
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE

Dipartimento di Fisica e Astronomia

Corso di Laurea Magistrale in Astrofisica e Cosmologia

Exploiting the clustering of cosmic voids

as a novel cosmological probe

Presentata da:
Elena Marcuzzo

Relatore:
Prof. Federico Marulli

Correlatori:
Prof. Lauro Moscardini

Dr. Sofia Contarini

Dr. Carlo Giocoli

Sessione I
Anno Accademico 2021/2022





A mamma e papà,

per aver sempre aiutato i miei sogni a prendere forma.





Abstract

The investigations of the large-scale structure of our Universe provide us with extremely pow-
erful tools to shed light on some of the open issues of the currently accepted Standard Cos-
mological Model, and on its six fundamental parameters. Thanks to the development of both
high-precision surveys and numerical simulations, we have been able to achieve progressively
tighter constraints. However, this led to the growth of the so-called cosmic tensions, that
emerge when comparing high and low redshift probes. In order to disentangle those degen-
eracies, the ΛCDM model is continuously tested by means of different cosmological probes
and their combinations.

Focusing on the largest scales, the volume of the Universe turns out to be almost entirely
dominated by the cosmic voids, i.e. large underdense regions among the nodes, filaments,
sheets and walls composing the so-called cosmic web. Until recently, constraining the cosmo-
logical parameters from cosmic voids was almost infeasible, because the amount of data in void
catalogues was not enough to ensure statistically relevant samples. Thus, the constraints from
cosmic voids were not competitive with those of other cosmological probes. The increasingly
wide and deep fields in present and upcoming surveys have made the cosmic voids emerge in
the current cosmological scenario as incredibly promising probes, despite the fact that we are
not yet provided with a unique and generally accepted definition of the void radius and in-
ner density. While some properties of the cosmic voids have already been extensively verified
and exploited in the literature (see e.g. the void size function), other statistics, such as their
auto-correlation function, have never been deployed for cosmological analyses.

In this Thesis, after some necessary theoretical bases of the general properties of our Uni-
verse, we address the two-point statistics of cosmic voids, in the very first attempt to model its
features with cosmological purposes. To this end, we implement an improved version of the
void power spectrum presented by Chan et al., 2014. In particular, we have been able to build
up an exceptionally robust method to tackle with the void clustering statistics, by proposing
a functional form that is entirely based on first principles. We extract our data from a suite
of high-resolution N-body simulations, namely the dustgrain-pathfinder, which account for
both theΛCDM and alternativemodified gravity scenarios (f(R)models) in the redshift range
0 ≤ z ≤ 2. Since we aim at studying cosmic voids that are traced by both the dark matter par-
ticle field and the halo distribution, as a first step of our analysis we extract the halo catalogues
by means of a halo finder algorithm. Then, a void finding procedure is employed, and finally
the voids are properly cleaned. We do this in order to make the void catalogues consistent
with the assumptions used to make reliable predictions of the void size function, i.e. the Vdn
model proposed by Jennings et al. (2013). This model, valid for the underlying dark matter
field, has been recently extended to the distribution of biased tracers by Contarini et al. (2019)
and Contarini et al. (2022).



To accurately compare the data to the theory, we calibrate the model by accounting for a
free parameter, which is meant to be a multiplicative factor on the median radius of the anal-
ysed void samples. This factor is needed to readjust the theory of the Hard Spheres, which we
consider in order to model the void exclusion term. Afterwards, we constrain the cosmologi-
cal parameters (Ωm and σ8, i.e. the matter density parameter and the amplitude of the power
spectrum at z = 0) by sampling their posterior distributions with Gaussian likelihood and uni-
form priors. This procedure has been firstly applied to the cosmic voids identified in the dark
matter field, within the ΛCDM cosmological scenario. Furthermore, since we are analysing
a suite of simulations designed to study eventual effects of the modified gravity in the large-
scale structure of the Universe, we also consider the f(R) cosmologies. Indeed, cosmic voids
are proven to be excellent laboratories to test modifications of gravity, thanks to both their
shallow gravitational potential and the fact that, within them, the screening mechanism acts
only marginally. As far as the modified gravity effects are limited, our auto-correlation model
has revealed to be a reliable method to constrain the main ΛCDM parameters. By contrast,
it cannot be used to model the void clustering in those simulations that assume a stronger
modification of the gravity, indicating that some additional parameters must be taken into
consideration in the model function.

Since the two-point statistics of generic objects depends mainly on the position of their
centres, we expect to be able to model the auto-correlation function of voids identified in
the halo distribution through the same theoretical formulas as those implemented for the dark
matter field, at least at first approximation. However, we have not been able to cross-check our
two-point modelling for voids extracted from the halo distribution yet, because the statistics
provided by the analysed simulations for samples of voids with large radii is not sufficient to
perform a reliable Bayesian analysis.

In future works, we will further develop our analysis on the void clustering statistics, by
testing the auto-correlation function model on both larger and higher-resolution simulations,
in which the extracted void samples have a definitely better statistical relevance with respect
to that of the simulations considered here. One of our further main aims is to apply the whole
analysis presented in this Thesis to real data catalogues, in order to provide cosmological con-
straints from the observed void 2PCF. Finally, we also plan to combine these constraints with
the ones provided by other cosmological probes (e.g. void and cluster number counts and
density profiles, weak lensing analyses, Ly-α forest, CMB, and many others).



Sommario

Le proprietà della struttura a grande scala del nostro Universo forniscono strumenti estrema-
mente efficaci per fare luce su alcune criticità del Modello Standard, che rappresenta il modello
cosmologico attualmente accettato dalla comunità scientifica. Grazie allo sviluppo di campa-
gne osservative e simulazioni numeriche di alta precisione, siamo stati in grado di ottenere
vincoli sempre più stretti sui principali parametri del modello ΛCDM. Tuttavia, questo ha
portato alla comparsa delle cosiddette tensioni cosmiche, che emergono dal confronto tra probe
cosmologiche ad alto e basso redshift. Per eliminare queste degenerazioni, il modello ΛCDM
viene continuamente testato per mezzo di varie probe cosmologiche e loro combinazioni.

Facendo riferimento alle grandi scale, il volume dell’Universo è quasi interamente domina-
to dai vuoti cosmici, che emergono nella ragnatela cosmica come grandi regioni sottodense. In
passato, la quantità di dati presenti nei cataloghi di vuoti non risultava essere sufficiente per
garantire dei campioni statisticamente rilevanti e, di conseguenza, non era possibile vincolare
i parametri cosmologici per mezzo di questi oggetti. In particolare, questi vincoli non erano
competitivi con quelli di altre probe cosmologiche. Le campagne osservative e le simulazioni
numeriche costruite a campo sempre più ampio e profondo hanno fatto sì che i vuoti cosmici
emergessero nell’attuale scenario cosmologico come una probe incredibilmente promettente,
nonostante non sia ancora stato stabilito un modo univoco per definire e descrivere questi
oggetti. Se alcune proprietà dei vuoti cosmici sono già state ampiamente testate e utilizza-
te in letteratura (per esempio, i conteggi dei vuoti in funzione della loro dimensione), altre
statistiche, come la funzione di auto-correlazione, non sono mai state sfruttate in cosmologia.

In questo lavoro di Tesi, dopo aver fornito alcune basi teoriche necessarie per comprendere
alcune delle proprietà del nostro Universo, ci siamo occupati della cosiddetta statistica a due
punti dei vuoti cosmici, in quello che è il primo tentativo di costruire una modellizzazione
affidabile da usare per fini cosmologici. A questo scopo, abbiamo implementato una versione
migliore dello spettro di potenza dei vuoti presentato da Chan et al. (2014). Vedremo come,
dopo una lunga analisi, siamo riusciti a costruire un metodo eccezionalmente robusto per stu-
diare il clustering dei vuoti, proponendo una forma funzionale interamente basata su principi
primi. I dati che abbiamo analizzato sono stati estratti nell’intervallo di redshift 0 ≤ z ≤ 2 da
una serie di simulazioni N-body ad alta risoluzione chiamate dustgrain-pathfinder, costruite
assumendo sia la cosmologia del Modello Standard, sia quella legata ai modelli alternativi di
gravità modificata (modelli f(R)). Poiché il nostro obiettivo è quello di studiare i vuoti co-
smici tracciati sia dal campo di particelle di materia oscura sia dalla distribuzione degli aloni,
per impostare la nostra analisi abbiamo estratto innanzitutto i cataloghi di aloni tramite un
algoritmo implementato con lo scopo di identificarli nel campo totale di materia. In seguito,
ci siamo concentrati sull’applicazione di una procedura progettata per la ricerca dei vuoti, sia
nei cataloghi di aloni che in quelli di particelle di materia oscura. Infine, i vuoti sono stati
opportunamente riscalati secondo il cosiddetto algoritmo di cleaning, applicato ai cataloghi di
vuoti per renderli consistenti con le assunzioni utilizzate per il calcolo della funzione di distri-
buzione teorica dei vuoti, secondo il modello Vdn proposto da Jennings et al. (2013). Questo



modello è in realtà valido solo per il campo totale di materia, ma è stato recentemente esteso
alla distribuzione dei traccianti affetti da bias da Contarini et al. (2019) e Contarini et al. (2022).

Per un confronto accurato tra i dati e la teoria, abbiamo calibrato il modello considerando
un unico parametro libero, da intendersi come un fattore moltiplicativo sul raggio mediano
dei vuoti analizzati. Questo fattore è risultato essere necessario per riadattare al caso dei vuoti
cosmici la teoria delle Hard Spheres, utilizzata allo scopo di modellare il termine di esclusio-
ne dei vuoti. A questo punto, abbiamo vincolato i parametri cosmologici (Ωm e σ8, ovvero il
parametro di densità della materia e l’ampiezza dello spettro di potenza a z = 0) tramite il
campionamento delle cosiddette distribuzioni a posteriori, assumendo una funzione di vero-
simiglianza Gaussiana e distribuzioni a priori uniformi. Questa procedura è stata applicata ai
vuoti cosmici identificati nel campo di densità della materia oscura nel caso delle simulazioni
ΛCDM. Inoltre, avendo a disposizione una serie di simulazioni che comprendono anche sce-
nari cosmologici alternativi di gravità modificata, abbiamo applicato la stessa analisi anche alle
cosmologie f(R). In questo modo è stato possibile sfruttare il fatto che i vuoti cosmici sono
stati dimostrati essere perfetti laboratori per testare eventuali modifiche della gravità, sia per il
loro potenziale gravitazionale poco profondo (e quindi poco variabile in funzione della distan-
za dal centro), sia perchè al loro interno il meccanismo di screening (necessario per ritrovare
il comportamento della Relatività Generale sulle piccole scale) agisce solo marginalmente. In
questa Tesi abbiamo dimostrato che il nostro modello di auto-correlazione è affidabile per vin-
colare i principali parametri della cosmologiaΛCDM, e che questo metodo è robusto finchè gli
effetti della gravità modificata sono modesti. Al contrario, non può essere utilizzato per mo-
dellare il clustering dei vuoti nelle simulazioni che assumono un livello di gravità modificata
maggiore e, di conseguenza, in questi casi è necessario introdurre alcuni parametri aggiuntivi
nel modello dell’auto-correlazione.

Visto che il clustering di generici oggetti cosmici dipende essenzialmente dalle posizioni
dei loro centri, ci aspettiamo, almeno in prima approssimazione, di riuscire modellare accura-
tamente anche la funzione di auto-correlazione dei vuoti identificati nella distribuzione degli
aloni, utilizzando le stesse formule teoriche implementate per il campo delle particelle di ma-
teria oscura. Tuttavia, non siamo ancora stati in grado di eseguire un controllo incrociato della
nostra modellizzazione sulle misure del clustering ottenute per i vuoti estratti dalla distribu-
zione degli aloni. Il motivo principale è da ricercarsi nel fatto che la statistica dei cataloghi
di vuoti negli aloni, costruiti in accordo con la teoria del modello Vdn, non è sufficiente per
eseguire correttamente l’analisi Bayesiana necessaria per vincolare i parametri cosmologici.

Durante lo sviluppo di questa Tesi, abbiamo progettato diversi modi per migliorare l’analisi
presentata. In particolare, testeremo il nostromodello di clustering dei vuoti su simulazioni più
grandi e a più alta risoluzione, per poter disporre di cataloghi di vuoti con maggiore rilevanza
statistica rispetto alle simulazioni considerate in questo lavoro, con l’obiettivo di svilupparne
una versione più accurata. Un altro dei nostri obiettivi principali è quello di applicare l’intera
analisi presentata in questa Tesi a cataloghi di dati reali, al fine di fornire vincoli cosmologici
sfruttando la 2PCF dei vuoti misurata dalle osservazioni. Infine, ci riproponiamo di combinare
questi vincoli con quelli forniti da altre probe cosmologiche (come, per esempio, i conteggi dei
vuoti e degli ammassi, il lensing gravitazionale, la foresta di Ly-α, la CMB, e molte altre).
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Introduction

At present, the Λ-cold dark matter (ΛCDM) concordance model is widely accepted as the
Standard Model for our Universe (e.g. Shafieloo and Clarkson, 2010; Heavens et al., 2017). It is
based on the existence of the CDM and the dark energy (DE, in the form of the cosmological
constant Λ) and it relies on the principles of Einstein’s General Relativity. According to this
model, the structure formation follows a bottom-up hierarchical scenario resulting in the well
known Cosmic Web (van de Weygaert and Schaap, 2009; Cautun et al., 2014; Novosyadlyj
and Tsizh, 2017), in which the collapsed structures derive from the positive fluctuations in the
primordial density field, while voids are their negative counterpart.

Being these adiabatic perturbations originated by a random process at the end of the infla-
tion1, the distribution of the initial density contrast is described by a (nearly) Gaussian statis-
tics. As the fluctuations evolve in time going through the nonlinear regime, their distribution
looses its Gaussian shape. This results in more bound collapsed structures and an excess of
underdense regions. We can use both the overdensities and the underdensities to deal with
the main open issues of the ΛCDM model. The clustering of galaxy clusters is related to the
nonlinear evolution of the positive perturbations, and the virialization process they undergo
erases the memory of the initial conditions. By contrast, voids keep this memory, and this has
some important advantages:

• they are just mildly nonlinear,
• they become more spherical as their evolution proceeds,
• in their low-density interiors there are almost no baryons,
• they are extremely sensitive to the diffuse components (i.e. DE and neutrinos) thanks to
their emptiness,

• they are severely related to possible modification of gravity (i.e. Modified Gravity) thanks
to their shallow gravitational potentials.

Hence, we do think it is important to test potential statistical uses of voids, which are nearly
a newborn in the current cosmological framework and, if combined with already well studied
probes2, can help us to unveil the mysteries of our Universe.

1The inflation is a period of time in the early stages of the Universe which is supposed to be a fair solution to
the main open problems of the ΛCDMmodel (i.e. the cosmological flatness, horizon and themagnetic monopoles

problems).
2For example, we refer to galaxy and cluster clustering (e.g. Norberg et al., 2009; Marulli et al., 2012; Castorina

et al., 2015; Sereno et al., 2015; Marulli et al., 2017; García-Farieta et al., 2019; Tutusaus et al., 2020), CMB (e.g.
Rassat et al., 2014; Planck Collaboration et al., 2020c), Lyman-α forest (e.g. Weinberg et al., 2003; Dijkstra, 2014).
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Introduction

Cosmic voids are large underdense regions among nodes, filaments and walls in the large-
scale structure (Coil, 2013) that spatially dominate our Universe3, since they account for the
90−95% of the whole volume (Platen et al., 2007). Typical void sizes stretch over an extremely
wide range of scales going fromminivoids towards supervoids, with linear dimensions of a few
to hundreds of megaparsecs (Blumenthal et al., 1992; Tikhonov and Karachentsev, 2006; Sza-
pudi et al., 2015). Traditionally, robust cosmological constraints have been extracted from the
high-density regions, firstly because they are observationally favoured and secondly because
they have provided the scientific community with higher statistics than voids.

Then the question is why choosing the cosmic voids? The reason is that nowadays we are
moving towards a very high precision Cosmology thanks to the upcoming wide-field surveys
(e.g. DESI4, Euclid5, SPHEREx6, WFIRST7, LSST8; see Pisani et al., 2019 and references therein)
which make cosmic voids become competitive as a cosmological probe. Moreover, it is well
known that the Universe has recently entered a phase of accelerated expansion (Riess et al.,
1998; Schmidt et al., 1998; Perlmutter et al., 1999) and although the Standard Cosmological
Model (§1.3) assumes this acceleration is due to the cosmological constant Λ, this raises the
two unsolved problems of fine-tuning and coincidence. To overcome these issues there are
mainly two options: considering either the DE equation of state as evolving in time (§1.4.1) or
the modified gravity (§1.4.2). As mentioned before, by virtue of their unique properties, cosmic
voids are key probes to shed light on these two feasible alternatives.

By considering voids identified both in the DM particle field and in the halo distributions,
the main steps we intend to go through are measuring and modelling the void auto-correlation
function in order to constrain the cosmological parameters and the void bias. Finally, we also
aim at studying the above mentioned void statistics9 as a mean to disentangle degeneracies
among the ΛCDM and the f(R)modified gravity models. To reach our purposes we consider
C++ and Python codes, taking advantage in particular of the CosmoBolognaLib (§4.1; Marulli
et al., 2016) - a set of free software libraries for cosmological calculations. Note that we will
perform this analysis on simulations in an effort to findmethods which can be applied to future
observations.

3On the other hand, the great majority of the total mass is bounded in the collapsed structures, such as DM
haloes, galaxies and galaxy clusters.

4Dark Energy Spectroscopic Instrument (DESI): https://www.desi.lbl.gov/.
5Euclid: https://www.euclid-ec.org.
6SPHEREx: https://spherex.caltech.edu/.
7Wide Field Infrared Survey Telescope (WFIRST): https://roman.gsfc.nasa.gov/.
8Large Synoptic Survey Telescope (LSST): https://www.lsst.org/.
9Other types of void statistics, such as the void size function and the void density profile, have already been

studied in e.g. Contarini et al. (2019) and Contarini et al. (2021).
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Introduction

This Master Thesis work is organised as follows:
• in chapter 1 we present a general overview of the cosmological background against
which we are working, in order to set the theoretical bases for our analysis;

• in chapter 2 there are the main characteristics of the formation and evolution of cosmic
structures, both in the linear and nonlinear regimes;

• in chapter 3 we focus on the cosmic voids as a cosmological probe, providing a detailed
description of their definition, identification and relevant statistics;

• in chapter 4we present the CosmoBolognaLib, our simulations and the numerical tools
used to produce the void catalogues we analysed;

• in chapter 5 we illustrate step by step the outcomes of our study on the void auto-
correlation function, providing an explanation of how we intend to exploit the void clus-
tering statistics in the present cosmological framework;

• in chapter 6 we sum up our main results to draw relevant conclusions and list possible
future perspectives of this Thesis, which are necessary to make further steps towards a
full cosmological usage of cosmic voids.
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Chapter 1

Cosmological framework

Involving the largest scales of the Universe, Cosmology as a research field gives us the per-
ception of the whole in order to figure out the deepest meaning of the physical laws within
which we are living. The purpose of the first two chapters is to set the theoretical bases on (i)

the working principles and models of our Universe, (ii) the Standard Cosmological Model and
its open issues, (iii) the formation and evolution of the cosmic structures, (iv) the large-scale
structure of the Universe, namely LSS, (v) its statistical properties and (vi) the main features
of the N-body simulations needed to study the LSS.

Let us underline that we decided to provide some fundamental concepts of Cosmology in
order to have the basic requirements needed to understand cosmic voids, their statistical prop-
erties and the analyses we have performed (see chapter 3, chapter 4 and chapter 5). The
reader who is already familiar with these topics can proceed beyond these first two chapters,
by directly approaching the main features of cosmic voids presented in chapter 3.

Nowadays, the favoured cosmological model for our Universe is the so-calledΛCDM. This
model is in agreement with the ongoing observations but it is based on two components - the
cold dark matter and the cosmological constant (corresponding to the ≃ 30% and ≃ 70% of
the total energy budget, respectively) - whose content and behaviour are still far to be fully
understood. The Standard Model is built on two milestones:

Gravity. The gravity is the leading force on large scales and it acts following the laws of
Einstein’s General Relativity (see §1.1).

Cosmological Principle. According to the Cosmological Principle1 (CP hereafter), on suf-
ficiently large scales (at least hundreds of Megaparsec) the Universe is both homogeneous and
isotropic. This means that both preferred positions and directions do not exist in an average
sense. The scientific community trusts this principle because the great majority of present
observational data ensure a level of around 10−5 for the large scale anisotropy (Coles and
Lucchin, 2002)2.

1In theXX century the cosmological investigations were not yet supported by satisfactory observational data
and the scientists of that time needed some guiding principle tomove the first hesitant steps on their way to define
a global theory for the Universe.

2These data concern, for example, the Cosmic Microwave Background, the clusters of galaxies and the ra-
diogalaxies. Note that even if the currently adopted concordance model is based on this principle, there is some
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Cosmological framework

1.1 General Relativity and metric definition

As mentioned before, the gravity is the only force to be considered when constructing cos-
mological models to describe the largest scales of our Universe, at least at first approximation.
The gravitational interaction is well characterized by the Einstein’s General Relativity3 (GR
hereafter; see Einstein, 1915), a theory that totally transformed the idea of gravity from an
interacting force between two massive bodies to a natural outgrowth of the curvature of the
spacetime4. Indeed, the GR is based on the existence of a four-dimensional spacetimewhere
every point is seen as an event defined by a four-vector xµ, with µ = 0, 1, 2, 3. In this con-
text, the geometry is represented by the metric tensor

5 gµν , through which we can define the
minimum separation between two points in spacetime as follows:

ds2 = gµνdx
µdxν = g00dt

2 + 2g0idtdx
i + gijdx

idxj , (1.1)

where ds2 is the so-calledmean square distance (invariant length), g00dt2 is the temporal com-
ponent, gijdxidxj are the spatial components and 2g0idtdxi are the mixed components.

Being the geometry of the spacetime the mirror image of the metric tensor gµν , it is an
essential ingredient of the Einstein Field Equation:

Rµν −
1

2
gµνR =

8πG

c4
Tµν , (1.2)

where G and c are constants, the gravitational constant and the speed of light, respectively;
Rµν is the Ricci tensor and R is the Ricci scalar, both defined by means of the Riemann tensor

Rσ
λµν ; Tµν is the energy-momentum tensor. Equation (1.2) is the fundamental equation of the

GR theory, and it argues that the curvature of the spacetime is a function of the matter density,
energy and pressure content enclosed in our Universe. The left-hand-side (LHS, hereafter) of
the equation defines the Einstein tensor Gµν , which represents the geometry of the spacetime
and therefore is sensitive to potential modifications of gravity. By contrast, the right-hand-side
(RHS) is characterized by the energy-momentum tensor Tµν , which is linked to the matter and
energy budget of the Universe and, as a consequence, it depends on possible hidden forms of
DE.

Typically, the cosmological models are built by considering the solutions of the Einstein
Field Equation valid within the aforementioned Cosmological Principle. It is possible to obtain
a general form for the metric starting from the mean square distance between two points in

more recent evidence (e.g. Beisbart, 2009; Schwarz, 2009; Secrest et al., 2021; Nadolny et al., 2021) against the
CP. Anyway, we will see in §2.1 that, if verified, the inflation process could provide itself the homogeneity and
isotropy of the Universe, without seeking help from the CP ab initio.

3As a first step, since Albert Einstein noticed the impossibility to reconcile the classical mechanics with the
electromagnetism, he gave birth to the theory of Special Relativity in order to get rid of this incompatibility. This
theory led to a novel definition of time, which was no longer consistent with the concept of universality. Gravity
was later added and the GR theory was developed in a scientific process that lasted more than 10 years.

4According to Misner et al. (1973) and Wheeler and Ford (1998), “spacetime tells matter how to move; matter

tells spacetime how to curve”.
5The metric tensor is interpreted as the potential of gravitational forces.
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the spacetime as defined in equation (1.1) and ensuring:
• the isotropy (for the essential validity of the CP) by imposing the mixed terms equal to
zero, i.e. g0i = 0;

• that the light travels at the speed of light c, which means that the RHS equals the distance
covered with speed c, i.e. ds2 = 0→ g00 = c2.

This leads to the general metric:

ds2 = c2dt2 − gijdx
idxj = (cdt)2 − dl2 , (1.3)

where xi and xj are two sets of (spatial) comoving coordinates, at rest with respect to the frame
of the expanding Universe; t is the proper time, defined as the temporal coordinate measured
by a clock at rest with respect to the expansion of Universe.

1.1.1 The Friedmann-Lemaître-Robertson-Walker metric

Focusing on the spatial term, to define properly the explicit formula of gij we need to look for
a metric in the three-dimensional space which satisfies the CP we are assuming. Mathematics
tells us that there are only three possibilities for a 3D geometry to be consistent with the
homogeneity and the isotropy of the CP: flat, spherical and hyperbolic Universe. Hence, in
order to obtain a generalized formula for the spatial6 element dl2, we

• refer to spherical coordinates (ρ, θ, ϕ) with 0 ≤ ρ < ∞, 0 ≤ θ < π and 0 ≤ ϕ < 2π;
• define the solid angle as dΩ2 = dθ2 + sin2 θ dϕ2;
• consider ρ ≡ ar, where a = a(t) is the cosmic scale factor and has the dimension of a
length, while r is a dimensionless variable (0 ≤ r < ∞).

Under these assumptions we can write:

dl2 = a2
[
r2dΩ2 +

dr2

1− κr2

]
= a2

[
r2(dθ2 + sin2θ dϕ2) +

dr2

1− κr2

]
, (1.4)

where (r, θ, ϕ) are the dimensionless comoving coordinates and κ is the curvature parameter. κ
is a discrete and adimensionless parameter, which can assume three different values according
to the geometry of the space: κ = 0 flat Universe, κ = 1 spherical (closed) Universe, κ = −1

hyperbolic (open) Universe. This parameter is related to the matter and energy density content
and it can be used, together with the cosmic scale factor a, to define the Gaussian curvature

CG = κ/a2.
Finally, sticking together the terms of time and space in the limit of the validity of the CP, we

get the Friedmann-Lemaître-Robertson-Walker metric (FLRW hereafter) for the 4D spacetime:

ds2 = c2dt2 − a2(t)

[
dr2

1− κr2
+ r2(dθ2 + sin2θdϕ2)

]
. (1.5)

6To describe the metric we take into account the 3D Riemann tensor Rijkl and the Ricci scalar R which
determine, the curvature of the 3D space and the scalar curvature, respectively. Assuming the validity of the CP,
Rijkl does not depend on gµν derivatives and R does not depend on gµν and so it is constant. Thanks to the
symmetry of the Riemann tensor, it is possible to define the FLRW metric (eq. 1.5) from equation (1.1) of the
general metric.
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It is also possible to rewrite the FLRW metric redefining the spatial term dl2 (eq. 1.4) with the
set of coordinates (χ, θ, ϕ), by linking the functional forms of χ to different values of κ in the
following way:

χ = F (r) ≡
∫

dr√
1− κr2

=


r for κ = 0

sin−1(r) for κ = +1

sinh−1(r) for κ = −1

(1.6)

and equation (1.4) becomes:

dl2 = a2
[
dχ2 + f 2(χ)(dθ2 + sin2θdϕ2)

]
, (1.7)

where

f(χ) =


χ for κ = 0

sin(χ) for κ = +1

sinh(χ) for κ = −1

(1.8)

Note that while the spherical closed Universe has a finite volume which can be defined ana-
lytically as V = 2π2a3, the flat and the hyperbolic ones have infinite volumes.

As already noticed before, the CP we assumed to carry on this analytical description of the
FLRWmetric is reliable on large scales, although there are few evidence that possibly question
it (see e.g. Secrest et al., 2021). Of course, both the homogeneity and the isotropy cease to
apply when we consider small scales, where the gravitational attraction dominates and the
homogeneity is replaced by clumps of collapsed objects spaced out by empty regions. When
we consider such small volumes, the Universe does not appear the same in every position we
look at it.

1.1.2 Distances, Redshift and Hubble Flow

Due to the well-known expansion, enclosed in the cosmic scale factor a(t), the spatial part of
the Universe changes its size as the time flows. There are several possible ways to compute
the distance between two points in the spacetime depending on what we need to deal with.

It is important to clarify such different definitions of distance, since it is a crucial quantity
when performing cosmological analyses. Let us specify that in this Thesis work we will refer
both to the comoving separations and the redshift.

Proper Distance. The simplest possible concept of distance is the one we are commonly
used to consider, the proper distance, that is the real distance between two objects. It can be
measured by taking into account a fixed scale factor a = a(t) = const, i.e. to a given time t
corresponds a certain value of the cosmic scale factor. Let us consider two points p⃗ and q⃗ in
the spacetime, for example the observer and an external galaxy, at t = const i.e. dt = 0. We
make an additional assumption, by aligning the reference frame considered with the distance
we are measuring; as a consequence, dθ = dϕ = 0. To compute the proper distance between

10
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those points in the context of the FLRW metric we can use the following formula:

dpr = a(t)

∫ r

0

dr′√
1− κr′

= a(t)F (r) , (1.9)

where F (r) (eq. 1.6) depends on the curvature describing the geometry of the Universe.

Comoving Distance. This kind of distance is independent of the expansion of the Universe
and it is known as the proper distance measured at today’s time t = t0, i.e. the proper distance
re-scaled for the ratio of the scale factor at today’s time to the scale factor at the time t:

dc ≡ dpr(t0) = a(t0)F (r) =
a(t0)

a(t)
dpr , (1.10)

where the third equivalence can be justified multiplying and dividing by a(t) and considering
the definition of dpr (eq. 1.9). The word comoving refers to the fact that by definition dc follows
the variation of the scale factor, as if the expansion of the Universe was erased.

Hubble-Lemaître Law. The proper distance as defined in equation (1.9) varies and, given
the dependence on time through a(t), it means that there is a velocity to take into account.
This radial velocity has to be intended as the global motion followed by all the objects inside
the cosmos, which is known as the Hubble flow. It is obtained by deriving dpr with respect to
time7 t:

vr =
d

dt
dpr =

d

dt

[
a(t)F (r)

]
= H(t)dpr . (1.11)

This is the Hubble-Lemaître Law, an equation expressing the velocity at which the points in
the spacetime drift apart because of the expansion of the Universe; H(t) ≡ ȧ

a
is defined as

Hubble parameter, i.e. a function of time that has the same value everywhere in the Universe
at a given cosmic time. Its present value H(t0) = H0 is a crucial cosmological parameter
which establishes the time-distance scales of the Universe; we refer to it as Hubble Constant.
Commonly, its units of measure is [km s−1 Mpc−1], which shows that it has the dimension
of the inverse of a time [s−1]; in fact, if we assume the expansion rate of our Universe to be
constant for its whole history, τH = H−1

0 [s] (namely Hubble time) is an estimate for the age
of the Universe or, for the sake of accuracy, for the amount of time passed since when the
expansion started. However, this assumption is absolutely inaccurate and τH can be seen just
as a rough over-estimate at first approximation (see fig. 1.1).

It was Edwin Hubble who found out the expansion of the Universe by measuring the radial
velocities of some distant galaxies. By means of their observations he was able to build the
distance - radial velocity relation for the first time (Hubble, 1929), discovering that the more a
galaxy is distant from the observer themore it moves awaywith a higher velocity. His resulting
measure of the Hubble constant was H0 ≃ 500 km s−1 Mpc−1, a value which corresponds
to an age of τH ≃ 2 Gyr. Of course, our present knowledge tells us that this is not the right
value for τH since, assuming a flat ΛCDM model, the proven age of our Universe is around

7Note that F (r) is time-independent.
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Figure 1.1: Graphic representation of the comparison between the true age of the Universe t0
and the one resulting from 1/H0. Credits to: Coles and Lucchin (2002).

14 Gyr from more recent estimates8 of the Hubble constant (H0 ≃ 70 km s−1 Mpc−1).
It is common to redefine the Hubble parameter through an adimensional parameter h(t) as

follows:
H(t) ≡ 100 h(t) [km s−1 Mpc−1] . (1.12)

This helps to overcome the uncertainties that affect the value ofH0: we generally express the
relevant cosmological lengths in units of h = h(t)

[
h−1Mpc

]
because with this method we

are able to describe theoretical models despite the tensions on the true value of the Hubble
parameter. However, there are some arguments against using this unit of measure; for exam-
ple, Sánchez (2020) suggests to abandon the

[
h−1Mpc

]
units, and replace σ8 with σ12. Note

that σ8 and σ12 are defined as the mass variance σM filtered on a scale radius of 8 h−1Mpc

and 12 h−1Mpc, respectively. These quantities represent two possible ways to express the
amplitude of the power spectrum P (k).

Redshift. Why is the concept of redshift relevant in the cosmological context? As a con-
sequence of the Hubble flow, the more an object is distant from us and the more its spectrum
is affected by the redshift phenomenon. This effect is something similar to the Doppler shift
towards longer wavelengths and can be defined through the following formula:

z ≡ λobs − λem

λem

=
∆λ

λem

, (1.13)

where λobs is the observed wavelength, while λem is the emitted one. We consider to have
an emitting source at a distance r from us which radiates a photon of true wavelength λem at
the instant of time tem, and an observer (located where we are) that receives the same photon
of wavelength λobs at the instant of time tobs. Starting from the FLRW metric (eq. 1.5) and
imposing

8Nowadays, the scientific community is dealing with some statistical tensions (see §1.4 for further details);
one of them is related to the value of the Hubble constant, which is measured with more and more precision as
both the instruments and the techniques are improved.
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• ds2 = 0, since a photon is a massless particle which follows the light-like geodetics;

• dθ = dϕ = 0 because we align the reference frame with the distance the photon travels
along for simplicity

we have:
0 = c2dt2 − a2(t)

dr2

1− κr2
. (1.14)

Let us separate the variables (r, t) and then integrate the temporal part from the instant in
which the photon leaves to the instant in which it reaches the observer and the spatial part
along the line of sight. Equation (1.14) turns into:∫ tobs

tem

c dt

a(t)
=

∫ r

0

dr′√
1− κr′2

= F (r) . (1.15)

Likewise, we now pretend to have another photon emitted by the same source at tem + δtem
and caught by the observer at tobs + δtobs. Since the radial distance travelled is the same as
before, we write: ∫ tobs+δtobs

tem+δtem

c dt

a(t)
=

∫ r

0

dr′√
1− κr′2

= F (r) . (1.16)

Given that F (r) is the same in both the previous equation, we can equal the temporal integrals
of (1.15) and (1.16). By doing this and assuming that δtem and δtobs are very small, i.e. the
cosmic scale factor a(t) is constant at the time in which it is computed, we have:

δtobs
a(tobs)

=
δtem
a(tem)

. (1.17)

Finally, moving from times and wavelengths to frequencies
(
ν = 1

δt
; ν = c

λ

)
and considering

t as the generic time at which the photon is emitted and t0 (i.e. today’s time) as the instant
at which the photon is received by the observer, we obtain the definition of the cosmological

redshift:
1 + z =

a0
a(t)

. (1.18)

The cosmological redshift is not to be understood as aDoppler effect because nothing ismoving
with its proper velocity; it is just an effect due to the fact that objects are embedded in a sort
of expanding fluid which fills up the Universe.

Other cosmological distances

As disclosed at the beginning of §1.1.2, in Cosmology there is not a unique way to define the
notion of distance. We have seen the proper distance, the comoving distance and the redshift.
Observationally, it is also possible to exploit either the flux or the angular diameter of the
cosmic sources.
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Luminosity distance. In order to give a definition of the luminosity distance we must ap-
peal to the so-called standard candles, cosmic objects whose intrinsic luminosity is known9.
Therefore, we can use their observed flux f to measure their distance dL:

f =
L

4πd2
,

dL =

(
L

4πf

)1/2

.

(1.19)

The key point here is that considering a fixed absolute luminosity L, if we move the standard
candle further from the observer, the flux decreases because the photons are distributed over a
larger spherical surface, i.e. a surface corresponding to a larger radius and, as a consequence,
the photon number density is lower. In the context of GR, there are many aspects to be taken
into account:

• the cosmological redshift underwent by the cosmic source (i.e. the energy displacement
towards the red part of its emission);

• the time dilation due to the delay of an emitted photon that reaches the observer, i.e.
δtobs = (a0/a(t))δtem, which has to be considered since L ≡ dE/dt;

• the photon-surface growth as a consequence of the expansion of the Universe itself, i.e.
4πr2

becomes−−−−−−→ 4πa2(t0)r
2.

All the above considered, we can reformulate the flux and luminosity distance definitions (eq.
1.19) as follows: f =

L

4πa20r
2(1 + z)2

,

dL = a0r(1 + z) .

(1.20)

Angular diameter distance. Another observational method to estimate the distance of cos-
mic objects is based on sources characterized by a known angular diameter, namely the stan-
dard rulers

10. For this kind of objects, the angle under which we see them in the sky is used as
a measure of their distance. Starting from the usual FLRW metric, let us consider a standard
ruler perfectly perpendicular to our line of sight, i.e. dϕ = 0. Moreover, the proper dimension
Dpr of the source is fixed and the measure is performed at a given instant of time so that,
respectively, dr = 0 and dt = 0. Taken these conditions into account, we can write the FLRW
metric (eq. 1.5) as:

ds2 = D2
pr = a2(t)r2dθ2 . (1.21)

Now, since an angular diameter distance is generally computed as dA = Dpr

tgθ
≈ Dpr

θ
, where the

last approximation is justified in the limit of small angles, we can define the angular diameter

9For example, the Supernovae Ia are phenomena with the same intrinsic luminosity, regardless of their pro-
genitor or their location in the spacetime, thus they are used as standard candles.

10For example, the BAO feature which manifests itself with a peak at ≃ 150 Mpc ≃ 100 h−1Mpc on either
the CMB or the clustering signal at late times.
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distance using the following formula:

dA = a(t)r . (1.22)

It is also possible to establish a way to link the luminosity distance (eq. 1.20) and the angular
distance (eq. 1.22):

dL
dA

= (1 + z)2 , (1.23)

which is called distance duality relation, historically associated with the Etherington’s reci-
procity theorem (Etherington, 1933). This relation is an efficient tool to perform validity tests
on cosmological models, on the nature of their spacetime and their assumptions (especially ho-
mogeneity and isotropy; see e.g. Li et al., 2011 and Liao, 2019). From eq. (1.23) it follows that
if we could measure both these distances for the same source11, we would find out dL > dA.

To sum up, we must be aware there are different ways to determine cosmic distances. The
physical limit at which dpr ∼ dc ∼ dL ∼ dA is r → 0 and t → t0, i.e. considering small scales
in the local Universe where we can trust on the validity of the Euclidean laws.

1.2 Friedmann universes

In this section we outline the whole range of cosmological models derived from the Einstein
Field equation and the subsequent Friedmann equations, with the aim of exploring the major
components of our Universe and their evolution through its history.

The Friedmann cosmological model and its equations rely on the homogeneity and isotropy
assumptions of the CP and set their bases on GR through the aforementioned Einstein Field
Equation. Starting from equation (1.2), let us make two hypotheses on its terms:

• we assume the FLRW metric (see §1.1.1) for the geometric term (LHS);
• we define the energy-momentum tensor Tµν in the limit of a perfect fluid12, formalised
as Tµν = −pgµν + (p + ρc2)uµuν , where p is the pressure, gµν the metric tensor, ρc2
the energy density and uµ,ν are the four-velocities (i.e. the temporal derivatives of the
four-vectors).

With these two assumptions, it is possible to derive the Friedmann equations from the GR field
equation13:

[I] ä = −4π

3
G

(
ρ+

3p

c2

)
a , (1.24)

11This is the case of e.g. massive galaxy clusters since we can measure both their angular and luminosity
distances via Sunyaev-Zel’dovich effect and X-Ray observations.

12The validity of the perfect-fluid approximation is guaranteed by the fact that the mean free path of a particle
(i.e. the average distance travelled by a particle of the fluid before modifying its direction as a consequence of a
collision with another particle) is smaller than the typical scales of structure formation and evolution across the
Universe.

13Note that going through GR principles is really challenging, but we can take advantage of the Newtonian Ap-
proximation. This can be done because there are some theorems valid both in classical mechanics and in General
Relativity; for example, the Birkhoff theorem needed to obtain the Friedmann equations in GR is equivalent to
the Gauss theorem in Newtonian mechanics.
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[II] ȧ2 + κc2 =
8π

3
Gρa2 , (1.25)

These are the only two (of sixteen) independent equations of the system resulting from the
Einstein Field Equation (eq. 1.2); they provide a full description of the temporal evolution of
the cosmic scale factor a(t), telling us how does the Universe dynamically expand.

Equations (1.24) and (1.25) can be linked by the adiabatic condition14 dU = −pdV , which
can be expressed in cosmological terms as follows:

d(ρc2a3) = −pda3 , (1.26)

where U = ρc2a3 is the internal energy (i.e. the product of the energy density and the volume),
p is the pressure and V = a3 is the volume of the Universe. Moreover, be aware that in eq.
(1.26) and later on, ρ and p have to be interpreted as the total sum of density and pressure for
all the components that make up our Universe.

Since when equations (1.24) and (1.25) were suggested by Friedmann (1922) as solutions
of the Einstein’s system of field equations (1.2), many efforts have been made to study their
behaviour and analytic solutions. This leads to the development of several viable cosmological
models.

Einstein staticmodel. Friedmann’s dynamic equations emerged in the early twentieth cen-
tury, when people - e.g. Albert Einstein - were stuck in the belief that the universe was static,
i.e. ȧ = ä = 0. The dilemma is that under this condition the first equation (eq. 1.24) turns into

ρ = −3p

c2
, (1.27)

which would be difficult to explain, since both density and pressure cannot be negative for
ordinary matter. Hence, Einstein in 1917 modified his own equations by introducing the Cos-
mological Constant Λ, so that equation (1.2) becomes (Einstein, 1917):

Rµν −
1

2
gµνR− Λgµν =

8πG

c4
Tµν , (1.28)

or
Rµν −

1

2
gµνR =

8πG

c4
Tµν + Λgµν . (1.29)

These equations are mathematically indistinguishable, but the physical meaning can have dif-
ferent interpretations:

• addingΛ in the LHSmeansmodifying the GR encoded in the spatial term, i.e. considering
the Modified Gravity (MG hereafter) in the structure formation scenario, which is based
on the gravitational instability;

• including it in the RHS implies a modification of the energy-momentum tensor definition,
i.e. considering the Dark Energy (DE hereafter) in the total energy budget.

14The adiabatic condition is valid as far as our Universe is akin to a closed system which evolves without
exchanging energy or heat with the external environment.
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Let us take the path of the DE, rewriting equation (1.29) as

Rµν −
1

2
gµνR =

8πG

c4
T̃µν , (1.30)

where T̃µν = Tµν + Λc4

8πG
gµν is called effective energy-momentum tensor. Now, applying the

already defined energy-momentum tensor for a perfect fluid (see the beginning of §1.2), i.e.
T̃µν = −p̃gµν + (p̃ + ρ̃c2)uµuν , we obtain a new characterization for both the pressure and
the density: 

p̃ = p− Λc4

8πG
,

ρ̃ = ρ+
Λc2

8πG
.

(1.31)

Equations (1.31) show how in p̃ the cosmological constant contributes negatively to the ordi-
nary pressure p, while in ρ̃ it has a positive contribution with respect to the ordinary density
ρ. From some considerations on the effective density and assuming that the pressure of matter
is negligible if compared to that of radiation, it is possible to infer that the Einstein’s Universe
is static, spherical and filled with matter, where the static condition is based on a unique value
of the cosmological constant (i.e. Λ = ΛE ≡ 4πGρ

c2
).

A few years later, the expansion of the Universe was proven by Edwin Hubble (see §1.1.2)
and Einstein finally abandoned the static idea of the Universe, getting rid of his correction and
going back to the normal Friedmann models.

Lemaître-de Sitter model. Actually, in the following years, scientists proceeded by trial
and error, including or removing the cosmological constant depending on the physical problem
they were dealing with. For example, in 1927 it has been developed the Lemaître flat Universe,
based on the de Sitter model (see de Sitter, 1917 and Mohajan, 2017). This Universe is flat
(κ = 0, Euclidean geometry), empty of matter (p = 0, ρ = 0) but entirely filled up with the
cosmological constant, so that the equations (1.31) becomes:

p̃ = − Λc4

8πG
,

ρ̃ = +
Λc2

8πG
,

(1.32)

and, as a consequence, p̃ = −ρ̃c2. Furthermore, according to this model, the second Friedmann
equation (1.25) tells us that the scale factor a(t) varies following an exponential growth, while
the Hubble parameterH(t) = H is here time-independent: the expansion rate is exponential
and constant throughout the history of the Universe. Finally, looking at the first equation
(1.24), it is evident how ä should be negative, since p ≥ 0 and ρ > 0 by definition for normal
matter. In this context, the cosmological constant helps explaining the observed accelerated
expansion of the Universe (ä > 0, through type Ia SNae), given that it plays the role of a
negative pressure.
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1.2.1 Friedmann general models

Having introduced the context in which the Friedmann Universes are embedded, our aim now
is to find the analytic solutions of the Friedmann equations. To reach this purpose, as a first
step we perform a function study assuming that there is only one15 component of unknown
nature in the Universe. Then we will consider the more realistic case of three components.

One-component model

Taking into account the adiabatic condition (1.26), we focus on the second Friedmann equation
to derive the density parameter Ω(t) as a function of the curvature parameter κ. First of all, let
us define two essential cosmological quantities which are necessary for the following analysis:
the critical density and the density parameter.

The critical density ρcrit(t) is the density value that our Universe must recover to be char-
acterized by a flat geometry:

ρcrit(t) ≡
3H2(t)

8πG
. (1.33)

Its value at today’s time (ρcrit(t0) = ρcrit,0) is fixed and, since its definition (1.33), it can be
computed simply through the measure of Hubble constantH0 expressed as in (1.12): ρcrit,0 =
1.9 · 10−29 h2

[
g cm−3

]
.

The density parameter Ω(t) is a dimensionless parameter defined by means of a density
ratio:

Ω(t) ≡ ρ(t)

ρcrit(t)
−→ Ω0 =

ρ0(t)

ρcrit,0
. (1.34)

As we will soon notice, by measuring Ω0 (i.e. the density parameter at today’s time), we can
infer the geometry of our Universe. The formulas describing the evolution of Ω(t) tell us that
it is sufficient to evaluate this parameter at t = t0 because the geometry of the Universe cannot
change: if it is flat today, it was born flat and the same is valid for all the other cases.

Moving on with our analysis, we divide eq. (1.25) by a20 (i.e. the squared cosmic scale factor
computed at today’s time t0) and, rewriting it in a convenient way, we have:(

ȧ

a0

)2

− 8π

3
Gρ

(
a

a0

)2

= −κc2

a20
, (1.35)

where in the RHS the curvature parameter κ can assume three possible values (see §1.1.1).
Now, taking into account eq. (1.33) and recalling the definition of the Hubble parameter as a
function of the cosmic scale factor a(t) and its derivative, eq. (1.35) becomes:

H2
0

(
1− ρ0

ρcrit,0

)
= −κc2

a20
. (1.36)

This relation regulates the evolution of the cosmic scale factor a and it can be computed at any
15Note the advantage in this case is that we have only one relation between pressure and density, i.e. between

the quantities that, together with the cosmic scale factor a(t), represent the dependencies of the Friedmann
equations.
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time, hence we choose t = t0 → a = a0. Equation (1.36) let us infer that:

• κ = 0 (flat) ⇐⇒ ρ0 = ρcrit,0 and Ω0 = 1 ;
• κ = +1 (spherical) ⇐⇒ ρ0 > ρcrit,0 and Ω0 > 1 ;
• κ = −1 (hyperbolic) ⇐⇒ ρ0 < ρcrit,0 and Ω0 < 1 .

Three-component model

Since that the present Standard Cosmological Model (see §1.3) accounts for the existence of
three components16 (i.e. matter, radiation and cosmological constant), the following analysis
is more realistic than the previous one, which was just for preparatory purposes.

In order to solve the Friedmann equations (eqs. 1.24 and 1.25) for more that one component,
let us define the equation of state (EoS, hereafter) for a generic component which permeates
the Universe in the limit of the perfect-fluid approximation:

p = wρc2 , (1.37)

where w is a variable related to the sound speed definition as follows:

cs =

(
∂p

∂ρ

)1/2

S=const

= c
√
w . (1.38)

To ensure the physical validity of this equation, w must belong to the so-called Zel’dovich

interval, i.e. 0 ≤ w < 1, where the lower limit reflects the natural domain of the square root
function [0; +∞), while the upper limit is due to the fact that nothing can travel at speed
larger or equal to the speed of light (v < c always). It is in the Zel’dovich range that the
ordinary components of our Universe, namely the matter and the radiation, exist. By contrast,
the cosmological constant is called “extra-ordinary component” since its w value does not fit
this interval. It is possible to assign a specific value to the variable w for each constituent of
our Universe starting from their well-known EoS:

• Radiation (photons and relativistic matter, such as massive neutrinos) → the EoS of a
generic relativistic fluid is defined as follows:

pr =
1

3
ρrc

2 , (1.39)

so that, to recover the general equation (1.37), w = 1
3
.

• Matter (non-relativistic)→ assuming a perfect gas composed byN particles, each having
the mass of a proton, the EoS can be written as:

pm =
kBT

mpc2
ρmc

2 ≃ 0 , (1.40)

16Of course, each component takes part to the energy budget of our Universe and this can be formalised by
interpreting the energy-momentum tensor in the RHS of the Einstein equation (eq. 1.2) as Tµν =

∑N
i=0 T

(i)
µν ,

where N is the total number of components and (i) stands for the i-th component.
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where kB = 1.38·10−16[erg K−1] is the Boltzmann constant, T is the temperature of the
gas and ρm is the matter density. The last equivalence argues that pm vanishes and this is
because the amount of energy due to the particle mass (mpc

2) is negligible with respect
to the thermal energy (kBT ). As a consequence, the pressure associated to the matter
component is totally insignificant if compared with that of the radiative component. For
eq. (1.40) to be verified, we need w to be equal to zero.

• Cosmological constant → from the brief description we gave on the Lemaître-de Sitter
universe (in §1.2), we know that for the cosmological constant the EoS is:

pΛ = −ρΛc
2 , (1.41)

thus it follows that w = −1.

On the adiabatic evolution of our Universe. Blending the adiabatic condition (1.26) with
the general expression for the EoS (1.37), we come across the following relation, which tells us
how the density of the various components evolves in time:

ρ ∝ a−3(1+w) ∝ (1 + z)3(1+w) , (1.42)

The consequence of this mathematical statement is that the distinct constituents of the Uni-
verse prevail over the others in different cosmic epochs, since their temporal17 density trends
depend on their value of w. In fact, starting from eq. (1.42) and making it explicit for each
component, we can write the following relations:

ρr ∝ ρ0,r a
−4 = ρ0,r (1 + z)4 ,

ρm ∝ ρ0,m a−3 = ρ0,m (1 + z)3 ,

ρΛ ∝ ρ0,Λ a0 = ρ0,Λ (1 + z)0 = const .

(1.43)

For example, the radiation density decreases faster than the matter density and the conse-
quence is that in the early stages of the Universe (i.e. small values of a) the radiative component
dominates, while the situation reverses at more recent times (see fig. 1.2). At today’s time the
situation is a bit complicated since we are living in what is called a dual epoch, where matter
and cosmological constant coexist with competitive percentages. Moreover, notice that we can
also define cosmic times in which the components are perfectly balanced, namely equivalence

times, through the combination of the different relations in eq. (1.43).
Proceeding with some other useful considerations, let us start from the first Friedmann

equation (1.24) and replace the pressure therein with the general EoS (eq. 1.37) to get:

ä = −4

3
πGρ(1 + 3w)a . (1.44)

It is evident that in the case of the ordinary components (i.e. with 0 ≤ w < 1) ä can only
be negative, this implying that the concavity of a(t) is downwards. However, as Riess et al.
(1998) and Perlmutter et al. (1999) demonstrated, the Universe has recently entered a phase of

17The cosmic time is embedded in a = a(t) and z ∝ a0

a(t) .
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Figure 1.2: Density trends in time of radiation, matter and cosmological constant (DE in the
plot): the prevailing component changes over epochs because of the different dependencies
seen in eqs. (1.43). Credits to: https://pages.uoregon.edu/jimbrau/astr123/Notes/ Chapter27.html.

accelerated expansion (ä > 0, upwards concavity) and we need an extra-ordinary component
(w < −1/3) coming into play to recover this trend. The cosmological constant can help in
this context, since it is described by w = −1. Furthermore, if its value was large enough, it
could not only explain today’s accelerated expansion at t = t0, but it could also avoid the Big
Bang by introducing an upwards concavity close to t = 0. Anyway, our perspective up to now
is that of the normal Friedmann models which, by construction of the Friedmann equations,
naturally imply the divergence18 of temperature, density and Hubble parameter at t = 0.

Now, let us consider the second Friedmann equation (1.25) in order to achieve a relation
describing the evolution of the Hubble parameter H(t), the density parameter Ω(t) and the
redshift z, i.e. the variables that are more strongly associated with observational properties
of our Universe. Applying the definitions of the critical density (eq. 1.33) and of the Hubble
parameterH(t) ≡ ȧ

a
to this equation, after some lines of simple algebra we can rewrite it as:

H2(z) = H2
0 (1 + z)2

[(
1−

∑
i

Ω0,i

)
+
∑
i

Ω0,i(1 + z)1+3wi

]
. (1.45)

In these equations,
∑

i represents the sum over each component i so that
∑

i Ω0,i = ΩTOT

is the total density parameter as defined in eq. (1.34) but for a multi-component universe. In
particular, ΩTOT(t) = Ωr(t) + Ωm(t) + ΩΛ(t) and, their definition taken into account, the

18This divergence, namely the Big Bang, represents the open physical origin problem, one of the big gaps in
cosmological knowledge (Coles and Lucchin, 2002).
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single density parameters can be made explicit in this way:

Ωr(t) =
8πG

3H2(t)
ρr(t) ,

Ωm(t) =
8πG

3H2(t)
ρm(t) ,

ΩΛ(t) =
8πG

3H2(t)
ρΛ(t) =

Λc2

3H2(t)
,

(1.46)

where the last equivalence concerning the cosmological constant Λ is explained through eqs.
(1.32).

Finally, let us emphasize that in eq. (1.45) the term 1−∑iΩ0,i = Ωc is labelled as curvature
density parameter

19 and it is related to the geometry of the space: for a flat universeΩ0,TOT = 1

and Ωc = 0; for a spherical universe Ω0,TOT > 1 and Ωc < 0; for a hyperbolic universe
Ω0,TOT < 1 and Ωc > 0.

1.2.2 Flat versus curved models

Being the Friedmann general model outlined, we now move to the analysis of its descendants,
i.e. models with the same basis but whose main characteristics are settled by the specific
geometry of the space. Moreover, note that we will proceed by taking into consideration only
one component for ease; this is justified since we already shown how in each cosmic epoch, if
sufficiently far from the equivalence times, we can assume that one component prevails over
the others at least at first approximation.

Einstein-de Sitter flat model

The EdS universe relies on the following hypotheses:
• flat geometry, i.e. κ = 0 and ΩTOT = 1;
• generic mono-component fluid described by the general EoS (eq. 1.37);
• ȧ0 > 0, since we know that the Universe is expanding at t = t0.

Applying these assumptions to eq. (1.45), we get:

H(z) = H0(1 + z)
3(1+w)

2 , (1.47)

and it is from this relation, after some maths, that we can obtain some relevant dependencies20
of the EdS parameters (see tab. 1.1 for a schematic recap). In this table, q is the deceleration
parameter defined through the cosmic scale factor and its derivatives as q ≡ −äa/ȧ2.

It is noticeable how the estimates for the age of the Universe through the Hubble con-
stant H0 are different for the matter-dominated and the radiation-dominated Universe, being

19We can define this parameter with both Ω0,TOT or ΩTOT(t) because the geometry of the Universe cannot
change once defined, as we already pointed out in §1.2.1.

20Note that from the relations reported in tab. 1.1 it is possible to achieve all the other dependencies such as,
for example, t(a), ρ(a), ρ(z) etc.
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w w = 0 w = 1/3

a(t) = a0
(

t
t0

) 2
3(1+w)

a(t) ∝ t2/3 a(t) ∝ t1/2

t(z) = t0(1 + z)−
3(1+w)

2 t(z) ∝ (1 + z)−3/2 t(z) ∝ (1 + z)−2

ρ = 1
6πG(1+w)2

1
t2

ρ = 1
6πG

1
t2

ρ = 3
32πG

1
t2

H(t) = 2
3(1+w)

1
t

H(t) = 2
3
1
t

H(t) = 1
2
1
t

t0 =
2

3(1+w)
1
H0

t0 =
2
3

1
H0

t0 =
1
2

1
H0

q = 1+3w
2

q = 1
2

q = 1

Table 1.1: Trends of the parameters for the EdS universe depending on w, i.e. on the nature of
the dominant component. Left: generic value for w; centre: matter-dominated EdS universe;
right: radiation-dominated EdS universe.

t0,m = 2
3

1
H0

and t0,r =
1
2

1
H0

, respectively. As a consequence, the universe evolves differently
according to the kind of fluid which dominates the energy budget. In fact, an increasing pres-
sure corresponds to a greater level of deceleration. Going from a matter-dominated condition
with w = 0 and P = 0 to a radiation-dominated one with w = 1/3 and P > 0, the universe
is more decelerated, in agreement with the fact that t0,r < t0,m. This can be explained starting
from the first Friedmann equation that we recall here for convenience:

ä = −4π

3
G

(
ρ+

3p

c2

)
a .

Here the pressure contribution is added to that of the density enhancing the deceleration.

Curved models

Now let us investigate the non-flat models for our Universe since their comprehension will be
useful to clearly understand some details on both the structure formation and evolution and
the large-scale structure (see chapter 2). The curved models set their basis on the following
assumptions:

• hyperbolic geometry, i.e. κ = −1 and ΩTOT < 1, for the open universe; spherical
geometry, i.e. κ = +1 and ΩTOT > 1, for the closed universe.

• generic mono-component fluid described by the general EoS (eq. 1.37);

We focus on the RHS of eq. (1.45) and we recall that the curvature density parameter 1−∑iΩ0,i

is constant. The second term in the square brackets varies with a: the lower the cosmic scale
factor is, the closer we are to the Big Bang and the more this term raises. This means that we
can define a critical value a∗ below which, or a value z∗ above which, this second term prevails
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over the curvature one. We can formalise it as follows:

|1− Ω0| = Ω0

(
a0
a∗

)1+3w

, (1.48)

or, analogously (see eq. 1.18),

|1− Ω0| = Ω0(1 + z∗)1+3w . (1.49)

At early times the curved universes behaves like a flat Universe, since it is as if they do not feel
their curvature; in other words, we can assume an EdS universe for much of its evolutionary
history. Everything taken into account, for z ≫ z∗ (i.e. a ≪ a∗) we neglect Ωc and eq. (1.45)
turns into:

H(z) = H0

√
Ω0(1 + z)

3(1+w)
2 . (1.50)

By comparing this equation with eq. (1.47) derived for the EdSmodel, we can demonstrate how
the flat approximation is reliable at the early stages of our Universe. By contrast, if z < z∗

or a > a∗, the curvature becomes significant and what happens next in terms of expansion
depends on the sign of Ωc: we need to distinguish open and closed universes.

Starting from the open models (i.e. κ = −1 and ΩTOT < 1), Ωc is always positive and
therefore the square bracket in eq. (1.45) never vanishes. As a consequence, we are facing an
infinite expansion. We can assume ȧ(t) > 0 ∀t, because it is known from observations that
today ȧ(t = t0) ≡ ȧ0 > 0, and the sign simply cannot change. If we stand in the limit z ≪ z∗

or a ≫ a∗, we can rewrite the equation of H(z) preserving only the term of curvature in the
square brackets21:

H(z) = H0(1 + z)(1− Ω0)
1/2 , (1.51)

which in terms of a (through the definitions of the cosmic redshift and the Hubble parameter)
turns into:

ȧ = a0H0(1− Ω0)
1/2 . (1.52)

This equation states that ȧ = const, since all the terms in the RHS are constant themselves.
Moreover, from ȧ = da

dt
we get a ∝ t (i.e. H ∝ t−1); thus, in an open model with hyperbolic

geometry the cosmic scale factor has a linear growth in time, providing an infinite expansion
which will lead the universe to its thermal death, namely the Big Freeze.

Moving to the closed models (i.e. κ = +1 and ΩTOT > 1), Ωc is always negative and
therefore the square brackets in eq. (1.45) can vanish. In particular, if z ≪ z∗ or a ≫ a∗, there
exists a value of the cosmic scale factor a = amax that marks the moment at which ȧ = 0

(maximum). After this time t = tmax, the evolution of the scale factor reverses its trend and
ȧ < 0. As a result, for the closed models the expansion is not infinite. By setting the square

21The second term in the square brackets of eq. (1.45) depends on (1 + z) ∼ a−1, hence it tends to unity for
z ≪ z∗ or a ≫ a∗.
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brackets of eq. (1.45) equal to zero, we derive the following relation:

1− Ω0 = Ω0

(
a0

amax

)1+3w

, (1.53)

and hence, 
amax = a0

(
Ω0

Ω0 − 1

) 1
1+3w

,

ρmin = ρ0

(
a0

amax

)3(1+w)

= ρ0

(
Ω0 − 1

Ω0

) 3(1+w)
1+3w

.

(1.54)

The destiny of a closed universe is to collapse again in the same conditions of the initial Big
Bang, reducing itself to a point at t = 2tmax in the so-called Big Crunch

22.

Finally, let us just point out that analytical solutions of the Friedmann equations exist only
for the flat-EdS universe case; for the curved universes we must take into account parametric
equations built on trigonometric functions.

Figure 1.3: Time evolution of the cosmic scale factor for different cosmological parameters: flat
Universe if Ωm = 1, closed if Ωm > 1, open if Ωm < 1. The case corresponding to Ωm = 0.3
and ΩΛ = 0.7 represents the ΛCDM Universe. Credits to: Casado (2020).

22Note that one of the ideas related to the closed universe is what we call pulsating universe; it means that
after the Big Crunch the universe could start its expansion again and then re-collapses. This concept of infinite
universe in disguise had been thought as a possible solution to avoid the Big Bang and the related origin problem.
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1.3 The ΛCDM Standard Cosmological Model

As discussed in the introduction, the flat-ΛCDMmodel is currently established as the standard
paradigm of the actual cosmological framework. This model for our Universe emerges as a
natural consequence of the Friedmann equations (eqs. 1.24 and 1.25) in the context of GR
and under the assumptions of the Cosmological Principle in the perfect-fluid approximation.
Contrary to the models analysed above (see §1.2.2), this one more accurate since it takes into
account the existence of more than one component; by doing that, it allows us to give a more
realistic description of the Universe we are living in. In fact, it is well known that at first
approximation we can consider a mono-component fluid just in some specific cosmic times
in the history of our Universe, while at today’s time we have observational evidence that we
are living in a dual epoch where the matter and the dark energy are of the same order. The
bedrocks of the concordance model can be summarised as follows:

• validity of GR23;
• flat geometry, i.e. κ = 0 and ΩTOT = 1;
• three-component fluid, i.e. cosmological constant, matter and radiation (in order of pre-
dominance at the present time).

The evolution in redshift, from the Big Bang to the present days, is known as thermal history,
since its regulation is strictly linked to the temperature level through cosmic epochs. At tP ≃
10−43 s, namely the Planck time

24, the temperature of our Universe was extremely high, around
1032 K; then, it has decreased by thirty orders of magnitude in the subsequent 13.8 Gyr of
age of the Universe, reaching 2.7255 ± 0.0006 K as reported in Planck Collaboration et al.
(2020). This is the temperature of the photons that make up the so-called Cosmic Microwave

Background (hereafter CMB), whose existence is well foreseen by the concordancemodel. Note
that it is one of the best proofs of the Big-Bang family of models.
The ΛCDM model bears the name of its main components at t = t0 or z = 0, i.e. the
cosmological constant (Λ), which represents the DE in its simplest form, and the cold dark
matter (CDM). The radiative component is negligible today but it must be considered in order
to build an accurate model. It follows a brief description of both the observational properties
and the abundances of the three ingredients of our Universe.

Radiation. The great majority of the radiation density is due to CMB photons, while the
radiation emitted by stars and gas is negligible. Since this background radiation is at thermal

23There is tangible evidence of the validity of the GR in the local Universe. Over the last decades, many tests
have been made in order to better understand the behaviour of the matter and energy content in our Universe.
The most famous classical tests are: the precession of Mercury perihelion (Vankov, 2010), the deflection of light in
the Sun’s potential well (Will, 2015), the gravitational redshift (Delva et al., 2018) and now also the gravitational
waves (Mukherjee et al., 2021).

24To describe the Universe from t = 0 to t = tP we must call into play the quantum physics, i.e. a kind of
physics that is derived from the Heisenberg’s uncertainty principle but for which there is not yet a well developed
unified theory. The Planck time is defined as the moment at which the Schwarzschild scale (gravity) and the
Compton scale (quantum mechanics) coincide. Moreover, at t = tP, our Universe is supposed to be described by
the following quantities: TP ≃ 1032 K, EP ≃ 1019 GeV, aP ≃ 10−33 cm, ρP ≃ 1093 g cm−3, mP ≃ 10−5 g
and σ ≃ 1 ; where T is the temperature, E the energy, a the cosmic scale factor, ρ the density, m the mass, σ
the adimensional entropy, while the subscript P stands for “Planck”.
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equilibrium, it can be described by a perfect black body, so that we can estimate its energy
density from its temperature through the following relation:

ρrc
2 = σT 4

r , (1.55)

which, at today’s time and considering T0,r ≃ 2.73 K , gives us ρ0,r ≃ 10−34 g cm−3 . It
is also possible to compute the radiation energy density parameter by means of eq. (1.34): if
we consider ρ0,crit ≃ 10−29 g cm−3 we get Ω0,r ≈ 10−5, which tells us how the radiative
contribution to the total energy budget of the Universe is actually negligible at t = t0. This
can be justified by means of the density trends we mentioned in §1.2.1: since the radiation
density evolves by taking into account also the radiative pressure as a−4, it passes from being
dominant in the early stages of the Universe to being totally insignificant at later times (see
fig. 1.2).

Matter. This category includes both baryonic and non-baryonic matter (i.e. the DM), hence
the total energy density can be expressed asΩ0,m = Ω0,b+Ω0,DM. The difference between the
ordinary matter and the DM is basically related to the way they interact: the baryonic matter
undergoes both gravitational and electromagnetic interactions25, while the DM today only
undergoes weak gravitational interactions. As a consequence, baryons are direcly observable
but the DM is not. How can we estimate their abundances? The baryonic energy density can
be evaluated by means of the galaxy luminosity function, the primordial nucleosynthesis and
the CMB. By constrast, since the DM experiences only gravitational interactions, to measure
its contribution we rely on gravitational effects, such as e.g. the gravitational lensing, and the
cluster dynamics. From these methods we obtained Ω0,m ≃ 0.3 and Ω0,b ≃ 0.05, so that the
total matter energy density is almost entirely dominated by the dark matter.

Cosmological constant. Last but not least, we now deal with the third constituent of our
Universe, the first one in order of abundance today. From the CMB standard ruler we know that
the Universe is flat and thus Ω0,TOT = 1. Since we have just stated that Ω0,m ≃ 0.3 and that
the radiation today is negligible, there must be some missing component, i.e. Ω0,? ≃ 0.7: what
could it be? Before the discovery of the accelerated expansion of the Universe, scientists tried
to fill this gap with the potential presence of hidden black holes. But soon after it was clear that
to have ä > 0, recovering the accelerated expansion, it should have been added a not-ordinary
termwithw < −1/3 in the Friedmann equations. Einstein relied on the cosmological constant
Λ (w = −1, the simplest representation of the so-called dark energy component) and the first
equation had been rewritten as follows:

ä = −4

3
πGρma+

1

3
Λc2a , (1.56)

from which it is evident that for sufficiently high values of Λ, the RHS reverses its sign, going
from being negative to positive. The relevance of the cosmological constant can be pointed
out by means of the deceleration parameter q, starting from its definition and applying some

25The baryons interact both with the gas through fluid dynamics and micro-physics processes and with the
observable electromagnetic radiation.
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mathematical passages:

q ≡ − ä(t)a(t)

ȧ(t)2
= − ä

a

1

H2
=

4

3
πG

ρm
H2

− Λc2

3H2
=

Ωm

2
− ΩΛ . (1.57)

The second equivalence is obtained by multiplying and dividing by a(t); the third by replacing
ä with its expression in equation (1.56); the fourth by considering Ωm = ρm/ρ0,crit and ΩΛ =

Λc2/(3H2). Equation (1.57) tells us that if ΩΛ is large enough it can change the sign of the
deceleration parameter, giving an explanation for the quite unexpected accelerated phase. In
particular, to get q < 0 it must be true that

ΩΛ > Ωm/2 , (1.58)

and this condition is indeed satisfied in our Universe; in fact, q ≃ −0.55 at t = t0. As already
discussed in §1.2, the basic Friedmann equations only allow the possibility of a decelerated
Universe: ä < 0, i.e. downward concavity of the function a(t). In order to invert this trend
and recover the upward concavity we must introduce an inflection point (ä = 0) as seen in
fig. 1.3, which represents the evolution of a(t) in different models of universe. Let us now
estimate the position in redshift of this inversion by taking into account the density trends in
the system of equations (1.43) applied to the acceleration condition (1.58):

1 + zinfl =

(
2 Ω0,Λ

Ω0,m

) 1
3

Ω0,m≃0.3−−−−−−−→
Ω0,Λ≃0.7

zinfl ≃ 0.7 . (1.59)

The inflection is very close to today’s time, hence we can conclude that Ω0,Λ ≃ 0.7 is large
enough to explain the recent acceleration phase of our Universe but not enough to avoid the
Big Bang as we speculated in §1.2.1. Furthermore, the accelerated expansion caused by the
cosmological constant happens before the dominance of the cosmological constant itself on
the matter component; indeed, zinfl > zeq,m−Λ ≃ 0.32 or, likewise, tinfl < teq,m−Λ.

Finally, we must keep in mind that the cosmological constant leads to the two unsolved
problems of

• coincidence, i.e. we are living in a transition epoch during which both the cosmological
constant and the matter are relevant, one with an evolution totally different from the
other;

• fine-tuning, i.e. the fact that the supposed self-regulation of the Universe has strangely
made the cosmological constant assume a negligible but non-vanishing value (Weinberg,
1989).

Cosmic Microwave Background.

We refer to the chronological growth of our Universe as the thermal history, since its temper-
ature has been mostly decreasing from the Big Bang to today’s time, across many different
epochs26. Nowadays, the average radiation temperature is around 2.73 K.

26The Big Bang corresponding time is the so-called Planck time, when the temperature was TP ≃ 1032K,
and it is the starting point of the following phases: GUT transition (TGUT ≃ 1028−29K), Electro-Weak transition
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What is the origin of this thermal pool? As the decline of the temperature proceeds, about
20 seconds after the BB, the Universe undergoes the e+ − e− annichilation and enters the
Radiative Era, where two crucial processes occur: the Primordial Nucleosynthesis

27 200-300
seconds after the BB, the Hydrogen Recombination at zREC ≃ 1500 and the Decoupling Matter-

Radiation at zDEC ≃ 300. Note that the Primordial Nucleosynthesis takes place in the Radiative
Era, while both the last two processes occur in the Matter Era.

The decoupling betweenmatter and radiation is strongly related to the so-called last-scattering
surface at zLS ≃ 1100, i.e. the time at which the photons do not experience the scattering
mechanism anymore and, as a consequence, they are free to escape from the plasma parti-
cles. By doing that, the photons start to propagate towards the present days, evolving with
a decreasing temperature. At t = t0, since TCMB,0 ≃ 2.73 K, such ensemble of photons can
be seen in the microwave band, that is the reason why we refer to it as Cosmic Microwave

Background. Together with the Primordial Nucleosynthesis, this is one of the most relevant
predictions of the Hot Big Bang Model.

Dark matter.

Many efforts have been made to understand the nature of this invisible28 form of matter that
constitutes the great majority of the total matter component, since there is no standard par-
ticle which corresponds to a viable candidate for the DM. Therefore, in order to explain its
behaviour, over the last century scientists have looked for alternative competitors, such as
primordial black holes (Carr and Kuhnel, 2021), ultra-light particles (i.e. the so-called fuzzy

DM; see e.g. Hu et al., 2000 and Dentler et al., 2021), weakly interacting massive particles
(WIMPs29, Roszkowski et al., 2018), massive astrophysical compact halo objects (MACHOs30,
Bai et al., 2020) and some others.

Although the DM is still unknown, there is plenty of evidence of its existence, going from
the rotation curves of disk galaxies (Fuchs, 2000) to the velocity dispersion of galaxies in clus-
ters (Zwicky, 1937), passing through the microlensing and lensing measurements (Paczyński,
1996; Ellis, 2010).

(TEW ≃ 1015K), Quark-Hadron transition (TQH ≃ 1012K), Hadronic Era (THE ≃ 1012K), Leptonic Era (TLE ≃
5× 109K), Radiative Era (TRE ≃ 109K → 104K) and Matter Era (TME < 4000K).

27The Primordial Nucleosynthesis establishes the creation of light elements up to 4He under some necessary
assumptions. The chain of reactions stops with the formation of the Helium because at this stage of the Universe
the densities are too low to allow the creation of 8Be (stable).

28As we previously pointed out, the DM differs from the baryonic matter since it has not electromagnetic
interactions but only gravitational ones.

29The WIMPs, together with the MACHOs, represent the most accredited DM candidates. They are not-
ordinary particles with energy-masses that span from about 10 GeV to 1 TeV.

30The MACHOs are represented by black holes, neutron stars, brown dwarfs and white dwarfs, i.e. extremely
compact cosmic structures made of ordinary matter and characterized by no or very faint observable emission.
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1.4 Discussing the validity of the ΛCDMmodel

The cosmological parameters that characterise the ΛCDM model are the following:

• H0, the Hubble constant (see §1.1.2);
• Ωm = ΩDM + Ωb, the total matter density parameter, where ΩDM is the dark-matter

density parameter and Ωb is the baryonic-matter density parameter ;
• ΩDE or ΩΛ, the dark-energy or cosmological constant density parameter ;
• As and σ8, the first indicating the power spectrum initial scalar amplitude, the latter the
mass variance σM filtered on a scale radius of 8 h−1Mpc, which is linked to the power
spectrum normalisation at z = 0;

• ns, the spectral index of the primordial power spectrum;
• τ , the Thomson scattering optical depth at the epoch of Reionization31.

Over the years, scientists have been improving the statistical methods32 to constrain the val-
ues of these ΛCDM parameters (see e.g. Planck Collaboration et al., 2020c). Thanks to the
increasing precision of developed techniques, it has been possible to set tight constraints on
the cosmological parameters. However, this arose some discrepancies that led to statistical
tensions in the Standard Cosmological Model. Indeed, according to the aforementioned paper
of the Planck Collaboration H0 = 67.4 ± 0.5 km s−1 Mpc−1, but other low-redshift mea-
surements provided quite different results; see e.g. Riess et al. (1998), Komatsu et al. (2011),
Mandelbaum et al. (2013) and Kobayashi et al. (2017). Furthermore, there exist degeneracies
among the parameters, such as Ωm − σ8; however, many of them can be faced by combining
different probes. Lastly, note that from the observational point of view, there are many open
issues related to both the geometry and the age of the Universe, which arise especially when
comparing low- and high-redshift probes.

In this flickering ΛCDM scenario, we must also deal with the theoretical problems of fine-
tuning and coincidence linked to the cosmological constant Λ seen as the reason of the late-
time accelerated expansion. Several alternative models have been developed in order to ad-
dress the concordance model and soothe the statistical stress (Pan et al., 2019; Di Valentino et
al., 2021). For example, dynamical DE (DDE) models and modified gravity (MG) models have
been proposed as viable alternative frameworks. A brief description follows in the next sub-
sections, respectively §1.4.1 and §1.4.2; an exhaustive discussion of these topics can be found
in Amendola et al. (2018).

In this context, it is important to mention that some of the effects produced by these DDE
andMGmodels are degenerate with possible effects produced by the presence of neutrinos (see
e.g. Lorenz et al., 2017; Baldi et al., 2014; Giocoli et al., 2018), which are another component of
our Universe - beyond radiation, matter and cosmological constant presented in §1.3 - that is
not fully understood yet. As a consequence, neutrinos could help to reduce the tensions within
the ΛCDM Cosmology (see e.g. Lambiase et al., 2019; Sakstein and Trodden, 2020). Note that

31The Reionization is a phase in which the Universe ceases to be neutral since the cosmic structures begin to
form; this happens about 400 Million years after the BB.

32There are many powerful probes in the actual cosmological framework, for example: the CMB angular power
spectrum, the gravitational lensing, the Ly-α forest, the clustering and so on, including their combinations.
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even though the Standard Model of particle physics describes them as massless particles, there
is evidence that they are actually massive (see e.g. Fukuda et al., 1998).

Since in chapter 5 we will test alternative cosmological models to the ΛCDM in an effor
to give our contribution in alleviating the above introduced cosmic tensions, let us briefly
introduce here both the DDE and MG models.

1.4.1 Dynamical dark energy models

Modifying the energy momentum tensor Tµ,ν in the RHS of the Einstein Field Equation (eq.
1.2) implies a redefinition of the DE component. The attribute dynamical means that in this
cathegory of models the DE equation of state (eq. 1.41) evolves in time through the w param-
eter, which becomes a function of redshift, written as:

w ≡ w(z) = w0 + wa f(z) . (1.60)

These cosmological scenarios are commonly referred to as quintessence models, where the
quintessence corresponds to the DE and is thought to be an unknown fifth component in ad-
dition to radiation, baryons, DM and neutrinos.

According to Tsujikawa (2013) and references therein, the quintessence is a scalar field Φ

which is minimally coupled33 to gravity. Being this category of DDE the simplest existing
scalar-field models that do not lead to theoretical problems, they are crucial in the actual cos-
mological panorama. The underlying theory supposes that the slow-rolling of the scalar field
along a certain potential V (Φ) should provide a phase of acceleration of the Universe, as
needed. Note that this process is similar to the inflation

34 of the early Universe. Assuming
spatial homogeneity, the above mentioned scalar field Φ evolves via the following equation:

∂2Φ

∂t2
+ 3H

∂Φ

∂t
+

∂V (Φ)

∂Φ
= 0 , (1.61)

from which we can derive the pressure and density of the scalar field:
pΦ =

1

2

(
∂Φ

∂t

)2

− V (Φ) ,

ρΦ =
1

2

(
∂Φ

∂t

)2

+ V (Φ) ,

(1.62)

and hence we are able to define the w parameter as wΦ ≡ pΦ/ρΦ.
Among the tensions of the concordance model, the so-called H0 and σ8 tensions are the

most prominent ones, showing significant discrepancies of the ΛCDM predictions with re-
spect to cosmological observations. Replacing the cosmological constant with the DDEmodels
can help us to alleviate these tensions (see e.g. Sola Peracaula et al., 2016).

33See Davari et al. (2019) for details on minimally and non-minimally coupled scalar fields.
34See §2.1.

31



Cosmological framework

1.4.2 Modified gravity models

The key point of these models is to explain the Universe’s recent acceleration by exploiting
potential modifications of gravity, whose effects are embedded in the LHS of the Einstein Field
Equation (eq. 1.2). With respect to theΛCDM scenario, whether aMGmodel is viable depends
on two main facts:

• it differs on how the gravitational instability makes the density perturbations dynami-
cally evolve;

• but it must show nearly the same expansion history as the ΛCDM.

In addition, since it has been proved that the GR is valid in the Solar System, the MG model
must include what is called a screening mechanism (see e.g. Brax and Valageas, 2013), in order
to recover the GR predictions in our surroundings or, generalising, at small scales.

f(R) models

The simplest way to include MG in our models is modifying the Einstein-Hilbert action by the
introduction of a function f(R):

S =

∫
d4x

√
−g

(
R + f(R)

16πG

)
+ Lm , (1.63)

whereR is the Ricci scalar andLm is the Lagrangian density of the total matter field. As already
underlined, a MGmodel described by equation (1.63) must provide the same expansion history
of the cosmological constant; with this purpose, Hu and Sawicki (2007) proposed the following
functional form for f(R):

f(R) = −m2
c1
(

R
m2

)n
c2
(

R
m2

)n
+ 1

, (1.64)

wherem ≡ H2
0

√
Ωm is the mass scale, c1 and c2 are positive or, at least, vanishing parameters.

Assuming c2(R/m2)n ≫ 1, after some mathematical steps, equation (1.64) turns into:

fR ≈ −n
c1
c22

(
m2

R

)n+1

. (1.65)

Now, by choosing c1/c2 = 6ΩΛ/Ωm and n = 1, at first approximation we find out that these
models depend just on the parameter fR0, whose value refers to today’s time:

fR0 = − 1

c2

6ΩΛ

Ωm

(
m2

R0

)2

. (1.66)

As fig. 1.4 shows, the higher the absolute value of fR0 is and the more the f(R) model moves
away from the ΛCDM, being its power spectrum35 described by a higher normalization at
small physical scales, i.e. large k values in the Fourier space.

35See §2.4.1 for further details on the power spectrum P (k).
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Figure 1.4: Relative power spectrum of the f(R)models with respect to theΛCDM, depending
on the fR0 parameter absolute value at fixed n = 1. Credits to: Hu and Sawicki (2007).

Notice that the MG models are particularly suited to alleviate the so-called S8 tension of
the ΛCDM model (see e.g. de Cruz Pérez, 2021), where S8 ≡ σ8

√
Ωm/0.3.
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Chapter 2

Structure Formation andEvolution

The main aim of this Thesis work is to exploit the clustering statistics of cosmic voids for
cosmological purposes. Hence, let us provide in this chapter some theoretical bases on the
large-scale structure of our Universe, and on the processes through which it has originated.

We refer to the large-scale structure of the Universe as Cosmic Web, i.e. a well built system
of voids, filaments, walls and nodes. This recursive network has formed from the primordial
fluctuations originated at the end of the inflation (see §2.1) at very high redshift (Snedden et
al., 2015; Bacon et al., 2021). According to the Standard Cosmological Model, the formation
of cosmic structures follows a bottom-up scenario in which the DM particles collapse in DM
haloes, providing the potential wells where the baryons can then fall in (baryon catch-up).
Small DM haloes and baryonic structures appeared first and then larger ones were built by
aggregation. Let us define the density contrast as:

δ ≡ δρ

ρ
=

ρ− ρ̄

ρ̄
=

ρ

ρ̄
− 1 , (2.1)

where ρ is the local density while ρ̄ is the mean density of the Universe. Today (at z = 0),
the measured density contrast inside virialized cosmic structures is around 100− 1000, while
at z ≃ 1100 it was about 10−5. The goal of Cosmology is to provide an explanation for this
growth. Note that we know the amplitude of δ at the last-scattering surface redshift from the
CMB angular power spectrum and maps of temperature. Under the adiabatic condition (1.26)
we can thenwrite δT/T ≃ δρ/ρ ≃ 10−5, whereT = T0,CMB ≃ 2.3K is the CMB temperature
at present time (i.e. the black body radiation temperature).

The formation and evolution of the cosmic structures strongly depend on the cosmological
parameters, in which both the geometry and the constituents of the Universe are embedded.
As a consequence, the large-scale structure statistics provides extremely powerful probes that
supports us on the path to the understanding of the Universe in which we live. In this chapter
we will go through both the linear (§2.2) and nonlinear (§2.3) evolution of the cosmic struc-
tures, from a brief description of the inflation as a valid method to create perturbations (§2.1)
to the statistical properties of the large-scale structure today and over times (§2.1). Finally, in
§2.5 we will present the key features of numerical simulations, a robust tool involved in the in-
vestigation of the physical properties of our Universe through the computational reproduction
of several occurring phenomena.
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2.1 Inflation and origin of primordial fluctuations

As already mentioned in the introduction, the inflation is crucial in the actual cosmological
framework since it could solve three annoying issues of the Hot Big Bang model: flatness,
horizon and magnetic monopoles problems. Moreover, most significantly, inflation provides
the initial conditions to solve the Einstein-Boltzmann equations describing the evolution of
cosmic structures.

Let us now present the physical concepts behind the inflationary process, from its genesis
to the creation of the initial perturbations needed for the formation of the very first cosmic
structures. The basic idea of the first inflationary models is strongly related to the theory of
the phase transition. Hence, in the next paragraph we provide a brief introduction about this
topic. Then, it follows a description of the models based on the physics of phase transitions
(i.e. the Guth Models, see §2.1.1).

PhaseTransitions. According to classic Physics, there exist four fundamental forces, namely
gravitational, electromagnetic, weak and strong nuclear forces. Retracing back in time the his-
tory of the primordial Universe, the four forces reunify through three phase transitions called
(following an anti-chronological order)Quark-Hadron, Electro-Weak andGUT ; finally, the The-
ory of Everything is expected to be required to describe the unified interaction at the Planck
time.

A phase transition is defined here as the change from a disordered stage to a situationwhere
a certain order is set. To understand how the idea of phase transition can be introduced in the
inflationary models, let us define the free energy F as:

F = U − TS , (2.2)

where U is the internal energy, T is the temperature and S is the entropy. This equation tells
us that ∀T > 0, the entropy makes whichever system stabilize by going towards the lowest
free-energy state. If we now introduce the order parameter Φ, we can rewrite equation (2.2) as
follows:

F = F0 + αΦ2 + βΦ4 + γ(Φ2)3/2 , (2.3)

where Φ is a scalar field that we will call inflaton. It refers to how much the system is ordered
when it reaches the equilibrium: if T > Tc, where Tc is defined as the crytical temperature of
the system, the equilibrium is reached for Φ = 0 (totally disordered phase); while if T < Tc

the equilibrium is achieved for Φ = Φ0 ̸= 0 (ordered phase). Something else that must be
mentioned here is that, according to the values of the parameters in eq. (2.3), there are two
classes of phase transition:

• first order, i.e. the transition is not instantaneous but happens when T ≪ Tc so that a
finite free-energy gap,∆F , called latent heat is present;

• second order, i.e. the transition is instantaneous and can already take place at T < Tc,
with the production of an infinitesimal∆F .

The Guth inflation sticks to the GUT transition (tGUT ≃ 10−37s, TGUT ≃ 1015GeV), which
represents a suitable mechanism that can conduct the Universe to the inflationary acceleration.
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Moreover, the energy corresponding to the GUT temperature and associated to the scalar field
Φ is high enough to create particles and achieve the amount of entropy needed to solve the
ΛCDM open problems. By contrast, the chaotic inflation only assumes the existence of an
extremely energetic scalar field, so that it relies on the same energy of the GUT transition but
without all the implications of a phase transition.

2.1.1 Guth models and chaotic inflation

Let us associate the inflaton Φ to the following Lagrangian density:

LΦ =
1

2
Φ̇2 − V (Φ, T ) , (2.4)

where Φ̇ is the time derivative of the scalar field andV (Φ, T ) is a generic potential that depends
on both the scalar field and the temperature. In terms of density and pressure we have:

ρΦ =
1

2
Φ̇2 + V (Φ, T ) ,

PΦ = LΦ =
1

2
Φ̇2 − V (Φ, T ) .

(2.5)

By means of these two last equations it is also possible to define the momentum-energy tensor
as TΦ,ij = −PΦgij + (PΦ + ρΦ)uiuj .

The dynamic of Φ is regulated by the Friedmann equations (eqs. 1.24 and 1.25) just by
adding the terms of its pressure and density introduced in the previous systems of equations.
Hence, considering the Euler-Lagrange equation

d

dt

∂

∂Φ̇
(LΦa

3)− ∂

∂Φ
(LΦa

3) = 0 , (2.6)

we obtain the formula that regulates the dynamics of the inflaton:

Φ̈ + 3HΦ̇ +
∂V

∂Φ
= 0 , (2.7)

where Φ̈ is the acceleration, while 3HΦ̇ is the friction that slows the response of the acceler-
ation to the acting force (∂V/∂Φ, i.e. the force per unit mass).

The Guth models (Guth, 2004) are split in two classes:
• Old Inflation. This class of models are embedded in first order transitions, hence there
is some latent heat that leads to the creations of particles. However, this model has then
been excluded since it predicts a too small dimension of our Universe today.

• New Inflation. These models assume second order transitions, and thus do not have an
amount of latent heat available for particle creation. We can deal with this problem by
imposing dV/dΦ ≈ 0, but this leads to a fine-tuning problem.

The current paradigm on which the inflation relies is called Chaotic Inflation. Being com-
pletely disconnected from the concept of phase transition but keeping the same energy, it is
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based on the existence of a highly energetic scalar fieldΦ in the primordial Universe. What this
model does is considering equation (2.7) together with the following rewriting of the second
Friedman equation (eq. 1.25)

H2 =
8π

3

(
1

2
Φ̇2 + V

)
, (2.8)

in order to develop the theoretical formulas of the inflationary period. This goal is achieved
under the assumption of the so-called slow rolling conditions for a generic potential V:|Φ̈| < 3HΦ̇

|Φ̇2| ≪ V
⇐⇒

{
|V ′′/V | ≪ 1

|V ′/V |2 ≪ 1
(2.9)

where the dots are time derivatives while the primes are derivatives with respect to Φ. Slow
rolling means that the inflation must last enough to solve the three already mentioned prob-
lems of the ΛCDM model, i.e. flatness, horizon and magnetic monopoles. In this way any
inhomogeneity or anisotropy is erased (i.e. the so-called No Cosmic Hair theorem).

The three main stages of this process’ evolution are the fall on the attractor, the inflation
and the graceful exit. In the last phase, with a process of spiraling, the particles are created
through the energy loss of the inflaton. For further details on this topic see Linde (2007).

2.2 Linear Evolution

At the end of the inflationary phase (§2.1), the Universe was filled with fluctuations of temper-
ature and density that, when measured at the last-scattering redshift, are about 10−5 as a order
of magnitude. Until the density perturbations are small enough (i.e. δρ/ρ ≪ 1) we can rely on
the linear evolution, firstly described by Sir James Hopwood Jeans in 1902. His perturbation
theory is based on the concept of gravitational instability, a model in which the overdensities
(i.e. small positive fluctuations) tend to attract matter to grow. By doing that, vast regions of
Universe are emptied, resulting in today’s cosmic voids.

The cosmic structure evolution is a perpetual competition between the small-scale gravita-
tional attraction and the global gravitational expansion of the Universe: the former favouring
the collapse and hence the formation of the cosmic structures, while the latter acting in the
opposite direction, making the matter-particles move away from each other as the space ex-
pands. As a result, the slower the expansion rate is and the more the gravitational collapse is
favoured since the small-scale attraction turns up to be more effective than the global space ex-
pansion. By contrast, if the Universe grows rapidly (e.g. open models, see §1.2.2) the formation
of structures is less effective.

In the next sections we will see how we can theoretically recover the observed fluctuations
of the density field (δρ/ρ ≃ 100 − 1000) by combining the linear and nonlinear evolution,
respectively in §2.2.2 and §2.3.

Jeans Theory. The Jeans theory describes the dynamical evolution of a self-gravitating
gaseous sphere, providing us with analytical solutions valid across the linear regime, and
thus applicable only at the beginning of the structure formation process. According to this
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approach, the gaseous sphere must exceed the Jeans radius and mass (RJ , MJ )1 in order to
collapse; analogously, a perturbation must be larger than the so-called Jeans length (λJ ). There
are several ways to define this crucial scale:

• kinetic-potential energy balance:

Ekin = Epot → 1

2
Mv2 = −GM2

R
→ RJ =

v√
2Gρ

, (2.10)

• gravitational-pressure force balance:

Fg = Fp → GM

R2
= −PR2

M
→ RJ =

v√
Gρ

, (2.11)

• freefall-crossing time balance:

τff = τcross → 1√
Gρ

=
λ

v
=

2R

v
→ RJ =

v

2
√
Gρ

, (2.12)

where G = 6.67428 × 10−8 cm3g−1s−2 is the gravitational constant, ρ is the density, M is
the mass of the self-gravitating gas while R is its radius, P is the pressure and λ = 2R is the
diameter of the sphere. Finally, it is remarkable that v is a velocity and it is synonymous either
of the sound speed (vs) for the baryons or of the velocity dispersion (σ) for the dark matter.

2.2.1 Static Universe

Let us define the system of fluid-dynamics equations, which will be crucial in order to trace the
evolution of the self-gravitating gaseous sphere:

∂ρ

∂t
+ ∇⃗(ρv⃗) = 0

∂v

∂t
+ (v⃗ · ∇⃗)v⃗ = −1

ρ
∇P −∇Φ

∇2Φ = 4πGρ

P = P (ρ, S) = P (ρ)

(2.13)

where, apart from the variables defined above, Φ is the potential and S is the entropy. The
second equivalence of the last equation in the system (2.13) is justified for adiabatic models
and it means that the entropy is constant, i.e. dS/dt = 0. Under this approximation it is
possible to introduce the sound speed as follows:

v2s =

(
∂P

∂ρ

)
S=cost

≈ P

ρ
→ P = v2sρ . (2.14)

1The Jeans mass can be expressed as a function of the Jeans radius throughMJ = 4
3πR

3
Jρb.
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Assuming to know the unperturbed solution of the system of equations (2.13), we add to this
solution small perturbations δx/x ≪ 1 (i.e. ρ = ρB + δρ, P = PB + δP , Φ = ΦB + δΦ

and v = vB + δv = δv, where the subscript B stands for background and refers to constant
quantities; an exception is vB = 0 because we are considering a static Universe). By doing
this and neglecting the unperturbed terms since they already satisfy the system (2.13) and
the second order terms as they are out of the boundaries of the linear theory, the equations
become: 

∂δρ

∂t
+ ρB∇δv = 0

∂δv

∂t
+ (v⃗ · ∇⃗)v⃗ = −v2s

∇δρ

ρB
−∇δΦ

∇2δΦ = −4πGδρ

(2.15)

This is what we call the system of linearized equations. In order to proceed, we now assume
our solutions to be plane waves, hence described by the following:

δρ = δρk⃗ e
ik⃗·r⃗+iωt

δΦ = δΦk⃗ e
ik⃗·r⃗+iωt

δv = δvk⃗ e
ik⃗·r⃗+iωt

(2.16)

where k⃗ = 2π/λ is the wavelength vector. Considering that the derivatives of these solutions
with respect to time and space are

∂f

∂t
= iωf , ∇f = i⃗kf , (2.17)

and imposing the determinant of the system (2.15) to vanish, we get the so-called Dispersion

Relation:
ω2 = k2v2s − 4πGρB , (2.18)

which can be set equal to zero in order to obtain the Jeans wavenumber and the Jeans scale:

kJ =

√
4πGρB
vs

, λJ =

√
πvs√
GρB

.

There are two possible outcomes of equation (2.18):

• if λ < λJ i.e. k > kJ → ω2 > 0 and ω can be written as

ω = ±kvs

[
1−

(
λ

λJ

)2]1/2
(2.19)

where cs ≡ ω/k; for λ → 0 we have cs → vs, while for λ → λJ we can write cs → 0;
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• if λ > λJ i.e. k < kJ → ω2 < 0 and ω takes the following form:

ω = ±i
√
4πGρB

[
1−

(
λJ

λ

)2]1/2
(2.20)

hence, if λ → λJ , ω2 = 0 and τff ∼ ω−1 → ∞; if instead λ → ∞, ω2 = −4πGρB and
τff ∼ ω−1 ≃ (GρB)

−1/2.

Therefore, whenλ < λJ the perturbations propagate aswaves, while forλ > λJ the amplitude
of the density fluctuations undergoes an exponential growth2.

Before moving on, it should be noted that there is an inconsistency in the static-Universe
scenario: ΦB = const as a background quantity and this implies that the Poisson equation
(third equation of 2.13) is valid for ρB = 0, i.e. the system is unstable: a self-gravitating
gaseous sphere must have v ̸= 0, expanding or collapsing. However, this physical tension is
easily erased by replacing the static hypothesis with a non-static Universe in §2.2.2.

2.2.2 Expanding Universe

In order to perform the Jeans analysis in an expanding Universe, we first need to introduce
three essential quantities:

• the cosmological horizon sets the length over which only the gravity matters, leading to
the simple collapse of the perturbations, and below which the microphysics phenomena
must be considered too, together with the causal connection3; we can write it as:

RH(t) = a(t)

∫ t

0

c dt′

a(t′)
; (2.21)

• the Jeans length discriminates which perturbations can grow forming the cosmic struc-
tures from the ones which cannot, resulting in a plane-wave propagation; hence, RJ is
meaningful just if defined (see eqs. 2.10, 2.11 or 2.12) inside the cosmological horizonRH;

• the dissipation length refers to the fact that, among the perturbations which cannot grow,
the ones even smaller than RDIS are dissipated or, in other words, erased.

Notice that the already mentioned scales are listed depending on their relative size, i.e. RH >

RJ > RDIS, and all of them depend on time. Let us then point out three fundamental times
necessary to describe the evolution of the primordial fluctuations in the context of an expand-
ing Universe:

• the equivalence time (teq) signs the moment in which the radiative era leaves its place
to the matter one and, since the radiation is no longer dominant, and its opposition to
collapse is increasingly less efficient, the perturbation growth is favoured;

2In fact, considering the definition of ω in eq. (2.20), the first equation of (2.16) gives the following functional
form for the density contrast evolution: δ = δρ/ρB = δk⃗ exp(±|ω|t) exp(ikr⃗), i.e. an exponential growth in
time.

3The cosmological horizon can be thought as a radius that defines the spherical volume of the Universe in
which it is in causal connection with the observer. RH represents the distance travelled by the light from the Big
Bang to the time t.
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• the decoupling time (tDEC) refers to the baryons-radiation decoupling, i.e. the time at
which the baryonic matter and the photons take different paths in the thermal history of
the Universe. The more its value is smaller, the more the structure formation is favoured;

• the de-relativisation time
4 (tDR) marks the moment before which the matter is relativistic

and, as a consequence, it must be included in the EoS of the radiative component (w =

1/3).

As already mentioned, the formation history of the cosmic structures depends on the back-
ground Cosmology, and therefore our models must take into account the expansion of the Uni-
verse (i.e. the Hubble flow, see §1.1.2), which acts against the small-scale gravitational collapse.
We will then consider an EdS model as the background Universe and a small closed Universe
(see §1.2.2) to mimic a spherical perturbation. The expansion is taken into account by means
of the term of the background velocity: from vB = 0 in the static Universe to vB = Hr ̸= 0.

We treat separately the perturbations λ greater and smaller than the cosmological horizon
(eq. 2.21) as beyond its boundaries the gravity is the only acting force and we can neglect
gas physics and electromagnetic interactions. We obviously cannot do the same on causally
connected scales.

Scales with λ > RH

For such perturbations we do not need the system of hydrodynamic equations (2.13) since the
radiative component is ineffective on scales which are not causally connected. Let us rewrite
the second Friedmann equation (eq. 1.25) divided by a and express it for both the background-
flat Universe (κB = 0) and for the spherical perturbation (κp = +1):

H2 =
8π

3
Gρ− κc2

a2
−→


H2

B =
8π

3
Gρb

H2
p =

8π

3
GρB − c2

a2

(2.22)

We proceed by synchronizing the two solutions at the same time through their Hubble param-
eter (H2

B = H2
p ) and we obtain the formulas that regulate the perturbation amplitude and the

background density evolution: δ ∝ a−2ρ−1
B ,

ρB ∝ a−3(1+w) .
(2.23)

Outside the cosmological horizon all perturbations grow, and how fast their growth is depends
on the dominant component:

• before the equivalence, i.e. t < teq, the Universe is going through the radiative era, so
that the dominant component has w = 1/3:

ρB = ρr ∝ a−4 −→ δ ∝ a2 ; (2.24)
4Note that we can discriminate between hot and cold dark matter depending on when this de-relativisation

time occurswith respect to the decoupling time. In particular, tDR > tDEC implies HDMwhile if tDR < tDEC the
CDM is called into play. As a consequence, the Jeans mass associated to the HDM (1015−16M⊙) is much greater
than that of CDM (105−6M⊙) and this results respectively in a top-down or bottom-up scenario of structure
formation.
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• after the equivalence, i.e. t > teq, the matter prevails and w = 0:

ρB = ρm ∝ a−3 −→ δ ∝ a . (2.25)

The proportionality relations (2.24) and (2.25) can be also expressed as a function of time by
considering the trends a = a(t) ∝ tΓ, where the values of Γ can be read in table 1.1.

Scales with λ < RH

Inside the horizon the perturbations have to deal with micro-physics processes. We start from
the equations in (2.13) but defining the velocity as u⃗ = Hr⃗ + v⃗, whereHr is the Hubble flow
and v⃗ is the velocity field: 

∂ρ

∂t
+ ∇⃗(ρu⃗) = 0

∂u⃗

∂t
+ (u⃗ · ∇⃗)u⃗ = −1

ρ
∇P −∇Φ

∇2Φ = 4πGρ

P = P (ρ, S) = P (ρ)

(2.26)

The easiest way to perform the calculations when taking into account the expansion of the
Universe is through the comoving coordinates (see §1.1.2), which naturally encode the effect of
the cosmic scale factor, being the frame of reference “comoving” with the Hubble flow. In this
regard, we recall the following changes of coordinates:

r = aX ⇐⇒ kcom = a kphys . (2.27)

In order to develope this analysis, we need to define ρB : in fact, the background density
has a different evolution in time, depending on the prevailing component (see eqs. 2.24 and
2.25). We focus on the solutions of the matter era since this is the most relevant phase for the
evolving matter perturbations.

Matter Era. Since w = 0, ρB ∝ ρm ∝ a−3 and we can assume Pm = 0. It is found that, in
physical coordinates, the dispersion relation is:

δ̈k + 2
ȧ

a
δ̇k + δk

[
k2v2s − 4πGρB

]
= 0 , (2.28)

and we search for solutions in the form δk = tα. In this equation, the second term encodes
the expansion of the Universe, while the third term describes the competitive effects of the
velocity dispersion and the gravitational potential; the cosmological parameters are embedded
in these two terms. As long as the matter prevails, the following relations are valid in an EdS
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background Universe (tab. 1.1):
a ∝ t2/3 −→ H =

ȧ

a
∝ 2

3t
,

ρB ∝ 1

6πGt2
.

(2.29)

Putting all the above together, after somemathematical passageswe get both the Jeanswavenum-
ber and length:

kJ =
5

vs

√
πGρB
6

, λJ = vs

√
24π

25GρB
.

If λ < λJ or k > kJ , the solution δk are imaginary, and therefore the perturbations do not
grow but propagate as waves. If instead λ > λJ or k < kJ , they grow towards the cosmic
structure formation; in the limit λ ≫ λJ we derive the following trends:

δ− ∝ t−1 ∝ a−3/2 , δ+ ∝ t2/3 ∝ a ,

where the growing solution is δ+ and it is valid if and only if the component considered is
decoupled from radiation; this means that since the DM-radiation decoupling takes place at
very high redshift, it can start to collapse immediately, while the baryons begin this process at
zDEC ≃ 300. It should be noted that in an EdS Universe the density contrast at z ≃ 1100 on
the last-scattering surface should be δρ/ρ ≃ 10−3 in order to achieve the nonlinear observed
regime (i.e. δρ/ρ ∼ 1) at low redshift. However, we know that perturbations are smaller at
least of two orders of magnitude. A possible alternative to cope with this problem is to replace
the EdS background Universe with a closed model, in which the expansion is reduced and the
growth of the perturbations enhanced. Actually, since there is strong evidence on the flatness
of the Universe (see e.g. Efstathiou and Gratton, 2020), this hypothesis is not justified. What
is likely to happen is that, by starting first its collapse, the DM prepares the potential wells in
which the baryon fall is then favoured; this is what is known as baryon catch-up.

In the previous analysis, a flat EdS Universe has been considered, but we can even apply
the Jeans theory to a curved background Universe. The generic solutions are:

δ−(t) = H(t)

δ+(t) = H(t)

∫
dt

H2(t)a2(t)
i.e. δ+ ∝ H(z)

∫ z

−∞

dz

a2
1 + z

H2(z)

(2.30)

In particular, the growing solution δ+ of a closed Universe has a time evolution faster than in
the EdS model; by contrast, the growth process is slower in an open Universe. It is noticeable
that the integral form of δ+ is well approximated by means of the following formula:

f ≡ dlnδ+
dlna

= Ω0.55
m +

ΩΛ

70

(
1 +

1

2
Ωm

)
, (2.31)

where f is known as growing factor, Ωm and ΩΛ are the matter and the dark energy density
parameters respectively. Equation (2.31) can be used for tomographic analyses that allow us
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to set constraints on the cosmological parameters in two possible ways:

• we can measure f to test the GR: if the exponent of Ωm is not equal to 0.55, the GR is no
longer valid;

• assuming the validity of GR, we can test the cosmological models since an increasingΩm

is responsible for a more efficient growth of the perturbations.

For the sake of argument, in the previous Radiative Era an EdS model is a proper approx-
imation for the primordial phases of our Universe; w = 1/3 and ρB ∝ ρr ∝ a−4. Therefore
we can perform the same analysis as before but accounting for the radiative pressure due to
the dominant relativistic component in eqs. (2.26). As a consequence, the Jeans scale of the
radiative component is greater than the cosmological horizon, i.e. λJ > RH. Since λJ makes
sense only inside the horizon, this means that the relativistic component cannot grow at any
scale (δr = 0): the propagation of the waves is so fast (c/

√
3) that there are not radiative

fluctuations at t < teq. In the meanwhile, the DM perturbations included in the cosmological
horizon (λ < RH) undergo theMeszaros effect, i.e. the stagnation of the DM growth (Meszaros,
1974). Notice that the reason why perturbations can or cannot grow lies on the comparison
between the free-fall time τff and the Hubble time τH, defined as:

τff ∝ 1√
Gρ

,

τH ∝ 1

H(t)
.

(2.32)

In fact, if τff < τH (i.e. t > teq) the gravitational collapse is effective, while it is ineffective
otherwise (i.e. t < teq) since the process in this case would last longer than the lifetime of the
Universe at the time considered.

Finally, the baryons cannot grow in the radiative era, since they are coupled with radiation
and δbaryons ∼ δr ∼ 0; the baryonic matter must wait until the decoupling matter-radiation in
the following matter era, when it is free to fall rapidly in the DM potential wells through the
baryon catch-up.

2.3 Nonlinear Evolution

The Jeans theory provides us with analytical solutions valid across the linear regime. There-
fore, it can be applied only at the beginning of the formation process; when the value of δ
reaches the unit, a nonlinear theory becomes necessary. There are several ways to develop a
theory for the nonlinear regime, such as:

• the Zel’dovich approximation and the spherical collapse model (see §2.3.1 and §2.3.2);

• higher-order perturbative theories, obtained by starting from the already mentioned eqs.
(2.26) and considering terms of order higher5 than the first;

5The greater the order considered is and the more the result is valid for larger density constrasts δ.
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• the peaks theory (for further details see e.g. Young and Musso, 2020), which applies the
peak properties in Gaussian fields to the perturbative theory; the peaks have to be in-
tended as the regions where structures are most easily formed;

• the lognormalmodels (Coles and Jones, 1991), where the assumed density field is theGaus-
sian distributed natural logarithm of δ; this is an acceptable approximation for density
contrast whose value is not too high;

• the N-body simulations6 (see §2.5), which can trace gravity and how it acts in the evolu-
tion of the cosmic structures.

In the next sections we will focus on the description of the Zel’dovich approximation (§2.3.1),
the spherical collapse model (§2.3.2) and the N-body simulations (§2.5). Let us underline that
the last two will be extensively used to properly construct both halo and void catalogues
(chapter 4), and to analyse the void clustering statistical properties (chapter 5).

2.3.1 Zel’dovich approximation

The theory proposed by Zel’dovich (1970) is a Lagrangian non-analytic theory developed as a
function of the initial displacement field G(q⃗) = −∇q⃗ ϕ(q⃗), where q⃗ is the initial Lagrangian
position. The Lagrangian coordinates q⃗ can be transformed into the Eulerian coordinates r⃗
through the following relation:

r⃗(q⃗, t) = a(t) q⃗ + F (q⃗, t) , (2.33)

where a(t)q⃗ refers to the expansion of the Universe, while F (q⃗, t) is the displacement; hence,
the final position depends on the initial position and on the amount of time passed since when
the particles start to move. Let us separate the formula into its two dependencies (i.e. F (q⃗, t) =

f(t) G(q)), so that equation (2.33) becomes:

r⃗(q⃗, t) = a(t) q⃗ + f(t)G(q⃗) = a(t) q⃗ + a(t)b(t)G(q⃗) = a(t)
[
q⃗ + b(t)G(q⃗)

]
, (2.34)

where the second equivalence is to impose that the linear solution is recovered for small per-
turbations: b(t) = δ+(t).

In this approximation the peculiar velocity field is assumed to be irrotational. This means
that the trajectories never change: the particles do not feel the mutual interaction and their
trajectories cross each other (shell-crossing problem). This is the great limit of the Zel’dovich
approach; in fact, in a typical N-body simulation the displacement term has to be computed
any time a particle moves from the initial position q⃗ to another position q⃗ ′.

Defining the differential of the mass in both Lagrangian (eq. 2.35) and Eulerian (eq. 2.36)
coordinates as:

dM = ρ̄d3q⃗ , (2.35)

dM = ρ(r⃗, t)d3r⃗ , (2.36)
6There are even the hydrodynamic simulations, which, beyond gravity, take into account the effects of the

physics related to baryons. This definitely complicates the construction of such simulations.
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and recalling the mass conservation principle, we can combine the two previous equations to
get the formula which regulates the density evolution:

ρ(r⃗, t) = ρ̄
d3q⃗

d3r⃗
. (2.37)

Let us now rewrite the Zel’dovich formula (eq. 2.34) as follows:

d3r⃗

d3q⃗
= J

(
∂r⃗

∂q⃗

)
= a3

(
δi,j − b(t)

∂2Φ

∂qi∂qj

)
, (2.38)

where δi,j is the Dirac delta, ∂2Φ
∂qi∂qj

is the deformation tensor, while J is the Jacobian of the
transformation. Since J is symmetric, it can be diagonalized, giving three eigenvalues (λ1 >

λ2 > λ3); equation (2.37) becomes:

ρ(r⃗, t) =
ρ̄

a3

[
1− b(t)λ1(q⃗)

]−1 [
1− b(t)λ2(q⃗)

]−1 [
1− b(t)λ3(q⃗)

]−1

. (2.39)

For λi > 0 the square brakets vanish and ρ → ∞ (shell crossing), thus the collapse proceeds
along the axis on which the diagonalization of the deformation tensor has been made; the
higher the positive value is and the more the collapse is effective in that direction and starts
before7. By contrast, for λi < 0 as the value becomes more negative the density decreases.

2.3.2 Spherical collapse model

The theory exposed in Gunn and Gott (1972) is one of the few analytical solutions existing in
the nonlinear regime, and it sets the basis for the Mass Function

8 models.
Below we describe the so-called spherical evolution of both the overdensities and the un-

derdensities, under the validity of the CP and thus by means of the Friedmann equations (see
chapter 1). Three crucial assumptions necessary for the following treatment are the follow-
ing: a spherical9 perturbation (Ωp > 1); a null peculiar velocity (vp = 0); an EdS background
Universe (ΩB = 1), since we focus on on high-redshift perturbations from t > teq, where the
subscript “eq” stands for the matter-radiation equivalence.

Positive fluctuations

In §2.2.2 it has been shown how a fluctuation grows or decreases in the matter-dominated
epoch. The linear theory enables us to express the initial perturbation δi as a combination of

7If λ1 = λ2 = λ3 the collapse is isotropic.
8The idea of the spherical collapse can be used to write the Mass Function (see forthcoming §2.4.3), i.e. the

prediction of cosmological models on the number of structures with a certain mass at a fixed time or, equivalently,
a fixed redshift.

9This model is limited to the perfectly spherical case and it is not trivial to generalize it to the more realistic
ellipsoidal collapse.
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the two solution modes in the following way:

δi = δ(ti) = δ+(ti)

(
t

ti

) 2
3

+ δ−(ti)

(
t

ti

)−1

, (2.40)

and by time-deriving this equation, if we consider the aforementioned hypotheses of null pe-
culiar velocity, we obtain:

δ+ =
3

5
δi , (2.41)

which means that three-fifths of the initial perturbation grow, while the two-fifths left decay.
It is also possible to write the perturbation at the initial time ti as a function of the density

parameter as:

Ωp(ti) =
ρp(ti)

ρcrit(ti)
=

ρ(ti) · (1 + δi)

ρcrit(ti)
= Ω(ti)(1 + δi) > 1 , (2.42)

where the last inequality is justified since Ωp(ti) > 1, i.e. the assumption of closed-Universe
perturbations10. It follows that

δi >
1− Ω(ti)

Ωti

. (2.43)

Finally, if we recall that the density parameter evolution in the Friedmann Universes is

Ω(z) =
Ω0(1 + z)1+3w

(1− Ω0) + Ω0(1 + z)1+3w
, (2.44)

imposing w = 0, because of the matter-dominated epoch, equation (2.43) becomes:

δ+(ti) =
3

5
δi >

3

5

1− Ω0,B

Ω0,B(1 + z)
. (2.45)

Hence, for closed or EdS background universes (i.e. Ω0,B ≥ 1) any δi > 0 can collapse; while
for open universes (i.e. Ω0,B < 1) the initial density contrast must be greater than a critical
value which verifies the inequality (2.45) in order to make the perturbation grow.

Moving on to the evolution of a spherical perturbation, let us rewrite the second Friedmann
equation (eq. 1.25)11 as follows:(

ȧ

a0

)2

= H2
0

[
Ω0

(
a0
a

)1+3w

+ (1− Ω0)

]
, (2.46)

which, for a0 → ai and w = 0, becomes:(
ȧ

ai

)2

= H2
i

[
Ωi

(
ai
a

)
+ (1− Ωi)

]
. (2.47)

10Looking at fig. 1.3 it is evident how the closed universes are the only ones which can collapse.
11Note that in agreement with the spherical collapse model the Friedmann equations are exact; thus, unlike

the Zel’dovich Approximation (§2.3.1), this is no longer an approximation.
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This equation defines three fundamental stages of the spherical evolution:
• tM (turn-around) is the time atwhich the perturbation reaches itsmaximum size; assum-
ing the mass conservation and taking into account the solution of the closed universes
(see §1.2.2) we can compute its density at t = tM as:

ρp(tM) =
3π

32Gt2M
. (2.48)

On the other hand, the background density of the EdS Universe (see §1.2.2) is:

ρB(tM) =
1

6πGt2M
. (2.49)

By combining these two definitions, it is possible to obtain the growing mode of the
perturbations:

δ+(tM) =
ρp(tM)

ρB(tM)
− 1 ≃ 4.6 . (2.50)

Note that such a value for the density contrast means that the nonlinear regime is already
achieved at the time of the maximum expansion of the perturbation, sooner than the
effective collapse. As a consequence, applying the linear theory would be a mistake; in
fact, it would imply δ+,lin(tM) ≃ 1.07, i.e. a smaller value of the density contrast at the
time of maximum expansion.

• tC ≃ 2tM (collapse) is the moment in which all the matter should collapse in a geometric
point, even if this does not actually happen because of both the baryonic pressure and
the DM velocity dispersion. At this time we find:

δ+(tC) =
ρp(tC)

ρB(tC)
− 1 = 8

ρp(tM)

ρB(tM)

(
tC
tM

)2

− 1 ≃ 180 , (2.51)

while in the linear theory δ+,lin(tC) ≃ 1.68.
• tvir ≃ 3tM (virialization) is the time when the structure reaches the equilibrium, keep-
ing the same dimension as it had at t = tC. The density contrast of the increasing mode
is:

δ+(tvir) =
ρp(tvir)

ρB(tvir)
− 1 = 8

ρp(tM)

ρB(tM)

(
tvir
tM

)2

− 1 ≃ 400 , (2.52)

which turns to δ+,lin(tvir) ≃ 2.2 in the linear regime. Hence, linearity is increasingly
wrong as the collapse of the perturbation proceeds.

Finally, note that it is possible to compute the size on which the structure has settled at t =
tvir. For this purpose, let us assume the virial theorem and the mass conservation between the
maximum time and the virialization time:

2T + V = 0 −→ E = T + V = −T , (2.53)

where T and V are the kinetic and the potential energy respectively. E is the total energy and
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can be written as: 
ETOT(tM) = −3

5

GM2

RM

ETOT(tvir) = −1

2

3

5

GM2

Rvir

(2.54)

and setting ETOT(tM) = ETOT(tvir) we get an expression for the virial radius as a function
of the maximum radius:

Rvir =
1

2
RM (2.55)

where RM = R(tM) is the maximum radius. It is equation (2.55) that justifies the factor 8 (i.e.
23, to convert the radius into volume) in the previous eqs. (2.51) and (2.52).

Negative fluctuations

Spherical underdensities undergo an opposite evolution with respect to their positive coun-
terparts: as the overdensities tend to reduce their size through the gravitational collapse and
form the cosmic structures, the underdensities tend to become larger and form the cosmic voids.
In order to describe the spherical evolution of the negative perturbations, let us refer to an in-
verse top-hat spherically symmetric underdensity composed by several shells with same center
but different radii. The radial expansion of the shells is greater as the mean density contrast
∆(r, t) is lower; hence, the inner shells are more accelerated than the outer ones since a void
is more underdense in its very center. In the Newtonian regime, where ṙ ≪ c and r ≪ c/H ,
this acceleration can be formalized as follows:

d2r

dt2
= −GM

r
= −4πG

3
ρB(1 + ∆)r . (2.56)

Note that according to this equation d2r
dt2

∝ M ∝ ∆, whereM = M(r) is the mass at a given
radius. The mass and the mean density contrast at the initial time t = ti can be defined in the
following way: 

Mi =
4

3
πρB(1 + ∆i)r

3
i

∆i =
3

r3i

∫ ri

0

δi(r)r
2dr

(2.57)

The analytic solution of (2.56) can be found by assuming a specific parametrization to define
the mean density contrast so that we can write:

1 + ∆(r, t) =
ρ(r, t)

ρB(r, t)
=

9

2

(sinh θ − θ)2

(cosh θ − 1)3
, (2.58)

where θ is a parameter defined such as its differential dθ is the conformal time
12. Starting from

the previous equations it has been demonstrated that the mean density contrast in the linear

12We refer to the dimensionless conformal time as η = η(t), and dη ≡ cdt
a(t) ; see e.g. Steiner (2007) for further

details.
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regime is:

∆L
i (θ) = −

(
3

4

)2/3
3

5
(sinh θ − θ)2/3 . (2.59)

As already pointed out, the inner shells have a larger outward acceleration than the outer
layers, hence the former gradually reach the latter. This results in the shell-crossing phe-
nomenon, a physical condition that can explain the observed filaments of the large-scale struc-
ture, since collapsed objects tend to be placed on the edge of cosmic voids. Beyond the shell-
crossing, the void radius increases as a self-similar expanding shell. Furthermore, note that
when the shell-crossing occurs, we can associate to a void a specific Hubble parameter, i.e. a
function of the Hubble parameter of the Universe computed at the shell-crossing time:

Hsc =
4

3
H(tsc) . (2.60)

This relation tells us that the expansion process is more effective for the underdensities than
for the Universe as a whole. Moreover, from eq. (2.59) computed at the shell-crossing time
(θ = θsc) we can obtain the following value for the negative density contrast in the nonlinear
regime:

1 + δNL
v ≃ 0.205 ⇐⇒ δNL

v ≃ −0.795 , (2.61)

while its linear counterpart is:
δLv ≃ −2.71 . (2.62)

2.4 Large-scale structure

Once the linear and nonlinear evolution regimes have been outlined, we can proceed towards
an exhaustive description of the large-scale structure of the Universe. In this section we will
outline the evolution history of cosmic structures with the aim of summarising the statistical
properties of our Universe, from the linear primordial perturbations to the nonlinear evolved
structures.

The theory included in this entire section is of great importance for the analysis presented
in chapter 4 and chapter 5. In particular, we provide some basic concepts on the two-point
statistics, the tracer bias and the mass function.

2.4.1 Statistical properties of the primordial Universe

The inflation (§2.1) originates adiabatic primordial fluctuations from a stochastic process, which
implies that the density contrast distribution has a nearly-Gaussian statistics. As a conse-
quence, we can assume the ergodic hypothesis, and the statistical mean on several realizations
turns into the mean computed on several spatially divided subsets of our Universe. This as-
sumption is strongly connected to the fair-sample hypothesis, since the chosen volumes to be
analysed must be a faithful representation of our Universe as a whole.

In this context, the Gaussian probability distribution of the density contrast can be written
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as:

P
(
δ ≡ δρ

ρ̄

)
=

1√
2πσ2

exp

[
− δ2

2σ2

]
, (2.63)

since the mean m is zero for the nature of the density contrast. Furthermore, we can also
introduce a new definition of the density contrast (eq. 2.64) and its Fourier Transform (eq.
2.65):

δ(x⃗) =
1

(2π)3

∫ ∞

0

δ̂(k⃗) exp
[
i⃗k · x⃗

]
d3k⃗ , (2.64)

δ̂(k⃗) =

∫
δ(x⃗) exp

[
−i⃗k · x⃗

]
d3x⃗ , (2.65)

where δ(x⃗) is dimensionless, while δ(k⃗) has volumetric units. k⃗ = 2π/λ is calledwavenumber.

Two-Point Correlation Function

In real space, the two-point (auto-)correlation function (2PCF) is defined as:

ξ(r) ≡ ⟨δ(x⃗) δ(x⃗+ r⃗)⟩ , (2.66)

where the 2PCF, ξ(r), is a dimensionless quantity which does not depend on the direction,
under the validity of the CP; r is the comoving distance between the two points considered, x⃗
and x⃗+ r⃗.

Assuming a discrete homogeneous distribution of objects with mean numerical density n̄,
the probability of having an object in any given volume element is:

dP = n̄ dV , (2.67)

and the probability of having two distinct objects in two independent volumes simultaneously
is:

d2P = n̄2 dV1 dV2 , (2.68)

where dV , dV1 and dV2 are volume elements. By contrast, if those volumes are correlated eq.
(2.68) becomes:

d2P = n̄2 dV1 dV2

[
1 + ξ(r)] . (2.69)

Thus, the 2PCF can be practically defined as the probability excess or lack of finding couples
with respect to a random distribution. Note that a natural consequence of the last equation is
that ξ(r) ≥ −1, since the probability must be non-negative by definition.

Lastly, it is essential to highlight that in order to have a complete description of the counts
we must know all the moments of the distribution. Let us define themean and the variance as:

⟨N⟩V =
∑
i

⟨ni⟩ = n̄ V

⟨N2⟩V =
∑
i=j

⟨n2
i ⟩+

∑
i ̸=j

⟨ninj⟩ = n̄V + n̄2V 2 + n̄2
∫
dV1 dV2 ξ

(2.70)

whereN is the number of objects of the sample considered, n̄ is its mean number density, n̄V
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is a statistical noise known as shot noise and ξ is the 2PCF. While a Gaussian distribution is
entirely described by eqs. (2.70), a generic distribution has non-null higher-order moments,
such as the skewness ⟨N3⟩V , the kurtosis ⟨N4⟩V , etc. This means extending the concept of
2PCF to more than two points, i.e. respectively, the three-point correlation function (3PCF),
the four-point correlation function (4PCF), etc. However, the signal is mainly contained in
lower-order clustering functions. Therefore, current cosmological analyses generally rely on
2PCF and 3PCF. The latter is defined as the probability excess or lack of finding triplets with
respect to a random distribution; notice that the already considered pairs of the 2PCF enhance
the probability of having a triplet, and we can derive the following relation:

ξ3 = ξ(r1,2) + ξ(r1,3) + ξ(r2,3) + ζ(r1,2, r1,3, r2,3) , (2.71)

where ζ is called reduced or connected 3PCF.
Both the 2PCF and the 3PCF have their analogue in the Fourier space: the power spectrum

P (k) ∝ ⟨|δk|2⟩ and the bispectrum B(k1, k2) ∝ ⟨|δ(k1)δ(k2)δ(k1 − k2)|⟩ respectively.

Power Spectrum

In Fourier space, the 2PCF is transformed into the so-called power spectrum, P (k), through

⟨δ(k⃗) δ∗(k⃗′)⟩ ≡ (2π)3 δ3DD (k⃗ − k⃗′)P (k) , (2.72)

where the complex conjugate of δ(k⃗) is defined as δ∗(k⃗) = δ(−k⃗), since the density field is
real. δ3DD (k⃗ − k⃗′) is the 3-dimensional Dirac delta function. The power spectrum quantifies
the contribution of the scale k⃗ on the total density field in Fourier space. Note that if k⃗ = k⃗′,
P (k) ≈ |δ(k⃗)|2, i.e. the power spectrum measures the square mean amplitude of δ(k⃗), where
δ(k⃗) is the amplitude of the wave which corresponds to the wavenumber k in Fourier space.
It is possible to link ξ(r) to P (k) through the Fourier formalism:

ξ(r) =
1

(2π)3

∫
d3k⃗ P (k) exp

[
i⃗k · r⃗

]
, (2.73)

which is known as the Wiener-Khintchine theorem. Lastly, let us just point out that in the
density contrast δk⃗ , k⃗ is a vector, while P (k) depends only on its module.

A relevant quantity related to the power spectrum is the pointwise variance σ2, which is
obtained from eq. (2.72) as the appropriate integral of P (k):

σ2 =
1

(2π)3

∫ +∞

−∞
d3k⃗ P (k)

in spherical−−−−−−−−→
coordinates

σ2 =
1

2π2

∫ +∞

0

dk k2 P (k) . (2.74)

When performing cosmological analyses we cannot access the density value in each single
point of the Universe, but we need to average on volumes. Thus, it is physically more appro-
priate referring to the mass variance instead, which is defined as:

σ2
M ≡ ⟨δ2⟩ = 1

(2π)3

∫
d3k⃗ P (k) Ŵ 2

V (k⃗, R) , (2.75)
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where Ŵ 2
V (k⃗, R) is the Fourier transform of the window function, which acts as a low-pass

filter on the scales k⃗ depending on its filtering radius R or, equivalently, on its filtering mass
M . In particular, Ŵ erases the perturbations on small physical scales (λ < R); the larger the
filter is the more scales are cancelled out. Therefore, if R → 0 the mass variance recovers the
pointwise variance (i.e. σ2

M → σ2); if instead R → ∞ what happens is that the density field
reduces to the mean density (i.e. σ2

M ≡ δ2 → 0).
The shape of the primordial power spectrum describes the amplitude distribution of the

Gaussian initial perturbations, hence it must be scale-free, described by a generic power-law:

P (k) = A kn , (2.76)

where n is the spectral index. The fluctuations generated by inflation (§2.1) are metric fluctua-

tions, i.e. of the gravitational potential. Therefore, on a generic scale R it can be proven that:

δΦR ∝ GδM

R
∝ σVR

2 ∝ σMM
2/3 ∝ M

1−n
6 ∝ M0 , (2.77)

where the last proportionality relation is justified by the fact that the spectrum of the grav-
itational fluctuations is commonly referred to as white noise, i.e. it is not only scale-free but
also scale-invariant, i.e. at each scale it has the same amplitude. As a consequence, what the
inflation predicts is n ≃ 1, giving rise to the so-called Zel’dovich spectrum for the density
fluctuations:

P (k) = A k . (2.78)

Finally, note that while the inflation predicts the value of the spectral index n, the initial nor-
malization A has to be inferred through observations (e.g. CMB; Planck Collaboration et al.,
2020c).

On the time evolution of the power spectrum. Let us introduce two fundamental times
to consider in the evolution of P (k): tH as the time at which a given perturbation enters the
cosmological horizon and teq as the equivalence matter-radiation time. From the cosmological
horizon definition (2.21) it follows that the smallest scales turn out to be inside RH before
the greatest ones. As a consequence, the former are more likely to undergo the stagnation

(Meszaros, 1974) than the latter. Moreover, note that if a scale is large enough to enter the
cosmological horizon at t > teq, it grows following the dependencies seen in §2.2.2, without
stagnation.

The Meszaros effect is such that the equivalence power spectrum shows a peak at the scale
corresponding to the horizon at t = teq, identified as kH,eq. Indeed, for lower wavenumbers
(i.e. larger physical scales) there are not signs of stagnation, while for higher wavenumbers
(i.e. smaller physical scales) there can be found the typical shape induced by this effect. What
drives the size of the horizon scale at the time of equivalence (i.e. kH,eq) is the matter density
parameter Ωm:

ρm(teq) = ρr(teq) → ρ0,m a−3
eq = ρ0,r a

−4
eq → aeq =

ρ0,r
ρ0,m

=
Ω0,r

Ω0,m

, (2.79)

where Ω0,r is fixed by TCMB ≃ 2.73 K. From these relations it follows that the higher Ω0,m

is and the earlier the matter-radiation equivalence is achieved. Furthermore, there is a second
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order effect due to the presence of massive neutrinos; in fact, if they are relativistic they are
part of the radiative component, otherwise they join the matter component. Before the peak,
P (k) ∝ kn ≃ k; after the peak, P (k) ∼ kn−4 ∼ k−3 asymptotically. These trends can be
formalized by means of a transfer function T (k) as follows:

P (k, teq) = P (k, ti) T
2(k) , (2.80)

where

T (k) ∝

 k0 for k < kH,eq ,

k−2 for k > kH,eq .
(2.81)

At t = teq, it is just the DM component that can grow since the baryons are not yet decou-
pled from radiation. In this context, it is important to mention the so-called free-streaming,
a phenomenon which acts at different scales on cold and hot dark matter. This effect occurs
on scales that are smaller than the Jeans scale, where the wave propagation can take place.
When the DM decouples from radiation it starts to move freely, responding to the mean den-
sity field of the Universe. It is because of this free propagation that small-scales perturbations
are erased. In fact the so-called free-streaming scale (λFS) is strongly linked to the Jeans scale.
As mentioned before, the HDM Jeans scale is greater than the CDM one (or, equivalently,
kFS,HDM < kFS,CDM), and hence more scales are cancelled in the HDM scenario (see fig. 2.1,
which shows the free-streaming effects in presence of either CDM or HDM). The consequence
of this phenomenon is that in HDM-dominated universes the formation of the cosmic struc-
tures follows a top-down process, while the CDM-dominated universes are described by a
bottom-up structure formation13.

Figure 2.1: Comparison between the power spectrum at the equivalence time for HDM (dotted
line) and CDM (solid line) dominated Universe. Credits to: Ryden (2016).

13We recall that if in the top-down scenario the larger structures are formed first and then the smaller by
disaggregation, in the bottom-up scenario the smaller structures form first and then the biggest ones are created
by aggregation.
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From the equivalence to later times (i.e. in the matter era), the power spectrum amplitude
grows as δ2+ ∝ a2 as long as the linear theory is valid. Then, the smaller a physical scale is,
the earlier it becomes nonlinear; when this happens, the growth rate is enhanced with respect
to the linear regime.

Finally, note that the dependencies of the transfer function T (k) given in eq. (2.81) are valid
for the CDM scenario; considering the HDM instead, T (k) ∝ kn′ for t > teq, where n′ < −2,
i.e. the slope is steeper than that of CDM.

2.4.2 Bias

In order to analyse the matter distribution of a given volume of our Universe, we need to con-
sider the tracer objects (e.g. galaxies, galaxy clusters and voids), since the DM particle field is
not directly observable14. One of the main aims of cosmologists is finding an accurate relation
to link the distribution of tracers to that of the underlying DM; in fact, the luminous matter
is not a faithful representation of the underlying DM. The simplest existing parametrisation
to account for this discrepancy has been introduced by Kaiser (1984) by means of a local and
non-stochastic bias model, valid in the linear regime (i.e. on very large scales):

δtr ≡
Ntr(V )− N̄tr(V )

N̄tr(V )
=

δNtr(V )

N̄tr(V )
=

δM(V )

M̄(V )
= b δm , (2.82)

where b is the linear bias, δtr represents the fluctuations of the number of tracers in a volume
V and δm = δ ⊗ W (V ) is the matter density field filtered on a volume V, e.g. convolved
with a top-hat filter of volume V. Equation (2.82) can be expressed in terms of both the power
spectrum and the 2PCF as well:Ptr(k) = b2 Pm(k) ,

ξtr = FT
[
Ptr(k)

]
= b2 ξm ,

(2.83)

where FT stands for Fourier transform (see eq. 2.73). It is clear that the higher the linear
bias is, the more the distribution of the tracers considered differs from the underlying matter
distribution. Note that if Pm and ξm can be derived from the theory by means of the Boltzmann

solvers (e.g. CAMB), Ptr and ξtr must be computed by observations or simulations through the
so-called clustering estimators (see §3.2.3).

The tracer bias has been extensively studied in the literature. For instance, one of the most
popular functional forms for the DM halo bias was introduced by Mo and White (1996):

b(M, z) = 1 +
1

δc

(
δ2c

σ2
M δ2+(z)

− 1

)
, (2.84)

which was obtained by means of the excursion-set formalism (see §3.2.1). From this equation
we understand how the linear bias of the tracers is always positive and directly proportional
to both the massM and the redshift z.

14Note that the DM distribution can be reconstructed only by means of gravitational effects, such as the grav-
itational lensing, which probes the image distortions of background sources.
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The aforementioned biased tracers play a crucial role in the cosmic void definition. Wemust
take into account that they are affected by a bias factor too, which depends on the redshift and
the void radius; see §3.2.3 for further details on the void bias and its theoretical definition.

2.4.3 Halo mass function

As anticipated in §2.3.2, it is possible to exploit the spherical collapse model in order to build
a model for the halo mass function (HMF, hereafter), which is defined as the number of haloes
per unit comoving volume (i.e. the halo comoving number density) as a function of their
mass, at a given redshift. The HMF emerges in the cosmological framework as an extremely
powerful statistics to investigate the properties of the large-scale distribution of cosmic struc-
tures15. A theory for the HMF was proposed for the first time by Press and Schechter (1974)
(PS, hereafter), in a theoretical formulation that considers DM haloes as spherically symmetric
objects16.

From §2.4.1 we know that the initial distribution of primordial fluctuations is nearly Gaus-
sian (eq. 2.63). As the time evolution of the probability distributionP proceeds in linear theory
(i.e. at high redshift or on very large scales), it holds its Gaussian shape and it is described by
the same integral (i.e. subtended area)17, but lower peak height and larger variance. When the
nonlinear regime starts, the growth of the perturbations fastens and the Gaussianity is broken
because of the physical barrier δ = −1. This limit emerges from eq. (2.1), since a density must
be positive by definition.

Ideally, the HMF could be obtained by applying the spherical collapse model to the non-
linear shape of the probability distribution of the density fluctuations. In practice, the results
provided us from the spherical collapse theory (i.e. δ+(tC) ≃ 180) depend on the properties of
the background universe, and we do not even know the exact functional form that describes
the evolved P(δ). Therefore, Press and Schechter (1974) proposed to map the nonlinearity in
the corresponding linear regime by considering δ+(tC) ≃ 1.686 and a Gaussian P(δ). The
probability of having a mass perturbation δM that exceeds the critical value δC forming a col-
lapsed object of massM is defined as:

P>δC(M) =

∫ +∞

δC

P(δM)dδM. (2.85)

In the PS theory it is supposed that all those fluctuations that reach a density contrast δM = δC
in linear theory collapse and form the cosmic structures. On these assumptions, the PS mass
function can be expressed as:

n(M)MdM = 2ρ̄m[P>δC(M)− P>δC(M + dM)] , (2.86)

15Let us specify that the analogue of the halo mass function for the underdense counterpart (i.e. the so-called
void size function) will be discussed in chapter 3, when describing cosmic voids and their main statistical prop-
erties.

16The theory of PS was then extended in later papers (see e.g. Sheth and Tormen, 2002), which also accounted
for the presence of non-spherical haloes by means of ellipsoidal models.

17Accounting for both positive and negative fluctuations, P is equal to unity for the definition of probability
itself.
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where ρ̄m is the matter average density, n(M) is the comoving number density of haloes with
a mass ranging from M and M + dM , and n(M)M is then their total mass. Note that the
factor 2 has to be intended as a correction to eq. (2.85). In fact, M → 0 (i.e. σM → +∞)
would imply P>δC → 1/2, but it should result P>δC = 1, since no filtering is applied. If we
now rewrite the mass variance for a power law power spectrum as σM = (M/M0)

−α, where
M0 is the characteristic mass that an object assumes at a certain redshift and α = (n+ 3)/6,
from eq. (2.86) we get:

n(M) =

√
2

π

αρ̄m
M2

∗

(
M

M∗

)α−2

exp

[
−
(

M

M∗

)2α]
. (2.87)

In this equation, M∗ is called cut-off mass and it represents the mass scale at which the mass
variance equals the collapse critical value at a given redshift, i.e. σ(M∗, z) = δC(z). For
example, at redshift z = 0 the cut-off mass equals the typical mass of galaxy clusters (i.e.
1014 − 1015 M⊙). M∗ can be expressed as follows:

M∗ = M0

(
2

δC

) 1
2α

. (2.88)

It is noticeable that, being the HMF based on theoretical principles, it is extremely sensitive to
the cosmological parameters and, hence, a powerful cosmological probe.

Since the development of this very first mass function model, many increasingly sophis-
ticated alternatives have been proposed in the literature (see e.g. Jenkins et al., 2001; Tinker
et al., 2008; Crocce et al., 2010; Despali et al., 2016). In order to develop our analysis on the DM
haloes (see forthcoming chapter 4) we relied on one of the most popular models of halo abun-
dance, i.e. the Tinker et al. (2008) theoretical mass function, which is formalised as follows:

dn

dM
= f(σM)

ρ̄m
M

d lnσ−1
M

dM
, (2.89)

where f(σM) is calledmultiplicity function, and it is expected to be universal to the changes in
either redshift or cosmology. In agreement with Tinker et al. (2008), it can be defined through
the following parametrisation:

f(σM) = A

[(
σM

b

)−a

+ 1

]
exp

(
− c

σ2
M

)
, (2.90)

where A, a, b and c are constant parameters to be calibrated with simulations, while σM is the
mass variance computed by eq. (2.75) in spherical coordinates.

2.5 N-body simulations

As already pointed out in the previous sections, in the linear or mildly nonlinear regimes there
exist suitable analytical solutions which can be used to describe the formation and evolution
of cosmic structures. At very high redshift, these scenarios properly represent our Universe
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at all scales. By contrast, we must take advantage of numerical simulations in order to cope
with the totally nonlinear regime, since at lower redshift the values of the evolved density
contrasts are much higher. In particular, the smallest physical scales (i.e. greater k modes)
are the first to break the linearity. As a consequence, the collapsed structures form in a highly
nonlinear regime and numerical simulations help tomodel their complex dynamics and general
properties by simulating the Universe, possibly with a huge amount of particles. Indeed, these
systems of particles are hard to be studied through approximate analytical models.

The main characteristic of a simulation is its spatial resolution, a quantity that depends on
both the volume and the number of particles. If in the past there were only few-hundred-
particle simulations, nowadays they are provided with billions of particles thanks to the im-
provement of computational performances. For a given number of particles, large volumes (i.e.
low resolutions) are needed to investigate the statistical properties of the large-scale structures
in Cosmology. By contrast, small volumes are needed to study the galaxy formation and evo-
lution with high resolution. Dealing with both these aspects is not trivial, since we should use
big high-resolution simulations, which require a number of particles that could be unattainable
with current techniques.

There are two main classes of numerical simulations: (i) the N-body simulations, which
only take into account the effect of gravity among the DM particles; (ii) the hydrodynamic

simulations, which trace also the dynamics of baryons. Since our results are based on the
analysis of a set of cosmological N-body simulations (i.e. the dustgrain-pathfinder, see §4.2),
we now focus on the description of this category18.

Let us consider an ensemble ofN particles with massmi, where i = 1, ..., N . The N-body
simulations are built starting from the following system of dynamical equations:

F⃗i = Gmi

∑
i ̸=j

mj

r2ij
r̂2ij

¨⃗xi =
dv⃗i
dt

=
F⃗i

mi

˙⃗xi =
dx⃗i

dt
= v⃗i

(2.91)

where F⃗i is the gravitational force which acts on the i-th particle, x⃗i represents the comoving
coordinates, v⃗i is the peculiar velocity of the i-th particle and r̂ij stands for the direction of the
distance between the i- and j-th particles. Then, a certain Cosmology is assumed, through the
setting of the cosmological parameters, and the simulation runs mimicking the evolution of
the Newtonian equations (2.91), so that the Euler equation of motion (2nd eq. in 2.26) becomes:

dv⃗i
dt

+ 2
ȧ

a
v⃗i = − 1

a2
∇Φ = −G

a3

∑
i ̸=j

mj
x⃗i − x⃗j

|x⃗i − x⃗j|3
=

F⃗i

a3
. (2.92)

Furthermore, by taking into account the second Friedmann equation (eq. 1.25) we can rewrite

18See e.g. Coles and Lucchin (2002) for further details on the hydrodynamics side.
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the Poisson equation (third eq. in 2.26) as follows:

∇2Φ = 4πGρ̄a2δ =
3

2
H2

0Ω0
δ

a
, (2.93)

where ρ̄ = ρ̄(t) is the average density of the non-relativistic matter,H0 is the Hubble parame-
ter,Ω0 is the density parameter of the non-relativistic matter, δ is the local density contrast and
a is the cosmic scale factor. These equations are evolved through an iterative time integration
over intervals δt, i.e. t → t+δt, under the effect of the gravitational force; for each time-step19
we obtain F⃗i(t) from eq. (2.91), x⃗i(t) and v⃗i(t) from (2.92), defining a set of snapshots (i.e. the
spatial distribution of the particles in a volume V at each δt).

A cosmological simulation can be developed through different techniques, depending both
on the technological efficiency and on the specific characteristics required for it. In the follow-
ing list we introduce the most employed methods to calculate the gravitational force among
particles:

• Particle-Particle (PP): at each time-step this technique considers the total gravitational
force acting on the i-th particle as the sum of all the forces generated by every single
particle on it. Providing us with a direct measurement of F⃗i, this is the most accurate
existing method but also the most expensive in terms of computational time; there are
N(N−1)/2 couples of particles to be computed, whichmeans that the necessary number
of operations scales as O(N2).

• Particle-Mesh (PM): instead of looking at every particle individually, the volume is sam-
pled with a grid and F⃗i is computed in each cell. Although this method is faster than the
PP being described byO(N logN), it is less accurate. Note that hereN is the number of
cells, not the number of particles anymore. See Hockney and Eastwood (1981) for further
details.

• Hybrid methods: a combination of different methods effective at different scales. As an
example, we can mention the P 3M method (Efstathiou et al., 1985), which is based on
PM but adding the PP, since it computes the direct force among particles at small scales,
within a sphere of radius R around each particle. The accuracy is higher than in PM but
the computational time increases toO(Ñ2), where Ñ2 is the number of close objects (i.e.
with separations below a given threshold scale). In this context, the so-called adaptive

mesh has been introduced with the aim of speeding up the process through a redefinition
of the spatial resolution of the denser regions.

• Hierarchical Tree (HT): this is another method to make the PP faster. The technique per-
forms a separation of the simulation in cells with a certain hierarchical order. Every
cell has its own center of mass: at small distances from this point the force is directly
computed among particles through PP; at big distances the force is computed as if it is
generated by each subregions from its center of mass, without the necessity of consider-
ing the particles individually. The computational time goes as O(N logN). For further
details see e.g. Barnes and Hut (1986).

19The value of δt can be determined by several criteria, for example: the total energy conservation, the final po-
sitions and velocities to be convergent and the initial conditions to be reproducible. See Bagla and Padmanabhan,
1997 for further details.
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Chapter 3

Cosmic voids

Being both the cosmological framework and the structure formation outlined, in this chapter
we are finally going to describe the main topic of this Thesis: the cosmic voids. In recent years,
the interest in these huge empty regions of the Universe has increased thanks also to scientific
achievements reached by the present and upcoming redshift surveys1, both deeper and wider
with respect to the past. The development of these observational surveys together with the im-
provement of both numerical simulations2 (see §2.5) and theoretical models have made voids
become competitive as a cosmological probe3. Resulting from the evolution of the primordial
underdensities (see §2.3.2), cosmic voids represent the negative counterpart of the already ex-
tensively studied clusters of galaxies. Indeed, void statistics gives us the chance to disentangle
cosmological degeneracies (see §1.4) through the combination of totally orthogonal probes. A
great potential of the underdense Universe lies in the fact that voids have not been extensively
exploited yet, hence the contribution of these objects to the current cosmological panorama
can still be enormous.

As already mentioned in the Introduction, cosmic voids have some important advantages:
(i)when the linearity is broken by the growing fluctuations, the voids only experience a mildly
nonlinear evolution, alleviating all the problems raised by the fully nonlinear regime of struc-
ture evolution; (ii) there is a tendency towards sphericity as their evolution proceeds (Icke,
1984); (iii) baryonic physics has almost no influence on their life history; (iv) voids are ex-
tremely sensitive to both diffuse components (DE and neutrinos) and MG thanks to their
emptiness and shallow gravitational potentials, respectively.

By contrast, the greatest disadvantage of voids is related to both their definition and iden-
tification. In fact, not only we are not yet provided with a unique and generally accepted

1See e.g. BOSS (Baryon Oscillation Spectroscopic Survey; Dawson et al., 2013), WFIRST or NGRST (NASA
Nancy Grace Roman Space Telescope 2; Green et al., 2012), LSST (Vera C. Rubin Observatory 3; LSST Dark Energy
Science Collaboration, 2012) and Euclid (Laureijs et al., 2011; Amendola et al., 2018; Euclid Collaboration et al.,
2020).

2There exist several numerical simulations depending on the case study considered. See e.g. IllustrisTNG
(Nelson et al., 2019), Magneticum (Dolag, 2015) and EAGLE (Schaye et al., 2015) for the hydrodynamic simulations.
See e.g. dustgrain-pathfinder (Giocoli et al., 2018) and CoDECS (Baldi, 2012) among the N-body simulation used
to study alternative cosmologies. Finally, the Quijote (Villaescusa-Navarro et al., 2020) are extremely suitable for
machine learning techniques.

3As indicated in the Introduction, for a brief but almost complete overview of this emerging context see Pisani
et al. (2019) and references therein.
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definition of the void radius and inner density, but we do not even have the possibility to
detect these objects straight away. This happens because cosmic voids are widely extended
underdense structures that do not emit directly. Therefore, we must recover the void shape
and spatial distribution from the luminous tracers through rather challenging techniques.

In the following sections we will introduce some definitions of cosmic voids adopted by
different void finding algorithms (§3.1) and then outline the statistics of cosmic voids (§3.2)
as a cosmological probe. We will focus more on the 2PCF, since the aim of this Thesis is to
calibrate statistical methods to derive constraints on the cosmological model by means of void
clustering properties.

3.1 Void finding and definition

Over the last years, different void finders have been developed by the scientific community in
order to search for cosmic voids in the tracer fields. According to Lavaux and Wandelt (2010),
there exist three main categories of void finding algorithms, each one relying on a different
criteria of void identification:

• Geometrical criterion. The geometrical-based algorithms look for local densityminima
in a reconstructed continuous 3D density field. According to this class of criteria, cosmic
voids are defined as geometrical underdense regions that assume the shape of spherical
cells or polyhedra (Platen et al., 2007; Neyrinck, 2008; Sutter et al., 2015b).

• Density criterion. Voids are considered to be regions empty of tracers or, analogously,
regions where the local density is lower than the fixed mean density (see e.g. Elyiv et al.,
2013; Micheletti et al., 2014). The tracers are classified as wall tracers and field tracers

depending on the density of the surrounding environment: the first category is repre-
sented by tracers in high density regions (i.e. the walls), while the last refers to tracers in
low density regions (i.e. the cosmic voids). It follows that inside voids the so-called wall
tracers cannot be present.

• Dynamical criterion. These void finders identify cosmic voids as regions from which
the matter is removed, following a radial velocity field pointing outwards with respect to
the void centers (Forero-Romero et al., 2009; Elyiv et al., 2015). Unlike the two previous
cases, here the tracers are used to reconstruct the velocity field.

There also exist 2D void finders, which are based on the described criteria but with the 3D
space projected along the line of sight. This kind of finder is suitable especially for weak
lensing investigations around voids (see e.g. Sánchez et al., 2016; Cautun et al., 2018; Davies
et al., 2021a).

Indeed, from the different void definitions resulting from the criteria outlined above, we can
conclude that to different finding algorithms correspond different void sizes and distributions.
The void finding algorithm employed in our work is known as vide (Void IDentification and
Examination toolkit; Sutter et al., 2015b), a public toolkit based on a geometrical criterion that
we will present extensively in the forthcoming section §4.3.1. Finally, we anticipate that in
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section §4.3.2 we will present a further definition of cosmic void that descends from the ap-
plication of the so-called cleaning algorithm on the void catalogues produced by the finding
procedures (Ronconi and Marulli, 2017). We will understand that since the cleaning is based
on theoretical principles, it makes our statistical analysis more robust.

3.2 Void statistics

Since a relatively short time, cosmologists have developed several possible strategies towards
the exploitation of cosmic voids to set the best possible constraints on the cosmological sce-
nario. The zero-order statistics of cosmic voids are the size function and the density profile (see
the forthcoming subsections §3.2.1 and §3.2.2, respectively). However, since the void cluster-
ing properties have not been extensively addressed yet, we chose to perform our analysis on
the auto-correlation function of cosmic voids (§3.2.3).

3.2.1 Size function

The void size function (VSF hereafter) is defined as the comoving number density of voids as
a function of their radii, and represents the simplest existing void statistics that can be used to
constrain the cosmological parameters. The VSF can be thought as the analogous of the halo
mass function (§2.4.3) but describing the underdense structures. Being these objects devoid of
matter, the mass is replaced by the void radius.

Excursion-set formalism

Let us now briefly introduce the excursion-set formalism4 in the context of cosmic voids, since
it allows us to analytically model the VSF by linking the linear and the nonlinear theories.
The accuracy of this formalism is limited to the case of an underlying matter density field that
is Gaussian distributed. Recalling eq. (2.64), in the linear regime we can write the density
contrast field smoothed by a filterW of radius R as:

δ(x⃗, R) =
1

(2π)3

∫ ∞

0

δ̂(k⃗)W (k⃗, R) exp
[
i⃗k · x⃗

]
d3k⃗ , (3.1)

where δ(x⃗) is the density contrast defined in eq. (2.1) and δ̂(k⃗) is its Fourier transform. From
this equation, together with the definition of mass variance in eq. (2.75), it is possible to de-
termine a trajectory δ[x⃗, σ2(R)] by varying the scale R of the window function W . If W is
considered to be a top-hat filter, the trajectory turns out to be a random walk.

Due to the large sizes of cosmic voids, their hierarchy is much more complicated than that
of the high-density structures. As a consequence, if for the overdensities exists a threshold
δLc that must be reached to form the DM haloes, for the underdensities it is not sufficient to
similarly set a threshold δLv . Hence, in the former case the excursion-set formalism is exploited
to solve the one-barrier problem, while for the underdensities it deals with themore challenging

4The excursion-set approach was presented in Bond et al. (1991) with the aim of overcoming the cloud-in-

cloud problem related to the overdensities, i.e. that the smallest perturbations can be erased by the collapse of
the biggest ones.
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Figure 3.1: Graphic representation of the cloud-in-cloud (top), cloud-in-void, void-in-void and
void-in-cloud (bottom) processes of the hierarchical clustering, identified as the four modes
of the excursion-set formalism. The trajectories of a local density perturbations δ0(x) as a
function of the mass resolution Sm = σ2(M) are shown in the left panels. The dotted hori-
zontal blue lines indicate the barriers considered in the one-barrier and two-barriers problem:
δc refers to the collapse of the overdensities, while δv refers to the void formation. The central
and rightmost panels show the evolution of the particles when the barriers are crossed at small
(i.e. earlier times) and large (i.e. later times) scales respectively. Note that as Sm increases, the
cosmological scales considered decrease. Credits to: Sheth and Weygaert (2004).
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two-barrier problem. In fact, when analysing cosmic voids we must account for the void-in-void
and void-in-cloud problems: the first one is the analogue of the cloud-in-cloud process of the
overdensities mentioned before, i.e. the need to consider void mergers in order to avoid double
counts; the second one takes into account that voids embedded in high-density collapsing
regions are doomed to vanish. Finally, let us introduce also the cloud-in-void process, which
refers to an opposite situation with respect to the void-in-cloud: if a small overdense region
is embedded in a large void, the formation of high-density collapsed structures is disfavoured.
Note that the cloud-in-void and the void-in-cloud processes are asymmetric since in the former
the overdensity inside the void survives, while in the latter the void embedded in a high density
region is destroyed. The result of this asymmetry is that the Gaussianity of the distribution of
primordial fluctuations is no longer valid.

In fig. 3.1 there is a schematic representation of the the above mentioned both halo- and
void-formation processes addressed by the excursion-set formalism. As already pointed out,
the excursion-set theory is needed in order to develop the theoretical model of the VSF, which
is described in the next paragraph.

Void size function theoretical model

The theoretical VSF predicts the comoving number density of voids as a function of their size.
A model for the VSF was proposed by Sheth andWeygaert (2004) by means of the excursion-set
formalism, implemented for the underdensities through the following formula:

flnσ = 2
∞∑
j=1

jπx2 sin(jπD) exp

[
−(jπx)2

2

]
, (3.2)

where flnσ is calledmultiplicity function and expresses the fraction of Universe filled by cosmic
voids. Furthermore, in this formula, the quantities x and D are defined as:

x ≡ D
|δLv |

σ ; D ≡ |δLv |
δLc + |δLv |

, (3.3)

with σ the square root of the mass variance filtered on a radius R, δLv the negative linear
threshold required for the void formation, δLc the critical density contrast for an overdensity to
collapse (1.06 ≤ δLc ≤ 1.686, where the former is related to the turn-around while the latter
representing the effective collapse of DM haloes; see §2.3.2).

Equation (3.2) leads to the functional form of the VSF in linear theory proposed by Sheth
and Weygaert (2004) (SvdW hereafter) and expressed as:

dnL

d ln rL
=

flnσ(σ)

V (rL)

d lnσ−1

d ln rL
, (3.4)

whereV (rL) = 4
3
π(rL)3 is the volume of the perturbation, i.e. a spherewith radius rL. In order

to move from the linear to the nonlinear theory, the authors assumed that the total number
of cosmic voids is conserved. We know from the theory of the spherical collapse (§2.3.2) that,
since at the shell-crossing a negative perturbation has increased its volume by a factor a ∝ δLv ,
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a corrective factor must be taken into account on the linear radius definition:

dn

d ln r

∣∣∣∣∣
SvdW

=
dn

d ln
[
a−3 rL

] . (3.5)

The relation linking the linear and nonlinear radii can be made explicit as follows:

r

rL
=

(
ρ̄

ρv

)1/3

, (3.6)

where ρ̄ is the mean density of the Universe and ρv is the average density within the void
considered.

Figure 3.2: Fitting of the measured VSF with both the SvdW and Vdn model predictions, as-
suming δLc = [1.06 − 1.686] and δLv = −2.7. It is evident how the data are consistent with
the grey-shaded Vdn model, but not with the orange SvdW one. The void counts (green, pur-
ple, red and light blue lines) are extracted from the DM density field in ΛCDM simulations
with different box sizes (64h−1Mpc, 128h−1Mpc, 256h−1Mpc and 500h−1Mpc, respectively).
Credits to: Jennings et al. (2013).

The SvdW model only includes the void-in-cloud process through the definition of the param-
eterD but the void-in-void problem is not taken into account. As a consequence, the resulting
volume occupied by cosmic voids is greater than the total volume of our Universe and this
leads to an overestimation of the void number density. Hence, Jennings et al. (2013) proposed
a correction of the SvdWmodel, which is based on the volume conservation of the voids when
moving from the linear to the nonlinear regime, the so-called volume conserving model (Vdn
model, hereafter):

dn

d ln r

∣∣∣∣∣
Vdn

=
dn

d ln rL
V (rL)

V (r)

d ln rL

d ln r
. (3.7)
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We show in fig. 3.2 the improvement of the Vdn model over the previous one: the data are
well modelled by the Vdn model, while the SvdW model does not show consistency with the
measurements of the void abundances.

3.2.2 Density profile

As mentioned before, cosmic voids can be identified through the distribution of tracers (i.e.
galaxies, galaxy clusters, DM haloes and DM particles)5. The void density profile (i.e. the
density contrast as a function of the distance from the void center) can be expressed as follows:

uv(r) ≡
nv,tr(r)

⟨ntr⟩
− 1 =

ρv(r)

ρ̄
− 1 , (3.8)

where, if we consider a sphere centered in the centre of a void with a radius corresponding to
the void radius, nv,tr(r) is the number density of tracers at each radius r and ⟨ntr⟩ is the mean
number density of tracers, while ρv and ρ̄ are the corresponding mass densities, respectively.
Note the second equivalence is achieved by considering all tracers with the same mass.

In recent years, several models for the void density profile have been suggested by the
scientific community, which are generally divided into two categories: the phenomenological

models (see e.g. Nadathur et al., 2015) and the theoretically motivated models (see e.g. Finelli
et al., 2016); the former have the aim to develop suitable functional forms to fit the void density
profile, while the latter are based on theoretical laws. One of the most popular formulas for
the void density profile was presented by Hamaus et al. (2014). It belongs to the category of
phenomenological models and can be expressed as follows:

uv(r) = δLc
1− (r/rs)

α

1 + (r/rLv )
β
, (3.9)

where δLc is the density contrast at r = 0 (i.e. in the void center), rs is the scale at which the
void density equals the tracer mean density ⟨ntr⟩ and rLv is the linear void radius. α and β are
introduced as free parameters to model the inner and outer density profile slopes, respectively.
Fig. 3.3 shows how the functional form of eq. (3.9) properly models the stacked density profiles
of cosmic voids divided into different radius bins.

We now focus on some peculiar features of the void density profiles emerging from fig. 3.3.
The profile of these objects typically exhibits an underdense central region and an overdense
ridge of matter (also called compensation wall), with a negative and positive density contrast,
respectively. After the compensation wall, which generally appears at about one void radius,
the profiles settle at δ = 0 (i.e. at the mean density contrast of the Universe). Something else
that should be noted from this figure is that for relatively small voids the density profile is
sharp, showing a deep underdense core and a high compensation wall. By contrast, to large
voids correspond shallower profiles, with less underdense interiors and nearly invisible ridges
of matter.

In this context, let us now briefly explain the origin of such profiles describing the void
density contrast. In agreement with §2.3.2, the innermost void density decreases as the time-

5Note that in the next chapters we will mostly deal with voids identified in the unbiased DM-particle field. Of
course, this kind of analysis can only be performed when simulations are considered.
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Figure 3.3: Stacked real-space density profiles of voids traced by mock galaxies at z = 0. The
solid lines are the best fits of eq. (3.9) corresponding to different radius bins: moving from the
blue line to the red line, increasing void radii are considered. Note that the x-axis represents
the void radii re-scaled by the mean void radius of each bin. The first column of the legend
indicates the mean void radii of the different intervals, while the total number of objects in
each bin is written in the second column. Credits to: Hamaus et al. (2014b).

evolution of the primordial underdensities proceeds. This is essentially due to their expansion,
which is greater in the centre, where the density contrast ∆ is lower. As a consequence of
this differential expansion, it emerges a ridge of matter where the shell-crossing phenomenon
occurs. Moreover, there is a second-order process to be considered when analysing the shape
of the void density profile. Indeed, the growth of overdense structures arranged at the edge of
the voids causes a further fraction of matter to be removed from the void interiors by means of
gravitational attraction. Of course, this effect contributes in both the lowering-density history
of void inner regions and the creation of the ridge of matter around them.

3.2.3 Two-point correlation function and void bias

Since the clustering of both the cosmic structures and voids depends on the geometric and
dynamic cosmological parameters of our Universe, the two-point statistics is an extremely
powerful probe to constrain the cosmological model. In this Thesis work we will focus on
the auto-correlation function computed between void centers, and its Fourier transform (i.e.
the void power spectrum, see §2.4.1). At the end of this subsection we will also provide a
brief description of the cross-correlation function computed between void and tracer centers.
Note that to analyse properly the 2PCF statistics we must account for both its measure and
modelling.
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Auto-correlation estimators

Once the void identification is completed in the distribution of mass tracers of either a redshift
survey or a cosmological simulation, we can measure their two-point clustering properties
through different estimators, which are divided in two main categories according to Kerscher
et al. (2000): the pairwise and the geometric estimators. Let us now concentrate on the first cat-
egory, in which the estimator chosen for this Thesis work is enclosed. See the abovementioned
paper and references therein for further details on the geometric side.

With the aim of estimating the 2PCF of a dataset, let us build a random catalogue6 with
the same geometry and density evolution of our sample. The pairwise estimators allow us to
measure the 2PCF by counting pairs between data-data, random-random, and data-random
centers; these counts can be expressed as a function of the distance between the couples (i.e.
dd(r), rr(r) and dr(r), respectively), normalised by the total number of object pairs considered
(i.e. ND(ND − 1), NR(NR − 1) and NDNR, respectively):

DD(r) =
dd(r)

ND(ND − 1)
, RR(r) =

rr(r)

NR(NR − 1)
, DR(r) =

dr(r)

NDNR

. (3.10)

A highly accurate pairwise estimator that is widespread among the cosmological community
was proposed by Landy and Szalay (1993) as:

ξ̂LS(r) =
DD(r)− 2DR(r) + RR(r)

RR(r)
, (3.11)

which, for NR → ∞ i.e. minimum variance, provides us with an unbiased estimation of the
2PCF. Known as Landy-Szalay estimator, eq. (3.11) is obviously suitable for both the cosmic
voids and collapsed structures.

For the sake of argument, let us point out that another commonly used estimator, known as
natural estimator, was introduced by Peebles and Hauser (1974). It can be written as follows:

ξ̂N(r) =
DD(r)

RR(r)
− 1 . (3.12)

However, it has been demonstrated that such estimator suffers from low accuracy on large
scales because the samples of data we are provided with are not continuous but discrete.

Auto-correlation modelling

Concerning cosmic voids, while the 2PCF measurements can be found in the literature7, the
2PCF modelling is far to be completely understood because theoretical studies of void cluster-
ing have only recently begun to be developed. It is in this current scenario that our Thesis work
has originated, with the main aim of exploiting the void auto-correlation with cosmological

6Note that, typically, the catalogue of random objects is characterised by a greater number of objects than
the void catalogue one wants to investigate. This is done in order to enhance the precision on the clustering
measurements. In our analyses, NR = 10ND: the number of random objects is ten times higher than the
number of data (i.e. the number of cosmic voids in our catalogues).

7See e.g. Massara et al. (2015), Clampitt et al. (2016) and Kreisch et al. (2019).
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purposes (i.e. to provide constraints on the ΛCDM parameters) for the very first time.
In order to fit the auto-correlation function with a proper model, we decided to start from

the power spectrum model proposed by Chan et al. (2014). According to this paper, the VSF
assumes the functional form of the SvdW model. In this regard, let us point out that in §3.2.1
we learnt how the Vdnmodel is more accurate than the SvdW, since it accounts not only for the
void-in-cloud phenomenon, but also for the void-in-void process. Here it lies the sensitivity
of the void definition adopted to construct the void catalogue of which the VSF is computed:
Jennings et al. (2013) found good agreement with the Vdn model by considering voids as sper-
ical non-overlapping regions of density 0.2n̄ at the ridge between them, where n̄ is the mean
particle number density of the sample considered; by contrast, Chan et al. (2014) found a better
match with the SvdW model, since they accounted only for large parent8 voids.

In chapter 5 we will present our model for the void auto-correlation function, born as
a fusion of the two methods in the above cited papers: the Vdn formula for the VSF and the
power spectrum definition adopted in Chan et al. (2014). Since the Vdn model has already been
introduced in eq. (3.7), here we present the modelling of the power spectrum of cosmic voids
Pv(k), which can be expressed as follows:

Pv(k) = b21Pm(k) + Pexcl(k) . (3.13)

In this equation, Pm is the dark matter power spectrum and it can be computed through a
so-called Boltzmann solver

9, the b1 term is the linear bias, while Pexcl is a corrective power
spectrum which accounts for the void exclusion. We will now focus on these latter two terms,
giving a more detailed description of both of them.

In order to define b1, let us write the void mass function in analogy with its better studied
counterpart, i.e. the halo mass function, as:

dn

d lnM
=

ρ̄m
M

νF(ν, δv, δc)
d ln ν

d lnM
, (3.14)

wheren is the void number density, ρ̄m is themean darkmatter density,M is themass, ν = |δv|
σM

is referred to as peak height or significance, σM is the root-mean-squared density fluctuation
smoothed with a top-hat window of size RL (i.e. the Lagrangian size of the void) and F(ν)

is the same as eq. (3.2) but considering also a dependence on the quantity ν. Lastly, δv and
δc are the critical density contrasts required for the void formation and the halo formation,
respectively. Let us underline that these quantities in linear theory are exactly the same on
which the theoretical VSF is built. Hence, it is through these fixed density contrasts that we
accounted for the whole theory of the VSF in our model while performing the analysis on
the void clustering. Proceeding with the characterisation of the theoretical bias, Sheth and
Tormen (1999) argue that the mass function (eq. 3.14) alone is enough to define the large-scale
bias by means of the peak background split (PBS) model. Thus, it has been shown that the bias

8There are two possible outcomes of thevide finding procedure that we will address in §4.3.1: the so-
called trimmed and untrimmed catalogues. In the first case the sub-voids (or child voids) are removed
and only the major voids (or parent voids) are considered, while in the latter case both these categories
of objects are taken into account.

9See e.g. eisenstein-hu (Eisenstein and Hu, 1998) and camb (Lewis et al., 2000).
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parameters in Eulerian space are:

bi =
1

n0

∂i

∂δi

[
(1 + δ)n(δL)

]∣∣∣∣∣
δ=0

, (3.15)

where n0 and n(δL) refer to the void mass function of zero and δL background perturbations
respectively, while the factor (1 + δ) encloses the transition from the void mass function in
the Lagrangian space to the Eulerian space. In agreement with Bernardeau (1994), the relation
between δ e δL can instead be written through the spherical collapse as follows:

δL = δ − ν2δ
2 + ν3δ

3 + ... , (3.16)

where ν2 = 12/21 and ν3 = 341/567 are constant factors needed to account for the second
and third nonlinear orders. Since we will refer to the linear10 order for the whole analysis, this
equation becomes δ = δL. From eq. (3.15) it is possible to derive the linear bias parameter11
b1:

b1(Rv) = 1 +
ν2 − 1

δv
+

δvD
4δ2cν

2
, (3.17)

where Rv is the void radius. The trend of the bias as a function of the void radius is shown in
fig. 3.4. Note that the theoretical bias that we will refer to in our analysis (see the forthcoming
chapter 5) corresponds to a fixed linear density contrast δLv = −2.7, in agreement with the
theory of the VSF, as anticipated.

Finally, notice that it is also possible to define the so-called effective bias by weighting the
PBS linear bias with the theoretical VSF, through the following ratio of integrals computed
over the radii considered by the VSF:

bv,eff =

∫
dn
dRv

bv(Rv)dRv∫
dn
dRv

dRv

. (3.18)

Let us now move to the description of the exclusion term Pexcl. From the literature, it is
known that a term of halo exclusion must be considered when identifying haloes, since every
halo finding algorithm must decide which structures are parent haloes and which ones are
sub-haloes of larger haloes. This choice is referred to as percolation and it is of fundamen-
tal importance as, depending on the chosen percolation, the statistical properties of the halo
catalogues can vary considerably (see e.g. García and Rozo, 2019). As previously clarified,
cosmic voids are much more extended than haloes and this results in a more complex hierar-
chical structure. Therefore, a theoretical principle of void exclusion to classify parent voids
and child voids is even more necessary than for haloes in order to properly model the void
power spectrum.

To this end, the hard-sphere (HS) approximation12 can be adopted. Let us then consider a

10We chose the linear approach because it has been demonstrated that the nonlinear higher-order terms do
not improve the analysis up to a significant level (see e.g. Chan et al., 2014).

11Actually, this functional form for the linear bias was previously presented in Sheth and Weygaert (2004), but
there was a typo that in (3.17) has been corrected.

12The HS approximation is commonly employed in statistical mechanics to describe simple liquids and non-
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sample of identical hard spheres of diameter D and mean number density n̄v, assuming the
system in equilibrium. The clustering properties are well-described by the so-called Percus-

Yervick equation, whose corresponding power spectrum can be expressed as follows:

PHS(k) =
c(k)

1− (2π)3n̄vc(k)
, (3.19)

with

c(k) = − D3

2π2q3

{
a1(sin q − q cos q) + 6ηa2

q

[
2q sin q + (2− q2) cos q − 2

]
+

+ηa1
2q3

[
4q(q2 − 6) sin q − (24− 12q2 + q4) cos q + 24

]}
,

η = πn̄D3

6
,

a1 =
(1+2η)2

(1−η)4
,

a2 =
(1+η/2)2

(1−η)4
,

(3.20)

where q = kD and η is referred to as packing fraction. The exclusion power spectrum must
be added to b21Pm (in eq. 3.13) to make voids (i.e. very extended structures) behave like hard
spheres, so as to reconstruct a proper functional form that describes the power spectrum of
these objects. It can be noticed from fig. 3.5 that the exclusion term has two main effects: it
introduces oscillations at small physical scales (i.e. large k scales) due to the sines and cosines
in c(k) (see eqs. 3.20), and lowers the b21Pm = P1,1 term at large physical scales (i.e. small k
scales).

ideal gases (see e.g. Torquato, 2001 and Hansen and McDonald, 2006).
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Figure 3.4: The first three orders of the PBS bias parameter emerging from eq. (3.15) at redshift z = 0.
The blue lines represent a density contrast δv = −2.8, while the red ones δv = −1.0. The solid lines
correspond to the linear bias b1, while the dashed and dotted lines stand for the second and third order
nonlinear bias, respectively. Credits to: Chan et al. (2014).

Figure 3.5: Model of the power spectrum implemented as eq. 3.13. The blue line represents the void
power spectrum, achieved as the sum of P1,1 = b21Pm (red dashed line, i.e. the DM power spectrum
multiplied by the squared linear bias) and Pexcl = PHS (dotted-dashed green line, i.e. the term of void
exclusion). Credits to: Chan et al. (2014).
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Void-tracer cross-correlation function

The clustering properties of cosmic voids can not only be computed by means of the above
depicted auto-correlation function, but also with the so-called cross-correlation function com-
puted for both voids and overdensity tracers simultaneously. To cross-correlate two data sam-
ples means to count pairs between void and tracer centers against a distribution of random
points. Note that the random catalogue is built with the same characteristics of one of the two
catalogues, analogously to what we do for the auto-correlation measurement. The most com-
monly used estimator for the cross-correlation function was introduced by Szapudi and Szalay
(1998) in the context of the N-point correlation definition. The Szapudi-Szalay estimator, can
be expressed through the following formula:

ξ̂SS(r) =
D1D2(r)−D1R(r)−D2R(r) + RR(r)

RR(r)
, (3.21)

where D1 and D2 are the centers corresponding to the first and the second catalogue respec-
tively, while R are points of the random catalogue. Note that the terms in this equations are
defined analogously to eq. (3.10).

Concerning the modelling of the cross-correlation function, its knowledge is slightly more
advanced than that of the auto-correlation function; there exist several models that can be
found in literature (see e.g. Hamaus et al., 2014c and 2015).

The void-tracer cross-correlation ξv,tr is directly linked to the void density profile presented
is §3.2.2. In fact, since it reflects the probability of finding a tracer inside a sphere centered on
the void center at a comoving radial distance r, it can be written by means of the appropriate
integral of the void density profile uv(r) as

ξv,tr(r) =
1

3r2
d

dr

[
r3∆(r)

]
, (3.22)

where
∆(r) =

3

r3

∫ Rv

0

uv(r)r
2dr. (3.23)

Furthermore, it is possible to define the void-tracer cross-correlation through the auto-
correlation of tracers ξtr(r) in the following way:

ξv,tr(r) ≃ bv btr uv(r) ξm(r) , (3.24)

where bv and btr are the void bias and the tracer bias, respectively. The typical overdensity
tracers used in observations are galaxies and galaxy clusters, while in N-body simulations the
DM particles and haloes are also considered. In eq. (3.24), the DM particle correlation ξm is
known from theory, and the tracer bias btr has been studied extensively in the literature (see
e.g. Desjacques et al., 2018). By contrast, both the void bias and density profile are not yet fully
understood. Note that one of the aims of our analysis is the validation of the theoretical void
bias presented in §3.2.3.
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3.3 A novel cosmological probe

Scientists are much further behind in understanding voids than the collapsed structures. Since
cosmic voids are quite extended structures, a cosmological exploitation of these objects re-
quires huge amounts of data, both in redshift surveys and simulations. Analogously to what
we reported in §2.5, in order to study cosmic voids at both the small and the large scales, we
would needwide- and deep-field surveys, i.e. large volumes enclosing a high tracer density. It is
easily understandable that such requirements have entailed severe limits on the development
of cosmic voids as a cosmological probe.

In recent years, scientific breakthroughs havemade it possible to investigate voidsmore and
more closely, leading to the development of several models and techniques to exploit the po-
tentially highly-constraining power of different void statistics, such as: the void-galaxy cross-

correlation, i.e. the void density profile (Nadathur et al., 2019; Voivodic et al., 2020; Correa et al.,
2021; Hamaus et al., 2022), the void size function (Pollina et al., 2015; Sahlén et al., 2016; Verza
et al., 2019; Contarini et al., 2019 and 2022), the void lensing (Krause et al., 2012; Sánchez et al.,
2016; Baker et al., 2018; Kovács et al., 2022); the void shapes, i.e. the geometrical and dynamic

distortions (Lee and Park, 2009; Lavaux and Wandelt, 2012; Hamaus et al., 2020).
Furthermore, we underline that cosmic voids are extremely sensitive toDE (Bos et al., 2012b;

see references on the void shapes, to which the DE is strongly related) and neutrinos (Massara
et al., 2015; Kreisch et al., 2019), since the fraction of these components is higher than in the
collapsed structures. Let us also mention that cosmic voids are the perfect laboratories to
investigate the MG theories because the gravitational potential is shallow and easy to model,
and the screening mechanism operates only marginally within these objects (Clampitt et al.,
2013; Cai et al., 2015; Barreira et al., 2015; Falck et al., 2018; Perico et al., 2019b). Notice
that MG models have an effect on some observational properties; for example, they generally
enhance the void expansion making the dynamical distortions become stronger, and produce
modifications on the lensing signal around voids.

As an example of the void exploitation as a cosmological probe, we show in fig. 3.6 a
comparison among the constraints on both fσ8 and DAH obtained from cosmic voids in the
literature (the references and surveys employed are indicated in the legend). We recall that f
is the growing factor, σ8 the mass variance filtered on a radius of 8 h−1Mpc, DA the angular
diameter distance andH the Hubble parameter.

Finally, as previously mentioned, note that we can not only exploit the void statistics itself
in a cosmological sense, but we can also take advantage of its combination with other probes.
When the void and overdense structures analyses are merged, the constraints improve because
we are drawing information from two different sides of our Universe.

The main aim of this Thesis is to make the void clustering become competitive with the
aforementioned probes in the current cosmological panorama. Indeed, we developed a pre-
liminary method to assess the cosmological constraining power of the void auto-correlation
function. As anticipated in §3.2.3, we relied on the power spectrum model proposed by Chan
et al. (2014) and we exploited its Fourier transform, combining its theoretical predictions with
those of the VSF model (see §3.2.1). Being our model almost entirely based on first principles,
we will show in chapter 5 how the void clustering can finally give its contribution to con-
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Figure 3.6: Constraints on fσ8 and DAH from cosmic voids: a comparison among ΛCDM
predictions and several measurements from real datasets. For graphic purposes,DAH is nor-
malised to its reference value D′

AH
′ (Planck Collaboration et al., 2020c). The filled markers

refer to growth rate measurements without considering the Alcock-Paczynski effect (i.e. geo-
metrical distortions), while the open markers include the AP test. Finally, the style of the error
bars reflects the various degrees of assumptions made in the models: model-independent as-
sumptions (solid error bars), calibrated on N-body simulations (dashed), calibrated on mock
galaxy catalogues (dotted), calibrated on both simulations and mocks (dash-dotted). Credits
to: Hamaus et al. (2020).
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strain some cosmological parameters, such as the matter density parameter, Ωm, the matter
power spectrum normalization at z = 0, σ8, and their derived parameter S8 ≡ σ8

√
Ωm/0.3.

To do this, we will use void catalogues properly prepared for this analysis, i.e. constructed by
means of the cleaning algorithm presented in §4.3.2 to make them consistent with the theory
of the VSF (i.e. the Vdn model).

Our work represents a key step towards a full cosmological usage of cosmic voids, since we
propose a new pipeline to exploit for the first time the void clustering as cosmological probe.
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Chapter 4

Data preparation

4.1 CosmoBolognaLib

The CosmoBolognaLib1 (CBL hereafter) are a large set of free software C++/Python libraries
for cosmological calculations, that have been developed byMarulli et al. (2016) to handle object
catalogues of either observed or simulated data, with themain aim of numerically investigating
the statistical properties of our Universe. It is thanks to the numerical tools provided by the
CBL network that we have been able to carry out the cosmological analysis presented in this
Thesis by means of: (i) the 2PCF measure, which relies on the Landy-Szalay estimator given
by eq. (3.11); (ii) the Fourier transform of the power spectrum model (eq. 3.13) to get its
corresponding real-space 2PCF; (iii) the algorithms required to perform Bayesian analyses,
used to calibrate the void auto-correlation model and constrain the cosmological parameters;
(iv) the cleaning algorithm to account only for properly re-scaled and non-overlapping voids,
in agreement with the VSF theory; (v) the VSFmeasure andmodel both to verify the agreement
of cleaned voids with the Vdn model and to include its theory in our 2PCF model; (vi) the HMF
measure and model to study the properties of the halo catalogues from which the voids are
identified.

Furthermore, let us point out here that, beyond the tools provided by the CBL, we also
developed C++ and Python codes necessary for the implementation of the auto-correlation
model presented in §3.2.3, with some additional corrections that will be outlined in chapter 5.
We also plan to include these codes in the environment of the CBL and deploy them within
the next public version of the libraries.

4.2 dustgrain-pathfinder simulations

The suite of N-body simulations we consider to perform our analysis on cosmic voids is called
dustgrain2-pathfinder (Giocoli et al., 2018). It arose with the aim of studying modified gravity
in the form of f(R) models, with and without massive neutrinos, as an alternative physical
cause to the cosmological constant Λ for the late time accelerated expansion of the Universe.

1https://gitlab.com/federicomarulli/CosmoBolognaLib
2The acronym dustgrain stands for Dark Universe Simulations to Test GRAvity In the presence of Neutrinos.
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These collisionless simulations trace the evolution of 7683(×2) DM particles (and neutrinos)
under the effect of gravity in a periodic cosmological box of 750 h−1Mpc per side. The CDM
particles are assumed to have a mass of 8.1 · 1010 h−1M⊙ in both the ΛCDM and f(R)

cosmologies without neutrinos. We will focus in this Thesis on the models that do not account
for the presence of massive neutrinos. Moreover, the cosmological parameters, on which these
simulations are based, are the ones provided by Planck Collaboration et al. (2016): Ωm =

ΩCDM+Ωb+Ων = 0.31345, ΩΛ = 0.68655, h = 0.6731,As = 2.199×10−9 (corresponding
to σ8 = 0.842 for the ΛCDM simulation) and ns = 0.9658; see §1.4 for a description of these
quantities. In tab. 4.1 we report the main parameters of these simulations.

The dustgrain-pathfinder simulations are performed through the mg-gadget3 code
(Puchwein et al., 2013) to include the f(R) gravity (see §1.4.2), in combination with a particle-
based implementation to account for massive neutrinos (Viel et al., 2010). Furthermore, a
chameleon screening mechanism (for further details see Khoury and Weltman, 2004) is taken
into account in order to recover the GR predictions at small scales. The value of |fR0| is set to
be within the range [10−6 − 10−4], while the total mass of neutrinos span over [0 − 0.3] eV.
During the evolution of these simulations, a series of comoving snapshots has been produced,
each one representing a comoving volume of 7503 h−3Mpc3, at a specific cosmological time
in the history of our Universe (see e.g. fig. 4.1). For our analysis only four snapshots have been
considered, corresponding to the redshifts z = 0, 0.5, 1, 2.

Figure 4.1: Graphical representation of theΛCDM cosmological simulation of the dustgrain-
pathfinder. 3-dimensional distribution of CDMparticles (blue points) and haloes (yellow circles
whose size is proportional to the halo mass) at z = 0. The comoving box has dimensions of
750 h−1Mpc per side. Courtesy of Sofia Contarini.

These simulations have been extensively exploited to study the statistical properties of
the overdense Universe, such as: the halo weak-lensing (Giocoli et al., 2018), the DM halo
clustering (García-Farieta et al., 2019), the DM halo abundances (Hagstotz et al., 2019b), and

3mg-gadget is an evolved version of the previous GR-based gadget (Springel, 2005), devel-
oped to take into account modifications of gravity.
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Simulation name Gravity model fR0 Ωm σ8 S8

ΛCDM GR - 0.31345 0.842 0.861

fR4 f(R) −1× 10−4 0.31345 0.963 0.984

fR5 f(R) −1× 10−5 0.31345 0.898 0.918

fR6 f(R) −1× 10−6 0.31345 0.856 0.875

Table 4.1: Summary of relevant cosmological parameters of the dustgrain-pathfinder simu-
lations used in this Thesis work. In the third column we report the value of the MG parameter
fR0, while the fourth and fifth columns provide Ωm (i.e. the CDM density parameter) and σ8

(i.e. the linear power spectrum normalization at z = 0), respectively. Finally, in the sixth
column we provide the value of the derived parameter S8.

the large-scale velocity field (Hagstotz et al., 2019a). Let us mention that the dustgrain-
pathfinder have been also employed to test novel machine learning tecniques (Peel et al., 2019).
By contrast, statistical studies of the underdense Universe are not so widespread. Both the
void size function and the void density profile have already been addressed by Contarini et al.
(2021) and, in order to extend this work to a still unexplored statistics with these simulations,
we decided to devote this Thesis to the investigation of the void clustering properties.

4.2.1 Building up halo catalogues

As previously mentioned in §3.1, in order to identify the voids, a finding algorithm must be
applied to the tracer catalogues. The DM particle distribution is known from the simulation,
and so does its mean particle separation (MPS = n−1/3 = 3

√
V/N , where n is the tracer

number density, V is the volume of the simulation box considered and N is the number of
tracers), which is about 1.55 h−1Mpc. By contrast, the halo distribution must be recovered by
means of a halo finding algorithm, together with the halo MPS, which is found to span over
the range [8.7− 12.4] h−1Mpc from z = 0 to z = 2.

Over the years, many techniques have been developed to identify the collapsed DM struc-
tures in the underlying field of DM particles. For our analysis, the so-called denhf algorithm
(see e.g. Tormen et al., 2004) is applied to produce the halo catalogues at four different redshifts.
This halo finding procedure is based on the spherical overdensity (SO) methodology presented
by Press and Schechter (1974); hence, it defines spherical overdensities as regions surrounding
the density peaks. The radius of these spheres corresponds to the distance within which the
mean density enclosed can be expressed as ∆(z) = ∆c · ρcrit(z), where ∆c is the selected
overdensity threshold and ρcrit(z) is the already defined critical density of the Universe (see
eq. 1.33). According to this method, haloes are considered as gravitationally bound structures:
the most massive haloes (i.e. those having the highest density contrasts) are identified first,
then the less massive haloes are reconstructed among the left DM particles. Note that the
sub-haloes are not extracted by the denhf algorithm.

Considering that typically∆c is chosen to be 200 or 500 (namely, 200c and 500c halo cata-
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logues)4, it is possible to compute the halo mass through the following equation:

4

3
πR3

c∆cρcrit = Mc , (4.1)

where Rc and Mc are the halo virial radius and mass respectively. Note that the 200c halo
catalogues are best suited for our analysis, to ensure both a relevant void statistics and realistic
modelling. The chosen approach is the same that we will adopt with real data in future works.

By selecting a ∆c threshold, we set a specific upper-limit to the halo mass. Furthermore,
we also set a lower-limit to the halo mass by considering only haloes composed of 30 CDM
particles at least, which corresponds to a minimum mass of 2.43 × 1012 h−1Mpc; i.e. we
prevent contamination by spurious density fluctuations accounting only for statistically rele-
vant objects. Let us underline that avoiding spurious overdensities (i.e. rejecting those haloes
with Mh < 2.43 × 1012 h−1Mpc, in this case) is needed to properly exclude the smallest
scales, where the spatial resolution of the simulation is not sufficient. Indeed, both the volume
and the spatial resolution of the simulation from which we extract DM haloes are fundamen-
tal quantities. As already pointed out in §2.5, we generally cannot improve both because of
computational limits: a great volume ensures a more robust statistics and enhances the proba-
bility of finding massive haloes and large voids, while a high spatial resolution implies a better
sampling of the smallest scales. The dustgrain-pathfinder simulations have a relatively small
volume (around 0.42 h−3Gpc3) if compared to other simulations or future surveys5, hence
they do not enable us to sample extended voids, but they are suitable for the small-sized ones.
Moreover, another strength of this suite of simulations is that it allows the study of alternative
cosmological models.

Once the denhf halo finder is applied in our analysis to extract the halo catalogues both
in the ΛCDM and the f(R) cosmologies, we perform a validation test of these catalogues
before addressing the void statistical properties. While the HMF theory has been extensively
modelled and validated by different authors (see e.g. Sheth et al., 2001; Tinker et al., 2008;
Despali et al., 2016), its extension to MG scenarios is still a relatively new subject of study. In
particular, Gupta et al. (2022) demonstrated that the HMF computed in the fR4, fR5 and fR6

modified gravity scenarios is characterized by a deviation from the ΛCDM HMF model. Such
a deviation has been modelled by the authors with an additional Gaussian contribute, peaking
at a mass scale which is characteristic for each f(R) variant. As the strength of MG in the
models increases6, the deviation peak is found to be at higher masses: the fR6 HMF peaks at
small masses, followed by the fR5 and the fR4 going towards higher masses. Notice that not
only the peak position of the deviation varies, but also its height does, being greater as the MG

4According to Despali et al. (2016), the halo catalogues are generally built on 2000, 1000, 500 and 200 ρc, and
200ρb, where ρc and ρb are referred to as the critical and background densities of the Universe, respectively. We
underline that 200ρb is motivated by the spherical collapse theory developed in an EdS universe and, together
with 200 ρc is a quite popular choice (Tinker et al., 2008). Furthermore, note that, observationally, 200 ρc is often
used to define galaxy cluster masses in optical surveys, while 500 ρc and higher overdensity values are used in
X-ray analyses, and in all those observations that are able to resolve only the innermost parts of DM haloes and
related clusters.

5For example, Euclid and LSST will be characterised by huge volumes of about 44 h−3Gpc3 and
154 h−3Gpc3, respectively.

6We recall that in the f(R)models it is the absolute value of the fR0 parameter that encloses the information
on the MG strength; it is assumed to be 10−4, 10−5 and 10−6 for the fR4, fR5 and fR6 simulations, respectively.
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acts harsher. This behaviour is attributed to the physics of the environmentally-dependent
chameleon screening effect.

In the context of our Thesis work, it is important to account for these differences when
applying the void finder to the halo catalogues. In fact, the void identification limits vary
also according to the catalogue of haloes considered, and so do the void statistical properties.
Therefore, we measure the halo mass function in the cosmological models adopted at four
different redshifts (i.e. z = 0, 0.5, 1, 2; see §4.2). We compare these measurements with the
theoretical predictions of the HMF model proposed by Tinker et al. (2008), assuming the cos-
mology associated to the ΛCDM. Our results are shown in fig. 4.2. In agreement with Gupta
et al. (2022), we find in the f(R) models a Gaussian-like shape as deviation from the HMF
model computed in the ΛCDM scenario. This feature is particularly evident in the upper-left
panel of fig. 4.2, which shows the comparison among the computed mass functions with re-
spect to the ΛCDM at z = 0. The residuals highlight the existence of three Gaussian-like
trends, with the peak position growing towards higher masses from the fR6model to the fR4.
Note that the trends we have already described and the differences among them tend to vanish
when going towards z = 2. Indeed, the MG is expected to have a much greater influence at
low redshift, after having had more time to evolve.

The peculiar behaviour of the HMF in f(R) cosmologies affects the value of the halo MPS,
since both these quantities are directly linked to the number density of haloes. The MPS is
computed as the inverse cube root of the halo number density, thus it becomes smaller as the
latter quantity increases. The whole information on the halo number density as a function of
the halo mass can be derived from the HMF, which tells us that the halo samples are dominated
by relatively small haloes, and that the number density decreases as the halomasses considered
increase. Indeed, the less massive haloes are statistically more relevant than the massive ones.
The halo number density at small masses and z = 0 is the highest in the fR6 cosmology,
followed by those in the fR5, fR4 and ΛCDM cosmologies. As a consequence, we find an
analogous, even if inverted, trend in the corresponding values of the MPS. Indeed, fig. 4.3
reveals that the overall MPS follows the predicted order at z = 0, and that its evolutionwith the
redshift is non-trivial. These results are expected to be relevant in the context of the analysis
of voids identified in the DM halo distribution (§5.4).
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Figure 4.2: Mass abundances of 200c haloes in ΛCDM and f(R) cosmologies at four different
redshift: z = 0 (upper-left panel), z = 0.5 (upper-right panel), z = 1 (lower-left panel)
and z = 2 (lower-right panel). In each figure, the dashed grey line represents the theoretical
predictions (i.e. the HMF computed with the model of Tinker et al. (2008), reported in eq. 2.89)
computed for the ΛCDM halo abundance. The HMF measurements in the ΛCDM, fR4, fR5
and fR6 cosmologies are identified by the black, red, green and blue dots, respectively. The
shaded areas represent the Poissonian uncertainty on the measured halo mass counts. The
coloured dots in the sub-panels of each plot refer to the residuals computed with respect to
the ΛCDM HMF model as (HMFmeasured − HMFmodel,ΛCDM)/HMFmodel,ΛCDM. The errors
(i.e. shaded areas) are computed dividing the Poissonian errors associated to the measured
HMF by HMFmodel,ΛCDM.
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Figure 4.3: Halo MPS as a function of the redshift for the ΛCDM (black solid line), fR4 (red
dashed), fR5 (green dot-dashed) and fR6 (blue dotted) cosmologies. At each redshift, the MPS
values for the cosmological models analysed is a direct consequence of the specific behaviour
of the corresponding measured HMF, reported in fig. 4.2.

4.3 Building up void catalogues

Since the dustgrain-pathfinder (§4.2) are N-body simulations, we can reconstruct a void cat-
alogue from the distribution of either DM particles or DM haloes. Haloes are generally more
clustered than the DM particles, and their number density is lower. Hence, the halo MPS is
greater than the particle one. Given that when performing a statistical analysis on cosmic
voids it is common practice to remove all the spurious voids smaller than about 2 MPS (or
more), the DM particle field is more suitable than haloes to study small voids.

With the ultimate aim of exploiting the void clustering statistics, in the following sections
we will first outline the void finder algorithm7 used in this work and then proceed with a
description of the void cleaner we apply to both DM particle and halo distributions in order to
build our void catalogues (see forthcoming §4.3.1 and §4.3.2, respectively). Lastly, in §4.4 we
will present the final void catalogues we consider to perform a reliable statistical analysis on
the void clustering properties.

4.3.1 Void finding

From §3.1 we learnt how there exist several void finders based on different criteria. Let us now
focus on the finder employed in this Thesis: the vide void finder (Sutter et al., 2015b), which

7See §3.1 for a general definition of the three most common categories of void finders.
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relies on a geometrical criterion8 to build void catalogues. vide is an improved version of
zobov9, which finds underdensities in a 3D sample of particles, without making assumptions
on the void shape and without free parameters. This void finding algorithm consists of three
major steps:

1. The density field is sampled with the Voronoi tessellation: the finder associates to each
tracer centre a cell of borders defined by those points that are closer to the considered
centre than to any other tracer centre. To each Voronoi cell we associate a certain density,
which corresponds to the inverse of the Voronoi-cell volume since it is assumed an equal
weight for all the particles.

2. The second step is to search for local minima in the 3D density field, corresponding to
those cells in which the density is lower than in all the surrounding adjacent cells. Once
each minimum has been defined, the neighbouring cells are gradually merged. This pro-
cedure (see fig. 4.4) leads to the creation of the so-called zones and stops when a cell of
lower density than that of the selected minimum is encountered.

3. At last, voids are defined via the watershed algorithm (see fig. 4.5; Platen et al., 2007). The
zones are merged if the density of the ridge between them is lower than a fixed threshold,
corresponding to 0.2 times the mean particle density of the sample. According to this
algorithm, the cosmic voids are naturally arranged in a hierarchical structure, where the
merging zones are referred to as sub-voids. As before, if going outwards with respect to
the local minimum a more underdense cell is encountered, the process stops.

For each void identified by vide through the steps described above, it is possible to define its
centre as the volume-weighted barycenterX of all the merging cells of which it is composed.
X is defined by the following formula:

X =

∑N
i=1 x̄i Vi∑N
i=1 Vi

, (4.2)

where x̄i refers to the coordinates of the i-th tracer of the void considered and Vi is the volume
of the Voronoi cell to which the tracer belongs. The sum

∑N
i=1 Vi represents the total volume

of the void Vv:

Vv ≡
N∑
i=1

Vi =
4

3
π r3v , (4.3)

where rv is the void radius, which is determined from the value of the void volume, assuming
a spherical shape.

We apply the vide void finder both to DM particles10 and halo catalogues, producing two
main outputs: the so-called trimmed and untrimmed void catalogues, the former including
only major parent voids while the latter accounting also for child voids (i.e. sub-voids).

8When geometrical criteria are considered, voids are identified as underdense regions composed of geomet-
rical structures, such as spherical cells or polyhedra. These algorithms search for local density minima in the 3D
matter field in order to recover the void positions and shapes.

9zobov stands for ZOnes Bordering On Voidness; see Neyrinck (2008) for further details.
10Note that in the case of cosmic voids identified in the DM field, we randomly select a 25% sub-sample of the

total number of particles, in order to reduce the computational time. This has no practical effects on the results.
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Figure 4.4: Graphical representation of the natural neighbours (whose centers are identified
by the open circles) of a local density minimum (black dot). The solid black lines identify the
Voronoi cells, while the dashed lines refer to the so-called Delaunay triangles, whose centres
are defined as the vertices of the Voronoi diagram. Credits to: Platen et al. (2007).

Figure 4.5: Graphical representation of the watershed technique. The shape of the density field
is illustrated in the leftmost panel. Starting from the local minima, the surrounding underdense
regions flood as thewater level rises, andwhen thewater that fills two adjacent basins is mixed,
a “dam” is build (central panel). Finally, the entire surface is flooded, and a network of dams
is constructed (right panel). This network defines the corresponding cosmic web. Credits to:
Platen et al. (2007).
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4.3.2 Void cleaning

With the purpose of exploiting cosmic voids for a reliable cosmological analysis, it is necessary
that the void definition adopted is coherent when identifying them and when studying their
statistical properties. The catalogue objects resulting from the finding algorithms can be se-
lected on several bases. In the procedure presented here, the statistical models are required to
be consistent with the basic theory of the void size function in order to set accurate constraints
on the cosmological parameters. We do this by means of the cleaning algorithm introduced by
Ronconi and Marulli (2017), implemented in the CosmoBolognaLib and constantly improved.

The cleaning algorithm depends only on the positions of the void centres and therefore it
is applicable to any existing void finder, regardless its basic criterion of void identification. It
consists of three main steps:

1. The spurious voids are excluded from the catalogue because of two main reasons: either
their effective radius is out of the boundaries of the selected range [Rmin, Rmax], or their
central density11 is found to be higher than (1+δNL

v )ρ̄, where δNL
v is the nonlinear density

threshold and ρ̄ is the mean density of the sample considered. With this limit, the cloud-
in-void process is taken into account.

2. A re-scaling of the void radius is performed: the centre of an ideal sphere is placed in
the void centre and its radius is increased (or decreased) until the position at which the
density contrast emerging from the void density profile equals the chosen threshold for
the nonlinear density contrast δNL

v .

3. In presence of overlapping12 voids, the one with higher central density is excluded, ac-
counting for the void-in-void process.

As it is evident from fig. 4.6, taken from Ronconi andMarulli (2017), while the original voids
extracted with vide are not consistent with the theory of the void size function proposed by
Jennings et al. (2013) (see §3.2.1), the cleaned voids are instead statistically in agreement with
the model predictions. Something else that should be noted in fig. 4.6 is that the output of
the cleaning procedure is characterised by lower void number counts than that produced by
vide. This follows as a natural consequence of the three cleaning steps previously outlined,
in which the spurious and overlapping voids are properly removed.

To sum up, the final effect of the cleaning procedure is a catalogue of both selected and
re-shaped13 voids defined as non-overlapping spheres in which the nonlinear density contrast
equals a fixed value selected by the user, which can correspond e.g. to the shell-crossing value
δNL
v = −0.795. This value must be converted in linear theory in order to compute the model of
the VSF. To do this, we can use the conversion proposed by Bernardeau (1994) (see forthcoming
eq. 4.5). For example, the shell-crossing value in linear theory becomes δLv = −2.71. Given

11Note that the central density is computed within a sphere of radius 2MPS from the centre, in order to avoid
the shot noise related to the innermost regions.

12The term overlapping refers to a situation in which the distance between two void centres exceeds the sum
of their radii.

13Note that even if each single void is not spherical but slightly elliptical (see e.g. Lavaux and Wandelt, 2012;
Verza et al., 2019), the averaged void shape in real space is perfectly approximated by a sphere (see e.g. Hamaus
et al., 2017; 2020; 2022).
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Figure 4.6: Effects of the cleaning procedure on the measured void size function with respect
to the theoretical predictions (black solid line). The blue dots represent the size function com-
puted for the original voids extracted with vide, while the yellow squares refer to the mea-
sured size function after the cleaning procedure. This analysis has been performed on aN-body
simulation of 128 h−1Mpc per side, which accounts for the presence of 2563 CDM particles
in a ΛCDM scenario. Credits to: Ronconi and Marulli (2017).

the close match between the VSF measured with the void sample selected by the cleaning
algorithm and the theoretical one, we can conclude that this approach is extremely powerful
because it allows us to directly compare the void statistics we want to investigate with the
theoretical models of spherical evolution introduced in §2.3.2.

4.4 Cleaned void catalogues

Once the void catalogues are built both in the DM particle field and in the halo distribution,
the cleaning algorithm (§4.3.2) is employed to ensure consistency with the theory of the VSF
(i.e. Vdn model; Jennings et al., 2013). In particular, this procedure is applied to the untrimmed
vide void catalogues (§4.3.1), by using the CBL catalogue constructors and functions.

As already clarified, from the cleaning procedure we get catalogues of both selected and
re-shaped voids consisting of non-overlapping spheres embedding a fixed nonlinear density
contrast δNL

v . This value, and its linear counterpart δLv , are those that we used in both the Vdn
model of the VSF and the power spectrum model introduced by Chan et al. (2014). In this con-
text, let us point out that the threshold δNL

v can assume any reasonable value between−1 and
0. The only requirement to be satisfied is that the density contrast must be balanced between
a value which is low enough to represent the interiors of cosmic voids, and a value which is
high enough to sample spatially-resolved regions in both the DM particle field and halo dis-
tribution. It is also important to notice that, despite the measured VSF is well fitted by the
Vdn model at any fixed δNL

v , the value of this threshold affects the statistical relevance on the
sample resulting from the cleaning procedure (Contarini et al., 2021). If δNL

v is particularly low,
the re-scaling algorithm leads to small void radii, most of which are then removed according
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to the tracer MPS (see §4.3). By contrast, if it is particularly high, voids are provided with large
radii that are also removed from the cleaned catalogue because of their tendency to overlap.

In the next subsections we will show how the final void catalogues we obtained are in
agreement with the Vdn model predictions for the void size function, in both the DM particle
field and the halo distribution.

4.4.1 Voids in the dark matter field

To understand the effect of the void cleaning on the original catalogue produced by vide we
show in fig. 4.7 a comparison of the VSF measured for both these catalogues at z = 0. As
expected from §4.3.2, while the measured VSF of the cosmic voids identified by vide is not
consistent with the Vdn theoretical predictions, the cleaned void catalogue fulfils the theoret-
ical predictions quite accurately. As already pointed out concerning fig. 4.6, fig. 4.7 demon-
strates that the cleaning procedure has two main effects on the starting catalogue. Indeed, not
only the data become consistent with the VSF theory, but also the number density of voids
decreases, leading to larger statistical uncertainties related to the void sample. For example,
focusing on the measured ΛCDM VSF at redshift z = 0, we find that the number of objects of
the vide catalogue is much greater than the number of objects after the cleaning algorithm is
applied, being 273686 and 48776, respectively. We recall here that the smallest possible size
of the voids considered must be at least two times the tracer MPS to avoid the spatial scales
affected by a loss of void counts (see §4.2.1). The numbers of objects reported above are derived
for voids larger than 2.5MPS.

Figure 4.7: Comparison between the VSF measured for the original VIDE void catalogue (pink
solid line) and for the cleaned void catalogue (black solid line) with respect to the Vdn model
(grey dashed line). Both themeasurements and themodel are computed in theΛCDM scenario
at z = 0. The errorbars and relative shaded areas represent the Poissonian errors of the
measured VSF. The residuals in the lower sub-panel are calculated as the difference of data
points from the Vdn theoretical model, divided by the model. The associated errors are the
Poissonian errors of the measured VSF normalized to the value of the model.

The same validity test on the cleaned catalogues with respect to the uncleaned ones has
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been performed also in the other three redshifts considered (i.e. 0.5, 1, 2). It results that
the differences between the pre-cleaning and the post-cleaning measured VSF are similar
or even greater as the redshift increases. Note that the cleaned catalogues and their rel-
ative VSF are prepared by considering thresholds δNL

v growing with redshift, i.e. δNL
v =

−0.795,−0.75,−0.7,−0.65 at z = 0, 0.5, 1, 2, respectively. As already pointed out, we do
this because, as the redshift increases, the voids become shallower, and this must be taken into
account to afford the best compromise between sufficient statistics (high enough δNL

v ) and the
identification of actual voids (low enough δNL

v ).
Having ascertained that the cleaned void catalogues are the ones we want to analyse for

fundamental theoretical reasons, before proceeding with our analysis on the void clustering,
we investigate how the VSF measured in f(R) cosmologies varies with respect to the ΛCDM
model. Our results are shown in fig. 4.8, from which it is possible to evaluate the differences
of the number counts measured in the various cosmological scenarios. It emerges that, going
from z = 2 to z = 0, the fR4VSF shows a slightly higher number of relatively large voids with
respect to the other cases, and this can be justified since the gravity in this model is stronger
than in any other model. Indeed, the MG enhances the void formation and expansion, since it
makes the large-scale overdense structures evolving and clustering more rapidly.
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Figure 4.8: Comparison between the theoretical VSF of the ΛCDM model and the mea-
sured VSF at four different redshift, z = 0, 0.5, 1, 2, with corresponding thresholds δNL

v =
−0.795,−0.75,−0.7,−0.65. The measurements are computed for voids identified in the DM
particle field in the four cosmological scenarios considered: ΛCDM (black solid line), fR4
(red), fR5 (green), fR6 (blue). The residuals in the lower sub-panels are analogous to the ones
reported in fig. 4.7.
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4.4.2 Voids in the halo distribution

As mentioned at the beginning of §4.4, to properly re-scale voids through the cleaning pro-
cedure and to compute their theoretical VSF, it can be assumed any reasonable value for the
nonlinear density contrast (i.e. −1 < δNL

v < 0). Anyway, the theoretical model of the VSF
is formulated for the total matter density field, which is represented by the DM particle field
at first approximation. When dealing with biased tracers (i.e. DM haloes in the case of our
analysis), the tracer bias plays a crucial role in determining the VSF and the void density pro-
file, which is strongly related to the cleaning algorithm employed. In particular, assuming a
cosmic void whose profile can be traced by both the DM particles and haloes, it turns out that
the latter trace a deeper14 density profile than the former. A possible solution to take this into
account and to correctly predict the void abundance in the biased tracer field is to consider a
bias-dependent underdensity threshold. The DM density field within cosmic voids is linearly
related to the density field traced by the biased tracers (Pollina et al., 2017 and 2019), and we
can write that δNL

v,tr = b δNL
v,DM, where b is the tracer bias. From this relation, it is evident that

if b > 1 the resulting density contrast inside voids traced by overdensity tracers is very nega-
tive, and this would lead to re-scale voids to their innermost regions, where the Poisson noise
dominates. From Contarini et al. (2019) it emerges that the tracer bias inside voids (bpunct) is
much higher than the large-scale tracer bias (beff ). Therefore, Contarini et al. (2019) proposed
to follow the opposite approach, by selecting a physically reasonable threshold for the voids
identified in the tracer distribution and then converting it to the corresponding value for voids
identified in the DM field (i.e. unbiased tracers). The latter is then used in order to re-scale the
theoretical VSF. Contarini et al. (2019) demonstrated that the relation between the DM den-
sity contrast inside cosmic voids (δNL

v,DM) and the corresponding value in the tracer distribution
(δNL

v,tr) can be modelled with a linear relation15 F = F(beff) as:

δNL
v,DM =

δNL
v,tr

F(beff)
, (4.4)

where beff is referred to as the large-scale effective bias of the tracers considered. In practice, it
is assumed that the voids are always the same, regardless of whether they are traced in either
the DM particle field or the tracer distribution, and the theoretical Vdn model predictions are
shifted towards greater radii by means of this calibrated relation. Note that, in order to exploit

14As already anticipated in §3.2.3, the void density profile is directly related to the void-tracer cross-correlation
function. Since the biased tracers are more clustered than the unbiased DM particles, and their number density
is lower, we actually count fewer pairs in the former case than in the latter. Therefore, both the cross-correlation
signal and the density contrast are lower in the former case, at least in the innermost regions (see Contarini et
al., 2019).

15According to the theory, we can use the ratio of the density profiles of the same voids, drawn from the DM
particles and biased tracers, respectively, to calculate the tracer bias within cosmic voids. However, this method
could not be applied to real data because we have no information on the true total matter density field. This
leads to the need of calibrating a relation that allows us to derive the tracer bias inside voids (bpunct) from the
large-scale tracer bias (beff ). Note that the latter can be easily derived from the real data, e.g. from the tracer
2PCF. The relation resulting from this calibration is linear, and depends only on two parameters, namely Bslope

and Boffset, which are the slope and offset of the relationship, respectively. Lastly, in Contarini et al. (2022) it
has been demonstrated that F(beff) is almost independent of Cosmology, but it depends on the nature of the
considered tracer (e.g. galaxies, 200c haloes, 500c haloes, and so on).
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the nonlinear threshold defined in eq. (4.4) to compute the theoretical VSF, we need to convert
it to its linear value. To do this, we make use of a relation proposed by Bernardeau (1994):

δLv = C
[
1− (1 + δNL

v )−1/C
]
, (4.5)

where C = 1.594. See the aforementioned paper for further details on this relation and the
methods employed to obtain it.

For our analysis on cosmic voids identified in the DM haloes (see §5.4), we select the thresh-
old δNL

v,tr = −0.5, since it ensures the best compromise between the void sample statistical rel-
evance and the agreement of the void counts with the theoretical VSF. Let us underline that,
unlike the case of the voids identified in the DM particle field (i.e. where the threshold is set
to be less negative as the redshift increases), in this case the nonlinear threshold δNL

v,tr remains
the same at every redshift considered. This is justified by the fact that the tracer bias entering
eq. (4.4) depends on the redshift and, in particular, it is higher as the redshift increases (see
§2.4.2). Thus, it is itself able to select δNL

v,DM thresholds which are more negative at earlier ages
of the Universe.

Finally, analogously to what we pointed out in §4.4.1, after the application of the cleaning
algorithm to our void catalogues in order to make them consistent with the first principles
of the Vdn model, the void number density decreases. For example, in the ΛCDM at z = 0,
the number of voids of the sample selected (i.e. with radii greater than 2.5 MPS to avoid
spurious objects) is 2213 and 947 for the untrimmed and cleaned catalogues, respectively. Fig.
4.9 shows how the cleaned void catalogues in both the ΛCDM and f(R) cosmologies are
described accurately enough by the Vdn model predictions.
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Figure 4.9: Comparison between the theoretical VSF of the ΛCDM model and the measured
VSF at four different redshift, z = 0, 0.5, 1, 2, with corresponding threshold δNL

v,tr = −0.5. The
measurements are obtained for voids identified in the halo distribution in the four cosmolog-
ical scenarios considered: ΛCDM (black solid line), fR4 (red), fR5 (green), fR6 (blue). The
residuals in the lower sub-panels are analogous to the ones reported in caption of fig. 4.7.
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Chapter 5

The clustering of cosmic voids

A reliable cosmological exploitation of cosmic voids requires an accuratemodelling of their sta-
tistical properties, and such model is more solid as its dependence on first principles becomes
stronger. In this chapter we focus on the two-point statistics, in particular the auto-correlation
function of cosmic voids (see §3.2.3), investigating void catalogues constructed from both the
DM particle field and the halo distribution, within the dustgrain-pathfinder simulations. As
already discussed in §3.1, void catalogues can be extracted by means of a finding algorithm
that can be based on different criteria of void identification. The set of the void catalogues
we analyse in this chapter is obtained using vide, a geometry-based finder that we described
extensively in §4.3.1. Furthermore, a cleaning procedure (see §4.3.2) is employed in order to
account only for non-overlapping and properly re-scaled voids; the results of the application
of this algorithm are outlined in section §4.4. By doing this, our voids are defined as in the
theoretical model of the VSF proposed by Jennings et al. (2013) (i.e. the Vdn model, see §3.2.1),
which correctly accounts for both the void-in-cloud and void-in-void processes, in agreement
with the excursion-set formalism (see §3.2.1). Indeed, the nonlinear threshold δNL

v and its lin-
ear counterpart defined by the spherical collapse model (see §2.3.2), is assumed to take on the
same value in both the VSF model (eq. 3.7) and the void linear bias (eq. 3.17) that we use to
model the 2PCF, making our analysis almost entirely grounded on theoretical prescriptions.
We recall that δv can take on any reasonable value as long as it accounts for both the spatial
resolution and the overlapping phenomenon (see §4.4). Finally, note that also the linear criti-
cal threshold δLc enters in our statistical analysis, and we assume for it the turn-around value
defined by the spherical collapse model developed within the linear regime.

In §5.1 we introduce few relevant concepts in order to study cosmic voids identified in the
DM field. We then investigate the void clustering properties within and beyond the ΛCDM
scenario (see §5.2 and §5.3, respectively), discussing both the measure and modelling of the
2PCF. Furthermore, we assess the cosmological constraining power of the void 2PCF by means
of a Bayesian analysis on our data. Lastly, in §5.4 we repeat the same analysis, investigating
the clustering properties of the cosmic voids identified in the halo distribution.
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5.1 Voids in the dark matter field

Starting from the cleaned void catalogues in the DM field presented in §4.4.1, we select sub-
samples of voids such that an accurate modelling of the 2PCF can be performed. There are
three main requirements to be satisfied in order to exploit the void 2PCF as a cosmological
probe, which can be summarised as follows:

• the void 2PCFmodel requires in input both the void median radius and comoving number
density and, to account for theoretical principles, these quantities can be modelled with
the Vdn model, if the sample is properly cleaned (as explained in §4.4);

• given the low amplitude of the clustering signal, the statistics of the void sample consid-
ered must be high enough to allow precision on the data measurements and therefore on
the modelling procedure;

• considering the extremely wide range of sizes over which cosmic voids span, together
with the strong dependency of their properties on those sizes (see e.g. §3.2.2), for a
proper modelling of these objects it is necessary to select void sub-samples that are sim-
ilar enough to exhibit almost the same features.

It is easily noticeable how the second and third conditions tend towards opposite directions:
the former requires object catalogues containing the maximum possible amount of data, while
the latter naturally implies limited data samples. Therefore, the choice of the sub-catalogue to
be considered for building and testing the model is defined as the best compromise between
its statistical relevance and the similarity of the properties characterising its objects. Accord-
ing to this argument, among the whole sample of cleaned voids, we opt to account only for
those with radii inside the range [5− 7.5] h−1Mpc. For the sake of completeness, we mention
that several tests have been performed in order to verify the stability of our results, such as
considering a wider range for the selection of void radii and applying different binning strate-
gies (e.g. logarithmic, equispaced and equipopulated binning). From our statistical analyses,
the aforementioned range [5− 7.5] h−1Mpc is found to be the best compromise to perform a
reliable modelling and an effective cosmological exploitation of the void clustering properties.
Therefore, the results we will present in this chapter concern voids belonging to this radius
bin, the properties of which are computed at z = 0, 0.5, 1, 2 in four different cosmological
scenarios (i.e. ΛCDM, fR4, fR5 and fR6). Finally, let us point out that there are three reasons
why we are bound to study small voids1: (i) the dustgrain-pathfinder simulations have not a
large enough volume, (ii) the voids are identified in the DM particle field, and (iii) the cleaning
algorithm re-scales voids, also removing the overlaps.

In the next sections, we will first characterise the 2PCF in the ΛCDM scenario, addressing
both its measure and modelling (§5.2) with the main aim of evaluating the constraining power
of the void clustering as a cosmological probe. Then, we will compare the two-point statistics
in the f(R) models with the ΛCDM theoretical predictions (§5.3). Note that the latter has
to be intended as a test to verify whether the data extracted from the ΛCDM simulation are
consistentwith those inMG simulations, in order to evaluate the potential disentangling power
of the void clustering within the limits of the data sets we are analysing.

1As already mentioned in the Introduction, cosmic voids can vary in size from a few to over hundreds ofMpc.
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5.2 Results within the Standard Model

With the aim of selecting properly the cosmic voids in the ΛCDM catalogues2, we remove all
the objects whose centre is less than 30 h−1Mpc from the edge of the simulation boxes. As a
consequence, the resulting volume thatwe consider in our analysis decreases from 7503 (h−1Mpc)3

to 7103 (h−1 Mpc)3. Moreover, as anticipated, voids are selected according to their radius, ex-
cluding all those objects that are outside the interval [5 − 7.5] h−1Mpc. Note that the lower
limit chosen for the void radii is more than two times larger than the MPS of the tracers (i.e.
the DM particles), which corresponds to 1.55 h−1 Mpc.

In tab. 5.1 we summarise the relevant characteristics of our ΛCDM void sub-catalogues,
computed from both the simulation samples and the theoretical VSF.

z Nv n̄v [h3 Mpc−3] Rmedian [h−1 Mpc]

simulation model simulation model simulation model

0 18578 19755 5.19× 10−5 5.52× 10−5 5.86 5.83

0.5 15470 15570 4.32× 10−5 4.35× 10−5 5.84 5.79

1 11878 12477 3.32× 10−5 3.49× 10−5 5.84 5.77

2 3551 4177 9.92× 10−6 1.17× 10−5 5.79 5.67

Table 5.1: Summary of the main characteristics of the ΛCDM void sub-sample considered, i.e.
the redshift z, the number of voidsNv, the voidmean number density n̄v and themedian radius
Rmedian. The last three columns are split into two sub-columns, where the first refers to the
quantities calculated directly from the simulations, while the second contains the quantities
computed from the VSF theory.

5.2.1 Auto-correlation measure

As anticipated in §3.2.3, we rely on the LS estimator (eq. 3.11) to measure the 2PCF, which we
compute in 20 radial separation logarithmic bins from 10 to 100 h−1Mpc. We estimate the
associated errors by means of the so-called Bootstrap method, constructing 100 realisations
by resampling from the sub-catalogue, with replacement. Our results are reported in fig. 5.1,
where we show the 2PCF measurements obtained at z = 0, 0.5, 1, 2.

5.2.2 Auto-correlation modelling

To model the 2PCF measurement shown in fig. 5.1 we rely on the power spectrum model pro-
posed by Chan et al. (2014), that has been presented extensively in §3.2.3. However, differently
from this paper, we rely also on the Vdn model of the VSF, with the aim of extracting reliable

2Let us clarify that the same procedure described in this subsection is applied also to the f(R) simulations
(see forthcoming §5.3).
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Figure 5.1: Void auto-correlation measure computed in the ΛCDM scenario at four different
redshifts: z = 0 (black dots), z = 0.5 (dark grey triangles), z = 1 (grey squares) and z = 2
(light grey pentagons). The measurements are achieved by means of the LS estimator and the
error bars represent the associated Bootstrap errors.

cosmological constraints. Indeed, both in the theoretical linear void bias, b1(Rv), and in the
whole theory of the HS approximation, we exploit the Vdn model predictions to define both
the median radius (Rmedian) and the mean number density (n̄v), since it has been proven that
the agreement of properly cleaned void samples with the VSF theory is robust (see fig. 4.8).
The values of these quantities at all redshifts are reported in tab. 5.1.

Let us emphasise that the improvement we have made to the 2PCF model is of major cos-
mological importance, as referring to theoretical principles is crucial to realiably constrain the
parameters on which the current model of our Universe is based. Considering instead the
theoretical quantities, such as the void formation threshold (δv) and the void linear bias (b1),
as free parameters, results in the impossibility of exploiting the void clustering as a robust
statistical probe.

Concerning the critical thresholds δc and δv, let us underline that the former is set to the
spherical collapse value at the turn-around (i.e. δLc = 1.06), while the latter assumes different
values at different redshifts, consistently with those used in the Vdn model. In particular, the
threshold δLv defined by the spherical collapse in linear theory is−2.71, and it becomes higher
as the redshift increases. Indeed, considering that the cosmic voids are expected to exhibit a
shallow density profile at earlier epochs, it is easily understandable that only few voids can be
re-scaled by the cleaning procedure to enclose such a density contrast (i.e. the deepest ones).
Therefore, it is necessary to modulate this threshold across cosmic epochs so as to enlarge
the sample of cleaned voids and decrease the shot noise. We recall here that this choice does
not affect the Vdn model predictions as far as the considered threshold is used coherently in
both the cleaning procedure and in the computation of the theoretical VSF. Notice that, since
the cleaning procedure is built to re-scale voids in a nonlinear framework (see §4.3.2), we need
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also to account for the corresponding nonlinear thresholds δNL
v . A conversion relation between

the linear and the nonlinear regimes has been introduced by Bernardeau (1994) (eq. 4.5). A
summary of all these threshold values can be found in tab. 5.2.

Once the decisions on these theoretical variables are made, we proceed by testing the for-
mula of the void power spectrum model proposed by Chan et al. (2014) in Fourier space. This
is done in order to verify the theoretical formulas implemented with our methods, before mov-
ing to real space and reconstructing the 2PCF model that we aim to investigate. The results
obtained from the implementation of eq. (3.13) at redshift z = 0 are shown in fig. 5.2. The
same validity test of the theoretical formula of the void power spectrum is performed at all
redshifts, but only z = 0 is reported for simplicity.

Figure 5.2: Model of the void power spectrum resulting from eq. (3.13) in the ΛCDM cosmo-
logical model at z = 0: Pmb

2
1 (red dashed line) is the matter power spectrum re-scaled by the

square of the theoretical linear bias of cosmic voids (see eq. 3.17), Pexcl (green dash-dotted line)
is the void exclusion term and Pv (blue solid line) is the resulting void power spectrum.

As predicted by the theory of the HS (see §3.2.3), fig. 5.2 shows the effects of the exclusion
term (Pexcl) on the DM power spectrum normalised with the squared linear bias (Pmb

2
1): the

introduction of oscillations at large k modes (i.e. small physical scales) and the lowering of
the DM power spectrum at small k modes (i.e. large physical scales). Both these effects make
the void power spectrum behave as represented by the blue solid line. Note that both the
colours and line-styles chosen for this representation are the same as those used by Chan et
al. (2014), to allow a direct comparison with fig. 3.5. Let us also emphasise that the y-scales
characterising the power spectrum are different in these two figures. The reason is that a
different normalisation for P (k) has been used in Chan et al. (2014), which consists of adding
a multiplicative factor (2π)−3. Finally, note that both the DM power spectrum (Pm) and the
mass variance (σM) entering the theoretical void bias (eq. 3.17) are computed by means of the
CBL libraries presented in §4.1, through the eisenstein-hu Boltzmann solver.
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Being the model of the void power spectrum successfully tested, we proceed with its con-
version to the real-space 2PCF. To do this, we exploit the Fast Fourier Transform method im-
plemented in the fftlog3 class of the CBL, which consents to directly perform the Fourier
transform of any given input functional form.

First of all, we stress the fact that, with the current theory, we can only afford to model the
2PCF after the peak around 15 h−1Mpc (see fig. 5.1), since at smaller separations the signal is
dominated by some effects related to the void density profile that are not yet well understood.
Furthermore, to properly fit both the peak height and position of the 2PCF measure, we found
that it is necessary to add a multiplicative factor to the median radius that enters the theory of
the HS. Indeed, the HS model approximates the void shape and size as if one were analysing
a void population formed by identical spherical objects. It is important to emphasise, once
again, that the properties of cosmic voids vary depending on their dimension. To take this
into account, we express the radius of the HS theory as a function of a free parameter, that we
call CR, as follows:

R = CR ·Rmedian , (5.1)

where Rmedian is the median radius of the voids in the interval [5 − 7.5] h−1Mpc, computed
by means of the theoretical VSF. Then, we calibrate the model through a Bayesian Markov
Chain Monte Carlo (MCMC) statistical analysis of the measured 2PCF. According to the so-
called Bayes theorem, for a given dataset D, the distribution of a set of model parameters Θ is
provided by the so-called posterior probability, which can be expressed as follows:

P(Θ|D) ∝ L(D|Θ)p(Θ) , (5.2)

where L(D|Θ) is the likelihood (i.e. a conditional probability expressed as a function of its
second argument, while the first one is kept fixed) and p(Θ) refers to the prior distribution (i.e.
the prior knowledge on the analyzed parameters). We sample the posterior distribution of the
free parameter (CR), assuming a Gaussian likelihood and a uniform prior. The values of CR
resulting from this calibration procedure at the four considered redshifts are then inserted in
the theoretical formulation of our model when performing the Bayesian analysis to extract the
cosmological constraints. A summary of the CR parameter values is reported in tab. 5.2, while
in fig. 5.3 we present the best-fit models of the measured 2PCF at z = 0, 0.5, 1, 2. A complete
discussion on both the origin of this factor and its evolution with redshift will be addressed in
future works.

5.2.3 Constraining the cosmological parameters

Holding the CR parameter fixed at its maximum posterior value (see tab. 5.2), we then run
the MCMC again in order to sample the posterior distribution of the cosmological parameters
Ωm and σ8. Note that Gaussian likelihoods and uniform priors are also assumed in this case.
Our results are reported in fig. 5.4 and fig. 5.5, where we show the contour plots obtained
from the Bayesian analysis that has been performed within each redshift, and combining all

3To verify that the fftlogmethod works properly, it was first applied to the DM power spectrum alone, since
it is better understood than the void power spectrum we are modelling in this thesis. From this test, we obtained
the expected outcome.

102



The clustering of cosmic voids

z δLv δNL
v CR

0 −2.71 −0.795 1.13

0.5 −2.21 −0.75 1.12

1 −1.80 −0.7 1.19

2 −1.49 −0.65 1.22

Table 5.2: Summary of the linear and nonlinear thresholds of void formation (δv), and of the
calibrated values of CR at four different redshift (z = 0, 0.5, 1, 2).

the redshifts together, respectively. Moreover, in tab. 5.3 we show the values and associated
uncertainties of the constrained cosmological parameters within the ΛCDM scenario. These
values have to be compared with those provided by Planck Collaboration et al. (2016) and used
to build the dustgrain-pathfinder simulations, which are reported in tab. 4.1. It emerges from
our analysis how the constrained parameters we get from both each single redshift and their
combination, accounting for the 2PCF model presented in §3.2.3, are consistent within the
errors with those of the analysed simulations.

z Ωm σ8 S8

0 0.38+0.14
−0.14 0.84+0.12

−0.08 0.94+0.08
−0.11

0.5 0.31+0.17
−0.14 0.84+0.09

−0.09 0.83+0.11
−0.13

1 0.41+0.13
−0.12 0.81+0.10

−0.18 0.87+0.12
−0.07

2 0.26+0.11
−0.07 0.85+0.10

−0.12 0.77+0.06
−0.05

combined 0.36+0.07
−0.07 0.83+0.05

−0.05 0.90+0.06
−0.06

Table 5.3: Summary of the cosmological constraints and relative uncertainties emerging from
the Bayesian analysis we performed on each redshift (z = 0, 0.5, 1, 2) and on their combina-
tion within theΛCDM scenario. We recall that the corresponding true values of the cosmolog-
ical parameters assumed by the dustgrain-pathfinder ΛCDM simulations are the following:
Ωm = 0.31345, σ8 = 0.842 and S8 = 0.861.

Let us point out here the main reasons why we opt to constrain specifically Ωm and σ8.
These cosmological parameters taken together define the most famous degeneracy of the
ΛCDM model, i.e. the so-called S8 degeneracy, where S8 is defined as S8 = σ8

√
Ωm/0.3.

Therefore, setting constraints on them helps to brake this degeneracy, by defining the lower
and upper limits in the parameter space. Indeed, ideally, without performing an appropriate
Bayesian analysis on the theoretical model of the considered statistics, such parameters could
take on, in pairs, any value, as far as a decreasing Ωm is counterbalanced by an increasing σ8,
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Figure 5.3: Upper sub-panels: best-fit model (grey dashed line) of the 2PCF measure (black
dots) after the calibration of the HS radius. The black error bars are the Bootstrap errors
associated with the measured 2PCF. Lower sub-panels: residuals of the measured clustering
profile, computed as the ratio between the difference 2PCFdata−2PCFmodel and the Bootstrap
errors of the data.
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Figure 5.4: Comparison between the 68% (dark grey) and 95% (light grey) confidence levels
computed with the void auto-correlation function at z = 0 (upper-left panel), z = 0.5 (upper-
right panel), z = 1 (lower-left panel) and z = 2 (lower-right panel). The dotted black lines
represent the truth values of Ωm and σ8 assumed by the dustgrain-pathfinder simulations
(see tab. 4.1).
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Figure 5.5: Combined posterior probability distribution of the cosmological parameters, Ωm

and σ8, obtained from the 2PCF model at four redshift (z = 0, 0.5, 1, 2) together. The dark and
light areas represent the 1σ (68%) and 2σ (95%) confidence regions, respectively. The dotted
black lines represent the truth values on Ωm and σ8 assumed by the dustgrain-pathfinder
simulations (see tab. 4.1). Finally, in the top of each column is reported the median of the
posterior distributions with its associated errors.
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or viceversa. Furthermore, among the ΛCDM parameters presented in §1.4, we exclude Ωb

(i.e. the baryonic matter density parameter) since it has already been extensively studied in the
literature, which provided us with rather tight constraints4. Lastly, we have ruled out the pos-
sibility of constraining the DE parameters. Indeed, on the one hand, ΩΛ (i.e. the cosmological
constant density parameter) is related to the constraints on Ωm, since we are assuming a flat
Universe, and thus Ωtot = Ωm + ΩΛ = 1. On the other hand, the w0 and wa parameters that
account for possible forms of DE beyond the cosmological constant (see §1.4.1) are proven to
be sensitive to the shape and size of cosmic voids rather than to their clustering properties. In
fact, we recall that the 2PCF we are studying depends almost exclusively on the position (and
number) of void centres.

In fig. 5.6 we show a graphical representation of the 2PCF model variations when differ-
ent values of Ωm and σ8 are considered, at z = 0. For each parameter value, the quantities
Rmedian and n̄v are recomputed from the theoretical VSF. To perform this test and clarify the
2PCF model dependence on the analysed cosmological parameters, we assumed a flat-universe
hypothesis, so that the cosmological constant energy density parameter (ΩΛ) is derived accord-
ing to each value ofΩm, in order to recoverΩtot = Ωm+ΩΛ = 1. Notice that we have reported
only z = 0 for the sake of brevity, but the cosmological information is derived from all the
other redshifts as well.

4For example, theΩb parameterwas constrained from the theory of the primordial nucleosynthesis (Schramm,
1982) and from the CMB (Lineweaver et al., 1997), but also other probes and observables have been exploited (see
e.g. Steigman et al., 1999).
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Figure 5.6: Graphical representation of how the 2PCF model varies according to different val-
ues of both Ωm (upper panel) and σ8 (lower panel) at z = 0. Note that theoretical model
parameters, Rmedian and n̄v are computed for each couple of Ωm and σ8.
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5.3 Results beyond the Standard Model

With the aim of initiating the exploitation of void clustering for cosmological purposes, we
now proceed by testing the MG in the context of the void auto-correlation function, exploiting
the dustgrain-pathfinder simulations which include the f(R) models. We develop a pre-
liminary investigation on possible dependencies of the considered two-point statistics on the
background Cosmology. As already mentioned, the one reported in §5.2 is the very first cos-
mological analysis developed on void clustering. This section has then to be intended only as
an initial step towards a full understanding of the potential role of the void auto-correlation
function in discriminating between different cosmological scenarios, beyond the well-known
ΛCDM.

We perform the same logical steps as presented in §5.2, comparing the measured 2PCF with
the model validated within the ΛCDM simulation. Note that both the same void radius bin
and sample selection criteria have been adopted. Firstly, we measure the real-space 2PCF in
the f(R) cosmological scenarios (i.e. fR4, fR5 and fR6) by means of the LS estimator (see eq.
3.11). Our results are reported in fig. 5.7, which shows the comparison between the calibrated
ΛCDM model and the void clustering measurements obtained in MG scenarios. Then, we
calibrate the 2PCFmodel functionwith respect to eachmeasured f(R) 2PCF, considering CR as
a free parameter. We account for the void-formation linear and nonlinear thresholds specified
in tab. 5.2, and assume for Rmedian and n̄v the quantities computed from the theoretical Vdn
model of the VSF, within the Standard Cosmological Model (see tab. 5.1). The values of CR
resulting from this calibration procedure at each redshift and for each cosmological scenario
are summarized in tab. 5.4.

CR

z fR4 fR5 fR6

0 1.17 1.13 1.12

0.5 1.13 1.13 1.13

1 1.13 1.07 1.02

2 1.15 1.30 1.22

Table 5.4: Summary of the CR values resulting from the calibration performed by means of the
MCMC with respect to the measured f(R) 2PCF at four redshifts (z = 0, 0.5, 1, 2).

Finally, starting from the values of CR reported in tab. 5.4, we run the MCMC once again in
order to constrain the cosmological parameters (Ωm and σ8), by applying the fitting procedure
to the 2PCF measured in MG cosmologies for each simulation snapshot considered (i.e. z =

0, 0.5, 1, 2). Note that the Bayesian analysis is performed with the same characteristics of that
described in §5.2, i.e. Gaussian likelihood and uniform prior distributions. As done before, the
resulting values for Ωm and σ8 have to be compared with those assumed by the dustgrain-
pathfinder simulations, in each cosmological framework (see tab. 4.1). Our results at z = 0
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Figure 5.7: Upper sub-panels: comparison between the ΛCDM model (grey dashed line) and
the 2PCF estimations in fR4 (red triangles), fR5 (green squares) and fR6 (blue pentagons)
cosmologies. The error bars and residuals are defined as in the caption of fig. 5.3.
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are reported in fig. 5.8, where we show the Ωm − σ8 contours obtained from the fitting of
the f(R) 2PCF with respect to those presented in the upper-left panel of fig. 5.4 (i.e. grey
contours associated to the ΛCDM scenario). The same analysis has been performed also at
z = 0.5, 1, 2, but we chose not to include them for simplicity. Indeed, as already clarified,
the MG effects are significant at redshifts close to zero, and hence we do expect to see the
greatest differences with respect to the ΛCDM both data and model at z ∼ 0. Moreover, in
figs. 5.9, 5.10 and 5.11, we show the Ωm − σ8 contours resulting from the combination of the
entire set of considered redshifts. Finally, note that all the values obtained for the constrained
cosmological parameters in the fR4, fR5 and fR6 scenarios are reported in tab. 5.5.

This analysis, which has been performed by comparing the ΛCDM auto-correlation model
with the 2PCF measured in f(R)-based simulations, has been designed in order to understand
whether the clustering statistics depends on the eventual presence of MG in our Universe. In
particular, we wonder whether, assuming the model we introduced in §3.2.3, we are able to
recover the values of Ωm and σ8 of the simulations (see tab. 4.1) even in the case of MG cos-
mologies. As already underlined, the void clustering statistics has not yet been addressed with
cosmological purposes in the literature. Thus, it has been not even employed in an attempt to
discriminate between the well-knownΛCDMmodel and other feasible models, which suggest
valid alternative to the cosmological constant for the late-time accelerated expansion of the
Universe (see §1.4).

Within the limits of thedustgrain-pathfinder simulationswe considered, our results clearly
demonstrate how the method developed in this Thesis is robust as far as the strength of the
MGmodel taken into account is relatively feeble. Indeed, both in the fR5 and fR6 simulations,
the values ofΩm and σ8 estimated from the void 2PCF assumingΛCDM are totally consistent,
within the 1σ confidence level, with those of the analysed simulations. Let us emphasize that
the parameter values assumed by the fR5 and fR6 simulations are found to be also inside the
1σ contours associated to the ΛCDM scenario5 (see figs. 5.10 and 5.11). Hence, we are unable
to distinguish whether a model considers MG or not, but we can state that the method we have
developed is robust: regardless of the background cosmology, applying 2PCF model built for
a ΛCDM universe, we find values of Ωm and σ8 that are compatible with expectations.

By contrast, for stronger modifications of gravity, as in the fR4 cosmological model, our
method fails to predict the correct cosmological parameter values. In fact, from fig. 5.9, it is
evident that the fR4 true values are not included in the 2σ fR4 contours. Though the reduced
χ2 of themodel fitting is approximately equal to 16, we can conclude that, for high values of the
fR0 parameter (i.e. fR0 ≳ 10−4), the void clustering statistics is enough itself to discriminate
between ΛCDM and MG universes. For a proper modelling of the fR4 2PCF we need to
consider additional parameters (such as fR0) in our likelihood. In other words, if the Universe
was described by a fR4 cosmology, we would be able to realise it simply by means of the void
2PCF statistics. Indeed, by applying the model we developed in the ΛCDM framework, we
would not find cosmological constraints on Ωm and σ8 that are compatible with those already
extracted in the literature from other probes. Let us point out that, in order to develop a robust

5Notice that the offset of the true values and contours of f(R) cosmologies with respect to those of theΛCDM
tends to increase as the fR0 MG parameter becomes higher (i.e. going from fR6 towards fR5).

6Note that the fitting procedure performed with our ΛCDM model function provides good agreement (i.e.
χ̃2 ≃ 1) in all the cosmological models analysed in this Thesis work.
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theory of the void clustering and understand its results, it is important to make use of the
present knowledge on the properties of our Universe. In fact, while the void clustering statistics
is a novel cosmological probe that has yet to be properly tested, the constraints coming from
other probes, such as the CMB or the galaxy clustering, are already considered to be reliable.

Figure 5.8: Comparison between the 68% (dark shades) and 95% (light shades) confidence
levels computed with the void auto-correlation function at z = 0 in f(R) scenarios of MG
with respect to the ΛCDM grey contours presented in the upper-left panel of fig. 5.4. The
dotted lines represent the truth values of Ωm and σ8 assumed by the dustgrain-pathfinder
simulations for the f(R) cosmologies (see tab. 4.1). The fR4, fR5 and fR6 are associated to
the red, green and blue colours, respectively.
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Figure 5.9: Combined posterior probability distribution of the cosmological parameters, Ωm

and σ8, obtained for the fR4 data from the ΛCDM model at four redshift (z = 0, 0.5, 1, 2)
taken together. The dark and light red areas represent the 68% and 95% confidence regions,
respectively. The dotted red lines indicate the truths values of Ωm and σ8 assumed by the fR4
dustgrain-pathfinder simulations (see tab. 4.1). Note that the dark and light gray contours
represent the combined posterior probability distribution obtained for the ΛCDM 2PCF (see
fig. 5.5).
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Figure 5.10: As fig. 5.9 but for the fR5 data.

114



The clustering of cosmic voids

Figure 5.11: As fig. 5.9 but for the fR6 data.
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5.4 Voids in the halo distribution

In §5.1 we focused on cosmic voids extracted from the DM particle distribution, but we can also
investigate those emerging from the DM halo distribution7. In the latter case, the requirements
to be satisfied in order to deal with the void clustering properties and their modelling, are
exactly the same as those reported at the beginning of §5.1: (i) the void 2PCF model requires
in input both the void median radius and comoving number density, and these quantities can
be modelled with the Vdn model to account for theoretical principles, if properly cleaned voids
are considered (see §4.4); (ii) the statistics of the sample considered must be high enough to
provide precision on the measurements and, therefore, precision on the modelling; (iii) the
range of the considered void radii must be rather narrow, in order to avoid contamination due
to the mixing of different information associated with different void sizes.

As anticipated, cosmic voids identified in the halo distribution are larger than those iden-
tified in the DM particle field. Furthermore, while the number of DM particles is always the
same8 in the dustgrain-pathfinder simulations, the number of haloes among which we iden-
tify voids changes according to the redshift considered. Indeed, a greater number of haloes is
found at lower redshift, where the small-scale gravitational interaction has had more time to
create DM particle aggregations. Let us also mention that the number of haloes is expected to
vary also according to the cosmological model we consider (i.e. ΛCDM and f(R) scenarios),
since the overdensity clustering properties depend on whether the MG is taken into account.
Therefore, in order to perform a fair analysis, ensuring the conservation of the void considered
percentage at each redshift and for each cosmology, we decide to select void sub-samples on
the basis of the halo MPS (see §4.2.1). According to this argument, once both the void finding
and cleaning procedures are applied to the halo catalogues, we opt to account only for voids
with radii included in the range [2.5 − 5.5] MPS, in order to avoid spurious underdensities
and exclude too large voids. We underline that many tests9 have been performed to estab-
lish this selection of voids, which turned out to be the best achievable compromise between
sample statistics, agreement with the theoretical VSF (see fig. 4.9), and similar enough radii to
study the void clustering properties. Lastly, as it is done for voids identified in the DM particle
distribution, we remove all those objects whose centre is less than 30 h−1Mpc from the edge
of the simulation boxes. In tab. 5.6 we summarise the relevant characteristics of our ΛCDM
void sub-catalogues at each redshift, computed both directly from the sample and from the
theoretical Vdn model of the VSF.

The auto-correlation measure of cosmic voids in DM haloes is performed by means of the
LS estimator (eq. 3.11) and, in order to build the 2PCF model, we use the theoretical quan-
tities derived from the VSF (see tab. 5.6), and adopt the nonlinear threshold δNL

v,DM = −0.5

weighted for the tracer bias (see §4.4.2). The corresponding linear thresholds of void forma-
tion from which we compute the 2PCF model in the biased tracers at z = 0, 0.5, 1, 2 are
δNL
v,tr = −0.54,−0.42,−0.32,−0.19, respectively.

7The other underdensity tracers (i.e. galaxies) cannot be exploited in our work since the dustgrain-pathfinder
do not include baryonic matter yet.

8We recall that for the whole analysis presented in §5.1, only a 25% randomly selected sample of DM particles
is considered, in order to reduce the computational time.

9In particular, we tested different mass cuts on the halo catalogues (see §4.2.1) and different thresholds of void
formation.
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z Nv n̄v [h3 Mpc−3] Rmedian [h−1 Mpc]

simulation model simulation model simulation model

0 939 823 2.62× 10−6 2.30× 10−6 27.50 26.92

0.5 888 728 2.48× 10−6 2.04× 10−6 27.74 27.07

1 708 577 1.98× 10−6 1.61× 10−6 29.39 28.72

2 251 204 7.01× 10−7 5.71× 10−7 37.32 36.43

Table 5.6: Summary of the main characteristics of the ΛCDM sub-sample considered, i.e. the
redshift z, the number of voids Nv, the void mean number density n̄v and the median radius
Rmedian. The last three columns are split into two sub-columns, where the first refers to the
quantities calculated directly from the sample, while the second contains the quantities com-
puted from the theory of the VSF.

Although we have shown in §5.1 that our 2PCF model works well for the voids identified in
DM particles, the situation is different for voids identified in the halo distribution. The MCMC
do not give statistically significant limits on the free parameter (CR) value, which would be
necessary in to proceed with the Bayesian analysis that allows us to constrain the Ωm and σ8

cosmological parameters. This is due to the fact that, after the application of all the aforemen-
tioned criteria to obtain a void selected sample in accordance with theoretical principles, the
resulting statistics of cosmic voids in the halo distribution is rather poor (i.e. the error bars
associated with our measurements are too large with respect to the clustering signal itself).
Indeed, not only the considered dustgrain-pathfinder simulations are rather small for this
study, and consequently better suited to analyse the statistical properties of small voids in-
stead of large voids, but we must also consider the additional loss of counts resulting from the
cleaning procedure, which is a necessary step to be consistent with the assumptions of the VSF
model. Let us underline that another consequence of such a low statistics is that we cannot
properly compare the ΛCDM results with those obtained in the presence of MG.

Our results are reported in fig. 5.12 and 5.13. The former shows the comparison between the
measured 2PCF within and beyond the Standard Cosmological Model. Notice that no trend is
found in the clustering of voidsmeasured in different cosmologies, contrary to the expectations
related to the halo MPS we presented in §4.2.1. This can be caused by two main reasons:
we do not know yet all the possible outcomes of the cleaning procedure in the context of
the void clustering statistics, and the uncertainties on our data are definitely too large, with
respect to the effective signal, to make proper comparisons. Figure 5.13 shows instead possible
alternative 2PCF models for the void clustering in the ΛCDM scenario, which result from
different values of the free parameter CR. As anticipated, we cannot recover robust enough
estimates of the CR from the posterior distribution, and hence we prefer just to highlight a
reasonable range of values for which the predictions of our 2PCF model could be in agreement
with the measurements.

Focusing on the void clustering estimation in the ΛCDM cosmological scenario at z = 0
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(upper-left panel in fig. 5.13), we stress the fact that, even if for separations greater than
≃ 100 h−1Mpc the dark violet model (i.e. CR = 1) seems to accurately describe the mea-
sured black dots, at smaller separations the data are not adequately reproduced by any curve.
Moreover, being the signal consistent with zero at scales greater than 100 h−1Mpc, we have
no clue on how to use the void clustering statistics to extract cosmological constraints. Note
that for increasing redshifts (i.e. z = 0.5, 1, 2) the statistics becomes even worse, and almost
the whole clustering signal turns out to be compatible with zero.

To sum up, given the insufficient dimensions of the considered simulations with respect
to the typical large dimensions of cosmic voids extracted from the DM halo distribution, we
conclude that the analysis performed in §5.1 cannot be successfully applied also in this case.
The investigation of such voids is left for future works, by considering both larger simulations
and real data catalogues.

Let us emphasise that, since the two-point statistics dependsmainly on the centre positions,
we expect to be able to model the auto-correlation function of voids identified in the halo
distribution through the same theoretical formulas as those implemented in the dark matter
field, at least at first approximation. Indeed, the real underdensities of our Universe are unique
in the total dark matter field, and even if we trace them by means of biased collapsed objects,
their true centres are immutable, beyond all the issues related to both the spatial resolution and
the shot noise of the employed void finder. The only void feature that changes is the density
profile (both slope and depth) and, with it, the density contrast enclosed within the void radius.
However, this variation is already included properly in the extended theory of the Vdn model
proposed by Contarini et al. (2019) and Contarini et al. (2022).
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Figure 5.12: Comparison between the auto-correlation function measured in different cosmo-
logical scenarios at four different redshifts (z = 0, 0.5, 1, 2). The black dots represent the
ΛCDM 2PCF, while the red triangles, green squares and blue pentagons refer to the fR4, fR5
and fR6, respectively. The error bars are the Bootstrap errors associated with the measured
2PCF. Lower sub-panels: residuals of the measured clustering profile, computed as the ratio
between the difference 2PCFdata,ΛCDM− 2PCFdata,f(R) and the Bootstrap errors of the f(R)
data.
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Figure 5.13: Upper sub-panels: 2PCF model (coloured dashed lines) hypothesised start-
ing from the ΛCDM measure (black dots) for different feasible values of CR (i.e. CR =
1, 1.05, 1.1, 1.15, 1.2). The black error bars are the Bootstrap errors associated with the mea-
sured 2PCF. Lower sub-panels: residuals of the measured clustering profile, computed as the
ratio between the difference 2PCFdata − 2PCFmodel and the Bootstrap errors of the data.
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Chapter 6

Discussion and conclusions

In this chapter we outline the main highlights of this Master Thesis, beginning with a brief re-
capitulation of the general context in which our work originated, proceeding with a schematic
summary of both the results and procedures employed, and finally presenting possible future
developments of our analysis (see forthcoming §6.1, §6.2 and §6.3, respectively). In particu-
lar, we focus on the relevance of cosmic voids as cosmological probes, especially underlying
the potential powerful role that their clustering statistics can have in the current cosmological
framework.

6.1 The scientific problem

As already clarified, the ΛCDM model (extensively described in §1.3) is widely accepted as
the Standard Cosmological Model, since it is the one that provides the best predictions of the
large-scale properties of the Universe. Indeed, this model has been constantly tested in the
literature by means of increasingly precise measurements, leading to a quite good agreement
between real data and theoretical prescriptions. According to this model, our Universe is based
on General Relativity and the Cosmological Principle, and therefore it can be modelled as
an expanding spacetime that behaves following the FLRW metric (§1.1.1). It is assumed the
existence of two so-called dark components, namely cold dark matter and dark energy, whose
properties and behaviour are far to be completely understood.

Over the years, in order to solve the main issues emerging within this cosmological frame-
work, the scientific community has developed both wide and deep field surveys, which have
been able to constrain the ΛCDM parameters with astonishing precision, mapping the dis-
tribution of the luminous objects that trace the underlying total matter field. It is due to this
increasing precision that observational tensions have arisen among the constraints obtained
from different cosmological probes. As mentioned in §1.4, such tensions emerge when com-
paring the so-called high and low redshift probes, referring to the CMB anisotropies and the
statistical properties of collapsed objects in the local Universe, respectively.

Focusing on the present day large-scale structure, since it is in this context that our work
can be included, let us underline that galaxy clusters (and relative dark matter haloes) evolving
from the positive Gaussian fluctuations of the primordial density field, are the largest existing
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virialized structures of the Universe. Therefore, their statistics turns out to be an extremely
powerful probe to constrain the cosmological parameters. We refer especially to their number
counts, density profiles and clustering. Likewise, we can exploit the same statistical proper-
ties of cosmic voids, which are their negative counterparts, evolving instead from the negative
initial perturbations. Despite the identification of the underdense regions is non-trivial1, it is
very important to build the theoretical basis for studying these objects, as they have many
advantageous characteristics for their exploitation with cosmological purposes. First of all,
they do not need to be modelled dealing with all the complications related to the nonlinear
regime, and this is thanks to the physical barrier δ = −1, which makes their evolution un-
dergo only a mildly nonlinear regime. Moreover, they tend towards sphericity as they evolve
and, being almost baryon-free, they are much less affected by the effects of micro-physics pro-
cesses. All these three characteristics ensure that the void formation and evolution should
be easier to model than the overdense counterparts. Moreover, void interiors are very use-
ful for astrophysical studies on the formation of galaxies and their evolution. Indeed, while
addressing these aspects in high-density environments is non-trivial, isolated galaxies in un-
derdense regions allow us to do so, since their evolution is almost entirely driven by in-situ
processes. Finally, cosmic voids are classified as extremely suitable laboratories to investigate
neutrinos, dark energy and modified gravity, thanks to their emptiness and shallow gravita-
tional potentials. Despite all these favourable characteristics, cosmic voids are still not widely
comprehended and the route towards their full cosmological exploitation is still a long way off.

The aim of this Thesis is to develop a theoretically robust method to handle the void clus-
tering properties with cosmological purposes. Indeed, while the two-point statistics has al-
ready been extensively treated for overdense collapsed objects, for underdensities no mod-
elling based entirely on theoretical principles has yet been presented in the literature. Our
work is a first key step towards the effective employment of the void auto-correlation func-
tion for cosmological purposes, which has turned out to be an extremely powerful probe to
constrain the cosmological parameters describing our Universe. Thus, we base ourmodel func-
tion on the first principles of the void size function (i.e. Vdn model), preparing catalogues to
be analysed in accordance with these same principles. By doing this, we aim at actively partic-
ipating in the ongoing research of the best cosmological model to describe our Universe. Let
us highlight that, despite all the problems that still exist regarding both the void identification
and definition, the statistics of their number counts has now reached a high degree of maturity
in the literature. Thus, it can be reliably used as a theoretically motivated basis for our studies.

1We recall that, being the cosmic voids defined as devoid of matter that do not emit themselves, we must
recover both their shape and centre positions from the distribution of the luminous biased tracers. The only
exception in which we can find voids directly in the DM field is when analysing simulations, because in this case
the DM particle distribution is known by construction.
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6.2 Procedure and relevant results

In this Thesis, we exploited the void clustering statistics in three main ways: (i) to constrain
theΛCDM cosmological parameters, especiallyΩm and σ8, by fitting the measured void auto-
correlation with a 2PCFmodel function; (ii) to evaluate both the robustness of our model when
different cosmological scenarios are considered, and the potential constraining power of the
two-point statistics of cosmic voids in discriminating between the standard ΛCDM and the
f(R)modified gravity models; (iii) to investigate the overall evolution of the auto-correlation
of voids identified in the halo distributions. Note that the latter analysis is meant as a first step
towards future application of the void clustering statistics to real data catalogues.

To extract our data, we made use of high-resolution N-body simulations, namely the dust-
grain-pathfinder, which are characterized by a volume of 7503 h−3Mpc3, and by a quite high
number of DM particles (7683). With the intention of studying the void clustering properties
both in the DM particle field and in the halo distribution, we extracted the DM halo catalogues
bymeans of thedenhf halo finder at z = 0, 0.5, 1, 2. Once the tracer catalogues had been de-
fined, we identified cosmic voids by means of the vide void finder in both the aforementioned
cases, and then proceeded with the application of the cleaning algorithm, which is meant to
exclude spurious underdensities, re-scale the void radii to a defined density threshold, and fi-
nally remove the overlapping. Let us emphasize, once again, that this is done in order to make
our void samples consistent with the assumptions made when predicting the theoretical void
size function through the Vdn model.

We then implemented amodel to describe the void clustering properties, improving the void
power spectrummodel introduced by Chan et al. (2014) by accounting only of cleaned voids, in
order to use properly the theoretical quantities of Rmedian, n̄v, δv and δc (i.e. the median void
radius and number density, and the thresholds of void and overdense structures formation,
respectively). Our model enabled us to fit the data quite well (χ̃2 ≃ 1), as far as the CR free
parameter is considered in the HS theory. Once the model was calibrated by establishing a
value of CR through the MCMC, we run them again to constrain the cosmological parameters,
namely Ωm and σ8. This procedure has been applied to cosmic voids identified both in the
ΛCDM and f(R) cosmologies. Our findings are the following:

• within the ΛCDM simulation, despite the necessary calibration of CR, the 2PCF model
works properly, and sets reliable constraints on the cosmological parameters, which are
in agreement with the true values of the simulation;

• as long as the effects of modified gravity are modest, the model built in the ΛCDM

framework is also suitable for the f(R) simulations (in particular, fR5 and fR6), and
extracts constraints that are compatible at 1σ with the true values of the corresponding
simulation; when instead the modified gravity becomes stronger, the contours are not
consistent with the true values of the cosmological parameters assumed by the dust-
grain-pathfinder fR4 simulation.

Therefore, for minor modifications of gravity, the void clustering properties can still be de-
scribed by ΛCDM 2PCF model, providing cosmological parameters whose values are totally
in agreement both with those of the dustgrain-pathfinder simulations. We can conclude that,
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in these cases, our method is robust. For stronger levels of modified gravity, the model is not
suitable anymore, and it predicts Ωm and σ8 values that do not match those of the fR4 simu-
lations. Hence, in order to properly model the modified gravity contribution, some additional
parameters must be considered (|fR0|, in this case).

By contrast, from the cosmic voids identified in the halo distribution we have not yet ex-
tracted any cosmological information. The statistical relevance of our void samples is quite
poor, and the signal is almost consistent to zero within the errors. Since the two-point statis-
tics depends the most on void centres, we do expect that, with better suited catalogues, we
will be able to properly model the auto-correlation of these voids by means of the same model
adopted for voids identified in the dark matter particle field. Let us emphasise that our sta-
tistical constraining power will improve when considering both larger and high-resolution
simulations and surveys.

To perform our analysis we made use of classes and functions implemented in the CBL,
together with some C++/Python codes we built to model the void 2PCF and related statistics
(i.e. the halo MPS and MF).

6.3 Future perspectives

Our studies are of enormous importance in the current cosmological framework, since for the
very first time we have been able to investigate the constraining power of the void cluster-
ing statistics on the main cosmological parameters (Ωm and σ8). With the aim of overcom-
ing some still physically unexplained limitations of our model (e.g. the origin and redshift
evolution of the calibrated CR parameter), we will make use of larger and higher-resolution
simulations. First of all, we will analyse the dustgrain (Baldi, 2020), an improved version of
their pathfinder precursors. These simulations have a large comoving box side of 2 h−1 Gpc

and a relatively high resolution, given that the number of particles is 20483(×2) CDM par-
ticles (and neutrinos). Having these simulations a volume about 20 times greater than the
dustgrain-pathfinder, they will help us to study the modified gravity f(R) models in more
detail, and therefore to verify if the void clustering statistics is an effectively suitable probe to
discriminate among f(R) and ΛCDM cosmologies. Then, we aim also at investigating hydro-
dynamical simulations, in order to evaluate the possible effects of the baryonic matter in the
void auto-correlation function. This will allow us to both investigate the voids in the DM field
with more precision and analyse the larger voids found in the biased tracer distribution. We
also intend to exploit the current observational surveys (e.g. BOSS) and provide forecasts for
future missions (e.g. Euclid, LSST), analysing the angular void clustering properties of real data
as well. Thus, the overall result of employing such simulations is a significant increase in void
number counts, and consequently, a much higher statistics, thanks to which we could manage
to definitely improve our analysis and relative cosmological outcomes. Note that the result-
ing constraints extracted from the void clustering statistics will be also combined with those
emerging from other cosmological probes (e.g. void and cluster number counts and density
profiles, weak lensing analyses, Ly-α forest, CMB, and many others).

Finally, we will construct our void two-point model function within the next publicly avail-
able version of the CBL.
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