized yet, and currently represent active research fields.
Group-comparisons of the seed-based and group-ICA analyses’ results showed
no statistically significant differences between groups, while some relevant al-
terations emerged from the results of the graph-based analysis. In particular,
patients’ olfactory sub-graph appeared to have a less pronounced modular struc-
ture compared to the control group; locally, a hyper-connectivity of the right
thalamus was observed in patients’ Olfactory Network, with significant involve-
ment of the right insula and hippocampus. Results of an exploratory correla-
tion analysis showed a significant positive correlation between the graphs global
modularity and the scores obtained in olfactory tests, consistently with the hy-
pothesis that an impaired ability of segregating specific activities could nega-
tively affect brain processes, and negative correlations between the thalamus
hyper-connectivity and memory tests scores; this association could be inter-
preted in light of the critical importance of hippocampal-thalamic interactions
for episodic memory.
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Introduction

Different kinds of olfactory dysfunctions (ODs) were reported as some of the
most characteristic early symptoms of SARS-CoV-2 infection. Moreover, in a
considerable fraction of patients, OD is reported among its long-lasting effects,
in the so-called Post-COVID-19 condition (“long-covid”). In these cases, ODs
are often accompanied by a series of others neurological manifestations, ranging
from various degrees of cognitive impairment, persistent headache, to fatigue
and “brain fog”, suggesting a general involvement of the Central Nervous Sys-
tem. This raises questions about the physiological mechanisms that underpin
such symptomatology [1]. Actually, the neurotropic features of SARS-CoV-
2 are not yet fully understood and it is not clear whether those neurological
symptoms result from a direct viral invasion of tissues or from dysregulated
and systemic inflammation [2]. Many efforts are being made in the study of
these topics and works are continuously being published, addressing the clinical
questions from different perspectives.
Neuroimaging has been extensively applied for this purpose, in order to detect
potential brain-related abnormalities associated to the above mentioned symp-
toms and to help understanding the underlying pathogenesis. In particular,
studies employing Magnetic Resonance Imaging (MRI) techniques offered im-
portant contributions; a recent study [3] combined the results obtained from
MRI, DTI and task-based functional MRI (fMRI) investigations on a group of
patients suffering from persistent COVID-19-related or generic post-infectious
OD, to specifically address potential differences between the two groups in the
brain structures involved in olfaction. In this study, structural and morpholog-
ical differences were observed, as well as slight differences in the net trigeminal
system’s activity, highlighting some peculiarities of the COVID-19-related OD
and suggesting an important role of olfactory bulb damage. Another study [4],
involving a large number of patients with MRI examinations before and after
subjects’ infection, has revealed modest but significant structural and micro-
structural alterations (reduced grey matter thickness, reduction in global brain
size and other markers of tissue damage), mainly affecting the limbic structures
and the olfactory areas; such alterations could be signs of a possible degenerative
spread of the disease through the olfactory pathways, of neuro-inflammation or
also due to the loss of sensory-input due to the anosmia.
To date, studies focusing specifically on OD and symptoms of the Post-COVID-
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Chapter 0. Introduction

19 conditions by means of fMRI techniques are few and with small cohorts of
subjects, even though some interesting evidences were reported, suggesting pos-
sible impairment of the central olfactory pathway [5, 6]. In particular, the pos-
sibilities offered by resting state fMRI (rs-fMRI), in terms of fine-description of
the general functional organization of brain, have not been fully exploited yet;
with respect to fMRI, rs-fMRI could provide a more subtle characterization of
the intrinsic connectivity patterns involving the brain regions that are related
to olfaction, without limiting the analysis to the brain functional response con-
nected to a specific task.

In 2021 such considerations inspired a study, conducted at the IRCCS Is-
tituto delle Scienze Neurologiche di Bologna (Bologna, Italy), whose aim was
to explore the integrity of the Olfactory Network - ON of a cohort of patients
with COVID-19-related persistent OD. In particular, starting from structural
and rs-fMRI examinations, a complete characterization of patients’ brains from
both a morphological and functional-connectivity points of view was obtained,
with a special focus on the core-areas of the ON. Finally, results were integrated
with individual neuropsychological profiles, in order to assess potential mean-
ingful associations.
In this work the aspects of that study concerning the acquisition, the pre-
processing and the analysis of rs-MRI data, for which I gave my personal con-
tribution, are reported in detail. The goal of this part was two-fold: on one hand
to localize and describe the ON from a functional-connectivity point of view in
the available group of subjects, as a brain large-scale resting-state network ; to
date, only few (and quite recent) examples reporting this kind of attempts exist
in literature, one of which was used as main reference for this work [7]; on the
other hand, by comparing it with a matching healthy controls group, possible
alterations in the patients’ brain connectivity patterns were explored with dif-
ferent approaches of data analysis, requiring the application of some advanced
methodologies.
The study of the brain’s ON through rs-fMRI techniques presents a series of
challenging technical difficulties due to its anatomical characteristics: olfactory
core regions are in fact mainly sub-cortical, or placed near air-tissues interfaces
of the frontal cortex (anterior- and Orbitofrontal-cortex), which are both criti-
cal positions for rs-fMRI-based examinations. For this reason high-quality raw
data from a 3T scanner and high-performing sequences were required, as well
as the adoption of a special pre-processing protocol employing the best noise-
removal techniques available. The subsequent functional-connectivity analysis
adopted three separated approaches, in order to give a range of perspectives on
the experimental data set.

In the first Chapter of this work the phenomenology underlying the emer-
gence of the BOLD signal and its measurement with MR techniques is briefly
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presented, together with some details regarding the actual techniques currently
employed for functional MRI. In Chapter 2 rs-fMRI data pre-processing and
three of the possible approaches for the analysis of functional-connectivity pat-
terns in this kind of data are discussed: the first one based on Independent Com-
ponent Analysis of the signal, the second one based on a seed-based approach
and the third one based on a graph-theoretical modelling of data. Further de-
tails about the clinical background and the motivations behind this study can
be found in Chapter 3.
In the last three chapters the original experimental work is comprehensively
presented. In particular, Chapter 4 describes the experimental materials and
methods, Chapter 5 the relevant results obtained from the analysis and Chapter
6 the related discussion. Finally, the last section contains some final considera-
tions about the limitations of the presented study and its future perspectives.
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Chapter 1

BOLD signal magnetic
resonance imaging

Functional Magnetic Resonance Imaging - fMRI is a non-invasive NMR-based
imaging technique by which it is possible to indirectly map the activity of the
brain. More properly, fMRI measures local hemodynamic changes after en-
hanced neural activity (exploiting the so-called Blood-Oxygen-Level-Dependent
- BOLD signal) and uses this contrast to produce an image.
BOLD-fMRI is one of the main techniques used in cognitive neuroscience and
related fields to investigate brain activity patterns; it is available in most hos-
pital’s MRI clinical scanners in which is used for both diagnostic and research
purposes.
A typical BOLD-fMRI examination requires the acquisitions of a series of brain
volumes, while the subject is at rest (rs-fMRI) or doing some particular task
(task-fMRI). As a result, it will produce a time course of the fluctuations of tis-
sues’ MR signal, which can be indirectly linked to the actual neuronal activity.
Even though it is not the only available technique to investigate human brain
from a functional perspective, nor chronologically the first that was introduced,
it certainly offers some exceptional and unique possibilities of investigation.
fMRI role in the description of the functional organization of the brain is some-
how between those of PET/SPECT (which address the metabolic pathways
of brain, following glucose metabolism) and EEG/MEG (which measure more
directly the neuronal activity), offering a description of the so-called hemody-
namic response to brain activity (see figure 1.1).
From a very general perspective, compared to PET/SPECT it has the ad-
vantage of being totally non-invasive (it doesn’t involve ionizing radiation and
doesn’t need contrast agents or radiopharmaceuticals) and offers a higher spa-
tial and temporal resolution; compared to EEG and MEG it has lower temporal
resolution, but higher spatial resolution, allowing us to image the whole brain
volume. However, each of these techniques has peculiarities making them “non-
overlapping”, and often they could bring complementary information (as in
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Figure 1.1: Biological principles associated to some of the most common tech-
niques for investigating brain activity. Functional-MRI offers a description of
the hemodynamic response of the brain; it constitutes an indirect measure of the
actual neuronal activity, to which it’s related through the so-called neurovascu-
lar coupling.

simultaneous EEG-fMRI experiments [8]).
In this chapter the fundamental neuro-physiological mechanisms connected to
the emergence of BOLD signal will be introduced, together with the physical
principles at the basis of its measurement and the sequences commonly used to
acquire it.

1.1 MR-based measurement of brain activity

1.1.1 Brain metabolism

Information processing inside the brain is based on the coordinated activity of
groups of neurons, which alternatively integrate incoming signals, and commu-
nicate a “response” (an outcome of the integrative process) to others groups.
Both integrative and transmissive processes depend on a series of mechanisms
that involve the active transport of charged ions across cellular membranes,
such as creation and propagation of action potentials, or the exchange of neuro-
transmitters across synaptic gaps, and require a lot of energy to be carried out
[9]. Activation of ions channels on external neurons’ membrane in fact requires
energy in the form of ATP, which in turn needs to be produced mainly through
aerobic glycolysis (i.e. oxidation of glucose). Proportionally, for normal neu-
ral activity, brain tissue is metabolically incredibly expensive: weighting only
about 2% of the body mass of a adult male human, it consumes up to 20%
of oxygen and glucose body supply. On the other hand, differently from other
high energy consumption-tissues such as muscles, brain tissue does not normally
store glycogen inside, and then it constantly needs for blood from the vascular
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1.1. MR-based measurement of brain activity

system to supply oxygen (in the form of Oxyhemoglobin - HbO2, in red blood
cells) to produce glucose (from plasma). Furthermore, in order to make the
energy supply efficient, the brain tissue is densely vascularized, with smallest
capillaries size in the order of tens of micrometres.
Those considerations suggest that there should exists an important relation be-
tween local brain activity and the corresponding haemodynamic response - HR
(i.e. arterial blood flow), and maybe that the latter could be used to local-
ize and quantitatively measure brain activity: a first experimental observation
pointing in this direction dates back to 1890, when the expansion of a dog’s
cerebral hemispheres (increase of cerebral blood flow - CBF, a condition known
as functional hyperemia) was measured in association to stimulation of sciatic
nerve [10]; many other observations of CBF increasing at a vessel scale were
made in more recent years [11]. The mechanisms that trigger functional hy-
peremia are complex and still debated [12], but there is evidence that in first
approximation CBF changes are correlated with both Cerebral Metabolic Rate
of glucose - CMRglu and Cerebral Metabolic Rate of Oxygen - CMRO2, confirm-
ing the hypothesis that local HR is driven by brain activity.
However, while CBF and CMRglu are almost perfectly coupled, many experi-
ments [13, 14] have demonstrated a certain degree of uncoupling between CBF
and CMRO2 during local stimulation of brain regions: in particular the in-
crease of CBF is not followed by a proportional increase of CMRO2, resulting
in a net increase of blood oxygenation level inside vessels. This imbalance have
critical consequences, constituting the fundamental biophysical marker of brain
activity for MR-based measurements; in this context the effect goes as blood-
oxygen-level-dependent - BOLD signal.

1.1.2 BOLD signal

As the acronym suggests, BOLD signal basically depicts differences in blood
oxygenation levels. It is possible to capture this contrast with MR measure-
ments thanks to the magnetic properties of blood (hemoglobin in particular),
which were discovered in 1936 by Linus Pauling (Nobel prize in 1955) with
his student Charles Coryell. Oxygenated-hemoglobin (HbO2) is in fact dia-
magnetic - no unpaired electrons in outer shell, while the de-oxygenated form
(Deoxyhemoglobin- Hb) is paramagnetic - has unpaired electrons.
Having a significant magnetic moment, Hb slightly distort a surrounding mag-
netic field, affecting the spin-precession speed (Larmor frequency) of neigh-
boring nuclei: from a MR point of view this means that the material will be
characterized by a faster transverse magnetization relaxation (i.e. faster T2 and
T ∗
2 decay. See figure 1.2).

First measurements of differences in MR signals from in-vitro oxy- and deoxy-
genated hemoglobin samples revealed a clear dependence between 1/T2 constant
and fraction of HbO2 over Hb (as 1/T2 ∝ Hb−2), and no dependence between
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Figure 1.2: Rest and active states of a vessel: in the active state blood flow and
blood volume increase, as well as the concentration of HbO2; due to the different
magnetic characteristics of the Oxy- and Deoxy-hemoglobin, in the active state
the net transverse magnetization experience a slower decay, so that for a fixed
T∗

2 the available signal is higher.

1/T1 constant (longitudinal relaxation time) and HbO2/Hb [15]. Furthermore,
a quadratic dependence between the increase of 1/T2 and the external magnetic
field was demonstrated: for this reason BOLD signal is normally detected with
high-field MR instruments (≥ 1.5T).
These results inspired some important attempts of measuring such contrast in-
vivo, e.g. [16], comparing MRI contrasts of vessels with blood at different levels
of oxygen saturation, and then to the more ambitious goal of measuring the
difference of saturation provoked by an increased brain activity (i.e. a BOLD
signal) [17].
To sum up, BOLD signal originating from brain activity can be detected with
appropriate MR measurements thanks to the dependence of parameter 1/T ∗

2 on
the relative fractions of HbO2 and Hb in blood; this relative abundance depends
on the balance between consumption of oxygen and its supply from blood flow.
As explained in the previous section, in presence of neural activity, the oxygen
supply tends to exceed its consumption, increasing the fraction of HbO2 over
Hb, hence “flushing away” the major source of magnetic field inhomogeneity;
this has the effect of increasing the 1/T ∗

2 parameter, and then of increasing
the BOLD signal. Many experimental observations has proven the reliability of
BOLD signal as an indirect measure of neuronal activity and the reproducibil-
ity of such a measure, and today it is at the basis of the most widely used
techniques for brain activity measurements [18].

1.2 From BOLD signal to rs-fMRI

It has been shown how blood oxygen content affects the MR signal transverse
component’s decay rate; in particular, magnetic susceptibility of blood decreases
as it becomes more oxygenated, affecting both T2 and T ∗

2 relaxation processes:
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1.2. From BOLD signal to rs-fMRI

Figure 1.3: Transverse magnetization change during gradient-echo formation.
The “beat” pattern exhibited by Mxy when extra gradient is turned on is due to
transient partial phase-coherent states of the spins.

this dependence can be exploited in order to measure the BOLD signal.
In particular, for any practical purpose, T ∗

2 -weighted imaging is used, since it
is more sensitive to oxygenation changes by at least a factor of 2 to 4; this is
mainly because T ∗

2 contrast is affected by field inhomogeneities from small to
large spatial scales, while Spin-Echo T2 BOLD signal predominantly originates
from small-sized ones 1[19, 20].
The most common acquisition sequence for T ∗

2 -weighted BOLD-fMRI is the
Gradient Echo (GE) Echo Planar Imaging (EPI), by which it is possible to
acquire a whole-brain volume in a fraction of a second.

1.2.1 GE-EPI sequence

Gradient Echo mechanism

Gradient Echo (GE) sequence is based on the application of an initial small flip
angle pulse (≤ 90◦) and the simultaneous application of a gradient, by which

1T2 contrast relies on diffusion of protons across inhomogeneities: for the extravascular
component of the signal this effect is larger near small vessels, but smaller near large venules,
where susceptibility gradient is “smoother” then dephasing effect is partially refocused.
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Figure 1.4: Left - Blipped GE-EPI temporal sequence temporal scheme. Right
- Sampling of the k-space, performed by sequential applications of the phase-
encoding gradient while alternating the phase-encoding direction.

it is possible to generate an echo of the initial transverse magnetization. An
important difference with a spin echo sequence is that dephasing of protons
occurs as a result of T ∗

2 -decay rather than a T2 decay process, and is susceptible
to static field inhomogeneities.
With respect to spin echo, GE acquisitions are much faster because longitudi-
nal magnetization component is never inverted, then a smaller recovery time
is required (shorter TR). In particular, when using small flip angles, one has
the advantage that the amount of transverse magnetization gained is much
greater than the longitudinal (i.e. as the flip angle get smaller, the trans-
verse/longitudinal magnetization ratio increases).
Figure 1.3 summarizes how a GE sequence works: at t0 an RF pulse with
flip angle ≤ 90◦ excites the sample, so that longitudinal magnetization is par-
tially tilted and a transverse magnetization is created; hydrogen spins precess
at slightly different speeds, then the transverse magnetization starts to decrease
(following a T ∗

2 relaxation, i.e. in a free induction decay - FID regime); at t1
an extra gradient is applied, accelerating the dephasing process, until t2, when
no net transverse magnetization is left and the gradient is switched off; at t3 an
inverse gradient is applied (same magnitude and direction, opposite polarity),
with the effect of restoring an aggregate transverse magnetization, so that an
attenuated echo of the initial signal can be measured.
The main reason why GE is used in BOLD-fMRI sequences is that it allows
to acquire T ∗

2 -weighted images (i.e. sensitive to magnetic field inhomogeneities
and magnetic susceptibilities differences) with a very short TE (echo time),
which in turn means that overall TR can be reduced, while keeping a relatively
high SNR; clearly, in any functional-imaging modality reduction of TR is of
crucial importance, since it directly determines the temporal-resolution of the
sequence.
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EPI acquisition

Even though GE sequence can offer very short TRs, in order to acquire entire 3D
brain volumes in a fraction of a second an optimized image sampling approach
must be adopted. The so-called turbo or fast sequences allow to collect multiple
k-space rows per single RF pulse excitation. With the Echo-Planar Imaging
(EPI) modalities it is possible to sample the entire k-space (i.e. an entire 2D
MR slice) with a train of echoes following a single initial RF pulse stimulus.
A schematics of one of the most common EPI sequences is reported in figure
1.4 (commonly known as blipped -EPI). After the slice-selective RF excitation
pulse, and after the rephasing lobe of the slice selection gradient (Gss), a train of
echoes is generated through an oscillatory gradient along the frequency encoding
direction (GFE, which in this case is actually the readout gradient), which
alternately dephase and rephase the set of spins in the sample. During each
GFE inversion, a very short-lasting phase encoding gradient (GPE, “blip”) is
applied, so as to shift the current sampling position along the phase-encoding
direction. At the end, in practise k-space sampling is obtained by following a zig-
zag trajectory, travelling frequency-encoding direction alternately in opposite
directions, and skipping to the new line at each blip of the GPE.

1.2.2 Spatial and temporal resolution

Fundamental parameters to be chosen for an fMRI experiment are the spatial
resolution and the acquisition rate (or temporal resolution, which corresponds
to TR - time for the acquisition of a single brain volume), depending on the
particular requirements of the situation.
When using EPI techniques, TR directly depends on the number of slices form-
ing a brain volume and on the the time each slice takes to be acquired in the
EPI sequence; the latter is mainly determined by how rapidly gradients can be
switched on and off, by how fast is the ADC and by the TE (echo time) one
chooses to use.
In the context of BOLD-fMRI optimal TE is about 20 to 40 ms (equal to the
T ∗
2 of tissue). Considering the time needed for the rest of the sequence, one

single slice of volume can be acquired in 50 to 100 ms, allowing ten to twenty
slices per second. Considerable improvements were made possible by the use of
parallel imaging approaches [21, 22] and more recently by multi-slice (or multi-
band) techniques (which simultaneously excites multiple slices by means of a
single composite RF pulse, and then separate signals during image reconstruc-
tion [23]).
Nowadays fMRI examinations can reach TR of less than 1s at 3T, allowing a
finer temporal sampling and, as a consequence, more effective noise removal.
On the other hand, spatial resolution is mainly determined by magnetic field
gradients strength, digitizing rate and the time available before complete sig-
nal decay, which clearly is much more important in the case of EPI sequences,

11



Chapter 1. BOLD signal MR imaging

Figure 1.5: Signal loss artifact due to magnetic susceptibility of air-tissue bound-
aries in the ventral frontal lobes, at different field strengths. Notice that this kind
of artifact get worse for increasing field-strength.

rather than “multi-shot” imaging methods (for this reason usually EPI images
are characterized by a lower spatial resolution). However, with multi-band and
parallel imaging techniques, also EPI images can reach a voxels size as small as
1 mm3; common resolutions with 3T scanners are 2 to 3 mm3.

1.2.3 Image quality and artifacts in fMRI

EPI artifacts

The quality of EPI images can be severely compromised by the presence of char-
acteristic artifacts, which mainly originate as a consequence of field or gradients
inhomogeneities when no proper shimming (adjusting with additional fields) is
provided.
In particular it is worth mentioning the two main types of artifacts: geometri-
cal distortions (spatial shifting of voxels in the image reconstruction) and signal
losses, which are usually due, respectively, by small- and large-scale field in-
homogeneities. Larmor frequencies of protons in fact directly depend on the
magnetic field strength they experience, and since the position of a voxel in the
image is encoded by its frequency, a voxel with incorrect resonant frequency will
be displaced to an incorrect position; on the other hand, when there is a rela-
tively long time between slice excitation and signal acquisition, magnetic field
inhomogeneities can make spins inside a voxel accumulate different amounts of
phase, leading to MR signal loss (see the example reported in figure 1.5).
Such artifacts are commonly observed in brain regions that are close to an

air-tissue boundary (such as ventral frontal lobes and inferior medial temporal
lobes, because of nasal, oral and auditory cavities) due the difference between
air and tissue magnetic susceptibilities, which cause field distortions.
Solutions to these problems include: providing a better static field shim, map-
ping the static field to perform a correction based on this map, or try some kind
of corrections after the image is reconstructed.
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SNR and sources of noise

BOLD-fMRI experiments rely on very small and transient (but meaningful)
changes in a signal which is affected by a high spatial and temporal variability.
Part of such variability is due to inherently random causes, such as scanner or
patients thermal fluctuations, while another part is typically due to physiolog-
ical effects that could be temporally and spatially correlated with the “true”
signal, making it more difficult to get rid of. Typical sources of potentially
correlated noise are: imperfections in scanner hardware, patient head motion,
physiological processes such as respiration and heart beat.
Increasing the static field strength directly increases the amount of net magne-
tization in the sample, hence increases the detected signal, but simultaneously
amplifies artifacts and makes inhomogeneities harder to correct. For these rea-
sons a series of appropriate pre-processing steps on the reconstructed images are
always required, targeting specifically each source of noise and artifact. More
details on this topic will be given in the next chapter.
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Chapter 2

Analysis of rs-fMRI data

The first fMRI studies adopted so-called task-induced protocols, meaning that
they focused on responses in the BOLD signal as induced by a task performed
by the subject [24]. In typical task-induced examinations, a simple and short
task (e.g. finger-tapping) is performed by the subject multiple times during the
acquisition time, then the BOLD signal measured during the task is compared
with baseline signal measured at rest.
Resting state-fMRI (rs-fMRI) is a more recent trend in functional neuroimaging
and consists in observing human brain activity when the subject is awake and
not performing any particular task.
From the point of view of the MR acquisition, apart from the task-protocols,
task-fMRI and rs-fMRI do not differ much, but subsequent data processing and
analysis methods are essentially different.
In typical rs-fMRI the examined brain is supposed to be in a “stationary” state
1, where distinct brain regions, rather than being totally silent, show a weak but
coherent (i.e. temporally similar) low-frequency BOLD signal fluctuations. The
similarity of their signal time courses can be considered a measure of functional
connectivity (FC). The choice of the metric used for quantifying the similarity
between two time courses clearly has a fundamental importance for the inter-
pretation of the results. Resting-state FC between specific anatomical regions
was shown to be so reproducible (between- and within-subjects) that inspired
the definition of so-called independent resting-state networks (RSNs), which can
be isolated from the whole-brain signal. RSNs have been extensively studied
and accurately described [26], and offer an opportunity to compare functional
organization of different subjects brains.
Analysis of rs-fMRI data can follow different approaches, among which the most
widely used are the seed-based correlation analysis (SBA, based on a strong
a priori assumption about the spatial localization of a region of interest for

1in recent years some studies have investigated the hypothesis that a non-static behaviour
could be observed even in conventional rs-fMRI experiments [25]; however, there is general
agreement that trends in functional connectivity are a “higher order” effect, and the stationary
hypothesis is appropriate for most of the cases.
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the network) and the independent components analysis (ICA, a data-driven
approach); often research experiments aim to highlight some group-based dif-
ferences between cohorts of subjects, thus require additional steps for making
data comparable.
In this chapter both the fundamental steps typically required for rs-fMRI data
preparation and standardization (pre-processing) and some different approaches
that can be applied for subsequent data analysis will be presented.

2.1 Pre-processing and denoising techniques

Data preparation in rs-fMRI is the set of procedures performed after the acqui-
sition and before the proper data analysis. Such procedures include corrections
directly related to the acquisition method, true de-noising of data, and often (as
in the case of cohort-studies, when average characteristics of groups of subjects
are compared) registration of brain volumes to a standard space (MNI-ICBM152
brain template [27]).
As it was already mentioned, due to the intrinsically low effective SNR of raw
BOLD-fMRI data, the application of an appropriate and targeted series of de-
noising steps can drastically affect the quality of data; for this reason, at least
the very first part of such procedure is essentially standardized.
Common correction and de-noising steps include:

1. Correction for slice-timing differences - as shown in figure 1.4, ac-
quisition of each slice of the brain volume is performed separately, hence
at slightly different times. In order to virtually “synchronize” the acqui-
sition time-points, a temporal interpolation of the signal from each voxel
at common time-points is performed.

2. Correction for head motion - patient’s head motion during acquisition
time is one of the main problems for fMRI studies, and if not adequately
corrected can considerably worsen signal spatial resolution and eventually
lead to incorrect results [28]. Head motion can be partially prevented
by carefully instructing the subject, by maximizing their comfort and
through some sort of head restraints; residual motion is corrected by spa-
tially aligning all the image volumes to a single reference volume (usually
the first or the central acquisition time-point). Co-registration is usu-
ally performed by fitting the parameters of a rigid-body transformation
through a cost function minimization.

3. Spatial filtering (low pass) - 3D spatial smoothing of each brain volume
has been demonstrated to increase SNR; in particular, there is evidence
that at higher fields (≥ 3T ) it is convenient to collect high-resolution
data and then perform spatial smoothing rather than acquiring at lower
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resolution [29]. Usually spatial smoothing is performed by applying a
Gaussian filter of FWHM ≈ 4mm to 8mm (i.e. approximately expected
activations extent).

4. Temporal filtering (band-pass) - the use of temporal filters on each
voxel’s time series can substantially improve the quality of the acquired
data: BOLD signal is in fact characterized by predominantly low fre-
quency fluctuations (0.01− 0.1Hz, with minor higher components), while
physiological noise spectrum is usually centered at higher frequencies (e.g.
cardiac 1.0 − 1.5Hz and respiratory (0.3 − 0.5Hz), then they can be iso-
lated by the application of a low-pass filter. Usually a high-pass filter
is also used in order to remove the presence of slow hardware/scanner
related drifts or apparent aliased signal generated by physiological noise
with frequency similar to the acquisition rate [30].

Other denoising approaches have been developed in recent years, trying to more
precisely address structured noise and the well-known artifacts which typically
affect functional images, and concurrently preserving true signal. For exam-
ple, for physiological artifacts, it is possible to exploit external recordings of
the physiological state, and then retrospectively regressing out those compo-
nents from the total signal. However, since this kind of monitoring is usually
not available, fully data-driven approaches are required: one of the most effec-
tive examples of such techniques is based on Independent Components signal
decomposition [31], which will be presented in the next section.

2.1.1 ICs signal decomposition-based data denoising

ICA - Independent Component Analysis

ICA formally refers to a class of latent variable models, commonly used for
the linear decomposition of a multivariate signal into maximally independent
components (blind source separation problems) [32, 33]; similarly to Principal
Component Analysis, ICA provides a new representation for the data (i.e. a new
vector basis) through a linear transformation, but maximizing the statistical in-
dependence of the components rather than minimizing their mutual correlation
[34]. In fMRI context ICA algorithms are used to separate independent com-
ponents of 4D data (3 spatial dimensions and time) each characterized by a 3D
spatial map and a common time course.
Classical ICA algorithms (such as in [35]) assume a decomposition of fMRI data
t × n matrix X (t is the number of timepoints, n is the number of voxels of a
single brain volume) such that

X = AS (2.1)

Where S is a t×n matrix in which each row identify a statistically independent
spatial map of the brain, and A is a t × p matrix containing characteristic
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Figure 2.1: Classical ICA decomposition scheme: an initial 4D signal is re-
shaped onto a 2D matrix (p timepoints × n voxels); ICA decomposes it as a set
of q statistically independent components, each one characterized by a spatial
map (represented in the 2D matrix S) and a time series (represented in the 2D
matrix A).

time courses of each independent map as column vectors (mixing matrix ). ICA
goal is then to estimate an unmixing matrix W = A−1 so that S = W X
has independent rows, by means of an iterative optimization algorithm (e.g.
infomax algorithm). In figure 2.1 the classical ICA main idea is illustrated with
a simplified scheme.
The model presented above is the simplest possible, but has two important

limitations: first, the mixing matrix is constrained to be squared (i.e. the
number of independent components is equal to the number of time-points); and
second, there is no explicit assumption for the presence of pure noise components
(data is assumed to be completely characterized by estimated spatial maps
and mixing matrix). For practical implementations then, a more sophisticated
model called Probabilistic-ICA (PICA) [36] is employed.
PICA assumes that the original signal measured in i -th voxel can be represented
as a p-dimensional vector

xi = Asi + µ+ ηi , ηi ∼ N (0, σ2 · Σi) (2.2)

with si representing the q-dimensional vector of the independent signal com-
ponents contained in data from i -th voxel, ηi representing the Gaussian noise
and µ the average signal of xi. Covariance of the noise is assumed to be voxel-
dependent for generalization. Then similarly to the previous case, solving the
blind separation problem correspond to find the unmixing matrix W such that

ŝ = W x (2.3)

is a good approximation for the real signal s.
In practical implementations of PICA (such as MELODIC, released as part of
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the FMRIB Software Library) data is required to be normalized to unit noise
variance before estimating the unmixing matrix, and noise covariances Σi are
obviously not known in advance; for this reason, original data is iteratively
split into noise and signal sub-spaces through PCA application, and normalized
according to the progressively more accurate estimation of noise component.
Further details on ICA decomposition algorithms and implementations can be
found in [34, 36, 31].

Classification of artefactual components

In the context of rs-fMRI, at single subject-level, ICA was proven to be a pow-
erful tool for artifacts removal during data pre-processing, for its ability to sep-
arate true neural signals from many different sources of stochastic or structured
noise as distinct independent components (ICs). In practice there are at least
two ways in which ICA decomposition could be exploited for noise removal: to
select “good” ICs (representing true neural signal) and sum them to reconstruct
true-global signal, or to select “bad” ICs (artifactual and noisy components) and
regress them out from the starting data (the latter being considered the most
conservative approach, hence the most common) [37]. However, independently
from the denoising approach, each IC resulting from the decomposition must
be classified as signal (S-IC) or noise (N-IC) based on its spatial map and its
average time course (examples of “good” and “bad” components, as they can
be observed by running the ICA decomposition for a subject, are reported in
figure 2.2 and 2.3).
Classification of noise components can be performed by hand but requires ex-
pert knowledge about BOLD signal typical spatial and temporal characteristics,
about noise and artifacts peculiarities as well as neuroanatomy and physiology
notions; in practice this means that the procedure is strongly time-consuming
and can be operator dependent if no adequate training is provided.
In recent years many publications addressed the problem of giving objective
guidelines for hand classification in order to make results reproducible, such
as [38], [39] and [40]. In general there is agreement that a classification based
on visual inspection of spatial maps (e.g. activation peaks must be in gray
matter tissue, activation should not present alternating slices or alternating
positive and negative scattered peaks), inspection of characteristic time series
(e.g. should not contain sudden oscillations) and of its power spectrum (e.g.
must contain mainly low-frequency signal), together with the knowledge of the
most common noise components characteristics, can guarantee good cleaning
results, removing most of the artifacts while preserving the original true signal.
Clearly, there is high interest in the automation of such procedure with classifi-
cation algorithms, and a number of tools have been developed (FMRIB’s ICA-
based X-noiseifier (FIX) [41]), reaching high levels of accuracy, even though the
gold-standard remains hand classification.
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Figure 2.2: Examples of two artifactual ICs, produced by applying MELODIC
ICA decomposition on a subject’s real data (intensity threshold at |Z| > 3.1).
Component IC1 (top) cannot represent true neural signal, as the peaks of in-
tensity do not overlay with grey matter, or are even outside the brain volume.
Component IC2 (below) is a typical example of signal produced by the large vein
in the superior sagittal sinus, which is a very common artifact. In these figures
the power-spectrum and the time course of each IC, which are also examined in
order to classify the components, are not reported for simplicity.

Figure 2.3: Example of two ICs representing true neural signals, produced by ap-
plying MELODIC ICA decomposition on a subject’s real data (intensity thresh-
old at |Z| > 3.1). Peaks of intensity are placed on gray matter and well-represent
a bilateral correlation between regions of the motor cortex.
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2.2 ICA-based approaches and Dual-Regression

Generally speaking, rs-fMRI experiments are focused on observing correlation
patterns within the brain or specific parts of it, and eventually compare them
with other subject’s data. Data analysis, once pre-processing and noise removal
steps are performed, can follow different approaches depending on the particu-
lar aspects one is interested in and on the prior hypotheses that are done.
ICA-based approaches are examples of fully data-driven methods for the investi-
gation of whole-brain correlation patterns, interpreted as functional connectiv-
ity. In fact, when ICA is performed on cleaned data from a single subject, and
in particular when the number of ICs components is limited (20 to 100 compo-
nents), it is possible to identify among those components functionally connected
networks, and eventually recognize them as portions of or entire RSNs. The
number of ICs (dimension of the ICA) is an important parameter which indi-
rectly determines the scale of the networks that will be observed: by using a
small number of components, each IC will bring a larger portion of the total
signal variance, so larger networks will be returned (more rough description of
the connectivity patterns), while by using a very large number of components
it is more probable to end up with RSNs divided into different sub-components.
ICA can be exploited in the frame of group-studies, when different cohorts of
subjects are compared, by running a single ICs decomposition on the temporally-
concatenated data from all the subjects of a group at the same time. This tech-
nique is known as group-ICA (or concat-ICA, see figure 2.4), and allows the
identification of common ICs spatial-maps for the whole group; in this way it
is possible to obtain more robust ICs maps for each cohort and to make formal
statistical testing of group-differences between correspondent ICs.
One way to do this is with a so-called dual-regression analysis [42, 43], in which:

1. group-specific ICs are used as spatial regressors to extract subject-specific
characteristic time series associated to those maps.
By calling Y ∈ Rn×t the 2D matrix of a subject’s time courses (n vox-
els, t timepoints), Ŝ ∈ Rn×m the set of group-level ICs spatial maps (m
components), E1 ∈ Rn×t the errors matrix, then Ŝ are the predictors in
a multivariate linear regression such as

Y = Ŝ ·BTC + E1 (2.4)

where BTC ∈ Rm×t is the matrix of the subject’s time courses associated
to each IC map.

2. these subject-specific time courses are used then as a set of temporal
regressors to find subject-specific maps associated to the group-level ICs.
This second regression reads

Y = B̂TC ·BSM + E2 (2.5)
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Figure 2.4: Group-ICA analysis scheme: individual EPI volume sequences are
registered to a common space and temporally concatenated (X1, X2 ... Xi);
ICA is performed on the total sequence; common (group) ICs spatial maps are
identified (in matrix S), and can be used for subsequent analyses (e.g. a dual-
regression analysis, for obtaining subject-specific maps associated to the group-
level ICs).

where B̂SM ∈ Rn×m will contain the estimated spatial maps corresponding
to each group-level IC.

With the set of subject-specific spatial maps it is then possible to test for group-
differences at voxel level.

2.3 Seed-based approaches

A different and conceptually simpler type of commonly used approaches, are
the so-called seed-based approaches, which focus on the functional connectivity
between one or more Regions of Interest - ROIs (or seeds) and the rest of the
brain. A seed-based correlation analysis hence requires the a priori definition
of the ROIs (which can be either anatomical regions or spherical seeds), making
it in general more dependent on prior assumptions with respect to ICA-based
methods.
In practice in a seed-based analysis the time series of all the voxels inside a
ROI are averaged to obtain a characteristic time course of the region; then this
data are used as a regressor in a linear correlation analysis (or in a General
Linear Model - GLM) in order to calculate voxel-wise functional connectivity
maps of covariance with the selected ROI (for this reason is sometimes called
seed-voxels correlation analysis); the result is then a whole-brain connectivity
map indicating how strongly each voxel is functionally associated to the seed
region. Seed-based approaches have been largely used for revealing intrinsic
connectivity patterns of specific brain regions, and were demonstrated to be
highly reliable methods [44].
With respect to ICA-based approaches, seed-based connectivity analysis ad-
dresses the functional connectivity of specific ROIs, rather than giving infor-
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mation about whole-brain intrinsic functional networks, making it a valuable
solution when one is interested in a more direct and focused analysis of the
connectivity of a specific brain region.
For group-level comparisons, different methodologies may be adopted, as a sta-
tistical comparison between two sets of subject-specific spatial maps of corre-
lation coefficients may be differently implemented [45]. A common approach is
to convert the individual correlation maps to Z-statistics and submit them to a
GLM to fit a previously specified model, followed by a hypothesis testing.

2.4 Graph-based analysis

Graph-modelling of brain functional networks exploits concepts from graph-
theory to explore and describe its organization. With respect to those intro-
duced in the last sections, graph-approach presents further levels of complexity
from the implementation point of view, as well as for the interpretation of re-
sults, but can also offer a richer description of the organization of the brain.
In order to implement a graph-based analysis of rs-fMRI data a series of as-
sumptions must be made, starting from the definition of the nodes and links of
the graph itself.

2.4.1 Definitions

A graph is defined by a number of nodes (or vertexes), variously connected by
links (or edges). Each link can be characterized by a strength (or weight ; in
this case the graph is said to be weighted), and can be undirected or directed
(whether the links can be travelled in both directions or not); in graph-modelling
of the brain nodes are usually imagined as concrete and delimited volumes of
brain, while links describe the functional connectivity between them (therefore
will essentially depend on the BOLD signal associated to the nodes).
The definition of nodes depends on both the scope and the data available in
the particular experiment for which the analysis is required. One could think
that the most natural choice would be to take each single rs-fMRI voxel as an
independent node of the graph, but even with a relatively low data resolution
this would inevitably bring to a very large graph (making each operations com-
putationally expensive) and based on less significant data (due to the typically
low SNR of BOLD signal). In practice the simplest choice is to define nodes as
spherical volumes centered in specific meaningful positions of the brain (with
radius depending on resolution and effective SNR of the data); more effective
choices are based on pre-defined brain parcellations (based on either functional,
structural or simply anatomical atlases) or on parcellations computed from the
data itself through clustering algorithms [46, 47].
The definition of links reflects the important assumptions made about the con-
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cept of functional connectivity: how is it defined and how can be quantified.
The most common choice is to define functional connectivity between two nodes
as the full Pearson’s correlation coefficient between the two characteristic time
series (defined as the average time course of the voxels belonging to each node),
which quantifies a linear time-domain dependency; this approach has the ad-
vantage of being rather simple, computationally fast and experimentally was
shown to give solid and reliable results [48]. Furthermore, the most common
choice when using full Pearson’s correlation is to neglect the potential negative
values of correlation, and treat them as zeros, as their interpretation is unclear
but there exists evidence that they could be linked to statistical artifacts or
emerge from certain steps in data pre-processing [49]. Many other approaches
have been studied and discussed, such as partial Pearson’s correlation, methods
based on Wavelet decomposition, Mutual Information, Euclidean distance or
Dynamic Time Warping; in general results obtained with different functional
connectivity definitions should not be considered as comparable, but there is
evidence that all the previous metrics results are consistent, and none of those
in general clearly outperform the others [50]. Some studies have suggested the
possibility that a combination of different metrics, based on different definitions
of connectivity, could give a meaningful and more complete description [51].
From a mathematical point of view, a graph can be represented by its adjacency
matrix, i.e. a square matrix in which the value of element (i, j) will represent
the strength of the link (the weight) between i-th and j-th elements (so that
binary graphs will be described by binary adjacency matrices and undirected
graphs by symmetric matrices). A different, hence equivalent, graph represen-
tation is the so-called incidence matrix ; in this case rows are associated to the
nodes of the graph, and columns to its edges: (i, j) element value indicates
the connection of j-th link to the i-th node (each column will always contain
two non-zero values). In the next chapters of this work, graphs will be always
represented through their adjacency matrices.

2.4.2 Graph properties

Once a graph is defined, it is possible to describe many aspects of its topological
organization through the evaluation of specific global properties (or measures);
on the other hand, local properties can help characterizing the role of each node
in the network. In this section some of the most relevant properties for the
graph-modelling of brain functional networks are illustrated [52].
The most basic (local) property of a graph is the degree, defined as the number
of links connected to a certain node, or equivalently the number of neighbors of
that node. The distribution of the degrees of the nodes in a network is a first
global-level property which can help characterizing the graph, together with
the Giant-Component Size for disconnected graphs (i.e. the size of the largest
connected component of a graph); the global property defined as the average
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value of such a distribution is usually called density of the network. In weighted
graphs nodes’ strength, i.e. the sum of the weights of all the links connected to
the node, is usually more relevant than degree, but conceptually analogue.
Other neurobiologically meaningful measures are listed below2.

• Properties of integration
According to M. Rubinov and O. Sporns, functional integration for a brain
network can be described as “the ability to rapidly combine specialized
information from distributed brain regions” [52], implicitly assuming that
nodes of a graph are conceptualized as entities exchanging information
through the links they’re connected to; consequently, the measures ad-
dressing functional integration are based on the paths which can be built
by joining sets of links. Paths are then naturally characterized by their
length, considering inverse of the weight of a node as its individual length.
Notice that, despite the intuitiveness of those definitions, in the case of
functional connectivity graphs, links represent a kind of correlation be-
tween neural activity of two brain regions rather than an effective flow of
information, then measures of integration should be interpreted accord-
ingly.
The most important global measure of integration is the Characteristic
Path Length, defined as the average length of the shortest paths between
every pair of regions of the brain; the average of the inverse length of
shortest paths is usually called Global Efficiency.
For the purposes of this work Characteristic Path Length of a graph was
defined as

CPL =
n(n− 1)∑

i ̸=j d
−1
ij

(2.6)

where dwi,j is the i-j weighted shortest path length; Global Efficiency is
defined as its inverse.

• Properties of segregation
Brain functional segregation is the ability of isolating specialized process-
ing within densely interconnected bundles of nodes. The presence of highly
separated clusters of nodes, or a well-defined modular structure in func-
tional networks suggests an organization of statistical dependencies in-
dicative of segregated neural processing.
Clustering Coefficient is a local property defined as the number of trian-
gular structures that can be drawn in the neighborhood of a certain node
(or equivalently, the number of a node’s neighbors that are also neighbors
of each other), normalized by the node’s degree [53]. Globally, the aver-
age Clustering Coefficient of a graph reflects the prevalence of clustered
connectivity around nodes; notice that due to the normalizing factor on

2here we focus on the case of weighted networks; for binary networks definitions are usually
equivalent, considering all the links weights equal 1.
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the denominator, Clustering Coefficient could be disproportionally higher
in the case of low-Degree nodes.
Clustering coefficient can be computed as

C =
1

n
·
∑
i

2twi
kw
i (kw

i − 1)
(2.7)

where n is the number of nodes in the network, kw
i is the i -th node’s

Strength, and twi represents the number of triangles that can be built
around i -th node (weighted according to their internal links weights). A
more sophisticated global measure of segregation is Modularity, which
quantifies how well a graph can be subdivided into separated modules
(groups of nodes highly interconnected between each other, with few out-
wards connections). Modularity coefficient is usually computed as

Q =
1

m
·
∑
i,j

[
wij −

kw
i k

w
j

m

]
δ(ci, cj) (2.8)

where m is the sum of weights in the graphs, wij is the weight of i-j link,
ci identifies the module containing i -th node. Modules must be estimated
through optimization procedures; one of the most famous (and most com-
putationally efficient) algorithms for community detection is the so-called
Louvain method [54].
A local-level version of the Global Efficiency (previously defined) is of-
ten used for measuring the efficiency of information transfer within local
subgraphs or neighbour nodes, and is called (Local Efficiency). Similarly
to the Global version, it is defined as the inverse of the average shortest
path length, computed with all the neighbours of a node among them-
selves; notice that Local Efficiency only reflects a “local integration” of
the graph (in the neighbourhood of a node), hence it represents something
more similar to a segregating property, rather than integrating.

• Small-Worldness
Brain networks are observed to efficiently combine the presence of a well-
defined modular structure (functional segregation of specialized activity)
and of a strong inter-modular connectivity (integration) [55]; graphs with
such characteristics (more precisely, graphs which shows a better com-
bination of these two counter-trending aspects with respect to a random
graph appropriately defined) are typically called small-world -networks. A
possible measures of Small-Worldness, as defined in [56], is

SW =

(
C

Cr

)
·
(

CPL

CPLr

)−1

(2.9)
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where C and CPL are respectively the Clustering coefficient and the Char-
acteristic Path length of the graph; Cr and CPLr are the same measures
computed on a random graph (therefore the choice of the latter will be
determinant).

• Assortativity Coefficient Assortativity coefficient is a global measure
defined as the Pearson correlation coefficient between the Degrees of the
two nodes which are connected by a link (for all the links in the network).
Interpretation of this metric is less straight-forward than those of the pre-
vious ones, but in general graphs with positive values of Assortativity
coefficient are likely to be more resilient to network modifications (due to
the presence of interconnected high-degree hubs), while the contrary may
indicate a more fragile network (high-degree hubs are tendentially sepa-
rated, hence each of them has a greater importance for network topology).

• Centrality measures
Centrality measures aim at characterizing the role of each node in the
networks topology, testing its importance for functional integration and
for network resilience to perturbations.
Degree and Strength of a node can be regarded as the most basic examples
of centrality measures, expressing directly its contribute to graph integra-
tion, in the most general sense. The so-called within-module Z-Score, or
simply Z-Score, is a within-module version of the Degree, being defined
(for i-th node) as

zwi =
kw
i (mi)− k̂w (mi)

σ (mi)
(2.10)

where kw
i (mi) is the within-module mi strength of the i-th node, k̂w (mi)

being the average within-strength of the nodes in the module and σ (mi)
the corresponding standard deviation.
Participation coefficient is somehow a complementary metrics, quanti-
fying the between-module degree centrality (assessing the intermodular
interconnection of a node), and can be defined as

pwi = 1−
∑
m

(
kw
i (m)

kw
i

)2

(2.11)

with sum ranging over the entire set of modules m. Z-Score and Partic-
ipation coefficient together can be useful for identifying provincial hubs
(contributing to module segregation) and/or connector hubs (contributing
to inter-modular integration). Notice that, at a local level, Z-Score can
be interpreted as a segregating property while Participation coefficient an
integrating one.
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Another important centrality measure is the so-called Betweenness Cen-
trality, which doesn’t rely on modules definition, and represents the frac-
tion of all shortest paths in the network that pass through a certain node
(then nodes with a high Betweenness centrality are easy to be bridges,
having important roles for inter-modular integration).

It is important to consider that the density of a graph usually directly affects
the computed values of other properties. This could represent a problem when
a thresholding is applied on link values (always done for graph binarization, but
also in weighted graphs to remove links representing weak correlations, which
are likely to represent spurious connection is experimental situations [57]), since
it is not usually clear what is the optimal density at which properties should
be measured (and compared, when dealing with multiple graphs comparison);
a common solution, if no prior information about optimal density is available,
is to evaluate graph properties at different values of density [58].
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Olfactory Network resting-state
connectivity

In the last two decades the development of efficient MRI experimental tech-
niques allowed substantial progresses in the description of the neurobiological
mechanisms that underpin the sense of smell.
The early portion of the olfactory sensory pathway has been precisely mapped
from an anatomical point of view; in humans, it starts from the olfactory mu-
cosa situated on the roof of the nasal cavity, in which are present the primary
sensing neurons. Their axons form the olfactory nerve, which connects to the
olfactory bulb [59]; from there, information is sent through a set of primary
olfactory cortex areas (Piriform cortex, Olfactory Tubercle, Cortical Amygdala,
Periamygdaloid cortex ) and then distributed towards the so-called secondary
olfactory sensory areas, not directly connected to the olfactory bulb. Regions
which are strongly involved in the secondary processing of the stimulus are
the Hypothalamus, Thalamus, Caudal Orbitofrontal cortex, Prefrontal Cortex,
Insular cortex, Amygdala, Hippocampus and the Nucleus Accumbens [60]. Or-
bitofrontal cortex can be considered the final recipient of olfactory sensory in-
formation, being involved in reward and emotional value of stimuli [61] and
decision making in olfactory-driven food intake [62] (see figure 3.1). In contrast
to this detailed structural understanding of the olfactory sensory pathways, the
functional organization of this circuit has not been understood in detail yet,
and its description in literature is less coherent, also due to the diversity of
the approaches employed and paradigms employed. The application of rs-fMRI
techniques, with respect to task-based experiments, has offered a more direct
approach for exploring the functional organization of olfactory-related areas and
for delineating an intrinsic brain Olfactory-Network - ON.
With respect to other intrinsic brain networks, the measurement of ON spon-
taneous activations can be a much harder piece of work due to the largely
subcortical composition of the network and the presence of important nodes
near air-tissue interfaces [7]; in particular, in rs-fMRI whole-brain connectivity
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Figure 3.1: Sketch of the major brain regions involved in early olfactory process-
ing (lateral view). Olfactory stimuli from nasal cavity are collected by sensory
neuro-epithelium cells in the olfactory mucosa and sent through the Piriform
cortex.

analyses, the olfactory-network activation can be really hard to observe and
high-quality functional data is required.

3.1 Research overview

A localization of brain functional ON was described in the meta-analysis [63],
which combined the results from 45 studies employing different imaging meth-
ods using the activation likelihood estimation - ALE method; the study iden-
tified some core regions directly connected to the olfactory bulb, including the
Piriform cortex, Amygdala, Orbitofrontal cortex and the anterior Insula. These
conclusions were confirmed by some more recent publications such as [64], which
attempted to observe ON with rs-fMRI on a group of healthy subjects, obtain-
ing coherent results.
In the last years, some studies have focused on the observation of ON differ-
ences between groups of patients and healthy subjects. Interesting results were
found, for example, in ON connectivity of Parkinson’s Disease patients [65, 66];
in these patients in fact, olfactory-dysfunction - OD is often observed as one of
the earliest non-motor symptoms, though responsible mechanisms are currently
unknown.
A recent interesting study from T. Campbell Arnold et Al. [7] (2020) exploited
an extraordinary large rs-fMRI dataset (900 subjects, from the Human Con-
nectome Project) to infer a meticulous description of an ON graph-model or-
ganization. By defining a set of 28 ROIs in regions supposed to be strongly
involved in the olfactory primary and secondary processing, the authors of the
study illustrated the construction of a group-averaged binary connectivity graph
and its characterization using a graph-teoretical approach. In particular, by
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means of a series of graph metrics and algorithms commonly adopted for brain
connectivity-networks analyses (some of which were introduced in the previ-
ous chapter of this work), a tripartite modular organization of the graph was
proposed, together with a characterization of the topological role of its most
important nodes.
The main results of the study can be summarized as follows: (1) the functional
olfactory network was identified as composed by 6 key olfactory regions and
16 secondary regions closely connected to them (listed in table 3.1); the identi-
fied network showed a pronounced modality specificity (i.e. segregation), with
few connections to occipital visual areas; (2) within the network, three robust
subnetworks were distinguished (modularity optimization was repeated with
slightly different initial graphs for assessing reliability of the modular struc-
ture). It should be noticed that a certain degree of modularity is considered
as a common feature of “optimized” functional networks, as it reduces overall
complexity and may insulate local “errors”. Nevertheless, direct estimations of
Small-Worldness confirmed the high level of optimization of the network; (3)
based on a set of node centrality measure, the Amygdala - AMY and the ante-
rior Insula - INSa leaped out as major hubs of the network, with important roles
also in inter-modular integration. The set up of the graph-based connectivity
analysis described in 4.4.3 exploited these results as a major source, as they
offer a reliable description of the human ON starting from rs-fMRI data. One
of the limitations of the study was that it confined the analysis to the right
hemisphere, in light of the predominantly ipsilaterality of olfactory pathways,
assuming no differences between the hemispheres.

3.2 Olfactory dysfunction and COVID-19

During the 2020-2021 COVID-19 pandemic, Olfactory Dysfunction (OD) was
found to be one of the most frequent and easily distinguishable symptoms of
SARS-CoV-2 infection, affecting 50 to 70% of the infected. In most cases recov-
ery of olfactory normal functions is relatively rapid, occurring within a median
of 10 days, in parallel with the receding of other symptoms; instead, in a frac-
tion of patients (approximately one tenth) OD persists up to several months
from the infection, sometimes accompanied by a certain degree of cognitive
impairment and other neurological symptoms, in the so-called post-COVID-19
condition (or long-COVID) [2, 67, 68].
Despite a growing body of evidences, the patophysiology undelying COVID-19
related OD is still debated and may involve disruption of the olfactory system
at different levels, from the olfactory neurons located in the roof of the nasal
cavity, to the neurons of the olfactory bulb and those in the olfactory cortices;
in general, evidence suggests that COVID-19 OD could have a different etiol-
ogy with respect to the OD in other viral upper respiratory tract infections
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Table 3.1: 22 anatomical regions belonging to the Olfactory Network, according
to [7]. The last column indicates the sub-network assigned to each node (nomen-
clature as in the original paper), based on the results of a modularity analysis.

Key regions

APC Ant. Piriform cortex Sensory
PPC Post. Piriform cortex Sensory
AMY Amygdala Limbic
ENT Entorhinal cortex Limbic
OTB Olfactory Tubercle Limbic
Oolf Olfactory Orbitrofront. cortex Frontal

Secondary

aHIP Ant. Hippocampus Limbic
pHIP Post. Hippocampus Limbic
Nacc Nucleus Accumbens Limbic
HYP Hypothalamus Limbic
INSp Posterior Insula Sensory
INSd Dorsal Insula Sensory
INSv Ventral Insula Sensory
INSa Anterior Insula Frontal
THLvp Ventral Posterior Thalamus Sensory
Omm Middle Medial OFC Frontal
Opm Posterior Medial OFC Frontal
Omp Middle Posterior OFC Limbic
Oc Central OFC Frontal
Oapc Anterior-APC OFC Frontal
Oml Medial Lateral OFC Frontal
Oolfl Lateral Olfactory OFC Frontal
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(frequently due to the obstruction of the olfactory cleft), as in COVID-19 OD
there is a lower prevalence of sinonasal symptoms [69].
The use of different neuroimaging techniques is required in order to separately
investigate the structures potentially involved in the mechanisms that originates
OD: x-Ray CT can be exploited to exclude obstructive causes, whereas struc-
tural MRI may provide information about olfactory nerve, olfactory bulb and
olfactory cortices morphology (and potentially detect abnormalities, such as in
[70], suggesting that central mechanisms may play a role in persistent OD); dif-
fusion weighted imaging (DWI) can be used to assess microstructural properties
of white matter in ON-related brain regions (e.g. [71]); finally, functional MRI
techniques have demonstrated to provide valuable contributions in the study of
OD in neurodegenerative disease and post-traumatic anosmia (e.g. [72]).
In the next chapters of this work will be presented an experimental attempt
of depicting the ON functional organization of patients suffering from persis-
tent OD after COVID-19 infection, starting from rs-fMRI data, as to date few
similar experiments are reported in literature. Some task-based fMRI experi-
ments have measured a reduced activity of olfactory-related regions in patients
with COVID-19 induced OD (for example, a case was reported in [5]), or dif-
ferent patterns of activation when comparing patients with OD originated from
COVID-19 and patients who developed it after other infections (as in [3]). In a
recent paper a reduced connectivity of the anterior Piriform cortex with respect
to other ON-related regions, in patients with persistent OD after COVID-19
infection was measured, exploiting a brain connectivity graph-modelling based
on rs-fMRI data [6]; this is actually the publication which is closer to what
reported in the current work, but there are some key differences (such as the
choice of the initial parcellation) which make a proper comparison of the results
difficult (further details on that will be given in the dicussion, in section 6).
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Chapter 4

Experimental materials and
methods

4.1 Study cohorts and clinical assessment

A group of patients (23), suffering from persistent OD after COVID-19, were
prospectively recruited from February to November 2021 at the IRCCS Istituto
delle Scienze Neurologiche di Bologna. Inclusion criteria were: OD onset during
SARS-CoV-2 infection (confirmed by a specific molecular or antigen test); OD
duration longer that 1 month; no declared pre-existing OD or chronic rhinos-
inusitis. Each participant, after a clinical interview, underwent a neurological
examination, olfactory assessment and MRI examination in the same day. A
control group of healthy subjects (26) was recruited as well, matched for age
and sex; control subjects declared no OD symptoms and underwent the same
MRI protocol as the patients (see table 4.1 for further details about the study
cohorts).
During the clinical interview patients were asked to describe OD symptoms

either on quantitative scales (hyposmia, anosmia) or qualitatively (dysosmia).
Olfactory performance was then evaluated through Sniffin’ Sticks test, which is
a widely used objective method for this kind of evaluation [73]. Results of the
olfactory test are expressed with three scores (olfactory threshold - T, odor dis-
crimination - D and identification - I); depending on the total sum of the three
scores (TDI score - ranging from 3 to 48), olfactory performance is categorized

Table 4.1: Demographic details of the cohort of subjects involved in the study.

F/M Age (years) Education (years)

Patients 12/11 37± 14 (21− 63) 16.00± 3.06

Controls 13/13 39± 14 (14− 64) -
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as anosmia if TDI ≤ 16.0, hyposmia if 16.25 ≤ TDI ≤ 30.5 or normosmia if
TDI ≥ 30.75. Neuropsychological evaluation included: handedness dominance
evaluation (through the Edinburgh Handedness Inventory - EDI [74]), an ad-hoc
battery of neuropsychological tests, including Montreal Cognitive Assessment
MoCA [75]), language skills assessments, verbal and visuospatial memory tests,
and attention and executive functions assessments; finally, emotional states and
fatigue were evaluated with ad hoc scales.

4.2 rs-fMRI acquisition and pre-processing

4.2.1 Acquisition protocol

Each participant underwent a standardized brain MR examination, performed
with a Siemens MAGNETOM Skyra 3T MRI scanner, equipped with a 64-
channels high-density head/neck array coil. Before the acquisition participants
were instructed about duration of the exam, they were asked to stay awake,
with eyes closed, fixed in a comfortable position.
The MR protocol included a high-resolution volumetric T1-weighted acquisi-
tion (T1 MPRAGE; magnetization-prepared rapid gradient-echo; sagittal ac-
quisition; isotropic voxel 1 × 1 × 1mm3; acquisition matrix 256 × 256; FOV
256mm; repetition time TR = 2300ms; echo time TE = 2.98ms; inversion
time TI = 900ms; flip angle 9◦ ; acquisition time 5 minutes and 21 seconds),
followed by the rs-fMRI acquisition. For the latter a GRE-EPI sequence was
used, with resolution 2.5× 2.5× 2.5mm3 (isotropic voxels), FOV 235mm, rep-
etition time was set to TR = 735ms, echo time to TE = 37ms and flip angle
to 53◦ (the choice of those parameters is optimized to achieve the best contrast
with short TRs); the total acquisition time of the sequence was 10 minutes,
corresponding to a total of N = 816 brain volumes.

4.2.2 Functional data pre-processing protocol

Concerning rs-fMRI data, for each subject a semi-automatic pre-processing
pipeline was applied, following a well-established and standard protocol, specif-
ically designed and optimized at the IRCCS Istituto delle Scienze Neurologiche
di Bologna for this kind of data. First of all, GRE-EPI volumes (among the
816 of each sequence) that were displaced more than 1.5mm in any direction,
or rotated more than 1.5◦ with respect to the central volume of the tempo-
ral sequence were detected and labelled as “displaced”, as motion correction
algorithms will likely fail to appropriately realign the images. Each sequence
containing displaced volumes was then manually examined: if one exam con-
tained more than one hundred consecutive displaced volumes, then exclusion
of the subject should be considered. Successive steps of the EPI images pre-
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processing were performed with the tools of the FMRIB Software Library - FSL,
and included:

• Motion correction - performed with MCFLIRT [76] (part of FLIRT,
which is a set of tools for linear intra- and inter-modal brain volumes
registration), which exploits a trilinear interpolation to optimize a regis-
tration to the middle volume of the sequence, taken as reference;

• Susceptibility distortions correction - performed with the topup tool
[77] from FSL, which generates a distortion field map obtained by acquir-
ing volumes with opposite phase encoding directions for correcting the
induced susceptibility artifacts;

• Brain extraction - to segment the brain volume and separate it from
surrounding tissues, whose MR signal must be removed before next pro-
cessing steps (BET [78]).

• Intensity normalization - computing the median intensity (Im) among
the whole sequence, and scaling the intensities of each volume by a factor
10000/Im.

• Spatial smoothing - using a 5mm-FWHM Gaussian filter, to improve
SNR [79]

• High-pass temporal filtering - using a 60 s cut-off

• Co-registration to T1-structural image - using FLIRT, which opti-
mizes the parameters of a linear transformation and applies it to the EPI
images. This is needed for an easier visualization, and therefore interpre-
tation, of the functional maps.

• Registration to standard space - using FNIRT, i.e. performing a non-
linear registration, with the warping parameters previously optimized for
a registration from T1-structural image to MNI-152 standard space. This
step is performed so that all the subjects of the study can be referred to
a common space.

After the data pre-processing four subjects from the patents group were ex-
cluded due to excessive motion or for the presence of intractable artifacts; anal-
yses were then carried out on a group of 19 patients and a group of 26 control
subjects.
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4.3 Data de-noising: FIX-aided manual ICs clas-

sification

An ICA decomposition with no restrictions on the number of components (di-
mension) was run each subject’s pre-processed rs-fMRI data. An automatic
classification of the components was performed using FIX [41], which was pre-
trained for feature classification on a group of 30 healthy controls (not part of
this study; the trained algorithm was available from a previous project of the re-
search group), who underwent the same acquisition protocol and pre-processing
as the subjects recruited for this study. By a preliminary inspection of the re-
sults, the obtained labelling of the components was considered as not satisfying
enough, probably because of the small number of subjects available for training
the classifier; a manual re-classification was then performed (though aided by
the FIX results, taken as a starting point for the components labelling) fol-
lowing the guidelines of L. Griffanti et Al. (2017) [40]. In particular, for this
work, an initial training period under the supervision of a Neuro-radiologist has
been necessary, as specific knowledge of the physiological and artifactual-related
fMRI effects is required and this step can greatly influence the quality of the
data available for the analyses, followed by the actual re-labelling work. At the
end, a rough estimation of the algorithm performances, obtained by comparing
FIX labelling with a ground-truth from the manual classification, highlighted
a relatively low accuracy, with True Positive Rate (signal correctly classified as
such) ∼ 93% and True Negative Rate (noise correctly classified as such) ∼ 53%.

4.4 Data analysis

For the analysis of rs-fMRI data three different approaches were adopted: group-
ICA, seed-based connectivity and graph-based analysis. The main target was to
characterize the functional connectivity of each subjects cohort, and eventually
to highlight the measured group-level differences; both internal ON connectivity
and connectivity between the ON focal regions with the rest of the brain were
studied.
The three approaches implemented, even though addressing the same functional
connectivity between brain regions (defined as time-correlation between signals),
are based on different assumptions and have different characteristics, hence can
produce apparently different results, the meaning and the consistency of which
will be discussed in chapter 6.

4.4.1 Group-ICA analysis

For each of the two groups, the cleaned data (already registered to the MNI
space), were temporally concatenated, then, on each of the two stacks was per-
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formed an ICA to find group-level robust correlation maps, using MELODIC
tool from FSL [80]. The decomposition was repeated for different ICA di-
mensions (20, 30, 50, 100) and without the restriction of a specific number of
components, since the optimal value for this parameter strongly depends on the
particular goals of the analyses and is not easily predictable. However, the most
significant results (relatively to the objectives of this work, i.e. identifying and
characterizing the ON network) were found with a relatively low number of ICs
(≤ 30−50. Some resulting ICs from the 50-dimensional ICA are represented in
figure 4.1); with larger numbers, resulting components were indeed small and
scattered, and it wasn’t possible to recognize complete RSNs.

Figure 4.1: Example of group-level ICs as produced by MELODIC algorithm
(order is not the original); images intensity represents Z-values, thresholded at
3.1. All the ICs represents meaningful patterns of correlated activations, e.g.
IC2 almost completely reproduce the Default Mode Network.

The obtained group-level ICs were manually inspected in order to select
those clearly attributable to the ON and eventually identify an entire recon-
structions of the network of each cohort of subjects (this can be considered the
first attempt of localization of the ONs).
In order to statistically test for any ON-related difference between the two
groups, the group-level components selected from those of the healthy con-
trols’ group-ICA were then fed into a Dual-Regression to find subject-specific
maps (as explained previously in this work, in section 4.4.1), which were finally
used for inferring statistical differences between groups. This second part was
realized by means of the Dual-Regression tool implemented in FSL [42]. Non-
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parametric statistical testing was performed through a permutation testing, so
the final results were spatial maps of group-differences statistical significance
(and should be thresholded).

4.4.2 Seed-based ON analysis

The position of the seeds required for this type of analysis were determined
according to literature, and in particular referring to [63]. Starting from these
positions two possible approaches may be adopted to draw the seeds: (1) a
simpler solution is to create a spherical volumes of fixed radius and centered at
the coordinates provided by literature, (2) a more sophisticated solution is to
use an appropriate pre-defined brain parcellation and to select the ROIs based
on the overlap with the location provided by literature. The main advantages
of solution (1) are that hypotheses are more general and all the seeds have equal
volume; the main disadvantage is that a spherical volume may include a sig-
nificant portion of white matter and/or cerebrospinal fluid (CSF), whose signal
is expected to be predominantly noise. For this work, both the solutions were
attempted.
In the first case, the pre-processed rs-fMRI data of all subjects were warped
to the standard MNI template. Spherical seeds of 5mm radius were drawn
on the MNI and centered at the absolute positions reported in table 4.2 (see
figure 4.2). First, dual regression (from FSL) was applied on each subject’s
data with a mask containing all the 6 seeds together, to derive individual spa-
tial maps of correlation. On one hand, these maps were then combined to
derive statistically significant group-level connectivity maps (which can be con-
sidered as a first attempt to spatially “localize” the ON); on the other hand,
a group-comparison between the two sets of individual correlation maps was
performed. In practice, the group-level correlation maps (average maps) and
the group-differences maps (contrasts), both expressed in terms of statistical
significance levels (corrected p-values), were produced with the randomise tool
(from FSL) provided with a design matrix and the set of desired contrasts: 2
for the average map of each group and 2 for difference estimation (HC>PAT
and PAT>HC). randomise is a tool for non-parametric permutations testing,
specifically designed for inference on neuroimaging data; it performs random
permutations on a set of provided images to generate a null-distribution for
the voxel-wise comparison of the same data, and then produces spatial maps
of statistical significance (corrected p-values) for the particular hypothesis to
be tested (i.e. one-sample t-test for average maps of each group and 2-samples
t-tests for contrasts maps). Further details regarding this tool can be found in
[81] and [82].
A similar attempt with the spherical seeds was made by using the 6 seeds
masks separately (stacked on different volumes of a unique image file). Also in
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Figure 4.2: Left - Spherical ON seeds used for the seed-based analysis, axial view
(registered to the MNI). Orange: anterior Insula; blue: orbitofrontal olfactory
cortex; green: piriform cortex.
Right - Spherical seed used for the seed-based analysis of the DMN, corresponding
to the Posterior Cingulate cortex (axial and sagittal views).

Table 4.2: Centers of the spherical ROIs selected for the seed-based analysis of
the ON (in MNI coordinates).

Anatomical region Hemisphere Abbr. x y z

Piriform cortex L PCL -22 0 -14
R PCR 22 2 -12

Anterior Insula L INSaL -36 18 6
R INSaR 28 16 8

Orbitofrontal olfactory cortex L OolfL -24 30 -10
R OolfR 28 34 -12

this case, after having computed individual (subject-specific) spatial maps of
correlation for each of the seeds with the dual regression command, group
differences were assessed.
As a control network, an equivalent version of seed-based analysis was repeated
starting from a single spherical seed placed in a focal region (Posterior Cingu-
late Cortex - PCC) for the Default Mode Network - DMN, which is one of the
main and most easily detectable RSNs.
The analysis (both the localization of the ON, performed by running a Dual

Regression with a unique mask with all the seeds, and all the seeds sepa-
rately) was then repeated starting from 6 anatomically segmented seeds. The
seeds were obtained from the subject-specific volumetric segmentation of T1-
structural images performed with Freesurfer [83], and in particular from the
Destrieux anatomical atlas. The 6 selected regions were: the Amygdala - AMY
(L/R, corresponding to regions 18/54 of the atlas), the anterior Insula - INSa
(L/R, 12118/11118) and 2 ROIs were obtained by merging Orbital medial olfac-
tory cortex regions (L/R, 12164/12124), and the Orbital frontal cortex (L/R,
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Figure 4.3: Example of anatomical ON seeds used for the seed-based analysis, as
segmented on a subject’s T1-structural image (right - axial view, left - sagittal
view; z and x indicate MNI coordinates of the slices). Blue: orbitofrontal cortex;
red: Amygdala; green: anterior Insula.

11164/11124) - OFC (see figure 4.3).

4.4.3 ON-restricted graph-based analysis

Graphs construction

For the ON-restricted graph construction, a set of 25 bilateral anatomical ROIs
were selected from the Brainnetome Atlas parcellation ([84]); the choice of this
atlas among the many available was due to its fine-grained subdivision of the
brain in 246 ROIs, and to the fact that the parcellation was derived from a con-
sensus of structural and functional connectivity (which makes it more suitable
than anatomy-based atlases for the analysis of rs-fMRI data). On the other
hand, the choice of the ROIs was based on the related publications found in
literature (mainly [7, 64, 66]). Some ROIs of the Brainnetome Atlas (amygdala
and thalamus) were merged to define a single node to better replicate the graphs
used in the mentioned publications. At the end, the ON-restricted graph was
composed by a total of 34 nodes (17 bilateral), listed in table 4.3.
For each subject’s rs-fMRI data registered to the MNI standard space, aver-
age signal time courses from each of the 34 ROIs was extracted (using FSL
tools, by averaging the BOLD signal of all the voxels in the ROI). The 34× 34
connectivity matrix (adjacency matrix of the graph) was then obtained by com-
puting the Pearson’s full correlation coefficient between each pair of time series,
after filtering them with a Gaussian kernel (5 time-points moving window - ap-
proximately 3.7 s) to further suppress high-frequency components of the signal
spectrum. Negative correlations values were set to 0, as their interpretation in
functional networks is still debated, since there is evidence that their inclusion
could negatively affect test-retest reliability [85]. Finally, the values of each of
the 45 obtained matrices (19 patients, 26 healthy controls) were transformed
into a Normal-distribution with a Fisher’s r-to-z transformation (i.e. inverse
hyperbolic tangent of the r value). Network properties were then evaluated
both on binarized and weighted versions of these graphs.
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Figure 4.4: Schematics of the steps required for graph construction: (1) Extrac-
tion of single voxels’ time series from EPI data; (2) Computing ROIs average
time series; (3) Pearson correlation between time series, removing negative cor-
relation values and Z-transformation.

All the steps required for the graphs construction (and the subsequent analy-
sis), after the extraction of average time series, were performed using MATLAB
R2021b, and in particular with the tools implemented in the Brain Connectiv-
ity Toolbox - BCT [86], and in the Statistics and Machine Learning Toolbox. A
schematics summarizing the graphs construction is represented in figure 4.4.

Graphs properties evaluation

For each patient, a set of 40 adjacency matrices at increasing density were gen-
erated, by applying a proportional thresholding on the full Pearson’s correlation
matrix in the density range 1−80% with a step of 2%. Such matrices were also
binarized and the analysis was preliminary conducted on this set, before evalu-
ating the weighted one. Finally, a corresponding random version of each matrix
was computed by randomly “rewiring” each link 10000 times (so that original
density and degree distribution were conserved); such randomized versions of
the matrices were then used to normalize property values. Links permutation
was performed using the function randmio und implemented in the BCT [87].
On each binary graph a set of 12 properties, at global or local level, were eval-
uated. Global measures included: Small-Worldness, Global Efficiency, Giant
Component Size, Characteristic Path Length and Modularity Coefficient; lo-
cally, instead, the Degree, Local Efficiency, Clustering Coefficient and Between-
ness Centrality of each node. Furthermore, average values of Local Efficiency,
Clustering Coefficient and Betweenness Centrality were computed for all the
nodes of each network. For weighted graph the same 12 properties, plus the
nodes’ Strength, Participation coefficient and within-module Z-Score, (at a lo-
cal level) and the graph Assortativity Coefficient (global) were calculated.
By integrating the property values over a range of meaningful densities, it was
then possible to characterize each subject with a robust set of values, not de-
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Table 4.3: ROIs of the Brainnetome Atlas selected as nodes for the ON-restricted
graph; corresponding anatomical names and Brainnetome Atlas identification
numbers (BA number) are reported.

Anatomical region Abbr. BA number

Orbitofrontal Olfactory cortex OolfR 46
OolfL 45

Anterior Piriform cortex APCR 50
APCL 49

Amygdala AMYR 212-214
AMYL 211-213

Anterior Hippocampus aHIPR 216
aHIPL 215

Posterior Hippocampus pHIPR 218
pHIPL 217

Entorhinal cortex ENTR 116
ENTL 115

Thalamus THLR 232-234-236-238-240-242-244-246
THLL 231-233-235-237-239-241-243-245

Anterior Insular cortex (internal) INSaiR 166
INSaiL 165

Anterior Insular cortex INSaR 168
INSaL 167

Anterior Insular cortex (dorsal) INSdR 38
INSdL 37

Anterior Insular cortex (ventral) INSvR 172
INSvL 171

Posterior Insular cortex INSpR 164
INSpL 163

Anterior-lateral Olfactory cortex OalR 28
OalL 27

Medial-lateral Olfactory cortex OmlR 44
OmlL 43

Nucleus Accumbens NAccR 224
NAccL 223

Anterior Cingulate cortex CINaR 180
CINaL 179

Rostral Cingulate cortex CINrR 188
CINrL 187
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pending on a particular density. The choice of the range of densities was mainly
based on the observed average Small-Worldness curve trend. In fact, on one
hand one expects that most informative densities are those where the graphs
exhibits Small-World characteristics (i.e. Small-Worldness should be larger than
one), but it must be considered also that at very low densities graphs are sparse
and some measures could present strong discontinuities (particularly for small
graphs). At the end for ON-restricted analysis a range 10−50% was used, while
for whole-brain graphs analysis a 4− 50% was chosen.

Group comparisons

With the measures obtained, characterizing each individual functional net-
work, a group-level comparison was set up. In particular, after having verified
the Normality hypothesis for each group of measures to be compared with a
Kolmogorov-Smirnov Normality Test [88], an ANaysis of COVAriances - AN-
COVA was applied using patients age as covariate regressor; the choice of using
an ANCOVA instead of a simple ANOVA was motivated by the fact that ef-
fects on ageing on brain activity and in particular in functional connectivity
have been extensively demonstrated (e.g. [89]). In particular, the aoctool

function from the Statistical and Machine Learning Toolbox was used, with a
parallel lines modelling (i.e. assuming that response variable dependence with
respect to the covariate is the same across groups) such as

y = (α + αi) + β · x+ ϵ (4.1)

where y is the response (measured values), x the covariate, β the slope describing
dependence on the covariate and (α + αi) the intercept of i-th group.
The Benjamini and Hochberg method was applied for controlling the False
Discovery Rate - FDR [90], being particularly important in the case of local
measures, for which a large number of comparisons are performed; Bonferroni
correction for multiple comparisons, which can considered a more conservative
test, gave comparable results.
Statistical significance was considered at corrected p-vales < 0.05.

Network Based Statistics - NBS

The set of ON-graphs were analyzed also with the Network Based Statistics -
NBS method [91] (implemented in the NBS Connectome MatLAB package).
NBS is a validated tool for identifying statistically significant group-differences
in the links of a graph. In practice, starting from the set of subject-specific
connectivity matrices, this tool allows to massively test a certain hypothesis
on all the entries of the matrices, automatically controlling for the family-wise-
error-rate - FWER (i.e. multiple comparisons).
NBS can be seen as the graph analogue of cluster-based statistical methods
commonly used in mass-univariate testing on the pixels of an image; instead of
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peforming clustering in physical image-space, the NBS clusters in the graph-
topological space (i.e. each connected component is considered as the equivalent
of a cluster). FWER-corrected p-values are calculated for each component using
permutation testing.
In practise the algorithm operation can be summarized in four main steps (more
details are available in [92]):

1. Independently test the same hypothesis of interest at every connection
of the graph (e.g. connections strengths are equal); each connection is
therefore characterized with a single test-statistic value.

2. Perform a first threshold on these values to select the most significant
connections.

3. Identify topological clusters among these; discard sparse supra-threshold
connections (notice that NBS cannot detect alterations of isolated links,
and this is a limitation of the method).

4. Compute FWER-corrected p-value using permutation testing, for each
identified connected component (in practice the first three steps are re-
peated many times, for different random permutations of data in the initial
matrices; the size of the largest component is recorded for each permu-
tation, so that an empirical null distribution for the size of the largest
component size is estimated; with such a distribution FWER-corrected
p-vale can be computed)

The first threshold on single test-statistics values was set at 3.1 (equivalent
to p = 0.001); N = 5000 permutations were performed, and a significance
threshold of p = 0.05 was selected at the end. Among the different measures
available for the components’ size the “extent” was chosen (i.e. the size is simply
defined as the number of connected nodes).
The NBS analysis was repeated with graphs at different densities (10 − 50%,
step 2%); each time, nodes belonging to altered components were assigned with
a score proportional to the estimated significance of the alteration; at the end
the mean-score for each node was computed. Final alteration score - AS for
i-th node

ASi =
1

N
·
∑
d

( p i, d

0.05

)−1

(4.2)

whit d ranging over the set of densities (N in total), p representing the p-values
of each component as computed by NBS.

4.4.4 Whole-brain graph-based analysis

A similar graph-based analysis was performed at a whole-brain level, including
all the 246 ROIs identified by the Brainnetome parcellation (hence including
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also the ON-subgraph). Also in this case graphs were evaluated at different val-
ues of density, in both binary and weighted versions, and corresponding random
graphs were computed as well with the random permutation of links.
The metrics employed were the same of the ON-restricted analysis, with a dif-
ference in the definition of the modules used for Z-Score and Participation
Coefficient computation: in this case were used the modules found by the
community louvain algorithm (already used for Modularity Coefficient esti-
mation).
Even though the analysis was analogue to the ON-restricted case, results ob-
tained with whole-brain graphs are not expected to be the same, and will require
a separate discussion.

4.4.5 Correlations with clinical scales

All the statistically significant group-level alterations detected by the previous
ON-restricted and whole-brain analyses were correlated with the clinical scores
obtained by each patient. In practice, for each patient, the partial (Pearson’s)
correlation coefficient between the measures of the properties which were found
to be altered at a group-level and the results in the olfactory function assess-
ment, neuropsychological tests, emotional states and fatigue scales was evalu-
ated; age of the subjects was used as single confounding variable for correlating
the Sniff-tests results, while age and education were used in the correlations
with neurospychological scores. Statistical significance of the correlations was
set at p < 0.05; no correction for multiple comparisons was adopted at this
stage, as it was intended to be an exploratory analysis.

4.5 Subject-specific ROIs segmentation improve-

ment (algorithm prototype)

An original algorithm for subject-specific improvement of ROIs segmentation
was developed (rs-Data Parcellation Improvement - rsDPI) and run on the
available data. The algorithm addresses the problems arising from potentially
imperfect registrations of the ROIs of the selected parcellation onto individual
functional EPI data. When using fine-grained anatomical parcellations in fact,
a precise registration of the ROIs masks is fundamental in order to avoid the
inclusion of signal from adjacent regions, and consequent SNR loss when av-
erage time series are computed. Following a similar rationale of the method
proposed in [47], the algorithm analyzes the internal correlation of each ROI,
sorts the voxels according to their individual correlation with the others and
removes the least correlated ones when they are on the borders of the ROI’s
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volume. The application of a voxels-removal step, when performing ROIs- or
parcellation-based analyses with fMRI data, is not part of the main standard-
ized data pre-processing workflows but there exists many examples in literature
adopting a similar step, such as in [7].
A python implementation of a prototype version of DPI algorithm was made
freely available in a dedicated GitHub public repository.

4.5.1 rsDPI algorithm

The rsDPI algorithm is based on the fundamental assumption that the input
parcellation should theoretically insulate functionally homogeneous regions, i.e.
each individual voxel inside the volume of the region should have a similar
BOLD signal time course. The algorithm targets those voxels which are on the
edges of the volume and show a low correlation with the rest of the region,
hence probably erroneously included for mis-registration or individual variabil-
ity reasons; its working principle can be summarized as follows:

1. Individual time series from voxels in each region of the parcellation are
extracted from EPI data, possibly before the application of the Gaussian
spatial filter.

2. Internal-connectivity matrix of each region is computed according to the
chosen metric of functional-connectivity (in our case Pearson correlation
between time courses); each voxel’s internal connectivity is then computed
as column-average values.

3. A fraction p of the least correlated voxels are selected (set A); if the
resulting thresholding value is lower than t, more voxels are iteratively
added to A until their maximum value of connectivity reaches t.

4. external voxels of each region are selected by performing n morphological
erosions on the 3D volumes (set B).

5. Sets A and B are intersected, and resulting voxels are removed from the
region volume.

Optimal values for each of the parameters clearly depends on the data available;
after some preliminary attempts, for the current work p = 0.20, t = 0.05 and
n = 2 were used (despite the appearance p = 0.20 was a quite conservative
value; n = 2 was a more aggressive choice, considered the small size of the
regions in the adopted parcellation).
The rsDPI algorithm was used to refine the set of 34 ROIs from the Brainnetome
parcellation used for the ON-restricted graph analysis, for each of the subjects
in the PATs and HCs groups; with these new ROIs, average time series were
extracted from EPI images, a new set of connectivity matrices was drived and
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the whole ON-graph analysis repeated. The results obtained with the new ROIs
were then variously compared with those obtained with the common parcella-
tion. A parameter used to characterized the new time courses is the raw -time
averaged SNR, computed as

SNR =
1

Nt

·
∑
t

µt

σt

(4.3)

where Nt is the number of time-points, and µ and σ respectively the standard
deviation and the average value of instantaneous signal values from the voxels
inside a given region.
Other comparisons were focused mainly on the weights’ distributions of the
matrices obtained in the normal analysis and the new ones.
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Chapter 5

Results

5.1 Seed-based analysis

5.1.1 DMN localization and group-differences

Individual spatial maps obtained with the seed-based correlation analysis using
the PCC spherical seeds were combined and randomized, to obtain group-level
maps (expressed in terms of corrected p-values); by applying a threshold p <
0.05 (statistical significant correspondence within the group), as expected, for
both groups the resulting maps showed a great correspondence with the DMN
descriptions found in literature: significant peaks were observed with the Medial
and Dorsal-Medial Prefrontal Cortex (mPFC, dmPFC), left/right Angular Gyri,
left/right Temporal Poles, left/right Hippocampus and Parahippocampus (see
figure 5.1).

Figure 5.1: Corrected p-value maps for DMN localization, axial and saggital
views (Left - patients group, right - healthy controls group). Brighter blue/orange
refers to a threshold o p<0.05 (statistically significant correspondence within the
group); darker blu/orange refers to a threshold of p<0.08 (for a better visual-
ization of the maps).

From the group comparison performed by means of the dual-regression, no
statistically relevant differences were detected between the set of connectivity
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Figure 5.2: Corrected p-value maps for DMN groups alterations, axial views.
Left - maps relative to contrast HC>PAT, without thresholding and at p<0.40;
right - contrast PAT>HC. Brighter colors represents lower p-values. Peak of
significance was 0.15 in the first case and 0.71 in the second, hence these dif-
ferences are not considerable as statistically relevant.

maps of the patients and those of the healthy controls; in other words: none of
the peaks of intensity of the maps of corrected p-values, representing the statis-
tical significance of the observed difference between the two groups, managed to
survive to the application of the threshold. The difference maps are reported,
as examples, in figure 5.2; in the next sections we will always refer to the peak
values of such maps as peaks of difference significance.

5.1.2 ON - Spherical seeds

From a first qualitative inspection of the individual spatial-maps of correlation
obtained with the mask containing all the 6 ON spherical seeds together, a great
dispersion of the maps was noticed, with broad and weak correlations of regions
not always corresponding to the ON core areas. The resulting group-level maps,
once randomization was performed, showed no signal surviving to the p < 0.05
thresholding, meaning that consistency between the individual maps wasn’t
sufficient to robustly localize the ON in these group; just as an exploratory
attempt, the procedure was repeated on restricted groups composed by the 6
subjects from the PATs and the 7 from the HCs which showed better results at
individual level (i.e. better correlation maps, with discrete correspondence with
the expected ON1), but even in this case no statistical significance was reached
at group-level (figure 5.3).
The analysis conducted then with the 6 seeds separately (stacked). In figure

5.4, as examples, the individual maps of connectivity (expressed as Z-statistics)
of a subject from the HCs group, and of one from the PATs group, for each of the
6 ROIs (even though it should be mentioned that a great variability was found

1Evaluations were only qualitative, obviously the results of this attempt are reported for
demonstration purposes and should not be considered as relevant.
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Figure 5.3: Localization of the ON by means of the 6 spherical seeds, for PATs
(left) and HCs (right) total groups (top), and for reduced groups (bottom; only
as exploratory attempt. These maps were obtained as average group-level maps
from the seed-based analysis. Intensity represent statistical significance in terms
of corrected p-values; z values represent the MNI axial coordinate of the visual-
ized slice. None of the peaks in these maps reached the p=0.05 level.

in the set of correlation maps relative to the same seeds) are reported. Even
in this case, the analysis did not reveal any significant group difference in the
connectivity of any of the regions with the rest of the brain; lowest corrected
p-values were reached in the OolfL and OolfR connectivity comparisons, for
opposite contrasts (spatial distribution of p-values are represented in figure 5.5).
Table 5.1 summarized the peaks of significance resulting from each comparison.

Table 5.1: Peaks of significance (corrected p-values) resulting from the compar-
ison of the connectivity of each of the 6 spherical seeds between the two groups.
None of the comparisons found any significant alteration.

Contrast PCL PCR INSaL INSaR OolfL OolfR

HC>PAT 0.65 0.10 0.48 0.46 0.063 0.94

PAT>HC 0.11 0.89 0.55 0.13 0.49 0.092
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Figure 5.4: Example of individual correlation maps (from a subject of the HCs
group) derived with the 6 spherical seeds, obtained with the dual-regression. In-
tensity reflects Z-statistics, thresholded at 3.1; positions of the peaks of corre-
lation essentially reproduce the positions of original spherical seeds. z values
indicate the MNI axial coordinate of each slice.

Figure 5.5: Differences of the connectivity of the OolfL (left image) and of the
OolfR (right) spherical seeds, in terms of corrected p-values. Both the maps are
thresholded at p<0.25 and do not represent statistically significant differences.
By thresholding the same maps at p<0.10, only few single scattered voxels would
remain in the images. z, y and x values indicate MNI axial and sagittal coor-
dinates of each slice.
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Figure 5.6: Example of individual correlation maps (from a subject of the HCs
group) derived with the 6 anatomical seeds. Intensity reflects Z-statistics, thresh-
olded at 3.1; peaks of correlation are found mainly in the original seeds, but also
in other regions (e.g. are often bilateral). In the OolfR case, the map is worse,
and has a peak which probably is due to noisy signal in the seed. z values indi-
cate MNI axial coordinates of each slice.

5.1.3 ON - Anatomical seeds

Even by using anatomical seeds, it wasn’t possible to obtain a better ON lo-
calization by running the analysis with all the seeds at the same time; peaks
of intensity of the average maps, after the randomise step, did not reach the
statistical significance of p=0.05.
The individual maps obtained in the dual-regression analysis with the 6 seeds
separately, were generally better than in the previous case (spherical seeds) in
terms of peaks of correlation and grey-matter overlapping and “plausibility”
of the observed patterns of correlation (e.g. bilateral activations were much
more frequently observed with anatomical seeds. Some examples) are reported
in figure 5.6. As in the previous analysis however, also in this case the group
comparison of connectivity maps relative to the stacked seeds didn’t show any
statistically significant differences. Peaks of significance (in terms of corrected
p-values) reached for each of the contrasts are summarized in table 5.2 (noticed
that are even higher - i.e. lower significance - than those relative to spherical
seeds, previously reported in table 5.1).

Table 5.2: Peaks of significance (corrected p-values) resulting from the com-
parison of the connectivity of each of the 6 anatomical seeds. No statistically
significant differences were found between the two groups.

Contrast AMYL AMYR INSaL INSaR OFCL OFCR

HC>PAT 0.39 0.37 0.32 0.12 0.34 0.39

PAT>HC 0.41 0.39 0.60 0.85 0.47 0.17
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Figure 5.7: ICs selected from the group-ICA as attributable to the ON from the
group-ICA; intensity represents Z-values, thresholding was set at Z-value > 3.1.
Indicated z represent the MNI coordinates of the visualized slices. None of the
ICs completely reproduced the ON.

5.2 Group-ICA

Among the results of the different group-ICAs performed at different dimen-
sions, those from the 50-ICs decomposition were established to be the best for
our purposes. In figure 5.7 the 4 ICs selected as attributable to the ON are
represented. Each of these components in fact presented peaks in regions con-
sidered to be potentially involved in the ON: the first component (IC1) near
the CINa, OFC and INSa; the second (IC2) in the inferior frontal and middle
temporal gyri; the third one (IC3) in the middle frontal gyrus; the last one
(IC4) near the INSa and in the middle temporal gyrus. After running the dual-
regression, and having performed the group comparison between the obtained
subject-specific maps of correlation, no statistically significant difference was
found. Details about the results of the comparison are reported in table 5.3.
Maps of the most significant alterations are represented in figure 5.8

Table 5.3: Peaks of significance (in terms of corrected p-values) of the differ-
ence between groups resulting from the dual-regression after group-ICA; none of
the 8 comparisons reached the critical level of significance of p=0.05, hence no
alterations between the groups was detected.

Contrast IC1 IC2 IC3 IC4

HC>PAT 0.35 0.83 0.45 0.12

PAT>HC 0.57 0.11 0.17 0.47
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Figure 5.8: Most significant alterations found using the ICA-based comparison.
None of the detected differences reached the significance level of p=0.05 (inten-
sity represents corrected p-values; th values are the p-value thresholds applied).

5.3 Graph analysis results

The graph-based analysis, given the broad range of measurement possibilities
offered, was the approach which gave the most significant results. In the next
sections are reported the main ones, with a particular focus on the ON-restricted
weighted graph-analysis (section 5.3.1), which highlighted the most significant
differences between the patients (PATs) and healthy controls (HCs) groups. In
section 5.3.2 the results obtained with the binarized versions of the graphs are
briefly summarized, while in section 5.3.3 those of the whole-brain graph anal-
ysis are reported.

5.3.1 ON-restricted weighted graphs

Some examples of connectivity matrices representing the full weighted ON-
restricted graphs are represented in figure 5.9; alongside the relative histograms
of weights (representing Z-transformed correlation values, as explained above)
are reported. The first thing to notice is the high individual variability affecting
these matrices, even though common patterns of connectivity can be identified.
To exclude potential biases introduced by overall connectivity strength differ-
ences between the two groups, both the total weights distributions (5.10) and
the subject-specific average weight values distributions were compared with two-
samples Kolmogorov-Smirnov tests, and no differences were observed (p > 0.1).
As explained in the previous chapter, starting from each correlation matrix a set
of thresholds were applied, so that measurements were performed at different
link density values. In the next sections, for each global measure, representa-
tive group-averaged trends will be reported; as previously explained, the actual
group comparison was performed with the results of the integration of individual
trends, in the range of densities 10− 50%.
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Figure 5.9: Examples of connectivity matrices from two subjects from the healthy
controls group, with corresponding histograms of links weights; a great variability
was observed among the individual matrices, even though common patterns of
connectivity can be recognized.

Global properties

One global property (Modularity coefficient), out of the 6 evaluated as functions
of the graphs density, was found to be significantly altered in the PATs group
with respect to HCs. Statistical significance of the differences measured in each
group comparison (assessed after regressing-out the age-related contribute to
variance the ANCOVA) is reported in these sections in term of p-values in-
dicating probability of the null-hypothesis αi = 0, referring to the model in
equation 4.1).
Results of the measure of Giant-component size as a function of the density are
reported in the plots in figure 5.11, for both the subjects groups. As expected, in
both cases, as densities reach ∼ 50% almost all the graphs are fully connected,
and giant-component size approaches its maximum value (34). In the figure
also the results obtained with the randomized graphs (dashed colored lines)
are reported; interestingly, they are systematically slightly higher, indicating
a pronounced modularity of the ON graphs (and a minor overall integration),
with respect to the randomized ones. The comparison between the two groups
showed no statistically significant difference.
In figure 5.12 the average values of Global Efficiency are represented as a func-
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Figure 5.10: Distributions of weights in the total set of PATs and HCs matrices
(normalized; zero-weights were not considered). The two distributions do not
differ significantly.

Figure 5.11: Giant component size vs density. Dashed lines indicates the values
obtained with the randomized matrices; hues represents whole intervals between
minimum and maximum values.

tion of the density, obtained for the two groups; values relative to randomized
graphs are plotted as well. A direct comparison between the absolute inte-
gral values of the two groups seems to indicate no differences (in the consid-
ered interval of densities); by comparing normalized results instead, a differ-
ence with a statistical significance close to the p=0.05 threshold is observed
(PAT > HC : p = 0.051). Notice that, even though not always seriously affect-
ing the results, in some cases normalization of graph-metrics with appropriate
random equivalents can be decisive, and normalized results should be consid-
ered more reliable than the absolute ones. In figure 5.13 the normalized values
and the integral values used for comparison are plotted.

Characteristic path length, being an inverse but essentially equivalent mea-
sure of Global Efficiency, also presents a relevant difference between the groups,
though not statistically significant (HC > PAT : p = 0.052). In figure 5.14 the
average trends, the average normalized trends and the comparison between the
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Figure 5.12: Global Efficiency of ON-restricted graphs, as a function of the den-
sity. Dashed lines indicates the values obtained with the randomized matrices;
hues represents intervals between minimum and maximum values.

Figure 5.13: Comparison between Global Efficiency average values of the two
groups of ON-restricted graphs, for absolute and normalized measures; the box-
plots on the right shows the comparison between integral values. PATs group
seemed to show slightly higher values, but the difference was not significant.

integral values are represented.
These results indicate that functional networks of the PAT group seems to be
characterized by slightly higher level of integration with respect to HC, which in
graph-theory is commonly interpreted as a more efficient information transfer
between topologically distant regions. However this difference wasn’t found to
be statistically significant.

Consistently with the previous results, the comparison of the Modularity
Coefficients of the graphs showed a statistically significant difference (HC >
PAT : p = 0.019), highlighting a more pronounced modular structure in the
HCs group, with respect to the PATs; in figure 5.15 the results obtained for this
metrics (absolute and normalized trends) and the relative comparison between
integral values are shown.
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Figure 5.14: Comparison between Characteristic Path Length average values of
the two groups, for absolute and normalized measures. From the comparison
between integral values, no statistically significant differences were highlighted.

Figure 5.15: Comparison between Modularity coefficient average values of the
two groups, for absolute and normalized measures. From the comparison between
integral values, a statistically significqant difference emerges (HC>PAT).

Results of the measurement of Small-Worldness and Assortativity Coeffi-
cient (absolute values) are reported in figure 5.16 and 5.17. Small-Worldness
is defined by means of normalized values of Clustering Coefficient and Charac-
teristic Path Length, hence it doesn’t need to be normalized and it can be di-
rectly compared; normalization wasn’t performed on Assortativity Coefficients
because, due to the presence of small values (< 10−4), it would make them
oscillate abruptly. For both groups Assortativity Coefficients are characterized
by a high within-group variabiliy (noisy measure), but are mainly distributed
at low positive values (graphs are weakly assortative). Small-Worldness on
the other hand is significantly higher than one, decreasing as a function of the
density. The results of the comparisons of integral values computed in the
above-mentioned range of densities are plotted as well. In these two cases no
statistically significant differences were appreciated.

In table 5.4 are summarized the results of the between-group comparison
and details about statistical signifcance, as computed with the ANCOVA.
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Figure 5.16: Small-Worldness values computed for the two groups, as function of
the density of the graphs; as expected, the graphs showed moderate Small-World
characteristics (as this values is strictly larger that one). From the comparison
between integral values, no statistically significant differences were found.

Figure 5.17: Assortativity coefficient values computed for the two groups, as
functions of the density of the graphs; no statistically significant differences
were found in the comparison between the integral values.

Table 5.4: Results of the between-groups comparison of weighted graphs’ global
measures. The values estimated for PATs and HCs, the difference between the
two, and the p-value representing the significance of the difference are reported.

Property PAT HC |D̂| p-value Direction

Giant Component Size 0.4176 0.4128 0.005 0.300 PAT>HC
Global Efficiency 0.3734 0.3608 0.013 0.051 PAT>HC
Characteristic Path Length 0.4771 0.4979 0.02 0.052 HC>PAT

Modularity coeficient 0.6982 0.7730 0.07 0.019 HC>PAT
Small-Worldness 0.6844 0.7346 0.05 0.202 HC>PAT
Assortativity coefficient 0.0378 0.0638 0.026 0.107 HC>PAT
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Local properties

The 6 considered local properties of weighted graphs were: node’s Degree and
Strength, Local Efficiency, node’s Betweenness Centrality, Clustering Coeffi-
cient, Participation Coefficient and Z-Score (the last two based on a a-priori
defined modular structure from Campbell Arnold et al. results [7]).
At a local level individual variability turned out to be even more pronounced
than it was for global measures, in particular for the most complex metrics
such as Betweenness Centrality. As an example, in figure 5.18 the trends of
the 6 local measures obtained for the 33th node (right rostral Cingulate Cor-
tex - CINrR), averaged among all the subjects of each group, are reported:
despite individual variability, common courses can be recognized. The De-

Figure 5.18: Local properties measured for node 33 (rostral cingulate cortex -
CINr) as functions of the graph densities, for PATs and HCs.

gree and Strength trends are actually much similar to those observed for all
the other nodes of the network, for understandable reasons (they tend to grow
for increasing graph Density, with slight differences depending on topological
characteristics); Participation Coefficient and Z-Score behaviours can be notice-
ably different among different nodes of the networks, since they also depend on
the internal organization of the module they belong to; Betwenness Centrality,
Clustering Coefficient and Local Efficiency trends are generally similar across
nodes, showing characteristic peak values at low densities and then stabilizing
on slowly varying values.
In figure 5.19 the measured values for node 17 (right anterior Insula - INSaR)
are shown, for comparison. The group comparison of local measures (as pre-
viously explained, performed by comparing integral values of the measures as
functions of the density, through an ANCOVA with age as regression variable)
identified a number of differences reaching the uncorrected p = 0.05 level of

63



Chapter 5. Results

Figure 5.19: Local properties measured for node 17 (anterior Insula - INSa) as
functions of graph densities, for PATs and HCs.

significance; two of them, regarding the Degree and the Strength of the right
Thalamus (THLR), were found to be statistically significant after the multiple-
comparisons correction. A summary of the most relevant detected differences is
reported in tab. 5.5. Relatively to the local alterations of connectivity involving
the THLR, two aspects should be highlighted. First, measures of Degree and
Strength of graph nodes are clearly not independent, as they both reflect the
overall connectivity of a node; being highly correlated measures, it is easy to find
similar alterations. Second, it is interesting to notice that in its corresponding
bilateral node (THLL), a trend towards a similar alteration is observed, though
not statistically significant. In figure 5.20 the plots of THLR-L Degree and the
relative integral-values comparison are reported; in figure 5.21 those of their
Strength.
Average values of Local Efficiency and Clustering Coefficient were computed as
well (averaging the results obtained for all the nodes of a single subject’s graphs),
as they can give further characterization to the topology of networks at a global
level. These measures should be considered as indirect-global properties. Their
trends, as functions of the density, are reported in figure 5.22, together with the
results of the group comparisons (no differences were detected between PATs
and HCs).
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Figure 5.20: Values measured for the Degree of the left and right Thalamus
(THLL-R), as functions of the density; in case of THLR, a statistical significant
difference was found.

Figure 5.21: Values measured for the Strength of the left and right Thalamus
(THLL-R), as functions of the density; in case of THLR, a statistical significant
difference was found.

Figure 5.22: Average trends of local properties as functions of the density: Left
- Local Efficiency; Right - Clustering Coefficient; no statistically significant dif-
ference was found from the comparison of the integral values.
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Table 5.5: Results of the between-groups comparison of weighted ON graphs’
local measures, in terms of uncorrected p-values. Highlighted p-values are those
which were significant after multiple-comparisons correction.

ROI (node) Property p-value Direction

OolfL (2) Betweenness c. 0.049 HC>PAT

APCL (4) Degree 0.045 HC>PAT

AMYR (5) Clustering coef. 0.018 HC>PAT
Local Efficiency 0.021 HC>PAT

aHIPL (8) Strength 0.039 HC>PAT
Z-Score 0.0052 HC>PAT

THLR (13) Degree 0.00079 PAT>HC
Particip. coef. 0.020 PAT>HC

Strength 0.00026 PAT>HC
Z-Score 0.0030 PAT>HC

THLL (14) Degree 0.031 PAT>HC
Strength 0.026 PAT>HC

INSaiR (15) Particip. coef. 0.027 PAT>HC

INSdL (20) Degree 0.034 PAT>HC

INSvL (22) Particip. coef. 0.012 HC>PAT
Z-Score 0.0090 HC>PAT

CINaR (31) Particip. coef. 0.022 PAT>HC

CINaL (32) Betweenness c. 0.0081 HC>PAT

NBS

As explained in section 4.4.3, NBS analysis was performed on the graphs in
the range of densities 10− 50%, comparing connectivity matrices of PATs and
HCs. At the end, each link was characterized with a alteration score - AS (> 0
for each link found altered at least at one density. AS was previously defined
in equation 4.2). Non-zero ASs are summarized in table 5.6; notice that, even
though formally ASs does not indicate a level of statistical significance, all of
these links resulted significantly altered for at least one density in the consid-
ered range.
These NBS results globally indicate a cluster of alteration which in most cases
involved the THLR as a central node, hence are consistent with the results ob-
tained from the comparison between the graph’s topological measures compar-
isons (in particular the local measures). The cluster of alteration also strongly
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involved anterior and posterior portions of the right Insula (INSaiR, INSaR,
INSpR, INSvR), of the right Hippocampus (aHIPR, pHIPR) and of the Cingu-
late cortex (CINaR, CINrR); some alterations were found also in the bilateral
counterpart, but in general with much greater statistical significance in the
right-hemisphere. The most significant alteration was detected in the connec-
tivity between THLR and the pHIPR.
Figure 5.23 reports a schematic of the most significant alterations, according
to the measured ASs. The set of altered connections is also represented on the
average connectivity matrices of PATs and HCs in figure 5.24.

Figure 5.23: Representation of the altered connections of the weighted ON-
restricted graphs, as found by the NBS analysis. Blue nodes are those having at
least one connections with AS > 0 (grey nodes represent the other ON regions,
having all the connections with AS = 0); width of the connections represents
the AS. This plot was realized with the BrainNet Viewer software [93].
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Figure 5.24: ASs altered connections, as found by NBS analysis, visualized on
the average connectivity matrices of PATs and HCs. All the connections found
to have a AS > 0 are highlighted with black squares.

Table 5.6: Results of the NBS analysis in terms of alteration scores. All the
altered connections are represented with corresponding AS value; those with
AS > 1.0 are highlighted.

Connection AS

AMYL (6) ↔ THLR (13) 0.1465

aHIPR (7) ↔ THLR (13) 1.5025

pHIPR (9) ↔ THLR (13) 2.6265
pHIPR (9) ↔ THLL (14) 0.4960

THLR (13) ↔ INSaiR (15) 1.2329
THLR (13) ↔ INSaR (17) 0.3347
pHIPR (9) ↔ INSdL (20) 0.1829
THLR (13) ↔ INSvR (21) 0.9835
THLL (14) ↔ INSvR (21) 0.0871

THLR (13) ↔ INSpR (23) 1.8775
THLR (13) ↔ INSpL (24) 0.7978
THLR (14) ↔ INSpL (24) 0.7355
THLR (13) ↔ NAccL (30) 0.0599
pHIPR (9) ↔ CINaR (31) 0.5323
THLR (13) ↔ CINrR (33) 0.9485

THLR (13) ↔ CINrR (34) 1.0192
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5.3. Graph analysis results

5.3.2 ON-restricted binary graphs

As expected, the measures computed on the binary versions of graphs were
generally consistent with the corresponding from weighted graphs. Similar be-
haviours can be noticed in all the global properties trends.
Most of the comparisons between the measurements performed on binary graphs
didn’t reach the statistical level of significance, with the exceptions of the THLR

Degree (Degree measure is in fact totally equivalent in weighted and binary
graphs) and of the Modularity Coefficients at a global level (p = 0.021, hence
with a lower significance with respect to the weighted networks case); in general,
considering the alterations with p < 0.05 (not corrected), it can be observed
that they were all highlighted in the weighted analysis as well, with equal or
lower statistical significance, except for Local Efficiency and Clustering coeffi-
cient of the CINaL (node 22).
In figure 5.25 the measured trends of Global Efficiency, Characteristic Path
Length, Small-Worldness and Modularity Coefficient as functions of the density
of the graphs are plotted (plot of the Giant Component size corresponds to the
one reported in figure 5.11, for the weighted case).
In table 5.7 the results of the comparisons between local measures of the two
groups are reported.

Figure 5.25: Binary graphs global measurements as functions of the graphs den-
sity: Global Efficiency, Characteristic Path Length, Small Worldness, Modu-
larity Coefficient; hues represents intervals between minimum and maximum
values.
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Chapter 5. Results

Table 5.7: Results of the between-groups comparison of binary ON graphs’ local
measures. The highlighted p-values are those which remained after multiple-
comparisons correction.

ROI (node) Property p-value Direction

APCL (4) Degree 0.045 HC>PAT

AMYR (5) Clustering coef. 0.020 HC>PAT
Local Efficiency 0.025 HC>PAT

THLR (13) Degree 0.00079 PAT>HC

THLL (14) Degree 0.031 PAT>HC

INSdL (20) Degree 0.034 PAT>HC

CINaL (32) Betweenness c. 0.0045 HC>PAT
Clustering coef. 0.029 HC>PAT

5.3.3 Whole-brain graphs

An example of whole-brain connectivity matrix (246× 246, Z-transformed val-
ues) is represented in figure 5.26 (average connectivity matrix of the HCs group).
Also in this case, average connectivity values of PATs and HCs groups were com-
pared and submitted to a t-test for assessing potential group-differences, which
highlighted no statistical significance.
In figure 5.27 the observed trends of Giant Component Size versus the graphs
density for PATs and HCs are represented; from the comparison of the integral
values computed in the range of densities 5− 50%, after regressing-out the nui-
sance variables with the ANCOVA, no relevant difference was found.
In figure 5.28 the measures of Global Efficiency and Characteristic Path Length
are reported; in figure 5.29 and 5.30, respectively, the trends of Modularity
Coefficient and Small-Worldness are represented; even in these cases no statis-
tically significant alteration was found between the two groups. Therefore, from
our measurements, no alteration could be observed in the global topological or-
ganization of whole-brain graphs. The results of group comparisons of global
measures are summarized in table 5.8.

For what concerns graph topological properties at a local level, some differ-
ences were highlighted in the ANCOVA regressions, though not significant when
corrected for multiple-comparisons (notice that in this case corrections where
much more severe than in the ON-analysis, due to the larger number of compar-
isons performed). However, it should be mentioned that alterations consistent
with those reported by the previous ON-analysis were observed: in particular,
two of the ROIs (nodes 232-238, mPFtha r and tTtha r using Brainnettome de-
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5.3. Graph analysis results

Figure 5.26: Example of whole-brain connectivity matrix (average connectivity
matrix of the HCs group; correlation coefficients expressed as Z-transformed val-
ues). Nodes are ordered following the anatomical areas they belong to, indicated
on the left (and below). Regions which are part of the ON are indicated on the
right.

Figure 5.27: Giant Component Size values as functions of the density, for PATs
and HCs groups (solid lines are the average values; vertical dashed lines rep-
resent the interval of integration; horizontal dashed line is the maximum value
- 246). Box-plot represent the comparison between integral values. Difference
was not statistically significant.
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Figure 5.28: Global Efficiency and Characteristic Path Length values as func-
tions of the density, for PATs and HCs groups (solid lines are the average values;
dashed lines represent the interval of integration). Box-plots represent the com-
parisons between integral values. Differences were not statistically significant.

Figure 5.29: Modularity coefficient values as functions of the density, for PATs
and HCs groups (solid lines are the average values; dashed lines represent the
interval of integration). Box-plot represent the comparison between integral val-
ues. Discrepancy was not statistically significant.
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5.3. Graph analysis results

Table 5.8: Results of the between-groups comparison of weighted WB graphs’
global measures. No differences were detected.

Property p-value Direction

Giant Component Size 0.74 HC>PAT
Global Efficiency 0.82 PAT>HC
Characteristic Path Length 0.79 HC>PAT
Modularity coeficient. 0.72 HC>PAT
Small-Worldness 0.81 PAT>HC

Figure 5.30: Small-Worldness values as functions of the density, for PATs and
HCs groups (solid lines are the average values; dashed lines represent the inter-
val of integration). Box-plot represent the comparison between integral values.
Discrepancy was not statistically significant.

nominations [84]) corresponding to the THLR region used for the ON-restricted
analysis, were observed to have an increased connectivity in the PATs group.
The results of the comparisons of local measures are summarized in table 5.9.
The same NBS analysis performed on ON-restricted graphs was repeated on

the set of whole-brain matrices, but in this case no clusters of alteration were
detected (for any density in the range 10− 50%); this result is consistent with
those obtained for the local topological properties (i.e. no p-value overcoming
the multiple-comparisons correction).
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Table 5.9: Results of the between-groups comparison of weighted whole-brain
graphs’ local measures: most relevant alterations. ROI denonomination is taken
from Brainnetome Atlas, please refer to [84] (annotations in bold format indicate
that the ROI was included in a region selected also for the ON-restricted graph).
None of the reported differences was found to be statistically significant after
correction for multiple comparisons.

ROI (Node) Property p-value Direction

A8dl r (4) Particip. coef. 0.013 PAT>HC

A44d r (30) Degree 0.018 PAT>HC

A38m l (69) Degree 0.018 HC>PAT

A20cl l (99) Clustering coef. 0.0066 HC>PAT
Local Efficiency 0.0030 HC>PAT

A5l l (129) Degree 0.014 HC>PAT

A40rd l (139) Degree 0.0072 HC>PAT

A24cd r (184) Degree 0.015 PAT>HC

rCunG r (192) Betweenness c. 0.013 HC>PAT

dlPu l (229) Clustering coef. 0.015 PAT>HC

dlPu r (230) Clustering coef. 0.011 PAT>HC
Local Efficiency 0.012 PAT>HC
Particip. coef. 0.017 PAT>HC

mPFtha r (232) THLR Degree 0.011 PAT>HC

rTtha r (238) THLR Betweenness c. 0.010 PAT>HC
Degree 0.0091 PAT>HC
Particip. coef. 0.0023 PAT>HC
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5.3. Graph analysis results

5.3.4 Results after parcellation improvement

Final results obtained from the ON-restricted graph-analysis performed with
the new set of ROIs (after the subject-specific improvement performed with
the rsDPI algorithm) were essentially analogue to those illustrated before and
highlighted the same alterations, with minor differences in the obtained p-values
(for this reason they will not be reported extensively in this section; for those
results please refer to section 5.3.1). However, some interesting results were
obtained in a series of exploratory comparisons made between the average ROIs
time courses and the connectivity matrices obtained with the standard method
and those obtained with the inclusion of the parcellation improvement step.

Figure 5.31: Application of rsDPI algorithm on OolfR of a subject from the HCs
group: the heat-map indicating the measured internal correlation of each voxel
inside the ROI is represented. Green-red map indicates the portions of the ROI
preserved and removed after refining. Internal correlations before and after ROI
finishing are reported in histograms (red line indicates ρ = 0.05; blue line the
20% inferior quantile).

Figure 5.32: Application of rsDPI algorithm on CINrR of a subject from the
HCs group: the heat-map indicating the measured internal correlation of each
voxel inside the ROI is represented. Green-red map indicates the portions of
the ROI preserved and removed after refining. Internal correlations before and
after finishing are reported in histograms (red line indicates ρ = 0.05; blue line
the 20% inferior quantile).
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Figure 5.33: Left: weights distributions of nodes corresponding the 6 highest-
SNR ROIs, before and after parcellation improvement (no difference between the
two). Center: weights distributions of nodes corresponding the the 6 lowest-SNR
ROIs, before and after parcellation improvement (significant difference). Right
- correlation between SNR of a ROI before the finishing and relative variation
of its strength after finishing.

Two examples of ROIs from the ON (OolfR and CINrL) before and after
parcellation improvement are represented in figures 5.31 and 5.32 (data taken
as an example from a subject of the HCs group), together with the histograms
representing the distributions of average correlation coefficients of the voxels in-
side each region. As it can be noticed, the most relevant effect is that raw-SNR
increases after application of the algorithm: on average, each ROI’s relative
raw-SNR increase was +20.4% (p < 0.0001).
From the comparison between the total weights’ distribution of the old set of
matrices (obtained without the rsDPI step) and the new one (correlation ma-
trices derived with the new time series), a statistically significant increase of
the average connectivity value was observed (+5.1%; p < 0.0001). An interest-
ing alteration was found by analyzing separately the weights of the connections
of the 6 ROIs with lowest raw-SNR (on average, before the application of the
algorithm) and those of the 6 ROIs with highest SNR: in new matrices, weights
of the connections of the ROIs with lower SNR were found to be significantly
increased; weights of the ROIs with higher SNR did not (figure 5.33 - left); this
observation was formalized by computing the correlation between the average
raw-SNR of each ROI (before ROIs finishing) and the relative variation of the
ROI Strength (after), which was shown to be significant (figure 5.33 - right).
Finally, by comparing each ROIs’ average raw-SNR before the application of
the algorithm and the relative raw-SNR variation (new matrices/old matrices),
a statistically significant correlation was observed (figure 5.34, left). No signifi-
cant correlation was observed by comparing each subject’s average SNR versus
the same quantity (figure 5.34, right). A complete discussion of these results
will be found in the next chapter.
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5.3. Graph analysis results

Figure 5.34: Left - correlation between relative SNR variation after the parcel-
lation improvement and old SNR of each ROI (statistically significant). Right -
correlation between relative SNR variation after SNR variation and old average
SNR of each subject (not significant).

5.3.5 Results of the clinical evaluation

As assessed through the Sniffin’ Sticks test, out of the total group of 23 patients,
one had functional anosmia, twenty-one had hyposmia, and one patient had nor-
mosmia. The group average total score was 23.6±5.3, with normosmia cut-off
being at 30.75 total score. Mean neuropsychological scores, corrected by age
and education, are reported in Table 3 with the percentage of patients exhibit-
ing impaired outcomes, defined as ≥95% of the tolerance limit of the normal
population distribution. Memory and executive functions were the two cogni-
tive domains mainly impaired. Specifically, short-term and long-term verbal
memory were impaired in 9% and 13% of patients, while short-term and long-
term visuospatial memory were impaired in 9% and 17% of patients. Moreover,
in the executive function domain, deficits in the ability to inhibit cognitive in-
terference and working memory deficits were found respectively in 10% and
13% of patients. Almost one-third of the patients had a pathological depression
score, while three-fourth of patients had a pathological fatigue score, which is
frequently reported in the long-COVID population.
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5.3. Graph analysis results

5.3.6 Correlations with clinical scales

The results of the exploratory correlation analysis performed with the altered
graph-measures of the PATs group (global Modularity coefficient and Degree
and Strength of the THLR, in ON-restricted graphs) and corresponding indi-
vidual clinical scores are summarized in table 5.11. Only the most significant
results are reported, in terms of correlation coefficients - ρ and corresponding
raw p-values.
The scores obtained in the Sniffin-Tests were found to be positively correlated
with the Modularity coefficient (including age as covariate), with p-values reach-
ing p=0.0095 for the threshold-test (sniff-TH ) and p=0.024 for the total score
(sniff-TOT ). Two short-term verbal memory tests (Auditory Verbal Memory
Test with immediate recall - AVLT (IMM) and the description-based object nam-
ing - Obj. Naming) were found to be negatively correlated with the Strength
of THLR (including age and education level as covariates), both with p=0.015.
By correcting for multiple comparisons in this case, no significant correlation
is observed, though interesting trends were highlighted. Linear correlations are
plotted in figure 5.35 and 5.36.

Table 5.11: Results of the correlations between altered graph measures (* indi-
cates normalized measures) and individual results in clinical tests. Only most
significant correlations are reported, even though none of the obtained p-values
reached the p=0.05 of significance after multiple comparison correction.

Clinical test Measure p-value ρ

sniff-TH
Modularity c. 0.0095 0.59
Modularity c.* 0.027 0.52

sniff-TOT
Modularity c. 0.032 0.51
Modularity c.* 0.024 0.53

AVLT (IMM) Strength (THLR) 0.015 -0.59

Obj. Naming
Degree (THLR) 0.017 -0.59
Strength (THLR) 0.015 -0.59
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Chapter 5. Results

Figure 5.35: Significant positive correlations between global Modularity coeffi-
cient (integral values) of the ON-restricted weighted graphs and scores in the
Sniffin-Sticks’ threshold (sniff-TH) and total (sniff-TOT) tests, for the subjects
of he PATs group; results are shown for both normalized and absolute values of
the graph measure.

Figure 5.36: Significant negative correlations between THLR’s altered measures
(Strength and Degree) measured in the ON-restricted weighted graphs and scores
in the cognitive tests (Obj. Naming and AVLT-IMM), for the subjects of the
PATs group.
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Discussion

Seed-based analysis

The main result obtained in the first part of the study (i.e. seed-based analysis)
is that no significant differences in the connectivity of the 6 pre-established core
olfactory ROIs with the rest of the brain was detectable between PATs and
HCs groups, neither considering the seeds one at a time nor by using a single
mask with all the seeds together; the difference which got closer to the statis-
tical significance limit of corrected p-value = 0.05, involved the connectivity of
the OolfR and a small cluster of voxels in the right parietal lobe (HC>PAT,
p=0.063). The seed-based analysis conducted with the PCC (a core seed of the
DMN) was performed as a validation of the methodology; also in this case no
differences were detected between the connectivity patterns of the two groups
of subjects (p>0.15).
A secondary goal of this part of the study was to obtain a probabilistic local-
ization of the ON, as a result of the seed-based analysis performed with the 6
ROIs together; the example of the DMN in fact, showed that a meaningful lo-
calization of a major RSN is possible with a seed-based approach (in particular
by applying a dual-regression with the core regions of the network, averaging
the individual results and randomizing them in order to give a statistical rel-
evance to the group-maps) and the results have a good correspondence with
what is reported in literature (figure 5.1). However, in the case of the ON (in
both versions, with spherical and anatomical input seeds) a statistically robust
localization of the network could not be depicted, as within-group consistency
of the individual spatial maps was too low. From a qualitative inspection of
the individual maps, anatomical seeds seemed to produce stronger correlation
maps, with a greater overlay between peaks of significance and grey matter and
higher bilateral connectivity, but no improvements were observed in terms of
group-averaged network localization.
To sum up, the failed attempt of localization of the ON is presumably at-
tributable on one hand to the fact that this network is intrinsically “weak”
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compared to the others major RSNs (in the sense that its internal correlation
is weaker than, for example, that of the DMN) and on the other hand to the
fact that core regions of the ON are placed in critical positions for EPI mea-
surements, due to the presence of invasive artifacts and different types of noise.
Besides, the results obtained by the analysis with separated seeds seem to in-
dicate that no group-differences there exist, but it could also mean that the
method wasn’t sensitive enough to spot minor alterations.

Group-ICA

Among the results of the group-ICAs performed at different dimensions (30 -
50 - 100 - undefined) a number of ICs where selected as related to the ON (and
then as potential candidates for the following dual-regression analysis). Com-
ponents found at low dimensions were noticeably larger, involving wider regions
of the brain and uncovering more correlations between spatially distant regions;
given that the aim of this decomposition was to find components of the ON as
large as possible, the (4) ICs from the 30-dimensions analysis were chosen.
The results of the group-comparison between individual maps (derived with the
dual-regression of the 4 selected ICs) showed no alterations reaching the level
of statistical significance p<0.05 after FWER correction. The most relevant al-
terations involved the IC2 (CINa, OFC and INSa), with a minimum corrected
p=0.11 (PAT>HC), and the IC4 (INSa, middle temporal gyrus), with minimum
corrected p=0.12 (HC>PAT).
Similarly to the seed-based analysis presented in the previous section, the group-
ICA analysis was oriented toward two different objectives. The first was to
identify the ON independent contribution to the total signal in terms of ICs, as
decomposed by the group-ICA: though not in a unique component (precluding
a proper localization of the network), ON-related activations were recognized in
4 different ICs (with IC2 being the most similar to a complete localization of the
network). The second was to perform a group-comparison with the individual
results of the dual-regression; consistently with the results of the seed-based
analysis, no macroscopic alterations were detected in the connectivity of the
core ON regions with the rest of the brain.

Graph analysis

The employment of graph-models to analyse the available data turned out to
be the most sensitive method for detecting differences between the two groups
of subjects. In particular the ON-restricted graphs showed some statistically
significant alterations which could help explaining the clinical picture of the

82



PATs. On the other hand, it should be remarked that the ON-restricted graph
analysis approach is unavoidably much influenced by prior assumptions and
hypotheses (essentially for the choice of the ROIs forming the graph itself and
for the choice of the metrics to be evaluated). However, the fact that some
trends observed in the whole-brain graphs actually correspond to alterations of
the ON-restricted graphs, is an encouraging fact and support the reliability of
the obtained results.

ON-restricted graphs

Despite the high variability of the computed individual connectivity matrices,
common patterns of connectivity could be identified and results of the global
measurements performed on these graphs were generally in accord with the the-
oretical expectations. In particular, the Giant Component Size trend as a func-
tion of the density was observed to approach its maximum value with slightly
lower slope with respect to the equivalent graphs with randomized topology:
this can be interpreted as an implication of the non-trivial modular topology of
the network, as it’s often observed in brain functional networks. Another evi-
dence pointing towards the same direction came from the comparison between
the average Global Efficiency of “real” graphs and of randomized graphs, in
which the latter was shown to be constantly higher. Another hallmark typi-
cal of these graphs is the so-called Small-World organization [94]: among the
different metrics that could be adopted in order to evaluate this characteristic
was chosen to use the one defined in [56] and results confirmed the hypothesis,
showing an index substantially higher than 1.
By comparing the integral values of global measures (Giant Component size,
normalized Global Efficiency, normalized Characteristic Path Length, normal-
ized Modularity Coefficient, normalized Assortativity Coefficient and Small-
Worldness) between the two groups, it was found a statistically significant al-
teration between the values of the Modularity coefficients (p=0.019, HC>PAT)
and two noticeable trend in Global Efficiency and Characteristic Path lengths
values (p<0.053, respectively PAT>HC and HC>PAT), though not formally
significant. These observations (considering that Global Efficiency and Char-
acteristic Path Length are essentially equivalent, as one measure represent the
inverse of the other) suggest a generally higher level of macroscopic integration
in the PATs graphs and a less pronounced modularity structure, with respect to
those of the HCs group. The values measured for the Assortativity coefficient
(in both PATs and HCs groups), though characterized by a large variability,
showed a slight assortative behaviour at very small densities, progressively ap-
proaching zero. This could be attributable to the fact that many nodes were
actually parts of single anatomical regions (e.g. the 5 regions of the Insula) and
then were likely to have both strong mutual connections and similar “outer”
connectivity; also, the fact that the considered graphs were generally ipsilateral
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Chapter 6. Discussion

Figure 6.1: Correlations between the individual values of some of the altered
THLR measures (Strength, Z-Score) and those of the INSvL (Participation co-
efficient, Z-Score), for the subjects of the PATs group.

introduces a bias towards higher assortativity values (bilateral regions are likely
to be strongly connected and simultaneously have similar connectivity distribu-
tions).
The analysis of topological properties of the graphs at a local (single-node) level
highlighted some relevant differences between the two groups, among which the
most significant involved the THLR, the aHIPL, the INSvL and the CINaL; after
correction for multiple comparisons, only two measures relative to the THLR

(Strength and Degree) survived and should be considered as statistically signif-
icant.
The THLR of subjects in the PATs group appeared to be significantly more
connected with other nodes, as Degree and Strength both indicates a general
level of integration of the node in the network (it’s worth noticing that a similar
trend was observed in THLL, hence seems to be a bilateral alteration). Fur-
thermore, even though not strictly statistically relevant, the higher observed
values of Participation coefficient and Z-Score of THLR indicates that both the
node centrality inside its module (Sensory module, according to [7]) and its
intermodular connectivity were increased, making it a more central node in
the network. On the other hand, both Participation coefficient and Z-Score
of the INSvL (part of the sensory module) showed trends towards an opposite
direction (reduced in PATs), so that it could be hypothesized some kind of com-
pensation mechanisms involving the two nodes, at least at a modular level; this
consideration is supported by the fact that some relevant correlations could be
conserved between the altered measures of the two nodes, as shown in figure
6.1.

Results of the analysis conducted on the binarized versions of the same
graphs, as expected, gave analogue results for most of the comparisons, though
with a generally lower statistical significance; in this case the only alteration
reaching a relevant significance (after correction for multiple comparisons) was
the one involving the Degree of the THLR. An exception was observed in the
case of the Betweenness centrality and the Clustering coefficient of the CINaL,
for which p-values reached in the binarized version of the analysis were slightly
higher than those of the weighted graphs.
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The fact that weighted graphs, in the context of functional brain connectivity,
with respect to their corresponding binary versions could potentially offer a
richer description and, in particular, a greater sensitivity to pathological alter-
ations is something which was already hypothesized [95] and our results seem
to confirm it.
I should be also mentioned that with respect to the only other study the we are
aware of, reporting a similar experimental attempt (the one from Esposito et
Al. (2022) [6], previously introduced) a direct comparison of the results is not
possible, as the ROIs chosen for building the graph are different (they didn’t use
an anatomical parcellation, but instead used spherical volumes in pre-defined
positions); in particular, one of the main result they obtained regarded a ROI
(4mm sphere) placed in the Anterior Piriform cortex, which wuold overlap with
3 different regions of the Brainettome Atlas, used for this work.

NBS

With the NBS analysis it was possible to explore differences between the two
sets of graphs at a single-edge level. Results showed a cluster of statistically
significant alteration (FWER corrected) mainly centered on the THLR-L (coher-
ently with the results of the ON-restricted graph topology study) and strongly
involving the aHIPR, the INSai-a-v-pR, the INSd-pL and the CINrR; further-
more, it was possible to quantitatively demonstrate that all the most altered
connections (AS>1) involved the THLR.

rsDPI algorithm

The results of the graph-analysis performed using the new ON ROIs did not
differ from those obtained in the original version of the analysis. However,
there are reasons to believe that the rsDPI intermediate additional step helped
improving the quality of the data.
First of all, a significant average increase in raw-SNR after the application
of the algorithm (considering the total group of subjects - PATs and HCs)
was measured (+20.4%; p < 0.0001); however, it should be considered that
this does not necessarily mean that an effective-SNR was increased as well,
as the algorithm specifically targets the least correlated voxels of the ROI.
On the other hand, the increased connectivity (on average) between the ROIs
(i.e. increased group-average ROIs strength), was not obvious and could be
considered a positive evidence as in general we expect a relatively high internal
integration in the ON. Furthermore, the fact that such increase in connectivity
was higher for the ROIs with lowest initial raw-SNR indicates that the algorithm
mainly affects the most problematic regions, improving the coherence of the
ROI volume on the functional data. The correlation observed between ROIs’
average raw-SNR before the application of the algorithm and the relative raw-
SNR variation, also represent an encouraging result in this direction.
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Chapter 6. Discussion

These results indicates that the employment of an algorithm for ROIs finishing
could help in those cases where problematic regions are studied (as the regions
of the Piriform cortex and Orbitofrontal olfactory cortex were in our case) and a
registration as precise as possible is required. In the particular case of our study,
the fact that results of the graph-analysis weren’t affected by the inclusion of
this additional pre-processing step could mean that the registration of the ROIs
onto the EPI was already very accurate, or at least not a source of macroscopic
variability.

Whole-brain graphs

For what concerns the results of the analysis conducted on whole-brain weighted
graphs, the considerations that can be made about the observed global mea-
sures’ trends are similar to those of the ON-restricted graphs; some differences
are observed in their higher values of normalized Modularity coefficients (at-
tributable to the fact that it’s a larger scale graph, likely to contain different
specialized and functionally separated subnetworks).
The groups comparison of measures’ integral values did not highlight any statis-
tically significant alterations, neither at global nor at local level; however, while
p-values of global comparisons were all far from the significance level, some of
the local comparisons highlighted interesting trends of alterations (notice that
in this case multiple-comparisons’ correction was much more strict than in the
ON-restricted case, due to the larger number of local measurements to be com-
pared). In particular, some of the most relevant trends involved two sub-regions
of the THLR (mPFtha r and tTtha r of the Brainettome Atlas) and were con-
sistent with the observations of the previous analyses (increased node centrality
metrics: Degree, Participation Coefficient and Betweenness centrality).
The NBS analysis was repeated also on whole-brain networks, but no significant
alteration was highlighted after FWER corrections.

Correlations with clinical scales

Some interesting correlations observed between the altered topological measures
of ON-restricted graphs and clinical scores could help interpreting the results of
this work, though keeping in mind that this last part was intended to be only
an exploratory analysis.
In particular, the global Modularity coefficient (reduced in PATs) was ob-
served to be positively correlated with the results of the olfactory assessment
performed with the Sniffin’ Sticks (in particular with olfactory threshold -
ρ = 0.52; p = 0.027 - and total score - ρ = 0.59; , p = 0.0095); a plausible
hypothesis could be that a less pronounced modular organization penalizes the
ON of the subjects in the PATs group, as its ability of segregating specific
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activities is less efficient; similar interpretations regarding altered Modularity
in functional connectivity networks are actually quite common, as evidences
of correlation between the level of functional segregation and various types of
cognitive decline exists in literature (e.g. [96, 97, 98]).
On the other hand, different indexes of THLR’s node centrality (Degree, Strength)
were negatively correlated with short-term verbal memory tests (AVLT (IMM)
- ρ = −0.59 , p = 0.015 - Obj. Naming - ρ = −0.59 , p = 0.015). A possible
speculative interpretation of these correlations could be built around the fact
that the Thalamus is not directly connected to primary Olfactory structures,
but instead is involved in higher processing (perception) of the odorant informa-
tion together with the Orbito-frontal cortex [99]. Furthermore, considering that
one of the most important contributions to the alteration of the overall THLR

Strength came from is connection with the pHIPL (as shown by the NBS), and
considering that the hippocampal-thalamic interactions represent an important
system for episodic memory [100], a dysfunctional thalamic connectivity might
be responsible for the impact on memory.
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Conclusions and future
perspectives

In this work an experimental attempt of investigating the brain functional-
connectivity characteristics of a group of patients suffering from persistent
COVID-19-related neurological symptoms was presented. In particular, the
major focus was on the study of the connectivity patterns of the core regions of
the ON, made possible by the availability of high-quality rs-fMRI data. Among
the three proposed approaches, the most significant results were found with the
graph-theoretical modelling of data. In fact, from the comparison of the ON-
restricted connectivity graphs of patients with those obtained from a matched
control group of healthy subjects, an altered topological organization emerged,
quantifiable in reduced values of global Modularity coefficient and a hyper-
connection of the right Thalamus. Furthermore, by integrating these results
with individual clinical scores it was possible to implement an exploratory cor-
relation analysis, which helped the interpretation of the experimental observa-
tions.
The others two approaches implemented (group-ICA and seed-based analyses)
did not highlight any statistically relevant alteration between the two groups,
meaning that no significant alterations was detectable in the connections be-
tween the core ON regions and the rest of the brain (not contradicting the other
results, as the thalamus was not part of the core ON areas).
The most important intrinsic limitation of the presented study is the relatively
small number of subjects included. A great variability in fact is typically ob-
served in the patterns of spontaneous correlations between brain activations,
lowering the theoretically available signal-to-noise ratio. Furthermore, the fact
that the ON-core regions are located in areas often affected by distortions, ar-
tifacts or signal-dropout, may have contributed to reduce the accuracy of the
estimates. However, as this was the first reported study to provide a whole-brain
graph-based analysis with a long-COVID-19 patients group, could eventually
represent a starting point for future works.
Regarding the techniques adopted for the data analysis, it must be considered
that the graph-based approach is implicitly based on a series of a-priori as-
sumptions, which of course have an influence on the obtained results, such as
the choice of the anatomical parcellation for nodes definitions, the definition
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of functional connectivity metrics and the choice of the graph-topological mea-
sures to be evaluated (though from this point of view, all the choices made for
this study were taken in accordance with the most reliable references found in
literature). On the other hand, approaches such as the ICA-based techniques
require few initial assumptions compared to graph analysis, but the sensitivity
they offer for local and potentially subtle alterations is generally lower.
From a more general point of view it could be also considered that all these
methods rely on the fundamental assumption of a static-functional connectivity,
whereas some recent findings have suggested that assuming a dynamic behaviour
of the spatial connectivity-patterns could offer a more appropriate description
of brain resting-state observed activity [25, 101, 102]. Attempts to model this
kind of dynamics in a graph-theoretical framework already have been reported,
offering interesting results. The application of such models and the comparison
of the results with those obtained with standard approaches could be a matter
for future work, given the availability of relatively long rs-fMRI sequences with
a good temporal resolution.
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