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Abstract

Cosmic voids are vast and underdense regions emerging between the elements of the
cosmic web (i.e. galaxy clusters, filaments and walls) and dominating the large-scale
structure of the Universe in terms of volume. They evolve from the perturbations
of the primordial matter density field towards a mildly nonlinear regime, gradually
becoming less dense and more spherical (Icke, 1984). Analogously to their overdense
counterpart (i.e. galaxy clusters), void number counts and density profiles have
been demonstrated to provide powerful cosmological probes (see Pisani et al., 2019,
and references therein). Indeed, thanks to their low-density nature and they very
large sizes (up to hundreds of megaparsec), voids represent natural laboratories to
test alternative dark energy scenarios, modifications of gravity and the presence of
massive neutrinos (see Contarini et al., 2021, and references therein).

Despite the increasing use of cosmic voids in Cosmology, a commonly accepted
definition for these objects has not yet been reached. For this reason, different void
finding algorithms have been proposed during the years. The latter can be divided
in three main classes, according to the criterion on which they are based: density,
geometry and dynamics (see Colberg et al., 2008, for a cross-comparison). Voids
finder algorithms based on density or geometrical criteria are affected by the shot
noise, i.e. the intrinsic uncertainties arising from the sparsity of the objects used
as tracers of the density field. In recent years, new solutions have been explored
to face these issues. Among these the most interesting is based on the innovative
idea to identify void positions through the dynamics of the mass tracers, without
performing any direct reconstruction of the density field.

The goal of this Thesis is to provide a performing void finder algorithm based on
dynamical criteria. In particular, we have improved and extend the work introduced
by Elyiv et al. (2015), adding the new codes to the CosmoBolognaLib (Marulli et al.,
2016), a large set of free software C++/Python numerical libraries providing an
efficient environment for a large variety of cosmological calculations.

The Back-in-time void finder (BitVF) we present exploits a Lagrangian rep-
resentation of the mass tracers, interpreting their motion as a cosmological fluid.
Tracers are used as test particles and their orbits are reconstructed from their ac-
tual clustered configuration to an homogeneous and isotropic distribution, expected
for the Universe early epoch. The displacement field reconstruction is based on the
Zel’dovich Approximation (Zel’dovich, 1970), which admits the extension of the lin-
ear theory also to perturbations having density contrast bigger than one. With this
method, we exploit the principle of least action to trace the back-in-time evolution
of tracers, approximating their trajectories as rectilinear. Once the displacement
field, Ψ, is reconstructed, the divergence field is computed as Θ = ∇ · Ψ, which
represents the density at each point. Consequently, void centres are identified as



local minima with negative divergence and will correspond to the points from which
mass tracers locally depart with maximum velocity. Then a radius is assigned to
each void as the radius of a sphere having a certain fraction of the Universe mean
density.

In order to extract cosmological information, it is necessary to be able to compare
the sample of detected voids with theoretical predictions. This result is achieved
through a procedure of void sample cleaning, based on three basic steps (Jennings
et al., 2013), in which voids overlapping or having internal densities over a cer-
tain threshold are rejected, moreover voids radii are rescaled to a fixed internal
spherical density contrast. An improved and more stable version of the cleaning
algorithm, based on the work of Ronconi & Marulli (2017), is presented in this The-
sis. The cleaned catalogue emerging from this procedure is then ready to be used
for cosmological analyses, and is especially suited to exploit the void abundance as
cosmological probe.

In this Thesis work we applied the developed void finding algorithm to the
DUSTGRAIN-pathfinder simulations, using different types of mass tracers (dark mat-
ter particles and dark matter haloes), at various redshifts (z = 0, 0.5, 1, 2) and
mass tracer subsample values. From the resulting void samples we computed differ-
ent void statistics, comparing the results to those obtained with VIDE (Sutter et al.,
2014a), currently the most widely used void finder in literature. In particular, void
density profiles and counts have been extensively investigated. BitVF proved to be
able to produce a more reliable void sample, since the statistics that we derived
using this code are more accurate than those obtained with VIDE voids. This is
true in particular when we apply these algorithms to biased tracer distributions.
We demonstrated indeed that only BitVF provides void catalogues whose statistics
can be used to accurately predict the values of σ8 and Ωm, with confidence contours
remarkably tight. The BitVF algorithm is thus a fundamental tool for precision Cos-
mology, particularly in the perspective of future wide-field galaxy surveys like the
ESA Euclid mission (Laureijs et al., 2011), the NASA Nancy Grace Roman Space
Telescope (NGRST, formerly called WFIRST, Green et al. 2012) and the Vera C.
Rubin Observatory (LSST, Collaboration 2012).



Sommario

I vuoti cosmici sono regioni vaste e sottodense che emergono tra gli elementi della
cosiddetta ragnatela cosmica (ovvero gli ammassi di galassie, i filamenti e le dis-
tribuzioni planari galassie) dominando la struttura a grande scala dell’Universo in
termini di volume. I vuoti si evolvono dalle perturbazioni del campo di densità pri-
mordiale della materia verso un regime leggermente non lineare, diventando grad-
ualmente meno densi e più sferici (Icke, 1984). Analogamente alla loro controparte
sovradensa (cioè gli ammassi di galassie), il numero di vuoti e i profili di densità
forniscono potenti probes cosmologiche (vedi Pisani et al. 2019 e riferimenti). In-
fatti, grazie alla loro natura sottodensa e alle loro dimensioni (fino a centinaia di
megaparsec), i vuoti rappresentano laboratori naturali per testare scenari alternativi
di energia oscura, gravità modificata e neutrini massivi (vedi Contarini et al. 2021,
e riferimenti).

Nonostante il crescente utilizzo dei vuoti cosmici in Cosmologia, non si è ancora
giunti a una definizione comunemente accettata di questi oggetti. Per questo mo-
tivo, nel corso degli anni sono stati proposti diversi algoritmi per la ricerca dei vuoti.
Questi ultimi possono essere suddivisi in tre classi principali, a seconda del criterio
su cui si basano: densità, geometria e dinamica (si veda Colberg et al. 2008 per
un confronto diretto tra questi metodi). Gli algoritmi di identificazione dei vuoti
basati su criteri di densità o geometrici risentono del cosidetto shot noise, ovvero
delle incertezze intrinseche derivanti dalla dispersione degli oggetti utilizzati come
traccianti del campo di densità. Per questo negli ultimi anni sono state studiate
nuove soluzioni per far fronte a questi problemi intrinsici. Tra questi il più interes-
sante è basato sull’idea innovativa di identificare le posizioni dei vuoti attraverso la
dinamica dei traccianti, senza effettuare alcuna ricostruzione diretta del campo di
densità.

L’obiettivo di questa Tesi è quello di presentare un algoritmo di ricerca dei
vuoti basato su criteri dinamici, funzionante ed efficiente. In particolare, abbi-
amo migliorato ed esteso il lavoro introdotto da Elyiv et al. (2015), aggiungendo
i nuovi codici alle CosmoBolognaLib (Marulli et al., 2016), un ampio insieme di
librerie C++/Python free software che forniscono un contesto all’avanguardia per
una grande varietà di calcoli cosmologici.

Il void finder che andiamo a presentare, chiamato Back-in-time void finder

(BitVF), sfrutta una rappresentazione lagrangiana dei traccianti di massa, interpre-
tando il loro moto come quello di un fluido cosmologico. I traccianti sono utilizzati
quindi come particelle di prova e le loro orbite sono ricostruite dalla loro attuale con-
figurazione clusterata a una distribuzione omogenea e isotropa, cioè quella prevista
per l’epoca iniziale dell’Universo. La ricostruzione del campo di spostamento si basa
sull’approssimazione di Zel’dovich (Zel’dovich, 1970), che ammette l’estensione della



teoria lineare anche a perturbazioni con contrasto di densità maggiore di uno. Con
questo metodo, sfruttiamo il principio di minima azione per tracciare l’evoluzione
a ritroso nel tempo dei traccianti, approssimando le loro traiettorie come rettilinee.
Una volta ricostruito il campo di spostamento, Ψ, si calcola il campo di divergenza
come Θ = ∇ ·Ψ, rappresentante la densità puntuale. Di conseguenza, i centri dei
vuoti sono identificati come minimi locali con divergenza negativa e corrispondono
ai punti da cui i traccianti fluiscono con la massima velocità, quando considerato
il loro spostamento indietro nel tempo. A questo punto si assegna una dimensione
a ogni vuoto interpretandoli come sfere contenenti una certa frazione della densità
media dell’Universo.

Per estrarre informazioni cosmologiche è necessario poter confrontare il campione
di vuoti individuati con le predizioni teoriche. Questo risultato si ottiene attraverso
una procedura chiamata cleaning, basata su tre passi fondamentali (Jennings et al.,
2013), nei quali vengono eliminati i vuoti sovrapposti tra loro e quelli con densità
superiori a una certa soglia, e vengono inoltre riscalati i vuoti modellandoli come
sfere contenenti uno specifico contrasto di densità. In questa Tesi viene presentata
una versione migliorata e più stabile dell’algoritmo di cleaning, basata sul lavoro di
(Ronconi & Marulli, 2017). Questa procedure consente di costruire un catalogo di
vuoti pronto per essere utilizzato per analisi cosmologiche, particolarmente adatto
per utilizzare l’abbondanza di vuoti come probe cosmologica.

In questi lavoro di Tesi, applichiamo l’algoritmo di identificazione di vuoti che
abbiamo sviluppato alla simulazione DUSTGRAIN-pathfinder, considerando diversi
tipi di traccianti (particelle di materia oscura e aloni di materia oscura), a vari
redshift (z = 0, 0, 5, 1, 2) e diversi valori di sottocampionamento dei traccianti. Le
statistiche dei vuoti risultanti sono state confrontate con quelle ottenute tramite
l’applicazione di VIDE (Sutter et al., 2014a), l’algoritmo di ricerca di vuoti più dif-
fuso in letteratura. In particolare, sono stati confrontati i profili di densità, i conteggi
e la capacità di vincolare i parametri cosmologici dei vuoti identificati con questi
due algoritmi. BitVF si è dimostrato in grado di produrre un campione di vuoti
più affidabile, in quanto da esso abbiamo derivato statistiche più accurate rispetto a
quelle ottenute con VIDE, specie quando applicato a distribuzioni traccianti con bias,
riuscendo a prevedere correttamente i valori di σ8 e Ωm, con contorni di confidenza
notevolmente stringenti. L’algoritmo BitVF è destinato a diventare uno strumento
fondamentale per la Cosmologia di precisione, in particolare in vista delle future
surveys di galassie ad ampio campo, come la missione Euclid di ESA Laureijs et al.
2011, il telescopio spaziale Nancy Grace Roman della NASA (NGRST, precedente-
mente chiamato WFIRST, Green et al. 2012) e l’osservatorio Vera C. Rubin (LSST,
LSST Collaboration 2012).
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Introduction

The last hundred years have revolutionised the human view of the Universe. If,
Hubble and Lemâıtre already in 1929 and 1931, respectively, contributed with their
work to definitively rejecting the vision of a static and immutable Universe (Edwin
1929, Lemâıtre 1931), in the last twenty-five years the observation of distant type
Ia supernovae has definitively established the accelerated expanding Universe as the
prevailing model (Riess et al. 1998, Schmidt et al. 1998, Perlmutter et al. 1999).
In the following years, observations of the anisotropies of the cosmic microwave
background and of the large-scale structures of the Universe have confirmed this
scenario, now widely accepted among the scientific community (Eisenstein et al.
2005, Planck Collaboration 2016, Planck Collaboration 2020).

This model, named ΛCDM after its main components, is therefore currently
considered the standard cosmological model. This paradigm assumes, first of all,
the validity of the cosmological principle, i.e. that the Universe is homogeneous
and isotropic at large scales, as well as the validity of the Einstein’s General Rela-
tivity. Moreover, it predicts the presence of a significant amount of non-collisional
and non-relativistic matter, about 27% of the total mass, called cold dark matter
(CDM). Furthermore, this model interprets the accelerated expansion of the Uni-
verse as being due to the action of a component, of constant density in space and
time, called cosmological constant Λ. This component currently represents about
70% of the total energy density of the Universe. The cosmological constant can
be also interpreted as the so-called dark energy (DE), which could be thought of
as the vacuum energy. However, the mechanisms regulating this physical process
are unknown to date, as is the exact nature of dark matter (DM). Due to these
still open problems, this scenario has often been questioned. In addition, further
theoretical and observational problems have emerged over the years. The former,
for instance, consist of the problems of coincidence and fine-tuning (Weinberg 1989,
but see Bianchi & Rovelli 2010 for an alternative point of view), the latter consist
in particular on the problem of the tension in the measurements of the value of
Hubble’s constant (which parameterises the expansion velocity of the cosmos) when
measured in the early or late Universe (Bernal et al. 2016, Moresco & Marulli 2017).

The scientific community has been busy in recent years in investigating alterna-
tive models to the ΛCDM, such as, for instance, models involving a time dependency
on the density of DE or involving modifications to the theory of General Relativ-
ity. In this context, a large number of cosmological probes are being exploited in
an attempt of constraining cosmological parameters, such as the cosmic microwave
background (Planck Collaboration 2016, Planck Collaboration 2020), the clustering
of galaxies, in particular baryonic acoustic oscillations (BAO, Crocce & Scoccimarro
2008), and weak lensing effects due to large-scale structure (Hildebrandt et al., 2016).
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However, despite the great variety of cosmological probes, many of the main prob-
lems of the cosmological model still remain unsolved. It is therefore necessary to
investigate possible new probes that explore the less known regions of the Universe,
providing information that is orthogonal to what is currently available, thus break-
ing the degenerations that arise in the constraints of cosmological parameters. A
possible class of objects that match this definition are cosmic voids. Cosmic voids
are large structures that dominate the volume of the Universe, occupying the un-
derdense regions that partition the cosmic web. These objects constitute a unique
cosmological probe: analogously to their overdense counterparts (i.e. galaxy clus-
ters), void number counts and density profiles have been demonstrated to represent
powerful cosmological probes (see Pisani et al., 2019, and references therein). More-
over, their interiors, spanning a large range of scales and being characterised by with
low matter density, make them particularly suited to study DE and modified grav-
ity, as well as massive neutrinos, primordial non-Gaussianity, and possible Physics
beyond the Standard Model. However, the study of voids, to be statistically signifi-
cant, requires galaxy surveys that sample large volumes of the Universe in sufficient
detail to maximise the number of objects observed. For this reason, only in recent
years cosmic voids have started to gain popularity as cosmological probes. In the
near future, the upcoming sky surveys such as the ESA Euclid mission (Laureijs
et al., 2011), the NASA Nancy Grace Roman Space Telescope (NGRST, formerly
called WFIRST, Green et al. 2012) and the Vera C. Rubin Observatory (LSST,
Collaboration 2012) will provide a large amount of high quality data, making the
cosmological study performed with these objects significantly more effective.

The identification of cosmic voids, however, is non-trivial. In fact, numerous
difficulties are present: the lack of a formal definition of cosmic voids, the scarcity of
tracers present in these underdense zones, the discretisation of the mass (the density
field is sampled by the observed luminous tracers), and the shot noise of the tracer
distribution. Over time, several identification methods have been proposed by the
scientific community. Following the scheme discussed by Lavaux & Wandelt (2009),
we can classify these methods into three different classes, according to the exploited
detection criteria: density, geometrical and dynamical. The work presented in this
Thesis aims to overcome the difficulties associated with void identification through
the development of a new dynamic void finder, called back-in-time void finder

(BitVF), resuming and expanding the work of Elyiv et al. (2015). Dynamic methods,
unlike the other approaches, use tracers to sample the velocity field, instead of
the density field, overcoming the difficulties associated with the small number of
available tracers inside voids.

This Thesis work accompanies the reader from the acquisition of the cosmolog-
ical tools necessary to understand the subject matter, to an overview of existing
identification methods, and finally to a description and validation of the new al-
gorithm developed, providing a complete overview of the topic. In particular, the
Thesis is organised as follows:

• in Chapter 1 we provide the fundamentals for the mathematical description
of the modern cosmological models. We supply the main elements of the
theory of General Relativity, going through the derivation of the Friedmann
Equations. Finally, we illustrate the main features of the currently adopted
standard cosmological model, the so-called ΛCDM model.
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• in Chapter 2 we review the Jeans theory, which provides the modelling of
structure formation, and we present the theoretical description of the linear
and nonlinear evolution of the Universe. Lastly, we introduce the reader to
the cosmological simulations, fundamental to test the predictions of the pro-
posed cosmological models and overcome the statistical limits imposed by the
uniqueness of the Universe.

• inChapter 3 we provide a comprehensive overview of cosmic voids, describing
the main methods for their identification, and then illustrate the main statistics
associated with these objects, their observable features, and their potential as
cosmological probes.

• in Chapter 4 we describe our void finder in detail, analysing step by step
the algorithm which, starting from the position of cosmic tracers, leads to the
identification of voids. Furthermore, we analyse the application of BitVF to
simulations to validate the method and the results.

• in Chapter 5 we compare the properties of voids obtained through the ap-
plication of our finder on different distributions of cosmological tracers with
those obtained through the application of the most commonly used void finder
in literature, with the aim of exploring the validity of our work and the pos-
sibility of a future use of BitVF for finding voids through which to constrain
cosmological parameters.

• in Chapter 6 we provide an overview of our Thesis work and illustrate future
prospects and outstanding issues.
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Chapter 1

Cosmological framework

In this first chapter, we explore the physical and mathematical background that will
enable us to understand the topics discussed in this thesis. The aim is to familiarise
with modern cosmological models based on the theory of General Relativity (GR,
Sec. 1.1). In order to do that, we introduce in Sec. 1.2 the Friedmann-Lemâıtre-
Robertson-Walker (FLRW) metric, which is needed to describe the curvature of
space-time in homogeneous and isotropic universes. At this point, we are able to
define both the Hubble-Lemâıtre law and the cosmological redshift (Sec. 1.3), and
to derive the Friedmann equations as solutions of the Einstein’s field equation (Sec.
1.4). With these equations we are able to illustrate, in Sec. 1.6 and Sec. 1.7, models
for an open, flat and closed universes and to provide an overview of the so-called
Standard Cosmological Model.

1.1 Fundamentals of General Relativity

From planetary interactions to large-scale structure formation, the Universe is dom-
inated by Gravity. For this reason, it is natural that the main cosmological models
are based on the action of this force. At present, the most consistent description
of Gravity is the one provided by Albert Einstein’s theory of General Relativity
(GR, Einstein 1915). For GR, gravity is actually a deformation effect of space-
time given by the presence of mass and energy. The geometry of space-time is
described by the metric tensor, gµν . The infinitesimal distance ds2 between two
events xµ = (ct, x, y, z) and xν = xµ + dxµ = (c(t + dt), x + dx, y + dy, z + dz) can
be expressed as

ds2 = gµνdx
µdxν (µ, ν = 0, 1, 2, 3) , (1.1)

where x, y, and z, represent the spatial coordinates, c is the speed of light and t the
coordinate time. Equation (1.1) can be expanded as

ds2 = g00dt
2 + 2g0idx

idt+ gijdx
idxj , (1.2)

where g00dt
2 is the time component, gijdx

idxj are the spatial components and
2g0idx

idt are the mixed components.
We now define the Riemann–Christoffel Tensor, Rµ

αβγ, a tensor of type (1,3)
which is the most common way to encode the curvature of a Riemannian manifold

Rµ
αβγ =

dΓµ
αγ

dxβ
−

dΓµ
αβ

dxγ
+ Γµ

σβΓ
σ
γα − Γµ

σγΓ
σ
βα . (1.3)
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The Riemann-Christoffel Tensor can be contracted in Rµν and R, defined as:

Rαβ ≡ Rµ
αβγ , (1.4)

R ≡ Rµ
µ = gµνRµν , (1.5)

respectively the Ricci Tensor and Ricci Scalar.
The geometry of space-time is related to the presence of mass and energy, de-

scribed by the energy-momentum tensor, Tµν , through the Einstein’s field equation

Rνµ −
1

2
gνµR =

8πG

c4
Tµν (1.6)

where G is the gravitational constant. Looking at the left hand of the equation
(1.6), we can define the Einstein tensor

Gµν ≡ Rµν −
1

2
gµνR , (1.7)

which gives us the description of the geometry of space-time. Combining equations
(1.6) and (1.7), we obtain a compact equation for the Einstein’s gravitational field
equation

Gµν =
8πG

c4
Tµν , (1.8)

which is one of the pillars of Cosmology. The quantity 8πG/c4 ensures to obtain the
Poisson’s equation in the weak gravitational field limit.

1.2 The Friedmann–Lemâıtre–Robertson–Walker

Metric

The most common cosmological models are based on the assumption of isotropy (the
universe is identical in every direction) and homogeneity (the universe is identical
everywhere) on large scales1. This assumption is called Cosmological Principle (CP).
Once the validity of this hypothesis is assumed, it is necessary to construct a model
for a universe that respects the CP. It is possible to assume that there exists a certain
time instant at which the metric is the same at each spatial position. Thanks to the
isotropy hypothesis, the terms g0i of Eq. (1.2) become null. The general form of the
metric is thus obtained under the CP conditions:

ds2 = (cdt)2 − gijdx
idxj = (cdt)2 − dl2 . (1.9)

We can imagine the Universe as a continuous fluid in which each element is labelled
by three spatial and one temporal coordinates, xi, with i = (1, 2, 3), and t. The
former are called comoving coordinates while the latter is called proper time. These
coordinates are intended to be at rest with respect to the reference system of the
fluid of the Universe.

1Nowadays, large scales are defined as dimensions of hundreds of Mpc, where 1 Mpc = 3.086×
1018 cm.
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To determine gij we have to find a spatial 3D metric which follows the require-
ments of homogeneity and isotropy. Thanks to the assumption of the CP, the tensor
Ri

jkl does not depend on the derivatives of the metric. Through the symmetry
properties of the deriving form of the Riemann tensor and the transformation from
Cartesian coordinates (x1, x2, x3) to spherical polar coordinates (ρ, ϕ, θ),

x1 = ρ sin(θ) cos(ϕ)

x2 = ρ sin(θ) sin(ϕ) ,

x3 = ρ cos(θ)

(1.10)

where the ranges of these values are 0 ≤ ρ < ∞, 0 ≤ ϕ < 2π, 0 ≤ θ < π and ρ is
considered dimensionless, we can introduce the most general form of equation (1.9),
the so-called Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric:

ds2 = (cdt)2 − a2(t)

[
dr2

1− κr2
+ r2(sin2 θdϕ2 + dθ2)

]
, (1.11)

where a(t) is the cosmic scale factor (or the expansion parameter), having the di-
mensions of a length, and κ is the adimensional curvature parameter.

The values of κ and a(t) can be derived from Einstein’s field equation, once
the energy-momentum tensor is given. In particular, calculating the value of κ is
essential for determining the geometry of the considered universe. There can be
three types of curvature: positive, negative and null. Correspondingly, κ can assume
only three values, each associated with a particular type of geometry:

• κ = 1 → elliptic geometry. Space is closed but with no boundaries. It
can be thought as a three-dimensional hypersphere or some other spherical
3-manifold (such as the Poincaré dodecahedral space);

• κ = 0 → flat geometry. Space is infinite and Euclidean;

• κ = −1 → hyperbolic geometry. Space is open and infinite, analogously to
the 2D surface of a saddle.

1.3 The Hubble–Lemâıtre law

The proper distance, Dpr, is defined as the time distance between two points P
and P0 in a generic coordinate system. This quantity depends on time through the
already defined term a(t) and can be expressed as

Dpr = a(t)

∫ r

0

dr′√
1− κr′2

= a(t)Fκ(r) . (1.12)

Henceforth, using the convention of indicating with the subscript 0 the quantities
calculated at the present time, t = t0, we can link the distance at a generic time t
with that at the present time through the relation

DC = Dpr(t0) = a0Fκ(r) . (1.13)
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The quantity DC , called comoving distance, remains constant with the expansion of
the universe. The connection between Dpr and DC is provided by the relationship

Dpr =
a(t)

a0
DC . (1.14)

We can visualise the expanding Universe as a 3D version of the surface of an
inflating balloon: the distance between each pair of points on the surface increases
with the flow of time. It is possible to define a radial velocity vr for each pair of
points as the derivative of Dpr with respect to time t:

vr =
d

dt
Dpr =

d

dt
[a(t)F (r)] = ȧ(t)F (r) + a(t)Ḟ (r) . (1.15)

Given the time-independence of the term F (r), the previous relation becomes the
well-known Hubble-Leimâıtre’s law,

vr = ȧ(t)F (r) =
ȧ(t)

a(t)
Dpr = H(t)Dpr . (1.16)

H(t) is a function of time and is supposed to have the same value across the Uni-
verse at a given cosmic time. Its value at present time, H0 = H(t = t0) is called
the Hubble constant and provides a measure of the isotropic expansion rate of the
present Universe. The value of H0 is generally provided, through the inclusion of a
dimensionless parameter h, in the following way:

H0 = 100h km s−1Mpc−1. (1.17)

In the current state of the art, the measured value of H0 is ∼ 70 km s−1Mpc−1,
but it is affected by a certain tension (∼ 4σ) between the value inferred from the
cosmic microwave background (CMB) analysis and the one measured in the local
Universe (see Verde et al. 2019, Di Valentino et al. 2021 and Abdalla et al. 2022).
For example, H0 = 67.4 ± 0.5 km s−1Mpc−1, from the CMB angular spectrum
(Planck Collaboration, 2020), H0 = 67.7+4.3

−0.42 km s−1Mpc−1 from the analysis of
gravitational waves (Mukherjee et al., 2020) and H0 = 74.03 ± 1.42 km s−1Mpc−1,
by using distance ladders as Cepheids or SNIa (Riess et al., 2019). Based on the
approximation of H(t) being constant in time and having H0 expressed in units of
s−1, a rough estimate of the age of the Universe can be obtained by inverting the
value of the Hubble parameter.

1.3.1 Definition of redshift

The main consequence of having an isotropically expanding Universe is obviously
the distancing of faraway objects from the observer, net of their own peculiar mo-
tions. We call the global motion of objects in the Universe with respect to each
other the Hubble Flow. The observational consequence of this phenomenon is the
reddening of the electromagnetic radiation due to the shift to longer wavelengths.
This phenomenon is called cosmological redshift of the electromagnetic spectrum and
it is not to be confused with the Doppler effect.

In general, consider a moving source relatively to the observer that emits monochro-
matic radiation at a wavelength λem relative to its own reference system. Let λoss
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denote the wavelength of the electromagnetic radiation measured by the observer
and z the relative difference between the two wavelengths:

z ≡ λoss − λem

λem

=
∆λ

λem

. (1.18)

z can assume negative values (blueshift) when the source is approaching the observer
and positive values (redshift) when the source is receding.

By definition, since photons are non-massive particles, they move along null
geodesics ds2 = 0. Now consider an observer at distance d from a light source and
consider again Eq. (1.11), i.e. the FLRW metric in polar coordinates. Assume
dθ = dϕ = 0 for simplicity. We obtain:

ds2 = (cdt)2 − a2(t)
dr2

1− κr2
= 0 . (1.19)

If a photon is emitted from a point with coordinates (r, 0, 0), at some time tem, and
it is observed at time tobs, integrating the metric along the path, we obtain:∫ tobs

tem

cdt

a(t)
=

∫ r

0

dr′√
1− κr2

= F (r) . (1.20)

Let us consider the emission of a second photon from the light source at t′em =
tem + δtem that reaches the observer at t′obs = tobs + δtobs. Since we know that,
in a system of comoving coordinates, F (r) is independent of the expansion of the
Universe, the difference between the two photon paths is given only in terms of time:∫ tobs

tem

cdt

a(t)
= F (r) =

∫ t′obs

t′em

cdt

a(t)
. (1.21)

Thus, if the time intervals δtem and δtobs are small enough, a(t) can be considered
almost constant. It follows that

δtem
a(tem)

=
δtobs
a(tobs)

. (1.22)

Now, recalling the definition of z (Eq. (1.18)) and how wavelength and frequency
are related by the relationship λ = c/ν, with ν = 1/δt, we can define:

1 + z ≡ a0
a(t)

. (1.23)

The latter equation can be regarded as one of the pillars of Cosmology, as it manages
to link an easily observable quantity (the redshift z) to the expansion parameter a(t).
However, it is important to remember that there are further contributions to the
wavelength distortion of photons emitted by distant objects, such as proper motions,
effects due to the presence of mass (e.g. gravitational lensing), interactions with
scattered matter (e.g. the Sunyaev-Zel’dovich effect) and other relativistic effects.
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1.4 The Friedmann equations

From the assumption of the validity of the Cosmological Principle and General
Relativity, considering the energy-momentum tensor applied to a perfect fluid with
pressure p, density ρ and four-velocity u,

Tµν = −pgµν + (p+ ρc2)uµuν , (1.24)

it is possible to apply the FLRW metric to solve Einstein’s field equations. These,
set of 16 equations, of which only two are independent (time-time, space-space),
provide the time evolution for a(t) and thus the dynamic evolution of the Universe.
The resulting equations are called the first and the second Friedmann Equations and
can be expressed as follows:

ä = −4π

3
G

(
ρ+

3p

c2

)
a (time) , (1.25)

ȧ2 + κc2 =
8π

3
Gρa2 (space) . (1.26)

These equations are linked together by the adiabatic condition

dU = −pdV , (1.27)

where U and V represent the internal energy and the volume of the Universe, respec-
tively. This condition can be expressed, considering the evolution of the Universe,
as

d(ρc2a3) = −pda3, (1.28)

from which we derive

ρ̇+ 3
(
ρ+

p

c2

) ȧ

a
= 0 . (1.29)

The density, ρ, and the pressure, p, in these equations have to be considered as the
sum of all the densities and all the pressures of the different components present in
the Universe.

1.5 The cosmological constant and the Einstein

model

When the russian mathematician Alexander Friedmann derived his equations in
1922, the most popular idea was that of a static Universe without preferred times
and directions, as predicted assuming the Perfect Cosmological Principle. In order
to satisfy this hypothesis, we must have that ä = ȧ = 0. The only way this can be
verified is by having, from Eqs. (1.25) and (1.26),

ρ = −3
P

c2
. (1.30)

In other words, either density or pressure must assume a negative value, but this
leads to an unphysical condition. Einstein, who at the time was deeply convinced
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of the static nature of the Universe, decided to solve the problem by introducing in
his equations a constant term, the cosmological constant Λ. The field equations are
modified by this term in the following way:

Rνµ −
1

2
gνµR− Λgµν =

8πG

c4
Tµν . (1.31)

We can re-write Eq. (1.31) by modifying the energy-momentum tensor, so as to
obtain a similar form to the original one:

Rνµ −
1

2
gνµR =

8πG

c4
T̃µν , (1.32)

where the new tensor is given by

T̃µν ≡ Tµν +
Λc4

8πG
gµν = −p̃gµν + (p̃+ ρ̃c2)uµuν , (1.33)

with p̃ and ρ̃ effective pressure and effective density respectively, defined as:

p̃ ≡ p− kc4

8πG
, ρ̃ ≡ ρ+

Λc2

8πG
. (1.34)

It is straightforward to show that

Λ =
k

a2
[L−2] , (1.35)

which demonstrates how, in Einstein’s model, Λ is linked to the curvature parameter.
This value, in order to make physical sense, must be positive. In other words, it
must be verified that k = +1. Finally, we can calculate what is the value of Λ = Λe

that makes the Universe static:

Λe =
4πGρ

c2
. (1.36)

The universe imagined by Einstein therefore has spherical geometry and is static as
long as the condition Λ = Λe is verified.

The concept of the cosmological constant has long been regarded by Einstein
(but more generally by the scientific community) as his greatest mistake. Not only
the observations made by Hubble, just a few years later in 1929, disproved the
hypothesis of a static Universe, but this type of model is afflicted by two major
weaknesses:

• the value of Λ required to his purpose should have been extremely fine-tuned;

• the solutions of Eq. (1.31) would have led to an unstable equilibrium (Bianchi
& Rovelli, 2010).

Nowadays, the concept of the cosmological constant has been rehabilitated. Not
only do we know that the Universe is not static, but even since the 1990s, through
observations of distant type Ia supernovae (SNIa), we know that the Universe is
expanding at an accelerated rate (Riess et al., 1998). This type of expansion cannot
be justified in any way by the normal field equations. It was necessary to reintroduce
the idea of the cosmological constant, as a term with a repulsive effect. More
specifically, Λ takes different meanings depending on its position in the Einstein’s
field equation:
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• left-hand side: Λ can be interpreted as a modification of gravity;

• right-hand side: Λ can be interpreted as an additional negative energy con-
tribution called dark energy (DE).

1.6 Friedmann models

Equations (1.25) and (1.26), introduced by Friedmann, describe the various possible
evolutions of the universe depending on the assumed curvature. However, in order to
achieve an analytical solution, it is necessary to introduce an equation of state which
links together the various types of fluid that compose the Universe. In Cosmology,
it is possible to assume the condition of a perfect fluid. This results in the following
formulation for the equation of state:

p = wρc2 (1.37)

where w is defined so that the sound speed is:

cs =

(
∂p

∂ρ

)1/2

s

= c
√
w . (1.38)

where w, to have physical meaning, must take a value between

0 ≤ w ≤ 1 . (1.39)

This is known as the Zel’dovich interval. The speed of sound must therefore be
positive but can never be greater than c. The value of w depends on the type
of component considered. In particular, for non-relativistic matter, such as dust,
w ∼ 0 and therefore the pressure can be considered negligible. For non-degenerate
relativistic matter, w = 1/3. This is the case for radiative fluid or more generally for
non-massive or relativistic particles such as photons and neutrinos. A more exotic
case occurs when we assume an equation of state for rigid matter (for example, when
we are dealing with a Bose-Einstein condensate). In this case w = 1, and therefore
p = ρc2. Finally, despite not being predicted by classical physics, negative values
of w (−1 ≤ w < 0) can be obtained. In particular, the cosmological constant Λ is
defined by having w = −1.

With these definitions it is now possible to express the energy-momentum tensor
as the sum of all the i components:

Tµν ≡
∑
i

T i
µν . (1.40)

By combining Eqs. (1.28) and (1.37), we can derive how the density of each cosmo-
logical component varies over time with the expansion of the Universe:

ρw ∝ a−3(1+w) ∝ (1 + z)3(1+w) (1.41)

This relation shows that the universe was dominated by different components at
different times.
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It is possible to derive the value of the density, called the critical density ρcrit,
for a Universe with a flat geometry:

ρcrit(t) ≡
3

8πG

(
ȧ

a

)2

=
3Ḣ2(t)

8πG
. (1.42)

This value must be extremely fine-tuned to obtain a flat geometry. In the case
where ρ < ρcrit an open Universe is obtained and consequently an evolution leading
to an eternal expansion takes place. In the case where ρ > ρcrit, a closed Universe
is obtained, implying a deceleration leading to a contraction. The present value of
ρcrit, depending on Hubble constant H0, is (Planck Collaboration, 2020):

ρcrit(t = t0) ≡ ρcrit,0 ≃ 1.9h2 × 10−29 g cm−3 . (1.43)

Thanks to this definition, we can rewrite equation (1.26) to obtain a formulation for
the curvature κ:

κ

a2
=

1

c2

(
ȧ

a

)2(
ρcrit
ρ

− 1

)
. (1.44)

From the definition of critical density, a dimensionless parameter Ω, the density
parameter, can be defined:

Ω(t) ≡ ρ(t)

ρcrit(t)
. (1.45)

which can be expressed for each component, Ωwi
. By definition, the total density

parameter is the sum of all the fluid components permeating the universe:

Ωtot =
∑
i

Ωwi
. (1.46)

It is immediately understandable that for a flat Universe Ωtot = 1, while for an open
Universe Ωtot < 1 and for a closed Universe Ωtot > 1.

By using the definitions (1.16) and (1.45), the Eq. (1.44) can be reformulated
as:

1− Ω(t) =
κc2

a2(t)H2(t)
. (1.47)

The sign of the right-hand side of the equation is governed by the value of κ, which
cannot change over time. It follows that the left-hand side cannot change sign either,
and therefore a Universe governed by the Friedmann equations cannot modify its
geometry during its evolution.

From Friedmann’s second equation, rewritten in terms of H, Ω and z, which are
more representative parameters of the observable Universe, we obtain a formulation
that parameterises the H evolution as a function of redshift z:

H2(z) = H2
0 (1 + z)2

[
1−

∑
i

Ω0,wi
+
∑
i

Ω0,wi
(1 + z)1+3wi

]
= H2

0E
2(z) . (1.48)

The term 1− Ωtot is the so-called curvature density parameter.
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1.6.1 The Big Bang singularity

Assume that the Universe consists of only one fluid component and that this respects
ordinary physics (0 ≤ w ≤ 1). Friedmann’s second equation (1.26) becomes

ä = −4π

3
Gρ(1 + 3w)a , (1.49)

ä must be strictly negative: the function a(t) has downward concavity and cannot
have an inflection point (only in the case of a fluid with w < −1/3 an inflection can
occur). Moreover, we know from observations that the Universe is expanding, so
ȧ > 0. The function a(t) is therefore monotonously increasing and, going back in
time, we have that inevitably this function intersects the time axis, i.e. there must
exist a some finite time in the past at which a(t) = 0 and in which temperature,
density and expansion rate diverge:

lim
t→0

ρ(t) = lim
t→0

(a0
a

)−3(1+w)

→ +∞ . (1.50)

This singularity is called the Big Bang (BB). The true physical conditions at the
time of the BB are unknown. For times t < tp, where tp ∼ 10−43 s is the Planck
time, it is no longer possible to neglect the quantum effects of gravity. To date,
a universally accepted treatment of quantum gravity has not yet been developed.
Note that the expansion of the universe emerging from the BB model is a result of
the initial conditions describing a homogeneus and isotropic Friedmann Universe,
and it is not due to pressure.

1.6.2 The Einstein-de Sitter model vs open and closed uni-
verses

A generic model that includes the hypothesis of mono-component fluid and that
assumes a flat geometry (κ = 0, Ω = 1) is called Einstein-de Sitter Model (EdS).
With these assumptions, equation (1.48) reduces to

H(z) = H0(1 + z)
3(1+w)

2 . (1.51)

Our Universe is made up of three main components: radiation, matter and Λ.
Each of these three components, being associated with different values of w, becomes
dominant at a certain stage in the evolution of the Universe itself (as shown in Fig.
1.1, which plots showing the evolution of the density of the various components of the
Universe as a function of redshift), which, within each of these stages, can therefore
be approximated as composed of a single type of fluid. So we can divide the history
of the Universe into epochs based on which component was the dominant in that
time interval. In particular, at early times the dominant component results to be
the radiation (radiation-dominated era) while at late times the matter component
becomes the most relevant (matter-dominated era). Moreover, interpreting the dark
energy component as a fluid with w = −1, we can demonstrate that its density
is independent of the time and starts to be dominant only at very recent epochs
(DE-dominated era).
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The Table 1.1 provides some useful relationships for an EdS universe in the
general case and when it is dominated by radiation or matter. From these relations
we can derive the density evolution for the matter component (w = 0):

ρm = ρ0,m(1 + z)3 , (1.52)

and for the radiation component (w = 1/3):

ρr = ρ0,r(1 + z)4 . (1.53)

By equalising these relationships we find the moment ofmatter-radiation equivalence,
the moment when the densities of the two components had identical values:

zeq =
ρ0,m
ρ0,r

− 1 ≃ 3 · 103 . (1.54)

Generic fluid Dust (w = 0) Radiation (w = 1/3)

a(t) = a0

(
t
t0

) 2
3(1+w)

a(t) = a0

(
t
t0

) 2
3

a(t) = a0

(
t
t0

) 1
2

t = t0(1 + z)−
3(1+w)

2 t = t0(1 + z)−
3
2 t = t0(1 + z)−2

H(t) = 2
3(1+w)

1
t

H(t) = 2
3
1
t

H(t) = 1
2
1
t

t0 =
2

3(1+w)
1
H0

t0 =
2
3

1
H0

t0 =
1
2

1
H0

ρ = 1
6πG(1+w)2

1
t2

ρ = 1
6πG

1
t2

ρ = 3
32πG

1
t2

Table 1.1: Dependencies obtained for an EdS universe in the general case, in
the case of a matter-dominated universe and in the case of a radiation-dominated
universe.

Let us now consider the cases of curved universes, i.e. models with a single
component and Ω ̸= 1. Consider Eq. (1.48) in the case of a single component. The
curvature term (1 − Ω0) is constant. The second term depends on time. We look
for the value a = a∗ that equals the curvature term:

|1− Ω0| = Ω0

(a0
a∗

)1+3w

. (1.55)

When a ≪ a∗ or z ≫ z∗, i.e. in the phases immediately following the Big Bang, the
equation becomes

H(z) = H0Ω
1/2
0 (1 + z)

3(1+w)
2 , (1.56)

which differs from Eq. (1.51) only by the constant factor Ω
1/2
0 . All universes, in

their initial phases, behave in a similar way to the EdS one and their geometry is
assumably flat.
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Figure 1.1: Evolution of the density parameters of the various components mod-
elled assuming a ΛCDM Cosmology and Planck data. Credits: Rindler-Daller
(2020).

1.7 The Standard cosmological model

A one-component model is unable to fully describe the properties of the present
Universe. Since the beginning of the 21st century, the ΛCDM model has gradu-
ally become established. As the simplest model in agreement with observations,
it is commonly referred to as the standard cosmological model. The flat-ΛCDM
model, or more simply ΛCDM, takes its name from the assumption of an almost
flat geometry and from the main components of the cosmological fluid at z = 0,
which are assumed to be the cosmological constant (Λ), Ω0,Λ ≃ 0.7, and the cold
dark matter (CDM), Ω0,CDM ≃ 0.25, a non-collisional and non-relativistic matter
component. In addition, a small component of baryonic matter, Ω0,b ≃ 0.05, and
a negligible component of radiative fluid, Ω0,r ≃ 10−5, consisting of all relativistic
particles (mainly photons and neutrinos) are present. Since DM does not interact
with baryonic matter except gravitationally, it does not emit photons and is there-
fore extremely difficult to detect. However, despite the fact that its nature is still
unknown, there are strong indications of its presence, such as, for example, the mea-
sures of the rotation curves of disk galaxies (Bosma, 1999), the distortion of light
due to the phenomenon of gravitational lensing (Ellis 2010, Gilman et al. 2018) and
the analysis of the CMB’s black body spectrum (Galli et al., 2011). However, it
should be pointed out that it is possible to relate the model to observations without
including DM by using modified gravity models (Famaey & McGaugh, 2012).

According to this model, the evolution of the Universe is effectively described
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by the evolution of its temperature. At present, the various components are not in
thermal equilibrium and therefore their relative temperatures take on different val-
ues. At high redshifts, however, the situation was different. In fact, the temperature
was high enough to keep matter ionised, ensuring a sufficient number of interactions
to maintain equilibrium between matter and radiative components. Due to its con-
tinued expansion, around z = 1500 the temperature of the Universe dropped to a
point where protons and electrons recombined, causing the two cosmological fluids
to decouple and allowing photons to freely propagate. The probability for a photon
to be scattered for the last time by the primordial plasma has a peak at z = 1100.
This moment is called the redshift of the last scattering. The radiation emitted
at this moment is now observable, enormously reddened by the expansion of the
Universe, and takes the name of Cosmic Microwave Background radiation (CMB).
The currently measured temperature of the CMB is T = 2.7255± 0.0006K (Planck
Collaboration, 2020).

In order to justify the observed flat geometry and uniformity of the CMB, it is
convenient to assume a period of inflationary expansion, i.e. a phase of exponential
accelerated expansion, in the early epoch of the Universe. Moreover, the inflationary
era gives rise to the density perturbations which originate the cosmic structures
observed today.

As introduced previously, the fundamental component of the Universe predicted
by the standard cosmological model is the cosmological constant Λ, in form of dark
energy. Not only the inclusion of this component justifies the flatness of the Universe,
but, due to its characteristics, it also justifies the accelerated expansion. However,
the nature of DE is still unknown and is one of the most important cosmological
problems still open.
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Chapter 2

Structure formation

Looking at the present Universe on the Megaparsec scales, it is evident how the
assumptions of homogeneity and isotropy are violated. Strong fluctuations in the
density field are present, up to several orders of magnitude from the average. How-
ever, looking at the CMB, it can be seen that the situation in the early stages of the
Universe evolution was very different. Assuming adiabatic perturbations, for which
the relation is therefore valid:

δT

T
∼ δρ

ρ̄
, (2.1)

we observe that in the CMB:
δT

T
≈ 10−5 , (2.2)

where T represents the average black body temperature of the cosmic microwave
background. Therefore, we can conclude that the Universe was almost homogeneous
at this time.

The nonlinear structures observed nowadays are a consequence of gravitational
instability that allows perturbations to grow at a sufficient rate. The evolution of
perturbations subjected to gravitational force was described analytically by Jeans
as early as 1902. Jeans’ theory, illustrated in Sec. 2.1, predicts that the small
oscillations in the density field in the early Universe grow with time, resulting in the
collapsed structures observed today. However, the description given by this model
is valid only as long as the perturbations remain in a linear regime. The analytical
description of evolution in the nonlinear regime is very complex and is only available
for two simple cases: spherical evolution and the Zel’dovich approximation (Sec.
2.2). To date, this type of solution is normally treated by N-body simulations (Sec.
2.4).

2.1 Linear theory

Jeans theory is applicable for non-relativistic fluids with perturbations on a maxi-
mum scale corresponding to the cosmological horizon, defined as the sphere causally
connected to the observer and parameterised as

RH :=

∫ t

tBB

cdt′

a(t′)
. (2.3)
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At scales r > RH , perturbations evolve exclusively under the action of gravity, but
they must be treated with relativistic theory. In this case, the perturbations can
always grow and give rise to collapse. For scales r < RH , on the other hand, where
the microphysical processes become important, the Jeans model provides a reliable
description of these phenomena in linear theory.

2.1.1 Jeans instability in a static universe

Consider a simplified model in which the Universe is assumed to be static. Assume
a homogeneous and isotropic background, that is, we have density ρ0, pressure p0,
gravitational potential ϕ0 and velocity v0 = 0 as the background quantity of the
fluid. The condition whereby both potential and density are spatially constant
is non-physical as it only satisfies Poisson’s equation for ρ0 = 0. However, it is
equally assumable for the purposes of the model and immediately resolved by the
introduction of the expansion factor in the case of an expanding universe. The
equations of motion of such a fluid, in the Newtonian approximation, are:

∂ρ

∂t
+∇ · (ρv⃗) = 0 continuity equation (2.4)

∂v⃗

∂t
+ (v⃗ · ∇)v⃗ = −1

ρ
∇ρ−∇Φ Euler equation (2.5)

∇2Φ = 4πGρ Poisson equation (2.6)

dS

dt
= 0 adiabatic condition (2.7)

p = p(ρ, S) = p(ρ) equation of state (2.8)

where S is the entropy of a fluid element.
Small adiabatic perturbations δq (δq/q ≪ 1, where q is a generic quantity)

are introduced to the equilibrium state. The system formed by the Eqs. (2.4),
(2.5), (2.6), where the substitution q → q0 + δq took place, can be linearised (small
oscillations). We also define the density contrast δ as

δ(x⃗, t) =
δρ(x⃗, t)

ρ0
. (2.9)

Solutions/perturbations, separated in space-time dependence, are sought in Fourier
space:

S(x⃗, t) = Ske
i(k⃗·x⃗−ωt) . (2.10)

The solving relation for the density contrast is a differential equation, which in
Fourier space has the form:

δ̈k + (k2c2s − 4πGρ0)δk = 0 , (2.11)

where k = |⃗k| is the absolute value of the wavenumber, δk the amplitude of the
Fourier transform of δ and cs =

√
∂p/∂ρ the speed of sound. Equation (2.11),

known as the dispersion relation, has two indipendent solutions

δk ∝ exp(±iω(k)t) , (2.12)
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where
ω(k) =

√
k2c2s − 4πGρ0 . (2.13)

The behavior of the solutions depends on the sign of ω2(k). If ω2 < 0 → ω ∈ C, two
exponential solutions exist, one increasing and one decreasing. If ω2 > 0 → ω ∈ R,
we obtain two logitudinal small amplitude waves with opposite direction. The limit
case ω2 = 0 allows to define two important quantities:

kJ :=

√
4πGρ0
c2s

Jeans wavenumber (2.14)

λJ :=
2π

kJ
= cs

√
π

Gρ0
Jeans length (2.15)

Thus, the propagation and evolution of perturbations depends on how their wave-
length relates to the characteristic one, λJ . If:

• λ < λJ (or k > kJ), the perturbation propagates as a sound wave with constant
amplitude and with a phase velocity cph = ω/k. This velocity tends to the
sound speed at small scales λ ≪ λJ ;

• λ > λJ (or k < kJ), the perturbation has two solutions, with opposite modes.
There is an increasing mode and a decreasing mode. The increasing case is
the interesting one from the cosmological point of view because it allows the
fluctuation to grow exponentially and permit collapse. This phenomenon is
called Jeans instability.

We can therefore conclude that small perturbations evolve according to their scale,
and when they can grow, they do it exponentially.

2.1.2 Jeans instability in expanding universe

Let us now attempt to investigate a more realistic context. We want to analyze
the evolution of perturbations in an expanding universe. In this framework, the
background density is a function of time, ρ0 = ρ0(t), so the continuity Eq. (2.4)
becomes

ρ̇0 + 3H(t)ρ0 = 0 . (2.16)

The velocity is no longer zero but follows Hubble’s law v⃗0 = H(t)x⃗. so we deal with
a two-component velocity:

u⃗ = ⃗̇x = H(t)x⃗+ vp (2.17)

where vp indicates the peculiar velocity of the fluid. Introducing a perturbation for
the equation set (2.4), (2.5) and (2.6) in the same way as for a static universe, it
is possible to obtain a new form of the dispersion relation, from which we obtain a
solution for each Fourier mode of the type δ = δk(t) exp (i⃗kx⃗):

δ̈k + 2H(t)δ̇k + (k2c2s − 4πGρ0)δk = 0 . (2.18)

The term 2H(t)δ̇k is known as the Hubble friction, while k2c2sδk takes into account
the characteristic velocity field of the fluid. Both terms oppose perturbation growth.
This is a second order differential equation for δ(x⃗, t). Again, we can separate the
nature of the solutions according to the value of λ relative to λj (Eq. (2.15)):
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• λ < λJ (or k > kJ), the perturbation propagates as a stationary wave, exactly
as in the case of a static universe;

• λ > λJ (or k < kJ), two solutions exist, with growing and decaying mode
solutions:

δ(x⃗, t) = A(x⃗)δ+(t) +B(x⃗)δ−(t) , (2.19)

where A and B are functions of the comoving coordinate and δ+ and δ− rep-
resent respectively the growing and decaying modes and are functions of the
time.

We can rewrite the Eq. (2.18) for δ as an equation for the growth factor, with the
time dependence replaced by the redshift dependence:

δ̈ + 2H(z)δ̇ − 3

2
Ωm,0H

2
0 (1 + z)3δ = 0 . (2.20)

Consider now a flat universe of only matter (Ωm = 1). We can apply the relations
described in Table 1.1. The following dependencies are obtained:

δ+(t) ∝ t2/3 ∝ a , (2.21)

δ−(t) ∝ t−1 ∝ a−3/2 . (2.22)

It is immediate to understand how the δ− solution decays with time while the δ+
solution leads to gravitational instability. We are only interested in the growing
solution, as it is the one that leads to the development of structures. For a generic
universe, the growing solution has an integral form given by the following equation:

δ+(z) = H(z)

∫ ∞

z

(1 + z′)

H3(z′)
dz′ , (2.23)

which has no analytical solution. There is, however, a pseudo-analytical relation
that allows us to simplify the calculation:

f ≡ d log δ+
d log a

≃ Ωγ
m +

ΩΛ

70

(
1 +

1

2
Ωm

)
. (2.24)

This relation is very sensitive to the variation of Ωm while less to that of ΩΛ: per-
turbations are influenced more by matter than by the cosmological constant. The
exponent γ is predicted to have a value approximately of 0.545 in GR (Coles &
Lucchin, 2002). Its measure can be used as a test for the theory itself.

2.1.3 Statistical properties of the Universe

Until now, we analysed the linear evolution of a single perturbation of the density
field, whose growth is defined by δ(x⃗, t) = δ+(t)δ(x⃗). However, the real evolution of
the structures is given by the superposition of density fluctuations at different scales.
Having described the perturbations in Fourier space is very useful, as it allows us to
represent this situation as a superposition of plane waves independent of each other.

Let us introduce the spatial Fourier transform of δ(x⃗):

δ(k⃗) =
1

(2π)3

∫
δ(x⃗)e−ik⃗·x⃗d3x⃗ . (2.25)
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We can now define the power spectrum of the density field as the variance of the
amplitudes at a given value of the wavenumber k:

⟨δ(k⃗)δ(k⃗′)⟩ = (2π)3P (k)δ
(3)
D (k⃗ − k⃗′) , (2.26)

where δ
(3)
D represents the 3-dimensional Dirac delta function

δ
(3)
D (k⃗) =

1

(2π)3

∫
e−ik⃗·x⃗d3x⃗ . (2.27)

The power spectrum is related to the two-point correlation function (2PCF), ξ(r), its
analogue in real space, via the relationship provided by the Wiener-Khintchine the-
orem. It states that the autocorrelation function of a wide-sense-stationary random
process has a spectral decomposition given by the power spectrum of that process.
So the 2PCF can be defined as

ξ(r) =
1

(2π)3

∫
P (k)eik⃗·x⃗d3k⃗ , (2.28)

or, statistically as

⟨δ(x⃗)δ(x⃗′)⟩ = ξ(|x⃗− x⃗′|) = ξ(r⃗) = ξ(r) , (2.29)

where r is the comoving distance between x and x′, and ξ(r⃗) = ξ(r) is due to the
CP. We can interpret ξ(r) as the probability excess (or defect) dP12 of finding a pair
of objects separated by a comoving distance r, in two independent volume elements
dV1 and dV2, with respect to a random uniform distribution:

dP12 = n2[1 + ξ(r)]dV1dV2 . (2.30)

When ξ(r) = 0, the measured distribution coincides with the random one.
According to inflationary theory, primordial perturbations are generated by

stochastic quantum fluctuations of a scalar field (i.e., the inflaton) (Guth & Pi,
1982). The amplitude of the perturbations is described by a Gaussian distribution.
It is also assumed that there is no preferential scale during the formation of the per-
turbations. It follows that the initial power spectrum can be described by a power
law:

P (k) = Akn . (2.31)

The spectral index, n, is generally assumed to be close to unity (Zeldovich, 1972).
Unlike n, which is well fixed by theory, the amplitude A needs to be determined
through observations. In particular, the most reliable and precise measure of A
is obtained from the analysis of the temperature fluctuations in the CMB (Planck
Collaboration, 2020).

From the assumption of Gaussianity of the perturbation amplitude distribution,
it follows that the mean of it is formally equal to zero. However, the same cannot
be assumed for the variance. The fluctuation amplitude variance σ2 is defined by:

σ2 = ⟨|δ(x⃗)2|⟩ =
∑
k

⟨|δ(k⃗)2|⟩ = 1

Vu

∑
k

δ2k , (2.32)
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where the average is taken over an ensemble of the Universe realisations of volume
Vu. By assuming the validity of the CP and considering the limit Vu → ∞, it follows
that

σ2 → 1

2π2

∫ ∞

0

P (k)k2dk . (2.33)

The expression for σ2 obtained via Eq. (2.32) describes the point variance. In
order to use this approach, it is required to know every point of the density field.
Obviously, obtaining this reconstruction is generally very complex. Instead of using
point variance, it is convenient to treat the fluctuation field as dependent on the
scale R, which can be thought of as a filter function. With this approach we can
recover the density fluctuation δM from a discrete distribution of tracers as

δM =
M − ⟨M⟩

⟨M⟩
, (2.34)

where ⟨M⟩ is the mean mass present inside a spherical volume of radius R. δM can
also be thought as the convolution between the point variance and a filter function,
called window function W :

δM(x⃗) = δ(x⃗)⊗W (x⃗, R) . (2.35)

The combination of the definition (2.34) and Eq. (2.32) provides the so-called mass
variance:

σ2
M = ⟨δ2M⟩ = ⟨(M − ⟨M⟩)2⟩

⟨M⟩2
. (2.36)

Through the convolution theorem, setting us in the limit Vu → ∞, it is possible to
switch from Eq. (2.33) to

σ2
M =

1

(2π)3

∫
P (k)Ŵ 2(k⃗, R)d3k⃗ , (2.37)

where Ŵ is the Fourier-transform of the window function and is a function of R.
Since the higher values of k tend to be averaged out within the window volume, σ2

M

is dominated by perturbation components with wavelength λ ∼ k−1 > R.
As already explained, normalization of the power spectrum is not provided by

theory. To estimate the fluctuations amplitude at present time, it is very common
to use the parameter σ8, defined as the value of the mass variance computed with a
filtering of R = 8h−1Mpc in the local universe:

σ2
8 =

1

2π2

∫
P (k)k2Ŵ 2(k,R = 8h−1Mpc)dk . (2.38)

The square root of this quantity, i.e. σ8, besides representing the mass fluctuation in
spheres with radius 8h−1Mpc is a free parameter that represent the normalization
of the power spectrum and is essential in predicting the phenomenology of the local
Universe.
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2.2 Nonlinear theory

The structures we observe in today’s universe are consequence of the gravitational
collapse of the primordial fluid as a result of a nonlinear evolution of perturbations.
The description of these objects can no longer be based on a linear theory since
the values of the density contrast involved are much greater than unity and the
approximation of small perturbations can no longer be applied. Moreover, even at
the stage of semilinear evolution, the perturbation distribution function starts to
evolve into a non-Gaussian shape. A further complication arises from the need to
consider the evolution of baryonic matter as different from the evolution of DM.
Baryonic matter also is subject to the laws of fluid dynamics and their effects, as
star formation and evolution, AGN feedback, heating and cooling of gas. All of these
phenomena make even more difficult the description of the whole scenario with a
full and solid theory. At present, the most effective method of fully describing these
phenomena and nonlinear evolution is to resort to numerical N-body simulations.
However, some useful analytical solutions exist for specific cases, such as spherical
evolution and the transition between the linear and nonlinear regimes, described
through the Zel’dovich approximation.

2.2.1 Spherical evolution

The so-called spherical evolution model (Gunn & Gott, 1972) describe the isolated
formation of spherical collapsed overdensities (i.e. DM haloes) and underdensities
(i.e. cosmic voids). Consider an initially spherical top-hat perturbation, positive or
negative. We can model it as a series of concentric, uniform shells. An important
feature of this type of model is that, as predicted by Sheth & Van De Weygaert
2004, the evolution of the considered fluctuation is given uniquely by the total shell
energy. Assuming the validity of the CP, we can suppose that each perturbation
can be treated as an independent Friedmann universe until it evolves adiabatically.
Based on these assumptions, we can describe the evolution of a spherical, isolated
perturbation as a closed (overdensity) or open (underdensity) universe evolving in
an EdS background from an initial time ti > teq, where teq is the matter-radiation
equivalence time (evolution of perturbations in the matter-dominated cosmic epoch).

The initial density distribution of our model can be expressed as follows:

ρ(r, ti) = ρ0(ti) + δρ(r, ti) = ρ0(ti)[1 + δi(r)], (2.39)

where δi(r) = δi(r, ti) is the initial density contrast, which is a function of r. Since
we are dealing with a spherical perturbation, it is convenient to make use of the
proper radial coordinate r = a(t)|x⃗|, where x⃗ is the comoving coordinate and a(t)
the expansion factor. Consider an infinite shell located at distance r from the center.
The motion of the matter contained in the shell is given by

d2r

dt2
= −GM

r2
=

4πG

3
ρ0a , (2.40)

where:

M =
4πG

3
rρ0(1 + ∆) , (2.41)
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∆ =
3

r

∫ r

0

δ(r′)r′2dr′ . (2.42)

Equation (2.40) is analogous to the First Friedmann Equation (1.25) for a single
component universe:

d2a

dt2
= −4πG

3
ρ0a , (2.43)

and this proves the hypothesis that the perturbation evolves as a one-component
Friedmann universe.

Starting from Eq. (2.40), the first integral of motion can be written as

1

2

(
dr

dt

)2

− 4πG

3
ρ0(1−∆)r2 = E , (2.44)

where E is a constant of integration, namely, the total energy of the perturbation.
The fate of the shell is determined by the sign of E. If E < 0, ṙ decreases as r
increases, until it becomes negative. As a consequence, the shell decouples from the
Hubble flow and collapses. On the other hand, if E > 0, ṙ never becomes zero and
the shell expansion continues indefinitely. Analogously to what was found above,
Eq. (2.44) is similar to the second Friedmann equation (1.26) for a single component
fluid:

1

2

(
d2a

dt2

)
− 4πG

3
ρ0a

2 = −K

2
, (2.45)

which describes the expansion rate of the Universe. Having established these similar-
ities, we can procede to derive the parametric solutions of the Friedmann equations
for curved universes. The parametric solutions related to a massive shell are the
following:

• E > 0:
r = A(cosh θ − 1), t = B(sinh θ − θ); (2.46)

• E < 0:
r = A(1− cos θ), t = B(θ − sin θ); (2.47)

where A and B are two constants related by

A3 = GMB2 (2.48)

and θ, called development angle, parameterises all the physical relevant quantities
relating to the mass shell. It is possible to parameterize in the same way the model
describing the background. Choosing the expansion parameter a(t) = r0(t) so that
it encloses the same mass M as in Eqs. (2.46) and (2.47). Therefore we obtain:

• E > 0:
r0 = A0(cosh η − 1), t0 = B0(sinh η − η); (2.49)

• E < 0:
r0 = A0(1− cos η), t0 = B0(η − sin η); (2.50)
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where, as before, A0 and B0 are two constants related by

A3
0 = GMB2

0 (2.51)

We can then calculate the mean density inside each shell by applying the relation
ρ = 3M/(4πr3) and substituting with the dependencies (2.46) and (2.47) in equation
(2.48). We obtain:

ρ(r, t) =



3
4πGt2

(sinh ξ−ξ)2

(cosh ξ−1)3
E > 0 (open)

3
4πGt2

2
9

E = 0 (critical) .

3
4πGt2

(ξ−sin ξ)2

(1−cos ξ)3
E < 0 (closed)

(2.52)

The density contrast of a perturbation in a mono-component Universe can be ex-
pressed in the most general form through the following expression:

1 + ∆(r, t) =
ρ(r, t)

ρ0(r, t)
=

f(θ)

f(η)
, (2.53)

where θ and η are respectively the development angles of the perturbation and of
the background Universe. The cosmic density function, f(ξ), is defined as:

f(ξ) =



(sinh ξ−ξ)2

(cosh ξ−1)3
E > 0 (open)

2
9

E = 0 (critical) .

(ξ−sin ξ)2

(1−cos ξ)3
E < 0 (closed)

(2.54)

In addition, the expansion or contraction velocity of a spherical shell can also be
expressed as a function of θ and η. Let us consider the peculiar velocity of a shell,
vp:

vp(r, t) = v(r, t)−H(t)r(t) , (2.55)

where v(r, t) represents the total velocity of the shell and H(t) the Hubble param-
eter of the background Universe. It is further possible to define a generic Hubble
parameter, Hs, for an arbitrary shell:

Hs(t) =
ṙ

r
=

1

r

dr

dt
=

1

t
g(ξ) , (2.56)

where g(ξ), the cosmic velocity function, is given by:

g(ξ) =



sinh ξ(sinh ξ−ξ)
(cosh ξ−1)2

E > 0 (open)

2
3

E = 0 (critical) .

sin ξ(ξ−sin ξ)2

(1−cos ξ)2
E < 0 (closed)

(2.57)

Through g(ξ) it is possible to reformulate equation (2.55) as

vp(r, t) = H(t)r(t)

[
g(θ)

g(η)
− 1

]
. (2.58)
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Relations (2.53) and (2.58) provide us explicit expressions for the evolution of
a spherical perturbation in FLRW backgrounds with no cosmological constant. We
will focus now on the case of a spherical perturbation evolving in an EdS background
Universe.

Overdensities

Let us consider an initial overdense shell in an EdS universe and study its evolution:
we know that in a flat universe a matter perturbation evolves as δ+(t) ∝ t2/3 or
δ−(t) ∝ t−1 (Eqs. 2.21, 2.22), according to whether the mode considered is increasing
or decaying. The density contrast can be expressed as the combination of the two
modes:

δ(t) = δ+(ti)

(
t

ti

)2/3

+ δ−(ti)

(
t

ti

)−1

. (2.59)

Assuming a motion consistent with the hubble flow for the perturbations (a null
initial velocity relative to the background), we can compute the derivative of the
latter relation with respect to the time considering t = ti, finding:

2

3
δ+(ti)− δ−(ti) −→ δ−(ti) =

2

3
δ+(ti) . (2.60)

Therefore, the equation (2.59), for t = ti, can be rewritten as

δ(ti) =
5

3
δ+(ti) . (2.61)

Initially, 3/5 of the perturbation is represented by the growing modes and 2/5 by
the decaying ones. However, these modes decline over time, gradually becoming less
and less relevant.

Consider now the density parameter of the perturbation, Ωp. Treating the per-
turbation as a closed universe, we can impose the relation Ωp > 1:

Ωp(ti) =
ρp(ti)(1 + δi)

ρc(ti)
= Ω(ti)(1 + δi) > 1 , (2.62)

where ρc is the critical density and δi = δ(ti). Therefore, in order for a spherical
perturbation to collapse, it is necessary that

(1 + δi) > Ω(ti)
−1 . (2.63)

Now, knowing that for Friedmann universes the relation

Ω(z) =
Ω0(1 + z)1+3w

(1− Ω0) + Ω0(1 + z)1+3w
(2.64)

is valid and imposing w=0 (perturbation of only matter), we obtain:

δ+(ti) =
3

5
δi >

3

5

(1− Ω(ti))

Ω(ti)
=

3

5

(1− Ω0)

Ω0(1 + z)
. (2.65)

To allow the perturbation to collapse, this inequality must be respected. It is im-
mediate to understand how it is always respected for overdensity in closed or Eds
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universes (Ω0 ≥ 1). The same is obviously not true in the case of open universes
(Ω0 < 1) where expansion inhibits collapse for small δ values.

An overdense perturbation growing in our Universe evolves, in its initial stages,
to expand more slowly than the universe, thus increasing its density contrast. This
expansion slows down more and more until a maximum radius rmax is reached.
This moment is called turn-around point. At this time the motion reverses and the
collapse phase begins, finally leading to structure formation and virialization. It can
be shown that the density of the perturbation at the turn around point (t = tmax)
is:

ρp =
3π

32Gt2max

. (2.66)

Recalling the relationship for the background density (Tab. 1.1) of an EdS universe,
we can calculate the density contrast at the turn-around point:

δ(tmax) ≃
ρp(tmax)

ρ0(tmax)
− 1 =

(
3π

4

)2

− 1 ≃ 4.6 . (2.67)

Therefore, at this stage the system is already largely in the nonlinear regime. If we
had applied linear theory we would have obtained instead:

δL(tmax) = δL(ti)

(
tmax

ti

)2/3

≃ 1.06 . (2.68)

The evolution following the turn-around should lead to the collapse of the system
into a singularity at tcol = 2tmax. This does not happen due to the intrinsic angular
momentum of the perturbation components and to microphysics: these phenomena
lead to the virialization of the system. It can be seen from the hydrodynamic
simulations that equilibrium is reached at tvir = 3tmax. The radius at which the
perturbation becomes stable is the virial radius Rvir.

Assuming that the system at the final stage is virialized, we can consider the
relation

2T + V = 0 , (2.69)

where T represent the kinetic energy and V the potential energy of the system.
Considering the potential energy of a self-gravitating sphere of mass M :

V = −3

5

GM2

R
. (2.70)

We know from the Virial Theorem (Eq. (2.69)) that when a system is virialized,
T = −V/2. So, in this phase, the total energy is:

E = T + V =
1

2
V = − 3

10

GM2

R
. (2.71)

By assuming the conservation of mass and energy (E(tmax) = E(tvir)), we can write

E(tmax) = E(tvir) → T (tmax) + V(tmax) =
1

2
V(tvir) →

→ 0− 3

5

GM2

Rmax

= − 3

10

GM2

Rvir

→ Rvir =
1

2
Rmax .

(2.72)
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So, it follows that
ρp(tvir) = 8ρp(tmax) . (2.73)

We now have sufficient elements to calculate the value of the density contrast at
times tcoll and tvir:

δ(tcoll) =
8ρp(tmax)

ρ0(tmax)

(
tcoll
tmax

)2

≃ 180 , (2.74)

δ(tvir) =
8ρp(tmax)

ρ0(tmax)

(
tvir
tmax

)2

≃ 400 . (2.75)

Again, the same quantities can be calculated in linear theory for comparison:

δL(tcoll) = 1.06

(
tcoll
tmax

)2/3

≃ 1.69 , (2.76)

δL(tvir) = 1.06

(
tvir
tmax

)2/3

≃ 2.2 . (2.77)

The nonlinear theory thus predicts values very close to those measured, unlike the
linear theory, which differs by two orders of magnitude from the actual data.

Underdensities

The evolution of subdensities is very different than that of their overdense counter-
parts. These regions, commonly called voids, exhibit direct radial acceleration of
shells from the inner to the outer zones of the perturbation. The decrease in density
is physically limited to the asymptotic reaching of δ = −1.

Let us consider an inverse top-hat spherically symmetric underdense perturba-
tion as a set of concentric shells with respective radii ri. Knowing that each shell is in
a newtonian regime, we can determine the acceleration through the mass contained
in each of them:

ä =
d2r

dt2
= −GM

r
= −4πG

3
ρ0(1 + ∆)r . (2.78)

At the initial time, ti, we have:

M(ti) =
4π

3
ρ0r(ti)

3(1 + ∆(ti)) , (2.79)

and ∆(ti) is the one from the Eq. (2.42) calculated at t = ti, i.e. the average value
of δ(ti) within ri. Equation (2.78) can be solved analytically, for an EdS universe,
by parameterising the evolution of the density in the following way:

1 + ∆(r, t) =
ρ(r, t)

ρ0(r, t)
=

9

2

(sinh θ − θ)2

(cosh θ − 1)3
. (2.80)

The initial density deficit, ∆(r, t), can also be derived in linear theory:

∆L
i = −

(
3

4

)2/3
3

5
(sinh θ − θ)2/3 . (2.81)
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The outflow of matter from the centre of the perturbation causes the density to
decrease asymptotically to δ = −1. During this process, the various shells experience
a force that depends on their density. The shells that initially are located in the
central zones of the voids are less dense than the outermost shells and therefore
acquire a greater velocity. Thanks to this phenomenon, these shells can reach and
overcome the outer ones: this process is called shell crossing and contributes to
the tendency of matter in the universe to accumulate in filaments and sheets. We
can think of the shell-crossing moment in an ideal void, i.e. spherical, isolated and
without substructures, as that moment when the evolutionary regime changes from
quasi-linear to midly-nonlinear. From the shell-crossing on, the evolution of the void
can be described by a self-similar outward moving shell (Suto et al., 1984). We can
show that, at the shell-crossing event, the void has a precisely determined excess
Hubble expansion rate (Sheth & Van De Weygaert, 2004)

Hsc =
4

3
H(tsh) , (2.82)

where H(tsc) is the Hubble parameter of the background Universe.
The value of the density threshold at which shell-crossing occurs can be calcu-

lated via Eq. (2.53) in which the parameter θsc is substituted:

1 + δNL
v,sc ≃ 0.205 , (2.83)

in which the notation “NL”means nonlinear. It is straightforward to observe, there-
fore, that voids are structures in a regime only moderately nonlinear. Furthermore,
we can calculate the density threshold in linear theory, which results to be

δLv,sc ≃ −2.71 . (2.84)

It is possible to calculate the expansion factor for the radius of a underdensity that
has expanded until reaching the shell-crossing phase: (1 + δNL

v,sh)
−1/3 ≃ 1.697 in co-

moving radius. Note that these numbers do not depend on the size of the void. We
can therefore conclude that voids are subdense structures that evolve in a semi non-
linear manner tending to expand and assume a spherical shape, unlike overdensities
that tend to evolve in a highly nonlinear way, collapsing and aggregating into sheets
and filaments.

2.2.2 The Zel’dovich approximation

The transition between linear and nonlinear regime for density perturbations is
described by the Zel’dovich theory (Zel’dovich 1970, see Shandarin & Zeldovich,
1989, for an exhaustive review). In particular, the Zel’dovich approximation relates
the comoving coordinates r⃗ = x⃗/a(t), where a(t) is the expansion factor, at a certain
time t, to the Lagrangian coordinates q⃗ a t → 0 through the following relation:

r⃗(q⃗, t) = a(t)[q⃗ + b(t)s⃗(q⃗)] . (2.85)

The first term, a(t)q⃗, describes the cosmological expansion while the second term,
b(t)s⃗(q⃗), describes the evolution of the perturbation. In particular, the factors a(t)
is, as usual, the cosmological expansion factor and b(t) is the growth rate of linear
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density fuctuation in the expanding universe. The factor s⃗(q⃗), the initial displace-
ment field, Ψ, can be expressed as

s⃗(q⃗) ≡ Ψ(q⃗) = −∇qΦ(q⃗) . (2.86)

In other terms, the Zel’dovich approximations assumes that the initial density per-
turbations are described by the gradient of a potential vector field (i.e. an initial
force). Particles are not subject to additional interactions at later times and this
implies that they can cross each other without causing any deviation in their motion.

The linear Poisson equation links the value of the density contrast to the gravi-
tational potential through the relation

δ = −D∇2Φ , (2.87)

where D = b(t)/a(t) is called the linear growth function. Thus, the divergence of
the linear Zel’dovich displacement field can be related to the density contrast (see
Falck et al., 2012, and references therein):

∇ ·Ψ = −δ . (2.88)

This relation will be fundamental in this Thesis work as it will be the base for the
reconstruction of the density field.

2.3 Halo bias

A fundamental problem in Cosmology is to understand how the spatial distribution
of tracers relates to the distribution of DM. The most commonly used mass tracers
in Cosmology are galaxies, galaxy clusters and DM haloes. We know that DM
makes a significantly higher contribution to the total mass with respect to baryons.
Furthermore, DM and baryons have a different evolution as they decouple from
radiation at different times and the former is not affected by microphysics.

A density contrast field can be defined from mass tracer (subscript “tr”) counts
in a volume V :

δtr =
Ntr(V )−N tr(V )

N tr(V )
, (2.89)

where Ntr(V ) and N tr(V ) are the number of tracers and the mean number of tracers,
respectively. The easiest way to parameterise the relationship between tracers in
mass and the total distribution of matter in the Universe (subscript “m”) is through
the linear, local, non-stochastic bias model proposed by Kaiser (1984):

δtr = bδm , (2.90)

where b is the linear bias factor, which depends on the cosmological scenario, red-
shift, and on tracer properties such as type, luminosity and mass. This model pro-
vides a description in linear regime at large scales. At small scales it loses validity
due to the nonlinear effects caused by microphysics.
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A simple and useful definition of bias is based on the 2PCF. Specifically, the bias
value is calculated by the square root of the ratio between the 2PCF of the tracers
and the 2PCF of the total matter component:

b =

√
ξtr
ξm

. (2.91)

ξtr has to be inferred from the distribution of tracers, while ξm usually can be derived
analytically from the theory.

2.4 N-body simulations

Unlike many other fields of Physics, Cosmology is characterized by the non repli-
cability of the studied phenomena, because of the unique nature of the Cosmos.
An important method of overcoming this issue and testing cosmological models is
through N-body simulations.

An N-body simulation is defined as a simulation capable of solving the N-body
problem. In the simplest but also most common case, only gravitational attraction
is considered. However, for more realistic results, the hydrodynamic effects resulting
from the presence of the baryonic matter have also to be taken into account. Sim-
ulations in which also the baryonic component is evolved are called hydrodynamic
simulations. Generally, the cosmological parameters of the Universe to be simulated
are fixed, and an initial configuration of particles, tracing the total mass distribu-
tion, is created. This initial condition is allowed to evolve freely and in a nonlinear
regime by solving the following system of equations:

Fi = GMi

∑
i ̸=j

Mj

r2ij
r̂2ij

ẍi =
dvi

dt
= Fi

Mi

ẋi =
dxi

dt
= vi

(2.92)

In these equations, for each i-th particle, position xi, velocity vi, mass Mi and
gravitational force Fi is computed. rij represents the distance between the i-th
particle and the j-th particle, while r̂ij is the related versor. Given the system
(2.92), the Euler equation can be formulated as

dxi

dt
+ 2

ȧ

a
vi = − 1

a2
∇Φ = −G

a3

∑
i,j ̸=i

Mj
xi − xj

|xi − xj|3
=

Fi

a3
, (2.93)

where a is the scale factor. Applying the second Friedman equation reported in
(1.26), the Poisson Equation becomes:

∇2Φ = 4πGρ̄(t)a2δ =
3

2
H2

0Ω0
δ

a
, (2.94)

where ρ̄(t) is the average non-relativistic matter density, δ the local density contrast,
H0 is the Hubble parameter and Ω0 the non-relativistic matter density parameter.
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N-body simulations, like all numerical simulations, are subject to the discretiza-
tion of quantities. The ones included in the system (2.92) are therefore calculated
over discrete time steps dt. There are several methods for calculating the force Fi

acting on the i-th particle, which differ in CPU efficiency, implementation simplicity,
mass and spatial resolution:

• Particle-Particle (PP). The force acting on the i-th particle is calculated
directly by adding up the contributions of all the other particles in the simula-
tion. This method is the most accurate, as it returns the exact solution of the
value of the forces, but it is also extremely expensive in terms of calculation
resources, as it scales as N2 (where N is the number of particles). Moreover, if
two particles move too close together, the force diverges to infinity, so a force
softening parameter is introducted.

• Particle Mesh (PM). All quantities which can be assumed to be field quan-
tities are treated as such. Potential, gravitational force and density are calcu-
lated by interpolating the quantities on the grid. For each point, the values
are calculated as a weighted sum using a weight function called kernel, which
can be of different types. Using a regular grid, equations can be simplified by
a transformation in Fourier space. Even though this may be the fastest of the
possible methods, its resolution is limited by the smothing scale of the grid.

• Tree code (HT). These methods make use of so-called barycentric codes
and the graph theory. A hierarchical tree is constructed: each region is de-
composed into sub-regions until it contains at most one particle. At each
level, each region is characterised by the total mass of the hosted particles
and the position of their centre of mass. Arbitrarily distant regions from the
particle under investigation are considered as a single particle with the above-
mentioned characteristics. In this way, the number of operations required for
calculating the force acting on each particle is reduced. This method is the
most widely used to date. In its standard version it scales efficiently (N logN)
and is easy to linearise, but requires a great amount of memory to store all
the levels of the hierarchical tree.

The first studies involving numerical simulations (Von Hoerner 1960, Aarseth &
Hoyle 1963) were based on solving the N-body problem for a few hundred particles.
Thanks to the enormous progress in technology and computational techniques seen
in recent decades, nowadays it is possible to run simulations with a number of par-
ticles on the order of trillions (Potter et al., 2017, an example can be seen in Fig.
2.1. In particular, the image shows a detail of the Uchuu simulation, to date the
biggest cosmological simulation with 2.1 trillion of DM particles). Despite the in-
credible successes of this branch of research, some strong limitations in cosmological
simulations still exist today, mainly due to the discretization of quantities and the
lack of resolution caused by the computational limitations.
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Figure 2.1: Distribution of DM in a Uchuu simulation snapshot, to date the
cosmological simulation with the largest number of DM particles (2.1 trillion in a
2000h−1Mpc box) present in literature. The images show, in particular, the DM halo
of the largest galaxy cluster formed in the simulation, at different magnifications.
Credits: Ishiyama et al. (2021).
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Chapter 3

Looking for cosmic voids

We can refer to cosmic voids as those wide, underdense structures that fill most of
the volume of the Universe, setting between the filaments of the cosmic web. As seen
in the previous chapter, voids are generated by the evolution of subdense primordial
perturbations. In Fig. 3.1, we present the simulated evolution of a cosmic void from
the primordial perturbation field to present time. During this evolution, cosmic voids
shift from linear to mildly nonlinear regimes, increasing their dimension, becoming
more spherical and moving mass from the central zones to the edges. In this way,
cosmic voids contribute to the formation of the cosmic web.

Although the evolution history and the morphology of voids are well known, a
widespread and unique definition of these objects has not been agreed yet. Despite
this issue, voids provide powerful cosmological probes through number counts (Sec.
3.2.2) and density profiles (Sec. 3.2.3), analogously to their positive counterparts in
the density field, i.e. galaxy clusters. These statistics are very important to constrain
cosmological parameters and in particular to investigate the nature of dark energy
and test cosmological models.

3.1 Void finding

Identification of voids is also non trivial. It is necessary to reconstruct their shape
and identify the position of their centres from the positions of the luminous trac-
ers, which are mostly arranged along the borders. Over time, several identification
methods have been proposed by the scientific community. Following the scheme
discussed by Lavaux & Wandelt (2009), we can classify these methods into three
different classes, according to the detection criteria: density, geometrical and dy-
namical.

3.1.1 Density-based methods

The simplest and straightforward method for detecting voids consists in identifying
empty spherical regions, or at most regions with densities below a certain fraction of
the mean cosmic density (Kauffmann & Fairall 1991, Hoyle & Vogeley 2004, Foster
& Nelson 2009, Elyiv et al. 2013, Micheletti et al. 2014). One of the most remark-
able applications of this method can be found in the context of the VIMOSPublic
Extragalactic Redshift Survey (VIPERS, Garilli et al. 2014). VIPERS was an ESO
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Figure 3.1: Simulation of an evolving void in a standard ΛCDM scenario. The
slice is 50 h−1Mpc wide and 10 h−1Mpc thick. Particles and smoothed density
field (smoothed on a scale of 4 h−1Mpc) are shown at six different timesteps: a =
0.05, 0.15, 0.35, 0.55, 0.75 and 1.0, from top left to bottom right Credits: Van de
Weygaert & Platen (2011).

40



programme with the purpose of examining the large scale structure (LSS) distribu-
tion of galaxies at z = 0.5 − 1.2, over total sky area of 24 deg2. Micheletti et al.
(2014) developed an algorithm for the detection of voids based on the identification
of empty spheres. Voids found in this way are thus defined as regions devoid of
galaxies with absolute magnitudes brighter than a specified limit (B-band brighter
than MB = −19.8). The method is based on the identification of empty spheres
within a catalogue cleaned of isolated galaxies, i.e. galaxies located in underdense
areas. This is done by calculating the distance between points of an equispaced grid
and the nearest galaxy to each of these points. Then, the volumes of each sphere
are calculated and the overlaps between voids removed. The main disadvantage
of this method is that a single sphere will not be sufficient to reconstruct the real
shape of the examined empty regions. Simply, more than one sphere will be found
inside the same cosmic void. Furthermore, a simple analysis may be performed to
define a posteriori the volumes that correspond to topologically connected spheres
satisfying a specific density cut-off. Figure 3.2 shows the results of the application
of the void detection algorithm on the VIPERS galaxies, which leads to a sample of
voids, identified as maximal empty spheres.

Figure 3.2: Maximal spheres (red circles) in the two different VIPERS samples;
grey points are galaxies detected as isolated and galaxies outside the sample redshift
range. The scales show comoving distance in Mpc and the corresponding redshift.
Credits: Micheletti et al. (2014).

41



3.1.2 Geometrical-based methods

The class of geometric void finders bases the identification of voids on the reconstruc-
tion of the density field through the subdivision of the volume in cells (which can
take various geometric forms). In each of these cells, the density value is evaluated.
Voids are reconstructed as groups of underdense cells and their centres identified as
local minima of the density field (Platen et al. 2007, Neyrinck 2008, Sutter et al.
2014a).

At the present day, the most popular algorithm exploiting this method is the Void
IDentification and Examination toolkit (VIDE, Sutter et al. 2014a). VIDE is based on
an enhanced version of the ZOnes Bordering On Voidness (ZOBOV, Neyrinck 2008)
algorithm, a parameter-free method that does not require any assumptions about
the void shape. Specifically designed to search for underdense zones, it is based on
the original VOronoi BOund Zones (VOBOZ, Neyrinck et al. 2005) method, designed
instead for the detection of overdensities.

The VIDE void finding procedure consists of three main steps:

1. As a first step, a Voronoi tessellation is performed on the tracer catalogue.
This process allows the division of the volume into cells, called Voronoi cells,
containing always only a single particle. Furthermore, each point within each
individual cell is closer to the particle contained therein than to any other
particle. At this point, assuming equal mass for each particle, the algorithm
computes the density mean value of each cell, simply by calculating the in-
verse of the Voronoi cell volume. A continuous density field is thus obtained.
An example of two-dimensional voronoi tessellation applied to a catalogue of
galaxies, extracted from the work of Neyrinck (2008), is shown in Fig. 3.3.

2. The second step consists in identifying the local minima of the density field,
represented by cells surrounded by neighbours with higher densities. Once this
process has been accomplished, local underdensity basins, known as zones,
are created. These basins are formed by merging cells of densities that are
gradually higher than the previous ones. The process stops when a cell of
lower density is encountered.

3. Finally, as last step, voids are shaped by joining the previously formed areas.
This is performed through a process called watershed, devised by Platen et al.
(2007). The word watershed refers to the analogy of a landscape being flooded
by a rising level of water. Suppose we have a surface in the shape of a landscape
(first image of Fig. 3.4). The surface is initially flooded at the location of
each minima. As the water level rises, a growing fraction of the landscape
will be flooded by the water in the expanding basins. Ultimately basins will
meet at the ridges corresponding to saddle points in the density field. This
intermediate step is plotted in the second image of Fig. 3.4. The ridges define
the boundaries of the basins, enforced by means of a sufficiently high dam. The
final result (see third image in Fig. 3.4) of the completely immersed landscape
is a division of the landscape into individual cells, separated by the ridge dams.
Furthermore, VIDE provides a void hierarchy, by using the identification of the
various basins and ridges. In this substructure partitioning, a parent void
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Figure 3.3: (a)Galaxies from a 40×40×5 (h−1Mpc)3 slice of the Aspen-Amsterdam
Void-Finder Comparison Project (Colberg et al., 2008) region. The outer boundary
is a 45h−1 Mpc square. (b) The 2D Voronoi tessellation of galaxies in this slice,
with each particle Voronoi cell shaded according to its area. The galaxies outside the
inner (40h−1 Mpc) boundary are shown because they contribute to the tessellation.
Credits: Neyrinck (2008).

holds a multitude of subvoids. Each void derives from one parent and could
have several child subvoids, organized into different levels.

After this process, the centre of the voids identified by VIDE is redefined as the
barycentre, X⃗, of the Voronoi cells constituting each void, weighted over the volume
of each individual cell:

X⃗ =

∑
i x⃗iVi∑
i Vi

, (3.1)

where x⃗i and Vi are the positions and Voronoi volumes of each tracer particle i,
respectively. Finally, the effective radius, rv, is calculated from the total volume of
the Voronoi cells that constitute each void, Vv =

∑
i Vi. The latter is defined as the

radius of a sphere having volume Vv.

3.1.3 Dynamical-based methods

This third and final class of finders is very different from the previous two. Methods
based on dynamic criteria do not use tracers to reconstruct the density distribution,
but use them as test particles to sample the velocity field (Forero-Romero et al. 2008,
Lavaux & Wandelt 2009, Elyiv et al. 2015). In these algorithms, voids are identified
as regions from which there is an outflow of tracers, rather than as underdense
zones. The dynamic void identification has the advantage of partially overcoming
the problems introduced by the shot noise, i.e. by the sparsity of tracers. Moreover,
it permits the actual reconstruction of continuous velocity and density fields.

Two of the most recent examples of this algorithm type are those presented by
Elyiv et al. (2015). Both algorithms, the Uncorrelating Void Finder (UVF) and the
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Figure 3.4: Three frames illustrating the principle of the watershed. The left-
hand frame shows the surface to be segmented. Starting from the local minima
the surrounding basins of the surface start to flood as the water level continues to
rise (dotted plane initially below the surface). Where two basins meet up near a
ridge of the density surface, a “dam” is erected (central frame). Ultimately, the
entire surface is flooded, leaving a network of dams defines a segmented volume and
delineates the corresponding cosmic web (right-hand frame). Credits: Platen et al.
(2007).

Lagrangian Zel’dovich Void Finder (LZVF), can reconstruct the Lagrangian positions
of galaxies, through the randomisation of the Eulerian ones. The basic idea behind
the two dynamical void finders is rather simple. Let us consider a volume of the
Universe characterized by large-scale structures in the DM component and probed
by “particles” like haloes or galaxies. The goal is to use these as test particles and
trace their orbits back in time to a homogeneous and isotropic initial distribution,
i.e. to reconstruct their Lagrangian positions q⃗. This is done in two ways:

• UVF. The reconstruction is performed by exploiting the different correlation
properties of the initial and final particle distributions. At the present epoch
the spatial distribution of galaxies is highly clustered. Deviations from the
homogeneity are conveniently and readily characterized by their 2PCF. On
the other hand, at early epochs the distribution of matter is supposed to be
highly homogeneous, with no spatial correlation. This suggests that a practical
way to trace galaxy orbits back in time, at least in a statistical sense, is by
relaxing their present spatial distribution to homogeneity, practically defined
as a state in which the correlation function at all separations is zero. UVF

uses an algorithm based on the Rintoul & Torquato (1997) method, effectively
moving the system away from its minimum energy configuration;

• LZVF. The reconstruction, in this case, is based on the Zel’dovich approxi-
mation (see Eq. (2.2.2)) to the growth of density fluctuations. More specif-
ically, the algorithm exploits the path interchange Zel’dovich approximation
method of Croft & Gaztanaga (1997) to trace the orbit of the objects in a
self-gravitating system by minimizing its action. Since objects have straight
orbits, it is possible to simply connect their Eulerian positions to those of a
randomly distributed sample. In each iteration performed by the algorithm,
the connections are modified, hence setting new paths to different grid points,
and accepting the result if the total path decreases. Since the total path is
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proportional to the action, this system is relaxed to the correct dynamical
configuration.

After reconstructing the Lagrangian positions q⃗, the particle displacement field, Ψ⃗ is
obtained, by simply connecting them to the Eulerian positions, v⃗, hence assuming
straight orbits: q⃗− v⃗ = Ψ⃗(q). The divergence of the displacement field is associated
with the mass density field through the relation (2.88) and used to identify voids
as sinks of mass streamlines in time reverse variables. The final void catalogue
provides the comoving coordinates of the void centres, found as the position of a local
minimum of the divergence field, and the related effective radii. An application of the
two treated finders is shown in the Fig. 3.5. The top panels show the reconstruction
of the displacement field, while the bottom panels show the position of the tracers
and the divergence field obtained, which can be assumed to be the density contrast
field. As can be seen, the arrows showing the back-in-time trajectories consistently
point towards the centre of the underdense areas.

Figure 3.5: The reconstructed displacement field (top panels) and its divergence
(bottom panels) obtained with the two void finders, the UVF (left-hand panels) and
the LZVF (right-hand panels). The size of the displayed region is 80× 80 h−1 Mpc,
with a thickness of 5 h−1 Mpc. Black dots represent DM haloes. Credits: Elyiv
et al. (2015).
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3.2 Cosmic voids statistics

In the recent years, cosmic voids have emerged as an increasingly valuable cosmo-
logical probe. The development of large galaxy surveys has allowed us, and will
increasingly do it in the future, to obtain information on a large number of tracers,
distributed over wide volumes. Both of these characteristics are crucial for void
statistics: wide volumes provide a significant number count even for the largest
voids, while a high number of tracers allows to improve the spatial resolution and
thus to study the smallest underdensities and the substructures of these systems.

The vast spatial extension of cosmic voids, in combination with their characteris-
tic underdense nature, makes these objects the ideal environment for testing a wide
variety of astrophysical and cosmological models. The quasi-absence of matter in
the centre of the voids makes these regions particularly suitable for the study of DE
and modified gravity models. For example, it is expected that possible deviations
from general relativity will modify the density profiles (Cai et al. 2015, Barreira
et al. 2015, Perico et al. 2019, Contarini et al. 2021). Furthermore, the shapes (Lee
& Park 2009, Lavaux & Wandelt 2012) and sizes (Bos et al. 2012, Pisani et al. 2015,
Verza et al. 2019, Contarini et al. 2022) of voids are sensitive to the DE equation
of state. Voids are also particularly sensitive to the presence of massive neutrinos :
the density fraction of neutrinos is indeed more prominent in underdense regions.
Moreover, the typical void size spans the range of neutrino free-streaming scale,
which depends on the neutrino mass. Indeed, both void density profiles and void
abundances have been shown to have a great potential in constraining the total mass
of neutrino species (Massara et al. 2015, Kreisch et al. 2021, Contarini et al. 2021,
Contarini et al. 2022).

Another key feature of cosmic voids is their complementarity with standard over-
dense probes (Nadathur et al. 2020, Kreisch et al. 2021, Woodfinden et al. 2022, Con-
tarini et al. 2022). The parallel and distinct evolution of subdensities with respect
to their overdense counterparts has the effect of providing statistics independent of
those of standard cosmic probes, resulting in constraints that are highly orthogonal
to those provided by other cosmic structures. This feature is crucial, since with the
joint analysis of cosmic voids and other probes at the same time, it is possible to
resolve degeneracies in the estimates of cosmological parameters.

The most important cosmological contribution of void statistics comes from num-
ber counts and density profiles. In particular, concerning the first statistics, we un-
derline that it is possible to predict the void counts as a function of their radius
through the application of the so-called excursion set formalism, as we will see in
the following section.

3.2.1 Excursion set formalism

The excursion-set formalism is an analytical framework to study the large scale
structure of the Universe. This approach allows us to predict the number density of
cosmic objects by relating the cosmological linear perturbation theory to its nonlin-
ear counterpart at late time (Bond et al., 1991). Moreover, it is well known that, in
combination with the spherical collapse, this approach provides insights into many
aspects of halo formation and can be used to predict DM halo abundances and
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clustering (see Zentner 2007, Jennings et al., 2013, and references therein). The
excursion set formalism at its heart relies on the knowledge of the statistical prop-
erties of the linear density field. The linear density fluctuation field smoothed on a
scale R, in Fourier space, is given by

δ(x⃗, R) =
1

(2π)3

∫
δ(k⃗)W (k⃗, R)e−ik⃗·x⃗d3k , (3.2)

where δ(k⃗) is the Fourier transform of the density perturbation andW (k⃗, R) is a filter
function in Fourier space. The smoothing scale R is related to the corresponding
variance of the linear density field:

σ2(R) ≡ S(R) =
1

2π2

∫
k2P (k)|W (k⃗, R)|2dk , (3.3)

where P (k) is the matter power spectrum in linear theory. We can refer to a tra-
jectory δ(x, S) as a sequence of overdensities given by successive increments ∆S in
the smoothing scale. When a top-hat filter in k-space is used, then δ(x, S) executes
a random walk. Given an underlying Gaussian distribution for the linear density
field, the excursion-set formalism allows us to associate probabilities to random
walks that satisfy a given set of criteria for the smoothing scale at which they cross
various density thresholds.

The spherical evolution model, in combination with the excursion set, provides
a good description of the statistics of DM halo for the collapse of perturbations. We
can then use the excursion-set formalism to determine the fraction of trajectories
that cross for the first time the barrier δLc , i.e. the critical value for linear density
fluctuation1 (see Sec. 2.2.1), accounting also for the cloud-in-cloud process. The
cloud-in-cloud process occurs when, during the formation of a structure, the trajec-
tories cross the δLc threshold several times. From a physical point of view, this occurs
when one halo, when collapsing, envelops another halo. It is necessary to consider as
halo only those objects that are not contained in larger objects, therefore consider-
ing only the smallest of the possible σ(M) values measured at the various threshold
crossings.

We can extend the model to predict the evolution of underdense regions in the
initial density field. These are naturally associated with voids in the present day
evolved density field. A key assumption in making the connection between the ex-
cursion set and the abundance of nonlinear objects is that each collapse occurs in
isolation. This makes sense for collapsing objects since the comoving volume occu-
pied shrinks. In contrast to the overdense regions which contract, voids expand. We
shall see that this causes a problem for mapping the excursion-set predictions onto
the statistics of voids. Nonetheless let us start with the simple spherical evolution
model following Sheth & Van De Weygaert (2004). The critical density threshold is
defined to be the shell-crossing density, δv = −2.71. We can follow the excursion-set
formalism to determine the fraction of random walks that pierce the barrier δv. Sim-
ilar to the cloud-in-cloud process, the void-in-void process accounts for the fact that
a void of a given size may be embedded in another underdense region on a larger

1This value lies in the range δLc = [1.06, 1.69], density contrast of turn-around point and complete
halo collapse, respectively.
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scale. We thus define the first crossing distribution by associating the random walks
with the smoothing scale for which they first cross the barrier δv. A second process,
the void-in-cloud scenario, occurs when a void of a given size is embedded in an over-
dense region on a larger scale, which will eventually collapse to a halo and squash
the void out of existence. Finally, the situation in which a large-underdense region
embeds a small-overdense one, known as cloud-in-void, is irrelevant for the formation
of collapsed structures, because clouds which condense in a large scale void are not
torn apart as their parent void expands around them (Van de Weygaert, 2014). This
asymmetry between the void-in-cloud and cloud-in-void processes leads to a sym-
metry breaking between the halo and void populations: they evolve out of the same
symmetric Gaussian initial conditions, Though overdensities and underdensities are
expected to evolve towards a distribution with different characteristics. In order to
account for this asymmetry, Sheth & Van De Weygaert (2004) proposed that the
excursion-set method applied to voids requires a second barrier, the threshold for
collapse of overdense regions, δc. Therefore, when calculating the first crossing dis-
tribution, we need to determine the largest scale at which a trajectory crosses the
barrier δv, given that it has not crossed δc on any larger scale.

We show in Fig. 3.6 a summary of the four processes described by the excursion-
set formalism. This approach provides the basics to the modelling of the theoretical
void size function, which we describe in the next section.
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Figure 3.6: Four modes of the excursion-set formalism. Each row illustrates one of
the four basic modes of hierarchical clustering: the cloud-in-cloud process, cloud-in-
void process, void-in-void process and void-in-cloud process (from top to bottom).
Each mode is illustrated using three frames. The leftmost panels show random
walks : the local density perturbation δ(x) as a function of (mass) resolution scale
Sm. In each graph, the dashed horizontal lines indicate the collapse barrier δc and the
shell-crossing void barrier δv. The two frames on the right show how the associated
particle distribution evolves, to an earlier (second column, central panels) and a
later time (third column, rightmost panels). Credits: Sheth & Van De Weygaert
(2004).
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3.2.2 Void size function

Similarly to what happens with halo, the void overdense counterparts, a zero-order
statistic can be defined for voids through object counts. However, while for overden-
sities the number counts are measured as a function of mass, obtaining, for example,
the halo mass function, void counts are measured as a function of radius. Specif-
ically, we define the void size function, VSF, as the comoving number density of
cosmic voids as a function of their effective radii.

Sheth and van de Weygaert model

The VSF has been modelled for the first time by Sheth & Van De Weygaert (2004,
hereafter the SvdW model), with the same excursion-set approach used to model
the mass function of DM haloes (Press & Schechter 1974, Bond et al. 1991). As seen
previously, the distribution of fluctuations that become voids with their evolution is
obtained as the conditional first crossing distribution of the matter density contrast
filtered at decreasing Lagrangian radius in a double barrier problem. A fluctuation
can only be regarded as a void of radius Rv if the density contrast filtered on this
scale has exceeded their threshold for void formation, δLv , without having exceeded
the threshold for collapse δLc at any larger scale. The assumption on which the model
is based, i.e. spherical voids, allows us to overcome the problems associated with
the fact that Sheth & Van De Weygaert (2004) multiplicity function is derived for
spherical fluctuations in Lagrangian space. The initial density field evolved linearly
at the epoch of interest, while the observed voids live in Eulerian space, in other
words in the completely nonlinearly evolved density field.

The excursion-set theory applied to underdensities predicts a fraction of the
Universe occupied by cosmic voids given by the multiplicity function flnσ:

flnσ = 2
∞∑
j=1

jπx2 sin(jπD) exp

[
−jπx2

2

]
, (3.4)

where

D ≡ |δLv |
δLc + |δLv |

, (3.5)

x ≡ D
|δLv |

σ . (3.6)

The δLc value is expected to be between 1.06 ≤ δLc ≤ 1.69, i.e. a value between
the DM turn-around and collapse density contrasts in linear theory, as both can be
assumed as acceptable values. It is finally possible to derive the number density
distribution of voids as a function of their size in linear theory, by exploiting the
assumption that when moving from the linear to the nonlinear regime, the total
number of voids is preserved:

dnL

d ln rL
=

flnσ(σ)

V (rL)

d lnσ−1

d ln rL
(3.7)

where V (rL) = 4
3
π(rL)3 is the volume of the spherical fluctuation of radius rL.
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While reaching shell-crossing, underdensities are expected to have expanded by
a ∝ (δLv )

−3. A correction in radius is required. The void abundance therefore
becomes:

dn

d ln r

∣∣∣
SvdW

=
dn

d ln(arL)
. (3.8)

However, Jennings et al. (2013) argued that this model is unphysical, as the con-
servation of the number of voids may not be valid, expecially for large voids, given
their natural tendency to expand and overlap. Indeed, it is possible to calculate
THE fraction of the total volume of the universe occupied by voids as:

F(R) =

∫ ∞

R

V (r)
dn

d ln r

dr

r
, (3.9)

which leads to a F value greater than one.

Volume conserving model

In order to overcome the total void volume issues of the SvdW model, Jennings
et al. (2013) proposed the so-called volume conserving model (Vdn, hereafter). This
model is no longer based on the conservation of the total number of voids but
assumes that the total volume of voids is conserved during the transition between
linear and nonlinear regime. Specifically, if we define the volume fraction in linear
theory, FL, as

FL(R) =

∫ ∞

RL

V (rL)
dn

d ln rL
drL

rL
, (3.10)

then this fraction is conserved if we define the nonlinear abundance as

V (r)dn = V (rL)dnL
∣∣
rL(r)

. (3.11)

Therefore the void abundance becomes:

dn

d ln r

∣∣∣
V dn

=
V (rL)

V (r)

dn

d ln rL
d ln rL

d ln r

∣∣∣
rL(r)

. (3.12)

Figure 3.7 shows a comparison of the volume fractions of the Universe occupied
by the voids predicted for the various models considered. For the SvdW model,
the fraction unphysically exceeds unity, while the Vdn model conserves the total
fraction from the linear theory. Figure 3.8, on the other hand, shows the predicted
VSF and the corrisponding void abundance measured in simulations. Void counts
are in excellent agreement with the Vdn model, but not with the SvdW model,
which systematically overestimates abundances.

Extension of the volume conserving model for biased tracers

Although the Vdn model provides an accurate prediction of void statistics, this
is limited to voids evolving in the total density field. The distribution of matter
in the Universe is represented in a first approximation by the DM distribution.
By measuring voids through the density distributions of biased tracers, such as
galaxies or DM haloes, the theory would fail to correctly predict the result of the
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Figure 3.7: Cumulative volume fraction occupied by voids with radii larger than
R for these theoretical models: linear theory (blue striped region, R = rL), SvdW
model (orange striped region, R = r) and Vdn model (grey shaded region, R = r).
These regions correspond to the expected range of 1.06 ≤ δc ≤ 1.69 and with
δv = −2.7 throughout. For SvdW the fraction unphysically exceeds unity at R ∼
2h−1 Mpc while for the Vdn model conserves the total fraction from the linear
theory of F(0) ∼ 0.3. Credits: Jennings et al. (2013)

.
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Figure 3.8: Void abundance in simulations compared to the model predictions.
Voids have radius equivalent to the radius of a sphere with density ρv = 0.2ρm in
the DM distribution of ΛCDM cosmology simulations, with box sizes of 64h−1 Mpc
(green), 128h−1 Mpc (purple), 256h−1 Mpc (red) and 500h−1 Mpc (cyan). The
error bars represent the scatter on the mean from eight different realisations of this
cosmology in each box size. The range in predictions cover the parameter interval
δc = [1.06, 1.69] with δv = −2.7 and are consistent with simulations for Vdn (grey
shaded) but not for SvdW models (orange hatched). Credits: Jennings et al. (2013).
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measurement, due to the effect of the bias (see Sec. 2.3). The action of bias can
also be measured in simulations through the trends of the mean profiles of voids in
the various tracer distributions. The DM profiles are less deep and steep than those
of the biased tracers. As a direct consequence, it follows that rescaling the sample
of voids identified in different biased tracer field to the same density contrast, the
corresponding mean effective radius increases with the minimum mass of the sample.

In order to be able to use real voids, i.e. measured by observation of biased
tracers, as cosmological probes, it is necessary to relate the characteristic density
threshold used in the theoretical model, δLv , to the corresponding one in the biased
density field (Contarini et al., 2022). Based on Contarini et al. (2019) and Contarini
et al. (2021) and as presented in Contarini et al. (2022), it is possible to show how
the Vdn model can be extended to consider a linear relationship, F , between tracer
and matter density contrast in cosmic voids, δNL

v,tr and δNL
v,DM, with a dependence only

on the large-scale effective bias beff :

δNL
v,DM =

δNL
v,tr

F(beff)
, (3.13)

where δNL
v,DM is the value of the threshold in the DM field to be used in the Vdn

model, after its conversion in linear theory (Jennings et al., 2013). To use the
rescaled threshold in the Vdn model, δNL

v,DM is converted to its linear counterpart
through the fitting formula provided by Bernardeau (1994):

δLv,DM = C[1− (1 + δNL
v,DM)

−1/C] , (3.14)

where C = 1.594. This equation is exact for models with null cosmological constant
Λ, and is a good fit for any values of Λ, especially for the underdense regions.

We now introduce a convenient relation describing the punctual bias calculated
at reff , bpunct:

bpunct ≡
〈

δNL
v,tr(r = reff)

δNL
v,DM(r = reff)

〉
(3.15)

Since in our analysis the value of δNL
v,tr is fixed (usually at −0.7), then δNL

v,DM(r = reff)
is exactly the value we need to rescale the void size function model. The function
F , described in Eq. (3.13), is well modelled by the linear relationship (Contarini
et al., 2019):

F(beff) = Bslopebeff +Boffset , (3.16)

where Bslope and Boffset are the values of the first and second coefficients of the
linear function, respectively. This relationship provides the necessary calibration for
rescaling voids from the density field of the DM to the density field of the biassed
tracers. The coefficients Bslope and Boffset are determined through a linear fit on the
bpunct − beff plane, i.e. on the values of bpunct calculated at various z.

3.2.3 Void density profile

Another important statistical tool related to voids is the density profile, studied in
detail in the recent literature (see e.g. Sutter et al. 2014b, Hamaus et al. 2014).
The void density profile is defined as the spherically averaged relative deviation of

54



mass density around a void centre from the Universe density mean value ρ. Using
the tracer particles, the density in a radial shell of thickness 2δr at distance r from
a void centre can be estimated as

ρv(r) =
3

4π

∑
i

mi(r⃗i)Θ(ri)

(r + δr)3 − (r − δr)3
, (3.17)

where mi is the mass of particle i, r⃗i represent its coordinate vector of length ri,
and Θ(ri) ≡ θ[ri − (r − δr)]θ[−ri + (r + δr)] combines two Heaviside step functions
θ to define the radial bin.

Hamaus et al. (2014) proposed a simple empirical formula to parametrise the
profile:

ρv(r)

ρ
− 1 = δc

1− (r/rs)
α

1 + (r/rv)β
, (3.18)

where δc is the central density contrast, rs a scale radius at which ρv = ρ, called
effective radius, and α and β determine the inner and outer slope, respectively, of
the density peak due to the overdense shell enveloping the void, called compensation
wall. In Fig. 3.9 we show the best fits of this four-parameter model to the stacked
void density found in a numerical simulation from Hamaus et al. (2014). Voids

Figure 3.9: Stacked density profiles of voids at z = 0 in eight contiguous bins in
void radius with mean values and void counts indicated in the inset. Shaded regions
depict the standard deviation σ within each of the stacks (scaled down by 20 for
visibility), while error bars show standard errors on the mean profile σ/

√
Nv. Solid

lines represent the best-fit solutions from Equation (3.18). Credits: Hamaus et al.
2014.

are deeply underdense in their interiors, especially the smallest ones. All the pro-
files exhibit overdense compensation walls with a maximum located slightly outside
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their effective radius, shifting outwards for larger voids. The height of the com-
pensation wall decreases with void size, causing the inner profile slope to become
less steep and the wall to spread. This trend divides all voids into the ones being
overcompensated or undercompensated, depending on whether the total mass inside
their compensation wall is respectively higher or lower than the mass missing in
the centre. Ultimately, at sufficiently large distances to the void centre, all profiles
approach the mean background density.

Another method for calculating density profiles consists in calculating the cross-
correlation between centres of voids and tracers, using the two-point correlation
function, ξv,tr(r). This estimator is associated to the probability of finding a tracer
at a comoving distance r from a void centre (see Sec. 2.1.3). It can be expressed as
the integrated void density contrast profile, computed in a sphere of radius r and
volume V centred in voids:

ξv,tr(r) =
1

3r2
d

dr
[r3∆(r)] , (3.19)

where

∆(r) =
3

r3

∫ r

0

δ(r′)r′2dr′ . (3.20)

A final method for calculating the density profile consists in using the relation
between the displacement field divergence and the density contrast, described by
Eq. (2.88) and, more in general, by the Zel’dovich theory (Sec. 2.2.2). According
with this theory, the mean value of the divergence calculated at radius r from the
centre of the voids assumes exactly the value of the density contrast. With respects
to the previous measuring strategies, this method has the advantage that it does not
depend directly on the tracer positions and thus overcomes the problems associated
with mass discretisation. However, this relationship loses its validity in the central
regions of voids, where the nonlinear regime starts to break down. Moreover, it
requires the exact reconstruction of the linear displacement field. The application
of this reconstruction of density profiles will be analysed in more details later in this
Thesis work.
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Chapter 4

Back in time void finder

The identification of voids represents the first and fundamental step towards their
cosmological exploitation. As introduced in Sec. 3.1, the main identification meth-
ods, based on geometric and density criteria, suffer from problems related to shot
noise and mass discretisation. To overcome these issues, in this Thesis work we de-
velop a new void finder based on dynamic criteria, that we call Back in time void

finder (BitVF), improving the idea proposed by Elyiv et al. (2015). BitVF allows us
to reconstruct a continuous density field and provides the positions of voids without
using mass tracers to sample the density field. The BitVF algorithm is presented in
Sec 4.1. Moreover, it is possible to clean up the void catalogue obtained with BitVF

in order to obtain void statistics in agreement with the Vdn model (Sec. 3.2.2),
allowing the following cosmological exploitation of the acquired data. A first imple-
mentation of the cleaning algorithm, based on the work of Jennings et al. (2013),
was presented in Ronconi & Marulli (2017). As part of this Thesis work we proposed
a new improved version of this algorithm, characterised by higher stability and accu-
racy, presented in Sec. 4.2 Both BitVF and the cleaning algorithm are now included
in the CosmoBolognaLib (CBL, see Sec. 4.4) library (Marulli et al., 2016), a large
set of free software C++/Python libraries for cosmological computing. Finally, the
results of the application of BitVF to various cosmological tracer samples from the
DUSTGRAIN-pathfinder (Sec. 4.3) simulations are presented in Sec 4.5.

4.1 The void finder algorithm

The BitVF algorithm can be summarised in three main steps: reconstruction of
the displacement field (Sec. 4.1.1), computation of the density field (Sec. 4.1.2),
identification of voids (Sec. 4.1.3). In the first step, tracers are used to sample
the displacement field between their current position and their position at the time
of perturbation formation. The reconstruction can be achieved using two different
methods. The first method, Lagrangian Zel’dovich approximation for void

finder algorithm (LaZeVo) consists of a statistical reconstruction of the displace-
ment field based on a minimum action minimisation. The second method, trivially
called exact reconstruction, is intended for use in simulations and is based on
the reconstruction of the displacement field using the identification numbers (IDs)
of the various tracers. An exhaustive description of both methods is given in Sec.
4.1.1. Once the displacement field has been reconstructed, the density field is imme-
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diately obtained through Eq. (2.88). At this point, the local minima of the density
field, identified in the underdense regions, are defined as the centres of the voids.
The position of the centres is corrected through a weighted mean of the local values
of the density field. Finally, the void radius is computed as the radius of a sphere
containing a certain fraction of the average density of the Universe. The various
steps leading to the identification of voids are schematised in Fig. 4.1.

Figure 4.1: The diagram shows the various steps of the BitVF algorithm that
permit the identification of voids from a catalogue of tracers.

BitVF requires two catalogues as input: one providing the comoving coordinates
of the cosmic tracers and the other providing the comoving coordinates of the trac-
ers at the time of the formation of the perturbations (i.e. a catalogue of random
positions). The algorithm, after receiving as input a set with the fundamental cos-
mological parameters, is able to create a random catalogue in case it is not provided
by the user (However, for future applications to real data, the catalogues may have
complex geometries and therefore the random catalogue will have to be provided by
the user). The coordinates of the random positions are randomly extracted from a
uniform distribution in a volume equivalent to the one of the cosmic tracer catalogue.

At this stage, before moving on to the reconstruction of the displacement field,
BitVF executes an algorithm whose purpose is to minimise the particle search time.
This algorithm, called ChainMesh, is a “pixelisation”algorithm, i.e. it divides the
space into cells. The volume is in fact divided into cubic cells, each of which is
associated with the coordinates of the centre, a label and the index of the particles
contained. Through an algorithm that allows cells to be selected around a selected
position, the search volume is restricted to a region of arbitrary size, making the
search for particles considerably more efficient. This is very useful for example, as
we will discuss in Sec. 4.1.1, in the creation of the tracer-random pairs on which the
LaZeVo method of displacement field reconstruction is based.
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Figure 4.2 shows an example of the application of the ChainMesh algorithm
for searching particles within a certain radial distance from a given point. This is
just one of the possible applications of the algorithm, whose current version based
on object-oriented programming, included in the CosmoBolognaLib libraries, was
implemented as part of this Thesis work. In particular, a whole class of methods
has been developed and included in the CBL, which allow particles to be searched
and managed according to different criteria. For example, it is possible to search for
the N particles closest to a certain point or to search for particles contained within
a certain radial distance from a selected one, ensuring high performance efficiency.

Figure 4.2: A schematic image of the ChainMesh technique for two different cell
size values. In these applications, for a given point (the red dot), ChainMesh searches
for objects within the region (marked by the dashed red circle) of radius rmax. Cell
size should be a compromise between RAM consumption and computational time.
A larger cell number allows faster selection of the searched particles, at cost of higher
resource consumption.

4.1.1 Displacement field reconstruction

Once the preliminary operations have been completed, BitVF is ready for the re-
construction of the displacement field, which is the cornerstone on which we based
the search for voids through any considered method. Potentially, any method that
allows us to statistically reconstruct straight-line trajectories between the current
positions of the tracers and their positions at the Universe earlier time could be
used for perform this reconstruction. Two displacement field reconstruction meth-
ods were applied in this Thesis work and included in BitVF. The first, LaZeVO, is
based on a statistical reconstruction of trajectories performed by minimizing the to-
tal distances between tracer-random position pairs, a quantity directly proportional
to the total action of the system. The second, on the other hand, called simply
Exact reconstruction, is used for analyses of simulations. It allows the positions
of the analyzed tracers to be linked with their positions at the initial time. However,
it is crucial to remember that each method must reconstruct rectilinear trajectories,
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as the entire density field reconstruction procedure is based on exploiting the dis-
placement field through Zel’dovich theory (see Section 2.2.2), which involves the
linearisation of trajectories.

LaZeVo reconstruction

The algorithm underlying the LaZeVo reconstruction is subdivided into two main
phases: the setting phase and the swapping phase. The setting phase provides
a preliminary assignment of tracer-random position pairs. This step is crucial to
reduce the calculation time and increase the accuracy of the reconstruction process.
The idea behind the method is to facilitate the identification of the minimum action
configuration (or, more precisely, the minimum total displacement) by attempting to
eliminate very long distance displacements, which are evidently unphysical, already
in the initial stages. The setting phase operates in the following way:

1. The comoving coordinates of a point in the volume occupied by the tracers
are randomly extracted;

2. Tracers located within a certain distance (set at four times the mean particle
separation, mps) from the randomly extracted point are found;

3. The N random positions closest to the extracted point are identified, where N
is the minimum between the number of tracers found in the previous step and
Nmax = 100. This limit is imposed to maintain a certain number of unpaired
tracers during the first iterations of the algorithm, in order to make the ini-
tial displacement range more uniform. Without this expedient, each iteration
might create a “bubble”of particles paired with neighbouring random posi-
tions, but without establishing interconnections between the various bubbles.
This leads to a loss of efficiency in minimising the total displacement distance;

4. N tracer-random pairs are randomly created between the selected positions;

5. The algorithm is iterated until each tracer has been assigned to random ob-
jects. The result of a first run of the four steps of the algorithm, applied to
a 2D toy model, is shown in Fig. 4.3. In particular, the process of particle
selection and pairing is visualized.
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Figure 4.3: The figure shows the result of the first iteration of the setting algorithm
of the LaZeVo method in a 2D toy model. In particular, the tracer positions taken
from a very thin slice (5 h−1Mpc) of the central zones (100×100 h−1Mpc) of a 0.4%
subsample of the DUSTGRAIN-pathfinder simulations (Giocoli et al., 2018) are shown
(in blue), in addition to the random catalogue positions (in red). The green circle of radius
4 mps indicates the area around the randomly extracted position (dark green cross) where
position pairing is performed. Finally, the arrows show the N matches performed. In this
example, Nmax = 10.

Once the setting process is complete, the actual reconstruction of the displace-
ment field can be performed. The fundamental idea, as previously discussed, is to
minimise the total distance of the displacements of the particles composing the sys-
tem, in order to minimise the total action. The minimum solution can be calculated,
from a theoretical point of view, by solving the combinatorial calculus assignment
problem. This problem can be resolved exactly by evaluating all the possible permu-
tations of the system, N !, where N is the number of particles. Dealing with systems
with a very large number of particles (N > 106), it is simply impossible to solve
the problem in this way. Although algorithms that greatly improve the scalability
of the problem exist (Kuhn 1955, Orlin et al. 1993), the only possible method of
dealing with such a large number of tracers is through the research of an approx-
imate solution. The approximate solution is sought through a “swapping”process,
starting with the configuration described above. A point-by-point description of the
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implemented algorithm is given below.

1. A tracer is randomly selected.

2. Three other tracers are selected from the N = 112 closest to the selected one.
N represents the number of particles expected in a sphere of radius equal to 3
mps, with density equivalent to the average density of the catalogue (excluding
the selected particle). It is given by:

n(r < R) = N(r < R)V (R) → N(r < R) =
n(r < R)

V (R)
, (4.1)

where n is the numerical density, R a certain radius and V the volume of a
sphere of radius R. Knowing that mps is defined as:

mps = n−1/3 , (4.2)

It follows that, if we consider R = 3mps:

N(r < 3mps) = mps−3 · 4
3
π(3mps)3 ≃ 112 . (4.3)

3. All possible 4!=24 permutations of the selected tracers are evaluated by swap-
ping tracer-random pairs, using the method shown in the Fig. 4.4. As il-
lustrated, the configuration that minimises the total distance of the system
formed by the four particles is saved.

4. The process continues until a given threshold is reached. The threshold is
evaluated as the number of tracer-random swapped pairs divided by the total
number of pairs. This ratio is calculated at the end of each cycle, that is, any
time all the tracers have been selected at least once.

Therefore, the displacement field reconstruction is based on solving assignment prob-
lems consisting of four tracer-random pairs. The choice of using quartets of pairs
is the result of the requirement to maintain a low number of permutations for each
individual problem, which scales factorially with respect to the number of particles,
and the necessity of maximising the number of pairs swapped at each operation.
Both of these features are required to achieve maximum efficiency in terms of com-
putational time. Finally, the whole process can be repeated an arbitrary number of
times to obtain different reconstructions of the displacement field. Averaging these
reconstructions, the density field can be calculated in a more accurate way.
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Figure 4.4: A schematic illustration of the swapping process. The assignment
problem is solved for each possible permutation of the quartets. A possible case in
which the result obtained from solving the problem for one of the permutations is
discarded (top) and one in which it is accepted (bottom) are shown on the right.

Exact reconstruction

Unlike the LaZeVo approach, this method does not reconstruct the displacement
field using statistical procedures but simply exploits the tracer IDs provided in
the simulations snapshots. The displacement field is reconstructed by linking the
position of the tracers in the snapshot where the voids should be identified with
their positions in the initial snapshot. This method has the advantage of allowing
the immediate reconstruction of the exact displacement field; however, it can only
be exploited in simulations. This method can be used to test the efficiency of the
displacement field reproduction through statistical methods by comparing the two
reconstructions.

4.1.2 Density field calculation

Once the displacement field has been reconstructed, it is possible to compute the
density field through Eq. (2.88), derived from the Zel’dovich theory. It is then
necessary to calculate the divergence of the displacement field to obtain the value of
the punctual density contrast. The displacement field can be thought as a continuous
field sampled by the displacement vectors linking the positions of the tracers to the
random positions. The divergence field can thus be calculated using the Gauss’s
theorem: ∫

V

(∇ · F⃗ )dV =

∮
S

(F⃗ · n̂)dS , (4.4)

where F⃗ is the field whose divergence is sought, in this case represented by the
tracer-random sampling, and n̂ is the normal to the surface through which the flux
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is computed. The volume is divided into cubic cells aligned with axes, in order to
maintain n̂ constant on each side x. This allows us to simplify Eq. (4.4) as follows:

∇ ·Ψ =
∑
n

6∑
i=1

(F⃗n · êi)x2

x3
=

1

x

∑
n

6∑
i=1

(F⃗n · êi) , (4.5)

where F⃗n is each sample and ê is the normal to each side of the cell. ê can assume
six values: [±1, 0, 0], [0,±1, 0], [0, 0,±1]. The divergence calculated in each cell is
therefore reduced to the sum of the scalar product between each vector entering
or leaving the cell and the normal to the surface. From a theoretical point of
view, the value of the divergence of the displacement field should return the exact
value of the density contrast. However, this statement is not always true, since,
particularly in underdense areas, we are dealing with a small number of samples per
cell. The cell size x, indeed, must represent a good compromise between the number
of samples crossing its surface and spatial resolution. This parameter is set by
default to x ≃ 0.8 mps. In the case where several reconstructions of the displacement
field have been performed, each of them is considered for the computation of the
divergence. The final value in each cell is then renormalised dividing it by the
number of reconstructions.

Finally, the obtained divergence field requires a smoothing process. This is nec-
essary in order to create a continuous vector field and eliminate the cells in which
the divergence value is zero, i.e. those cells in which there are no samples of the dis-
placement field. Smoothing is done through a Gaussian weighting, with the weight
function centred in the middle of the cell under consideration and σ = x:

Θ = ⟨∇ ·Ψ⟩ =
∑
i

(∇ ·Ψ)i exp (−d2i /2σ
2)

exp (−d2i /2σ
2)

, (4.6)

where di is the Euclidean distance between the central and the i-th cell. It is
important to note that only the considered cell and the immediately adjacent cells
are taken into account by the function.

4.1.3 Identification of voids

The last step of the BitVFmethod consists in the identification of voids. The position
of each void is theoretically defined as a local minimum of the density field. The
algorithm then identifies the cells with a negative divergence value and bordering
33 − 1 = 26 cells with a divergence value greater than the one of the central cell,
but still less than zero. A schematic of the situation under consideration is shown
in Fig. 4.5. All 27 cells possess negative divergence, however the central cell has a
more negative divergence than the others. The cells found in this way constitute
the core of the voids identified by the method. BitVF then assigns to each void the
coordinates of its centre and its radius.

The position of the centre is assigned by a weighted mean for each individual
coordinate. The mean is calculated over the 33 = 27 adjacent cells and the diver-
gence of each cell takes on the role of weight. In particular, the equation for each
coordinate takes the form:

xi =

∑27
j=1 Θjdj∑27
j=1Θj

, (4.7)
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Figure 4.5: A schematic picture of a grid cell having a divergence value lower than
the 33 − 1 cubic cells surrounding it. However, all of them have negative divergence
value.

where xi = [x, y, z] for [i = 1, 2, 3], Θj represents the divergence computed within
the j-th cell and dj the coordinate difference between the centre of the inner and
j-th cells. The position of the centre is thus corrected to reflect the value of the
surrounding density field. In this way, the local minimum is identified in a more
precise manner.

The void radius, instead, is assigned by reconstructing the density profile calcu-
lated in spheres of radius r from the centre. In particular, the radius of the void is
considered to be that of a sphere with a density equal to 1/2 the average density of
the tracer catalogue. At this point, the void catalogue, including centre coordinates
and radii, is ready.

4.2 Void cleaning

One of the main issues in exploiting cosmic voids as cosmological probes lies in the
different adopted void definitions. In particular, the Vdn model, described in Sec.
3.2.2, defines the cosmic voids as underdense, spherical, non-overlapped regions
that have gone through shell crossing. To extract cosmological information from
void counts it is thus required to use the same definition when detecting voids, and
to clean properly the void catalogues detected with standard methods. Therefore,
in order to align the catalogues obtained not only through BitVF, but potentially
through any void finder, a cleaning algorithm based on the work of Jennings et al.
(2013) and Ronconi & Marulli (2017) was developed within the context of this The-
sis. The original algorithm is based on three main steps, which can be summarised
as:

1. Statistically irrelevant objects are removed. By statistically irrelevant objects
are meant all underdensities with a radius outside a given range [rmin, rmax]
and those with a density contrast of more than a certain fraction of the average
density of the Universe.
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2. The radius of the voids is rescaled as the largest radius from the void centre
which encloses an underdensity equal to the shell-cross density contrast δsc.

3. Overlaps are eliminated in order to avoid double counting. Two voids are
considered to be overlapped when the distance between their centres is smaller
than the sum of their radii. When two voids overlap, the void with the highest
central density is removed.

However, this method presents issues due to the presence of free parameters. For
example, the results are highly dependent on the radius at which central density
and density contrast are calculated. Furthermore, the calculation of these quantities
brings with it systematic issues related to the discretisation of the quantities and shot
noise, in particular due to the presence of a small number of tracers in the central
region of the voids. These difficulties lead to errors when removing overlaps, as the
criterion is totally dependent on central density values, and to a strong dependence
on rmin. Finally, significant limitations related to the shape of the voids are present.
The model assumes spherical voids; however the actual shape of the underdensities
is irregular and elliptical. This, in combination with mass discretisation, leads to
irregular spherical density profiles, which complicates the search for the threshold at
which to set the radius. To overcome these difficulties, the algorithm was modified
in the following way:

1. The central density is calculated as the density of a sphere of radius 2 mps
from the centre. This distance represents the theoretical minimum spatial
resolution for the identification of voids. Fixing this parameter independently
of the considered void removes the dependence of the central density on the
radius, improving the significance of the measurement. In particular, this
distance turned out to be an excellent compromise between the necessity to
minimise the error related to the discretisation of the mass and the requirement
to consider the most central regions of the voids. A filter is thus applied to
remove all underdensities with a central density below the threshold chosen
for the radius rescaling. This filter has been proven to be crucial in removing
spurious voids, eliminating most of the smaller underdensities, which represent
the largest source of noise in the count statistics.

2. The density profiles of the underdensities are reconstructed and the radii of
the voids, rv, are rescaled to coincide with the radius of the largest sphere of
given density contrast (usually δv,sc for DM). If no suitable profile point can be
identified for radius identification (an increasing density profile section with
values across the threshold is requested), the search region is expanded. In
this case, the radius will be that of the smallest sphere found. Finally, if even
in this case it is not possible to set the radius (e.g. no regions of density below
the threshold are found), the void is removed.

3. An additional filter is applied to the profiles, repeating the rescaling process for
a threshold δv = −0.5. If the threshold is not identified, the void is removed.
This process removes voids that are badly centred or with very pronounced
ellipticity.
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4. The density contrast ∆ between two spheres centred in the centre of the void,
of radius 1.5 and 1 rv, respectively, is calculated. If ∆ is lower than 1, the
underdensity is considered as cloud in void and eliminated.

5. Voids with a radius outside the range [rmin, rmax] are eliminated. rmin is typi-
cally set to 1.5 − 2 mps. The method described in the previous steps results
in a very stable statistic with respect to rmin. Counts at r > rmin are poorly
influenced by this parameter, differently than with the old algorithms.

6. Finally, overlaps are removed using central density as a selection criterion.
When an overlap occurs, the void with the lower central density is preserved.

This new version of the algorithm has therefore the advantage of eliminating a
number of free parameters and strongly reduces the dependence of the obtained
statistic on the remaining ones. Moreover, it produces results in excellent agreement
with the theoretical size function model. Fig. 4.6 shows the action of the various
steps of the cleaning algorithm on the counts of voids found through the use of
BitVF.

4.3 DUSTGRAIN-pathfinder simulations

The void finder algorithm presented in this Thesis work, BitVF, was tested on simu-
lations with DM and biased tracers, at various redshifts and with various subsamples
of the catalogue. For this purpose, we use a ΛCDM subset of the cosmological N-
body simulations suite called DUSTGRAIN-pathfinder (Dark Universe Simulations
to Test GRAvity In the presence of Neutrinos, Giocoli et al., 2018). These simula-
tions have been specifically designed with the aim of investigating the degeneracies
between f(R) gravity models and massive neutrinos. The DUSTGRAIN-pathfinder

simulations have been performed using MG-GADGET (Puchwein et al., 2013), a code
based on an updated version of GADGET2 (Springel, 2005). The code follows the
evolution of a set of 2× 7683 particles of DM and massive neutrinos (7683 for each
popolution) within a periodic cosmological box of 750 h−1 Mpc per side. In the
used ΛCDM simulation (i.e. the one characterised by GR and Mν = 0 eV) the
CDM particle mass is equal to MP

cdm = 8.1×1010 h−1 M⊙. The cosmological param-
eters assumed in these simulations are consistent with the Planck 2015 constraints
(Planck Collaboration, 2016): Ωm = Ωcdm + Ωb + Ων = 0.31345, ΩΛ = 0.68655,
h = 0.6731, As = 2.199× 10−9, ns = 0.9658, which give σ8 = 0.842. Among all the
ΛCDM snapshots available for this project, we select the ones at the redshifts z = 0,
0.5, 1, 2, considering only CDM particles. Moreover, to reduce the computational
time and test the effect of the subsample on the algorithm performance, we used
25%, 10%, 4% and 0.4% of the original particle sample.

The DM haloes, used to test the BitVF algorithm on biased tracers, have been
identified for each snapshot following the Despali et al. (2016) approach. In par-
ticular, the halo catalogues have been obtained by applying the Denhf algorithm
(Tormen et al. 2004, Giocoli et al. 2008) to the DM particle sample, finding DM
haloes as gravitationally bound structures. In the analysis presented in this chapter
we employ 200c halo catalogues, thus those derived imposing ∆c = 200, i.e. over-
densities with densities of 200 times the critical density of the Universe. Moreover,
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Figure 4.6: Void counts at various stages of the cleaning process, related to the
theoretical Vdn model. Voids were identified by applying BitVF on DM, at z = 0,
in a 10% subsample of DUSTGRAIN-pathfinder simulations. The light blue circles
represent void counts before the action of the cleaner. Green triangles are the
counts after the application of the filter on the density contrast. The red triangles
show the counts after radius rescaling, profile and density contrast filtering. Finally,
the yellow squares show the final counts, the result of applying all cleaning steps,
including overlap removal. The continuous black line shows the prediction of the
Vdn model. Error bars are obtained from the Poissonian error of the counts.
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haloes with a number of embedded DM particles less than 30 are rejected, in order
to avoid contamination by spurious density fluctuations and keep only statistically
relevant objects. This mass cut corresponds to Mmin = 2.43× 1012h−1 M⊙ has been
chosen to select a complete, pure and dense sample of DM haloes, fundamental for
identifying a statistically significant number of cosmic voids.

4.4 CosmoBolognaLib

The CosmoBolognaLib1 is a large set of free software C++/Python libraries, that
provide an efficient numerical environment for cosmological investigations of the
large scale structure of the Universe (Marulli et al., 2016). This software is partic-
ularly suited to handle with real and simulated catalogues of astronomical objects.
Thanks to the large amount of functions implemented, the CosmoBolognaLib offers
all the required tools to analyse large data sets and to perform statistical analyses,
with optimised performances. In particular, this Thesis project not only extensively
exploited the CosmoBolognaLib (v5.3, v5.4, v5.5) but additionally integrated it with
new codes, namely BitVF, the cleaning algorithm, and a number of functional codes
for the development of the work, such as a new ChainMesh algorithm (see Sec. 4.1).
The final version of the implemented algorithms will be available in the next CBL
release.

4.5 BitVF application

In order to test the BitVF algorithm, we applied it to the DUSTGRAIN-pathfinder

simulations (Sec. 4.3), both by searching for voids in DM and in biased cosmological
tracers (DM haloes). In addition, we tested our void finder by applying it to tracer
catalogues at different redshifts and subsample values. Finally, both displacement
field reconstruction algorithms were tested, in particular using the results obtained
from the exact reconstruction to validate the LaZeVo method.

The performed tests are listed below:

• DM particle catalogue, displacement field reconstruction through exact

reconstruction method, z = 0, subsample=10%;

• DM particle catalogue, exact reconstruction comparison, z = 0, subsam-
ple=0.04%;

• DM halo catalogue, displacement field reconstruction through LaZeVo method,
z = 0;

• DM particle catalogue, displacement field reconstruction through exact

reconstruction method, comparison between z = [0, 0.5, 1, 2], subsam-
ple=10%;

• DM halo catalogue, displacement field reconstruction through LaZeVo method,
comparison between z = [0, 0.5, 1, 2].

1https://federicomarulli.gitlab.io/CosmoBolognaLib
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The first test is intended to check the accuracy of the reconstruction of the diver-
gence field and the detection of the underdensities. This was performed through the
exact reconstruction of the divergence field, exploiting the IDs of the DM particles.
The result of this preliminary test is shown in the Fig. 4.7. A thin slice of the central
zone of the DUSTGRAIN-pathfinder simulations is shown, illustrating the position
of the tracers, the displacement field, the divergence field and the identified voids.
We can see how the divergence field reconstructs very closely the density field. Fur-
thermore, it can be observed how the arrows, representing the mean displacement
field, depart from the overdense regions and point towards the underdense zones, in
perfect agreement with what is expected. Finally, voids are correctly identified in
underdense regions. In this work, except where otherwise indicated, voids subjected
to the cleaning process (Sec. 4.2) and therefore in accordance with the Vdn model
(Sec. 3.2.2) are shown: spherical, non-overlapping and with δv = δv,sc. Any overlaps
observed in the image are due to projection effects.

Figure 4.7: The image shows a thin slice (10 h−1 Mpc) of the central region (400×
400 h−1 Mpc) of the z = 0 sample of the DUSTGRAIN-pathfinder simulations (10%
subsample). In particular, the positions of the DM particles (black dots), the value
of the reconstructed divergence field (underdense regions in blue, overdense regions
in red), the mean back-in-time displacement field (through a grid of 25× 25 arrows)
and the voids identified in the sample (white circles) are shown. The reconstruction
of the displacement field was performed exactly by exploiting the particle IDs, using
tracers at z = 99 as a random catalogue.
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Once tested the correct functioning of the algorithm for reconstructing the dis-
placement field and identifying voids, we moved on to verify the functioning of the
LaZeVo method. This method is fundamental for reconstructing the displacement
field in all cases where particle IDs are not available, such as when using DM haloes,
galaxies or more generally real data as tracers. The LaZeVo method was tested
through the reconstruction of the divergence field and the identification of voids in
DUSTGRAIN-pathfinder simulations at z = 0, using DM particles. To reduce the
calculation time, a subsample of 0.4% was used. The test consists in comparing the
results obtained through the application of the LaZeVo method with those obtained
through the exact reconstruction of the displacement field. The result of this
comparison is shown in Fig. 4.8 (the top subplot shows the result obtained via
LaZeVo, the bottom subplot via exact reconstruction). It can be seen that both
methods reconstruct the divergence field extremely accurately with respect to the
position of the tracers, reproducing the overdensity and underdensity regions very
closely. The displacement fields reconstructed with the two methods show the same
average trends. However, the displacements obtained by the LaZeVo method have
smaller amplitudes than the real ones. This effect is due to the minimisation of the
action: it does not affect the effectiveness of the underdensity research but breaks
the equivalence between divergence of the displacement field and density contrast,
which becomes a simple proportionality. Voids are correctly identified in underden-
sities for both methods. There is a good agreement between the positions of the
voids obtained through the two reconstructions, although not perfect. This slight
discrepancy is probably the result of the strong subsampling. Based on what is
shown, the method is considered validated and usable.

We now have all the necessary elements to test the algorithm on a catalogue of
biased tracers. We run BitVF on a catalogue of 643590 DM haloes obtained through
the application of the Denhf algorithm to the z = 0 snapshot of the DUSTGRAIN-

pathfinder simulations (see Sec. 4.3 for further details). An example of the results
obtained is shown in Fig. 4.9. The reconstruction of the displacement field was per-
formed through the LaZeVo method. Once again, the displacement field correctly
shows the back-in-time displacement of particles from overdense to underdense re-
gions and the divergence field very accurately samples the density field. Voids are
larger than those identified in DM due to the smaller number of tracers available, 2

are correctly identified in the most underdense areas. The possibility of exploiting
this void finder on biased tracers is therefore confirmed: this aspect is very important
as it opens the possibility of its future use with real data.

Finally, the capabilities of BitVF in finding voids at different redshifts were
tested. The evolution of voids leads these cosmic structures to possess very different
density profiles over time. An effective research algorithm must therefore be able to
adapt to the context in which it is applied. From a theoretical point of view, BitVF,
which does not directly exploit density for the identification of underdensities, has
the perfect potential for such applications. Figures 4.10 and 4.11 show the results
of BitVF application to four snapshots of DUSTGRAIN-pathfinder simulations, in
an attempt to analyse the performance of the finder at various redshifts. In par-
ticular, Fig. 4.10 shows the results at decreasing redshift (z=2, 1, 0.5, 0), using

2resolution is inversely proportional to mps, which in turn is inversely proportional to the
number of tracers. It follows that the resolution is directly proportional to the number of tracers
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Figure 4.8: The image shows the comparison between the reconstruction of the
displacement field through the LaZeVomethod (top image) and the exact reconstruc-
tion of the same (bottom image). In particular, a slice of 35 h−1 Mpc of the central
region (400× 400 h−1 Mpc) of the z = 0 output of the DUSTGRAIN-pathfinder sim-
ulations (0.4% subsample) is shown. The following are displayed: positions of the
DM particles (black dots), value of the reconstructed divergence field (underdense
regions in blue, overdense regions in red as shown by the coloured scale on the right),
mean back-in-time displacement field (through a grid of 25× 25 arrows) and voids
identified in the sample (white circles).
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Figure 4.9: The image shows a slice (50 h−1 Mpc) of the DUSTGRAIN-pathfinder

simulations where the 643590 DM haloes with M > 2.43× 1012 h−1 M⊙, identified
through Denhf application, are exploited for the identification of cosmic voids. In
particular, the positions of the DM haloes (black dots), the value of the reconstructed
divergence field (underdense regions in blue, overdense regions in red as shown by
the coloured scale on the right), the mean back-in-time displacement field (through
a grid of 25 × 25 arrows) and the voids identified in the sample (white circles) are
shown. The reconstruction of the displacement field was performed using the LaZeVo
method.
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DM particles as cosmological tracers. Figure 4.11 instead shows the results of the
application at the same redshifts using DM haloes as tracers, identified according
to the criteria used previously. It is important to note that, unlike DM particles,
which remain constant in number over time, the haloes grow in number with time,
as a result of the increasing matter clustering. In both cases, the displacement field
and divergence field are reconstructed with great precision, effectively showing the
evolution of large-scale structures as the redshift changes, starting from more home-
geneous configurations and progressing to more clustered ones. With regard to the
voids identified, we can notice that, as predicted by theory, at high redshift voids
with δv,sc are not detected, while they are detected in biased tracers (in this case
δv,h = −0.7), which have already had time to cluster. As time progresses, voids
emerge gradually from the density distributions of DM and DM haloes. However,
the voids identified in the latter are gradually smaller in size as a result of the
increase in the number of cosmic tracers.
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Figure 4.10: The image shows four thin slices (10 h−1 Mpc) of the DUSTGRAIN-

pathfinder simulations with DM particles (10% subsample) in snapshot associated at
different redshifts (z = 2, 1, 0.5, 0 from top left to bottom right). In particular, the
positions of the DM particles (black dots), the value of the reconstructed divergence
field (underdense regions in blue, overdense regions in red as shown by the coloured
scale on the right), the mean back-in-time displacement field (through a grid of
25 × 25 arrows) and the voids identified in the sample (white circles) are shown.
The displacement field was exactly reconstructed.
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Figure 4.11: The same as Fig. 4.10 but for four slices thickness of (50 h−1 Mpc)
with voids identified in DM haloes. The reconstruction of the displacement field was
performed through the LaZeVo method.
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4.5.1 Void profiles

According to the standard ΛCDM model, a self-similar phase during the cosmic
void evolution is expected (Hamaus et al., 2014). This self-similar process ensures
that the void structure can be characterised only by one parameter, the effective
radius, Reff . Despite the wide range of void radii, it is possible to average the
internal density distribution rescaling the radius to Reff , in order to investigate the
common behaviour of different voids. Usually, in order to obtain a stacked density
profile, the void sample is subdivided into groups, having similar effective radii.
For this work, voids with Reff > 2.75 mps were considered. This value ensures we
exclude any possible spurious voids. In addition, voids identified in the DM halo
distribution were considered and their density profiles were measured in both this
and DM distribution. Voids were matched to the Vdn model, assuming a threshold
in the DM halo density field of δv,h = −0.7, and the profiles are computed through
spheres of radius R centrered in voids. The measurement was repeated at different
redshifts in order to obtain an estimate of the evolution of the profiles. In particular,
void catalogues identified at z=[0, 0.5, 1, 2] were considered.

In Fig. 4.12 we can see that the average density profiles observed in the halo
distribution are steeper than those measured in the DM, as predicted by the theory.
Furthermore, again as expected, the bias between DM and haloes increases as the
redshift increases. An indication of the good performance of the cleaner comes from
the presence of the “loop”that forces the measured density profiles in the DM halo
distribution to pass through the point R/Reff = 1 − δv,h = −0.7. This indicates
the effectiveness of the radius rescaling process of the voids at the chosen density
threshold. Finally, the moderate scattering of the profiles around the median profile
indicates how the centres of the voids are identified with good accuracy within the
underdensities, minimising the effects due to void shape irregularity and tracer shot
noise.

According to the Zel’dovich theory, in the linear regime an equality relation
exists between divergence of the displacement field and the density contrast (Sec.
2.2.2). Fig. 4.13 shows the result of this measurement obtained on a sample of voids
identified in the 0.4% DM distribution of the DUSTGRAIN-pathfinder simulations
(z = 0, δv = −0.7) by interpolating the divergence field and integrating in R the
values obtained, in a manner analogous to Eq. (3.20). It can be seen that there is
a very close correspondence between the stacked profile of the density field and the
stacked profile of the divergence, regarding the regions outside Rv. In the central
regions, the regime begins to move out of linearity and therefore the relationship is
no longer valid. Using divergence profiles as a substitute of density profiles (e.g., in
cleaning operations) has several advantages. Indeed, it can be shown that the diver-
gence profiles are more regular than the density profiles, and are much less affected
by mass discretisation. However, there are difficulties related to the construction of
the displacement field. Any solution other than the exact solution possibly leads
to different divergence values than the true density contrast. In the future, further
studies will be needed to understand this issue more deeply and attempt to find a
solution applicable to real data.
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Figure 4.12: The density profiles of the voids identified in the distribution of
DM haloes from the DUSTGRAIN-pathfinder simulation, at different redshifts (z =
0, 0.5, 1, 2 from top left to bottom right). We selected all voids with Rv >
2.75 mps. The purple profiles are measured from the centres, identified in the
manner previously described, in a 10% subsample of the DM distribution, while the
orange profiles are measured in the DM haloes distribution. The thicker profiles
represent the median values of the measured density profiles (stacked profiles).
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Figure 4.13: The density (blue) and the divergence (orange) stacked profiles of
voids identified in the distribution of DM particles from a 0.4% subsample of the
DUSTGRAIN-pathfinder simulations.
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Chapter 5

BitVF-VIDE comparison

Once the proper functioning of BitVF and of the cleaning algorithm has been verified,
we test the statistics of the void catalogue obtained with our algorithm against those
derived through the use of VIDE, which is currently the void finder most widely
employed in literature (see Sec. 3.1.2). The aim of the tests is to verify that our
finder produces accurate enough void statistics, such as voids profiles (Sec. 5.1) and
counts (Sec. 5.2), possibly better than those obtained through VIDE, in order to
exploit the full potential of dynamic detection. This is mandatory to verify if BitVF
can be used it for the exploitation of void statistics in constraining cosmological
parameters (Sec. 5.3). As we will see, BitVF outperformes its competitor it in
several cases, confirming the high potential of this algorithm.

5.1 Void profiles

Void density profiles represent one of the main statistics to describe these objects.
Not only they provide information on the evolution of tracer distributions, when
measured at various redshifts, but more importantly they can be exploited to con-
strain cosmological parameters. In particular, this is possible through the modelling
of the dynamical distortions (Hamaus et al., 2020), which are induced by the tracer
peculiar velocities changing the void apparent shapes, and also by applying the
Alcock-Paczynski test (Alcock & Paczynski, 1979) to exploit these objects as stan-
dard spheres. Furthermore, the shape of the profiles gives us strong indications on
the accuracy of the identification of the centre of the voids performed by the de-
tection algorithms. Deeper and less scattered stacked profiles correspond to centres
identified in the lower density regions.

Fig. 5.1 shows the stacked density profiles of (cleaned) voids identified at dif-
ferent redshifts (z = 0, 0.5, 1, 2) through the application of BitVF and VIDE. In
particular, the profiles are rescaled to the effective radius of the voids and show the
average density trend in the distributions of both DM haloes and DM particles. The
profiles obtained through both algorithms match the theoretical expectations: they
asymptotically reach δ = 0 as the radius increases (we are dealing with profiles of
average density, calculated in spheres centred on the centre of voids), they show the
correct evolution of the bias between DM halo and DM particle distributions, and
they cross the density threshold δv,h = −0.7 at which the effective radius was set.
However, the profiles obtained through BitVF appear deeper than the VIDE ones,
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especially in the regions outside the effective radius of the voids. Furthermore, the
BitVF profiles appear less scattered in the central void regions. These two charac-
teristics suggest that the centres of the voids identified by our new finder are located
in more underdense regions than those identified by VIDE.

Figure 5.1: The stacked density profiles of the voids identified by BitVF and VIDE

in the distribution of DM haloes and DM particles from the DUSTGRAIN-pathfinder

simulation, at different redshifts (z = 0, 0.5, 1, 2 from top left to bottom right). We
select all voids with Rv > 2.75 mps. The red and the orange profiles are measured
using a 10% subsample of the DM distribution, while the blue and the violet profiles
are measured in the DM halo distribution. The shaded bands around the profiles
represent the errors, calculated as the standard deviation of the density at each bin
divided by the number of voids.
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5.2 Void counts

Another powerful statistics to constrain cosmological parameters is provided by
void counts, in particular the VSF. In addition, the VSF can be used to validate
the accuracy of the void identification algorithms. In particular, it is possible to
compare the theoretical VSF with the obtained counts, evaluating the residuals and
the minimum radius below which the void catalogue is incomplete, a measure that
gives us a precise indication of the spatial resolution.

Our void finder is tested by comparing the VSFs obtained in different contexts
against VIDE. In particular, we test the response of both BitVF and VIDE to the
identification of voids in DM distributions, at different redshifts and subsampling
threshold, and in biased tracer distributions (DM haloes), again at different red-
shifts. Figure 5.2 shows the void counts obtained in the DM distribution at different
subsampling values. Ensuring a stable response with increasing subsampling levels
is important in order to guarantee good performances even in those cases where
limited computing power is available, or in real cases where only data from a sub-
population of galaxies is provided. As can be seen, the radii at which the drop in
the counts occurs are similar for both finders, indicating similar spatial resolution
values for both the algorithms. However, BitVF appears more stable than VIDE as
the subsample increases, and thus as the number of particles decreases, maintain-
ing a consistent match between measured and theoretical VSF even at the highest
subsample value considered (4% of total tracers). VIDE, on the other hand, shows
a systematic overestimation of the counts in this case. Figure 5.3 shows the evo-
lution of measured counts in a single DM subsample (10%) at different redshifts
(z = 0, 0.5, 1). Although the void counts measured by BitVF are in better agree-
ment with the theoretical model at large radii than the ones measured by VIDE,
particularly for z = 1, it is noticeable that the spatial resolution worsens for our
finder as redshift increases, which is not the case for VIDE. One justification for this
behaviour might lie in the fact that the high redshift voids, particularly considering
the DM distribution, are weakly underdense. BitVF operates ideally when pro-
nounced underdensities are present, so that they can be more accurately identified
as the points to which tracers flow as they move backward in time.

At this point, the analysis is extended to DM halo counts, to measure the dif-
ference in the response of the two finders when used on biased tracers, which more
closely reproduce the real data than DM. Before this can be done, however, it is
necessary to calibrate the relationship for bias between the distributions of DM and
DM haloes, following the procedure outlined in Sec. 3.2.2. We expect different bias
values for the two finders, particularly for the slope values, as the centres of the voids
are identified in different ways. Figure 5.4 shows the calibration and the linear fits
performed on the points in the beff−bpunct plane, with the first value provided by the-
ory and the second measured from the void profiles. As expected, almost identical
values are obtained for the offset, but different values for the slope. Furthermore, the
fact that the error on the fit measured on the BitVF data is lower than that obtained
for the VIDE data, is a further confirmation of the fact that our finder identifies the
centres of the voids with greater precision (since, trivially, lower errors are produced
by a lower dispersion of the bias measured on each void, which is itself the result of
a better positioning of the centres). The results obtained are then used to rescale
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the theoretical VSF in order to predict the DM halo counts, according to the theory
presented in Sec. 3.2.2. Finally, Fig. 5.5 shows the counts of voids identified in the
DM halo distribution at different redshifts (z = 0, 0.5, 1, 2). The displacement field
is reconstructed through the LaZeVo method. It is immediately noticeable how the
counts obtained via BitVF are more consistent with the theoretical model and reach
a better spatial resolution than the VIDE ones, for all redshifts considered. This test
therefore shows how for biased tracers BitVF performs better than VIDE, both in
terms of quality and quantity of the voids obtained. Furthermore, this confirms the
goodness of the reconstruction of the displacement field using the LaZeVo method.
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Figure 5.2: Comparison between the VSFs measured by BitVF (yellow circles) and
VIDE (blue squares) with different subsamples (25%, 10%, 4% from top to bottom)
of the DM distribution, from the DUSTGRAIN-pathfinder simulations, at z = 0, and
the theoretical VSF (dashed red line) provided by the Vdn model. Voids are defined
as in the standard Vdn model (thus δv = δsc). Errors on counts are assumed to be
Poissonian and are shown by the black vertical bars. The lower part of each subplot
shows the residuals, calculated as the ratio of the measure-model difference and
the model. Finally, the vertical series of grey dots shows the theoretical minimum
resolution, assumed to be equal to twice the mps of the tracers.
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Figure 5.3: The same as in Fig. 5.2 but for voids identified at different redshifts
(z = [0, 0.5, 1] and thresholds, δv = [−0.795,−0.75,−0.7] from the top to the
bottom) in the same DM subsample (10%).
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Figure 5.4: Calibration of the F(beff) relation, required for the conversion of the
threshold, δv,tr → δv,DM. The solid lines represent the best-fit linear relations F(beff)
obtained with the calibrated coefficients Bslope and Boffset, for BitVF (violet) and
VIDE (orange) data. The shaded regions indicate an uncertainty of 1σ on the re-
lationships. The markers represent the calibrations obtained for each bin of red-
shift, leaving bpunct as the only free parameter of the VSF model when fitting the
measured counts. This calibration provides a value of bpunct for each redshift of the
sample which is associated to the value of the effective bias, beff , of the DUSTGRAIN-

pathfinder galaxies at that specific redshift.
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Figure 5.5: Comparison between the VSFs measured by BitVF (yellow circles) and
VIDE (blue squares) at different redshifts (z = 0, 0.5, 1, 2 from top left to bottom
right) of the DM haloes distribution derived from the DUSTGRAIN-pathfinder sim-
ulations, and the theoretical VSF (red dashed line) provided by the Vdn model, the
rescaled theoretical VSFs calibrated for BitVF (orange) and VIDE (violet). Voids
are rescaled at δv = −0.7. Errors on counts are assumed to be Poissonian and are
shown by the black vertical bars. The lower part of each subplot shows the residuals,
calculated as the ratio of the measure-model difference and the error. Finally, the
vertical dotted grey lines show the theoretical minimum resolution, assumed to be
equal to twice the mps of the tracers.
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5.3 Cosmological parameter constraints

In this analysis, we want to test the reliability of the abundance of voids extracted
with BitVF by computing the corresponding cosmological predictions attainable with
the VSF modelling. Our goal is also to compare these results with those obtained
with the samples of voids built by applying VIDE on the same DM halo catalogues,
at the same redshifts. Therefore we consider both the sets of size function measured
from BitVF and VIDE void samples, adopting the same radius range (based on the
best resolution at each redshift), the same binning, and modelling these abundances
with the corresponding extended Vdn model calibration (Contarini et al., 2019),
presented in Fig. 5.4. We perform a Bayesian statistical MCMC analysis of the
measured void size functions at different redshifts (z = 0, 0.5, 1, 2, see Fig. 5.5) by
sampling the posterior distribution of the parameters σ8 and Ωm. We assume uniform
prior distributions for σ8 and Ωm, and we fix the remaining cosmological parameters
(ΩΛ = 0.68655, h = 0.6731, As = 2.199 × 10−9, ns = 0.9658 and z, beff , Bslope, Boffset

with values depending on the case in question) of the model to their true values. We
also set with constant priors the model parameters beff , Bslope and Boffset. While beff
is different for every redshift considered and its corresponding value is taken from
Table 2 of Contarini et al. (2019), the parameters Bslope and Boffset take into account
the redshift evolution of the VSF and are therefore unique for every sample of voids
build with the same void finder. The results of this analysis are reported in Figs.
5.6, 5.7, 5.8, 5.9, at redshifts z = 0, 0.5, 1, 2, respectively. The values obtained,
with their respective errors, are listed in Tab. 5.1. All four plots show how the real
values of σ8 and Ωm fall within the 1σ confidence contours in the case of BitVF,
whereas this is not the case for VIDE, especially for z = 0 and z = 0.5 (Fig. 5.6 and
5.7, respectively). This is not surprising, as BitVF exhibits a higher match between
void counts and the theoretical VSF with respect to VIDE (see Sec. 5.2). It can
be seen that the contours at z = 0.5 are offset for both finders. Although this is a
significant anomaly, the contour obtained by BitVF in agreement within 2σ with the
true value of the simulation. We will investigate in the future possible systematics
not modelled in this analysis, related to the large-radius void defect observed in
the second panel of the Fig. 5.5. In addition, we present the joint cosmological
constraints obtained for both the void samples, by combining the results at all the
analysed redshifts, and assuming the measured void abundances as independent
(Figs. 5.10, 5.11 5.12). As shown, the point on the σ8 − Ωm plane describing the
real values of the two parameters is intercepted within the 68% contours obtained
from the voids identified with BitVF. The contours obtained through VIDE, on the
other hand, are slightly offset. This test shows that BitVF void statistics allow us to
constrain the cosmological parameters more accurately than in the VIDE case, due
to a more precise identification of the voids, resulting in a lower loss of counts at
low scales. Recovering these scales is crucial for modelling VSF, and thus for having
higher constraining power. Finally, in Fig. 5.13, the values of parameter S8 obtained
by count analysis are shown. We can see that, again, the exact value falls within the
68% confidence range for BitVF, while the result obtained by VIDE is much more
shifted. The BitVF algorithm is therefore a promising candidate for detecting voids
to be used for constraining cosmological parameter values, especially in prevision of
future use with real data.
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Figure 5.6: 68% and 95% confidence regions in the σ8 − Ωm plane, for the halo
catalogues with Mmin = 2.43 × 1012 h−1 M⊙ from ΛCDM, z = 0, DUSTGRAIN-

pathfinder snapshot. The colour corresponds to the different finders: orange for
BitVF, blue for VIDE. The prior distributions for σ8 and Ωm are uniform. The
marginalised 1D posterior distributions of σ8 and Ωm are shown in the top and
bottom-right panels of each plot, respectively. The black lines represent the true
DUSTGRAIN-pathfinder ΛCDM values (σ8 = 0.842 and Ωm = 0.31345).
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Figure 5.7: As Fig. 5.6, but for z = 0.5.
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VIDE (z = 1)

0.
6

0.
8

1.
0

1.
2

σ8

0.
15

0.
30

0.
45

0.
60

Ω
m

0.
15

0.
30

0.
45

0.
60

Ωm

Figure 5.8: As Fig. 5.6, but for z = 1.
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Figure 5.9: As Fig. 5.6, but for z = 2.
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Figure 5.10: 68% and 95% confidence regions in the σ8 − Ωm plane, for the voids
identified in the halo catalogues with Mmin = 2.43 × 1012 h−1 M⊙ from ΛCDM,
DUSTGRAIN-pathfinder snapshot, with voids identified by BitVF. The colour of el-
lipses corresponds to different redshifts: red for z = 0, green for z = 0.5, blue for
z = 1 and yellow for z = 2. The black ellipse corresponds to confidence levels for
the combined distributions. The prior distributions for σ8 and Ωm are uniform. The
marginalised 1D posterior distributions of σ8 and Ωm, for each redshift, are shown in
the top and bottom-right panels of each plot, respectively. The black lines represent
the true DUSTGRAIN-pathfinder ΛCDM values (σ8 = 0.842 and Ωm = 0.31345).
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Figure 5.11: Same as Fig. 5.10, but for voids identified with VIDE.
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Figure 5.12: 68% and 95% confidence levels for the halo catalogues with Mmin =
2.43×1012 h−1 M⊙ from ΛCDM, DUSTGRAIN-pathfinder snapshot, with voids iden-
tified by BitVF, obtained by combining the results at all the analysed redshifts
(z = 0, 0.5, 1, 2) and assuming the measured void abundances as independent.
The colour of ellipses corresponds to the different finders: orange for BitVF, blue for
VIDE. The marginalised 1D posterior distributions of σ8 and Ωm are shown in the
top and bottom-right panels of each plot, respectively. The black lines represent the
true DUSTGRAIN-pathfinder ΛCDM values (σ8 = 0.842 and Ωm = 0.31345).
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z
BitVF VIDE

σ8 Ωm σ8 Ωm

0 0.83± 0.04 0.28+0.08
−0.06 0.77+0.06

−0.05 0.33+0.12
−0.09

0.5 0.97+0.09
−0.08 0.46+0.13

−0.10 0.65± 0.06 0.17+0.07
−0.05

1 0.86+0.12
−0.11 0.32+0.13

−0.08 0.66± 0.09 0.20+0.08
−0.06

2 0.81+0.25
−0.15 0.29+0.19

−0.10 0.62+0.17
−0.13 0.20+0.12

−0.08

combined 0.86± 0.02 0.34± 0.02 0.73± 0.02 0.27± 0.02

Table 5.1: Summary of the cosmological constraints computed on the parameters
σ8 and Ωm from the modelling of the size function of voids identified with 2 different
finding codes: BitVF and VIDE. We report in the first column of the table the
redshift of the DUSTGRAIN-pathfinder snapshot considered in the analysis. In the
second and third columns we present the results obtained on σ8 and Ωm with BitVF,
while in the fourth and the fifth columns the analogous results obtained with VIDE,
respectively. In the last row of the table we report the cosmological predictions
computed by combining the constraints at different redshifts, assuming each data
set as independent.
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Figure 5.13: Cosmological constraints on the parameter S8 = σ8

√
Ωm/0.3 com-

puted from the abundance of voids identified in the DUSTGRAIN-pathfinder simu-
lations at redshifts z = 0, 0.5, 1, 2. In orange we report the result obtained by mod-
elling the number counts of voids identified with BitVF and in blue that obtained
by using voids identified with VIDE. The shaded areas under the curves represent an
uncertainty of 1σ on the cosmological predictions. We indicate with a black dashed
line the true value of the simulation, S8 = 0.86.
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Chapter 6

Conclusions and future perspectives

In this Chapter, we will summarise the scientific problem from which we started
(Sec. 6.1), and then provide an overview of the work performed, showing the main
advantages and issues of the method developed (Sec. 6.2). Finally, the future
perspectives and new opportunities arising from this work will be outlined (Sec.
6.3).

6.1 The scientific problem

The current standard cosmological model, ΛCDM, is based on the solution of Ein-
stein’s field equations, assuming the validity of the Cosmological Principle, i.e. that
on large scales the Universe is homogeneous and isotropic, and the validity of the
Einstein’s General Relativity (see Chapter 1). Furthermore, the model introduces
two new cosmological components: the cold dark matter, a non-collisional and non-
relativistic component that accounts a large majority of the matter, and the cos-
mological constant Λ, which dominates the Universe in terms of energy density and
produces the present accelerated expansion observed through various probes, such
as Type Ia supernovae (Riess et al. 1998, Schmidt et al. 1998, Perlmutter et al.
1999), the cosmic microwave background (Eisenstein et al., 2005) and of the large-
scale structures of the Universe (Planck Collaboration 2016, Planck Collaboration
2020). At present, many open problems still exist, of both theoretical and observa-
tional nature, such as the exact nature of these two fundamental components and
the tension between the current expansion rate of the Universe, H0, when extrapo-
lated from the early Universe or measured in the late Universe (Bernal et al. 2016,
Moresco & Marulli 2017).

Cosmic voids have emerged in recent years as a viable alternative to traditional
cosmological probes to investigate the validity of the ΛCDM model. The statistics
of these objects, can help to break the degeneracies that arise in the determination
of cosmological parameters by providing information on volumes of the Universe
poorly sampled by the standard probes. However, as we explained in Sec. 3.1, the
identification of voids is not trivial, due to their underdense nature and the lack of
a formal definition. Over time, several identification methods have been proposed
by the scientific community, as we discussed in Sec. 3.1. We can classify these
methods into three different classes, according to the detection criteria: density,
geometrical and dynamical (Lavaux & Wandelt, 2009) criteria. The first two classes
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of methods directly reconstruct the density field from the position of the tracers.
This leads to the problems of shot noise and the discretisation of the field sampled
by the tracers. The dynamic class of methods, on the other hand, uses the tracers
to reconstruct the velocity field, which is subsequently used to obtain the density
field in an indirect manner through the calculation of its divergence. In this way,
continuous and smoothed fields are obtained, which are less affected by the typical
uncertainties associated with void identification, allowing a more precise detection
and providing more accurate statistics, such as void counts and profiles (see Sec. 3.1
and Sec. 3.2).

6.2 Procedure and results

The main objective of this Thesis was the development of a new dynamic void finder,
with the purpose of overcoming the most common difficulties associated with the
void identification. Starting from the work of Elyiv et al. (2015), we have thus de-
veloped a dynamic void identification method, called BitVF, presented in Chapter
4. The BitVF algorithm aims at reconstructing the linear back-in-time displace-
ment field of the tracers in order to obtain the density contrast field through the
Zel’dovich theory (see Sec. 2.2.2). This our new algorithm identifies voids through
the execution of three fundamental steps: the reconstruction of the displacement
field (presented in Sec. 4.1.1), the computation of the density field (presented in
Sec. 4.1.2) and the identification of voids (presented in Sec. 4.1.3). In the first
step, tracers are used to sample the back-in-time displacement field between their
current position and their position at the time when the perturbation formed. The
reconstruction can be achieved using two different methods: LaZeVo and the exact
reconstruction. The first method consists of a statistical reconstruction of the dis-
placement field based on the action minimisation. The second method is intended
for use in simulations only and provides the exact reconstruction of the displace-
ment field using the identification numbers of the tracers. Once the displacement
field has been reconstructed, the density contrast field is obtained through Equation
(2.88). At this point the centres of the voids are identified as the local minima of
the density field in the underdense regions. The position of the centres is corrected
through a weighted mean of the local values of the density field. Finally, the void
radius is computed as the radius of a sphere containing a certain fraction of the
average density of the Universe. At this point, it is possible to clean up the void
catalogue obtained with BitVF to allow the following cosmological exploitation of
the acquired data (Sec. 3.2.2). A new version of the cleaning algorithm, developed
by expanding and improving on Ronconi & Marulli (2017) work, was presented in
Sec. 4.2.

The developed algorithms were tested on the DUSTGRAIN-pathfinder simulations
(Sec. 4.3), with different distributions of cosmological tracers (DM particles and
DM haloes) at different redshifts (z = 0, 0.5, 1, 2). The description of this work
is given, together with the results obtained, in Sec. 4.5. As a first step, BitVF is
applied to the distribution of DM with the aim of testing the algorithm through the
exact reconstruction of the displacement field. The results obtained show that the
reconstruction of the divergence field is in perfect agreement with the tracer field.
In addition, voids are accurately identified in the underdensity regions. As a second
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step, it was chosen to compare the LaZeVo method with the exact reconstruction of
the displacement field in order to validate the method. The result of the application
reveals a very good agreement between the two methods, justifying the future use
of this statistical reconstruction. BitVF was then applied to the distribution of DM
haloes at z = 0, reconstructing the displacement field using the LaZeVo method.
Subsequently, the operation was repeated with all four available redshifts, both for
the distributions of DM haloes and DM particles (in this case employing the exact
reconstruction of the displacement field), with the aim of testing the algorithm
response to more or less linear density distributions. In all the cases mentioned,
it was shown that the algorithm can reconstruct the displacement and divergence
fields with great accuracy, perfectly reconstructing the density field described by the
cosmological tracers. In addition, it was proved that it correctly identify voids in
underdense areas, reflecting the differences we would expect in the distributions of
voids measured in the different distributions of tracers, at various redshifts. Finally,
in Sec. 4.5.1, the density and divergence profiles of voids obtained from the BitVF
application are shown. In particular, through the stacked profiles obtained, it is
possible to test the correct functioning of the cleaning algorithm, as well as the
quality of the void catalogue obtained.

Once we had verified the correct functioning of our void finder, we proceeded
to compare it with VIDE, the most widely used void identification algorithm. The
results of these tests are shown and discussed in Chapter 5. In particular, in Sec. 5.1,
the stacked density profiles obtained by applying the two finders to the same sample
of DM particles at different redshifts are compared. The profiles obtained from voids
identified with BitVF are deeper and with an associated lower scatter, providing a
strong indication that the void centres found are in more underdense positions than
the void centres identified by VIDE. Section 5.2 shows the void counts obtained by
applying the two finders to both tracer distributions, testing the effect of redshift
and different level of subsampling (the latter tested on DM only). In addition, we
discussed the calibration process required to extend the theoretical VSF provided
by the Vdn model to predict void counts identified using biased tracers. The counts
obtained through the application of the finders on the DM distribution show a
better response of BitVF than VIDE as the subsampling increases, while showing a
poorer spatial resolution at high redshifts. This is at present time the major issue of
our finder, which arises because the underdensities in the DM distribution are not
very pronounced at high redshifts, shortening the particle displacements and thus
decreasing the finder resolving power. However, we point out that the void counts at
higher redshifts also remain in better agreement with the theoretical predictions than
the VIDE ones. Furthermore, it can be observed that the void counts obtained by
applying BitVF to the DM halo distribution are far better than the VIDE ones, both
in terms of quantity and spatial resolution, at all redshifts. This feature is extremely
valuable, as it proves the great potential of this method when applied to biased
tracers, i.e. tracers of the same type as we expect to have with real data. Finally,
as a last test, in Sec. 5.3 we presented an attempt to derive the values of σ8 and Ωm

values of the DUSTGRAIN-pathfinders simulations by means of a Bayesian analysis,
performed by running MCMC on the VSF counts measured in the halo distributions
at various redshifts. For each redshift, BitVF shows a more accurate parameter
estimate than VIDE. In particular, analysing the results obtained by combining the
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distributions calculated at all redshifts, BitVF intercepts the true values within the
68% confidence contours, while the VIDE contours are offset. This result is due to the
choice of setting common parameters for VSFs, such as bin number and minimum
radius of the voids considered. BitVF, showing a better spatial resolution than VIDE,
recovers information at smaller scales, constraining more effectively the VSF. The
offset of the VIDE contours can be resolved by increasing the minimum radius of the
voids considered, and thus decreasing the resolution, at the price of obtaining wider
confidence contours and thus less precise estimates.

In conclusion, BitVF showed the potential to provide precisely identified void
catalogues that can be used effectively for obtaining both void count statistics and
density profiles. Furthermore, it has been proven to be extremely effective when
applied to biased tracer distributions, recovering voids at better spatial resolutions
than VIDE, which leads to more precise constraints on cosmological parameters.
BitVF has therefore all the potential to be considered as a quality alternative to
existing void detection methods, possibly providing a fundamental tool for future
cosmological analysis.

6.3 Future perspective

The results obtained in this Thesis work demonstrate the efficacy of the BitVF algo-
rithm when applied to simulations. However, this method is intended for application
to real data, particularly on data from the upcoming large galaxy surveys. In or-
der to make the algorithm suitable for any type of catalogue, we will work on the
following aspects:

• we will make the algorithm more efficient from the point of view of the com-
putational cost, in particular with regard to the statistical reconstruction of
the displacement field. In fact, the LaZeVo method, unlike the exact recon-
struction which has performances comparable to VIDE, can handle at most
catalogues on the order of millions of tracers. In anticipation of the real data
that will be produced in the coming years (for instance, observation of the
order of more than tens of millions of galaxies with the Euclid survey), it is
necessary to optimise the algorithm in order to exploit the available data in
their entirety.

• Once the LaZeVo method has been optimised, it will be necessary to test it on
larger simulations, again using both DM distributions and biased tracers.

• We will implement a version of the finder capable of handling light cones and
RA − Dec − z observed coordinate catalogues. The operating principles of
BitVF will remain similar, but the redshift dependency of the tracer density
must be managed.

• Once light cones can be handled, the use of masks allowing the reconstruction
of complex observation fields and the management of the weights associated
with the various observations will be implemented, in order to be able to
manage the real data in every possible situation.
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• Finally, it would be appropriate to further study the divergence profiles, both
from a theoretical and a practical point of view. In the first case, by searching
for a calibration that would allow these profiles to be aligned with the density
profiles even in the central zones of the voids, in the second case by finding
a statistical reconstruction of the displacement field that would maintain the
reconstructed total distance of displacement of the tracers at the same value
as the real one (see Sec. 4.5.1). Once this has been done, a new radius
assignment and a new version of the cleaner could be implemented exploiting
the divergence profiles instead of the density profiles, definitively eliminating
any direct dependence on the position of the tracers.

The codes developed in this Thesis are included in the CosmoBolognaLib (Sec. 4.4)
and will be made public with the next release.
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