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Abstract

In this thesis project, I present stationary models of rotating fluids with toroidal
distributions that can be used to represent the active galactic nuclei (AGN) central
obscurers, i.e. molecular tori (Combes et al., 2019), as well as geometrically thick
accretion discs, like advection-dominated accretion flow (ADAF) discs (Narayan
and Yi, 1995b) or Polish doughnuts (Abramowicz, 2005). In particular, I study
stationary rotating systems with a more general baroclinic distribution (with a
vertical gradient of the angular velocity), which are often more realistic and less
studied, due to their complexity, than the barotropic ones (with cylindrical ro-
tation), which are easier to construct. The thesis is structured as follows. In
the introduction, I show an outline of the astrophysical systems, to which these
models could be applied. Systems with toroidal distribution are present on small
scales, like the thick accretion discs around the black holes, and on larger scales,
like the molecular tori around the AGN or the gas in the galactic nuclei. An-
alytical models of these components are uncommon in literature. Observational
data suggest that molecular tori are clumpy systems or dominated by turbulent
pressure. The stationary fluid models that I present can also be interpreted as
discrete systems of gas clouds: in this case the pressure support is not given by
thermal pressure but by the velocity dispersion of the random motion of the small
clouds that compose the tori.

In the thesis, I compute analytically the main intrinsic and projected proper-
ties of the tori based on the potential-density pairs of Ciotti and Bertin (2005),
described by the power-law density ρ ∝ R2(R2 + z2)−α/2. I study the density dis-
tribution and the resulting gravitational potential for different values of α, in the
range 2 < α < 5. For the same models, I compute the circular velocity and the
surface density of the systems when seen face-on and edge-on. I then apply the
stationary Euler equations to obtain rotational velocity and temperature distri-
butions of the self-gravitating models in the absence of an external gravitational
potential.

In the thesis I also consider the power-law tori with the presence of a central
black hole in addition to the gas self-gravity, and solving analytically the station-
ary Euler equations, I compute how the properties of the system are modified by
the black hole and how they vary as a function of the black hole mass.

Finally, applying the Solberg-Høiland criterion, I show that these baroclinic
stationary models are linearly stable in the absence of the black hole. In the
presence of the black hole I derive the analytical condition for stability, which
depends on α and on the black hole mass. I also study the stability of the tori
in the hypothesis that they are permeated by a weak magnetized field (Balbus,
1995), finding that they are always unstable to this instability, which can be seen
as a generalization of the magneto-rotational instability.
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Introduction

The study of rotating fluids is essential in astrophysics. Their applications spread
over a big range of astrophysical sizes. On small scales, there are rotating stars
and accretion discs around compact objects. Increasing the scale there are molec-
ular tori of active galactic nuclei (AGN), gaseous structures in galactic nuclei,
like resonant rings or spiral arms, up to the galactic gaseous discs, extra-planar
gas, and galactic coronae. On very large scales rotation could be important for
the intracluster medium. The construction of axisymmetric stationary models is
useful for all these applications.

The usual approach with axisymmetric rotating models is to consider an angu-
lar velocity stratified on cylinders. The cylindrical rotation works relatively well
for many astrophysical objects and the advantage is the ease of the construction
of these kinds of models. Considering a model with a rotation velocity that de-
pends only on the cylindrical radius means making particular assumptions about
the macroscopic distribution of the gas. The Poincaré-Wavre theorem, as we will
see in the following brief fluid dynamics review, states that an axisymmetric sta-
tionary rotating system with a cylindrical rotation has a particular distribution of
the pressure and the density, in practice the surfaces of equal pressure and equal
density coincide, i.e. the system is barotropic. The theorem holds also in the op-
posite direction, if a system has a pressure distribution that depends only on the
density distribution, therefore it follows that the angular velocity of the system
depends only on the cylindrical radius. In these special systems, we can simplify
the Euler equation by considering an effective potential. The Euler equation of
the stationary rotating fluid takes the same form as the hydrostatic equilibrium
equation.

On the other hand, considering an angular rotation with a vertical gradient
of the angular velocity is often more suitable and realistic for many astrophysi-
cal situations. Of course, considering such type of velocity distribution is more
complex and these models are very little studied. Following the statement of the
Poincaré-Wavre theorem, a system with an angular velocity that depends both on
the cylindrical radius R and the vertical coordinate z has a different distribution
of the pressure and the density. These types of systems are called baroclinic, they
have a pressure distribution that depends on the density and the temperature.
Therefore the surfaces of equal density and equal pressure do not coincide, and it
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is not possible to define an effective potential.
Rotating stationary models with an angular velocity that varies vertically are

useful to describe systems with a sizeable height, where the cylindrical rotation
can fail, especially in the regions at a certain height above the equatorial plane.
Limiting to gaseous systems, for example, two types of astrophysical objects in
which the baroclinic distribution can be expected, are the hot galactic coronae and
gaseous toroidal systems, like the central obscurer around the black hole or the
geometrically thick accretion discs. Innovative works on this topic are Barnabè
et al. (2006) and Sormani et al. (2018). These papers present the construction of
stationary baroclinic models and their application to the galactic coronae.

Models of thick accretion discs around compact objects, such as advection dom-
inated accretion flows (ADAF) discs (Narayan and Yi, 1995a,b) and the so-called
Polish doughnuts (Abramowicz, 2005), have been studied so far especially after
the work of Narayan and Yi (1995b), mainly focusing on the accretion flow and
often simplifying the dynamics of the stationary rotation at larger radii. Whereas
analytic dynamical models of dusty molecular tori obscuring the central regions
of the active galactic nuclei are very uncommon in literature. With the advent
of high resolution observations with the Atacama Large Millimeter/submillimeter
Array1 (ALMA), the possibilities of observing the central region of AGN are open
(Combes et al., 2019). With the high resolution observations of the CO emission
it is possible to resolve molecular structures of 10− 30 pc and with the combined
use of the spectra, it is possible to derive the rotation and the velocity dispersion
of the gas. The observation of the morphologies and the kinematics of the AGN
molecular obscurer needs the presence of dynamical models to understand the
nature of these components.

We recall that in astrophysical systems the pressure support is not necessarily
due to the thermal pressure. In reality, the pressure support can be due to tur-
bulent pressure generated by the velocity dispersion of the turbulent motion of
the gas. The millimeter spectra suggest that molecular tori have a high velocity
dispersion comparable with the rotational velocity of the system (Combes et al.,
2019). Therefore the pressure support in these systems is provided by the velocity
dispersion rather than the temperature, which for the systems considered is very
low.

On the other hand, the X-rays observations predict, in some cases, a little
covering factor for the central absorber (García-Bernete et al., 2019) and so suggest
the possibility that the torus is clumpy like a discrete system composed of small
clouds . In this case, it is not the velocity dispersion of the gas that causes the
thickness of the rotating system, but the velocity dispersion of the random motion
of the small clouds.

In this work, I present rotating stationary fluid models, which have analytic
potential-density pairs derived by Ciotti and Bertin (2005). The potential-density

1https://www.almaobservatory.org/en/
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pairs resolve the Poisson equation, i.e. the potential is generated by the density
distribution and describe the self-gravity of the system. The density distribution
has a power-law form with a toroidal geometry, with a power-law index α that
can assume values in the range 2 < α < 5. I study analytically the main physical
characteristics of the potential-density pairs, compute the dynamical properties
of the stationary models in the self-gravitating case and with the addition of a
central black hole. I then study the linear stability of the systems also when the
gas is permeated by a week magnetic field, for different values of α. These toroidal
models could be applied to the thick accretion discs around the black hole, and
the dusty molecular tori that obscure the central parts of the AGNs.

In particular the thesis are structured as follows:

• In chapter 1, I describe the observational properties of the molecular tori,
especially based on Combes et al. (2019). Then I review the theoretical
characteristics of the accretion discs models.

• In chapter 2, I describe very briefly a few concepts of fluid dynamics, that
are useful in the following. In particular, I focus on the Poincaré-Wavre
theorem and the nature of the pressure supports.

• In chapter 3, I describe the power-law tori potential-density pairs properties,
and compute the projected surface density for the system as seen face-on
and edge-on.

• In chapter 4, I compute the rotational velocity and temperature distributions
of the power-law tori, applying the axisymmetric stationary Euler equation
in the presence of self-gravity, without an external potential.

• In chapter 5, I study the models obtained with the addition of a central
black hole.

• In chapter 6, I apply the Solberg-Høiland criterion (Tassoul, 1978) to study
the stability against linear axisymmetric perturbations, in the presence and
in the absence of a central black hole.

• In Chapter 7, I study the stability of the systems in the presence of a weak
magnetic field (Balbus, 1995).

At the end of chapters 3, 4, and 5 I show, as examples, model tori in physical
units, constructed to broadly resemble the observed molecular tori of AGN. This
will only be an illustration of a possible application and not a proper fit of the
models to the observational data.

In conclusion I present all the obtained results and discuss future perspectives
of the work.
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Chapter 1

Toroidal systems in astrophysics

Toroidal shapes have been proposed to explain the observational characteristics
of different astrophysical environments. Mainly, the tori are proposed like central
obscurers of active galactic nuclei or thick accretion discs in some accretion con-
ditions around black holes or neutron stars. In this brief introductory chapter, we
outline the observed or theoretically expected features of this class of astrophysical
objects.

1.1 Molecular tori
The 1% of galaxies in the Universe show an emission much greater than the
thermal emission from their stars. These galaxies host an active galactic nucleus
(AGN), one of the most energetic phenomena in the Universe, produced by the
accretion on the supermassive black hole at the center of the galaxies.

The physical models of these systems (Antonucci and Miller, 1985; Urry and
Padovani, 1995) involve, among others, the following components: a supermassive
black hole that accretes from an accretion disc and, on larger scale, a dusty molec-
ular torus that absorbs most of the radiation. Inside the torus, near the black
hole, there are very compact clouds that rotate rapidly due to the strong black
hole gravitational potential and produce broad emission lines: this region is called
broad-line region (BLR). Farther from the black hole, in the ionization cones,
where the radiation is not absorbed by the molecular torus, there are gaseous
clouds that emit narrow emission lines: this region is called the narrow-lines re-
gion (NLR).

AGN are observed in two categories, type 1 that show both the BLR and the
NLR, and type 2 with only the NLR. The unification paradigm proposes that
in type 2 AGN the BLR is obscured by the molecular torus along the line of
sight, so the system is seen almost edge-on. Whereas in type 1 AGN the system
and thus the torus are seen face-on and the observer can see both the NLR and
the BLR, which is not obscured. From this geometrical considerations, initially,
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CHAPTER 1. TOROIDAL SYSTEMS IN ASTROPHYSICS 9

the existence of a toroidal obscurer has been proposed. From the characteristics
of the extinction and the emission in the infra-red, it has been understood that
the tori are composed by molecular gas and dust. The expected tori have sizes of
3−30 pc, thus they are so small that it has not been possible to resolve them until
now. Recently, with the high resolution observations of the CO emission detected
with ALMA, it has been possible to resolve the torus structure in different nearby
galaxies (Combes et al., 2019).

The nuclei of these nearby active galaxies show the presence of structures, with
size of order of magnitude 0.1− 1 kpc, with different morphologies: some of them
are resonant rings, others are spiral arms (Combes et al., 2019). These components
are composed by molecular gas and are star forming regions: some of them host
a starburst. Inner structures around the central black hole are morphologically
and kinematically decoupled from the larger structures. The inner structures are
identified as the molecular tori. The tori are almost always concentric with the
AGN point source, but they are off center with respect to the larger structures
and are not aligned with the galaxy disc. This suggests that the black hole with
the torus oscillates around the mass barycenter of the galaxy. In several cases
there are dust lanes that connect the tori with the inner edge of the spiral arms
or rings.

Combes et al. (2019) observed several central molecular tori in nearby galaxies
with AGN. We take this paper as reference for the physical observational proper-
ties of the tori. The measured radii of the tori are in the range of 6− 27 pc. The
column densities of molecular hydrogen are in the range of 1023.5−1025.3 numbers
of particles per centimeter squared.

The range of estimated masses of the tori is of ∼ 1−4×107M⊙. The masses are
not correlated with the stellar masses of the galaxies and are slightly anticorrelated
with the power of the AGN. The tori host central black holes with mass in the
range 106.6 − 107.7 M⊙. Therefore comparing the tori and the black holes masses,
we expect that the self-gravity of the torus is not negligible with respect to the
central black hole. In fact, the tori and the black holes gravitational fields are
comparable, at least for the sample studied by Combes et al. (2019). Fig. 1.1
shows the molecular tori of NGC 1672 and NGC 1365 observed by Combes et al.
(2019). The first is seen almost edge-on, the second almost face-on. In the first
panels a measure of the density distribution is plotted. The rotational velocity
and the velocity dispersion of the gas are plotted in the middle and in the right
panels, respectively. We note that rotation velocity has an order of magnitude of
tens km s−1. The velocity dispersion has the same order of magnitude, but it is
everywhere slightly lower.
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Figure 1.1: Flux of the CO(3-2) line (left), line-of-sight rotation velocity (middle),
and line-of-sight velocity dispersion (right), for the central molecular tori of NGC
1672 (top) and NGC 1365 (bottom). The x and y axis are in parsec. In the left
panel, red colors indicate larger flux. The velocity color scales are in km s−1.
Figures taken from Combes et al. (2019)
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1.2 ADAF discs
In this section, we describe briefly the expected characteristics of the thick accre-
tion discs around black holes or neutron stars. In the 80’, Paczyńsky, Abramowicz,
Rees, and others began the description of accretion objects with a toroidal geom-
etry (Paczyńsky and Wiita, 1980; Paczyńsky, 1982; Abramowicz et al., 1980; Rees
et al., 1982). The accretion disc models proposed by Paczyńsky and Abramowicz
were later called Polish doughnuts (Abramowicz, 2005). Those proposed by Rees
are referred to as ions tori.

In the 90’ Narayan and Yi presented their models of advection dominated
accretion flow (ADAF) discs (Narayan and Yi, 1995a,b). The models presented
by Narayan and Yi renewed the interest on these types of accretion objects, which
were studied in great detail in the following years.

Without entering in the details of the different models, here we discuss only the
main characteristics that these types of accretion discs should have. In practice,
the ADAF discs do not efficiently radiate energy, thus the discs do not cool and
the heat is stored as internal energy. Due to this stored energy the temperature
in the disc is very high and the thermal pressure enhances the vertical size of
the disc. The structure has a height H similar to the radius R, i.e has a ratio
H/R ≃ 1. Therefore the structure is torodoial and this is why the power-law
tori models presented in this work could be applied to these types of accretion
discs. Due to the low density the gas is optically thin. The ADAF discs are less
luminous than the geometrically thin, optically thick discs because the energy
is not radiated away but it is advected into the black hole. Despite the super-
Eddington accretion rate that these accretion discs can have, this does not imply
necessarily a very high accretion rate. About the thermodynamics of the gas, the
temperature is very high and the gas is ionized. The model considers gas with
decoupled temperature for ions and electrons. The temperature of the electron
found by Narayan and Yi (1995b) is Te = 109 − 1010 for accretion discs around
super massive black holes, whereas for neutron stars Te = 108.5 − 109. The ions
temperature can reach Ti = 1010 − 1011.

Rees et al. (1982) proposed that the toroidal structure with funnels close to the
rotational axis of the black hole can drive the formation of radio jets through the
presence of a strong magnetic field anchored to the torus. Therefore it is thought
that the geometrically thick, and optically thin discs are present almost in all the
radio-loud AGN. But the presence of the ADAF or the standard geometrically
thin, optically thick discs (Shakura and Sunyaev, 1973) it is not still clearly as-
sociated to a type of AGN. However, this is a simplified subdivision because in
reality there are several different kinds of accretion discs. Whether the accretion
discs can evolve from a type into another or what kind of accretion is associated
to different phenomena is still matter of debate.

Fig. 1.2 (top) shows the isodensity contours of a ADAF disc model (Narayan
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and Yi, 1995a). Fig. 1.2 (bottom) shows the geometry in the meridional plane of
the toy-model proposed by Paczyńsky (1998). Fig. 1.3 shows the scheme of the
possibility of the creation of radio jets (top), and the contours of equal temperature
(bottom) of the Rees’ ions torus. These figures illustrate the resemblance of some
models of geometrically thick accretion discs with the dynamical models that we
present in this work.

Figure 1.2: Left: Isodensity contours in the meridional plane of a advection dom-
inated accretion flow disc model of Narayan and Yi (Narayan and Yi, 1995a).
Right: Geometry in the meridional plane of the toy model of accretion disc pre-
sented by Paczyńsky (Paczyńsky, 1998). rg ≡ 2GM/c2, where M is the black hole
mass, c is the light speed and G is the gravitational constant.
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Figure 1.3: Scheme of the geometrical structure (top) and contours of equal tem-
perature (solid line, bottom) of the ions torus presented by Rees (Rees et al.,
1982). rg = GM/c2, where M is the black hole mass. The dark circle on the left
is the region with radius rg around the black hole.



Chapter 2

Some useful concepts of fluid
dynamics

In this chapter, we discuss briefly some concepts of fluid dynamics that are useful
for this work. The reference books are Clarke and Carswell (2014), Shu (1992),
Feynman (1964) and Fermi (1956).

2.1 Fluid dynamics equations

Concept of fluid

A system can be defined as fluid and ruled by the fluid dynamics equations, when
it can be represented as an object composed of so-called fluid elements. The fluid
element is assumed to be such that it satisfies specific properties. Let us consider
that l is the size of the fluid element, so the quantity l3 is its volume. The fluid
element must be big enough to contain a large number of particles. If n is the
number density of particles, this gives the condition

nl3 ≫ 1. (2.1)

On the other hand, the fluid element is small enough that there is not any varia-
tion in the physical quantities that describe the system, like pressure, temperature,
etc... Thus it is smaller than the scale length for change of any variable. Consid-
ering that q is a macroscopic variable of the system, the scale length over which
q varies by order of unity is

L ≡ |q|
∥∇q∥ . (2.2)

So we have the condition
l ≪ L. (2.3)

Finally, there is a fundamental condition that distinguishes the fluids. A fluid is
said collisional if the particles into the fluid element interact with each other. So,

14
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considering λ the mean free path of the particles, the fluid is collisional if it holds
the condition

l ≫ λ. (2.4)

Otherwise, the fluid is said collisionless. If a fluid is collisional we can describe it
with an equation of state, that relates, in general, the density, the pressure, and
the temperature of the system. However there are some particular conditions,
where the system is not properly a fluid as we have defined it, but we can still use
the fluid equations to describe it (see sec. 2.3).

System of fluid equations

The fluid physical properties are described by 4 equation system. Considering that
ρ, P , and v are the density, the pressure, and the velocity fields of the system,
and ϵtot is the total energy per unit volume, and that, generally, any quantity
q depends on the position x = (x, y, z) and time t, q = q(x, y, z, t), the fluid
equations are

∂ρ

∂t
+∇ · (ρv) = 0, (2.5)

ρ
∂v
∂t

+ ρ(v · ∇)v +∇P = 0, (2.6)

∂ϵtot
∂t

+∇ ·
[
(ϵtot + P )v

]
= 0. (2.7)

The equations are known as mass, Euler or momentum, and energy equation,
respectively. They are written in the conservative form, and imply mass, mo-
mentum, and energy conservation. On the right-hand side, the source/sink terms
can be added. An important term in astrophysics is the gravitational potential
which enters both the Euler and the energy equation. We will discuss it in section
2.1. Other additional source terms can be net radiative cooling and heat thermal
conduction, which enter the energy equation.

Given the gravitational potential, and the source/sink terms, the gas motion
can be solved numerically by considering also an equation of state. In this case,
there are six variables (ρ, P, v, ϵtot) and six equations. However, in some special
cases, the equations can be simplified, and the solutions can be found analytically.

Gravitational potential and self-gravitating systems

With the presence of the gravitational potential Φtot, the Euler equation is

ρ
∂v
∂t

+ ρ(v · ∇)v = −∇P − ρ∇Φtot. (2.8)

The gravitational potential might be due to the fluid itself, or due to other external
components, or it can be the sum of both. The choice is made by the problem
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we want to study. For example, if we consider a gas cloud in a galaxy and we
want to study its motion under the galaxy gravitational potential, we have to use
the latter. It can be the sum of the stars, the dark matter, and the interstellar
medium gravitational potentials. We can neglect one or more of these components,
depending on the context. If we neglect the gravitational field of the cloud itself,
the gravitational potential is said to be external.

On other hand, if we want to study, e.g. the equilibrium or the compres-
sion/expansion of the cloud, we can consider only its gravitational potential, which
is dominant in this issue. In this case, we are considering the self-gravity of the
system without external contributions. Obviously, we can consider both the ex-
ternal and the fluid gravitational fields if they are comparable. Summarizing, the
gravitational potential Φtot, that appears in the fluid equations system, can be

Φtot = Φ,

Φtot = Φext,

Φtot = Φ+ Φext,

where Φ is the gravitation potential of the gas, and Φext is the sum of all the
external contributions we want to consider.

In the self-gravitating case, we can relate the density distribution and the
gravitational potential through Poisson’s equation

∇2Φ = 4πGρ, (2.9)

where G = 6.67× 10−8 cm3 g−1 s−2 is the universal gravitation constant.
In this work, we are going to consider first the systems in equilibrium in their

gravitational potential, then in the external gravitational potential of a black hole,
and, finally, in the sum of the two contributions.

Energy equation

In this paragraph, we consider the energy equation for the different cases of grav-
itational potential.

The total energy per volume unit, ϵtot, of the gas is the sum of all the contri-
butions to energy

ϵtot = ϵkin + ϵth + ϵgrav,

where ϵth is the internal energy per unite volume of the system, i.e. disordered
kinetic energy of the particles (we will see in in sec. 2.2 its expression for ideal
gases), ϵkin = ρv2/2 is the macroscopic ordered kinetic energy, where v = |v|, and
ϵgrav is the gravitational energy. The latter is different based on the gravitational
forces we are considering. If the gravitational potential is external, so ϵgrav = ρΦext,
the energy equation is

∂ϵtot
∂t

+∇ ·
[
(ϵtot + P )v

]
= ρ

∂Φext

∂t
. (2.10)
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In the self-gravitating case, ϵgrav = 1
2
ρΦ, the energy equation is

∂ϵtot
∂t

+∇ ·
[
(ϵtot + P +

1

2
ρΦ)v

]
= −∇ ·

[
1

8πG

(
Φ
∂∇Φ

∂t
−∇Φ

∂Φ

∂t

)]
. (2.11)

Finally, considering the sum of all contributions, ϵgrav = ρΦext +
1
2
ρΦ, we get

∂ϵtot
∂t

+∇·
[
(ϵtot+P+

1

2
ρΦ)v

]
= −∇·

[
1

8πG

(
Φ
∂∇Φ

∂t
−∇Φ

∂Φ

∂t

)]
+ρ

∂Φext

∂t
. (2.12)

2.2 Ideal gas
In this work, when necessary we will assume that the fluid is an ideal gas. In this
section we describe the main physical properties that hold for this type of gas.

Equation of state

An equation of state is, in general, an expression that correlates the pressure
with the density and the temperature of the system, which can be written as
P = P (ρ, T ). An equation of state is said barotropic if the pressure depends only
on the density P = P (ρ). The ideal gas equation of state is

P =
kBT

µmp

ρ, (2.13)

where kB = 1.38× 10−16 erg K−1 is the Boltzmann’s constant, mp = 1.6× 10−24 g
is the proton mass, and µ is the mean molecular (or atomic) weight.

Adiabatic index

The adiabatic index γ is the ratio of the specific heats at constant pressure cP
and at constant volume cV ,

γ ≡ cP
cV

, (2.14)

which are defined as follows:

cP ≡
(
∂Q

∂T

)

P

= T

(
∂s

∂T

)

P

(2.15)

and
cV ≡

(
∂Q

∂T

)

V

= T

(
∂s

∂T

)

V

, (2.16)

where δQ is the heat transfer per unit mass, and ds = δQ/T is the specific entropy.
For an ideal gas, the adiabatic index γ is

γ =
5 + q

3 + q
, (2.17)
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where q is the number of internal degree of freedom. For a monoatomic gas q = 0,
thus γ = 5/3. For a biatomic gas q = 2, considering the molecule rotation, thus
γ = 7/2. Therefore in this work, we consider especially these two values of γ:
the monoatomic adiabatic index γ = 5/3 when we consider, for example, the
application of the models to the ionized thick accretion discs around the black
hole, since it holds also for plasma, and the biatomic adiabatic index γ = 7/5
when we consider the molecular hydrogen tori that obscure the central parts of
the AGN.

Entropy and energy

The internal energy per unit mass for an ideal gas is

e =
2 + q

3

kBT

µmp

, (2.18)

it can be rewritten, in terms of the adiabatic index γ, as

e =
1

γ − 1

kBT

µmp

. (2.19)

Thus, using the equation of state, the internal energy per unit volume is

ϵ = ρe =
P

γ − 1
. (2.20)

Therefore the total energy per unit volume of an ideal gas in the presence of the
self-gravitating potential Φ, the external potential Φext, the sum of self-gravitating
and external potential Φtot = Φ+ Φext are, respectively,

ϵtot =
ρv2

2
+

P

γ − 1
+

1

2
ρΦ, (2.21)

ϵtot =
ρv2

2
+

P

γ − 1
+ ρΦext, (2.22)

and
ϵtot =

ρv2

2
+

P

γ − 1
+

1

2
ρΦ + ρΦext. (2.23)

The specific entropy for an ideal gas is

s =
1

γ − 1

kB
µmp

ln

(
P

ργ

)
+ const. (2.24)

Because we are interested only in relative variation of s, in this work we can
consider a normalized entropy defined as

σ ≡ ln

(
P

ργ

)
. (2.25)
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The normalized entropy is the physical quantity that appear in the Solberg-
Høiland criterion (sec. 2.4) and in the stability criteria in the presence of a weak
magnetic field (sec. 2.5). When we compute the entropy for our systems, we will
include the constants that multiply the pressure and the density in the additive
constant of the entropy.

2.3 Stationary axisymmetric rotating fluids
In this section, we define and describe the physical properties of rotating axisym-
metric stationary fluids, in equilibrium in the gravitational potential. To study
the problem we use the cylindrical coordinates R, ϕ, z. A fluid is stationary
when the time partial derivatives of all the physical quantities q that describe
the system are null (∂q/∂t = 0). The fluid does not have to be necessarily at
rest, the velocity can be not null but it does not to be time dependent. The
assumption of axisymmetry implies that all the partial derivatives with respect
the azimuthal angle are null (∂q/∂ϕ = 0). Thus all the physical properties are
functions of R and z (q = q(R, z)). Consider an axisymmetric stationary rotating
fluid with vR = vz = 0, and vϕ ̸= 0. The mass, the energy, and the azimuthal
component of Euler equations are satisfied. The radial and vertical components
of Euler equation are

1

ρ

∂P

∂R
= −∂Φtot

∂R
+ Ω2R (2.26)

and
1

ρ

∂P

∂z
= −∂Φtot

∂z
, (2.27)

where Ω = vϕ/R is the angular velocity. Given the density distribution ρ of the
fluid and the gravitational potential Φtot, in which the fluid is in equilibrium, the
system of equations 2.26-2.27 can be solved analytically.

2.3.1 Poincaré-Wavre theorem

We present here an important result that describes the differences between the
rotating fluids that have a cylindrical angular velocity, from the more general ones,
which have an angular velocity with a vertical gradient. This depends on how the
pressure is distributed with respect the density and the temperature of the system.
In particular, the barotropic distributions1, where the pressure is stratified on the
density P = P (ρ), have an angular velocity that depends only on R: Ω = Ω(R).
The baroclinic distributions, where the pressure is not stratified on the density

1We note that a barotropic distribution does not imply a barotropic equation of state. The
former is a spatial property of a stationary configuration, the latter a general property of the
gas.
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and depends on the density and the temperature P = P (ρ, T ), have an angular
velocity that depends on both R and z: Ω = Ω(R, z). This is established by the
Poincaré-Wavre theorem, which we prove here below.

Introducing the quantity g = (gR, gϕ, gz) defined like

gR ≡
v2ϕ
R

− ∂Φtot

∂R
, (2.28)

gϕ ≡ 0, (2.29)

gz ≡ −∂Φtot

∂z
. (2.30)

The R and z components of Euler equation can be written as

1

ρ
∇P = g. (2.31)

In particular conditions, the quantity g can be expressed like the gradient of a
scalar Φeff , called the effective potential. If g = −∇Φeff , it follows that

gR =
∂Φeff

∂R
, (2.32)

gz =
∂Φeff

∂z
, (2.33)

and this implies that

∂gR
∂z

= −∂2Φeff

∂z∂R
= −∂2Φeff

∂R∂z
=

∂gz
∂R

. (2.34)

The equation 2.34 is the condition to define an effective gravitational potential.
Computing the terms of equations 2.34 we find

∂gz
∂R

=
2vϕ
R

∂vϕ
∂z

− ∂2Φeff

∂R∂z
(2.35)

and
∂gR
∂z

= −∂2Φeff

∂z∂R
. (2.36)

These two terms are equal only if ∂vϕ/∂z = 0, or equivalently ∂Ω/∂z = 0. Thus
we can define an effective potential, for which holds the condition

1

ρ
∇P = −∇Φeff , (2.37)

if and only if the angular velocity depends only on the radial coordinate Ω = Ω(R).
From ∇P/ρ = −∇Φeff it follows that the pressure is stratified on the effective
potential P = P (Φeff). Considering the curl of eq. 2.37, we obtain

∇× (∇P ) = −∇× (ρ∇Φeff) = −ρ∇× (∇Φeff)−∇ρ×∇Φeff .
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Since ∇× (∇P ) = ∇× (∇Φeff) = 0, it follows

∇ρ×∇Φeff = 0,

thus also the density is stratified on the effective potential, so the pressure is
stratified like the density P = P (ρ), i.e. the system is barotropic.

Considering now the vorticity equation (Clarke and Carswell, 2014; Balbus,
2017)

R
∂Ω2

∂z
=

1

ρ

(
∂P

∂z

∂ρ

∂R
− ∂P

∂R

∂ρ

∂z

)
. (2.38)

If the system is barotropic P = P (ρ) it follows that

∂P

∂R
=

dP

dρ

∂ρ

∂R
(2.39)

and
∂P

∂z
=

dP

dρ

∂ρ

∂z
. (2.40)

The term in the parenthesis of eq. 2.38 gets null and ∂Ω2/∂z = 0, thus Ω =
Ω(R). So we have proved the Poincaré-Wavre theorem: an effective gravitational
potential Φeff exists if and only if the angular velocity depends only on R (Ω =
Ω(R)), which implies that the pressure is barotropic P = P (ρ) and vice-versa, if
the system is barotropic, this implies necessarily that the angular velocity depends
only on R, i.e. the isorotation surfaces are stratified on cylinders. Otherwise if
the system is baroclinic P = P (ρ, T ), the angular velocity depends also on z
Ω = Ω(R, z). In this work we study baroclinic systems, thus we cannot define an
effective potential Φeff .

2.3.2 Pressure support

In the beginning of this chapter, we illustrated the conditions that strictly define
a fluid system. However, in some particular conditions we can apply the fluid
dynamics equations also for systems that are not strictly speaking fluids. This
holds for the rotating systems in equilibrium, also when they are not composed by
fluid elements. In equations 2.26 and 2.27 we can consider other types of pressure
support.

When in a system composed of ideal gas in equilibrium, the pressure support
is thermal, the fluid is ruled by the equation of state Pth = kBTρ/µmp, but, for
example, a gaseous system can have the addition of a pressure support due to the
turbulent motion of the gas Pturb. If the turbulent velocity dispersion of the gas
σturb is isotropic, the total gas pressure is P = Pth + Pturb, where Pturb = ρσ2

turb.
We can define σ2

g = (σ2
turb + σ2

th), where σ2
th = kBT/µmp, thus P = ρσ2

g.
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The considerations above can apply also to a discrete system composed of small
or point objects with an isotropic velocity dispersion, in this case the pressure
support is given by the random motion of the objects that compose the system.

The power-law tori models that we are going to study can be considered like
gaseous systems where the thermal pressure is dominant with respect to the tur-
bulent pressure, thus the temperature is given by the equation of state (eq. 2.13)
and the internal energy by eq. 2.18. For the application of the models to the
molecular tori of AGN, for simplicity, considered composed of a continuous fluid
of only molecular hydrogen, the biatomic adiabatic index γ = 7/5 has to be used,
whereas for accretion discs plasma, the monoatomic adiabatic index γ = 5/3 has
to be used. The molecular tori can be interpreted as dominated by turbulence,
thus the pressure is P = Pσ2

turb. This is the case of the molecular tori observed
by Combes et al. (2019), where the temperature of the gas is low and the velocity
dispersion is high (see fig. 1.1.)

The other possible interpretation is considering the AGN molecular tori as
discrete systems composed of molecular gas clouds. In this case, the pressure
support is given by the velocity dispersion, assumed isotropic, of the random
motion of the small clouds that compose the tori. If σc is the velocity dispersion,
the pressure is P = ρcσ

2
c , where ρc is the density of the clouds, for example in

solar masses per parsec cubed. The clouds themselves have their own gas density
and their thermal pressure support. Unfortunately, in the latter cases, we can not
define the energy and the entropy of the systems through the adiabatic index γ,
this means that the stability criteria that involve entropy gradients cannot be used
to evaluate the stability of the systems with these interpretations. The stability
criteria hold only for fluids strictly defined.

2.4 Solberg-Høiland stability criterion
In this section, we describe the Solberg-Høiland stability criterion (Tassoul, 1978).
In general, a stability criterion can check if a system in equilibrium is stable against
particular perturbations. Applying the Solberg-Høiland criterion to a stationary
rotating axisymmetric fluid system, we can know if this system is stable against
linear axisymmetric perturbations. The criterion applies to both barotropic and
baroclinic systems.

The fluid stability criteria, in general, are found perturbing the fluid equations
of the unperturbed fluid system in equilibrium. The analysis can be made con-
sidering small, i.e. linear, perturbations with |δq/q| ≪ 1, where q is a generic
quantity of the fluid and δq is the perturbation of the quantity q. Since we con-
sider only linear perturbations, once the systems of equations is perturbed, it can
be linearised neglecting all the non-linear perturbed terms. We consider Eulerian
perturbations that are defined as δq ≡ q(x, t)−q0(x), where q0 is the unperturbed
quantity.
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Using the Fourier theorem, the perturbation can be written as

δq(x, t) =
1

(2π)4

∫
δ̂q(k, w)ei(kt−ωt)d3kdω, (2.41)

where k is the wave vector, ω is the wave angular frequency, and d̂q is a coefficient
that depends on the wave properties k and ω. In practice, a generic perturbation
can be decomposed in Fourier components. Thus, using the superposition princi-
ple, i.e. the fact that a linear combination of solutions is also a solution, we can
study the behaviour of all possible perturbations by studying only a single Fourier
mode

δq = δ̂qei(kx−ωt). (2.42)

The wave vector and angular frequency are related by the linearised equations:
solving this equations system it is possible to find the dispersion relation ω = ω(k).
Thus assuming real k, the behaviour of the perturbation is given by the imaginary
part ℑ(ω) of ω. Let us consider a dispersion relation that depends on ω only
through ω2, as it is the case for the Solberg-Høiland analysis. If ω2 > 0, i.e.
ω is real and ℑ(ω) = 0, the perturbation oscillates and the system are stable
to these perturbations. Otherwise if ω2 < 0, there are two solutions, one with
ℑ(ω) < 0,and the other with ℑ(ω) > 0. The former describes a perturbation
that decays with the time, which is stable, the latter describes a perturbation
that grows exponentially with time, i.e. that drives the system toward instability.
Thus the conditions to verify the stability of a systems is derived by the study of
the dispersion relation. If ω2 > 0 for all the types of perturbations, i.e. for all the
possible wavevectors k of the perturbations considered, the system is stable.

We consider now axisymmetric stationary rotating fluids, which have pres-
sure, entropy and angular momentum gradients. The stability criterion that we
are going to show, i.e. the Solberg-Høiland stability criterion, can be seen as
a generalization of the Rayleigh rotational stability and the Schwarzschild con-
vective stability criteria. We recall briefly, that in a static system in which the
pressure decreases outward, the Schwarzschild criterion imposes that the entropy
has to increase outward for the stability to convective motions. The Rayleigh
criterion for rotating discs imposes that the squared angular momentum has to
increase outward for stability. For barotropic systems, the Solberg-Høiland crite-
rion reduces to a combination of the convective and the rotational criteria. For
baroclinic systems, studied in this work, the Solberg-Høiland criterion involves
the presence of the pressure, entropy and angular momentum gradients mixed.

To find the Solberg-Høiland criterion, a baroclinic axisymmetric fluid in equi-
librium is perturbed with a linear axisymmetric perturbation with a wavevector
k = (kR, 0, kz), in the form

δq = δ̂qei(kRR+kzz−ωt). (2.43)
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The dispersion relation obtained from the perturbed linearised system of fluid
dynamical equations is

ω2 = − 1

R3

(
x
∂Ω2R4

∂R
− ∂Ω2R4

∂z

)
− 1

γρ

(
x
∂P

∂z
− ∂P

∂R

)(
x
∂σ

∂z
− ∂σ

∂R

)
, (2.44)

where x ≡ kR/kz. We note that, in the right-hand side of this equation, the
first term involves the squared angular momentum gradient, thus the rotation
of the fluid (as it occur in the Rayleigh stability criterion), whereas the second
term involves the entropy and the pressure gradients, quantities that appear in
the Schwarzschild convective criterion. The squared angular frequency must be
positive for stability, so we obtain the condition

1

γρ

∂P

∂z

∂σ

∂z
x2+

(
1

R3

∂Ω2R4

∂z
− 1

γρ

[
∂P

∂R

∂σ

∂z
−∂P

∂z

∂σ

∂R

])
x+

1

γρ

∂P

∂R

∂σ

∂R
− 1

R3

∂Ω2R4

∂R
< 0.

(2.45)
This condition has to be satisfied for every possible perturbation mode, thus for
every value of kR and kz. The equation 6.7 for stability is verified for every x, if
the following conditions are both satisfied:

1

γρ

(
∂P

∂R

∂σ

∂R
+

∂P

∂z

∂σ

∂z

)
− 1

R3

∂Ω2R4

∂R
< 0 (2.46)

and
∂P

∂z

[
∂Ω2R4

∂R

∂σ

∂z
− ∂Ω2R4

∂z

∂σ

∂R

]
< 0. (2.47)

Equations 6.1 and 6.2 are the Solberg-Høiland stability criterion. We will use
them to evaluate the stability of the gaseous power-law tori in chapter 6. We
recall that this criterion holds only for linear axisymmetric perturbations. The
behaviour of the system against non-linear or non-axisymmetric perturbations has
to be studied with other tools.

2.5 Stability of rotating, weakly magntized fluids
In this work we present dynamical models with toroidal geometry that could be
applied also for the thick accretion discs around the black holes or neutron stars,
as those described in sec. 1.2. The accretion discs around the black holes or
neutron stars are very hot, thus the gas in them is totally ionized (see sec. 1.2),
and is expected to be magnetized. In this section we show the main physical
characteristics of a plasma, focusing in plasma permeated by a weak magnetic
field, and describe how the stability criteria are modified by the presence of the
weak magnetic field.
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The Lorentz force in a plasma, since the electric field is negligible, is

fL =
1

4π

(
B · ∇

)
B − 1

8π
∇B2 (2.48)

where B is the magnetic field and B = |B|. The first term is the magnetic
tension, a force which tends to align the magnetic field lines, whereas the second
term is the gradient of the magnetic pressure B2/(8π), a force which is against the
compression of the magnetic field. In the Euler equation that describes a plasma,
the pressure gradient is substituted by the gradient of the sum of the thermal
pressure and the magnetic pressure ∇P → ∇(P + B2/8π). We can define two
types of magnetized fluids, based on the strength of the magnetic field, with the
β parameter

β ≡ Pth

Pmag

=
8πP

B2
. (2.49)

In practice, the β parameter is the ratio between the thermal and the magnetic
pressure in a magnetized fluid. If β ≫ 1, the fluid has a dynamically unimportant
magnetic field, otherwise, if β ≲ 1, the fluid is permeated by a strong magnetic
field and the contribution of the magnetic field is dynamically important. In this
work, for simplicity, we consider only high β plasma, i.e. permeated by a weak
magnetic field. The equilibrium in this type of plasma does not have contributions
from the magnetic field, thus to find stationary solutions, the unmagnetized Euler
equation can be used. The magnetic field, despite its weakness, is very important
when we consider the stability of the systems. Indeed many rotating astrophysical
systems in the presence of a weak magnetic field are unstable, and as we will see,
the instability occurs also for the power-law tori studied in this work. Instead
the presence of a strong magnetic field, could help the stability of the system as
explained in Balbus and Hawley (1991).

We describe now the criteria for stability of a baroclinic stationary rotating
axysimmetric fluid permeated by a weak magnetic field, for linear axysimmetric
perturbations. We refer to Balbus (1995) for the derivation of the criterion. Per-
turbing the magneto-hydro-dynamics equations with a linear axisymmetric per-
turbation of the form 2.43, it is possible to obtain the dispersion relation, which
in the limit of a weak magnetic field, is

ω2 = −R

(
x
∂Ω2

∂R
− ∂Ω2

∂z

)
− 3

5ρ

(
x
∂P

∂z
− ∂P

∂R

)(
x
∂σ

∂z
− ∂σ

∂R

)
. (2.50)

We note that the magnetic field does not appear in the dispersion relation, and
thus in the stability condition, for weakly magnetized plasma. The limits for an
unmagnetized fluid cannot be derived from eq. 7.1. To obtain the Solberg-Høiland
criterion, the limit of a null magnetic field has to be considered in the perturbed
fluid equations (see Balbus (1995) for a discussion). Imposing that ω2 > 0 for
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stability, one obtains the conditions for generalized magneto rotational stability
for stratified baroclinic rotating systems

3

5ρ

(
∂P

∂R

∂σ

∂R
+

∂P

∂z

∂σ

∂z

)
−R

∂Ω2

∂R
< 0 (2.51)

and
∂P

∂z

[
∂Ω2

∂R

∂σ

∂z
− ∂Ω2

∂z

∂σ

∂R

]
< 0, (2.52)

(for stability). We note that equations 7.2 and 7.3 differ from the Solberg-Høiland
criterion (eqs. 6.1 and 6.2) only in the fact that the angular velocity takes the
place of the angular momentum. We use eqs. 7.2 and 7.3 to study the stability
of the power-law tori in chapter 7, under the assumption that they are a weakly
magnetized plasma.



Chapter 3

Potential-density pairs of power-law
tori

In this work, we analyze the families of toroidal fluid systems given by the ax-
isymmetric density distribution (Ciotti and Bertin, 2005)

ρ = ρ0
R2

rα
, (α > 2), (3.1)

where r =
√
R2 + z2 is the spherical radial coordinate and R and z are the radial

and vertical cylindrical coordinates. r, R, and z are in units of a, where a is a
reference length, and are thus dimensionless. ρ0 is a reference density such that
ρ(a, 0) = ρ0. The density distribution has the functional form of a power-law,
where α is the power-law index.

The power-law density produces the following gravitational potential:

Φ = −Φ0
r2−α

(α− 2)(7− α)

[
4r2

(α− 4)(5− α)
+R2

]
(α ̸= 4), (3.2)

Φ =
Φ0

3

[
2 ln r − 1

2

R2

r2

]
(α = 4), (3.3)

where Φ0 = 4πGρ0a
2. Expliciting r =

√
R2 + z2, the equations 3.1, 3.2 and 3.3

are

ρ(R, z) = ρ0
R2

(R2 + z2)
α
2

, (α > 2) , (3.4)

Φ(R, z) = −Φ0
(−α2 + 9α− 16)R2 + 4z2

(7− α)(5− α)(α− 4)(α− 2)(R2 + z2)
α
2
−1

(α ̸= 4), (3.5)

Φ(R, z) =
Φ0

3

[
ln(R2 + z2)− 1

2

R2

R2 + z2

]
(α = 4). (3.6)

27
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However, it is useful to write the equations using the radial distance r where it
explicitly appears. In addition to simplifying the equations, it allows us to look
straightforwardly at the behavior of the physical quantities at large and small
distances from the center.

We refer the reader to Ciotti and Bertin (2005) for the description of the
construction of the potential-density pairs, which is based on homeidal expansion.
Ciotti and Bertin (2005) show that the lower limit on α is α > 2. We do not
prove formally this result, but we note that for α = 2, substituting R = r sin θ in
the density distribution, we obtain ρ ∝ sin2 θ and the toroidal structure does not
exist anymore. The upper limit on the range of α is α < 5. It is given by the
constraint due to the divergence of the mass at the center, as we will see in sec.
3.1.

So we consider the power-law density (3.1) in the range 2 < α < 5. The
geometry and the properties of the tori depend strongly on the value of α. In
particular, as we will see, there are values of α for which the tori experiences
changes of behavior in some of their properties. Two of these critical values of α
are the only two integer values that α can hold, α = 3 and α = 4. In the following
we will show the behavior of the tori with several values of α that are interesting
in that context. The aim is to provide, at the end of the work, the characteristics
of the models in every sub-range of α and their limit to a possible astrophysical
application.

Before solving the fluid dynamics equations of the stationary models, in this
chapter we make some preliminary considerations. In sec. 3.1, we compute the
mass of the models, which, as we will see, is infinite; in sec. 3.2 and 3.3 we
study graphically the differences of the tori density distribution and potential for
different values of α. Then, we compute the circular velocity of the system (sec.
3.4) and, finally, the projected surface density of the systems when seen face-
on and edge-on (sec. 3.5). In sec. 3.6, we present examples of power-law tori
applications to the AGN molecular tori.

3.1 Mass integration
In this section we compute the mass of the tori. The density for α > 2 at the
limit r → ∞ converges to zero, but the mass does not converges. Indeed, the
power-law tori have infinite mass. For evaluating the integration it is convenient
to switch to polar coordinates

ρ(R, z) −→ ρ(r, θ)

. Considering R = r sin θ, one obtains

ρ(r, θ) = ρ0
sin2 θ

rα−2
. (3.7)
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Thus the integration gives

M =

∫

V

ρdV = a3
∫

V

ρ(r, θ) sin θr2dϕdθdr

= 2πρ0a
3

∫ π

0

sin3 θdθ

∫ ∞

0

r4−αdr =
8π

3
ρ0a

3

∫ ∞

0

r4−αdr. (3.8)

For α < 5 the mass always diverges at infinity. This problem can be avoided by
considering a truncation radius. For α = 5 the integral diverges also at the center,

∫ ∞

0

1

r
dr =

[
ln r
]∞
0
.

The integral diverges at r = 0 also for larger values of α. Hence we consider only
density distributions with α < 5.

3.2 Isodensity curves and density profiles
The geometry of the torus depends on the value of α. Here, we show isodensity
contours of the models for some values of α, to illustrate some differences among
them. The choice of the values becomes clearer when we study other charac-
teristics of the tori, although some peculiar characteristics also appear from the
density distribution.

The density profiles in the equatorial plane for α = 2.1, α = 3, α = 4 and α =
4.9 and the corresponding isodensity contours in the meridional plane are plotted
in fig. 3.1 and in fig. 3.2, respectively. The density profiles in the equatorial
plane are power-law with slope α − 2, so they are steeper for larger values of α.
Looking at the contours of constant density we note that the torus with α = 4
has isodensity curves that are circles, while for larger values of α the contours
are elongated along the vertical direction. Instead, for lower values of α they
are flattened, and elongated horizontally. The case with α = 2.1 near the lower
limit of the possible value of α (α > 2) has isodensity contours very flattened
horizontally.

Fig. 3.3 (top) shows the density profiles along the axis for z = 1. In these
profiles it appears the torus structure: a central depression, where the density
increases with R, then reaches a maximum, after which, it decreases. For all the
four cases, the density in the equatorial plane increases roughly in the same way,
it reaches the maximum near the scale length a and then decreases with different
slopes for the four cases, flatter for lower values of α and steeper for the larger
ones. The profile of the torus with α = 2.1, near the lower limit of α, has a slope
after the maximum nearly flat.

Along the z axis, i.e. for R = 0, the density vanishes. Too see the behavior of
the density along z, we show the density profile along the z axis for R = 1 in fig.
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3.1 (bottom). The density profiles along the z axis for R = 1 are nearly constant
up to the reference scale and then decrease with different slopes for different values
of α, steeper for larger α.
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Figure 3.1: Density profiles in the equatorial plane for power-law tori with α = 2.1,
α = 3, α = 4 and α = 4.9

3.3 Gravitational potential
In this section we analyze the characteristics of the gravitational potential of the
power-law tori. First of all, we study the behavior of the potential at the limits,
by considering the limit r → 0 and r → ∞. The expression of the potential for
α ̸= 4 (eq. 3.2) can be rewritten as

Φ(R, z) = −Φ0
(−α2 + 9α− 16)R2 + 4z2

(7− α)(5− α)(α− 4)(α− 2)rα−2
(α ̸= 4). (3.9)

The numerator of eq. 3.9, (−α2 + 9α − 16)R2 + 4z2, is proportional to r2, so we
obtain the asymptotic expression

Φ ∼ r2

r2−α
∼ 1

rα−4
(α ̸= 4). (3.10)
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Figure 3.2: Isodensity contours in the meridional plane for power-law torus with
α = 2.1, α = 3, α = 4 and α = 4.9 (from top to the bottom)
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Figure 3.3: Density profiles of power-law tori with α = 2.1, α = 3, α = 4 and
α = 4.9 as a function of R for z = 1 (top) and as a function of z for R = 1
(bottom).
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In this way, we can compute easily the limits. In the range 4 < α < 5, for r → 0
the potential diverges, instead, it vanishes for r → ∞. In the range 2 < α < 4, the
behavior is different, the potential vanishes at the origin and diverges at infinity.
The potential for α = 4 (eq. 3.3) behaves like the logarithm of the radial distance,
because the second term in the parenthesis R2/r2 asymptotically is constant, thus

Φ ∼ ln r (α = 4).

Therefore the potential for α = 4 diverges both at the origin and at infinity. The
results are schematized below:

Φ → ∞ r → 0

Φ → 0 r → ∞ (4 < α < 5),

Φ → −∞ r → 0

Φ → ∞ r → ∞ (α = 4),

Φ → 0 r → 0

Φ → ∞ r → ∞ (2 < α < 4).

We now analyze the coefficients of R and z in the equation 3.9. The coefficient
of R2 is −α2 +9α− 16. The equation −α2 +9α− 16 = 0 has roots: 9−

√
17

2
≈ 2.44

and 9+
√
17

2
≈ 6.56. Thus for α < 2.44 and α > 6.56 the coefficient of R2 is

negative. The values of α larger than 6.56 are not of interest because they are
outer the range of α given by the mass. The sign of z2 is always positive.

So for α ≈ 2.44, the isopotential contours change shape, in practice, in the
equatorial plane the gravitational force pushes outwards for α < 2.44. This topic
is related to a change in the behaviour of the circular velocity in the equatorial
plane, as we will see in sec. 3.4. The isopotential contours for α = 2.1, α = 2.4,
and α = 2.5 are plotted in fig. 3.4. We note the change in the shape between
the latter two cases. The isopotential contours for α = 3, α = 4, and α = 4.9
are plotted in fig 3.5. In general, comparing the isopotential (fig. 3.5) with the
isodensity contours (fig. 3.2) for α > 2.44, we note that the potential is more
regular than the density distributions, in the sense that the contours are not
toroidal. Looking at the two plot of the isopotential contours we note that, for
α > 2.44, for small values of α the contours are flattened along the equatorial
plane, whereas for high values of α the contours are more spherical. This is due
to the fact that the tori with higher values of α have more mass in the center, so
the term of gravitational monopole, which produces a spherical potential like a
point mass, is dominant at smaller distances from the center.
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Figure 3.4: Isopotential contours in the meridional plane for power-law tori with
α = 2.1, α = 2.4, and α = 2.5 (from top to the bottom).
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3.4 Circular velocity
Here we analyze the circular velocity in the equatorial plane of these systems.
Considering the potential for α ̸= 4 (eq. 3.2), one gets

v2c = R
∂Φ

∂R

∣∣∣∣
z=0

= 4πGρ0a
2 −α2 + 9α− 16

(7− α)(5− α)(α− 2)
R4−α. (3.11)

Instead, considering the potential for α = 4 (eq. 3.3) the circular velocity is
constant, with v2c = 2/3Φ0. For α > 4 the circular velocity decreases with R,
whereas for α < 4 the circular velocity increases with R. This is due, of course,
by the mass distribution and the resulting potential. The tori with α > 4 have
more mass to the center, which it means that the radial force due to the inner
mass distribution is dominant respect to that exerted from the outer parts. So
the radial gravitational force increases approaching the center and an object in
circular orbit in the equatorial plane has higher speed if it is at smaller radii.

The opposite happens for α < 4, the mass is higher at large distances, thus the
radial force exerted by the outer mass distribution is higher and an object placed
in rotational equilibrium has higher speed if it is placed in the outer parts of the
system. For even lower values of α, one expects that the mass in the outer parts
is so high that the radial force is directed outwardly. Therefore no circular orbit
exists and this means that the squared circular velocity value becomes negative.
This happens for α ≈ 2.44, a characteristic value that we encountered when
discussing the gravitational potential (sec. 3.3). Looking now at the isopotential
contours of tori with α < 2.44 in figure 3.4, wee note that in the equatorial plane
the potential increases outwards and thus the resulting force is direct outwards.

The polynomial −α2 + 9α− 16 that appears in the circular velocity equation
(eq. 3.11) is the same that we analyzed in sec. 3.3 that determined the change of
shape in Φ. Thus for α < 2.44 the squared circular velocity is negative.

The circular velocity for α = 4.9, α = 4.5, α = 3 and α = 2.5 is plotted at
the top and the middle of fig. 3.6. We note that for α > 4 the circular velocity
in the equatorial plane decreases with R and the decrease is stronger for larger
values of α. For α < 4 the circular velocity in the equatorial plane increases with
R, and the increase is stronger for lower values of α. The radial derivative of
the gravitational potential in the equatorial plane for α = 2.4, α = 2.1, plotted
at the bottom of fig. (3.6), is everywhere negative. These negative values would
correspond to negative v2c , however this does not mean that it is impossible to
find a physical solution to Euler’s equation (see chapter 4).

We conclude this section noting that the flat rotation curve in the equatorial
plane is a characteristic that the power-law torus with α = 4 shares with the Mestel
disc (Mestel, 1963). In the next section we will see another analogy between these
objects.
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Figure 3.6: Top and center: circular velocity in the equatorial plane for power-law
tori with α = 4.9, α = 4.5, α = 3 and α = 2.5. Bottom: radial derivative of
gravitational potential in the equatorial plane computed for α = 2.4 and α = 2.1.
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3.5 Surface density distributions
Here we compute the surface density distributions of the tori, assuming for sim-
plicity that the system is seen either face-on or edge-on. The face-on surface
density is

Σ(R) = 2a

∫ ∞

0

ρ(R, z)dz, (3.12)

while the edge-on surface density is

Σ(R, z) = 2a

∫ ∞

R

ρ(R′, z)
R′dR′

√
R′2 −R2

. (3.13)

We recall that all the distances are normalized to a, it means that the differential
dz has to be dz/a, so we have an a out of the integral. Before solving these
integrals, we prove a general result that will be useful in the following. For any A
positive and δ > 1

2
:
∫ ∞

0

(A+ x2)−δdx =

√
π

2

Γ(δ − 1
2
)

Γ(δ)
A

1
2
−δ, (3.14)

where Γ is the Euler’s Γ function.

Proof
Using the variable change:

x2

A
= t, dx =

A

2
√
t
dt,

we obtain
∫ ∞

0

1

(A+ x2)δ
dx =

1

Aδ

∫ ∞

0

1
(
1 + x2

A

)δ dx =
1

2Aδ− 1
2

∫ ∞

0

1

(1 + t)δ
√
t
dt.

Consider now another variable change:

1

1 + t
= y, dt = − 1

y2
dy.

The integration extremes are (1, 0), that we will invert changing the sign, thus we
get

1

2Aδ− 1
2

∫ ∞

0

1

(1 + t)δ
√
t
dt =

1

2Aδ− 1
2

∫ 1

0

yδ−
3
2√

1− y
.

Using the Euler’s β function,

β(a, b) =

∫ 1

0

ta−1(1− t)b−1dt, (3.15)
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we have

1

2Aδ− 1
2

∫ 1

0

yδ−
3
2√

1− y
=

1

2Aδ− 1
2

∫ 1

0

yδ−
1
2
−1(1− y)

1
2
−1 =

β(1
2
, δ − 1

2
)

2Aδ− 1
2

,

where we have used equation 3.15 with a = δ − 1
2

and b = 1
2
. Given that

β(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
(3.16)

and Γ(1
2
) =

√
π, one obtains

∫ ∞

0

(A+ x2)−δdx =
β(1

2
, δ − 1

2
)

2Aδ− 1
2

=

√
π

2

Γ(δ − 1
2
)

Γ(δ)
A

1
2
−δ.

We now can solve solve the integrals 3.12 and 3.13.

3.5.1 Face-on projected density

Let us consider the face-on projection. Substituting ρ = ρ0R
2r−α in eq. 3.12 we

get

Σ(R) = 2ρ0a

∫ ∞

0

R2

rα
dz. (3.17)

Using r = (R2 + z2)
1
2 , we get

Σ(R) = 2ρ0aR
2

∫ ∞

0

1

(R2 + z2)
α
2

dz.

The integral converges for α > 1 and thus for all the considered range of α in this
work. The r.h.s. is in the same form as eq. 3.14, with A = R2 and δ = α/2, thus
we obtain

Σ(R) =
√
π
Γ(α−1

2
)

Γ(α
2
)

ρ0a

Rα−3
. (3.18)

For α = 4 the face-on density projection has the same functional form as the
Mestel disk (Mestel, 1963) with Σ(R) ∝ 1/R, another analogy in addition to the
flat rotation curve, seen in sec. 3.4.

Fig. 3.7 shows the face-on projected surface density profile for different values
of α. For α < 3 the projected density increases with R and for lower values of α
the profile is steeper. Otherwise for α > 3 the projected surface density increases
and for larger values of α the profile is steeper.
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Figure 3.7: Face-on projected surface density, Σ(R), as a function of radius R, for
power-law tori with α = 2.1, α = 2.5, α = 3, α = 4, and α = 4.9.
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3.5.2 Edge-on projected density

Here we compute the edge-on projected surface density. Substituting ρ = ρ0R
2r−α

in eq. 3.13 we get

Σ(R, z) = 2ρ0a

∫ ∞

R

R′3dR′

(R′2 + z2)
α
2

√
R′2 −R2

. (3.19)

We rearrange this equation to get

Σ(R, z) = 2ρ0a

∫ ∞

R

(R′3/R3)R3

Rα(R
′2+z2

R2 )
α
2

√
R′2

R2 − 1

dR′

R
=

= 2
ρ0a

Rα−3

∫ ∞

R

(R′3/R3)

(R
′2+z2

R2 )
α
2

√
R′2

R2 − 1

dR′

R
.

Using the change of variables

y =
R′

R
, dy =

dR′

R
,

we get

Σ(R, z) = 2
ρ0a

Rα−3

∫ ∞

1

y3dy

(y2 + z2

R2 )
α
2

√
y2 − 1

.

Using

t =
√
y2 − 1, dy =

tdt√
t+ 1

,

we obtain
Σ(R, z) = 2

ρ0a

Rα−3

∫ ∞

0

t+ 1

(t2 + 1 + z2

R2 )
α
2

dt.

Adding and subtracting z2/R2 to the numerator of the integrand we have

Σ(R, z) = 2
ρ0a

Rα−3

∫ ∞

0

t+ 1 + z2

R2 − z2

R2

(t2 + 1 + z2

R2 )
α
2

dt =

= 2
ρ0a

Rα−3

(∫ ∞

0

t+ 1 + z2

R2

(t2 + 1 + z2

R2 )
α
2

dt− z2

R2

∫ ∞

0

dt

(t2 + 1 + z2

R2 )
α
2

)
=

= 2
ρ0a

Rα−3

(∫ ∞

0

dt

(t2 + 1 + z2

R2 )
α−2
2

− z2

R2

∫ ∞

0

dt

(t2 + 1 + z2

R2 )
α
2

)
. (3.20)
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Finally we have two integral in the form of equation 3.14. The former with
δ = (α− 2)/2 and A = 1 + z2/X2 gives

∫ ∞

0

dt

(t2 + 1 + z2

R2 )
α−2
2

=

√
π

2(1 + z2

R2 )
α−3
2

Γ(α−3
2
)

Γ(α−2
2
)
.

It converges for α > 3, thus only tori with α > 3 have a finite edge-on density
projection. The latter integral with δ = α

2
and A = 1 + z2

X2 gives
∫ ∞

0

dt

(t2 + 1 + z2

R2 )
α
2

=

√
π

2(1 + z2

R2 )
α−1
2

Γ(α−1
2
)

Γ(α
2
)
.

It converges for α > 1 and thus for all α in the considered range. Substituting
the solutions in equation 3.20, after some algebra, we get

Σ(R, z) =
√
πρ0a

(
Γ(α−3

2
)

Γ(α−2
2
)

1

(R2 + z2)
α−3
2

− Γ(α−1
2
)

Γ(α
2
)

z2

(R2 + z2)
α−1
2

)
. (3.21)

Thanks to the property of Γ function, Γ(z+1) = zΓ(z), we can rewrite the above
Γ functions as

Γ
(α− 1

2

)
= Γ

(α− 3

2
+ 1
)
=

α− 3

2
Γ
(α− 3

2

)

and

Γ
(α
2

)
= Γ

(α− 2

2
+ 1
)
=

α− 2

2
Γ
(α− 2

2

)
.

Thus the second term in the parenthesis of eq. 3.21 can be written as

−Γ(α−1
2
)

Γ(α
2
)

z2

(R2 + z2)
α−1
2

= −Γ(α−3
2
)

Γ(α−2
2
)

(α− 3)

(α− 2)

z2

(R2 + z2)
α−1
2

.

Substituting this in eq. 3.21, we finally obtain

Σ(R, z) =

√
πΓ(α−3

2
)ρ0a

(α− 2)Γ(α−2
2
)

[
(α− 2)R2 + z2

]

rα−1
. (3.22)

In fig. 3.8 are plotted the profiles of the edge-on projected surface density for
α = 3.1, α = 4, and α = 4.9 in the equatorial plane and along the z axis for
R = 0. The profiles are power-law with slope α − 3. The profile for α = 3.1 is
nearly flat, then the profiles have a steeper slope for larger values of α. Fig. 3.7
shows the edge-on projected surface density contours for α = 3.1, α = 4, and
α = 4.9 in the plane x − z, where x is a Cartesian coordinate orthogonal to z in
the plane of the sky. For larger values of α the contours become rounder.
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Figure 3.8: Edge-on projected surface density profiles for z = 0 and R ̸= 0
(continuous line) and for R = 0 and z ̸= 0 (dashed line) for power-law tori with
α = 3.1, α = 4, and α = 4.9.
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3.6 Examples in physical units: molecular tori
In this section we present some examples in physical units of the surface den-
sity distributions of the power-law tori as seen face-on or edge-on. We take as
reference the molecular tori obscuring the central parts of the AGNs, like those
observed by Combes et al. (2019), and described briefly in sec. 1.1. Based on
their observations, we chose a reference gas number density n0 = 104 cm−3. The
reference mass density (in g cm−3) is ρ0 = n0µmp, where µ is the mean molecular
weight and mp is the proton mass. For a pure hydrogen molecular gas µ = 2. The
chosen reference scale is a = 10 pc. Substituting these reference values in eqs.
3.18 and 3.22 we obtain the surface number density N ≡ Σ/(µmp) in physical
units. Figs. 3.10 and 3.11 show the face-on surface number density profiles and
the edge-on surface number density maps1, respectively, for different values of α.
We note that the physical column densities of H2 is in the range 1023−1025 cm−2,
comparable to the values measured by Combes et al. (2019) and described in sec.
1.1.
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Figure 3.10: Face-on projected gas surface number density as a function of radius
R, for power-law tori with α = 2.1, α = 2.5, α = 3, α = 4, and α = 4.9, with a
reference density n0 = 104 cm−3 and a reference scale a = 10 pc.

1In the figures of this section, R, x, and z are not normalized to a, but are in physical units.
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Chapter 4

Self-gravitating baroclinic
power-law tori

In this chapter we consider stationary rotating self-gravitating fluid tori under
the gravitational force of their potential. Hence we are in the self-gravitating case
without external potentials, described in sec. 2.1. Starting from the integration of
Euler equations we obtain the rotational velocity and temperature distributions
(sec. 4.1). Then we will talk about the asymmetric drift (sec. 4.2) and finally, we
present examples in physical units of AGN molecular tori based on the study by
Combes et al. (2019) (sec. 4.3).

4.1 Stationary models
Given that the expression of the gravitational potential is different when α = 4
and when α ̸= 4, it is convenient to treat separately the two cases.

Power-law tori with α = 4

The potential-density pair obtained substituting α = 4 is

ρ(R, z) = ρ0
R2

r4
, (4.1)

Φ(R, z) = Φ0
1

3

[
2 ln r − 1

2

R2

r2

]
. (4.2)

The (R, z) components of the stationary Euler equation with vz = vR = 0 , vϕ ̸= 0
are

1

ρ

∂P

∂R
= −∂Φ

∂R
+ Ω2R, (4.3)

1

ρ

∂P

∂z
= −∂Φ

∂z
. (4.4)

47
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Integrating the z component of the Euler equation, one obtains
∫ ∞

z

∂P

∂z′
dz′ = −

∫ ∞

z

ρ(R, z′)
∂Φ

∂z′
dz′,

P (R,∞)− P (R, z) = −
∫ ∞

z

ρ(R, z′)
∂Φ

∂z′
dz′. (4.5)

Assuming that P (R,∞) = 0, we get

P (R, z) =

∫ ∞

z

ρ(R, z′)
∂Φ

∂z′
dz′. (4.6)

The partial derivative with respect to z of the potential is

∂Φ

∂z
= 4πGρ0az

3R2 + 2z2

3r4
. (4.7)

Substituting the expression of ρ and ∂Φ/∂z and computing the integral we obtain
the expression of the pressure for the α = 4 torus

P (R, z) = 4πGρ20a
2R24R

2 + 3z2

18r6
. (4.8)

The pressure is null along the z axis, where R = 0, according to the fact that
ρ(0, z) = 0. Now, considering the R component of the Euler equation, we derive
the angular velocity squared

Ω2 =
1

Rρ

∂P

∂R
+

1

R

∂Φ

∂R
, (4.9)

and then the rotational velocity squared v2ϕ = Ω2R2.
The partial derivatives of the pressure and the potential with respect to R are

the following:
∂P

∂R
= 4πGρ20aR

−4R4 + 2R2z2 + 3z4

9r8
, (4.10)

∂Φ

∂R
= 4πGρ0aR

2R2 + z2

3r4
. (4.11)

Substituting equations 4.10 and 4.11 in eq. 4.9 we obtain

Ω2(R, z) = 4πGρ0a
22R

2 + 3z2

9R2r2
, (4.12)

v2ϕ(R, z) = 4πGρ0a
22R

2 + 3z2

9r2
. (4.13)

The rotational velocity is constant in the equatorial plane; when z = 0 and R ̸= 0,
v2ϕ = 2/9Φ0. We recall that the circular velocity, in the equatorial plane is also
constant (see sec. 3.4), but vc ̸= vϕ because of the asymmetric drift (see sec. 4.2).
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Finally assuming that the system can be described by the ideal gas equation
of state,

P =
kBT

µmp

ρ, (4.14)

we can derive the temperature distribution. Hence we get

T = T0
4R2 + 3z2

18r2
, (4.15)

with T0 = 4πGρ0a
2µmpk

−1
B . As the velocity, the temperature is constant in the

equatorial plane with value T = 2
9
T0 for z = 0 and R ̸= 0.

Power-law tori with α ̸= 4

We now analyze the case with α ̸= 4, recalling that α is in the range 2 < α < 5.
The density potential pairs are

ρ(R, z) = ρ0
R2

rα
, (4.16)

Φ(R, z) = −Φ0
r2−α

(α− 2)(7− α)

[
4r2

(α− 4)(5− α)
+R2

]
(α ̸= 4). (4.17)

or equivalently,

Φ(R, z) = −Φ0
(−α2 + 9α− 16)R2 + 4z2

(7− α)(5− α)(α− 4)(α− 2)rα−2
(α ̸= 4),

Integrating the pressure from eq. (4.5), considering that the partial derivative of
the potential w.r.t z is

∂Φ

∂z
= 4πGρ0az

(−α2 + 7α− 6)R2 + 4z2

(7− α)(5− α)(α− 2)rα
, (4.18)

we obtain

P (R, z) = 4πGρ20a
2R

2
[
(16− α(α− 4)(α− 5))R2 + 4(α− 1)z2

]

2(7− α)(5− α)(α− 2)2(α− 1)r2α−2
. (4.19)

Similar to the case with α = 4, the pressure vanishes along the z axis, consis-
tent with the fact that ρ is null for R = 0. Computing the derivative w.r.t to R,
we obtain

∂P

∂R
= 4πGρ20a

2R
−(α− 3)g(α)R4 + 2p(α)R2z2 + 4(α− 1)z4

(7− α)(5− α)(α− 2)2(α− 1)r2α
, (4.20)
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with g(α) ≡ 16+α(5−α)(α− 4) and p(α) ≡ −a3 +7α2 − 14α+12. Substituting
in the R component of Euler equations (eq. 4.9), the eq. 4.20 and the partial
derivative of Φ w.r.t R, which is

∂Φ

∂R
= 4πGρ0aR

(α2 − 9α + 16)R2 + 2(3− α)z2

(7− α)(5− α)(α− 2)rα
, (4.21)

we get

Ω2(R, z) = 4πGρ0a
2 2

[
(α2 − 5α + 8)R2 + 2(α− 1)z2

]

R2(7− α)(5− α)(α− 2)2(α− 1)rα−2
, (4.22)

and

v2ϕ(R, z) = 4πGρ0a
2 2
[
(α2 − 5α + 8)R2 + 2(α− 1)z2

]

(7− α)(5− α)(α− 2)2(α− 1)rα−2
. (4.23)

From the equation of state (eq. 4.14) we obtain the temperature distribution,

T (R, z) = T0
(16 + α(5− α)(α− 4))R2 + 4(α− 1)z2

2(7− α)(5− α)(α− 2)2(α− 1)rα−2
, (4.24)

with T0 = 4πGρ0a
2µmpk

−1
B .

We note that equations 4.19 and 4.22-4.24 for α ̸= 4 reduce to those for α = 4,
substituting the value 4 on α, thus in the following we will use equations 4.19 and
4.22-4.24 that hold both for α ̸= 4 and α = 4. We do not anymore have to split
the two cases unless we deal with the potential expression.

Temperature and rotational velocity

To illustrate the proprieties of the family of tori we consider several particular
cases of α in addition to the torus with α = 4. We show the characteristics of the
power-law tori with α = 2.1 and α = 4.9, i.e. the tori near the lower limit and the
upper limit, respectively. Additionally, we show the power-law tori with α = 3
and α = 4.5, i.e. the tori with intermediate α between the limits and the case
with α = 4. Indeed, the torus temperature and rotational velocity distributions
experience a change of trend between α < 4 and α > 4, and it is useful to see
larger and lower α cases than the critical case with α = 4.

The rotational velocity and temperature profiles in the equatorial plane and
along the z axis for R = 1 and along the R axis for z = 1 for tori with α = 2.1,
α = 3, α = 4.5 and α = 4.9 are plotted in figs. 4.1 and 4.2, respectively. We recall
that the temperature and the rotational velocity for α = 4 are constant on the
equatorial plane. The tori with values of α lower than α = 4 have velocity profiles
which increase with R. In particular the lower it is the value of α, the stronger
is the increase with R. Instead, for values of α larger than α = 4, the velocity
decreases with R, and the larger is the value of α the stronger is the decrease. The
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Figure 4.1: Rotation velocity profiles in the equatorial plane (solid line), along
the z axis for R = 1 (dashed line), and along the R axis for z = 1 (dotted line)
for power-law tori with α = 2.1, α = 3 (top), α = 4.5 and α = 4.9 (bottom). For
the torus with α = 3 the profiles along the R axis for z = 1 and along the z axis
for R = 1 overlap.
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Figure 4.2: Temperature profiles in the equatorial plane (solid line), along the z
axis for R = 1 (dashed line), and along the R axis for z = 1 (dotted line) for
power-law tori with α = 2.1, α = 3 (top), α = 4.5 and α = 4.9 (bottom). For the
torus with α = 4.5 the profiles along the R axis for z = 1 and along the z axis for
R = 1 overlap.
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Figure 4.3: Top: density (left) and potential (right) maps for the self-gravitating
power-law torus with α = 2.1. Bottom: temperature (left) and rotational velocity
(right) maps.
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Figure 4.4: Top: density (left) and potential (right) maps for the self-gravitating
power-law torus with α = 3. Bottom: temperature (left) and rotational velocity
(right) maps.
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Figure 4.5: Top: density (left) and potential (right) maps for the self-gravitating
power-law torus with α = 4. Bottom: temperature (left) and rotational velocity
(right) maps.
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Figure 4.6: Top: density (left) and potential (right) maps for the self-gravitating
power-law torus with α = 4.5. Bottom: temperature (left) and rotational velocity
(right) maps.
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Figure 4.7: Top: density (left) and potential (right) maps for the self-gravitating
power-law torus with α = 4.9. Bottom: temperature (left) and rotational velocity
(right) maps.
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same behavior occurs to the temperature profiles but the temperature profiles are
steeper than the velocity profiles, because T ∝ v2.

The distribution of density, gravitational potential, temperature and the ve-
locity field of the power-law torus with α = 2.1, α = 3, α = 4, α = 4.5, and
α = 4.9 are plotted in figs. 4.3- 4.7. For α = 4 (fig. 4.5) the temperature and
velocity distributions are stratified on cones. The temperature is higher along the
equatorial plane, where the rotational velocity is lower and vice versa. As already
noted α = 4 is a critical value. The change between α < 4 and α > 4 is not only
in the gradient directions but also in the shape of the contours. For the torus
with α = 3 (fig. 4.4) the surfaces of equal temperature are like boxy ellipsoids
elongated along the z axis, while those of equal velocity are elongated along the
R axis. Both the temperature and the velocity increase outwardly. The torus
with α = 4.5 has the opposite trend (fig. 4.6). The surfaces of equal temper-
ature and velocity are also boxy ellipsoids, but the isotemperature contours are
elongated along the R axis and the isovelocity contours are elongated along the
z axis. Both T and vϕ decrease for increasing distance from the center. The tori
with α approaching the range limits , α = 2.1 and α = 4.9 (figs. 4.3 and 4.7) have
the surfaces of equal temperature and equal velocity with nearly the same shape.
The shape of the contours is nearly spherical for the two cases. The temperature
and the rotational velocity increase for increasing distance from the center for the
torus with α = 2.1, instead T and vϕ decrease for increasing distance for the torus
with α = 4.9.

4.2 Asymmetric drift
The asymmetric drift is a measure of the difference between the circular velocity
and the rotational velocity in the equatorial plane (Binney and Tremaine, 2008).
Here we consider only models with α > 2.44, because the circular velocity does
not exists for lower α. We compute v2c − v2ϕ, vc − vϕ and vc−vϕ

vc
. Starting from the

first, we find that

v2ϕ(R)− v2c (R) =
R

ρ

∂P

∂R

∣∣∣∣
z=0

. (4.25)

Considering the equations (4.20) and (4.17) we get

R

ρ

∂P

∂R

∣∣∣∣
z=0

= −4πGρ0a
2 (16 + α(5− α)(α− 4))

(7− α)(5− α)(α− 2)2(α− 1)
(α− 3)R4−α. (4.26)

The polynomial (16+α(5−α)(α− 4)) is positive in the α range of interest. This
equation experiences two changes of trend: for α = 3 and for α = 4. Indeed,
the radial derivative of the pressure at z = 0 is positive for α < 3, vanishes for
α = 3, and is negative for α > 3. In practice, the pressure in the equatorial



CHAPTER 4. SELF-GRAVITATING BAROCLINIC POWER-LAW TORI 59

plane increases with R for α < 3, is constant for α = 3, and decreases for α > 3.
This implies that v2ϕ > v2c for α = 3, v2ϕ = v2c for α = 3, and v2ϕ < v2c for
α > 3. Moreover, the quantity v2ϕ − v2c increases with R for α < 4, is constant
for α = 4 and decreases with R for α > 4. Thus we have three range of behavior
2.44 < α < 3, 3 < α < 4 and 4 < α < 5. Fig. 4.8 shows the quantity vc − vϕ
evaluated for α = 4.8, α = 4.4 (top), α = 3.8, α = 3.2 (middle), and α = 2.8,
α = 2.5 (bottom). For 2.44 < α < 3 the rotational velocity is higher than the
circular velocity, their difference increases with R and the lower is the value of α
the stronger is the increase. For 3 < α < 4, the circular velocity is higher than
the rotational one, their difference increases with R and the lower is the value of
α the stronger is the increase. For 4 < α < 5 the circular velocity is higher than
the rotational one, their difference decreases with R and the larger is the value of
α the stronger is the decrease. vc − vϕ for α = 3.8 and α = 4.2 is nearly constant,
as expected because these values are close to α = 4, for which vc − vϕ is constant
in the equatorial plane.

The normalized asymmetric drift (vc − vϕ)/vc is constant along R since the
factors that appear in it have the same dependence with R. Therefore it is a
function only of α:

vc − vϕ
vc

= 1−
√

2(α2 − 5α + 8)

(α− 1)(α− 2)(−α2 + 9α− 16)
(4.27)

In the limit of α → 9−
√
17

2
≈ 2.44, (vc − vϕ)/vc → −∞. Fig. 4.9 shows the

normalized asymmetric drift for different values of α. We note the divergence for
α approaching 2.44, then (vc − vϕ)/vc increase with α and for larger values of α
is quite the same.

4.3 Examples in physical units: self-gravitating
molecular tori

In this section, we show examples in physical units of the self-gravitating tori
presented in this chapter. For this purpose, in the expressions of the density,
potential, temperature and velocity distributions we substitute, in addition to
the physical constants, specific values of the reference scale and density to obtain
characteristic quantities of the astrophysical objects. As seen in section 3.6, we
take as reference the molecular tori observed by Combes et al. (2019) and described
in sec. 1.1. In equations 3.1 and 4.23, we substitute a reference scale of a = 10 pc
and a reference density of n0 = 104 cm−3. Given that the observed molecular tori
are expected to be turbulent (with turbulent pressure dominating over thermal
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Figure 4.9: The normalized asymmetric drift (vc − vϕ)/vc in the equatorial plane
for power-law tori for different values of α.

pressure), we compute the gas velocity dispersion as

σg ≡
√

P

ρ
. (4.28)

Figs.1 4.10-4.12 show the density, the gravitational potential, the velocity dis-
persion and the rotational velocity of the self-gravitating power-law tori without
external potential, for α = 3, α = 4 and α = 4.5. We chose these three values to
illustrate the main different behaviours of the quantities for different α, as largely
seen in this chapter. We note that velocity dispersion and rotational velocity
have the same orders of magnitude of those observed by Combes et al. (2019) and
described in sec. 1.1.

1In the figures of this section, R, x and z are not normalized to a, but are in physical units.
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Figure 4.10: Top: density (left) and potential (right) maps for the self-gravitating
power-law torus with α = 3. Bottom: velocity dispersion (left) and rotational
velocity (right) maps. The reference scale and density are a = 10 pc and n0 =
104 cm−3, respectively.
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Figure 4.11: Top: density (left) and potential (right) maps for the self-gravitating
power-law torus with α = 4. Bottom: velocity dispersion (left) and rotational
velocity (right) maps. The reference scale and density are a = 10 pc and n0 =
104 cm−3, respectively.
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Figure 4.12: Top: density (left) and potential (right) maps for the self-gravitating
power-law torus with α = 4.5. Bottom: velocity dispersion (left) and rotational
velocity (right) maps. The reference scale and density are a = 10 pc and n0 =
104 cm−3, respectively.



Chapter 5

Power-law tori with central black
hole

In this chapter we analyze the power-law tori with a point mass placed in their
center. This point mass represents the central black hole that could be present in
the astrophysical systems at which these models can be applied. The black hole
addition makes the models more complete and, depending to the black hole mass,
can affect strongly the physical properties of the system.

5.1 The black hole gravitational potential
A black hole with mass MBH is placed at the origin of the system. We con-
sider Newtonian models, i.e. not relativistic, thus we assume that the black hole
potential is Keplerian ∝ 1/r. Therefore the black hole produces a gravitational
potential

ΦBH = −GMBH

ar
, (5.1)

where we recall that r is in unit of the reference length scale a. We define the
normalized black hole mass

µBH ≡ MBH

4πρ0a3
, (5.2)

where ρ0 is the reference density. The black hole gravitational potential can be
rewritten in terms of µBH as

ΦBH = −4πGρ0a
2µBH

r
. (5.3)

As well known the gravitational force produced by a point mass is stronger for in-
creasing mass and for decreasing distance. Thus the black hole effects get stronger
for massive black holes and/or near the center. The isopotential surfaces are
spheres. Fig. 5.1 shows the maps, in the meridional plane, of the total gravita-
tional potential Φtot = ΦBH + Φ due to the sum of the black hole potential ΦBH

65
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and the torus potential Φ, for α = 2.1, α = 2.5, α = 3, and α = 4. The presence of
the gravitational field of the black hole makes the contours nearly circular close to
the center. In particular, at the distances considered in the figure all the contours
for the system with α = 4 are nearly circular and this holds also for the cases with
α = 4.5 and α = 4.9 not shown in the figure.

We, finally, note that, in the presence of both the torus self-gravity and of the
black hole potential, the squared circular velocity is

v2c =
∂Φtot

∂R

∣∣∣∣
z=0

= 4πGρ0a
2

(
µBH

r
+

−α2 + 9α− 16

(7− α)(5− α)(α− 2)
R4−α

)
. (5.4)

In the absence of the black hole (µBH = 0), we have found that the squared circular
velocity is negative, and thus circular orbits do not exist, for α < 2.44 (sec. 3.4).
Since the term µBH/r is always positive, we note that v2c in the presence of the
black hole (eq. 5.4) can be positive also for α < 2.44 as long as

µBH

r
>

∣∣∣∣
−α2 + 9α− 16

(7− α)(5− α)(α− 2)
R4−α

∣∣∣∣.

5.2 Linearity of stationary fluid dynamics equa-
tion and superposition principle

The stationary fluid dynamics equations are linear, thus we can apply the superpo-
sition principle. In equations 4.3 and 4.4, we replace the self-gravitating potential
Φ, with the total gravitational potential due to the sum of the gas gravitational
potential and the black hole gravitational potential Φtot = Φ+ ΦBH.

The R and z components of Euler equations that we have to solve are

1

ρ

∂P

∂R
= −∂Φtot

∂R
+ Ω2R, (5.5)

1

ρ

∂P

∂z
= −∂Φtot

∂z
. (5.6)

Using the linearity of the equations we can write P = PBH + Pself and Ω =
ΩBH+Ωself , where the subscript self refers to the quantities due to the self-gravity
of the torus Φ, and the subscript BH refers to the ones due to the gravitational
potential of the black hole ΦBH. This holds also for the system temperature,
T = TBH + Tself .

In principle, there is no problem to derive straightly the physical properties
due to the total gravitational potential by solving the Euler equations 5.5 and
5.6, but it is convenient to obtain the properties separately and then to add them.
Moreover, we have already obtained the physical properties for the self-gravitating
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Figure 5.1: Maps, in the meridional plane, of the total gravitational potential due
to the sum of the tori and the black hole gravitational potential for power-law tori
with α = 2.1, α = 2.5, α = 3 and α = 4 (from top to the bottom) with µBH = 10.
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case in absence of the black hole. Therefore we will compute the characteristics of
the systems under the gravitational force due only to the black hole and then we
will obtain the physical properties due to the total gravitational potential simply
by adding the two components.

We recall that the density distribution of the torus remains unchanged. The
model is composed of two separate systems: a fixed density distribution, i.e. the
power-law torus, plus a central black hole. Apart from the density, the other
physical properties depend on both gravitational fields.

5.3 Power-law tori in equilibrium in the black hole
gravitational potential, Φtot = ΦBH

We now consider the power-law tori density distribution under the influence of
the black hole only. Since the tori potential (eqs. 3.2, 3.3) is not considered, we
do not have to split the α = 4 and α ̸= 4 cases.

The stationary fluid-dynamics equations that we have to solve are

1

ρ

∂PBH

∂R
= −∂ΦBH

∂R
+ Ω2

BHR, (5.7)

1

ρ

∂PBH

∂z
= −∂ΦBH

∂z
. (5.8)

Integrating the Euler equations z component, following the steps of sec. 4.1, we
have to solve

PBH(R, z) =

∫ ∞

z

ρ(R, z′)
∂ΦBH

∂z′
dz′, (5.9)

where ρ is that of eq. 3.1, and the partial derivative w.r.t. z of the black hole
gravitational potential is

∂ΦBH

∂z
= 4πGρ0a

µBHz

r3
. (5.10)

Solving the integral, we obtain

PBH(R, z) =
4πGρ20a

2

(α + 1)

µBHR
2

rα+1
. (5.11)

Substituting the partial derivative of PBH w.r.t. R,

∂PBH

∂R
= −4πGρ20aµBH

(α− 1)R2 + 2z2

(α + 1)rα+3
R, (5.12)

and the partial derivative of the black hole potential w.r.t R,

∂ΦBH

∂R
= 4πGρ0a

µBHR

r3
, (5.13)
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in eq. 5.7 we obtain the angular velocity squared of the torus due to the gravita-
tional force of the black hole

Ω2
BH(R, z) =

8πGρ0a
2

(α + 1)

µBH

R2r
, (5.14)

and thus the azimuthal velocity squared

v2ϕ,BH(r) =
8πGρ0a

2

(α + 1)

µBH

r
. (5.15)

The rotation velocity field of the system is Keplerian, v2ϕ ∝ 1/r, for every value of
α.

Finally we compute the contribute to the temperature given by the black hole
using the equation of state (eq. 4.14). Replacing P with PBH , we obtain

TBH(r) = 4πGρ0a
2µmpk

−1
B

µBH

(α + 1)r
. (5.16)

The temperature and rotational velocity distributions are spherically symmetric,
thus the surfaces of equal velocity and temperature are spheres.

5.4 Power-law tori in equilibrium in the gravita-
tional potential of both gas and black hole,
Φtot = ΦBH + Φ

We are ready to consider the systems under the influence of the total gravita-
tional potential composed of the sum of the torus potential Φ, and the black hole
potential ΦBH,

Φtot = ΦBH + Φ. (5.17)

The physical properties are obtained by adding the terms obtained for Φtot = ΦBH

and Φtot = Φ. We can do this for the linearity of the fluid-dynamics stationary
equations (see sec. 5.2).

As we noted above, despite the expression of the gravitational potential is
different for α = 4 and α ̸= 4, the physical properties obtained for α ̸= 4 reduce
to those with α = 4 substituting the value 4 on α. Therefore, we use equations
4.19 and 4.22-4.24 both for α ̸= 4 and for α = 4 because they hold for the
two cases. Thus, for α in the range 2 < α < 5, the pressure, angular velocity,
rotation velocity and temperature fields in the total gravitational potential are
given, respectively, by

P (R, z) = Φ0ρ0R
22µBHr

α−3 + f(α)−1
[
g(α)R2 + 4(α− 1)z2

]

2(α + 1)r2(α−1)
, (5.18)
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Ω2(R, z) = 2Φ0

µBHr
α−3 + f(α)−1

[
(8− α(5− α))R2 + 4(α− 1)z2

]

(α + 1)R2rα−2
, (5.19)

v2ϕ(R, z) = 2Φ0

µBHr
α−3 + f(α)−1

[
(8− α(5− α))R2 + 4(α− 1)z2

]

(α + 1)rα−2
, (5.20)

and

T (R, z) = Φ0ρ0µmpk
−1
B

2µBHr
α−3 + f(α)−1

[
g(α)R2 + 4(α− 1)z2

]

2(α + 1)rα−2
, (5.21)

where we have defined f(α) ≡ (7−α)(5−α)(α−2)2 and g(α) ≡ 16+α(5−α)(α−4).
The effects of the black hole are tuned by its mass, thus by the parameter µBH.

We can see it by studying the limit cases of these equations. At fixed distance,
if µBH ≪ 1, the equations become the same for the self-gravitating case (chapter
3), whereas if µBH ≫ 1 the effect of the black hole is dominant and the equations
become those of sec. 5.3, where only the black hole potential is present. This is
expected, because considering the total potential Φtot = Φ + ΦBH, in the former
case we have |Φ| ≫ |ΦBH|, whereas in the latter |ΦBH| ≪ |Φ|.

Consider now the radial distance from the center and thus from the black hole.
A generic quantity q, such as the squared rotational velocity and the temperature,
is due to the sum of the two contributes q = qBH + qself . The two terms depend
on the radial distance with these trends:

qBH ∝ 1

r
,

qself ∝
AR2 +Bz2

rα−2
∝ 1

rα−4
.

For every value of α in the range 2 < α < 5, in the limit r ≪ 1, qBH is dominant
and the equations reduce to those of sec. 5.3, where there are only the effects of
the black hole potential. Whereas for high distances from the center r ≫ 1, the
term qBH due to the black hole is negligible and the equations reduce to those of
the self-gravitating case only.

Figs. 5.2 and 5.3 show the rotational velocity and temperature profiles in the
equatorial plane for power-law tori with α = 2.1, α = 3, α = 4, α = 4.5, and
α = 4.9 without a black hole (µBH = 0), and for different values of black hole
masses, µBH = 1, µBH = 10, and µBH = 100. For the cases with α < 4, where in
absence of the black hole the rotational velocity and the temperature increase with
the distance, the black hole reverses this trend near the center and the effects are
stronger with the increase of the black hole mass. The squared rotational velocity
and the temperature decrease with the distance with a Keplerian slope ∝ 1/r.
The region with the Keplerian slope is larger and its normalization is higher for
larger values of µBH. This holds also for α = 4, where the rotational velocity
and the temperature profiles in the equatorial plane in absence of the black hole
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and outside the black hole influence (for µBH > 0) are constant. For α > 4
the rotational velocity and temperature decrease with R both without and with a
central black hole. The normalizations of the profiles are higher for larger values of
µBH. The rotational velocity and the temperature distributions of the torus with
α = 4.9 near the upper limit are little affected for µBH ≲ 1. The temperature
distribution of the torus with α = 2.1 near the lower limit of the range of α is
little affected for µBH ≲ 1.

Figs. 5.4-5.7 show the rotational velocity and the temperature maps for power-
law tori with α = 2.1, α = 3, α = 4 and α = 4.5 for different values of µBH. For
small values of black hole masses we note that at large distances from the center,
the contours tend to those of the self-gravitating case. Close to the center the
contours are modified and are rounder as those due to the black hole gravitational
force only. For the torus with α = 2.1, the influence of the black hole is apparent
only for µBH ≳ 102 (fig. 5.4). The torus with α = 3 (fig. 5.5) shows the presence of
spots horizontally symmetric and rounder in the rotational velocity map (middle
left panels) and vertical and more irregular in the temperature distribution (middle
right panels). In this case with µBH = 100 the black hole is almost dominant in the
region considered in the figure (bottom panels). The contours of the torus with
α = 4 (fig. 5.6) are already modified close to the center for small values of black
hole masses (upper panels). The contours transform from a conical to a peanut
shape (middle panels). In this case for µBH = 10 (lower panels) the black hole is
already dominant in the region considered in figure, the contours are ellipsoid near
circular, flattened horizontally in the rotational velocity maps and vertically in the
temperature map. The contours of equal temperature and rotational velocity of
the tori with α = 4.5 (fig. 5.7) are rounder with the presence of the black hole
with µBH = 1 (middle panels) and are nearly circular for µBH = 10 (lower panels),
for larger values of µBH are circular (not shown in the figure). The contours of
equal temperature and rotational velocity of the torus with α = 4.9, not shown in
the figure, are circular both in the absence and in the presence of a central black
hole.

5.5 Examples in physical units: molecular tori with
central black hole

In this section we present examples in physical units of power-law tori in the
presence of a central black hole. As in sections 3.6 and 4.3 we take as reference
the AGN molecular tori, with the characteristics observed by Combes et al. (2019)
and described in sec. 1.1. First, we note that substituting the reference scale and
density, a = 10 pc and n0 = 104 cm−3 (used also in sec. 3.6 and 4.3) in the
expression of the parameter µBH, and considering, for example, a black hole of
mass MBH = 2 × 107 M⊙, we obtain µBH = 3.26. Therefore the gas self-gravity
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Figure 5.2: Rotational velocity profiles in the equatorial plane for power-law tori
with α = 2.1, α = 3, α = 4 (top), α = 4.5 and α = 4.9 (bottom) with µBH = 0
(solid line), µBH = 1 (dashed line), µBH = 10 (dash-dotted line) and µBH = 100
(dotted line). The profiles with µBH = 100 for the tori with α = 4.5 and α = 4.9
overlap.
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Figure 5.3: Temperature profiles in the equatorial plane for power-law tori with
α = 2.1, α = 3, α = 4 (top), α = 4.5 and α = 4.9 (bottom) with µBH = 0 (solid
line), µBH = 1 (dashed line), µBH = 10 (dash-dotted line) and µBH = 100 (dotted
line). The profiles with µBH = 100 for the tori with α = 4.5 and α = 4.9 overlap.
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Figure 5.4: Rotational velocity maps (left panels) and temperature maps (right
panels) for power-law torus with α = 2.1, in a total potential Φtot = Φ+ΦBH with
µBH = 0 (top), µBH = 100 (middle), and µBH = 1000 (bottom).
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Figure 5.5: Rotational velocity maps (left panels) and temperature maps (right
panels) for power-law torus with α = 3, in a total potential Φtot = Φ+ ΦBH with
µBH = 0, µBH = 1, µBH = 10, and µBH = 100 (from top to bottom).
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Figure 5.6: Rotational velocity maps (left panels) and temperature maps (right
panels) maps for power-law torus with α = 4, in a total potential Φtot = Φ+ΦBH

with µBH = 0, µBH = 0.1, µBH = 1, and µBH = 10 (from top to bottom).
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Figure 5.7: Rotational velocity maps (left panels) and temperature maps (right
panels) maps for power-law torus with α = 4.5, in a total potential Φtot = Φ+ΦBH

with µBH = 0 (top), µBH = 1 (middle), and µBH = 10 (bottom).
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and the black hole gravitational field are comparable.
In equations 3.1 and 5.20 we substitute a reference scale of a = 10 pc and

a reference density of n0 = 104 cm−3 and consider MBH = 2 × 107 M⊙. As
done in section 4.3, we define the gas velocity dispersion as σg =

√
P/ρ. Figs.1

4.10-4.12 show the density, the gravitational potential, the velocity dispersion
and the rotational velocity of the self-gravitating power-law tori without external
potential, for α = 3, α = 4 and α = 4.5, with a black hole of mass 2 × 107 M⊙.
We note that velocity dispersion and rotational velocity are, as found also in sec.
4.3, of the same order of magnitude as those observed by Combes et al. (2019)
and described in sec. 1.1. Considering the figures of sec. 4.3, we note that in
general the effect of adding the black hole with µBH = 3.26 is to increase slightly
σg and vϕ at given position. The morphology of the velocity maps are significantly
different with and without the black hole.

1In the figures of this section, R, x, and z are not normalized to a, but are in physical units.
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Figure 5.8: Top: density (left) and potential (right) maps for the self-gravitating
power-law torus with α = 3. Bottom: velocity dispersion (left) and rotational
velocity (right) maps. The reference scale and density are a = 10 pc and n0 =
104 cm−3, respectively. The black hole has a mass MBH = 2× 107 M⊙.
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Figure 5.9: Top: density (left) and potential (right) maps for the self-gravitating
power-law torus with α = 4. Bottom: velocity dispersion (left) and rotational
velocity (right) maps. The reference scale and density are a = 10 pc and n0 =
104 cm−3, respectively. The black hole has a mass MBH = 2× 107 M⊙.
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Figure 5.10: Top: density (left) and potential (right) maps for the self-gravitating
power-law torus with α = 4.5. Bottom: velocity dispersion (left) and rotational
velocity (right) maps. The reference scale and density are a = 10 pc and n0 =
104 cm−3, respectively. The black hole has a mass MBH = 2× 107 M⊙.



Chapter 6

Stability

In this chapter we study the stability of the models for different equilibrium con-
figurations. First, we study the stability of the power-law tori in equilibrium in
their self-gravity (sec. 6.1), then when the power-law tori are in equilibrium with
only the gravitational force of the central black hole (sec. 6.2) and, finally, in the
case that the power-law tori are under the force of their self-gravity and the black
hole potential (sec. 6.3).

Here we consider the case in which the fluid consists of an ideal gas with
adiabatic index γ. We study the stability trough the application of the Solberg-
Høiland criterion (see sec. 2.4). From the requirement that ω2 > 0 (eq. 2.44),
one obtains the conditions for stability

1

γρ

(
∂P

∂R

∂σ

∂R
+

∂P

∂z

∂σ

∂z

)
− 1

R3

∂Ω2R4

∂R
< 0 (6.1)

and
∂P

∂z

[
∂Ω2R4

∂R

∂σ

∂z
− ∂Ω2R4

∂z

∂σ

∂R

]
< 0. (6.2)

In the stability conditions the pressure P , squared angular momentum Ω2R4,
and the entropy σ gradients are present. We have already obtained the pressure
P and the angular velocity Ω for all the systems, thus we have to evaluate the
normalized entropy σ, which depends on the adiabatic index of the gas γ (see eq.
2.25). We focus on the biatomic γ = 7/5 = 1.4 and monoatomic adiabatic index
γ = 5/3 ≃ 1.67.

With Ai we denote polynomials of α, which appear in the inequalities 6.1 and
6.2. The coefficients of the polynomials depend on γ, so Ai are functions of α and
γ. The polynomials Ai for i = 1, ..., 29 are listed in Appendix A and, except for
those for which we can analytically check the sign, are plotted for α in the range
2 < α < 5, and for γ = 7/5 and γ = 5/3, to study graphically the sign (figs.
A.1-A.4). All these polynomials are positive in the range of α and for the values
of γ considered. Once the values of α and γ are fixed, i.e. the model is specified,
the polynomials Ai are just numerical constants.
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6.1 Stability of self-gravitating power-law tori in
the absence of the central black hole

The normalized entropy distribution of the systems, defined as

σ ≡ ln
P

ργ
, (6.3)

for 2 < α < 5, is

σ = ln

[
g(α)R2 + 4(α− 1)z2

2(α− 1)f(α)R2(γ−1)rα(2−γ)−2

]
. (6.4)

The constants have been included in the additive constant of the entropy. Fig. 6.1
shows the radial profiles of the entropy for the monoatomic and biatomic adiabatic
index. The profiles increase outward for all the α, the increase is stronger for lower
values of α. The increase of the adiabatic index, passing from a biatomic to a
monoatomic gas, makes the increase of the profiles stronger, especially for larger
value of α. As seen in sec. 2.4, the Solberg-Høiland criterion are a generalization
of the Schwarzschild convective instability criterion and the Rayleigh rotational
instability criterion. For the convective instability criterion, in a system where
the pressure decreases outward, the outward increase of the entropy is required
for the stability. The figure 6.2 shows the isoentropy contours of the tori with
α = 2.1, α = 3, α = 4 and α = 4.9. The contours are elongated along the z
axis for small values of α, and they are elongated along the R axis for high values
of α. The entropy increases faster vertically than radially. Considering that the
pressure decreases moving away from the equatorial plane, so ∂P/∂z is negative
when z > 0, this entropy gradient helps the stability of the system, looking at eq.
6.2.

Fig. 6.3 shows the angular momentum squared profiles in the equatorial plane
for different values of α. For every value of α, the angular momentum squared
increases with R in the equatorial plane, with a slope steeper for lower values of α.
The Rayleigh instability criterion requires that the angular momentum squared
has to increase outward for the stability.

Now we apply the Solberg-Høiland criterion to the self-gravitating case without
the presence of the central black hole. Substituting the radial (eq. 4.20) and the
vertical partial derivatives of the pressure, of the entropy, and the radial partial
derivative of the angular momentum, in the first inequality of the Solberg-Høiland
criterion (eq. 6.1), we obtain, after some algebra, the condition for stability

A1R
6 + A2R

4z2 + A3R
2z4 + A4z

6

γR2(α− 1)f(α)
[
g(α)R2 + 4(α− 1)z2

]
rα

> 0, (6.5)

The functions f(α) = (α− 2)2(7−α)(5−α) and g(α) = 16+α(5−α)(α− 4), at
the denominator of eq. 6.5, are positive in the range 2 < α < 5: for the former
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Figure 6.1: Radial entropy profiles for self-gravitating power-law tori without
central black hole with α = 2.1, α = 3, α = 4 (top) , α = 4.5 and α = 4.9
(bottom), for the monoatomic γ = 5/3 (solid line) and the biatomic adiabatic
index γ = 7/5 (dashed line). The α = 2.1 entropy profiles overlap for γ = 7/5
and γ = 5/3.
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Figure 6.3: Radial angular momentum squared profiles for self-gravitating power-
law tori without central black hole with α = 2.1, α = 3, α = 4, α = 4.5 and
α = 4.9.

is easily checked, the latter is shown graphically in fig. A.1 (left upper panel) in
the Appendix A. The R and r coordinates are positive defined and z is squared
at the denominator, thus the denominator of eq. 6.5 is positive. The coefficients
A1-A4 of the coordinates that appear at the numerator of eq. 6.5, functions of α
and γ, are positive for the (α,γ) of interest as shown in the appendix A. Since
all the coefficients Ai for i = 1, .., 4 are positive for every value of α in the range
2 < α < 5 and the γ considered, and the powers of z are all even, the numerator is
also positive. Therefore the first inequality is verified everywhere, for every value
of α in the range 2 < α < 5, both for monoatomic and biatomic gas.

Substituting the vertical partial derivative of the pressure, the radial and verti-
cal partial derivative of the entropy, and of the angular momentum, in the second
inequality of the criterion (eq. 6.2), we obtain the other condition for stability

4R3z2
(h(α)R2 + 4z2

)
(A5R

4 + A6R
2z2 + A7z

4)

(α− 1)(α− 2)f(α)2
[
g(α)R2 + 4(α− 1)z2

]
r3α

> 0 (6.6)

with h(α) = −α2+7α−6. For the considerations reported above, the denominator
of eq. 6.6 is positive. The term in the first parenthesis at the numerator of eq.
6.6 is positive since h(α) is positive for α in the range 2 < α < 5, as plotted in
fig. A.1 (right upper panel) and z is squared. The coefficients A5-A7 in the term
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in the second parenthesis at the numerator of eq. 6.6, which are functions of α
and γ, are positive for the (α,γ) of interest, as shown in Appendix A. Since the
powers of z are all even, the numerator is positive.

The second inequality of the criterion is verified everywhere except for R = 0
and z = 0, where it is not well defined. Along the z axis the density is null, so we
do not care about the sign of eq. 6.6 for R = 0. To evaluate the stability criterion
for z = 0 it is opportune to start directly from the relation dispersion (eq. 2.44).
The squared angular frequency must be positive, so we obtain the condition for
the stability

1

γρ

∂P

∂z

∂σ

∂z
x2+

(
1

R3

∂Ω2R4

∂z
− 1

γρ

(
∂P

∂R

∂σ

∂z
−∂P

∂z

∂σ

∂R

))
x+

1

γρ

∂P

∂R

∂σ

∂R
− 1

R3

∂Ω2R4

∂R
< 0

(6.7)
Because every vertical partial derivative evaluated at z = 0 is null, eq. 6.7 along
the R axis is

1

γρ

(
∂P

∂R

∂σ

∂R

)∣∣∣∣
z=0

− 1

R3

∂Ω2R4

∂R

∣∣∣∣
z=0

< 0. (6.8)

Substituting the radial partial derivative of the pressure, of the entropy and of the
squared angular momentum evaluated at z = 0 in eq. 6.8 we obtain the condition
for stability

A8

γ(α− 1)f(α)Rα−2
> 0. (6.9)

This inequality is verified since the denominator is positive and the term A8 is
positive.

Therefore we have proved that the power-law tori in equilibrium in their gas
self-gravity are linearly stable everywhere, for every value of α in the range 2 <
α < 5, for the biatomic and monoatomic adiabatic index γ = 7/5 and γ = 5/3.

6.2 Stability of power-law tori in equilibrium in
the black hole gravitational potential

In this section we apply the Solberg-Høiland criterion to the system composed by
the power-law tori and the central black hole in equilibrium in the gravitational
potential of the black hole only.

The normalized entropy for this is system is

σBH = ln

(
µBH

rα(γ−1)−1R2(1−γ)

α + 1

)
. (6.10)

The other constants are included in the additive constant of the entropy. Fig. 6.4
shows the radial profiles of the entropy for different values of α, for a monoatomic
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and biatomic gas, for a black hole with µBH = 1. For lower values of α the entropy
decreases with R, which, as we will see, causes instability. For larger values of α
the entropy increases very slowly with α for a biatomic adiabatic index, while for
a monoatomic gas the entropy increases stronger radially. In particular cases, e.g.
for α = 4 in figure, the increase of the adiabatic index changes the slope of the
profile: the entropy for α = 4 decreases with R for γ = 7/5 and increases with R
for γ = 5/3.

Fig. 6.5 shows the entropy maps for different values of α, for γ = 5/3, for a
black hole with µBH = 1. For larger values of α the contours remain almost the
same compared to the systems entropy with self-gravity only, the shape is more
flattened horizontally. For lower values of α the contours of equal entropy change
the shape, which contributes to the instability for lower values of α. Since the
velocity field in this case is Keplerian v2ϕ ∝ 1/r, the angular momentum squared
increases outward for every value of α.

Substituting the radial and vertical partial derivatives of the pressure

∂PBH

∂R
= −4πGρ20aµBHR

(α− 1)R2 − 2z2

(α + 1)rα+3
, (6.11)

∂PBH

∂z
= −4πGρ20a

µBHR
2z

rα+3
, (6.12)

the radial and vertical partial derivatives of the normalized entropy

∂σBH

∂R
= −2(γ − 1)

R
− R((1− γ)α + 1)

r2
, (6.13)

∂σBH

∂z
= −z

(1− γ)α + 1

r2
, (6.14)

and the radial partial derivative of the angular momentum squared

∂Ω2
BHR

4

∂R
= 2µBHR

R2 + 2z2

(α + 1)r3
, (6.15)

in the first inequality of the Solberg-Høiland criterion (eq. 6.1), we obtain the
first condition for stability

µBH
A9R

2 + 4(2γ − 1)z2

γ(α + 1)R2r3
> 0. (6.16)

The denominator of the fraction of eq. 6.16 is positive, the numerator is positive
since the coefficient of z2 is positive for the γ considered, and A9 is positive for the
values (α, γ) of interest as shown in Appendix A. Therefore, the inequality 6.16
is satisfied everywhere for every values of α in the range 2 < α < 5, for γ = 7/5
and γ = 5/3.
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Figure 6.4: Radial entropy profiles for power-law tori in equilibrium in the black
hole gravitational potential only, with α = 2.1, α = 3, α = 4 (top) , α = 4.5
and α = 4.9 (bottom), for the monoatomic γ = 5/3 (solid line) and the biatomic
adiabatic index γ = 7/5 (dashed line), with µBH = 1.
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Substituting eqs. 6.12-6.15 and the vertical partial derivative of the angular
momentum squared

∂Ω2
BHR

4

∂z
= −2µBH

R2z

(α + 1)r3
, (6.17)

in the second inequality of the Solberg-Høiland criterion (eq. 6.2), we obtain the
second condition for stability

4µBHR
3z2

(γ − 1)α− γ

(α + 1)rα+6
> 0. (6.18)

The denominator in eq. 6.18 is positive, the numerator is positive for

α >
γ

γ − 1
. (6.19)

Thus, for the power-law tori in equilibrium in the black hole gravitational potential
the stability is not guaranteed for every value of α in the range 2 < α < 5, but
only for α that satisfies the condition 6.19 dependent on γ. Substituting γ = 7/5
in 6.19 we find that the molecular biatomic gas tori are stable for α > 3.5, whereas
the tori composed of monoatomic gas are stable for α > 2.5. The increase of the
adiabatic index helps the stability of the systems.

Eq. 6.18 is not well defined at z = 0 and R = 0. As seen in Section 6.1,
we need to care only of the behaviour along the radial axis. Starting from the
dispersion relation, we have found the condition to check the stability along the
R axis (eq. 6.8). Substituting eqs. 6.11, 6.13 and 6.15 evaluated in z = 0 in eq.
6.8, we obtain the condition for stability

µBH
A9

γ(α + 1)R3
> 0. (6.20)

The fraction of eq. 6.20 is positive, thus along the R axis the systems are stable.
In conclusion, we proved in this section that the tori in equilibrium in the grav-

itational potential of the black hole are everywhere stable for α that satisfies the
condition 6.19 on the adiabatic index γ. When α does not satisfied the condition
6.19 the tori are everywhere unstable, except on the R axis. The instability arises
for α < 2.5 for monoatomic gaseous tori and for α < 3.5 for biatomic gaseous tori.

6.3 Stability of power-law tori in equilibrium in
the gravitational potential of both black hole
and gas

In this section we study the stability of the systems composed by the power-law
tori and the central black hole, in equilibrium in the gravitational field due to the
gas self-gravity and the black hole gravitational potential.
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In the previous sections, we found that the self-gravitating power-law tori are
everywhere stable and for every α in the range 2 < α < 5, whereas when they
are in equilibrium only in the black hole gravitational potential the tori can be
unstable for lower values of α dependent on γ. Therefore we could expect that
this instability will be present in the systems that we are going to study and it
will depend on the black holes properties.

As before we start studying the entropy of the systems. The normalized en-
tropy for the power-law tori in equilibrium in the gas self-gravity and the black
hole gravitational potential, in the range 2 < α < 5, is

σ = ln

(
2(α− 1)µBHr

α+3 + (α + 1)f(α)−1
[
g(α)R2 + 4(α− 1)z2

]

2(α2 − 1)R2(γ−1)rα(2−γ)−2

)
. (6.21)

The other constants are included in the additive constant of the entropy. Fig. 6.6
shows the entropy radial profiles for different values of α for the monoatomic and
biatomic γ, for a black hole with µBH = 10. The entropy profiles for lower values
of α increase outward for large distances, while close to the center the entropy
profiles change their slope, i.e. they decrease with R. The value of γ modifies the
slope close to the center, the entropy for α = 4 decreases with R for γ = 7/5 and
increases with R for γ = 5/3 (see also fig. 6.4). The stronger is the gravitational
field of the black hole, i.e. larger µBH, the steeper is the slope close to the center
(not shown in figure). For larger values of α the increase with R of the entropy
holds also close to the center, but the slope is flatter. Looking at these profiles
we expect that for lower values of α and close to the center, the systems might be
unstable. Fig. 6.7 shows the entropy maps in the meridional plane, the contours
of equal entropy remain almost the same compared to the self-gravitating tori for
larger values of α. For lower values of α there is a change in the shape of the
contours close to the center.

Fig. 6.8 shows the angular momentum squared profiles in the equatorial plane
for different values of α, for µBH = 1. For every value of α, the angular momentum
squared increases with R in the equatorial plane, with nearly the same slope close
to the black hole and then with a slope steeper for lower values of α.

Substituting the radial and vertical partial derivatives of the pressure and the
entropy, and the radial partial derivative of the angular momentum squared in eq.
6.1, we obtain the first condition for stability

c1(R, z)µ2
BH + c2(R, z)µBH + c3(R, z)

γ(α2 − 1)

[
2(α− 1)f(α)µBHrα−3 + (α + 1)

[
g(α)R2 + 4(α− 1)z2

]]
R2rα+2

> 0,

(6.22)
with

c1(R, z) = 2(α− 1)2f(α)r2(α−3)
[
A9R

4 + A11R
2z2 + 4(2γ − 1)z4 + A12r

2α+3R2z2
]
,
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Figure 6.6: Radial entropy profiles for power-law tori in equilibrium in the gas
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Figure 6.8: Radial angular momentum squared profiles for self-gravitating power-
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c2(R, z) = (α2 − 1)rα−3

[
A12R

6 + A13R
4z2 + A14R

2z4 + (α− 1)A4z
6+

+ 5f(α)(A15R
2 + A16z

2)R2z2r2α+3

]
,

and

c3(R, z) =(α + 1)2f(α)−1
[
A17R

8 + A18R
6z4 + A19R

4z4 + A20R
2z6 + A4z

8
]
+

+ 5(α + 1)2(α− 1)
[
h(α)R2 + z2

][
A21R

2 + A22z
2
]
R2z2r2α+3.

In the numerator of eq. 6.22 there are coefficients ci(R, z) of powers of the black
hole mass parameter µBH that depend on the R and z coordinates. The coefficients
of the coordinates Ai, which appear in the functions ci(R, z), depend on the values
of α and γ. We denote with ci(R, z) functions that depend on the coordinates,
which can depend also on α and γ, recalling that choosing the model implies the
choice of α and γ, and so the polynomials Ai are constants and the functions
ci(R, z) depend only on R and z.

The coefficients Ai for i = 10, .., 29 are positive for every value of α in the
range considered and the γ values of interest, and we recall that the functions
f(α), g(α) and h(α) are positive in the same range of α. Looking at the functions
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c1(R, z), c2(R, z) and c3(R, z), we see that the powers of z are all even, and, since
the coefficients Ai are positive, the functions ci(R, z) are positive for every R and
z, for α in the range 2 < α < 5. Therefore the numerator of eq. 6.22 is positive.
The denominator of eq. 6.22 is positive, because all the coefficients of R, z and r
are positive, and z appears only squared. Thus the first inequality of the criterion
is satisfied everywhere, for every value of α in the range 2 < α < 5, for the
biatomic and monoatomic adiabatic index.

Substituting the vertical partial derivative of the pressure and the radial and
vertical partial derivatives of the entropy and of the angular momentum squared
in eq. 6.2, we obtain the other condition for stability

20R3z2
c4(R, z)µ3

BH + c5(R, z)µ2
BH + c6(R, z)µBH + c7(R, z)

(α2 − 1)

[
2(α− 1)µBHrα−3 + (α + 1)

[
g(α)R2 + 4(α− 1)z2

]] > 0, (6.23)

with

c4(R, z) = 2(α− 2)f(α)
[
(α− 1)γ − α

]
r2(α−3),

c5(R, z) = (α− 2)
[
A23R

2 + A24z
2
]
rα−3,

c6(R, z) = (α− 2)−1
[
A25R

4 + A26R
2z2 + A27z

4
]
,

and

c7(R, z) = (α + 1)2f(α)−1
[
h(α)R2 + 4z2

][
A29R

4 + A30R
2z2 + A7z

4
]
r3−α.

Also here functions of the coordinates that multiply powers of µBH appear at the
numerator. The denominator of eq. 6.23 is positive because the coefficients of R,
r and z are positive in the range 2 < α < 5, and z is squared. The polynomials
of α and γ that multiply the coordinates, Ai for i = 23, .., 29, are positive in the
range 2 < α < 5 and for the γ of interest. The functions ci(R, z) for i = 5, .., 7 are
functions of R, r and even powers of z thus they are positive everywhere. Therefore
without considering the first term at the numerator c4(R, z)µ3

BH, the inequality
6.23 is verified. We now study the sign of c4(R, z). c4(R, z) is a function of r and
the multiplicative coefficient is positive for

α >
γ

γ − 1
, (6.24)

condition that we have already found in the systems in equilibrium in the black
hole potential only (eq. 6.19). It follows that c4(R, z) is negative for α < 2.5 for
a monoatomic gas with γ = 5/3 and it is negative for α < 3.5 for a biatomic gas
with γ = 7/5. Thus, in these cases, the systems are unstable when

|c4(R, z)|µ3
BH > c5(R, z)µ2

BH + c6(R, z)µBH + c7(R, z). (6.25)
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Considering the case when c4(R, z) is negative, the first requirement for the in-
stability, at fixed distance, is that the black hole is massive, in fact since c4(R, z)
multiplies the third power of µBH, if µBH is small the term that can be reason of
instability is smaller than the other linear terms of µBH and the inequality 6.23
for the stability is satisfied.

The other property to take in account is the radial distance r from the center,
i.e. from the black hole. We consider the radial distance dependence of the terms
that appear at the numerator and at the denominator of eq. 6.22. Considering
that the terms ∝ (R2 + z2) = r2, we obtain

Ar2(α−3)µ3
BH +Br2(α−3)µ2

BH + Cr4µBH +Dr6(3−α)

Erα−3µBH + Fr2
> 0. (6.26)

The only term that can be negative is A. For α ≲ 3.5 we get

Arµ3
BH +Brµ2

BH + Cr4µBH +Dr−3

Er
1
2µBH + Fr2

> 0. (6.27)

whereas for α ≲ 2.5 we get

Ar−1µ3
BH +Br−1µ2

BH + Cr4µBH +Dr3

Er−
1
2µBH + Fr2

> 0. (6.28)

We note that for r → 0 the term c4(R, z)µ3
BH that can cause instability (see eq.

6.25) is dominant because its dependence with r is linear. So the instability can
be present close to the center and not at larger radii.

Equation 6.23 is not well defined on the R axis, thus we have to use the
equation 6.8 derived from the dispersion relation. Substituting the radial partial
derivative of the pressure, the normalized entropy and the angular momentum
evaluated at z = 0, we obtain the condition for stability

c8(R)µ2
BH + c9(R)µBH + c10(R)

3γ(α2 − 1)f(α)
[
2(α− 1)f(α)µBHRα−3 + (α + 1)g(α)R2

] > 0, (6.29)

with

c8(R) = 2(α− 1)2f(α)2A30R
2(α−3),

c9(R) = (α2 − 1)A31R
α−1,

c10(R) = (α + 1)2g(α)A32.

Equation 6.29 has the same form as equation 6.22, but now the coefficients of the
powers of µBH are functions of the R coordinate only, because we have imposed
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that z = 0. The denominator is positive because f(α) and g(α) are positive
for α in tha range 2 < α < 5. All the functions ci(R) at the numerator are
positive, because the polynomials of α and γ Ai are positive for the values of
(α, γ) considered, as shown graphically in Appendix A. Thus eq. 6.29 is satisfied
and the systems are stable along the R axis.

In conclusion we have shown that the systems composed of the power-law tori
and the central black hole in equilibrium in the gravitational potentials of both
the components are everywhere stable according to the Solberg-Høiland criterion,
thus only for linear axysimmetric perturbations, for the values of α that satisfies
the condition 6.19 dependent on γ. In the cases in which the condition 6.19 is not
satisfied the systems can experience instability especially close to the center, and
the region of instability is larger for more massive black holes.

We could speculate that these central instabilities can produce turbulence that
could drive the inflow of the gas to the center via turbulent viscosity. For example,
considering models of obscuring molecular tori in AGNs, the instabilities could
cause inflow of gas that fuels the accretion disc around the black hole. But it is also
possible that the instabilities could produce convective motions without producing
significant inflows. The behaviour of the central regions of the tori under the
instability should be studied with hydro-dynamical simulations. Running hydro-
dynamical simulations one could check the stability also against non-axisymmetric
perturbations and study the behaviour of the gas under instability in the central
regions of the systems.



Chapter 7

Stability of weakly magnetized tori

In this chapter we consider the possible application of our models to system com-
posed, for simplicity, of plasma, in the assumptions that the plasma is permeated
by a weak magnetic field, i.e. the plasma has a high β parameter (see sec. 2.5).

The condition of stability for plasma permeated by a weak magnetic field is
different from the Solberg-Høiland stability criterion. As we noted in sec. 2.5, for
a high β plasma the unperturbed system satisfies the unmagnetized hydrodynamic
equations, but the MHD equations must be used when the effect of perturbations
is studied.

As the Solberg-Høiland stability criterion, the generalized magnetic criterion
of stability that we are going to apply (Balbus, 1995) considers the response of
the system to axisymmetric linear perturbations. In practice, in the presence of a
weak magnetic field, the criterion of stability is the same as the Solberg-Høiland
criterion, except for replacing the angular momentum with the angular velocity.
So for the stability of a plasma the gradient of the angular velocity is important,
rather than that of the angular momentum.1 For many systems this condition
is too restrictive, so they are unstable when permeated by a weak magnetic field
and, as we will see, also the models under consideration are unstable when they
are permeated by a weak magnetic field. We recall that the condition for stability
does not hold for strong magnetic fields because the unperturbed systems are
stationary only in the absence of strong magnetic fields.

Since we are dealing with a plasma, in this section, we consider the monoatomic
adiabatic index γ = 5/3.

The dispersion relation for a weakly magnetized rotating, stratified fluid is

ω2 = −R

(
x
∂Ω2

∂R
− ∂Ω2

∂z

)
− 3

5ρ

(
x
∂P

∂z
− ∂P

∂R

)(
x
∂σ

∂z
− ∂σ

∂R

)
. (7.1)

1We recall that also for thin discs the magneto-rotational instability derives from a condition
on the angular velocity. The condition for stability requires that the angular velocity increases
outward (Balbus and Hawley, 1991; Chandrasekhar, 1960)
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As seen in sec. 2.5, the magnetic field does not appear in the dispersion relation,
and thus in the stability condition, for weakly magnetized plasma. Imposing that
ω2 > 0 for stability, we obtain the conditions for generalized magneto rotational
stability for stationary baroclinic systems (Balbus, 1995)

3

5ρ

(
∂P

∂R

∂σ

∂R
+

∂P

∂z

∂σ

∂z

)
−R

∂Ω2

∂R
< 0 (7.2)

and
∂P

∂z

[
∂Ω2

∂R

∂σ

∂z
− ∂Ω2

∂z

∂σ

∂R

]
< 0. (7.3)

As before, in the application of equations 7.2 and 7.3, polynomials of α will
appear. The polynomials are not explicitly functions of γ because we are con-
sidering γ = 5/3. The polynomials are indicated with Bi, and once chosen the
model, so the value of α, they are numerical constants. The polynomials Bi for
i = 1, .., 14 are listed in Appendix B, and they are positive for α in the range
2 < α < 5, as checked graphically.

As usual, we are going to consider first the stability of the systems in equi-
librium in the gas self-gravity (sec. 7.1), then in equilibrium in the black hole
gravitational potential (sec. 7.2) and, finally, we consider the systems in equilib-
rium in both gas self-gravity and black hole potential (sec. 7.3).

7.1 Magnetic stability of self-gravitating power-
law tori without the central black hole

Fig. 7.1 shows the angular velocity profiles in the equatorial plane of the power-
law tori for different values of α. We note that the angular velocity decreases
with R for every values of α, with a slope steeper for larger values of α. We recall
that the magneto-rotational instability criterion requires that the angular velocity
must increase radially (Balbus and Hawley, 1991; Chandrasekhar, 1960).

Substituting the radial and vertical partial derivatives of the pressure and of
the normalized entropy and the radial partial derivative of the squared angular
velocity in eq. 7.2, we obtain the condition for stability

B1R
6 +B2R

4z2 +B3R
2z4 + 96(α− 1)2z6

5(α− 1)f(α)
[
g(α)R2 + 4(α− 1)z2

]
R2rα

< 0. (7.4)

The fraction in eq. 7.4 is function of R, r and even powers of z, all the coefficients
of the coordinates (Bi and the others), functions of α, are positive in the range of
α considered, as shown in Appendix B, or easily checked analytically. Thus the
fraction in eq. 7.4 is positive and the first inequality is not satisfied everywhere,
for every values of α in the range 2 < α < 5.
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Figure 7.1: Radial angular velocity squared profiles for self-gravitating power-law
tori without a central black hole, for α = 2.1, α = 3, α = 4, α = 4.5 and α = 4.9.

Substituting the radial and vertical partial derivative of the angular momen-
tum and of the normalized entropy and the vertical partial derivative of the pres-
sure in eq. 7.3, we obtain the second condition for stability

4z2
[
(α− 1)(6− α)R2 + 4z2

][
B4R

4 +B5R
2z2 + 8B6z

4
]

3(α− 1)(α− 2)−1f(α)2
[
g(α)R2 + 4(α− 1)z2

]
R2r3α

< 0. (7.5)

As before, the fraction in eq. 7.5 is function of R, r and even powers of z. All
the coefficients of the coordinates, functions of α, are positive in the range of α
considered 2 < α < 5. The sign of some of them is easily checked analytically,
while the polynomials Bi are plotted in Appendix B. Thus the fraction in eq. 7.4
is positive. Also the second inequality is not satisfied everywhere, for every values
of α in the range 2 < α < 5, except for z = 0 that it is not well defined.

As usual to consider the behaviour of the systems on the R axis we start from
the dispersion relation (eq. 7.1) and imposing that ω2 has to be positive we get

3

5ρ

∂P

∂z

∂σ

∂z
x2+

[
R
∂Ω2

∂z
− 3

5ρ

(
∂P

∂R

∂σ

∂z
− ∂P

∂z

∂σ

∂R

)]
x+

3

5ρ

∂P

∂R

∂σ

∂R
−R

∂Ω2

∂R
< 0. (7.6)

Evaluating it at z = 0, where all the vertical partial derivatives get null, we obtain

3

5ρ

(
∂P

∂R

∂σ

∂R

)∣∣∣∣
z=0

−R
∂Ω2

∂R

∣∣∣∣
z=0

< 0. (7.7)
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Substituting the radial partial derivative of the angular momentum, of the nor-
malized entropy and of the pressure evaluated at z = 0 in eq. 7.7, we obtain the
condition for stability

B1g(α)
−1

5(α− 1)Rα−2
< 0. (7.8)

Since the term B1 is positive for every value of α in the range 2 < α < 5, this last
condition is not verified and the systems are not stable along the R axis.

In conclusion we have proved that the power-law tori in equilibrium in the
gas self-gravity, permeated by a weak magnetic filed are unstable everywhere, for
every value of α in the range 2 < α < 5.

7.2 Magnetic stability of power-law tori in equilib-
rium in the black hole gravitational potential

We consider here the magnetic stability criterion, in the case which the power-law
tori are in equilibrium in the black hole gravitational potential. The rotational
velocity in this case is Keplerian, v2ϕ ∝ 1/r, thus the angular velocity decreases
in the equatorial for every value of α. Substituting the radial and vertical partial
derivatives of the pressure, of the normalized entropy and of the angular velocity
squared in eqs. 7.2 and 7.3, we obtain the conditions for stability

µBH
(B7R

2 + 4z2)

5(α + 1)R2r3
< 0 (7.9)

and
4µ2

BHz
2 (2α− 1)

3(α + 1)Rrα+6
< 0. (7.10)

As before the terms that appear in eqs. 7.9, 7.10 are positive. In the numerator
of eq. 7.9 there are functions of R and z2 and the coefficients that multiply the
coordinates are positive. The term in the numerator of eq. 7.10 is positive for
every α in the range 2 < α < 5, and the fraction multiplies z2. The denominator
of eqs. 7.9, 7.10 are both positive, because they are functions of R and r, and
the multiplicative coefficients are positive. Therefore eqs. 7.9 and 7.10 are not
satisfied everywhere, for every value of α in the range 2 < α < 5, except for the
latter equation along the z axis, where it is not well defined.

To study the stability along the R axis, we have to use the condition for
stability found at z = 0 (eq. 7.7). Substituting in eq. 7.7 the physical properties
gradients of the systems in equilibrium in the black hole gravitational potential,
we get the following condition for stability

B7µBH

5(α + 1)R3
< 0. (7.11)
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Since the term B7 and the coefficient at the denominator are positive, the inequal-
ity 7.11 is not satisfied and the systems are unstable also along the R axis.

In conclusion, the power-law tori weakly magnetized in equilibrium in the
black hole potential are unstable everywhere, for every value of α in the range
2 < α < 5.

7.3 Magnetic stability of power-law tori in equi-
librium in the gravitational potential of both
black hole and gas

In this section we study the stability of weakly magnetized power-law tori with a
central black hole in equilibrium in the gas self-gravity and the black hole grav-
itational potential. Fig. 7.2 shows the angular velocity profiles in the equatorial
plane of the power-law tori with a central black hole with µBH = 1, for different
values of α. We note that the angular velocity decreases with R for every values
of α, with nearly the same slopes for all the profiles close to the center (i.e. in
the region of the black hole influence) and then with a different slope steeper for
larger values of α, same as fig. 7.1.
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Figure 7.2: Radial angular velocity squared profiles for self-gravitating power-law
tori with a central black hole with µBH = 1, for α = 2.1, α = 3, α = 4, α = 4.5
and α = 4.9.
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Substituting the radial and vertical partial derivatives of the pressure, of the
normalized entropy and of the squared angular velocity in equations 7.2 and 7.3,
we obtain the following conditions for stability:

d1(R, z)µ2
BH + d2(R, z)µBH + d3(R, z)

5(α2 − 1)

[
2µBHrα−3 + (α + 1)f(α)−1

[
g(α)R2 + 4(α− 1)z2

]]
rα

< 0 (7.12)

and

4z2
[
d4(R, z)µ3

BH + d5(R, z)µ2
BH + d6(R, z)µBH + d4(R, z)

]

3(α + 1)

[
2rα−3µBH + 3(α + 1)f(α)−1

[
g(α)R2 + 4(α− 1)z2

]]
Rr3α

< 0, (7.13)

with

d1(R, z) = 2
[
B7R

2 + 12z2
]
r2(α−3),

d2(R, z) = (α + 1)
[
B8R

4 +B9R
2z2 + 96(α− 1)z4

]
rα−3,

d3(R, z) = (α + 1)2f(α)−1
[
B1R

6 +B2R
4z2 + 8(α− 1)B3R

2z4 + 96(α− 1)2z6
]
,

d4(R, z) = 2(2α− 1)r3(α−3),

d5(R, z) = f(α)−1(α− 1)r2(α−3)
[
B10R

2 +B11z
2
]
,

d6(R, z) = f(α)−2(α + 1)rα−3
[
B12R

4 +B13R
2z2 + 8(7α− 8)(α− 1)2(α + 1)z4

]
,

and

d7(R, z) = (α− 1)(α− 2)(α + 1)2f(α)−3
[
B4R

4 +B5R
2z2 +B6z

4
]
.

Once again in the conditions for stability for the systems in equilibrium in the
gas self-gravity and the black hole potential, powers of the black hole mass param-
eter µBH appear. The coefficients that multiply µBH, indicated with di(R, z) are
functions of the R and z coordinates. The coordinates themselves are multiplied
by the coefficients Bi, that are functions of α only, and are listed in Appendix B
and studied graphically (figs. B.1-B.2). We recall that all the polynomials Bi are
positive for α in the range 2 < α < 5, and that once chosen the model, i.e. the
value of α, these polynomials are numerical constants. For the other coefficients
of the coordinates that appear in di(R, z), explicitally written, the study of the
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sign is easy to check analytically in the range of α considered, and they are not
plotted.

Therefore we note that all the functions di(R, z) for i = 1, .., 7 are positive
everywhere because the coefficients of the coordinates are positive and the powers
of z that appear in them are even. Thus, since the parameter µBH is positive
defined, the numerators of eqs. 7.12 and 7.13 are positive. The denominators of
eqs. 7.12, 7.13 are positive, so the conditions for stability in the presence of a
weak magnetic field are everywhere not satisfied, except in the z axis, where the
second equation is not well defined. As usual, we consider the condition obtained
by considering the dispersion relation at z = 0 (eq. 7.7). Substituting the radial
partial derivatives of the pressure, of the normalized entropy and of the angular
velocity squared in eq. 7.7, we obtain the condition for stability

d1(R)µ2
BH + d2(R)µBH + d3(R)

5(α2 − 1)f(α)
[
2(α− 1)f(α)µBHRα−3 + (α + 1)g(α)R2

]
Rα

< 0, (7.14)

with

d1(R) = 2(α− 1)2f(α)B7R
2(α−3),

d2(R) = (α− 1)(α2 − 1)f(α)2B8R
α−1,

d3(R) = (α + 1)2B1.

For the considerations already noted, the denominator of eq. 7.14 is positive.
At the numerator appear functions of R coordinate that multiply powers of µBH.
The functions di(R) are positive for every R in the α range considered, therefore
the numerator of eq. 7.14 is positive. The inequality for stability 7.14 is not
satisfied along the R axis for every α in the range 2 < α < 5. Therefore, we have
shown that the power-law tori in equilibrium in the gas self-gravity and the black
hole gravitational potential are unstable everywhere for every value of α in range
2 < α < 5.

In this chapter, we showed that the power-law tori are unstable both in the
self-gravitating case and in the presence of a central black hole, when they are
permeated by a weak magnetic field. This instability is a generalized form of
magneto-rotational instability (Balbus and Hawley, 1991; Chandrasekhar, 1960),
in which the stratification of the fluid is considered. The magneto-rotational
instability appears in many dynamical plasma models. The physical reason of
instability is that the magnetic field tends to force the system to a rigid rotation.
Since the angular velocity, usually, decreases outward, a fluid element in the inner
orbits is accelerated by the magnetic field and, increasing its rotation velocity,
it tends to go inward (Balbus, 1995). The magneto-rotational instability is the
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likely process to drive the accretion flow in thin discs. In the magnetic stability
criterion for baroclinic system, there are also gradients of the pressure and the
entropy. To study the behaviour of the power-law tori under the magnetic in-
stability, running magneto-hydro-dynamics simulations is necessary, corroborated
with further detailed theoretical analysis.



Conclusions and future perspectives

In this final section, we summarize the conclusions and the results obtained in
this work and describe a few future perspective about this study.

The main conclusions about this work are the following:

• We presented models of self-gravitating gaseous tori in the absence and the
presence of a central black hole. We took as starting point the analytic
potential-density pairs presented by Ciotti and Bertin (2005). The models
have power-law density distributions with power-law index α in the range
2 < α < 5. We computed analytically the surface densities of the systems
when projected face-on and edge-on. The edge-on surface density diverge
for tori with α < 3, but we found that these tori have infinite mass so a
truncation radius has to be considered in a possible astrophysical applica-
tion. The edge-on surface density distributions have a peanut shape, that
reflects the toroidal geometry, whereas the contours of equal face-on surface
density are circles. The face-on projected surface density profiles are power
laws, thus without a central depression. We found that for different values
of α the properties of the tori can change significantly. The self-gravitating
tori without the central black hole with α < 2.44 do not admit circular
orbits, but the addition of other components can change this undesirable
property. For instance, with addition of the black hole of sufficiently high
mass circular orbits can exist also for α < 2.44.

• From the integration of the axisymmetric stationary Euler equation we
found the rotation velocity and the temperature distributions for the self-
gravitating power-law tori without external potential. These systems have
baroclinic distributions, with angular velocity that depends on both R and
z. The isorotational surfaces move away from cylinders slightly for α near
the central values in the range 2 < α < 5 and in a marked way for the val-
ues of α near the limits of the range. When the systems are interpreted as
dominated by turbulence, or composed of discrete gas clouds, we found that
the rotational velocity and the velocity dispersion are of the same order of
magnitude: a high velocity dispersion and thus pressure support is expected
to maintain the systems thick.

107



• We computed the physical properties of the power-law tori in the external
potential of the black hole and in equilibrium in the gas self-gravity and the
black hole potential. In the former, we found that the temperature and the
rotational velocity distributions are spherically symmetric. The rotation
velocity has a Keplerian behaviour v2ϕ ∝ 1/r. In the latter we found a
rotation velocity and temperature distributions that are characterised by
a marked axisymmetric distribution at large radii from the center, and a
rounder, nearly spherical distribution close to the center. Of course, the
models are significantly affected by the value of the black hole mass.

• We proved that the self-gravitating power-law tori without external potential
are everywhere stable, for every values of α in the range considered, against
linear axisymmetric perturbations. For some values of α the power-law
tori in equilibrium in the gas and the black hole potentials can experience
instability in the central regions. In particular the condition of stability on
the value of α, which depends only on the value of the adiabatic index γ, is

α >
γ

γ − 1
.

The instability appear mainly in the models with low values of α.

• Finally, we shown that the power-law tori are everywhere unstable , for
every value of α in the range considered, when they are permeated by a
weak magnetic field, both in the presence and in the absence of the black
hole.

The work done in this thesis can be considered a starting point of a more
extended investigation of the properties of power-law tori and their application
to astrophysical systems. A possible future development is extending the models
including also other components. For instance, it would be interesting to consider
the system composed of the torus with the central black hole surrounded by
galactic components such as a spheroid (for instance a singular isothermal sphere)
or a disc (for instance a Kuzmin disc). It is useful to explore whether the models
remain stable with the addition of these components and how the system dynamics
is modified.

Running numerical hydro-dynamic simulations is the way to study the evo-
lution of the systems with the central black hole under instability of the central
regions, to see what kinds of processes this instability drives. Since the Solberg-
Høiland criterion analyses the linear stability to axisymmetric perturbations, hy-
drodynamic simulations will be useful also to study the stability of the unmagne-
tized fluid models against non-linear or non-axisymmetric perturbations. For the
models permeated by a weak magnetic field, magneto-hydro-dynamics numerical
simulations can study the behaviour of the power-law tori under instability with
or without the central black hole.
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Finally, there are the astrophysical applications with fits to observational data.
Through the use of specific tools, like, for example, the Monte Carlo Markov
chains, it will be possible to fit, with these models, observational data of specific
astrophysical objects. In the thesis we showed examples of applications to the
molecular tori of AGN, and from qualitative comparisons we found that the main
properties of the models are similar to those inferred from the observational data.
Fitting the models to the data of AGN central obscurers will show whether these
models can be applied to explain the dynamics of the dusty molecular tori. As far
as we known, these would be the first self-consistent dynamical models applied to
this kind of systems. Moreover, an attempt of data fitting can be done also for the
toroidal accretion discs around the black holes, to explore whether these models
can be applied also to describe the dynamics of these astrophysical objects.
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Appendix A

This Appendix and the next contain the lists and the plots of the polynomials of
α, or also of γ, that appear in the analytic computing of several expressions in
this work. We recall that the power-law density distribution ρ ∝ R2r−α is defined
for α in range 2 < α < 5.

Recurring functions of α are

f(α) = (α− 2)2(5− α)(7− α), (A.1)

g(α) = 16 + α(5− α)(α− 4), (A.2)

h(α) = −α2 + 7α− 6. (A.3)

f(α) is positive in the range 2 < α < 5, as easily to check, the functions g(α) and
h(α) are plotted for α in range 2 < α < 5 in fig. A.1 (upper panels). They are
positive in the α range considered.

In the following, polynomials of α, with coefficients dependent on γ, that
appear in the stability conditions (chap. 6), are listed. For the polynomials A4,
A7 and A11 is easily to check that they are positive for α in 2 < α < 5, for any
γ > 1/2, γ > α/4 (≈ 1.25 for largest α), and γ > 1, respectively. The other
polynomials Ai for i = 1, .., 32, i ̸= 4, i ̸= 7 and i ̸= 11 are plotted in figs. A.1-A.4
for α in range 2 < α < 5, and for biatomic γ = 7/5 and monoatomic adiabatic
index γ = 5/3. As shown in the figures, they are positive for the values of (α, γ)
considered. The polynomials Ai for i = 1, .., 32, are

A1 = g(α)
[
(−α5 + 14α4 − 73α3 + 192α2 − 276α + 192)γ+

+ 2(α5 − 15α4 + 83α3 − 217α2 + 276α− 144)
]
,

A2 = 4
[
(−α6 + 11α5 − 35α4 + 17α3 + 132α2 − 268α + 192)γ+

+ 2(α6 − 14α5 + 71α4 − 168α3 + 178α2 − 48α− 36)
]
,

A3 =16(α− 1)
[
(−α3 + 13α2 − 36α + 40)γ + 2(−4α2 + 7α− 9)

]
,
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A4 =32(α− 1)2(2γ − 1),

A5 =g(α)(α3 − 5α2 + 4α + 12)γ+

+ 2α(α5 − 16α4 + 97α3 − 282α2 + 388α− 204)
]
,

A6 =4(α− 1)2
[
(α− 1)(−α3 + 13α2 − 36α− 44)γ − 4α

]
,

A7 =8(4γ − α)(α− 1)2,

A8 =(−α5 + 14α4 − 73α3 + 192α2 − 276α + 192)γ − 2g(α)(α− 3)2,

A9 =(α2 − 3α + 4)γ − (α− 1)2,

A10 =(3− α)γ + (α− 1)2,

A11 =5(α + 1)f(α)(α(γ − 1) + 1),

A12 =(−3α5 + 40α4 − 197α3 + 496α2 − 680α + 448)γ − 4g(α)(α− 1)(α− 3),

A13 = 4
[
(−3α4 + 33α3 − 131α2 + 233α− 88)γ − 4(α− 2)(5− α)(α2 − 3α + 3)

]
,

A14 = 16
[
(5− α)(α2 − 2α + 3)γ + 4α3 − 6α2 + 12α− 11

]
,

A15 =α(−3α4 + 28α3 − 69α2 + 60α− 8)γ − 4(α− 1)2(α + 1)(α− 2)(6− α),

A16 = 4(α− 1)
[
(3α(α− 1))γ − 4(α + 1)(α− 2)

]
,

A17 = g(α)
[
(−α5 + 14α4 − 73α3 + 192α2 − 276α + 192)γ − 2(α− 3)2

]
,

A18 = 4
[
(−α7 + 19α6 − 148α5 + 627α4 − 1061α3 + 2524α2 − 2284α + 960)γ+

− 2g(α)(α− 3)(α3 − 7α2 + 14α− 12)
]
,

A19 =(α6 − 12α5 + 49α4 − 82α3 + 68α2 − 8α + 32)γ+

+ 2(−α6 + 12α5 − 51α4 + 102α3 − 118α2 + 88α− 48),
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A20 = 32(α− 1)
[
(−α3 + 8α2 − 17α + 18)γ + α3 − 7α2 + 14α− 12

]
,

A21 = αg(α)γ − 2(α− 1)2(α− 2)(6− α),

A22 = 4(α− 1)((γ − 2)α + 4),

A23 =(−3α5 + 33α4 − 105α3 + 127α2 − 36α + 32)γ+

+ 2α(−2α4 + 21α3 − 58α2 + 37α + 34),

A24 = +4
[
(3α2 − 2α + 7)γ − 2α(2α + 1)

]
,

A25 =(α8 − 23α7 + 201α6 − 869α5 + 2030α4 − 2500α3 + 1416α2 − 256α + 96)γ+

− 2α(α7 − 23α6 + 205α5 − 917α4 − 2230α3 − 2896α2 + 1780α− 348),

A26 =(α5 + 10α4 − 25α3 + 22α2 + 6α− 4)γ+

+ 2α(α4 − 12α3 + 46α2 − 80α + 53),

A27 = 8(α− 1)2
[
2(α2 + 3α− 4)γ − α(5α− 7)

]
,

A28 =(−α6 + 14α5 − 69α4 + 140α3 − 52α2 − 176α + 192)γ+

+ 2α(α5 − 16α4 + 97α3 − 282α2 + 388α− 204),

A29 = 4(α− 1)2
[
(−α3 + 13α2 − 36α+44)γ − 4α(α− 1)

]
,

A30 =6γ + (2α− 7)(α− 1),

A31 = 6γ(−3α3 + 31α2 − 96α + 112) + g(α)(3α2 − 17α + 34),

A32 = 6(−α3 + 11α2 − 38α + 48)γ + g(α)(α− 3)(8− α).
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Figure A.1: Upper panels: the polynomials of α, g(α) = 16+α(5−α)(4−α) (left)
and h(α) = −α2+7α− 6 (right) for the values of α in the range 2 < α < 5. From
the middle-up to the lower panels: the polynomials A1-A3, A5, A6 and A8 for
biatomic and monoatomic adiabatic index, γ = 7/5 and γ = 5/3, for the values
of α in range 2 < α < 5.
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Figure A.2: The polynomials A9, A10, and A12-A17 for biatomic and monoatomic
adiabatic index, γ = 7/5 and γ = 5/3, for the values of α in the range 2 < α < 5.
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Figure A.3: The polynomials A18-A25, for biatomic and monoatomic adiabatic
index, γ = 7/5 and γ = 5/3, for the values of α in the range 2 < α < 5.
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Figure A.4: The polynomials A26-A32, for biatomic and monoatomic adiabatic
index, γ = 7/5 and γ = 5/3, for the values of α in the range 2 < α < 5.



Appendix B

In the following polynomials of α that appear in chap. 7 are listed. The poly-
nomials Bi for i = 1, .., 13, i ̸= 6 are plotted in figs B.1 and B.2, for α in range
2 < α < 5. From the graphic study we note that all they are positive in the range
of α considered. For the polynomial B6, it is easy to check analytically that it is
positive for α in 2 < α < 5. The polynomials Bi for i = 1, .., 13, are

B1 = g(α)(−α5 + 20α4 − 133α3 + 382α2 − 476α + 224),

B2 = 4(−α6 + 19α5 − 131α4 + 433α3 − 668α2 + 468α−104),

B3 = 32(α− 1)(α2 + 4α− 3),

B4 = α6 − 14α5 + 77α4 − 212α3 + 380α2 − 408α + 192,

B5 = α4 − 12α3 + 55α2 + 80α + 44,

B6 = 8(α− 1)2(α + 4),

B7 = −2α2 + 9α + 23,

B8 = 3α5 − 44α4 + 237α3 − 564α2 + 712α− 384,

B9 = 4(−5α3 + 48α2 − 75α + 40),

B10 = −3α4 + 30α3 − 71α2 + 116α− 32,

B11 = 4(7α2 − 4α + 7),

B12 = −α8 + 21α7 − 187α6 + 879α5 − 2220α4 + 3084α3 − 2208α2 + 568α + 96,

B13 = 4(α− 1)(−α5 + 4α4 + 51α3 − 150α2 + 120α− 8).
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Figure B.1: The polynomials B1-B8, for the values of α in the range 2 < α < 5.
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Figure B.2: The polynomials B9-B15, for the values of α in the range 2 < α < 5.
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