
Alma Mater Studiorum · Università di Bologna

FACULTY OF SCIENCE

Master in Computer Science

Panson:
An interactive sonification framework

for real-time applications

Supervisors:
Prof. Simone Martini
Dr. Thomas Hermann
Dr. David Johnson

Author:
Michele Nalli

Session I
Academic Year 2021/2022

To my family,
who have always believed in me

Abstract

Many sonification systems face a number of common design challenges.
These are addressed in every project with different, specific-purpose solu-
tions. We present Panson – an interactive sonification framework im-
plemented in Python that can ease the development of sonification systems.
Panson allows the user to implement sonifications using the sc3nb library [37]
as interface to the SuperCollider [11] sound synthesis engine. The framework
provides support for both offline and online (real-time) sonification through
a set of composable classes; these classes are designed to natively support in-
teraction in Jupyter Notebooks [20]. Using Panson, we will show an example
of its application by implementing a facial expression sonification Jupyter
Notebook based on OpenFace 2.0 [27].

i

ii ABSTRACT

Introduction

The term “sonification” refers to a group of techniques that allows to
experience data through sounds [33]; by doing so, listeners who are able
to interpret sounds can explore some aspects of the data in a way that is
radically different from plotting methods and can provide important insights.
These techniques make sound an important carrier of information, creating
many possibilities in system design.

Over the years, many sonification systems with very different aims have
been developed: from sonification of body movements to provide auditory
biofeedback, to monitoring systems; from sonification of EEG data, to sen-
sory substitution applications. Most of these applications face similar chal-
lenges of different nature: from the choice of tools to be used, to the structure
of the code implementation. Much of the development effort could be avoided
by adopting a common framework, rather than relying on specific-purpose
solutions for each of the projects.

In this work, we discuss the requirements, design and implementation
of such a framework and explore its possibilities. The main goal of it is
to simplify the development of sonification applications while promoting a
clean and reusable code-style. A success in development would mean not
only having a new tool to speed-up the development of applications, but also
making sonification a more accessible field of technical development.

• Chapter 1 contains an introduction on the main theoretical concepts
related to Sonification and Facial Expression Analysis. We describe a
number of sonification systems and consider their common aspects to
explain the need for a reusable sonification framework.

• Chapter 2 refines the need for a sonification framework that emerged
from chapter 1 into a concrete list of requirements and development
goals. Next, it proceeds describing some tools that are relevant for the
framework.

• Chapter 3 dives into the structure of the framework, describing its
API and discussing its main implementation choices.

iii

iv INTRODUCTION

• Chapter 4 describes a facial feature sonification application imple-
mented using Panson and the different sonifications implemented.

• Chapter 5 discusses development results of both framework and facial
feature sonification application and outlines the possible developments
of both projects.

Contents

Introduction iii

1 Background 1

1.1 Sonification . 1

1.1.1 Parameter Mapping Sonification 2

1.2 Behavioural Cues and Social Signals 3

1.3 State of the Art . 3

1.3.1 Sonification Systems 4

1.3.2 Common Aspects . 6

2 Conceptual Design 7

2.1 Requirement Analysis . 7

2.2 Python . 8

2.2.1 Global Interpreter Lock 9

2.3 Jupyter Notebooks . 10

2.4 SuperCollider . 11

2.4.1 sc3nb . 11

3 Panson 13

3.1 Design . 13

3.1.1 Sonification . 14

3.1.2 Streams . 19

3.1.3 Preprocessors . 20

3.1.4 Data Players . 21

3.1.5 Feature Displays . 26

3.1.6 Video Players . 28

3.1.7 %%editor . 29

3.2 Evaluation . 30

3.2.1 Latency . 30

3.2.2 CPU Usage . 31

v

vi CONTENTS

4 Facial Feature Sonification 35
4.1 Requirement Analysis . 35

4.1.1 Use Case 1 - Support for Visually Impaired People . . 35
4.1.2 Use Case 2 - Support for Facial Expression Analysis . . 36
4.1.3 Use Case 3 - Facial Expression Practice Tool 36

4.2 OpenFace 2.0 . 37
4.2.1 Installation . 37
4.2.2 Usage . 37
4.2.3 Output Format . 39
4.2.4 Technical Considerations 40

4.3 Application . 42
4.4 Sonifications . 43

4.4.1 AU04Continuous . 44
4.4.2 Upper Face Musical Sonification 45
4.4.3 DropBlink . 48
4.4.4 Multi-percussion . 50
4.4.5 Head . 54
4.4.6 Gaze . 57
4.4.7 Smile . 58

5 Discussion and Future Work 61
5.1 Panson . 61

5.1.1 Reflections on the Original Requirements 61
5.1.2 Source Organization 63
5.1.3 Technical Issues . 64

5.2 Facial Feature Sonification . 66
5.2.1 Reflections on the Original Requirements 66
5.2.2 OpenFace . 68

Conclusion 71

Bibliography 78

List of Figures

3.1 Sonification of offline data . 22
3.2 DataPlayer widget . 23
3.3 Real-time sonification of data 24
3.4 RTDataPlayer widget . 24
3.5 Real-time multi-stream sonification 25
3.6 Multi-stream data player widget 26
3.7 RTFeatureDisplay . 27
3.8 CPU consumption of a RTDataPlayer at different frequencies . 32
3.9 Comparison between multi-stream data players 33

4.1 AU04Continuous Sonification widget 45
4.2 PentatonicContinuous Sonification widget 46
4.3 DropBlink Sonification widget 49
4.4 DirectionalPercussive Sonification widget 53
4.5 Widget rendering for the SilentHead Sonification 55
4.6 NoisyHead Sonification widget 56
4.7 SilentGaze Sonification widget 58
4.8 DustSmile Sonification widget 59

vii

Chapter 1

Background

This chapter will provide some background regarding sonification and
facial expression analysis and review some sonification systems to explain
the need for a reusable sonification framework.

1.1 Sonification

Sonification is an interdisciplinary research field that explores the use of
non-speech audio to convey information (definition by Kramer et al. [44]).
Despite the apparent simplicity of the previous statement, it is not easy to
clearly and unambiguously define what sonification is.

A more precise and articulated definition was conceived by Hermann [33]:
“A technique that uses data as input, and generates sound signals (eventually
in response to optional additional excitation or triggering) may be called
sonification, if and only if

1. The sound reflects objective properties or relations in the input data.

2. The transformation is systematic. This means that there is a precise
definition provided of how the data (and optional interactions) cause
the sound to change.

3. The sonification is reproducible: given the same data and identical
interactions (or triggers) the resulting sound has to be structurally
identical.

4. The system can intentionally be used with different data, and also be
used in repetition with the same data.”

1

2 1. Background

This definition specifies strict limits regarding which kind of process can be
called sonification, putting emphasis on scientific aspects such as unambiguity
of definition, reproducibility and independence from data.

Different kinds of sonification techniques have been conceived [34], but
the only one that is relevant to this thesis is called Parameter Mapping
Sonification.

1.1.1 Parameter Mapping Sonification

Parameter Mapping Sonification (PMSon) [35] is based on the idea of
establishing a relation (or mapping) between data values and auditory pa-
rameters of the output sound. A metaphorical way to think about PMSon
is seeing the data as a musical score to be played by the sonification (the
element that interprets the score); the instruments played by the sonification
are the synthesizers, intended as algorithms that output audio signals.

This approach is very general and flexible: depending on the mapping, it
is possible to work with arbitrary data and synthesizers. Mappings from data
features to synthesizers’ parameters can be of all kinds: one-to-one, many-to-
one, one-to-many and many-to-many. Mapping functions adopted can vary
depending on the properties of the data, parameters of the synthesizers and
desired effect on perception.

As synthesizers can have a number of parameters, PMSon is suitable for
navigating multivariate data in a way that would not be possible by using
visual plotting methods. For this reason, PMSon is sometimes metaphorically
referred to as “auditory scatter plot”, referring to the fact that often scatter
plots convey information not only through coordinates, but also through
other properties such as color and size of the points.

Sounds can be generated using different approaches:

• Continuous: each data point is used to modulate parameters of a num-
ber of running synthesizers.

• Discrete: each data point is translated into an independent and usually
short-lived sound.

• Event-based: a sound is triggered when an event occurs (a data point
satisfies certain conditions).

These different approaches can coexist in a same sonification.
The great flexibility in defining mappings and sound generation methods

make PMSon suitable for all kinds of sonification tasks. For instance, it
can be used to audibly navigate datasets in search of patterns or to produce

3

auditory “summaries” of the data; in real-time scenarios, it can be used
for monitoring or for building sensory substitution or sensory augmentation
systems.

1.2 Behavioural Cues and Social Signals

Communication between humans is made up of a multitude of social
signals, which reflect people’s attitude towards social interaction [60]. Some
examples of social signals are attention, empathy, politeness, flirting, agree-
ment, aggressivity and attractiveness. Social signals are expressed through
a sequence of non-verbal behavioural cues, such as facial expressions, ges-
tures, body posture, vocal behaviour (here we are not referring to the verbal
part) as well as physical characteristics (e.g. height). Behavioural cues are
simpler elements than social signals because, unlike social signals, they are
objectively-measurable changes in physiological activity and do not have any
interpretation associated. Social signal processing (SSP) is a research
domain that aims at providing computers with the ability to perceive and
understand social signals [60]. Despite being a very promising field of re-
search, it is still relatively young, which implies that it is difficult to develop
SSP systems.

Between behavioural cues related to the head, facial expressions require
further explanation and categorization. The facial action coding system
(FACS) [47] is a widely used method for describing facial expressions. FACS
defines 44 action units (AUs) that represent independent movements of
facial muscles, but also of the head, eyes and other miscellaneous actions.
Complex facial expressions can be described with a set of AUs that can be
interpreted to obtain information on basic emotions displayed, personality
traits or social signals. The facial feature sonification application described
in chapter 4 will consider and sonify facial AUs, leaving their eventual in-
terpretation to listeners; non-facial AUs will not be considered: instead, the
system will rely on head rotation information and gaze angles.

1.3 State of the Art

Many sonification systems with different aims have been designed. The
analysis of some of them will make clear what are the common technical
challenges faced during their design. Our main interest is in systems that
are capable of real-time performance.

4 1. Background

1.3.1 Sonification Systems

1.3.1.1 Physioson

Physioson is a system for interactive sonification of body movements de-
signed to be an assistive tool for physiotherapy treatments [46]. It includes
a wearable sensor system that can assess the body movements of the user
and a software component written in python that processes sensor data and
provides auditory feedback. Users can use their own auditory bio-feedback
to adjust their form during exercise execution.

Physioson provides support for recording sensor measurements of the cor-
rect execution of the movement under the supervision of an expert, along with
a video; recorded reference data will be needed to sonify exercise executions
and guide the user to the correct execution of exercises. Sensor recordings
(along with their videos) can be replayed using different sonifications.

When reference data for a certain exercise is available, so called “relative”
sonifications can be used. These sonifications consider both reference data
and data obtained in real-time from sensors and are meant to provide infor-
mation on the difference between real-time execution and recorded correct
execution of the exercise. “Absolute” sonifications are used when reference
data is not available. Sonification definitions can be added and removed from
the system, but the system is shipped with a library of implemented sonifi-
cations. Sonification have parameters that can be regulated through sliders
displayed on the main application window.

1.3.1.2 GymSon

GymSon is a sonification system designed to provide realtime auditory
feedback regarding a particular gymnastic movement: the switch leap per-
formed on the balance beam. This system was used in the context of a study
regarding the possibilities of improving the execution of complex movements
using auditory feedback [31].

GymSon sonifies the angle between the thighs of gymnasts, extracted in
realtime from data coming from sensors mounted on thighs and waist. The
purpose of the sonification is to provide a feedback on how good the execution
of the movement is, given that, in a good performance, the measured angle
should be at least 180◦.

1.3.1.3 Head Movements Sonification

Hermann et al. describe a sensory substitution system for realtime in-
teractive sonification of head movements and gestures [36]. Such a system

5

can have many applications: for example it could be used to support visually
impaired people in their interactions. Users could wear the sensor system
to sonify their own head movements and gestures; this way they could learn
how auditory feedback relates with their proprioception. If the sensor system
is worn by an interaction partner, their head gestures could be perceived in
realtime by a visually impaired user.

1.3.1.4 Swimming Sonification

Hermann et al. designed a system for swimming sonification with the
aim of optimizing crawl stroke movement efficiency [38] [28]. Unlike previ-
ously described systems, this one sonifies pressure sensor data rather than
movement data.

The mentioned studies experiment with various sonifications adopting dif-
ferent approaches: some of them sonify sensor data independently using one
channel to control one synthesizer, while others consider data from multiple
channels at the same time.

1.3.1.5 CardioSounds

CardioSounds is a wearable system for realtime electrocardiogram sonifi-
cation [25]. The system can be controlled through a smartphone app. Car-
dioSounds is meant to be used for monitoring heart behaviour in cases of
cardiac pathologies using auditory feedback.

As described in [25], the system setup includes only one ECG lead sam-
pling at 1000 Hz, but the authors deem important to add least another one.
Moreover, plans for future development include the possibility of visualizing
the data and twisting sonifications’ parameters on the CardioSounds app,
turning this system into an interactive sonification system. The app should
also be capable of storing and retrieving ECG recordings and play them back
using different playback rates.

1.3.1.6 MarketBuzz

MarketBuzz is a system for realtime sonification of financial data that
can be used to monitor the movement of market indices [41]. Using auditory
display can have significant advantages in contexts where there is a need for
monitoring numerous data streams, and effective visual display would require
multiple displays. Sonifications serve different purposes, e.g. tracking relative
movement of an index (increasing or decreasing), the absolute position or the
distance from a target.

6 1. Background

1.3.1.7 Sonification of Facial Actions

SoFA (Sonifier of Facial Actions) is a realtime facial movement sonifica-
tion system for musical expression [30]. A part for musical tasks, it could be
applied to a variety of tasks, such as augmenting visual processing of facial
gestures through sound.

Facial features are extracted from a webcam using optic flow and face de-
tection algorithms. The optic flow step computes a grid of motion vectors for
the image, while face detection associates motion vectors with face regions,
excluding all motion vectors that are not relative to the face.

The mapping considers a pentatonic scale where lower parts of the face
are mapped to low pitches and higher ones to high pitches. The amplitude
(velocity) is computed from the motion vector magnitude. The system pro-
vides a GUI interface to twist a number of sonification parameters.

1.3.2 Common Aspects

From previously described systems, we can extract some relevant features
shared by many of them:

• Focus on real-time usage: all described systems have real-time us-
age as their primary focus. Some of them support recording and
replaying data using different sonifications.

• Multiple sonifications: support for adding, editing and loading soni-
fications.

• Interactive sonification: sonification parameters could be tweaked
while the sonification is running.

• Different kinds of stream: streams can obtain data in different
ways: we saw examples of data obtained from different kinds of sensors,
through the internet (MarketBuzz 1.3.1.6) and extracted from a video
stream (SoFA 1.3.1.7).

• Multiple data streams: multiple, independent data streams can be
processed jointly.

These aspects are common to many other sonification applications. A
framework that could address technical challenges behind these features would
be a precious tool for developers, as it would allow them to focus exclusively
on the peculiar characteristics of the application, highly reducing develop-
ment effort. Moreover, it would give an initial structure to the application,
reducing the time needed for designing and developing the system.

Chapter 2

Conceptual Design

In section 1.3.1, we reviewed some real-time sonification systems and
discussed their common aspects. In this chapter, we will articulate those
aspects into a concrete list of requirements for our framework and describe
technologies that will be relevant to its development.

2.1 Requirement Analysis

Some of the systems that we discussed obtain data in real-time from
multiple sensor streams. These sensor streams, in the general case, can
have different frame rates, but nonetheless, they have to be processed jointly
to compute useful sonifications; generally speaking, when we are dealing with
streams of data coming from related sensors, the most important information
is the one that we can derive from the relationships between the data coming
from each of the streams, because it describes the overall behaviour of the
whole system. Moreover, real-world systems are often subject to problems
that could lead to irregular frame rates; e.g. noise or bad reception in case
of data that is obtained through a wireless medium.

A useful operation to perform on real-time data is to record it persistently.
In this context, as we are dealing with sonification systems, we also deal with
auditory representations of the data; this representation is more interpretable
than the raw, numerical representation, and certainly worth recording in
many cases. It would be useful to be able to record the data in its row form
or in its auditory representation. From now on, we will refer to the first case
as logging and to the second as recording.

After the data has been logged, a mechanism is needed to replay the data
using a sonification. In other words, we would like to have an effective offline
mode of interaction with the data, that would allow to navigate its auditory

7

8 2. Conceptual Design

representation while interacting with the parameter of the sonification. Re-
playing data should generate identical sounds.

The framework should provide support for working with video and audio
streams/files. More specifically, it should provide functionalities to record
and replay video and audio along with the sonification of logged data. While
video streams and files can be treated independently from the other compo-
nents of the framework, audio streams and files require more thought, as it
would be desirable that the framework could provide support for modifying
audio streams based on a data stream.

The framework should be capable to work with different data and sensor
systems and be reusable for applications with different aims. Reusability is
best given by allowing the components of the framework to be recombined
differently inside of an interactive environment. This is justified by the fact
that we want the framework to be usable primarily in a research context,
where tools such as Jupyter Notebooks (see section 2.3) widely used. Stand-
alone applications for end-users should be derived only later on.

To sum up, the framework fulfill the following requirements:

• R1.1: support offline data sonification.

• R1.2: support online (real-time) data sonification, with support for
multiple data streams.

• R1.3: support the recording of sonifications.

• R1.4: support the logging of data coming from real-time streams.

• R1.5: support playback of logged data with different sonifications.

• R1.6: support video and audio streams and files.

• R1.7: be independent from the kind of data that applications sonify.

• R1.8: support working in Jupyter Notebooks as main mode of inter-
action.

• R1.9: be cross-platform.

2.2 Python

Python is a high-level, general purpose programming language [45]. Nowa-
days it is one of the most widely spread programming languages and the

9

most popular choice for Scientific Computing, Data Science, Machine Learn-
ing and IOT [42]). Its popularity is partially due to the vast ecosystem of
libraries Python developers can count on. Python supports extensions writ-
ten in C and C++: an option when maximum computational efficiency is
needed. Many popular libraries relevant for data processing implement their
own extensions.

Given all of this, it is easy to see how Python would be a reasonable
choice as programming language for our framework. By adopting Python,
we could count on many mature libraries as foundation for our framework
during development. Moreover, the framework would be based on a very
popular language and published in a context where most of the libraries
adopted would already be familiar to potential users, which would make it
easier to learn.

2.2.1 Global Interpreter Lock

The default, reference Python interpreter, written in C, is called CPython
[9]. It is also the most widely used implementation of Python. It is important
to have a basic understanding of the architecture and functioning of CPython.
In particular, there is one of its features that is relevant to our purposes: the
Global Interpreter Lock (GIL).

The GIL is a mutex that protects access to Python objects by allow-
ing only one thread at a time to execute Python bytecode [14]; this con-
cretely means that multi-threaded programs written in Python cannot fully
exploit modern multi-core CPU architecture by executing multiple thread
on different cores. The purpose of the GIL is to avoid race conditions on
shared interpreter data used for memory management [24]. The GIL allows
to have minimum performance overhead for single-threaded programs, but
strongly restricts the possibilities of multi-threaded programs. Different so-
lutions designed not to impose these restrictions on multi-threaded programs
were always found to have an unacceptable performance overhead for single-
threaded programs, and for this reason were never adopted. A promising
proof-of-concept of a Python interpreter without GIL and with some increase
in performance has been implemented recently [6]. Nonetheless, we will have
to design the framework by taking into account the present limitations.

The GIL imposes major limitations when working with CPU-bound,
multi-threaded processes. In case of I/O-bound processes, every thread will
release the GIL when starting to wait for I/O operations to complete, allow-
ing another thread to be executed. In case of CPU-bound processes, threads
will generally perform few I/O operation and run until they are preempted,
blocking the execution of other threads. The Python interpreter switches

10 2. Conceptual Design

the running thread only in-between bytecode instructions. As we said, only
a single thread runs in the context of a single program at every moment;
for this reasons, each bytecode instruction is considered atomic. This means
that most of intuitively atomic operations are actually atomic [53].

The typical workaround to this problem, is to rely on multi-processing
rather than multi-threading. By doing so, we will have different processes
executing their own interpreters in separate memory spaces; these processes
run in parallel as they are scheduled by the operating system independently.
The typical way to exchange data between multiple processes is to use Inter
Process Communication (IPC), which is less efficient than relying on shared
memory. Python provides in its standard library a module that allows to han-
dle multi-processing by using a high-level API called multiprocessing [56];
this is the recommended library to be used for multi-processing in most of
the contexts. multiprocessing also provides some support to allocate memory
segments that are shared between different processes using shared memory
maps.

An approach to bypass the GIL limitations could be developing a C or
C++ extension to perform multi-threading tasks. Extensions are still subject
to the same GIL limitations, but it is possible to manually release the GIL
[52]. However, this solution would require a careful design and a much greater
development effort.

This knowledge can come up as relevant when we design how to handle
multiple streams. Ideally, we would want each data stream to run indepen-
dently; using multiprocessing, it is possible to run each data stream on a
different process, making it possible to spread them on multiple cores.

2.3 Jupyter Notebooks

The Jupyter notebook is an open-source interactive coding environment
that allows to create documents (called “notebooks”) capable of containing
both executable code and rich-text [20] [39]. Originally, the project sup-
ported only the Python language, but nowadays it supports more than 40
languages; nonetheless, Python is still the most common language used in
Jupyter notebooks. Jupyter notebooks can be used as literate programming
tools to support workflow during research or to present analysis and results
[43] [57]; they are also widely used as a support for teaching and collabora-
tions.

When using Python in a Jupyter notebook, the actual interpreter running
the code (referred to as “kernel”) is called IPython [48]. Recent versions of
IPython are capable of displaying different kind of media, such as images,

11

videos, audio, directly in the notebook. This powerful display system pro-
vides interactive GUI support through a library of widgets [50]. Ipywidgets
are simply Python objects that have a graphical representation that can
be displayed in the notebook; they provide a powerful mean of interaction
between the user and the notebook. Users can also define custom widget
representations for their classes.

2.4 SuperCollider

SuperCollider is an open-source platform for audio synthesis [11]. The
sound synthesis engine of SuperCollider is a process called scsynth that be-
haves like a server process, listening for Open Sound Control (OSC) messages
on the network and executing the respective commands to generate sounds.
To communicate with the server, sclang, an interpreter for the SuperCol-
lider language, is usually used [15]. In addition to scsynth and sclang, the
SuperCollider project also includes an IDE, called scide.

The client-server architecture makes SuperCollider very flexible: client
and server can run both on the same machine or on different machines, and
multiple clients can hold connections with the same server at the same time.
Moreover, we could substitute sclang with whatever program that is able to
communicate with the server.

2.4.1 sc3nb

sc3nb (SuperCollider 3 Notebook) is a Python package that implements
a SuperCollider client [37] [12]. Using sc3nb, the Python library ecosystem
for data analysis can be interfaced with SuperCollider sound synthesis ca-
pabilities, using data to drive sound generation. All of this can be used
interactively inside of Jupyter notebooks. sc3nb has a lean interface that
mimics the one of sclang in many respects, making it easy to learn for users
who are already familiar with SuperCollider.

sc3nb is able to interact with and control both sclang and scsynth. It
can interpret the SuperCollider language by sending the code as an I/O
stream to sclang for evaluation. Given that sc3nb is not natively capable
of compiling synthesizer definitions, this task is also normally delegated to
sclang, but it can also be performed by other Python libraries that support
this functionality, such as supriya [8]. In case we do not need any of the
functions that sclang is used for, we also have the option to avoid starting it,
reducing significantly time required for the setup.

As stated in the code repository, sc3nb “is meant to grow into a backend

12 2. Conceptual Design

for a sonification package” [12]; this stated intention is important because it
suggests that we could submit pull requests to the project.

Chapter 3

Panson

The requirements for the framework have been laid out in the previous
chapter, along with the tools that we intend to use. It has to be men-
tioned that the requirements for the facial feature sonification application
(discussed in section 4.1) also had an important influence on many design
choices, driving the development of the framework. This chapter will present
the framework design and explain the main concepts and implementation
decisions.

Many sonification projects have their name ending with “son”; given that
our framework attempts to be a general tool for implementing interactive
sonification applications, we thought about a simple name that could capture
this idea: Panson (from pan- “all” and son for sonification). A concrete
advantage of this name in terms of usability is that users will be able to
import the framework with a short name as “ps”, similar to what is common
to do with pandas.

import panson as ps

import pandas as pd

It is worth noticing that, despite the similarity, “ps” and “pd” remain easily
distinguishable by sight by anyone working with the code.

The reference code implementation of Panson is available at [17], under
the directory panson/.

3.1 Design

Panson was developed using an object-oriented approach, designing classes
to encapsulate different features in such a way that the elements of the frame-
work are easily composable. As specified, Panson’s main mode of interaction

13

14 3. Panson

is meant to be an interactive usage in a Jupyter notebook environment (R1.8);
this forced us to carefully consider peculiarities and limitations of this kind
of context.

In approaching the design, we chose to adopt a bottom-up approach,
starting from the implementation of core functionalities and building the rest
of the framework on top of that. This kind of approach allowed us to quickly
develop a prototype that we could use to build the facial feature sonification
application on top of. The simultaneous development between Panson and
the facial feature sonification application made sure that there was a mutual
influence in the development between the two; for this reason, the require-
ments of the application described in section 4.1 are also relevant to the
development of Panson, given that an effort was made to develop Panson in
such a way that it could enable the application to satisfy those requirements
easily, while trying to keep the framework general-purpose. Concretely, this
meant starting the development implementing prototypes for the Sonification
class (3.1.1) and data player classes (3.1.4), so as to have the basic features
relative to data processing and sonification playback in place. To support this
kind of development approach, continuous refactoring stages were necessary
to restructure and simplify the code. Section 3.1.4 contains some diagrams
that show the general structure of the elements of the framework in different
contexts.

A general guideline behind the development was the idea that users of the
framework should be able to implement applications without having to resort
to the usage of any of the advanced features of Python, such as generators,
decorators and metaclasses, unless these features would be really necessary.
Moreover, Panson should encourage to write code in a concise and maintain-
able manner, using common Python mechanisms: in other words, it should
encourages the writing of pythonic code [55].

3.1.1 Sonification

The Sonification class is meant to be used to define the sonification
behavior independently from its context of use (online or offline). It is an
abstract class that provides template methods for specifying how a sonifi-
cation behaves, i.e. how data is mapped to sound, at different stages of its
execution:

• Initialization: this phase takes place when the sonification object is
created.

Hereafter we show the signatures of the two abstract methods that
Sonification requires to implement:

15

init_parameters(self, *args, **kwargs) -> None

init_server(self) -> Bundler

init parameters deals with the initialization of sonification’s parameter
with their default values (see section 3.1.1.1). Its positional and key-
word arguments are passed to the method by the __init__ method.

init server returns a bundle for allocating resources that will be needed
for the whole life of the sonification, e.g. loads synthdefs needed or
loads samples in buffers.

• Start of playback:

start(self) -> Bundler

This method could be used for tasks such as allocating continuous
synths that run for the whole sonification or setting attributes that
have to be set at each sonification start.

• Processing of a data sample:

_process(self, row: Series) -> Bundler

This method is where the mapping from data to sound is defined. The
“row” argument contains the data in the form of a Pandas Series object,
where every data value is accessible through its label; it is called “row”
because it can be thought of as a row in a Pandas DataFrame. This
method will be called once for every sonified data row.

The underscore preceding the method name indicates that the method
is private. This is because the actual method that will be called on each
data point is called “process”, which is a wrapper around “ process”.
The wrapper ensures that parameters are not changing while the map-
ping is being computed.

• Stop playback:

stop(self) -> Bundler

This method is not required to be overridden. By default, it frees all the
synths belonging to the default group associated to the SuperCollider
client.

16 3. Panson

• Freeing of allocated resources:

free(self) -> None

This method should be overridden only if there is a need for releasing
resources allocated during initialization, such as buffers. By default, it
does nothing. This method has to be called explicitly.

In implementing these methods, users should be free to use whatever
sc3nb programming style they prefer, i.e. low-level interaction based on OSC
messages or high-level interaction based on sc3nb’s node objects. Nonethe-
less, the primary focus will be supporting the highest-level node-based pro-
gramming style, as it is the recommended one.

The independence of sonifications from their context of use is achieved
by not allowing methods implementations to interact directly with the Su-
perCollider server, but rather using Panson’s data players 3.1.4 as intermedi-
aries. For this reason, methods - rather than sending messages to the server
as side effect - returns the messages in a sc3nb structure called bundler; the
responsibility of their actual usage is on the data player object used, which
will also ensure the correct time of execution of the commands.

Panson provides first-class support to sc3nb high-level node-based pro-
gramming style through the “bundle” decorator, which can be a applied
to the implementation of Sonification’s template methods to capture all mes-
sages sent in the body of the method in a bundler object to be returned; this
mechanism is a clean and readable way to gather and return all messages
generated by sc3nb when interacting with node objects. When introducing
the design, we stated that advanced features of the Python language, such
as decorators, should have not been exposed to users unless really necessary;
nonetheless, we considered the use of a decorator as the simplest solution for
this.

It is important to notice that resource allocation (nodes, buffers and
buses) in SuperCollider is handled on the client-side, which means that sc3nb
(the client) has data structures (allocators) for handling resource ID alloca-
tion. In a multi-client SuperCollider setup (the one in use with sc3nb) clients
negotiate the ID range to use at registration time so that resources can be
shared between different clients without interference [18] [22]. In sc3nb creat-
ing a Node object (Synth or Group), a Buffer object or a Bus object, changes
the allocators’ state on the client, even if the messages generated by those
operations are not actually sent to the server. When rendering the full soni-
fication using the “export” function of the DataPlayer it will be necessary

17

to instantiate resources such as buffers on the non-realtime server (see sec-
tion 3.1.4.1); for this reason, Sonification stores the initialization message, so
that init_server is not called multiple times, causing affecting the alloca-
tors’ state.

3.1.1.1 Parameters

As Panson is meant to be a framework for interactive sonification, it
must provide a way to interact with sonifications’ parameters while they are
running. This functionality is provided through a set of classes we refer to
as “parameters”.

When thinking about how to handle such a problem, the first solution that
comes to mind is relying on object attributes that store the values and that
are used to compute the mapping in the “ process” method. Assigning new
values to these attributes would modify the behavior of the sonification. This
approach has the problem that attributes could be changed in the middle of
the computation of a mapping, potentially causing inaccurate or inconsistent
results. Given that in Python only one thread at a time is allowed to run (see
discussion in 2.2.1), this problem may be not so frequent, but can nonetheless
happen when the thread is preempted while performing the sonification after
the interpreter’s thread switch interval has expired. The way to solve this
problem is to make the data processing atomic with respect to assignments of
values to sonification’s attributes. To do so, some sort of locking mechanism
is needed; the goal is to implement it in the most transparent way for the
user.

The chosen solution relies on a feature of Python known as descriptors,
which are a way to customize attribute lookup, assignment and deletion of
classes [54]; descriptors are simply classes that redefine those operations.
We utilize this feature to make the computation of the mapping (“ process”
method) atomic with respect to the parameter modifications in a way that
is almost completely transparent. Parameter is the simplest class leverag-
ing this mechanism, with the only feature implemented being the one just
mentioned. What it does is redefining the assignment operation in such a
way that the actual assignment of the value only takes place after having
acquired a lock; this lock is the one acquired by the “process” method be-
fore computing the mapping, implementing the atomicity requirement that
is needed. Parameter instances can only work properly if declared as class
attributes, rather than instance attributes; indeed, a Parameter attribute
works by creating a private attribute in the owner object (a concrete Sonifi-
cation instance) on the first time is assigned and managing access to it using
the aforementioned lock. The method “init parameters” is required to assign

18 3. Panson

an initial value to each of the parameters to make the whole mechanism work
properly and there are no restrictions on the type of the value assignable.
It should be emphasized that only attributes that are meant to be modified
interactively have to be defined as Parameter instances to avoid unnecessary
overhead.

The Parameter class only provides support for interacting with attributes
through code. Given the requirement of providing support for interactive
usage in Jupyter notebooks, we extended the idea behind the Parameter
class by adding ipywidget-based representations to parameters. From now
on, we will refer to these classes as “widget parameters”.

When a sonification is displayed in a notebook, its representation is simply
a label containing the name of the class followed by all the ipywidgets-based
representations corresponding to widget parameters: this makes widget pa-
rameters an effective way to define widget-based GUIs using a declarative
approach, with a method that can be easily extended to be used with GUI
toolkits such as Qt. Interacting with ipywidgets changes the parameter value.
Widget parameters can be defined subclassing the abstract class WidgetPa-
rameter. Panson includes a library of widget parameters that allow to use
many ipywidgets useful in this context [51], such as sliders, range sliders,
dropdowns, checkboxes and more. The library also contains some useful
custom classes:

• DbSliderParameter: a slider of decibel values from −90 to 0.

• MidiSliderParameter: a slider of MIDI values.

• FreqSliderParameter: a non-linear frequency slider from 20 Hz to 20
kHz.

In file panson/widget_parameters.py at [17] we can find the implementa-
tions of all widgets parameters. It is possible to see some examples of widget
renderings of sonification objects in section 4.4.

3.1.1.2 GroupSonification

The GroupSonification class allows to group multiple sonifications to-
gether, so that they can be controlled simultaneously by a data player; these
sonifications have to be passed to the constructor when instantiating the class
as a sequence. Having such a tool available enables designing sonifications
in a more modular way.

GroupSonification implements the same interface of the Sonification class,
where each method simply calls the respective methods on the sub-components.

19

For instance, any data series processed by the GroupSonification object will
be fed to all its sub-components’ processing method and the resulting bundle
will contain all OSC messages generated.

The widget representation that will be rendered in a Jupyter notebook
when a GroupSonification object is displayed is nothing more than a vertical
stack of the widget displayed by its sub-components.

3.1.2 Streams

Real-time data streams can be defined using the Stream class. Stream
objects are the input data backend of applications built with Panson and
make the rest of the application independent from a specific data source. To
specify how to obtain real-time data, we have to implement a generator
function that obtains and returns the data and provide the Stream class
with it. Generator functions are functions that return an iterator; Python
provides a user-friendly construct to define generator functions through the
“yield” statement [59]. This statement controls the flow of the generator
function, pausing the execution of the function and returning the value; when
a new value will be requested to the generator, the execution will be resumed
from where it was paused. Even if this construct may seem confusing, it
captures exactly what is needed in this context and, being a standard Python
mechanism, plenty of documentation and tutorials are available online.

The design of the Stream class is inspired by the Thread class from
Python’s threading module. The data generator function can be specified
in two ways:

• It can be passed to the “datagen” argument of the constructor when
instantiating the Stream class.

• It can be specified by overriding the “datagen” method when subclass-
ing the Stream class.

The data generator function should respect some constraints.

• The first element yielded should be a list containing the labels of the
data.

• All subsequent elements yielded should be numpy arrays of the same
length of the list of labels. Each array returned will be assembled
with the list of labels into a pandas Series object, so that, users of the
framework will have to interface with Series objects rather than raw
arrays.

20 3. Panson

In case what the user want is to yield single-value data, e.g. sensor
stream, Panson requires anyway to return a one-sized numpy array.

• Each array must have same type of elements.

• The generator is required to block and sleep when waiting for new the
data, to avoid waste of CPU.

In case the user needs to carry on operations when the stream is opened
or closed, the Stream class provides a mechanism to specify function to be
executed, referred to as “hooks”. For instance, hooks could be used to switch
on/off the data flow from the sensor system. If we specify a Preprocessor
class (see 3.1.3), the preprocessing will be computed on each of the data
points before yielding the value out of the stream.

The Stream class provides a “test” method to help users with debugging
of their custom defined streams, as well as testing if everything is working
as expected at a certain point. This method tries to open the stream and
get a number of data samples from it. It can also be used to inspect and set
information regarding the stream; more specifically we are talking about:

• The size of the arrays returned.

• The type of the arrays returned.

• The estimated frame rate.

These pieces of information may be also required by other components of the
framework (see section 3.1.4.3).

Panson contains a number of predefined streams that can be used for
testing. This collection is meant to grow in a library of Stream classes that
could be used for most common situations.

3.1.3 Preprocessors

The Preprocessor class is used to define preprocessing methods for the
data. This class is an abstract class that requires the implementation of only
one method named “preprocess”, of which we can see the signature below.

preprocess(self, row: pd.Series) -> None

As we can see, this method expects a Series object as an argument and it
does not return any value; this means that the implementation of preprocess
will only be useful for its side effects on the Series argument.

21

The user can also define attributes for the class in the initialization
method, but, for now, it is not possible to pass arguments to it. This happens
because the preprocessors are not to be instantiated directly by the user: the
user is required to pass the preprocessor type to the framework components
that require it. The type plays the role of a builder for preprocessor instances,
so that a new preprocessor will be instantiated every time that it is needed,
e.g. every time that a stream is opened.

This mechanism is very simple for the user, but it fails to be flexible
because of the impossibility to specify parameters for the constructor. A
possible solution to this could be the use of an actual builder object in place
of the processor type. This would require some thought, as there may be
more elegant solutions.

3.1.4 Data Players

Data players are used to apply sonifications to data. Different data player
classes were implemented for different purposes. Each one of them processes
data using the Sonification object and sends the resulting bundler to the
server with the correct timing. When starting up the SuperCollider server
through sc3nb, it is important to set an appropriate server latency value
for the system configuration, so that bundlers will be executed on time.

All data players can be displayed in Jupyter notebooks using ipywidget-
based views; these views allow to graphically control most of the data player
functionalities. Output of the data player will be printed in the notebook
cell, after the widget view; to clear the output the only supported way is to
re-evaluate the cell. For this reason, it is important to display the data player
in a separate cell from the one in which it is created. To support a more user-
friendly mode of interaction, we thought initially of providing widget views
with an output widget [49] capable of capturing the output printed by the
data player and cleaning it up at the user’s command. Unfortunately, output
widgets are not designed to work with multi-threading or multi-processing,
and could not be adopted without causing major problems.

3.1.4.1 DataPlayer

DataPlayer is the class to be used when doing offline processing: it sup-
ports loading data from CSV files or from pandas DataFrame objects. Loaded
data can contain timestamps, or a static frame rate can be specified. If times-
tamps are used, the first timestamp value does not necessarily have to be 0:
that value will be used as an offset for all timestamps. Internally, the data
player loops over rows of the DataFrame with the correct timing and com-

22 3. Panson

putes the sonification on each data row by applying the specified sonification.
It is possible to interactively jump around the data and to specify a playback
rate value to speed-up or slow-down the playback; if the specified value is
negative, the playback will be reversed. All these operations can be carried
on while the data player is running. This is implemented by stopping the
playback, executing the operation and resuming the playback.

Figure 3.1: Sonification of offline data. Dashed lines indicate optional ele-
ments. For a description RTFeatureDisplay and VideoPlayer see 3.1.5 and
3.1.6.1.

This class is capable of recording the audio output generated throughout
its playback by leveraging sc3nb’s Recorder class. Users have to explicitly
start and stop recordings, which can be done from the widget view. Be-
yond this, DataPlayer offers an “export” feature capable of rendering the full
playback of the data in an audio file using SuperCollider’s Non-Realtime
Synthesis feature [19]. To perform this operation, the sonification object
is cloned, and the clone is used to compute the sonification of all the data,
storing the results (server commands) in a “score” object. The cloning oper-
ation is necessary because we do not want the original sonification object to
be affected by side effects that may take place during the computation of the

23

sonification. In computing the sonification of the data, the data player will
not call the init_server method on the Sonification object not to cause side
effects on the allocators (see section 3.1.1), but it will access an initialization
bundle memorized during the instantiation of the sonification object.

When creating an DataPlayer object, it is possible to specify a Video-
Player object (see 3.1.6.1) for the constructor. The DataPlayer will use the
VideoPlayer object to display the video synchronously with the data.

Figure 3.2: DataPlayer widget.

3.1.4.2 RTDataPlayer

RTDataPlayer is designed for online (real-time) processing using a single
stream. When started, the data player will open the stream and start con-
tinuously consuming its data. Each data sample obtained will be converted
into a pandas Series and passed to the user-defined sonification processing
code. The resulting bundler object is immediately sent to the server and
executed (after server latency).

RTDataPlayer, similarly to DataPlayer, is capable of recording generated
sounds in an audio file. Additionally, it is also capable of logging data in a
.csv file; logged data can be replayed using a DataPlayer.

When creating an RTDataPlayer object, it is possible to specify a RTVideo-
Player object (see 3.1.6.2) for the constructor. When recording or logging
data, if an RTVideoPlayer object was specified, the video stream will be
recorded.

3.1.4.3 RTDataPlayerMT and RTDataPlayerMP

RTDataPlayerMT and RTDataPlayerMP are both multi-stream data
players: they are able to jointly process multiple independent data streams
with different frame rates. Their implementations are based on multi-threading
and multi-processing approaches respectively, but their interface is the same;
in the future these two classes could be merged into one.

24 3. Panson

Figure 3.3: Real-time sonification of data. Dashed lines indicate optional
elements. For a description RTFeatureDisplay and RTVideoPlayer see 3.1.5
and 3.1.6.2

Figure 3.4: RTDataPlayer widget.

Multi-stream data players have to compute sonifications on data coming
from multiple streams with potentially different frame rates. To achieve
this, they have to compute the sonification at regular intervals, taking into
account the most recent data sample from each of the streams. The most
recent data from every stream is joined into a pandas Series; to make this
possible, labels associated to data from different streams must be specified
in such a way that no name collision will occur. The frequency at which the
sonification is computed can be specified as a constructor argument; if it is
not specified, the highest stream frame rate is chosen. This is only possible
if streams’ frame rates are known: users can set this piece of information
explicitly or can estimate it using Stream’s “test” method (3.1.2).

25

Figure 3.5: Real-time multi-stream sonification based on multi-processing.
Dashed lines indicate optional elements.

Multi-stream data players can perform logging in different ways:

• Stream-level logging logs every data sample generated by a single
stream.

Currently this is implemented only in the RTDataPlayerMT.

• Global-level logging logs the multi-stream data that is sonified. Logged
data can be replayed using a DataPlayer.

Data can optionally be timestamped by the data players both when it is
obtained from the streams and when it is sonified.

As we discussed in section 2.2.1, Python’s multi-threading is not suitable
for all situations because of the limitation imposed by the GIL. RTDataPlay-
erMT was initially developed as a prototype, given the easier implementation
of multi-threading programs with respect to multi-processing programs. In-
deed, when relying on multi-processing, we need some sort of inter-process
communication (IPC) mechanism. Nonetheless, a multi-threading solution
can be useful if we have to deal with few streams with light or no preprocess-
ing: here multi-threading would be preferable to multi-processing as it does

26 3. Panson

not have to deal with the overhead due to IPC. Moreover, RTDataPlayerMT
could be used instead of RTDataPlayer in case we do not want to sonify
all the data produced by the stream, but rather we would like to run the
sonification at a specified frequency.

RTDataPlayerMT starts a thread for each stream and sonifies the last
data available from each stream at a regular frequency in another thread.
RTDataPlayerMP works in a similar way, but using processes instead of
threads. These processes continuously fetch data generated by streams into
slots of memory that is shared between different processes. In Python, this is
possible by using the Array class from the multiprocessing module [56], which
provides synchronized access to a shared memory map; this allows ti move
data between processes using a mechanism that is more efficient than IPC.
Before the sonification is computed, local copies of all the shared-memory
arrays are performed and joined into a Series object.

To allocate shared memory maps, it is necessary to know in advance the
amount of memory to allocate. For this reason, it is necessary to know the
size of the arrays returned by each of the streams and the type of their
elements. This piece of information can be obtained and set for each of the
streams calling their “test” method.

Multi-stream data players support preprocessing of joined multi-stream
data through the Preprocessing class. The only preprocessing operations
that should be executed here are the ones that need to access data from
multiple streams simultaneously: all the preprocessing operations that could
be handled at a stream-level should be delegated to the Stream class. This
is especially true when using RTDataPlayerMP: as streams are executed in
other processes, executing the preprocessing in the streams will distribute
the CPU load.

Figure 3.6: Widget for multi-stream data players (with two streams).

3.1.5 Feature Displays

Feature displays allow to display in real-time values of the sonified data.
Currently, only one class of this family is implemented: the RTFeatureDis-

27

play.
RTFeatureDisplay displays the history of most recent values sonified

using a first-in first-out (FIFO) policy. At creation, it requires to specify
the labels of the data features to track and the size of the queue to be
used (infinite by default). This class is meant to be led by a data player
and can work with all data player classes (also offline). Data players feed
the RTFeatureDisplay object with data in the form of Series objects and
the RTFeatureDisplay object updates the dynamic plot with the features
corresponding to the specified labels.

Figure 3.7: RTFeatureDisplay displayed inline in a Jupyter Notebook.

A RTFeatureDisplay object can be fed with data in the form of a pandas
Series and in result it will update the dynamic plot containing the data values
stored in the queue. The only values that will be taken into account by the
data are the ones specified in the label list passed to the constructor.

The “show” method displays the plot and starts updating it; this is done
using matplotlib. If we are using a Jupyter notebook, the appropriate mat-

28 3. Panson

plotlib backend (“notebook”) is set by default, allowing the user to display
dynamic plots directly in the notebook. By displaying a feature display in
the same cell of another component, we can compose different representa-
tions. Below, we demonstrate how to display a feature display on top of a
data player.

feature_display.show()

display(data_player)

When sonifying offline data using a DataPlayer object, the FIFO be-
haviour of the RTFeatureDisplay is not always desirable. In this case, it
would be useful to have a feature display that could show a window around
the current data point being sonified, rather than the history of most recently
sonified data points. Such a functionality is not currently implemented, but
will be implemented as FeatureDisplay class.

3.1.6 Video Players

Video players provide support for handling video files and streams through
two separate classes: VideoPlayer and RTVideoPlayer. These classes are
both proxies that communicate with separate processes, responsible of car-
rying on the actual operations; this is done to bypass Python’s GIL (see
2.2.1).

Video players display a window for the video playback even when they
are used in Jupyter notebooks, as Jupyter notebooks provide support for
displaying image data, but it is not appropriate for displaying videos.

3.1.6.1 VideoPlayer

The VideoPlayer class provides functionalities to handle the display of
video files. When instantiated, it displays a window where the frames of the
loaded video file are displayed. It offers the possibility to specify a constant
frame rate or a timestamp file containing the precise timestamps for each
frame of the video.

The current implementation of the VideoPlayer is not designed to be
a stand-alone component, but rather to work together with a DataPlayer
object. The DataPlayer perform seek operations on the VideoPlayer, which
will update the displayed video frame.

In the first prototype implemented, the DataPlayer was seeking video
frame using their indexes while running. However, this approach is only ap-
plicable if to each data sample corresponds one video frame; in general, this

29

assumption cannot be made as the data and the video stream can be indepen-
dent. A trivial solution would be seeking time instead of indexes; VideoPlayer
supports this operations, but it implements it using binary search, which
has a logarithmic complexity in time, rather than the constant complexity
necessary to perform an index seek. Having a non-constant complexity for
an operation that is executed for each data point sonified is not a satisfac-
tory solution as it may not be efficient enough to be used with long video
files. This means that the current implementation is not complete. The final
VideoPlayer should be able to playback video files without relying on any
external component, roughly like the DataPlayer does with data. A stand-
alone VideoPlayer component designed to bypass the GIL would be useful in
many different projects. It is possible that this component will grow into an
independent project.

To handle loading of video files, VideoPlayer relies on the PIMS library
[21] [58]. This library provides means for performing random access on video
frames without having to load the whole video into memory, enabling the
possibility of working with large video files.

3.1.6.2 RTVideoPlayer

RTVideoPlayer provides support for displaying and recording a video
stream coming from a device. When the object is created, a process that
grabs frames from the device and displays them in a window is started. If
recording is started, grabbed video frames will be written to a video file
and their precise timestamps will be written in a CSV file, in a format that
could be directly used by the VideoPlayer class. If an RTVideoPlayer object
is passed to a real-time data player (single-stream or multi-stream), it will
start recording whenever the data player starts recording or logging; with
multi-stream data players stream-level logging does not start any recording.

3.1.7 %%editor

Sonifications can be coded in Python source code files, to be imported
before their use, or directly in Jupyter notebooks. In the second case, the
default Jupyter notebook environment, with its basic text editing function-
alities, is not the best choice in case of complex sonifications. Nowadays,
only few text editors and IDEs provide support for working with Jupyter
notebooks.

Panson provides a prototype of a cell magic [40] called “editor” to support
efficient development and editing of sonifications. This magic is inspired by
the built-in IPython magic “edit”, which does not work properly in Jupyter

30 3. Panson

notebooks; “editor” is its adaptation to work in Jupyter notebooks. The
“editor” magic opens the cell where it is contained in the editor specified
by the $EDITOR environment variable. When the editor is closed, a cell
containing the edited text will be created below the current cell (it is not
allowed to substitute the content of the current cell). Using this magic,
users can perform sophisticate text editing operations using their favorite
text editor. Being a cell magic, it has to be placed at the beginning of the
cell and called as the following:

%%editor

cell content

...

This magic is general-purpose and not bound in any way to the sonifica-
tion context. For this reason, it would be a good idea to move this component
into an independent project. At the time of writing, no other similar project
was found.

3.2 Evaluation

In this section, we will describe the results of a simple technical evaluation
related to various real-time setups of Panson. We decided to take into account
different real-time setups because it is where performance matters the most.
This evaluation does not aim to be complete or accurate, but only to give an
overview of the performance of the framework. The evaluation was carried
out on a laptop MSI Modern 15 A11M-217XIT using an Intel Core I5-
1135G7.

3.2.1 Latency

An important metrics to consider is processing latency. In real-time
scenarios, processing latency is the amount of time from when the data is
obtained from the stream to when the bundler that updates the sonification is
sent to the SuperCollider server; this measure does not include server latency,
which is dependent on the server’s settings specified.

To measure this, we used a dummy sonification that simply returns an
empty bundler, so that no time is consumed by what would normally be user-
implemented processing code. This kind of evaluation is only possible using
the RTDataPlayer as in multi-stream data players data acquisition phase
and processing phase are independent, i.e. the processing is run at regular
intervals.

31

The mean processing latency has been proved to be of around 0.49 ms,
independently from the size of the data arrays returned by the generators.
This value has been obtained using sizes varying from 1 to 1 million of ele-
ments per array. Of course, the measured processing latency does not include
the time necessary for the allocation of the memory of the arrays, which takes
place inside of the generator. The reason why the processing latency is in-
dependent from the data sample size is that RTDataPlayer simply packs the
data header and the data sample in a Series; this operation is performed by
passing the references of the arrays, without any copy of data.

0.49 ms is a small value if compared with typical server latency values,
where 50 ms is considered a small value. Most of the total processing value
will always be due to user-implemented code in streams and sonifications;
this is a desirable result because it means that the framework does not add
a big computational overhead to user-defined operations.

3.2.2 CPU Usage

Here we measure the approximate CPU usage of real-time data players
using different stream frequencies and sonification frequencies (i.e. how often
the sonification is computed); this will give some insights on the scaling
abilities of the framework. In the following results, 100% indicates the full
use of a single core, meaning that it is theoretically possible for a multi-
threaded process to have values that are higher than 100%. However, this is
not possible for a Python program because of the limitations due to the GIL
(see section 2.2.1).

To perform these evaluations, we used a sonification that does nothing
at any of its stages, so that its impact on CPU consumption is negligible.
The stream adopted generates zeroed arrays of 1000 elements at the specified
frame rate.

Image 3.8 shows the results of the evaluation of the RTDataPlayer class.
CPU consumption appears to maintain linear growth as frequency increases.
This is both expected and desirable. Regarding the values of CPU consump-
tion, we must notice that, in a typical situation, arrays returned from the
stream will be smaller in size than 1000 elements.

In image 3.9, we can see a comparison between the multi-threading ap-
proach to multiple streams and the multi-processing one. To test this, we
used two of the aforementioned streams; this means that there are a total of
three threads/processes running: two of those associated to streams and the
other one performing the sonification. In this evaluation, we used a same fre-
quency value for both the streams and the sonification; in general, different
values could be used for each of the stream and for the sonification frequency.

32 3. Panson

Figure 3.8: CPU consumption of a RTDataPlayer at different frequencies.

The values obtained from the multi-processing evaluation only take into
account the CPU usage of the main process (the one that computes the
sonification). This will give an idea of how much CPU usage can be spread
on multiple cores. The total CPU load of multi-processing would be superior
to multi-threading, as the multi-processing approach has to deal with the
overhead of copying the data to the shared memory space, whereas multi-
threading can rely on actual shared memory.

With this setup the multi-threading data player seems to perform well
for frequency values inferior to 100 Hz. Indeed, we must remember that
for the multi-processing data player only the CPU consumption of the main
process is shown, which means that the total CPU consumption would be
higher. For higher frequency values, multi-processing is able to significantly
reduce the main process’ CPU usage, spreading the stream processes on other
cores. The advantage of this approach would become even clearer if we used
a much greater number of streams or if we used independent frame rates for
the streams and the sonification processing.

33

Figure 3.9: Comparison between CPU consumption of multi-stream data
players.

34 3. Panson

Chapter 4

Facial Feature Sonification

This chapter discusses the design and implementation of an interactive
facial features sonification application based on Panson. As we already
mentioned, it is not correct to think that the application was unidirection-
ally influenced by Panson; in fact, the application’s requirements traced the
path for Panson’s development during early stages of the project. Indeed,
the overall goal of this thesis was to implement a facial feature sonification
application using components that could be reused for other similar applica-
tions. We can say that Panson and the application had reciprocal influence
in their development.

4.1 Requirement Analysis

The general aim of the application is to provide an interactive system for
facial expression sonification that could adequately support a number of use
cases that we describe in this section.

4.1.1 Use Case 1 - Support for Visually Impaired Peo-
ple

Visually impaired people could use the application for sonifying their
own facial expressions in real-time (using a webcam) to learn how generated
sounds relate to their proprioception. After the learning phase, they could
use it during a conversation with another person to sonify their interlocutor’s
facial expressions.

Sonifications should be informative and convey through sound as much
as the communicatively relevant information as possible while being easy
to perceive and interpret correctly. Ideally, the users should quickly get

35

36 4. Facial Feature Sonification

used to the sounds generated, so that their primary focus can shift on the
conversation.

Sonifications designed for this use case should be:

• R2.1: easy to learn

• R2.2: unambiguous

• R2.3: unobtrusive

4.1.2 Use Case 2 - Support for Facial Expression Anal-
ysis

Sonification can be a powerful tool for highlighting qualities of the data
by drawing attention on them. The application should ideally be a useful tool
for facial expression analysis, allowing to leverage hearing as a way to guide
attention to some meaningful details that otherwise would be easily ignored.
Facial Expression Analysis can infer higher order information (such as basic
emotions, pain, personality traits, etc.) more accurately than subjective
judgments based on intuition. For instance, using FACS (see section 1.2), it
is possible to distinguish truth from lying much more effectively than using
arbitrary judgements [29].

The application should provide functions to support users in facial ex-
pression analysis; this means providing ways to record the video and data
streams, play them back using different sonifications and navigate them. It
should also provide ways to perform offline processing of video files that were
not recorded within the application.

The application should be capable of:

• R2.4: recording generated audio (and eventual video)

• R2.5: recording the data

• R2.6: playback the data using different sonifications

4.1.3 Use Case 3 - Facial Expression Practice Tool

The application should be a useful tool for practicing facial expressiveness.
For example, it could be used by actors; using an hybrid online/offline
mode of interaction, they could compare the sounds generated by their
own facial expressions recorded in real-time through a webcam to the sounds
generated from the offline processing of a recording and practice matching
the two as much as possible. Another possible usage could be as a support for

37

facial physiotherapy exercises. Nowadays, many forms of brain-damage
that compromise facial expressiveness are often treated with facial exercises;
these could be augmented using facial feature sonification.

Ideally, it would be possible to apply this mechanism to faces of different
people. This would be useful to practice imitating facial expressions. An
appropriate sonification for this use case would not be overly influenced by the
topology of the face, so that it would be possible to compare facial expressions
of different people.

The application should be capable of:

• R2.7: sonifying real-time data along with prerecorded data

• R2.8: sonifying facial expressions from different faces in a comparable
manner

4.2 OpenFace 2.0

OpenFace 2.0 is an open-source and cross-platform computer vision tool
for facial behavior analysis, capable of performing facial landmark detection,
facial action unit recognition, head pose estimation and eye-gaze estimation
[26]. In these tasks, OpenFace is capable of state-of-the-art results as well
as real-time performance. OpenFace can run without the need for any sort
of specialized hardware, such as GPUs. Finally, it is freely available for
research purposes in all its functionalities. For all this reasons, OpenFace is
a good choice for performing feature extractions on video files or streams in
the context of our feature expression sonification application.

4.2.1 Installation

In addition to the default installation method, the project provides a pre-
built docker container with OpenFace executables. Using this option is
a convenient way for users to install OpenFace without having to deal with
potential dependency issues.

4.2.2 Usage

In this section we will mention some relevant details about OpenFace
command line interface; the full documentation is available in the Wiki of
the Github repository [7]. OpenFace also provides a Windows-only GUI
interface, which is not relevant in our case since the application will interface
to OpenFace by calling its command line executables from code.

38 4. Facial Feature Sonification

OpenFace includes multiple executables. but the only one that is relevant
to our purpose is called FeatureExtraction: this executable can be used for
sequence analysis (on video files or sequences of images) that contains only
one face. Below we will describe the relevant command line arguments of
FeatureExtraction and the associated functions.

4.2.2.1 Offline Processing

The -f option followed by a video file path is used to specify a video file
to process. Multiple video files can be specified using multiple -f options.

If we have a directory containing a sequence of images representing frames,
we can process the whole sequence of files as if it was a video file using
the -fdir option followed by the path of the directory. Formats of images
supported are JPEG, PNG and BMP and files must be named in the correct
order, e.g. encoding the frame number in their names. The output generated
will be associated to the full sequence of images rather than to single images.

4.2.2.2 Online Processing

Using the -device option, OpenFace allows to specify a device id of a
webcam to perform feature extraction from in real-time. If this option is
specified, -cam_width and -cam_height followed by a number can be used
to specify the resolution, which by default is 640× 480.

4.2.2.3 Output

By default, FeatureExtraction puts its output files into a directory
named “processed”, under the working directory; if this directory does not
exist, it is created. We can specify another name for the directory using the
-out_dir option, followed by the path of the directory.

With the -of option, we can specify a path for the output files generated
by the executable. If this option is not used, the original filename is consid-
ered. If -fdir or -device is used, the directory name or the timestamped
webcam ID are used respectively.

FeatureExtraction accepts a number of options to specify which pieces
of information will be computed and will appear in the output; by default
(when no option is specified) all features are computed and included in the
output; unless this is what we want, we should specify only the option that
we need to avoid unnecessary computational overhead. The following are the
ones we are interested in:

• -aus: output Action Units recognized by OpenFace.

39

• -pose: output head pose, including location and rotation angles.

• -gaze: output features relative to the gaze.

• -tracked: output processed video with detected landmarks.

4.2.3 Output Format

A part from the tracked video file, all information relevant to our appli-
cation will be written in a CSV file.

4.2.3.1 Facial Action Units

OpenFace is able to recognize a total of 18 of Facial Action Units (see
section 1.2 for a general explanation), specifically: 1, 2, 4, 5, 6, 7, 9, 10, 12,
14, 15, 17, 20, 23, 25, 26, 28 and 45. An illustration of every of those AUs
can be found at [26]. The detected information is the presence and intensity
of the AUs. Intensity is encoded with a number in the real interval between
0 and 5, where 0 indicates absence, 1 presence at minimum intensity and
5 presence at maximum intensity. Presence is encoded with 0 for absence
and 1 for presence. Between the mentioned AUs, presence and intensity
are detected for all of them, except for AU 28, for which only presence is
available.

Consistency between intensity and presence information is not guaran-
teed, as models for detecting them are trained on different datasets [1] and,
for this reason, we should rely only on one of the two. The intensity value
should be always preferable to the presence when working with sequences,
as the model should be able to learn what a neutral expression would look
like and calibrate the predictions based on that [2]. For this reason, our
application will rely on intensity information.

In the output CSV file, the AU intensity and presence are to be found
respectively under the labels AU*_r and AU*_c (* is a placeholder for the AU
number), where r and c stand for regression and classification.

4.2.3.2 Head Pose

OpenFace is able to recognize the location of the head with respect to
camera as well as head rotations. In our application we will only consider
head rotations as they are more significant from a communicative perspective.
In the CSV file, these are labeled as pose_Rx, pose_Ry and pose_Rz; they
are expressed as radians of the rotation angle around the respective axis.

40 4. Facial Feature Sonification

4.2.3.3 Gaze

OpenFace provides information on the gaze direction. More precisely,
it provides the normalized eye gaze direction vector for both eyes indepen-
dently, as well as a more easy to use format that averages the information
of both eyes, which captures the overall behaviour of both eyes. This last
piece of information is found under the labels gaze_angle_x, gaze_angle_y,
representing the eye gaze direction in radians in world coordinates averaged
for both eyes.

4.2.4 Technical Considerations

Integrating OpenFace in our project is not as trivial as it may seem. Here-
after we are going to describe some technical problems that were encountered
when trying to interface OpenFace with our application.

4.2.4.1 Real-time Feature Streaming

When dealing with offline processing, it is easy to get features from Open-
Face: it is simply necessary to parse the CSV output of OpenFace. Getting
features in real-time is not as trivial, as OpenFace does not support any
mechanism to do that. Some of the issues on Github discuss precisely this
topic.

The most complete solution between the ones suggested is to make use of a
messaging library to stream the features in real-time to other processes. Such
a solution is extremely flexible and would be capable of streaming features
over the local network. This approach has been implemented for Windows,
using the ZeroMQ messaging library [4]. Despite the plans of including a
messaging server in the project [5] [13], these were never carried out, leaving
the project without an official solution for streaming features in real-time.

As it is out of the scope of this thesis to implement real-time feature
streaming in OpenFace, we eventually decided to leverage Unix named
pipes (also knows as FIFOs) as IPC mechanism to be able to get features
in real-time [10]. In this case, FeatureExtraction will be instructed, using
the -of option, to write its real-time features to a named pipe rather than
to a regular file. Since we are going to use the docker container, we have
to put the named pipe in a shared directory, also accessible by the program
that has to consume the features.

One thing we must be aware of is that FeatureExtraction will at-
tempt to carry out a post-processing on the AUs values before quitting.
If FeatureExtraction is writing to a named pipe, it will be blocked at the

41

beginning of the preprocessing stage in the attempt of reading from the pipe
to retrieve the data to preprocess. At this point, the only way to stop the
process is to terminate it. This is clearly not an elegant solution, but it allows
us to reach our goals while minimizing the development effort.

Unfortunately, Windows named pipes are semantically very different from
Unix ones; for this reason, this method will not work on Windows. As we will
see later in section 4.3, this is not a big problem, as the rest of the application
is completely independent from the way data is obtained; this concretely
means that, to port the application to Windows, it is enough to use a stream
that would work on Windows; one option would be getting the features
streamed using the approach based on the ZeroMQ library implemented for
Windows [4].

4.2.4.2 Frame Drop

During the application development we encountered some issues with
OpenFace that is worth mentioning. Normally, OpenFace processes every
video frame it is fed with in both offline and online processing; however,
there are some situations where OpenFace ends up skipping frames.

When doing online processing, this is common in case the processing
power is not sufficient to process every frame. The required computational
power seems to vary depending on the video frame properties; for instance,
a video with low brightness requires more computational power, hence, it is
likely to lower the processing frame rate.

When doing offline processing, this problem can appear anyway, for dif-
ferent reasons [3]. This behaviour also seems to be associated with poor time
precision of the data and wrong FPS values for the output tracked videos.
It is not clear what causes this bug and in which context OpenFace will
present this kind of behaviour. Most of the times we can accept the inaccu-
racies, but, in contexts where we need maximum precision, we can resort to
a workaround: split frames of the video into separate files (e.g. JPEG files)
and process all of them using the -fdir option. In this case, we will also
need to populate timestamp data for every frame, given that OpenFace has
no way of doing it, not knowing the frame rate of the video. This method
has significant downsides: the video needs time to be split into its frames
and the disk space occupied is much larger; moreover FeatureExtraction

processing using the -fdir option seems to be slower than when using the
-f option. For these reasons, in our application we decided not to adopt this
workaround and accept potential inaccuracies.

42 4. Facial Feature Sonification

4.3 Application

This section describes the structure of the application and how Panson
components were used in its context.

Using the term “application” can be misleading, as it is not structured as
a stand-alone application, but rather as a Jupyter notebook making use of
Panson. The notebook can be found at [17], with the name openface.ipynb.
Panson shapes the application; indeed, we can say that most of the applica-
tion is made up of an interaction of Panson objects.

The initial notebook prototype was chronologically antecedent to Pan-
son and therefore not based on it. The prototype was not meant to grow
directly into the final, Panson-based application, but it was rather meant
for experimenting with OpenFace and getting a clear idea of the technical
challenges that Panson would have had to solve, as well as the limitations
due to Jupyter notebooks.

The current version of the notebook is meant to explore the possibilities
of facial feature sonification while providing an overview of what Panson is
capable of. As such, it also contains brief tutorials about different Panson
components; however, these only give an overview of Panson and are not
meant to be complete documentation.

The notebook mainly focuses on real-time sonification as a way to explore
different sonifications, but also provides an example of offline usage, as well
as functions to convert video files to different formats and merge audio and
video files using ffmpeg; these functions could be used to convert video files
to MP4 so that they could be displayed inside of the notebook or to merge
sonification renderings with the videos from which the facial features were
extracted. This way, users can adapt the existing code for their tasks.

After an explanation of the required setup and a tutorial on how to define
sonification classes in Panson, the notebook goes on with showing the usage
of a really simple, test sonification in both use cases: offline and online. In the
offline use case, a VideoPlayer object can optionally be used to play the video
of the face along with the features previously extracted from that video. In
the online use case, it is not always possible to use a RTVideoPlayer, as the
webcam device cannot normally be shared between two different processes
(the notebook and FeatureExtraction). This implies that we will not be
able to record the video stream. We must notice that this kind of situation is
not typical: usually each source of data is independent, while here the facial
features are extracted directly from the video frame source. RTVideoPlayer is
intended for contexts in which the video stream accompanies the data, but it
is nonetheless independent. When used in online mode, FeatureExtraction
will display a window showing the real-time tracked video with landmarks,

43

which would provide the user with visual feedback.
To specify how to obtain data in real-time from OpenFace, the application

defines two Panson Stream objects:

• openface_stream: this object simply reads the CSV-formatted data
from a named pipe and returns it. When the stream is opened, Fea-
tureExtraction is executed in online mode as an opening hook, and
terminated when the stream is closed as a closing hook. It is necessary
to terminate the process, because, as we explained in 4.2.4.1, the pro-
cess will block in the attempt of executing a post-processing, reading
from the named pipe.

• avg_openface_stream: this object is like the previous one, but with
an additional preprocessing step: a moving average with a window size
of 10 on the AUs’ intensity values. This can be useful to make intensity
values less oscillating, but we have to be aware of the fact that it will
slightly reduce the responsiveness of the system.

As discussed in section 4.2.4.1, this method of getting data would work only
on Unix-like systems (Linux, macOS). If we want to run this application on
Windows we would have first to define another stream object that would
obtain the data in some other way than through a Windows named pipe.
Given that a messaging server seems to be available for Windows [13], we
could try to use it to stream the real-time features to our application. The
stream object to implement in this case would listen for feature traffic over
the network instead of reading from a named pipe. We could use this object
on a Windows host to get features from the messaging server running on
the same host or on a generic host to get features streamed through the
local network by a messaging server running on a Windows host. Stream
objects are the input data backend of the application and the rest of the
application is independent from them.

Using DataPlayer objects, we can play the data using different sonifica-
tions at different playback rates, change the parameters of the sonification
during the playback, navigate the data, record the sound produced and ren-
dering the sonification of the data from the beginning to the end in an audio
file.

4.4 Sonifications

The notebook implements a number of sonifications as Panson Sonifica-
tion subclasses. These sonifications use different approaches and take into

44 4. Facial Feature Sonification

account different features, therefore they can be a good starting point for
further development of more articulate sonifications. At [17], live demos of
interactive sonifications can be found under the directory demos/.

For each sonification described, we will discuss the idea behind it, its
implementation, its parameters and some related ideas. Custom synthesizer
definitions will be reported and discussed. The best way to learn about these
sonifications is to try them out in the notebook and experiment changing their
code, and the reader is encouraged to do so. Many of these sonifications can
be effectively used together: this can be done using a GroupSonification
object.

4.4.1 AU04Continuous

This sonification is just a simple test meant to demonstrate the imple-
mentation of a very simple Sonification object using facial features extracted
with OpenFace. It sonifies the intensity of AU 4 (Brow Lowerer), using its
value to regulate both amplitude and frequency of a continuous synthesizer;
as synthesizer, we adopted s2, the default continuous synth shipped with
sc3nb. Even if default synths are loaded automatically at server’s startup,
the sonification is required to send anyway the instructions to load them; if
this is not done, the export method of the DataPlayer class will not work
properly. This is because default synths are not loaded automatically on
non-realtime mode servers.

The full AU intensity range [0,5] is mapped into the MIDI range [69,81]
(one octave). This means that if the tracked face will lower its brows, the gen-
erated sound will increase in pitch. To make the synthesizer sound smooth,
we used a lag time coherent with the expected frame rate: as we usually
expects a frame rate of 30 FPS, we used an hard-coded value of 0.03 seconds
as lag time. This means that the pitch will smoothly slide to its value during
a 30 ms lapse. Even if this introduces additional latency, a 30 ms difference
is not enough to be noticed by the user and affect the interpretability of the
sonification.

The intensity range [0,1] is mapped to the amplitude range [0,0.3]. This
means that the maximum amplitude value is 0.3 and is used for all intensity
values that are greater than 1, which is the AU presence threshold; this
approach allows to fade the sound in and out and provides some information
on OpenFace intensity prediction in the range [0,1]. The sonification has
also a parameter “amp” that can be used to scale down the amplitude value
obtained from the intensity mapping. This parameter is in the intensity
range [0,1] and is rendered in the notebook as a slider.

While processing every data sample, the intensity value of AU 4 is ac-

45

Figure 4.1: Widget rendering of AU04Continuous Sonification.

cessed by looking up the key “AU04 r” on the series containing the data
passed to the processing method.

4.4.1.1 Discussion

This sonification can effectively be used as a first example to familiarize
with the notebook. It shows how to access OpenFace features and how to im-
plement a simple mapping to amplitude and frequency. The user can get an
intuitive idea of how precise OpenFace predictions are by trying the sonifica-
tion out in real-time and listening to the auditory feedback generated. This
sonification does not serve any other practical purpose and is not relevant
for any of the use case considered.

4.4.2 Upper Face Musical Sonification

The main idea behind this sonification approach is to allow to control
a musical instrument using facial expressiveness. In this specific case, the
user will be able to control the execution of notes on a minor pentatonic
scale using the upper part of the face. More precisely, we are considering the
following AUs:

• AU 1: Inner Brow Raiser

• AU 2: Outer Brow Raiser

• AU 4: Brow Lowerer

• AU 5: Upper Lid Raiser

• AU 6: Cheek Raiser

• AU 7: Lid Tightener

An illustration of these AUs can be found at [26].
AUs that are located lower in the face are mapped to lower pitches and

AUs that are located higher to higher pitches. When AUs are relative to
the same area, an arbitrary order is established. AUs are mapped from the

46 4. Facial Feature Sonification

fundamental of the minor pentatonic scale up in the following order: 6, 7, 5,
4, 2, 1. AU 1 is mapped into the octave of the fundamental.

This kind of sonifications have two parameters: one for regulating the
amplitude and the other for changing the fundamental note, hence the key of
all the scale. While the first one is rendered as a slider that takes its values
in the interval [0,1], the second one is rendered as an integer slider that can
take only MIDI note numbers as its values.

4.4.2.1 PentatonicContinuous

The first sonification makes use of sc3nb’s s2 continuous synth. At start
time one synth is started for every tone of the scale with zero amplitude. For
each data sample, the amplitude of all synths is modulated according to the
intensities of the corresponding AUs.

An AU intensity value lower than 1 is mapped into an amplitude of zero.
Intensity values greater or equal to 1 are mapped on the decibel interval [-20,
-5] (corresponding to the amplitude range [0.1, 0.56]). The decibel scale is
used respect the logarithmic perception of amplitude of the human ear and
give instead an impression of linear variation.

Figure 4.2: Widget rendering of PentatonicContinuous Sonification.

4.4.2.2 PentatonicMda

The second sonification is an attempt to experiment with an event-based
approach using a piano synth implemented with the MdaPiano UGen [16].
This UGen is not part of SuperCollider and it has to be installed as an
extension.

The synth simply triggers the execution of the piano note and release the
synth when its volume is under a certain amplitude threshold (hard-coded
to 0.05). The release of the synth is triggered abruptly by the DetectSilence
UGen: it is a very simple method, but it may not be the best solution in
case the quality of the sound is really important, as the sudden release of the
synth may introduce artifacts.

SynthDef("mdapiano", { | freq=440, vel=100, amp=1 |

47

var piano = MdaPiano.ar(

freq,

1,

vel,

decay: 0,

release: 0,

hard: 0,

stereo: 0,

mul: amp

);

DetectSilence.ar(piano, 0.05, doneAction:2);

Out.ar(0, piano);

})

Sonifying continuous intensity values using an event-based approach pre-
sents some challenges. First of all, we have to decide under which conditions
to trigger events. Secondly, we would like the sequence of triggered sounds
to provide useful information regarding the dynamic behavior of intensity
values, which is something that would be more easily accomplished with
continuous sonification.

We established four thresholds that divide the intensity range in five
levels. These thresholds are 1, 2, 3 and 4. Every time that the intensity of
an AU changes level (increasing or decreasing), an event is triggered with its
parameters set according to the new level. The intensity values can oscillate
quite a lot. When they oscillate continuously around the specified thresholds,
they will continuously retrigger the same event over and over, causing a
noticeable amount of unnecessary noise. One way to alleviate this problem
in the online use case is to use avg_openface_stream as stream object;
the moving average performed on the data as preprocessing will make it
significantly less oscillating.

4.4.2.3 Discussion

The two sonifications just presented show how multiple synths can be
handled with both continuous and event-based approaches. None of them
was specifically designed to address any of the use cases discussed, but the
idea behind could be applied to support the practice of facial expressiveness.
Nonetheless, by quickly testing the sonification in real-time, it is easy to
notice how different sounds correspond to different expressions. Users could
try to generate the same musical sounds of someone else and match the
sounds. The continuous approach is more suitable than the event-based one

48 4. Facial Feature Sonification

for this kind of task, as it can directly map the intensity of AUs to the
amplitude of different tones. An event-based approach discretizes the AUs
information, which is something undesirable in a context in which we want
to put emphasis on intensity changes.

A direct mapping of intensity to amplitude is no warranty of a good
interpretability, as amplitude is difficult to compare for the ear. This is not
a problem if the goal is to capture the overall behaviour of the sonified part
of the face, where an “imprecise” amplitude mapping could switch the focus
from the exact values of AUs’ intensities to a more global view. In this
sense, we could say that this would allow to compare different faces using
sonification (R2.8).

Using the same concept of continuous, musical mapping, we could think
of sonifying other areas of the face or sonifying together AUs that are related;
in this last case, an idea would be to design an “harmonic” mapping that
would associate related AUs as notes of a same chord.

This kind of sonification is surely not appropriate as a support for visually
impaired people in a conversation, as it is very invasive. It also makes it
difficult to sonify information on a big number of AUs, as the result would
be too chaotic.

4.4.3 DropBlink

This sonification sonifies blinking (AU 45) using a synthesized drop sound.
As blinking is intuitively conceivable as a binary event on/off, it could seem a
good idea to use presence value rather than intensity, but in practice using the
intensity has proven to be much more accurate, for the reasons we mentioned
in 4.2.3.1. OpenFace considers the blinking active when the relative intensity
value is greater or equal to 1, so this sonification will trigger the drop sound
when this threshold is exceeded.

Oscillating intensity values can cause problems also in this context and
in general in all contexts where an event-based approach is adopted. To
mitigate the effects of oscillating features, instead of using a single threshold
set to 1, we establish two different thresholds for activation and deactivation
of blinking. The drop sound will be triggered when blinking is activated. The
default values of these thresholds are 1 and 1.6: this means that blinking will
be switched on only when 1.6 of intensity is exceeded while the blinking was
off and it will be switched off only when the intensity gets lower than 1 while
the blinking was on.

These thresholds are parameters of the sonification, hence they can be
changed while the sonification is running. The most appropriate way to
render them in the notebook is using a FloatRangeSlider ipywidget. This

49

widget allows to position threshold values on the same slider; this means
that the widget will enforce the limitations that the lower threshold cannot
be greater than the higher one.

Figure 4.3: Widget rendering of the DropBlink sonification.

Sometimes, intensity predictions can get quite inaccurate when performed
in real-time. It is interesting to notice that, if the user keeps their eyes closed
for some time, OpenFace will perform some sort of calibration and improve
prediction precision.

4.4.3.1 DoubleDropBlink

Instead of sonifying only the closing of the eyes (blinking activation),
we can also think of sonifying the opening (blinking deactivation) using a
different sound. In this case we use a drop sound with a pitch that is a perfect
fifth (seven semitones) higher than the other. A higher pitch naturally relates
to the idea of opening of the eyes, making the sonification easily interpretable.

In the notebook, this sonification is implemented as a subclass of the
previous one. A more appropriate way to implement it could be using a
unique class endowed with a checkbox parameter to specify if the opening of
the eyes has to be sonified or not.

4.4.3.2 Discussion

These sonifications seems to work in a in a satisfactory way. The ad-
justable AU activation/deactivation thresholds are an effective way to regu-
late the sensitivity of the sonification. If activation and deactivation thresh-
olds are very distant, the sonification can minimize false positives, but it will
also have trouble in recognising quick blinking sequences.

Both sonification could be useful to support visually impaired people in
their interaction if used along with other sonifications (R2.1, R2.2, R2.3). By
their nature, these sonifications are not thought for supporting the practice of
facial expressions, because blinking is not an interesting element to practice.
The only feature of blinking that could be practiced is its timing, but its
accuracy is totally dependent on OpenFace.

50 4. Facial Feature Sonification

Testing these sonifications in real-time, we found out that it is immediate
to associate blinking to the drop sound and get used to it. From time to time,
the sonification will make users aware of their own unconscious blinking.

Sonifying both closing and opening of the eyes, the user will also be able to
understand if the eyes are being kept closed for a prolonged amount of time.
However, this is not necessarily the best way to convey this information, as
sonifying both events can be quite intrusive and distracting. If we are also
sonifying gaze, another possible way of conveying this information would be
muting the gaze sonification when eyes are closed.

4.4.4 Multi-percussion

In this section, we will describe two sonifications that have been imple-
mented using an event-based approach based on samples. The event-based
approach used is similar to the one we used in the event-based sonification
based on MdaPiano (4.4.2.2). The intensity range is divided into five levels
and samples are played when these levels are crossed, using different param-
eters.

These sonifications consider all AUs except for AU 45 (Blinking) and AU
28 (Lip Suck). The reason for this is that AU 45 has already been considered
in the previous section and OpenFace does not provide intensity information
for AU 28. We could think of using its presence information, but, as we
have seen, it is supposed not to be very reliable when processing videos; for
this reason, we decided not to include it in this sonification. Later on, we
could design a separate sonification only for AU 28 and merge it with other
sonifications using the GroupSonification class.

In designing the sonifications, we considered some guidelines to ensure a
degree of clarity and interpretability:

• Samples that typically play together should be easy to distinguish.

• AUs that appear more often should be associated to samples that are
not very intrusive.

• AUs of a certain area of the face should be associated with samples
that are somehow related.

• High pitches of samples are high in the face.

All samples used were obtained from freesound.org and modified using
Audacity. Samples were modified to be shorter and mono. In general, we
want samples not to be very rich and complex, but to be just enough complex

51

to be clearly distinguishable. All buffers used to contain samples are allocated
in the initialization phase and they can be released calling the “free” method.

The notebook ([17]) contains a description of all the associations between
AUs and samples, with a widget to reproduce the samples directly in the
notebook. In general, we associated high-pitched bell samples to the eye-
brows, snares to the eye area, different metallic sounds to the lip area and
low percussive sounds to the lower part of the face. AU 9 (Nose Wrinkler)
and AU 14 (Dimpler) are associated to very peculiar samples that do not
seem related to the other AUs.

4.4.4.1 Percussive

The first sonification plays samples with an amplitude that is derived from
the level of the intensity of the respective AU. Intensity values are mapped
on a decibel scale so that the variation is perceived linearly. This method is
not very precise, as it is difficult for the human ear to compare amplitudes.
Nonetheless, it would hopefully be easy for a user to intuitively perceive the
general direction of the intensity of the AUs (increasing or decreasing).

This sonification seems to have practically many problems. First of all,
no countermeasures were adopted against the oscillation of AUs’ intensity
values. This implies that a lot of samples are replayed unnecessarily, causing
a lot of noise and making sometimes hard for the user to distinguish different
samples; this happens also when the user seems to maintain a stationary
expression. Secondly, this kind of approach results kind of hard to interpret
as intuitively a user would associate the sample with the activation of the
respective AU, which is not always what happens in this case. For example if
an AUs stays stationary in a certain level for a certain amount of time, it will
not generate any sound. If then its intensity starts decreasing, when crossing
the level threshold, the associated sample will be played. This can be quite
confusing as the user may think that the triggered sound could be due to
an activation of the AU. To solve this problem, we can somehow encode the
direction information in the generated sounds.

4.4.4.2 DirectionalPercussive

The second sonification improves the previous one in different ways. The
same samples of the previous sonification are played with different proper-
ties depending on whether the intensity of the associated AU is increasing
or decreasing. Increasing intensities make samples’ pitch bend up, while de-
creasing intensities make samples’ pitch bend down. We can also optionally
specify to use panning to play decreasing samples on the left speaker and

52 4. Facial Feature Sonification

increasing samples on the right speaker. A checkbox parameter can be used
to enable or disable this behaviour, as we can see in image 4.4. To counter
feature intensity oscillation, we adopted a similar approach to the one used
in the blinking sonification. This time, activation and deactivation bound-
aries have to be specified for every threshold that would trigger a sample
playback. This sonification has a ”bounds” parameter that allows to specify
relative boundaries that are applied to all thresholds.

The synth used allows to play a sample with a constant rate until a
certain point (breakTime) and, starting from there, linearly change the rate
until the end, where the final rate (rateFinal) will be reached. This will create
the bending effect on the sample pitch. Values for breakTime and rateFinal
are set individually for each sample.

SynthDef("playbuf_bend",

{| out=0, bufnum=0, rateInitial=1, amp=1, pan=0, breakTime, rateFinal |

var sig, rate;

var rateAvg = (rateInitial + rateFinal) / 2;

var sampleRateAvg = rateAvg * BufSampleRate.kr(bufnum);

var breakFrame = breakTime * BufSampleRate.kr(bufnum);

// mono signal: frames = samples

var remainingFrames = BufSamples.kr(bufnum) - breakFrame;

// calculate remaining time with dynamic rate

var remainingTime = remainingFrames / sampleRateAvg;

rate = EnvGen.kr(

Env(

[rateInitial, rateInitial, rateFinal],

[breakTime, remainingTime]

)

);

sig = PlayBuf.ar(1, bufnum, rate*BufRateScale.kr(bufnum), doneAction:2);

Out.ar(0, Pan2.ar(sig, pan, amp));

})

4.4.4.3 Discussion

The second sonification seems to work quite well in practice. The “bounds”
parameter is an effective way to regulate the amount of excitability of the
sonification; if it specifies a large range (e.g. [−0.6,+0.6]) the sonification
will be reasonably quiet, but still responsive to movement (R2.3).

53

Figure 4.4: Widget rendering of the DirectionalPercussive Sonification.

This sonification encompass the whole face. With some training, the user
should be able to correctly interpret the sonification. The training can be
carried on interactively using the webcam, so that the user would hopefully
be able to experiment using their own facial expressions and learn to cor-
relate sounds with their own proprioception (R2.1). Practical evaluation is
necessary to confirm this.

This kind of sonification could be used as a support verbal interaction
with visually impaired people. It is likely that, after some time of usage,
users would get accustomed to the sonification and that it will not be very
distracting during the interaction; hopefully users will be able to interpret
the sonification without consciously thinking about it.

With this kind of sonification, it is difficult to compare AU intensities,
as intensities are mapped to amplitude, which is difficult for the human
hear to precisely compare. Moreover, the fact that we are using an event-
based approach, maps the layer level to the amplitude rather than the precise
intensity value. This makes this sonification inappropriate for practicing
facial expressiveness. Nonetheless, it could be anyway useful in case we are
interested in comparing the timing of facial expressions.

Bending the pitch of samples does not work well with all kind of samples:
percussive samples are not very suitable for this approach and the difference
is hard to perceive. One possible solution to this could be using the same
sample at different frequencies, without changing its rate during the playback.
This is best done modifying the sample by shifting its pitch using a program
such as Audacity, so that we will have two samples at different pitches. It
is also possible to accept this limit, as We are not necessarily interested in
sonifying the full range of intensity of every AU. We could think of sonifying
some AUs, such as AU 5 (Upper Lid Raiser) or AU 7 (Lid Tightener), using
an approach that is more similar to the one used for blinking sonification,
considering as only threshold the intensity value of 1.

54 4. Facial Feature Sonification

4.4.5 Head

When sonifying the head movements, we are interested in sonifying the
head rotations rather than its location with respect to the camera. OpenFace
outputs this information under the labels pose Rx, pose Ry and pose Rz.

The first attempt in sonifying this information simply uses the s2 con-
tinuous synth and maps every rotation angle to different parameters of the
synth. More precisely:

• Rotations around the x axe (yes movement) are mapped to the pitch.

• Rotations around the y axe (no movement) are mapped to the panning.

• Rotations around the z axe are mapped to the overtones number.

For all rotation angles, we consider the range [−45◦,+45◦]. Angles greater
than 45◦ are theoretically possible, but they are not relevant in a normal con-
versational context; for this reason, any angles greater than 45◦ are mapped
to the maximum value of the destination range.

The mapping of rotations around the z axe to the number of overtones
is arbitrary, and the user has to learn it as it is. Moreover, the number
of overtones is an integer number, which means that the angle or rotation
around z will be perceived in a discrete manner. We could think of solving
this problem by using a big number of overtones as upper limit, but when
the number of overtones is high, it is difficult to perceive the difference in
timbre. Here we used a maximum number of overtones equals to 7, as it
seems like a good compromise.

This sonification is always playing, even when the head is in a neutral
position, which can come off as annoying, especially when other sonifications
are playing.

4.4.5.1 SilentHead

We improved the previous sonification by making sure that it would not
generate any sound when the head is in a neutral position. Every axe has an
independent silence threshold settable using using a slider parameter: if all
rotation angles are lower than this value, no sound will be generated. Indeed,
the biggest rotation is mapped to the amplitude linearly (i.e. without using a
decibel scale). A linear mapping has the effect of making quiet sounds more
distinguishable.

With this sonification an important question emerges: how to determine
what is to be considered the neutral position of the head? Using this soni-
fication, it appears evident that using zero as static neutral value for each

55

of the angles is not a good solution: this would consider the position of
the head the more neutral the more it is facing the camera. This solution
is not good for various reasons. First of all, it is not guaranteed that the
camera will always be placed precisely in front of the user; this is especially
true considering that cameras are frequently placed at a height that is differ-
ent from the head height, e.g. capturing the face from a higher position. In
these situations, the neutral position of the user’s head will not naturally face
precisely the camera. Secondly, people can assume different head postures
during a conversation and find them comfortable in different moments. A
more appropriate way to handle amplitude mapping in this context would be
having the amplitude decaying with time when the head maintains a certain
posture. Head movements would revive the sonification by increasing the
amplitude proportionally to the movement amplitude. This way, whenever
a user would keep his head still for some time, the sonification will become
quiet, thing that intuitively evoke an idea of stillness.

Figure 4.5: Widget rendering for the SilentHead Sonification.

4.4.5.2 NoisyHead

The sonification described here uses subtractive synthesis. The three
rotation angles are mapped to parameters of synth that generates band-pass
filtered noise. This time, rotations around the z axe will be mapped to rq,
which is the reciprocal of the quality; this is a measure of the bandwidth of
the filter. By changing this argument, we can obtain a clearer tone where
the central frequency is clearly identifiable or a more noisy kind of sound.

SynthDef("bpf_noise", { | amp=1, pan=0, lg=0.5, freq=440, rq=0.2 |

var sig;

sig = PinkNoise.ar(amp);

sig = BPF.ar(

sig,

freq.lag(lg),

rq.lag(lg),

56 4. Facial Feature Sonification

// when a bandpass filter narrows, the amplitude decreases

// this will balance it

1/rq.sqrt.lag(lg)

);

Out.ar(0, Pan2.ar(sig, pan));

})

This sonification does not take into account any concept of neutral posi-
tion, hence does not modulate the amplitude; nonetheless. the noise sound
that produced, if played at low volume, can be effectively used in the back-
ground to provide a continuous feedback regarding the position of the head.
Rotation angles are mapped linearly to the synth’s arguments, exception
made for rq which is mapped exponentially to the interval [0.01, 1].

One possibility is to use other kinds of mapping; it would be interesting
to use mapping functions that could highlight the neutral head position by
changing the parameters more around the neutral position. As we discussed
earlier, we would first need a meaningful way of determining the neutral
position.

Figure 4.6: Widget rendering for the NoisyHead Sonification.

A “mirror” checkbox exists to mirror the sonification mapping. This
is useful for switching from a situation where the user is sonifying their
own expressions to one where is perceiving the sonification of someone else’s
expressions.

4.4.5.3 Discussion

Sonifications based on the s2 synth appears pretty annoying to hear even
if their amplitude is modulated with respect to a neutral position, making
it silent most of the time. As we discussed earlier, using a static neutral
position, is not an appropriate solution. The neutral position has to be
dynamic and adaptive, so that a maintained static pose would make the

57

sonification silent, while movement would excite the sonification and bring
attention to the head movement.

The noisy sonification can nicely work with other sonifications as the
generated noise is clearly distinguishable, but without being too intrusive
(R2.2, R2.3). The sonification overall is easy to interpret when testing it,
but not necessarily in an actual conversation. Most of relevant head gestures
(e.g. yes and no gestures) only need minimum movement when done natu-
rally. Possible solutions to this problem could be found experimenting with
event-based sonifications designed specifically to detect and sonify the inter-
esting gestures or using continuous sonifications adopting mapping functions
designed to emphasize movements around a neutral position.

A sensitive next step in the development of head rotations sonifications
would be implementing sonifications that adopt the methodologies described
in [36].

4.4.6 Gaze

To sonify gaze we use the information found under the labels gaze_angle_x,
gaze_angle_y. This is the eye gaze direction in radians in world coordinates
averaged for both eyes. The two simple sonifications that we implemented
use both s2 to map gaze_angle_x to the pitch and gaze_angle_y to the
panning.

The first sonification implemented is simply what was just described,
considering 90◦ as maximum absolute value for gaze angles.

The second sonification is similar to the first one, but adds the concept
of neutral position as we saw it in the head rotations sonification. This time
it is easier to establish a neutral position for the eyes. Two possible options
are:

• Gaze directed at the camera. Both the angles are close to zero.

• Gaze directed at the screen. The values of the angle would depend on
the camera positioning with respect to the screen.

In our sonification, we chose the first. Both angles have a silence threshold
that can be regulated with a slider parameter.

4.4.6.1 Discussion

This sonifications are only appropriate as examples to show how to sonify
gaze information and more work is needed to get to useful sonifications.
From these, we learn that gaze angles are predicted with a decent accuracy

58 4. Facial Feature Sonification

Figure 4.7: Widget rendering for the SilentGaze Sonification.

only with really good scene brightness. In any case, OpenFace seems to
underestimate angle values; one countermeasure to take in this context is to
take a small enough angle as maximum possible value.

What we can learn from these sonifications, is that, for gaze sonification in
a conversational context, using gaze_angle_x and gaze_angle_y is enough
and we would not normally need to consider other gaze features.

Using zero gaze angles (gaze directed towards the camera) as neutral
position seems to work well, but only with our setup where we are using an
integrated webcam. In general, we need to experiment with using as neutral
position angles that specify a gaze directed towards the screen; it would be
nice to have an automatic mechanism for calibration that could calculate this
angle.

In a practical context, we also would have to consider the idea of silencing
gaze sonification when eyelids are closed, i.e. when blinking AU intensity is
greater than 1 for a prolonged amount of time. Assuming that the synth used
generates a clearly distinguishable sound, it would be possible to deduce when
eyes are closed by the absence of gaze sonification. The sonification of the
activation of blinking, e.g. with a drop sound, would still be useful, but we
could avoid sonifying the deactivation of blinking.

4.4.7 Smile

The smile seems to be in many context the most important source of
information. We can design sonifications to focus specifically on this element
and put it in the foreground. OpenFace recognises various AUs related to
the smile:

• AU 6 - Cheek Raiser

• AU 12 - Lip Corner Puller

• AU 14 - Dimpler

• AU 15 - Lip Corner Depressor

59

• AU 17 - Chin Raiser

In general, we expect pairs of AUs 6 - 12 and 15 - 17 to be correlated.
AU 14 seems to be an independent expression, not really correlated with the
other ones and, for this reason, in this sonification we chose to ignore AU 14.

The adopted synth generates a sequence of blips of a certain density and
applies reverb to it.

SynthDef("discrete_rev",

{ | amp=1, freq=440, density=2, mix=0.5, room=0.5, damp=0.2, lg=0.1 |

var trig, sig, env;

sig = SinOsc.ar(freq);

// transform signal into short blips

trig = Dust.kr(density);

env = EnvGen.kr(Env.perc(0.001, 0.05), trig);

sig = sig * env;

sig = FreeVerb.ar(

sig, mix.lag(lg), room.lag(lg), damp.lag(lg), amp.lag(lg)

);

Out.ar(0, sig!2);

})

In this sonification AU 12 and 15 are considered as “leading” expression,
in the sense that they govern the expression of their related AUs (6 and
17) in sounds. AU 12 and 15 are antagonists and are assumed not to be
detected together. When one of those is detected, its intensity is mapped to
the pitch of the sound, while the intensity of the related AU is mapped to
the mix argument of the reverb (dry/wet balance). The density of the blips
is derived from the maximum intensity of the two AUs considered.

The effect of this sonification is not easy to understand without an ex-
ample. If a user starts smiling (AU 12) the blips will increase in pitch and
density; if the user also raises their cheeks (like it should happen in a true
smile) the wetness of the reverb would increase noticeably.

Figure 4.8: Widget rendering for the DustSmile Sonification.

60 4. Facial Feature Sonification

4.4.7.1 Discussion

Its unusual mapping makes this sonification interesting. Testing this soni-
fication in real-time, we found the mapping appears quite intuitive to inter-
pret, even if a practical evaluation is needed. If used as a support for visually
impaired people, this sonification could provide important unobtrusive feed-
back regarding the smile. While this seems to work well for AUs 6 and 12
(Cheek Raiser and Lip Corner Puller), AUs 15 and 17 (Lip Corner Depressor
and Chin Raiser) are detected clearly only if they are exaggerated. To make
the sonification more balanced, we could think of designing a mapping that
disproportionately emphasizes the intensities of AUs 6 and 12.

The sonification is not very intrusive, but manages anyway to provide
continuous feedback on the AUs intensities (R2.3). For this reason, it would
be interesting to test how this sonification would interact with other, more
“global” sonifications, such as the one described in 4.4.4.2, ignoring the AUs
covered by the smile sonification.

Regarding facial expressiveness practice, it is difficult to apply this soni-
fication to that use case. AUs intensities are mapped to the density of blips
and to the wetness of the reverb, both of which are properties that are dif-
ficult to compare precisely, making this sonification inappropriate for facial
expressiveness practice.

Chapter 5

Discussion and Future Work

The facial feature sonification application described in the previous chap-
ter shows how Panson can be effectively used to easily develop interactive
sonification applications. Panson has proven itself capable of providing sup-
port for the expected features of the application without placing any limita-
tion. The application leverages Panson’s components for most of the features
and only implements its own sonifications and data streams. In the following
sections we will discuss the achieved results and possible future developments
relative to both Panson and the facial feature sonification application.

5.1 Panson

Panson at its current status of development solves the main technical
problems we had set out during requirement analysis and traces the path for
further refinement and development. Some of the future work to be carried
on has already been mentioned in sections 3.1, when appropriate. Here we
are going to consider what has been achieved so far, what are the existent
problems and how the framework could develop to solve those problems and
add new relevant features.

5.1.1 Reflections on the Original Requirements

So far, Panson managed to satisfy the most important requirements es-
tablished. It is provided with a relatively stable API, despite being still a
young project. Its components are easy to connect together and provide sup-
port for interactive usage in Jupyter notebooks. Through Stream objects, it
provides support for working with different data sources, achieving our goals
regarding its reusability for different aims. The framework supports re-

61

62 5. Discussion and Future Work

producible sonification by making available functionalities to record and
replay real-time data, along with an optional video stream.

• R1.1: support offline data sonification is provided through the Data-
Player class.

• R1.2: single stream support online data sonification is provided through
the RTDataPlayer, while multi-stream support through RTDataPlay-
erMT and RTDataPlayerMP.

• R1.3: support for recording sonifications is provided through the “record”
function of data player classes.

• R1.4: support for logging data coming from real-time streams is imple-
mented in RTDataPlayer, RTDataPlayerMT and RTDataPlayerMP.

• R1.5: support for playback of logged data using different sonifications
is provided through the DataPlayer class.

• R1.6: support video files and stream is provided respectively through
the VideoPlayer (even if it is still a prototype) and RTVideoPlayer
classes. Audio files and streams are still not supported by the frame-
work. This is discussed in section 5.1.3.

• R1.7: applications can work with different kinds of data as long as
they can be represented in a pandas Series object.

• R1.8: support interaction in Jupyter Notebooks is provided by pro-
viding many components of the framework with an ipywidget-based
representation and by providing a library of widget parameters to in-
teract with sonifications.

• R1.9: the framework does not use any platform specific tool or func-
tion; nonetheless, extensive testing on different systems still has to be
carried on.

With regard to further development goals, there are mainly two ways of
identifying them:

1. Analyzing the weaknesses of the current project and design solutions
to the emerged problems.

63

2. Implementing other applications relying on the framework. This would
make clear which important features are missing and would provide a
first testing field for the development of those features.

Some good candidates are the systems described in section 1.3.1. Of
these, we find that none of them involves the usage of audio data
streams; one system using this feature is InfoDrops: a sonification sys-
tem for sonifying water consumption in the shower [32]. This system
records the sound of the water drops and augments it using sensor data
regarding water and energy consumption.

5.1.2 Source Organization

Surely, it will be necessary to rethink the structure of the project repos-
itory. Panson will have to be packaged to be later on published on PyPi,
so that it would be easily installable using pip (Python’s package manager).
Before doing this, we have to consider which components belong to Panson
and which are to be moved in independent repositories. For instance, ev-
erything related to the facial feature sonification notebook will have to be
moved in another repository, but this is not the only component that does
not belong in the Panson project.

We already mentioned the idea of moving the offline video player class
(VideoPlayer) into its own independent project, in order to make it grow into
a general-purpose and flexible video player adoptable by different projects.
While this idea needs to be considered carefully before investing time in the
development of the new project, the “editor” magic can be moved into its
own independent project without too much thought; even if this component
was developed in the context of Panson, it is not bound in any way to the
project and provides a functionality that is only related to Jupyter notebooks
and nothing else.

After having cleaned up the source tree from code unrelated to the frame-
work, it is necessary to improve the documentation. A part from improving
inline documentation of Python code, we can add some example notebooks
(similarly to what is done in sc3nb repository [12]). These notebooks should
contain tutorials of different components of Panson and they should be ac-
companied by sample data that could be sonified by the user using some
pre-made sonifications; the user could experiment by trying to modify the
sonifications.

An important element that is currently missing in the project is a suite of
automatic tests. Testing a framework is not as easy as testing an application.
The best way to do this would be to use unit testing with components that

64 5. Discussion and Future Work

are independent (e.g. video players) and implement simple testing applica-
tions to perform tests on to be able to test the framework in its ensemble.
Unfortunately, there is no way to test automatically the behaviour of Panson
in a notebook: this will have to be tested manually. For this purpose, there
is already a testing notebook in place called tests.ipynb. In depth testing
should be carried out to make sure that Panson is truly cross-platform. Given
that it relies mainly on cross-platform tools and libraries for its interaction
with the host system, this should be true, but extensive tests are necessary
to verify that, focusing especially on the interaction with the file system and
multi-processing.

5.1.3 Technical Issues

Some components of the framework are currently implemented as pro-
totypes and proofs of concept and it is already clear how they need to be
improved.

• ThePreprocessor class only allows to specify simple and non-parametric
preprocessing mechanisms, as no argument for its constructor is sup-
ported. This problem was discussed in section 3.1.3.

We also need to carry on some in-depth performance evaluation, to
make sure that preprocessing operations are handled by the framework
with maximum efficiency.

• Data Player’s export method creates a clone of the sonification
object using shallow copy, as discussed in 3.1.4.1. This method works
correctly only if all attributes of the sonification objects are instantiated
in the starting step of the sonification, so that new objects are created
for the clone. Even if this does not seem to be a great limitation now, it
is likely that it could generate unexpected behaviours with sonifications
that do not respect this limit. For this reason, it is better to rely on a
well-defined deep copy operation to clone the sonification object.

The current state of Panson does not implement all the features that would
be desirable in such a framework:

• Panson should be capable of handling audio files and streams in a
similar way to videos. Analogously, two classes can be defined: Audio-
Player and RTAudioPlayer. Unlike video players, audio players could
have a widget-based representation in a Jupyter notebook.

A very important difference with video players would be dictated by
the fact that it would be desirable to have the possibility of augmenting

65

the audio stream depending on the data. For example, we would like
to be able to support use cases such as the one of the already men-
tioned sonification system InfoDrops [32], where the recorded sound of
shower water drops is augmented based on sensor data. To support
this feature, we need to design audio players carefully.

• Panson currently does not provide any support for synchronous plot-
ting of custom markers on videos. The idea is to make the frame-
work capable of displaying markers on the video (offline or real-time),
where marker coordinates are computed from data values. Supporting
this feature would require more than simple changes to video player
classes as we would need to establish a way to efficiently communicate
plotting information to processes running the video players.

• When sonifying offline data, we could want to display a window of
data feature values around the current one. This is not possible using
RTFeatureDisplay, which displays the history of the last played values.
A FeatureDisplay class for exclusive offline usage should be imple-
mented. A more in-depth discussion can be found in section 3.1.5.

Playing multiple sonifications simultaneously is supported in Panson only
if every sonification interacts exclusively with its own synthesizers. This is
true with most of the operations of creation and parameter update, but there
could be problems when freeing synthesizers; the sonification would have to
free only the synthesizer it has previously allocated: this means never freeing
all the synthesizers. Currently, Panson frees by default all synths belonging
to the default group associated to the SuperCollider client, but, in light of
what we said, we can conclude that this is not a sensible behaviour. One way
to handle this, would be to remove this default behaviour and leave all the
responsibility to the user, which has the advantage of being a very simple
and explicit approach. It is important to notice that the same sonification
object cannot be played simultaneously by multiple data players: it is possi-
ble to do so only by using multiple instances of a same sonification class, one
used by each data player. This has the downside that it is not possible to
share sonifications’ parameters in these kind of contexts. Shared sonification
parameters would have been useful to support the “Support for Facial Ex-
pressiveness Practice” use case of the facial feature sonification application,
as it would have been possible to simultaneously twist the parameters of the
real-time sonification (run by RTDataPlayer) and of the offline one (run by
DataPlayer).

For a second version of Panson, we could consider the use of the Streamz
[23] library to strengthen the real-time processing. The adoption of this li-

66 5. Discussion and Future Work

brary would introduce only a minimal overhead and allow the user to specify
modular processing pipelines. Streamz also allow to perform sophisticate op-
erations on the flow of data, such as forking it: this is not possible elegantly
using an approach based on generators as the one currently adopted. Re-
garding this, the challenging part is structuring Panson’s API in such a way
that it is easy to use. Before investing development time in this, it would
be a good idea to look for actual use cases where this kind of functionality
would prove itself useful to be sure that the effort is justified.

5.2 Facial Feature Sonification

The implemented sonifications allow to show many Panson’s features and
are a good starting point for further development, but they fail in implement-
ing a complete set of sonifications for the established use cases. Discussions
relative to the individual sonifications have been laid out on the various “Dis-
cussion” sections regarding each sonification along with some possible future
developments; this section will deal with discussing the application in general
and its possible future developments.

As we discussed in section 5.1.2, the application should be moved to in its
own, independent project. Doing this, implies that it is no longer necessary
to include in the notebook sections containing Panson tutorials and expla-
nations, as the Panson project will have to develop its own documentation,
having the effect of reducing the total size of the notebook and making it
more manageable. In the application repository, it would be useful to provide
some offline sample data along with the videos from which those features were
extracted using OpenFace. Using offline data, the user could immediately
test sonifications without having to install and setup OpenFace.

5.2.1 Reflections on the Original Requirements

5.2.1.1 Use Case 1 - Support for Visually Impaired People

The implemented sonifications are to be intended only as a starting point
for the development of practically useful sonifications; to achieve this goal,
practical experimentation and evaluation is needed. This can start with
the testing of different sonifications from multiple visually impaired subjects
(it may be enough to make subjects close their eyes). Subjects could first
sonify their own facial expressions in real-time, so that they could learn how
generated sounds correlate with their proprioception. After some practice,
they could then switch to use it in a conversation with somebody else.

67

The most promising sonification concerning this use case is the Direction-
alPercussive (4.4.4.2, which is capable of sonifying most of Facial AUs. After
the feedback of practical evaluation, this sonification could be refined to be
effectively used to support visually impaired people in their conversations.

5.2.1.2 Use Case 2 - Support for Facial Expression Analysis

Support for this use case is fully provided by Panson. In some cases it
might not be possible to use the RTDataPlayer class and consequently it
might not be possible to record the video stream. This topic is treated in
section 5.2.2.

5.2.1.3 Use Case 3 - Support for Facial Expressiveness Practice

Designing sonifications to be used as tools to practice facial expressiveness
has been the most challenging use case. Regarding this use case, results
were not satisfying, and a lot of work has to be carried on as concerns both
development and evaluation. Part of the difficulty is that we have to sonify a
big amount of information in a way that is clearly perceivable and comparable
by the user. While this could be easy if we are only taking into account a
specific section of the face, it is not that easy in the general case. Moreover,
we have to take into account the fact that OpenFace realtime predictions
are less precise than offline, post-processed predictions. Beside this, it is not
clear how comparable can features extracted from different faces be, but the
best we can do is to sonify them in a way that its easy for the ear to compare,
maybe filtering the data with low confidence away.

A more in-depth study about how to design sonifications for comparability
is needed. In general, it is easy to think how to compare gaze, head rotations
and a small group of AUs; it is not as easy to design sonifications that aim to
sonify all possible AUs at once in a comparable manner. In a first moment
of the study, it would be better to focus on sonifying only sections of the face
rather than the whole face. It is worth noticing that some sound features,
such as frequency and panning, are easier to compare than others such as
the amplitude.

It is important to notice that Panson support different sonifications to
be played at the same time. This is relevant for example in case we want
to run a real-time facial feature sonification along with an offline one. If
this is done with some visual feedback (possible using the VideoPlayer and
RTVideoPlayer classes), the user has the possibility of imitating facial ex-
pressions using both visual and auditory feedback. The way to do this, is
to create two separate Sonification objects for the DataPlayer and RTData-

68 5. Discussion and Future Work

Player object. By default, when stopping the sonification, Panson, frees the
group associated with the SuperCollider client; we have to override this be-
haviour by defining a stop method that frees a group that is allocated when
the sonification is started and in which all the synth started by the sonifica-
tion are contained. This way, every sonification will have its separate group.
Anyway, it is undesirable that the user has the responsibility to implement
this kind of logic and Panson should be able to handle this hiding the logic
from the user. It is worth noticing that this may not be completely possible
without modifying sc3nb.

5.2.2 OpenFace

As we saw, OpenFace introduces some limitations on what we can achieve
within the scope of our application. For instance, when doing real-time facial
feature sonification, the camera device will be occupied by the OpenFace
executable. This means that it will not be always possible to create an
RTVideoPlayer object: depending on the operating systems and driver in
use, access to the device could be or not be granted to multiple processes. If
not, it will not be possible to record the video stream, which is an important
part of part of the behaviour analysis support use case. The only way we can
possibly face this issue is to research and document setup solutions for the
different operating systems. In the worst case the user would have to record
the video in advance and resort to offline processing.

So far, the application would work properly only on macOS and Linux,
because it relies on Unix named pipes to obtain realtime features. We already
mentioned in 4.2.4.1 the possibility of using the ZeroMQ messaging library
to stream facial features and we added that there is an existent prototype
working for Windows. Towards the end of the development, there was a
contribution to the Github issue that we opened at the beginning of the
project [10], stating that an integration of ZeroMQ into OpenFace has been
implemented. Despite being a simple OpenFace adaptation, it should be
capable of streaming AUs, gaze and head information on Windows, macOS
and Linux. A Python script to retrieve features in real-time is also provided;
adapting it to our project should not be very difficult. Adopting this solution
would be a way to make the application cross-platform, but it would force
users to install OpenFace without using docker.

When designing sonifications, we have to keep in mind that OpenFace
detects different AUs with different precision [27]. A good idea would be
to put emphasis on AUs that are detected more precisely. OpenFace also
produces in its output accuracy information under the labels of “confidence”
and “success”. These two labels provide information about how precise was

69

the tracking and whether it is considered successful respectively. These could
be used to make sonifications more stable and capable of handling bad pre-
dictions.

70 5. Discussion and Future Work

Conclusion

In this work we described the design and implementation of Panson: a
framework for interactive sonification. Despite still having several design
and development challenges ahead, Panson is capable of providing support
for many of the most common tasks that are common in sonification systems,
with features for both online and offline sonification. It effectively demon-
strates how to leverage multi-core systems in Python, bypassing the limita-
tions imposed by the language and making it possible to tackle CPU-intensive
tasks such as multi-stream processing and video data display. Through na-
tive ipywidgets support for its components, Panson is able to provide good
graphical interaction in Jupyter Notebooks, which comes in handy especially
in research contexts.

Next, we described the implementation of a facial feature sonification ap-
plication based on Panson. Panson has proven itself valuable in the develop-
ment of the application, providing adequate support all the desired features.
The application is appropriate as example of Panson’s potential, but, to be
practically useful, it would require more effort invested into the design and
practical evaluation of sonifications. From a technical perspective, the appli-
cation is fully capable of real-time performance and no technical issues need
further attention.

Panson is not yet mature enough to be practically used in production or
research applications, but the current state of the project naturally suggests
further developments that could improve it to that point. A successful re-
finement of Panson would provide a solid tool to support the development of
interactive sonification applications.

71

72 BIBLIOGRAPHY

Bibliography

[1] Action units. https://github.com/TadasBaltrusaitis/OpenFace/

wiki/Action-Units. Accessed: 2022-04-22.

[2] Au r vs au c consistency? https://github.com/TadasBaltrusaitis/

OpenFace/issues/228. Accessed: 2022-04-22.

[3] Framerate for output movie by facelandmarkvidmulti. https://

github.com/TadasBaltrusaitis/OpenFace/issues/746. Accessed:
2022-04-25.

[4] integration openface in other projects. https://github.com/

TadasBaltrusaitis/OpenFace/issues/409. Accessed: 2022-04-25.

[5] Is there a planned release date for the messaging server? https:

//github.com/TadasBaltrusaitis/OpenFace/issues/492. Accessed:
2022-04-25.

[6] Multithreaded python without the gil. https://github.com/

colesbury/nogil. Accessed: 2022-04-11.

[7] Openface: Openface - a state-of-the art tool intended for facial land-
mark detection, head pose estimation, facial action unit recognition,
and eye-gaze estimation. https://github.com/TadasBaltrusaitis/

OpenFace. Accessed: 2022-04-22.

[8] A python api for supercollider. https://github.com/

josiah-wolf-oberholtzer/supriya. Accessed: 2022-04-12.

[9] The python programming language. https://github.com/python/

cpython. Accessed: 2022-04-11.

[10] Real-time usage with named pipe. https://github.com/

TadasBaltrusaitis/OpenFace/issues/995. Accessed: 2022-04-
25.

73

https://github.com/TadasBaltrusaitis/OpenFace/wiki/Action-Units
https://github.com/TadasBaltrusaitis/OpenFace/wiki/Action-Units
https://github.com/TadasBaltrusaitis/OpenFace/issues/228
https://github.com/TadasBaltrusaitis/OpenFace/issues/228
https://github.com/TadasBaltrusaitis/OpenFace/issues/746
https://github.com/TadasBaltrusaitis/OpenFace/issues/746
https://github.com/TadasBaltrusaitis/OpenFace/issues/409
https://github.com/TadasBaltrusaitis/OpenFace/issues/409
https://github.com/TadasBaltrusaitis/OpenFace/issues/492
https://github.com/TadasBaltrusaitis/OpenFace/issues/492
https://github.com/colesbury/nogil
https://github.com/colesbury/nogil
https://github.com/TadasBaltrusaitis/OpenFace
https://github.com/TadasBaltrusaitis/OpenFace
https://github.com/josiah-wolf-oberholtzer/supriya
https://github.com/josiah-wolf-oberholtzer/supriya
https://github.com/python/cpython
https://github.com/python/cpython
https://github.com/TadasBaltrusaitis/OpenFace/issues/995
https://github.com/TadasBaltrusaitis/OpenFace/issues/995

74 BIBLIOGRAPHY

[11] Supercollider. https://supercollider.github.io. Accessed: 2022-
04-11.

[12] Supercollider3 interface for python and jupyter notebooks. https://

github.com/interactive-sonification/sc3nb. Accessed: 2022-04-
11.

[13] Zeromq support for pubsub interaction with openface. https://

github.com/TadasBaltrusaitis/OpenFace/issues/375. Accessed:
2022-04-25.

[14] Globalinterpreterlock - python wiki. https://wiki.python.org/moin/
GlobalInterpreterLock, 12 2020. Accessed: 2022-04-11.

[15] Client vs server. https://doc.sccode.org/Guides/ClientVsServer.
html, 2022. Accessed: 2022-04-12.

[16] Mdapiano. https://doc.sccode.org/Classes/MdaPiano.html, 2022.
Accessed: 2022-04-29.

[17] Michele nalli / master thesis material. https://gitlab.ub.

uni-bielefeld.de/mnalli/master-thesis-material, 2022.

[18] Multi-client setups. https://doc.sccode.org/Guides/MultiClient_

Setups.html, 2022. Accessed: 2022-04-14.

[19] Non-realtime synthesis (nrt). https://doc.sccode.org/Guides/

Non-Realtime-Synthesis.html, 2022. Accessed: 2022-04-15.

[20] Project jupyter. https://jupyter.org/, 2022. Accessed: 2022-04-11.

[21] Python image sequence: Load video and sequential images in many
formats with a simple, consistent interface. https://github.com/

soft-matter/pims, 2022. Accessed: 2022-04-17.

[22] Server guide. https://doc.sccode.org/Guides/Server-Guide.html,
2022. Accessed: 2022-04-14.

[23] Streamz. https://streamz.readthedocs.io/en/latest, 2022. Ac-
cessed: 2022-04-18.

[24] Abhinav Ajitsaria. What Is the Python Global Interpreter Lock (GIL)?
- Real Python. https://realpython.com/python-gil, 12 2020. Ac-
cessed: 2022-04-11.

https://supercollider.github.io
https://github.com/interactive-sonification/sc3nb
https://github.com/interactive-sonification/sc3nb
https://github.com/TadasBaltrusaitis/OpenFace/issues/375
https://github.com/TadasBaltrusaitis/OpenFace/issues/375
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://doc.sccode.org/Guides/ClientVsServer.html
https://doc.sccode.org/Guides/ClientVsServer.html
https://doc.sccode.org/Classes/MdaPiano.html
https://gitlab.ub.uni-bielefeld.de/mnalli/master-thesis-material
https://gitlab.ub.uni-bielefeld.de/mnalli/master-thesis-material
https://doc.sccode.org/Guides/MultiClient_Setups.html
https://doc.sccode.org/Guides/MultiClient_Setups.html
https://doc.sccode.org/Guides/Non-Realtime-Synthesis.html
https://doc.sccode.org/Guides/Non-Realtime-Synthesis.html
https://jupyter.org/
https://github.com/soft-matter/pims
https://github.com/soft-matter/pims
https://doc.sccode.org/Guides/Server-Guide.html
https://streamz.readthedocs.io/en/latest
https://realpython.com/python-gil

BIBLIOGRAPHY 75

[25] Lorena Aldana, Steffen Grautoff, and Thomas Hermann. Cardiosounds:
A portable system to sonify ecg rhythm disturbances in real-time. pages
20–27, 06 2018.

[26] Tadas Baltrusaitis, Amir Zadeh, Yao Chong Lim, and Louis-Philippe
Morency. Openface 2.0: Facial behavior analysis toolkit. In 2018 13th
IEEE International Conference on Automatic Face & Gesture Recogni-
tion (FG 2018), pages 59–66, 2018.

[27] Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency. Open-
face: An open source facial behavior analysis toolkit. In 2016 IEEE
Winter Conference on Applications of Computer Vision (WACV), pages
1–10, 2016.

[28] Daniel Cesarini, Thomas Hermann, and Bodo Ungerechts. Real-time
sonification in swimming: from pressure changes of displaced water to
sound. 09 2013.

[29] Mark Frank and Paul Ekman. Appearing truthful generalizes across dif-
ferent deception situations. Journal of personality and social psychology,
86:486–95, 04 2004.

[30] Mathias Funk, Kazuhiro Kuwabara, and Michael Lyons. Sonification of
facial actions for musical expression. pages 127–131, 05 2005.

[31] Magdalena Gippert. Sonification in gymnastics: Can online auditory
feedback improve the execution of a complex motor skill? Master’s the-
sis, Bielefeld University, Bielefeld, Germany, 2018. Unpublished Master’s
thesis.

[32] Jan Hammerschmidt, René Tünnermann, and Thomas Hermann. Info-
drops: sonification for enhanced awareness of resource consumption in
the shower. In ICAD 2013, 2013.

[33] Thomas Hermann. Taxonomy and definitions for sonification and audi-
tory display. 2008.

[34] Thomas Hermann, Andy Hunt, and John G. Neuhoff. The Sonifica-
tion Handbook, chapter Sonification Techniques, pages 299–428. Logos
Verlag, Berlin, 2011.

[35] Thomas Hermann, Andy Hunt, and John G. Neuhoff. The Sonification
Handbook, chapter 15, pages 363–397. Logos Verlag, Berlin, 2011.

76 BIBLIOGRAPHY

[36] Thomas Hermann, Alexander Neumann, and Sebastian Zehe. Head ges-
ture sonification for supporting social interaction. In Proceedings of the
7th Audio Mostly Conference: A Conference on Interaction with Sound,
pages 82–89, New York, NY, USA, 2012. Association for Computing
Machinery.

[37] Thomas Hermann and Dennis Reinsch. Sc3nb: A Python-SuperCollider
Interface for Auditory Data Science. Association for Computing Ma-
chinery, New York, NY, USA, 2021.

[38] Thomas Hermann, Bodo Ungerechts, Huub Toussaint, and Marius
Grote. Sonification of Pressure Changes in Swimming for Analysis and
Optimization. pages 60–67. The International Community for Auditory
Display (ICAD), 2012.

[39] Antonino Ingargiola and contributors. What is the jupyter note-
book? - jupyter/ipython notebook quick start guide 0.1 documen-
tation. https://jupyter-notebook-beginner-guide.readthedocs.

io/en/latest/what_is_jupyter.html, 2015. Accessed: 2022-04-11.

[40] IPython Development Team. Built-in magic commands. https:

//ipython.readthedocs.io/en/stable/interactive/magics.html,
2022. Accessed: 2022-04-17.

[41] Petr Janata and Edward Childs. Marketbuzz: Sonification of real-time
financial data. 01 2004.

[42] P.N.Siva Jyothi and Rohita Yamaganti. A review on python for data
science, machine learning and iot. International Journal of Scientific &
Engineering Research, 10(12), 2019.

[43] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E. John,
and Brad A. Myers. The story in the notebook: Exploratory data sci-
ence using a literate programming tool. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems, pages 1–11, New
York, NY, USA, 2018. Association for Computing Machinery.

[44] G. Kramer, B. Walker, R. Bargar, and International Community for
Auditory Display. Sonification Report: Status of the Field and Research
Agenda. International Community for Auditory Display, 1999.

[45] Dave Kuhlman. Section 1.1. 2012.

https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html
https://ipython.readthedocs.io/en/stable/interactive/magics.html
https://ipython.readthedocs.io/en/stable/interactive/magics.html

BIBLIOGRAPHY 77

[46] Ago Mesanovic. Development of a system for interactive sonification in
physiotherapy. Master’s thesis, Bielefeld University, Bielefeld, Germany,
2020. Unpublished Master’s thesis.

[47] J.C. Hager P. Ekman, W.V. Friesen. Facial Action Coding System
(FACS): Manual. A Human Face, Salt Lake City, USA, 2002.

[48] Fernando Pérez and Brian E. Granger. IPython: a system for interactive
scientific computing. Computing in Science and Engineering, 9(3):21–
29, May 2007.

[49] Project Jupyter. Output widgets: leveraging jupyter’s display sys-
tem. https://ipywidgets.readthedocs.io/en/latest/examples/

OutputWidget.html, 2022. Accessed: 2022-04-16.

[50] Project Jupyter. Simple widget introduction. https://ipywidgets.

readthedocs.io/en/latest/examples/WidgetBasics.html, 2022.
Accessed: 2022-04-11.

[51] Project Jupyter. Widget list. https://ipywidgets.readthedocs.io/
en/latest/examples/WidgetList.html, 2022. Accessed: 2022-04-14.

[52] Python Software Foundation. Initialization, finalization, and
threads. https://docs.python.org/3/c-api/init.html#

thread-state-and-the-global-interpreter-lock. Accessed:
2022-04-11.

[53] Python Software Foundation. Library and extension
faq. https://docs.python.org/3/faq/library.html#

what-kinds-of-global-value-mutation-are-thread-safe. Ac-
cessed: 2022-04-11.

[54] Python Software Foundation. Descriptor howto guide. https://docs.
python.org/3/howto/descriptor.html, 2022. Accessed: 2022-04-11.

[55] Python Software Foundation. The hitchhiker’s guide to python. https:
//docs.python-guide.org/writing/style/, 2022. Accessed: 2022-
05-19.

[56] Python Software Foundation. multiprocessing - process-based par-
allelism. https://docs.python.org/3/library/multiprocessing.

html, 4 2022. Accessed: 2022-04-11.

https://ipywidgets.readthedocs.io/en/latest/examples/Output Widget.html
https://ipywidgets.readthedocs.io/en/latest/examples/Output Widget.html
https://ipywidgets.readthedocs.io/en/latest/examples/Widget Basics.html
https://ipywidgets.readthedocs.io/en/latest/examples/Widget Basics.html
https://ipywidgets.readthedocs.io/en/latest/examples/Widget List.html
https://ipywidgets.readthedocs.io/en/latest/examples/Widget List.html
https://docs.python.org/3/c-api/init.html#thread-state-and-the-global-interpreter-lock
https://docs.python.org/3/c-api/init.html#thread-state-and-the-global-interpreter-lock
https://docs.python.org/3/faq/library.html#what-kinds-of-global-value-mutation-are-thread-safe
https://docs.python.org/3/faq/library.html#what-kinds-of-global-value-mutation-are-thread-safe
https://docs.python.org/3/howto/descriptor.html
https://docs.python.org/3/howto/descriptor.html
https://docs.python-guide.org/writing/style/
https://docs.python-guide.org/writing/style/
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html

78 BIBLIOGRAPHY

[57] Bernadette M. Randles, Irene V. Pasquetto, Milena S. Golshan, and
Christine L. Borgman. Using the jupyter notebook as a tool for open
science: An empirical study. In 2017 ACM/IEEE Joint Conference on
Digital Libraries (JCDL), pages 1–2, 2017.

[58] scikit-image development team. Handling video files. https://

scikit-image.org/docs/dev/user_guide/video.html, 2022. Ac-
cessed: 2022-04-17.

[59] Kyle Stratis. How to use generators and yield in python. https://

realpython.com/introduction-to-python-generators/, 2019. Ac-
cessed: 2022-05-20.

[60] Alessandro Vinciarelli, Maja Pantic, and HervÃ© Bourlard. Social
signal processing: Survey of an emerging domain. Image and Vision
Computing, 27(12):1743–1759, 2009. Visual and multimodal analysis of
human spontaneous behaviour:.

https://scikit-image.org/docs/dev/user_guide/video.html
https://scikit-image.org/docs/dev/user_guide/video.html
https://realpython.com/introduction-to-python-generators/
https://realpython.com/introduction-to-python-generators/

Acknowledgements

Many thanks to my supervisor, Prof. Thomas Hermann, and to my
co-supervisor, Dr. David Johnson, for inspiring me with their enthusiasm
for research and for their precious advice.

Many thanks to my father, Raffaele Nalli, and my mother, Maria
Giuseppe Scilimati, as they are the reason why I had the opportunity to
attend University.

Many thanks toProf. Renzo Davoli, for making me discover the beauty
of Computer Science.

Many thanks to Massimiliano Muci, for being one of my most loyal
friends and being always willing to help others.

Many thanks to my dear friends Elia Missud and Micaela D’Andrea,
for being close to me in some of my most difficult moments.

