
Alma Mater Studiorum · Università di Bologna

Scuola di scienze
Corso di Laurea Magistrale in Informatica

Dynamic Human Robot Interaction
Framework Using Deep Learning and Robot

Operating System (ROS): a practical
approach

Supervisor
Prof. Davide Rossi
Co-supervisor
Prof. Nadia S. Noori
Co-supervisor
Prof. Tim A. Majchrzak

Candidate
Marco Ferrati

sessione I
Anno Accademico 2021-2022

To my family and friends, who always supported me.

Abstract

Trying to explain to a robot what to do is a difficult undertaking, and only specific
types of people have been able to do so far, such as programmers or operators who
have learned how to use controllers to communicate with a robot. My internship’s
goal was to create and develop a framework that would make that easier. The
system uses deep learning techniques to recognize a set of hand gestures, both static
and dynamic. Then, based on the gesture, it sends a command to a robot. To be
as generic as feasible, the communication is implemented using Robot Operating
System (ROS). Furthermore, users can add new recognizable gestures and link them
to new robot actions; a finite state automaton enforces the users’ input verification
and correct action sequence. Finally, the users can create and utilize a macro to
describe a sequence of actions performable by a robot.

v

Acknowledgment

First of all, I’d like to thanks Prof. Rossi, Prof. Noori and Prof. Majchrzak for the
help they gave to me while working on this internship and writing this thesis.

I’d like to thanks my parents for everything they give to me in these years.

I’d like to thanks my friends for the moments we pass all together.

Bologna, Luglio 2021 Marco Ferrati

vii

Sommario

Questa tesi descrive il lavoro svolto durante il mio tirocinio presso l’Università di
Agder, in Norvegia all’interno del programma Erasmus+ per Tirocini. Il lavoro è
stato svolto sotto la supervisione della Prof.ssa Nadia S. Noori e del Prof. Tim A.
Majchrzak.
Quanto fatto è un lavoro di ricerca nell’ambito dell’Human-Robot-Interaction.
L’idea nasce dalla necessità di trovare un modo per semplificare l’interazione tra
un umano e un robot in diversi scenari utilizzando tecniche di computer vision e
machine learning.
Esistono diverse soluzioni che implementano reti neurali per riconoscere le intenzioni
di un utente, quello che differisce nel mio caso è l’utilizzo di ROS come sistema di
comunicazione tra le componenti in modo da rendere la soluzione proposta il meno
legata possibile all’hardware con la quale interagisce.
Durante il periodo di tirocinio, ho studiato la letterature riguardante la Human-
Robot-Interaction e del riconoscimento dei gesti delle mani utilizzando tecniche di
computer vision e machine learning. Ho inoltre studiato come funziona ROS in
modo da poterlo integrare nella soluzione poi proposta.
Ho quindi realizzato un proof-of-concept di quello che è possibile fare per integrare
componenti di intelligenza artificiale all’interno di applicazioni robotiche e pronto
per poi essere esteso in sviluppi futuri.
Il prodotto realizzato è composto da due componenti principali la prima è un
classificatore di gesti per le mani che opera in real-time utilizzando una webcam come
fonte video. Per fare ciò ho utilizzato alcune delle librerie più famose nell’ambito del
deep learning e della computer vision. Per quanto riguarda la seconda componente,
questa si occupa di interagire con ROS permettendo di legare sequenze di gesti ad
azioni compiute da un robot. In particolare l’integrazione raggiunta permette di
inviare messaggi ad un altro nodo della rete e impostare una posizione da raggiungere.
La sequenza di gesti viene specificata dall’utente attraverso la descrizione di un
automa a stati finiti (DFA) che si assicura di non poter accettare input non
attesi.
Durante il lavoro sono emerse alcune caratteristiche interessanti della soluzione che
si stava realizzando come la possibilità di insegnare nuove gesture con relativa sem-
plicità da parte di un utente e la possibilità di salvare sequenze di gesture per poterle
eseguire in un secondo momento più rapidamente e con maggior certezza.
Inoltre, per poter provare quanto realizzato il simulatore Gazebo è stato utilizzato per
simulare diversi ambienti; in particolare l’ambiente nel quale mi sono maggiormente
concentrato è quello di un magazzino. Ho quindi insegnato alla rete neurale a
riconoscere l’alfabeto dei segni e altre gesture per poter eseguire alcuni compiti, per

ix

x

esempio: raggiungi un punto della mappa, raccogli un pacco e posalo in un’altra
posizione.
La bontà della soluzione proposta è sostenuta da una serie di test che mi hanno
permesso di raccogliere varie metriche. I dati raccolti sono stati poi analizzati e
confrontati con quelli presenti nella letteratura per problemi simili.
Infine, ho fatto un analisi critica del lavoro svolto individuando quali sono le sue
limitazione e le sfide da superare per poterlo migliorare.

Contents

Sommario ix

1 Introduction 1
1.1 Background and motivation . 1
1.2 Problem statement . 1
1.3 Related works . 3
1.4 Organization . 3

2 State of the Art 5
2.1 Human-Robot Interaction . 5

2.1.1 Using a third party device 5
2.1.2 Using the human body . 5

2.2 Hand gesture recognition . 6
2.2.1 Machine learning . 6

2.3 Robot Operating System (ROS) . 9
2.3.1 Communication . 9
2.3.2 Multi-lingual . 10
2.3.3 Tools-based . 10
2.3.4 Thin . 10
2.3.5 Free and Open-Source . 10
2.3.6 Nomenclature . 10

3 Method 13
3.1 Preliminary study . 13
3.2 Choice of technologies and tools . 13

3.2.1 Python . 13
3.2.2 Tensorflow . 14
3.2.3 MediaPipe . 14
3.2.4 OpenCV . 15
3.2.5 Robot Operating System . 15
3.2.6 Gazebo simulator . 16
3.2.7 Git . 16

3.3 System design and implementation 16
3.3.1 System capabilities and data flows 16
3.3.2 Hand gesture recognizer . 19
3.3.3 Hand gesture controller . 23
3.3.4 Integration with ROS . 25

xi

xii CONTENTS

3.3.5 User interface . 25
3.4 Documentation . 27
3.5 Data collection . 28

3.5.1 Hand gesture recognizer . 28
3.5.2 System resource utilization 28

4 Results 29
4.1 Configuration . 29

4.1.1 Environment description . 29
4.1.2 Automaton . 29

4.2 Hand gesture recognizer . 30
4.2.1 Static hand gestures . 30
4.2.2 Dynamic hand gesture . 33
4.2.3 System resource usage during training 36

4.3 Integration with ROS . 37
4.3.1 Integration with ROS’ topic 38
4.3.2 Integration with the navigation system 39
4.3.3 Test in a warehouse environment 40
4.3.4 System resource usage . 42
4.3.5 Execution time . 42

5 Discussion 43
5.1 Hand gestures . 43
5.2 Deep learning models . 43

5.2.1 Static hand gestures recognizer 44
5.2.2 Dynamic hand gestures recognizer 44

5.3 Integration with ROS . 44
5.4 Resource utilization . 44
5.5 Complexity score . 45
5.6 Problems . 45

6 Conclusion 47

A Data gathering 49
A.1 JSON file complexity . 49
A.2 System resource . 50

B Configuration file 53
B.1 Automaton configuration . 53

Glossary 55

Acronyms 57

Bibliography 59

List of Figures

1.1 Example of system architecture. 2

2.1 Representation of a neuron in a neural network. 7
2.2 An example of a deep neural network 7
2.3 Example of message exchange between three nodes using a topic. . 11
2.4 Example of messages exchange between three nodes using a service. 12
2.5 Example of messages exchange between two nodes using an action. 12

3.1 Landmarks on a hand recognized by MediaPipe [11]. 15
3.2 Data flow in operational mode. 17
3.3 Data flow in learning mode. 17
3.4 Data flows in macro mode. 18
3.5 American Sign Language [4]. 20
3.6 Deep neural network for static hand gestures. 21
3.7 Deep feed-forward neural network for dynamic hand gestures. . . . 22
3.8 LSTM neural network for dynamic hand gestures. 23
3.9 UML class diagram for the hand gesture controller. 24
3.10 Activity diagram of the command line interface. 26
3.11 User interface of the program when the webcam is used. 27

4.1 Automaton diagram for commands. 30
4.2 Class distribution in the static hand gestures dataset. 31
4.3 Results graphs for the training of the static hand gesture recognizer. 32
4.4 Performances in the different runs of the static hand gestures. . . . 33
4.5 Class distribution in the dynamic hand gestures datasets. 34
4.6 Results graphs for the training of the dynamic hand gesture recognizer 35
4.7 Performances in the different runs of the dynamic hand gestures. . . 36
4.8 System resource utilization during the static gesture recognizer training. 37
4.9 System resource utilization during the dynamic gesture recognizer

training. 37
4.10 ROS’ network topology . 38
4.11 TurtleSim. 38
4.12 Recognition of the ‘A’ gesture and turtle movement toward position

‘A’. 39
4.13 Test navigation system in a Gazebo Empty World. 40
4.14 RViz detail - feedback and actions. 40
4.15 AWS Robomaker’s small warehouse Gazebo world. 41
4.16 RViz’s interface during simulation in the small warehouse world. . . 41

xiii

4.17 System resource utilization during the “operational mode” 42

5.1 Difference between wearing a glove and not for MediaPipe. 46

List of Tables

4.1 Training configurations for the static hand gesture classifier. 31
4.2 Results for training the static hand gesture recognizer. 32
4.3 Training configurations for the dynamic hand gesture classifier. . . . 34
4.4 Results for training the dynamic hand gesture recognizer. 35

xiv

Chapter 1

Introduction

1.1 Background and motivation
Improving the way operators can interact with a robot is a hard challenge in the
field of Human-Robot Interaction (HRI). Nowadays, robots are everywhere, and
the control of their movements and actions is usually done through a joystick or a
dashboard in the case of very complicated tasks.
The idea of using the operators’ body to interact with a robot is not a new one,
but it brings several challenges when trying to implement it. A possible solution
would be to use computer vision and Machine Learning (ML) techniques. In recent
years, the computational power of processors and the ability to deploy ML models
on cheaper and smaller devices have paved the way to interact with computers and
robots in a way previously unfeasible.

1.2 Problem statement
The primary goal of this thesis is to design, implement, and test a framework
for human-machine interaction capable of integrating machine vision and artificial
intelligence capabilities into robotics operations. In addition, it has to be as dynamic
as possible, in the sense that it must be able to adapt to several scenarios, facilitat-
ing the learning of new capabilities into robotic systems or autonomous worker units.

The proposed solution exploits computer vision and deep learning techniques to
detect a set of hand gestures in real time and convey to a robot the action to take
in response to the gesture. In this way, operators can use the expressive power of
their hands and gestures’ immediacy to communicate with the robot. Furthermore,
by implementing this concept as an interface using the Robot Operating System
(ROS) framework, we will no longer have to worry about which robot we want to
manage in the future; all that is required is that it receives specified messages in
order to function. An example of the idea we want to implement is represented in
figure 1.1. Moreover, making the system as modular as possible would allow other
people to use it as a proper framework for other projects that want to integrate
machine vision and/or artificial intelligence capabilities into robotic operations.
Finally, great relevance must have how to facilitate the learning capability of the

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Example of system architecture.

system to make it dynamic and able to adapt to various scenarios.
The technology was chosen to be tested in a warehouse scenario because, since
2011, Amazon has been deploying robots within its warehouses, and the number
of warehouses using robots to move goods is rapidly increasing [1]. In any case, a
modular system would make it simple to adjust the robot’s activities in response to
a gesture or the motions the system recognizes.

As functional requirements, the system should:
• be able to recognize a set of hand gestures;
• use the ROS framework to communicate with a robot;
• pick up on new gestures from the users;
• create some macros, save them, and run them;
• enables the users to alter the robot’s behavior in response to a gesture.

Meanwhile, during the implementation of the solution proposed, it is important to
keep in mind that the framework should be usable by people with very low pro-
gramming skills, so, as a non-functional requirement, all the possible configurations
should be easy to read and write.

To fulfill all of these requirements, I combed the literature for information on the
state of the art of the HRI, its evaluation methods, and the best way to perform
a hand gesture recognition task. In addition, I studied ROS to integrate it in the
proposed solution.

To summarize, this thesis is going to answer to the following questions:
• how can the Human-Robot Interaction be improved, especially taking into

consideration the use of the human body to explain to a robot what to do?
• what is the state of the art regarding the recognition of hand gestures? Do

they work for both static and dynamic? Can they recognize gestures in
real-time?

• is it possible to integrate ROS with a hand gesture recognizer? Can the
solution proposed be expanded in the future to work with new technologies?

• can users easily teach new gestures to the recognizer and integrate them into
new scenarios?

• can the solution be capable of accepting other types of input, such as, for
example, textual descriptions of command sequences?

1.3. RELATED WORKS 3

1.3 Related works
In the field of Human-Machine-Interface, there are many attempts to simplify the
communication between a human and a machine. Many of them use a third-party
device (e.g. a keyboard, a mouse, a controller or a touch screen) to communicate
with the machine. This involves a non-immediate understanding of how controllers
works, and then operators must spend some time learning how to use them.

A more intuitive way to communicate with a robot is to use some kind of body
gesture, mimicking the action that the robot must perform. There are two methods
to recognize the gesture and many projects have been built on them [16]:

• vision-based methods: use cameras to capture the reality. The images are
analyzed using computer vision and deep learning techniques;

• sensor-based methods: use a third party device like a Wiimote [6] or a
wearable, for example a glove in case of the PowerGlove [8].

There are several projects trying to integrate gesture recognition with the control of
robots. A particularly interesting one is the one proposed by Chen et al. in the 2019.
They developed a system composed of three components: an online personal feature
pre-training system; a gesture recognition system; and a task re-planning system
for robot control [3]. Also, searching on GitHub with the keywords “robot control
gesture” returns hundreds of projects, especially related to controlling robotic arms.
More generally, the task of gesture recognition is a well studied task.

It is worth noting that almost all projects are designed to work with a specific robot.
ROS is not usually involved, leading to a more difficult integration with future
hardware. Moreover, the dynamism of the solution is also not usually taken into
account, resulting in a solution that can only be used in that context. In particular,
learning a new gesture is usually a difficult task to accomplish.

1.4 Organization
This document is organized as follow:
Chapter two describes the background I obtained studying the literature about

HRI, hand gestures recognition and, ROS.
Chapter three describes the technologies and tools used to implement the solution

proposed and why they have been chosen to fulfill the requirements. Moreover,
the design process that led to the solution proposed is described. In particular,
it is focused on the implementation of the system composed by the hand
gesture recognizer and a robot employed in a warehouse (i.e. a storage and
retrieval robot).

Chapter four presents the results obtained performing several tests with the
system developed.

Chapter five presents a discussion on the results presented in chapter four, ex-
plaining them and confronting with other solutions.

Chapter six presents my conclusions on the work done for this internship.

Chapter 2

State of the Art

2.1 Human-Robot Interaction
At present, there are several ways to interact with a robot. The best way to do
it, generally, depends on the type of robot and the task it has to perform. It is
possible to compare two ways for a human to interact with a robot:

• controlling the robot with a third-party device that acts as a controller, such
as a joystick or a computer with a user interface;

• using operators’ body, specifically hand gestures, voice, or body position.

2.1.1 Using a third party device
The earliest ways of interacting with a robot involve the use of a controller that
operators must use to tell the robot what actions to perform. In this case, the
controller could be a joystick or a computer program. In the last case, the study of
Human-Computer Interaction (HCI) must be considered. Using a third-party device
to control a robot is not the easiest way, especially when the tasks to be completed
are intricate and the robot’s movements are as complicated as the tasks.

2.1.2 Using the human body
The other way to interact with a robot involves the use of the human body. The
robot can get input signals through microphones and cameras. Operators can
give input through their voice. In this case, Natural Language Processing (NLP)
is involved. Operators can also give input with hand gestures, body position, or
even facial expressions. For example, in the 2018, Kahuttanaseth et al. achieved
an accuracy between the 70% and 80% in converting raw input text into robot
commands through NLP techniques [7]. Better results are achieved when the full
body position is exploited. Lee, already in the 2006, used body position to recognize
gestures such as walking, running, bending, jumping, lying down on the floor,
waving a hand, sitting on the floor, raising the right hand, getting down on the
floor, and touching a knee and wrist with 95% accuracy [9]. Fujii et al. also reached
similar results in 2014 recognizing four gestures [5]. Regarding hand gestures, the
literature has some interesting experiments that exploit them to control a computer
or a robot. Shanthakumar et al., in the 2020, designed and evaluated six hand

5

6 CHAPTER 2. STATE OF THE ART

gestures to interact with a computer. The results are outstanding with an accuracy
of 97% [16]. Finally, in the 2022, the work made by Canuto et al. defined a way
to identify which gestures can be used to interact with a robot considering the
“Intuitiveness Level” [2]. The proposed methodology is composed of four steps:

1. choice of tasks: select a set of tasks that the robot will perform.
2. capture of gestural data: a user-based approach is suggested. An intuitive

gesture comes from the subconscious mind. You can ask some volunteers to
perform some gestures related to the task until they are out of ideas. This
approach is called, by the author, the “Frustration Based Approach”.

3. analysis of captured gestures: each gesture is analyzed to find the most
common and most compatible with the task.

4. choice of vocabulary (intuitiveness table): the set of gestures is chosen. The
decision is made by looking at the Intuitiveness Level (IL).

2.2 Hand gesture recognition

Hand gesture recognition task is a well-studied task. In the literature, it is possible
to find the idea of using hand gestures as a way to interact with a machine since
1987 [21]. At that time, the idea was to use a glove to recognize the position
and orientation of users’ hand. They were thought to be used for different tasks,
like gesture recognition, an interface for a visual programming language, virtual
object manipulation, and many others. Nowadays, even if a wearable device to
recognize what the hands are doing is highly accurate and precise, for some tasks it
is possible to reach a good level of accuracy with a more widely accessible webcam.
In particular, thanks to the increase in computing power in small devices and
the improved quality of video acquisition devices, the study of computer vision
and machine learning techniques to recognize hand gestures is becoming very
interesting.

2.2.1 Machine learning

Recognizing a hand gesture given an image or a frame of a video is not something
easily algorithmizable. For this, the idea of using a neural network to fulfill the
task is a good one.

Neural network

A neural network is a collection of connected neurons. In biology, a neuron is an
entity that takes several inputs, sums them together, and, if a threshold is surpassed,
emits an output. An artificial neuron is similar. Figure 2.1 represents one of them.
It takes N inputs, sums them together with a bias, and passes the result to an
activation function. If the result is higher than a threshold, the neuron returns an
output.

2.2. HAND GESTURE RECOGNITION 7

Figure 2.1: Representation of a neuron in a neural network.

An artificial neural network is usually organized into layers, as opposed to biological
ones, which are much more complex. Figure 2.2 represents a deep neural network,
deep because there are one or more hidden layers. Different kinds of layers exist.
The one shown in figure 2.2, other than input and output, is dense layer. In this
kind of layer, every output of the previous layer is received as input by each neuron
of the layer considered for the reasoning. Regarding the output layer, each neuron
returns a probability that the input belongs to a class. When there is only one
output neuron the probability is p to belong to the class and 1� p to not belong to
the class. When there is more than one neuron, each of them returns the probability
of belonging to a class, and the highest one is taken as the prediction. A prediction,
to be considered correct, must overcome a threshold value. In general, more are
the hidden layer, more the network will be accurate but the learning process will
take more time.

Figure 2.2: An example of a deep neural network

Dataset

When ML is involved, one of the challenges is the need for large datasets on
which the network can train. When image recognition is the task to be fulfilled,
the datasets are composed of a lot of images, and each one must be labeled to
know what it represents and where, inside the image, the position of the object

8 CHAPTER 2. STATE OF THE ART

to be detected is. This kind of training is known as supervised learning, which
is different from unsupervised learning, in which the dataset has no labels and
usually the task is to categorize the elements into macro-categories. Regarding the
dataset dimension, it is worth stressing that the bigger the dataset, the slower the
training task. It is important to find the right dimension that allows you to have
an acceptable accuracy level.

Training

The goal of training a neural network is to find the best weights for each neuron’s
inputs. The technique for a multi-layer neural network is stochastic gradient descent
with back propagation, and data is essential to training a neural network. Three
datasets are required to correctly train and evaluate a neural network. Usually,
one dataset is randomly divided into three non-overlapping partitions. The first
and biggest part of the dataset is used to train the network. In more detail, it is
used to adjust the weights of inputs. Then, another part of the dataset is picked as
validation during the training process, and the last part is taken to evaluate the
trained model at the end.

Evaluation

To evaluate an ML model, it is necessary to collect some data during the training
process. The metrics to keep track of are:

• loss function: the network’s goal is to minimize the loss function. Generally,
it represents the prediction error with respect to the ground truth;

• accuracy is defined as the ratio of correct predictions to total predictions
made.

Accuracy =
Number of right predictions

Number of predictions
(2.1)

• time: the amount of time spent training the network. It depends on the
dataset size and the complexity of the network. Specifically, a bigger dataset
will require more time but will give better results, as well as a more complex
network.

The best neural network is the one that guarantees the best trade-off between these
metrics.

State of the art

With the help of neural networks, there are several ways to achieve good results
in the hand gesture recognition task. The results presented in Wang et al. [18]
shows that with a Convolutional Neural Network (CNN), it is possible to achieve
an accuracy higher than 90%. CNNs are classifier-based systems that can process
input images as structured arrays of data and identify patterns between them. To
date, there are two main types of object detection algorithms in the field of deep
learning:

• classification-based algorithms: firstly, they select a group of Region Of
Interests (ROIs) in the images where the chances that an object is present
are high; secondly, they apply CNN techniques to these selected regions to

2.3. ROBOT OPERATING SYSTEM (ROS) 9

detect the presence of an object. A problem associated with these types of
algorithms is that they need to execute a detector in each ROI, and this
makes the process of object detection very slow and highly expensive in terms
of computation.

• regression-based algorithms: these types of algorithms are faster than the
above algorithms, in that there is no selection of the ROI so that the bounding
boxes and the labels are predicted for the whole image at once; they can
identify and classify objects within the image at once. Beyond the higher
speed, a key point is that the predictions are informed by the global context
in the image, thus they generally lead to higher accuracies.

One of the most famous regression-based algorithms is You Only Look Once
(YOLO), but it is not the only possible solution to perform this kind of task.
Another technique that gives promising results is the combination of the MediaPipe
hand tracker, which section 3.2.3 describes, and a feed-forward neural network to
recognize the gesture.
All these kinds of solutions suit well in the case of static hand gestures. As Takahashi
shows in his repository[17], working with a history of landmarks is possible. For
this kind of task, a Long Short-Term Memory (LSTM) neural network is a good
starting point. This kind of network tries to add the knowledge of past events to
the computation. To do so, there are loops inside them that allow information to
persist [12].

2.3 Robot Operating System (ROS)
ROS was born as a framework to design robot software. Its initial presentation
was in 2009 by Quigley et al. [13]. In particular it tries to solve the problem of
communication but, it has also many other characteristics that make it a good
framework for robot development.

2.3.1 Communication
A system based on ROS has a peer-to-peer topology. Each node of the network can
communicate with any other node. The first version of ROS implemented a custom
communication layer but, from the second version onwards, it implements the Data
Distribution Service (DDS) protocol.

Data Distribution Service (DDS)

ROS uses DDS as an end-to-end middleware to exchange messages: The adoption
of the DDS is one of the main differences between ROS version 1 and ROS version
2. The DDS was chosen by the ROS maintainer for its reliability and flexibility in
mission-critical systems, such as:

• battleships;
• extensive utility installations;
• monetary systems;
• spacecraft;

10 CHAPTER 2. STATE OF THE ART

• flight control systems;
• train switchboard systems.

The implementation of DDS is hidden from the users, who uses the methods
described in section 2.3.6 with the ROS API to exchange messages. A complete
explanation for this change has been given by the developers and can be found on
the article written by Woodall [19].

2.3.2 Multi-lingual
ROS supports many programming languages. In particular C++ and Python are
the most documented. Each supported language has its own implementation of
the communication layer. In this way the developer can follow the best practice
for each one but, it is possible to wrap the already written library into another
language. “The end result is a language-neutral message processing scheme where
different languages can be mixed and matched as desired.” [13]

2.3.3 Tools-based
The developers of ROS have decided to adopt a microkernel design. In this way
they produced different tools and, each of them perform a task:

• navigate the source code tree;
• get and set configuration parameters;
• visualize the network topology;
• measure the band-with utilization;
• graphically plot message data;
• generate documentation;
• launch sequence of tasks

and many others.

2.3.4 Thin
The developers of ROS encourage the creation of small executables by leaving the
complexity in the dependencies. This promotes writing code reusable also in other
projects.

2.3.5 Free and Open-Source
ROS is free and Open-Source, this has created a strong community around the
framework. The community helps finding bugs and developing new algorithms
accessible to everyone.

2.3.6 Nomenclature
The key points to understand when using ROS are related to the “ROS 2 Graph”,
and they are:

• node: a system component in charge of a specific task. It is an executable;
for example a Python executable or also a C++ executable, and it can

2.3. ROBOT OPERATING SYSTEM (ROS) 11

communicate with other nodes, exchanging messages. A robotic system is
composed of multiple nodes;

• message: the method by which nodes exchange data. Each message has its
own “type”, and this brings advantages in building an interchangeable system
because it is possible to change the components of the system with others
that can understand the same messages. Messages, in this case, can be seen
as interfaces for programming languages. There are three ways for nodes to
exchange messages:

– topic;
– service;
– action.

Exchange messages

Topic It is an implementation of the publisher/subscriber pattern. A node can
publish messages with a topic, and every other node that is listening to that topic
will read that message. This is an asynchronous way of exchanging messages because
the sender will not know if the message has been read. For example, this is the
best way to broadcast a message without saturating the network.

Figure 2.3: Example of message exchange between three nodes using a topic.

Service It is based on a call-response model. In this case, a node requests some
data from another node through a request message. The latter replies with a
response message. This is a synchronous way of exchanging messages. The node
that needs the data waits for the response. There can be many nodes that use
the same service to request some data from another node. This is a bit like what
happens in a client-server architecture, but it should not be used for long-running
processes.

12 CHAPTER 2. STATE OF THE ART

Figure 2.4: Example of messages exchange between three nodes using a service.

Action It uses both topics and services. The functionality is similar to service
with the addition of a constant stream of updates from the “server” through a topic
to which the “client” subscribes. The sequence of actions is the following:

1. a node (i.e. the client) sends a message (the request for a goal) through a
service to another node (i.e. the server). The latter replies with one message
through the service. For example, it can reply with an acknowledgment or a
message saying it has started working on the task;

2. the server keeps the client updated with the progress of the task through a
topic;

3. the client sends a request through another service to the server. When the
task is finished, the server will reply to the client.

Figure 2.5: Example of messages exchange between two nodes using an action.

Chapter 3

Method

To fulfill the requirements of the project, I adopted an experimental approach.
First and foremost, I analyzed the problem in order to understand which kind of
sub-problems I was supposed to solve. From that, I was able to determine which
tools would have been the most appropriate for doing the computer vision and
machine learning tasks and the integration with ROS. Then, to experiment with
the solution proposed, I designed and developed a proof of concept capable of
recognizing and learning hand gestures made by users and communicating to a
robot which action to perform based on the gesture recognized.

3.1 Preliminary study
In analyzing the problem, the following sub-problems emerged to be solved:

• a way to capture webcam’s frames;
• a way to recognize hand gestures, both static and dynamic from the frames

received from a webcam;
• a way to teach to the system new gestures and connect them to new actions;
• a way to convert the recognized gestures into commands for a robot using

ROS as message exchange system. In particular a way to exchange general
purpose messages and set navigation goals;

• a way to simulate the proposed solution in different environments.

3.2 Choice of technologies and tools
To achieve goals described above, I decided to use specific technologies and tools
available for everyone. The taken decisions have been made based on my knowledge
of the technologies and on the necessity to use some specific tools to fulfill the
requirements.

3.2.1 Python
Python is a high-level programming language. It is a well-known and highly
supported programming language for machine learning tasks. Moreover, it is
also supported by ROS whose documentation has sections written for it. The

13

14 CHAPTER 3. METHOD

version used for this project is 3.8 because it is the version distributed within the
latest release of Ubuntu operating system. However, being able to use the latest
version would allow the exploitation of new statements, for example the pattern
matching offered through the match ... case statement, that would make the
implementation easier.

3.2.2 Tensorflow

Tensorflow is an open-source Python library to build ML models. Google began
developing it in 2015, and it is now one of the most widely-used Python libraries
for performing ML tasks. It offers a huge number of layers, activation functions,
and tools to build simple and complex neural network architectures. The best-
known counterpart is PyTorch. During my studies, I have had to use both, and
I think Tensorflow is more suitable to develop neural networks oriented toward
an application. Instead, PyTorch is more appropriate for the development of new
and complex neural networks. Moreover, Tensorflow is better integrated with data
collection tools like Tensorboard.

Tensorflow lite

Tensorflow Lite is a component of Tensorflow that allows you to convert a Tensorflow
model into a compressed flat buffer and then deploy it onto any device (e.g. mobile
devices or embedded devices). With the aim to deploy the hand gesture recognizer
to an embedded device like the Nvidia Jetson or distribute it to other people, the
use of this tool is natural.

Keras

Keras takes advantage of Tensorflow to give the users a powerful API to design and
develop deep neural networks. With a few lines of code, it is possible to implement
complex neural networks that exploit the latest research in the field of ML.

3.2.3 MediaPipe

MediaPipe is an open-source, real-time, and on-device tool that can track multiple
parts of the body. In particular, I am interested in hand tracking. MediaPipe suits
very well for this purpose because it offers a pre-trained ML model to recognize
and track twenty-one landmarks on each hand (figure 3.1). In particular, it uses a
pipeline composed of two ML models:

1. a palm detector that works on a full image locates the palm and identifies
the bounding box around it;

2. a hand landmark model that works on the cropped image of the palm and
returns the hand landmarks considering the depth also. That means it can
track a landmark behind another one.

3.2. CHOICE OF TECHNOLOGIES AND TOOLS 15

Figure 3.1: Landmarks on a hand recognized by MediaPipe [11].

The precision of this tool is about 96% [20], so it is a good starting point for the
hand gesture recognition task. It is possible to get the position of the landmarks
and give them input through a deep neural network trained on the gestures of our
interest.
The list of coordinates relatives at position of the hand’s landmarks is returned
by MediaPipe. These coordinates can be saved and used to train a deep neural
network instead of images. This is interesting because:

• it reduces the size of the dataset;
• it eliminates environmental factors such as background, lighting, and skin

color.
It is interesting to point out that MediaPipe is capable of tracking, in real-time, dif-
ferent parts of the human body, for example, the face and the whole body [11].

3.2.4 OpenCV
OpenCV is an open-source library that fully meets the requirements regarding
computer vision and works well with MediaPipe. It is also distributed as a Python
package to integrate into users’ applications.

3.2.5 Robot Operating System
The use of ROS is a requirement for the project. There are several releases of it.
ROS Galactic Geochelone is the chosen one because it was the latest at the moment
the development started. It has been released in January 2022.

Navigation

“Nav2” is one navigation system compatible ROS. A developer can choose to use their
navigation system, but the one developed by Macenski et al. is widely tested and
supported [10]. It uses a set of actions whose behaviour is described in section 2.3.6
and provides a complete set of API to control the robot. Specifically, those used
are:

• setInitialPose: to set the initial position of the robot;
• goToPose: to tell to the robot to reach a position;

16 CHAPTER 3. METHOD

• isTaskComplete: to know when the task is finished;
• getFeedback: to receive a feedback (i.e. the current position) from the robot.

A complete list of what this package is capable can be found on the Nav2 documen-
tation.1

3.2.6 Gazebo simulator

Gazebo is an open-source simulator for simulating environments involving robots.
Gazebo offers the ability to accurately and efficiently simulate populations of robots
in complex indoor and outdoor environments. Moreover, there is the possibility to
use different robot models using Simulation Description Format (SDF) files and
import Collada files into the simulated world. Gazebo is also expandable with
plugins. One of those lets you use ROS to communicate with the robots inside
the simulation. I used the Gazebo simulator to perform the communication tests
between the hand gesture recognizer and the robot.

3.2.7 Git

Git is a distributed version control system. It has been extensively used to store and
share the source code and documentation for this project. In particular, GitHub
has been used, creating several repositories.

3.3 System design and implementation

The hand gesture recognizer was based on Takahashi’s [17] project, to which
several improvements (i.e., code refactoring to improve readability, code reuse, and
reduction of opportunistic copy and paste) and new functionalities were added.

3.3.1 System capabilities and data flows

Before running the hand gesture detector, users can choose which mode to run the
program:

• operational;
• learning;
• macro.

Operational mode

Within this mode, operators can do a sequence of hand gestures that will be
translated into commands for the robot and will be sent to it through ROS’
communication system.

1
https://github.com/ros-planning/navigation2/tree/main/nav2_simple_commander

https://github.com/ros-planning/navigation2/tree/main/nav2_simple_commander

3.3. SYSTEM DESIGN AND IMPLEMENTATION 17

Figure 3.2: Data flow in operational mode.

Figure 3.2 shows the data flow in the operational mode:
1. OpenCV receives the data from the webcam and converts it into a frame;
2. the frame is given as input to MediaPipe, which handles the hand tracking

task and returns the list of landmarks if a hand is detected in the frame;
3. the landmarks in the frame are given as input to the “static hand gesture

recognizer” model. Meanwhile, the landmarks in the frames along with those
from the previous N frames are given as input to the “dynamic hand gesture
recognizer”;

4. both the recognizers return the predicted gesture;
5. both the predicted gestures are taken into input by the “hand gesture controller”

that decides which action to execute. Section 3.3.3 describes in more detail
how it works. Generally, it can publish a message on a ROS’ topic or set a
navigation goal through the “Nav2” package.

Learning mode

In this mode, users can choose to add a new gesture or enhance an already existing
one by adding more data to the dataset. In both cases, a command-line interface is
used to interact with the user and guide it through the process.

Figure 3.3: Data flow in learning mode.

18 CHAPTER 3. METHOD

Figure 3.3 shows the data flow in the learning mode:
1. OpenCV receives the data from the webcam and converts it into a frame;
2. the frame is given as input to MediaPipe, which handles the hand tracking

task and returns the list of landmarks if a hand is detected in the frame;
3. if users choose to add a new static gesture or enhance an existing one, the

landmarks in the frame are saved in the CSV file with the identifier number
that refers to the label of the gesture. Otherwise, if users choose to add a
new dynamic gesture or enhance an existing one, the landmarks in the frames
along with those from the previous N frames are saved in the CSV file with
the identifier number that refers to the label of the gesture.

4. the associated neural network has been trained;
5. the model is converted into a TFLite model, ready to be used by the recognizer.

Macro mode

This mode is similar to the operational but, instead of sending the command in
real-time to a robot, users can choose to save a sequence of gestures in a text file or
“execute” a previously saved macro file, sending its content to a robot.

(a) Data flow when creating a new macro.

(b) Data flow when running a macro.

Figure 3.4: Data flows in macro mode.

3.3. SYSTEM DESIGN AND IMPLEMENTATION 19

Figure 3.4a shows the data flow when users creates a new macro. The first part is
the same as the operational mode explained in section 3.3.1 but, instead of sending
the command to the robot, it is saved in a text file. Figure 3.4b shows when a
macro is run. The sequence of commands is read from the file created as described
above. Then, the commands are given as input to the “hand gesture controller”
which communicates with the robot as explained in section 3.3.1.

3.3.2 Hand gesture recognizer
The first challenge to solve was the design and implementation of the hand gesture
recognizer. In particular, two types of hand gestures were considered:

• static hand gestures: in which the hand does not move and only a snapshot
of the finger position is needed to recognize the gesture;

• dynamic hand gesture: in which the hand moves. In this case, a sequence
of data is necessary to recognize the gesture.

This diversity leads to two different neural networks to classify the hand gestures
users are making.

Static hand gestures

As reference, the set of static hand gestures chosen is the American Sign Language
(ASL) (in figure 3.5). J and Z are excluded because they involve a movement.
To discriminate between dynamic and static gestures, I decided to prioritize the
dynamic ones because users have to perform an action to activate them. Instead,
with the static gestures, the hand does not move, and the recognizer will always
return a possible prediction. Also, the numbers have been excluded.

20 CHAPTER 3. METHOD

Figure 3.5: American Sign Language [4].

3.3. SYSTEM DESIGN AND IMPLEMENTATION 21

MediaPipe data From MediaPipe, the static hand gesture recognizer gets twenty-
one landmarks per frame. These landmarks are shown in figure 3.1. The dataset is
a CSV file where each line contains:

• the identifier of the static hand gesture. It refers to the line in the label’s file;
• 42 coordinates (i.e. X and Y) of the 21 landmarks, they are relative to the

zeroth landmark (i.e. the wrist) and normalized.

Deep neural network The neural network to recognize the hand gesture starting
from MediaPipe’s landmarks is a feed-forward network.

Figure 3.6: Deep neural network for static hand gestures.

Figure 3.6 presents the layers in the network:
• input layer: it takes in input the data from the dataset. Exactly 42 float

numbers, representing the relative and already normalized coordinates of the
landmarks;

• dropout layer: it randomly drops the input received, which helps prevent
overfitting. If the input is kept, it is passed to the next layer unchanged;

• dense layer: it is a layer composed of N neurons. Every one of them takes
every input received from the previous layer and uses the ReLU activation
function to return the output;

• output layer: it is a dense layer with the softmax as activation function.

Training To train the network the script:
1. reads the dataset file;
2. if users request it, a random under-sampling is applied;
3. divides the dataset into three non-overlapping subsets (train set, validation

set, and evaluation set);
4. builds and compiles the network with callbacks to save the model during

training, to early stop the training if the loss function does not improve
anymore, and log analytics for Tensorboard;

5. trains the network on the train set and validates it with the validation set,
gathering accuracy, loss function value, and time spent;

6. evaluates the network on the evaluation set;
7. converts the model to a Tensorflow Lite model.

22 CHAPTER 3. METHOD

Dynamic hand gestures

Six dynamic hand gestures have been chosen to test the system:
• Z: taken from the ASL;
• J: taken from the ASL;
• go to: to communicate to the robot to move to a location;
• pick up: to communicate to the robot to pick up a parcel;
• drop down: to communicate with the robot in order for the parcel to be

dropped down;
• static: for when the hand is not moving.

The recognition of the dynamic hand gestures, except for static, is prioritized over
static ones.

MediaPipe data From MediaPipe, the dynamic hand gesture recognizer gets
N⇥history_length landmarks coordinates per each frame. Where N is the number
of landmarks, shown in figure 3.1, saved, and history_length is the previous frames
from which to take the landmarks. Indeed, users can choose how many landmarks
to save and how many previous frames to consider. This data is saved in a CSV
file where each line contains:

• the identifier of the dynamic hand gesture. It refers to the line in the label’s
file;

• N ⇥ history_length coordinates relatives to the zeroth landmark (i.e. the
wrist) and normalized.

Deep neural network I tried two neural networks to recognize the dynamic
hand gestures starting from MediaPipe’s landmarks history. The first one is a
feed-forward network.

Figure 3.7: Deep feed-forward neural network for dynamic hand gestures.

Figure 3.7 presents the layers in the network. They are the same as those present
in paragraph 3.3.2. The second one is an LSTM network.

3.3. SYSTEM DESIGN AND IMPLEMENTATION 23

Figure 3.8: LSTM neural network for dynamic hand gestures.

In the model presented in figure 3.8, the input is first reshaped to group together the
landmark coordinates from the same frame. Then an LSTM layer is used, cycling
through the history_length. This model should perform better because it exploits
the potential of a recurrent neural network to learn from a time series.

Training The training is similar to the one presented in paragraph 3.3.2, with
the addition of the possibility for the users to choose which model to use.

Early stopping

Early stopping is the method adopted to specify an arbitrarily high number of
epochs. With this technique, the end of the training is triggered by the recorded
variation of a specified metric. In other words, when a metric does not change (or
changes just a little) for a specified number of epochs, then the training can be
considered ended.

This technique has been used in both static hand gesture training and dynamic
hand gesture training. The metric monitored was the loss on the validation dataset,
and the number of epochs to control was fifty.

3.3.3 Hand gesture controller

The hand gesture controller is the component that takes as input the recognized
hand gestures and converts them into the correct command for the robot. To better
have a modular system the hierarchy in figure 3.9 has been implemented.

24 CHAPTER 3. METHOD

Figure 3.9: UML class diagram for the hand gesture controller.

The class BaseController handles the communication between the hand gesture
recognizer and the automaton that will communicate with the robot. The HandGes-
tureController implements the method consumer_input telling to the automaton
to send the messages to the robot in contrast to the MacroController that does not.
Instead, the MacroController saves on a text file the sequence of gestures made by
the operators with the purpose to use them in another moment.

Automaton

To ensure the correctness of the sequence of gestures, users have to describe it as a
finite-state automaton. The configuration file is a JSON file that requires the users
to define:

• the initial state;
• a list of transitions. Each transition is defined by:

– from which state it comes;
– to which state it is directed;
– with which element of the alphabet (⌃) it is triggered;
– the action to perform when the transition is triggered. It can be:

∗ null when no action is performed;
∗ set a navigation goal specifying the coordinates;
∗ send a message specifying on which topic publish the message, its

type, and the raw data to send.
To better interact with the robot, the coordinates and the raw data for the messages
can be interpolated with the element of the alphabet that trigger the transition.
An example of configuration file can be found in B.1.

Four seconds elapse between the input of two commands, if the first one does not
involve any action. Otherwise, before to accept another input the controller waits
for the action to end. This is made to allow the users to change the gesture they
are doing. The amount of time is configurable but four seconds have been shown to
be sufficient.

There is not a common way to evaluate how much complex and understandable
a JSON file is but, since it is a file that has to be written and read by an user,
it is important to give an evaluation of it. The method adopted to calculate the
complexity considers the depth and the type of fields per object:

• strings, numbers, and null values have a complexity of 1;

3.3. SYSTEM DESIGN AND IMPLEMENTATION 25

• arrays have a complexity equal to 1+(average complexity of nested elements);
• objects have complexity equal to the complexity of their elements;
• every nested elements have a weight d that multiplies the complexity score.

The algorithm to compute the complexity has been implemented in JavaScript and
it is showed in A.1.

3.3.4 Integration with ROS

The integration with ROS is managed through two Python packages:
• rclpy: it comes with the installation of ROS as described in the documentation

and it handles the raw communication between the hand gesture controller
and the robot;

• nav2: package which implement the Nav2 navigation algorithm. It has been
installed with pip after cloning the GitHub repository2 with the following
command:
pip3 install navigation2/nav2_simple_commander/

First and foremost the rclpy is initialized with the statement rclpy.init(). Then,
the hand gesture controller can either publish a message to a topic or set a goal for
navigation based on the triggered automaton transition.

• send a message: the topic, the message type, and the data for the message
are taken from the transition details described in the automaton configuration
file. Then, the correct publisher is retrieved and used to publish the message.
This kind of action exploits the message exchange system of topics explained
in section 2.3.6;

• set a navigation goal: the coordinates are taken from the transition details
described in the automaton configuration file. Then, the position is given as
input to the navigator which returns a feedback until the task is completed.
When the task is completed, it return the status of the operation:

– succeeded: if the robot reach the goal correctly;
– cancelled: if the operators cancelled the task;
– failed: if the robot can’t reach the set goal for any reason.

3.3.5 User interface

A command line interface is the first interface with which users interact. It asks
a few questions about what users wants to do. They can answer writing on the
terminal. It is designed to guide users in the execution of the possible tasks:

• launch the operation mode;
• launch the learning mode asking which dataset is to be edited and other

gesture’s data;
• launch the macro mode asking if users want to execute an existing macro or

to create a new one.
Figure 3.10 show the complete activity diagram with all the possibilities for the
users.

2
https://github.com/ros-planning/navigation2.git

https://github.com/ros-planning/navigation2.git

26 CHAPTER 3. METHOD

Figure 3.10: Activity diagram of the command line interface.

When users select a mode that involves the use of the camera a window appears
showing to them what the camera is watching, the number of FPS, the recognized
gestures, and the selected mode. Moreover, it shows also the hand’s landmarks
(i.e. the black points), the joints between them, and the landmarks used for the
history of key-points in green with a trail when the hand moves. Figure 3.11, for
example, shows the recognition of the gesture F as static gesture and Static as
dynamic.

3.4. DOCUMENTATION 27

Figure 3.11: User interface of the program when the webcam is used.

3.4 Documentation

To make the system as understandable as possible a proper documentation has been
written. To ensure its readiness MkDocs has been used with the theme MkDocs
Material and Ligthgallery to manage the images. Instead, to ensure its availability
GitHub Pages and GitHub Actions have been used. In this way it is available for
everyone.3 The documentation explains how to:

• setup the environment;
• run the simulation;
• interact with the program;
• understand how the program works. In particular it explains:

– the main function;
– the GestureDetector class;
– the AutomataManager class;
– the GestureController class;
– the MacroController class;
– the MacroRunner class.

• train the neural networks;

3
https://jjocram.github.io/hand-gesture/

https://jjocram.github.io/hand-gesture/

28 CHAPTER 3. METHOD

3.5 Data collection

3.5.1 Hand gesture recognizer
To collect data from the hand gesture recognizer Tensorboard and Tensorflow
metrics have been used. Tensorboard has been connected to the train scripts as
the documentation explains. Moreover, the evaluation dataset, obtained from both
the static hand gestures dataset and the dynamic hand gestures dataset has been
exploited to evaluate the trained network on data it has never seen. The data
gathered in this way are:

• accuracy;
• latest loss function value;
• time.

The time is taken exploiting Python’s decorators. Before calling the fit method
the time is taken and when the training is finished the time is taken again. The
delta between the two times is the time spent for training.

3.5.2 System resource utilization
To collect data while the program is running I wrote a Python script, showed in A.2,
that launches a process (e.g. the recognizer), collects CPU and RAM usage over
time and plots them.

Chapter 4

Results

4.1 Configuration
To evaluate the system, first of all an automaton to describe the accepted users
input has been designed. Then, several hyperparameters have been tried to train
the neural networks that run the hand gesture recognizer.

4.1.1 Environment description

To train the networks a MacBook Pro 2019 with MacOS Montrey has been used.
Instead, to test the integration with ROS the same machine has been used but
with Ubuntu on a virtual machine with four physical core and 8GB of RAM. The
virtual machine has been used because Ubuntu is better integrated with ROS and
Gazebo. Moreover, a seed has been set to Tensorflow and Pandas (used for the
split of the dataset) to make the results reproducible.

4.1.2 Automaton

The system is composed of two components: a node that deals with hand gesture
recognition and a node representing the robot to be controlled. The tasks that the
robot must perform are:

• pick up a parcel;
• drop down a parcel;
• go to a predetermined position.

A letter identified positions and parcels. In this way, the ASL is exploitable in order
to simulate the identification of positions and parcels.
Figure 4.1 shows the transition diagram for the automaton designed to check the
users input for these tasks. The alphabet is ⌃ = {[A�Z], go_to, pick_up, drop_down}
and the states are:

• q0: robot without parcel;
• q1: robot waiting for parcel id;
• q2: robot waiting for a “direction” without a parcel;
• q3: robot with a parcel;
• q4: robot waiting for a “direction” with a parcel.

29

30 CHAPTER 4. RESULTS

q0start

q1 q3

q4

q2

pick up

[A-Z]

go to

[A-Z]

go to

[A-Z]

drop down

Figure 4.1: Automaton diagram for commands.

To implement the automaton in figure 4.1 the configuration file in B.1 has been
used, and its complexity is 3.72. The complexity has been computed with the
method described in 3.3.3

4.2 Hand gesture recognizer

4.2.1 Static hand gestures

To train the static hand gesture recognizer the script described in paragraph 3.3.2
has been used. In particular six tests have been performed in order to find the best
configuration.

Dataset

The dataset is composed of 3707 elements divided in 24 labels. The labels are the
letters of the alphabet, excluding J and Z because they involve a movement. Their
distribution is shown in figure 4.2.

4.2. HAND GESTURE RECOGNIZER 31

Figure 4.2: Class distribution in the static hand gestures dataset.

Tests

In table 4.1 the tests performed to find the best configuration to recognize static
hand gestures are listed. “Not defined” in the column of “Number of elements per
class” means that the whole dataset, described in 4.2.1, has been used to train the
network.

Test name Number of elements per class Dropout rate
full_dataset Not defined 0.0

full_dataset_dropout Not defined 0.2
10_samples 10 0.0
7_samples 7 0.0
6_samples 6 0.0
5_samples 5 0.0
Table 4.1: Training configurations for the static hand gesture classifier.

I mainly focused on finding the minimum amount of samples in order to obtain a
good accuracy and a short training time.

Results

The data gathered during the training are shown in table 4.2 and has been plotted.
The graphs are shown in figure 4.3 and 4.7.

32 CHAPTER 4. RESULTS

Test name Evaluation accuracy Evaluation loss Training time
full_dataset 0.99 0.03 6s 587ms

full_dataset_dropout 0.99 0.01 38s 769ms
10_samples 1 0.02 26s 883ms
7_samples 1 0.04 15s 804ms
6_samples 1 0.009 31s 839ms
5_samples 0.27 2.90 4s 551ms

Table 4.2: Results for training the static hand gesture recognizer.

(a) Training time in tests static hand ges-

tures. (b) Accuracy in tests static hand gestures.

(c) Loss in tests static hand gestures.

Figure 4.3: Results graphs for the training of the static hand gesture recognizer.

4.2. HAND GESTURE RECOGNIZER 33

(a) Accuracy performance in the different runs of the static hand gestures.

(b) Loss performance in the different runs of the static hand gestures.

Figure 4.4: Performances in the different runs of the static hand gestures.

4.2.2 Dynamic hand gesture

Dataset

Two datasets have been used:
• five_fingers: in this dataset the history of the tip of every finger has been

saved. There are 461 elements with a total size of 1.1MB. Its class distribution
is shown in figure 4.5a;

• one_finger: in this dataset only the history of the tip of the index finger
has been saved. There are 994 elements with a total size of 423KB. Its class
distribution is shown in figure 4.5b.

34 CHAPTER 4. RESULTS

(a) Class distribution in the dynamic hand

gestures dataset with five fingers.

(b) Class distribution in the dynamic hand

gestures dataset with one finger.

Figure 4.5: Class distribution in the dynamic hand gestures datasets.

Tests

In table 4.3 the tests performed to find the best configuration to recognize dynamic
hand gestures are listed. “Not defined” in the column “Number of elements per class”
means that the whole dataset (specified in column “Dataset”) has been used.

Test name Dataset Network type Number of elements per class
full_dataset five_fingers feed_forward Not defined
50_samples five_fingers feed_forward 50
10_samples five_fingers feed_forward 10
full_dataset five_fingers lstm Not defined
50_samples five_fingers lstm 50
10_samples five_fingers lstm 10
full_dataset one_finger feed_forward Not defined
50_samples one_finger feed_forward 50
10_samples one_finger feed_forward 10

Table 4.3: Training configurations for the dynamic hand gesture classifier.

As for the static hand gesture recognizer, I focused on finding the minimum size of
the dataset in order to obtain a good accuracy and a short training time.

Results

The data gathered during the training are shown in table 4.4 and has been plotted.
The graphs are shown in figure 4.6 and 4.7.

4.2. HAND GESTURE RECOGNIZER 35

Test name Dataset Network type Evaluation accuracy Evaluation loss Training time
full_dataset five_fingers feed_forward 0.98 0.02 19s 878ms
50_samples five_fingers feed_forward 0.97 0.04 14s 558ms
10_samples five_fingers feed_forward 0.77 1,27 16s 970ms
full_dataset five_fingers lstm 0.98 0.01 22s 110ms
50_samples five_fingers lstm 0.97 0.03 24s 161ms
10_samples five_fingers lstm 0.66 0.95 14s 798ms
full_dataset one_finger feed_forward 0.93 0.21 38s 749ms
50_samples one_finger feed_forward 0.95 0.26 42s 535ms
10_samples one_finger feed_forward 0 1.82 2s 622ms

Table 4.4: Results for training the dynamic hand gesture recognizer.

(a) Training time in tests dynamic hand ges-

tures.

(b) Accuracy in tests dynamic hand ges-

tures.

(c) Loss in tests dynamic hand gestures.

Figure 4.6: Results graphs for the training of the dynamic hand gesture recognizer

36 CHAPTER 4. RESULTS

(a) Accuracy performance in the different runs of the dynamic hand gestures.

(b) Loss performance in the different runs of the dynamic hand gestures.

Figure 4.7: Performances in the different runs of the dynamic hand gestures.

4.2.3 System resource usage during training

A test has been performed to collect data on the use of system resources, in particular
CPU and RAM usage. I added one new static and one new dynamic gesture and
then I used the method described in section 3.5.2 to collect the usage of CPU and
RAM of the program during the training process. The training process has been
executed on the host machine and not in the virtual machine. The figures 4.8
and 4.9 show the results obtained.

4.3. INTEGRATION WITH ROS 37

(a) CPU usage. (b) RAM usage.

Figure 4.8: System resource utilization during the static gesture recognizer training.

(a) CPU usage. (b) RAM usage.

Figure 4.9: System resource utilization during the dynamic gesture recognizer training.

4.3 Integration with ROS
Three incremental tests have been performed to test the correct integration with
ROS:

1. message exchange: the first test was about the exchange of different
messages when different gestures were recognized;

2. navigation system: the next step was the correct integration with the
navigation system “Nav2” in a simple environment;

3. complex scenario: the last test carried on was on a more real scenario, a
robot in a warehouse doing different tasks.

In these three tests the network topology was similar:
• the framework creates a node to communicate with the rest of the network;
• the simulated robot could be considerated like another node;
• when the navigation system was integrated, it could be considered like another

node.
The framework’s node communicates with the other two nodes and, obviously, the
navigation system’s node communicates with the robot to tell it where it has to go.
Figure 4.10 shows the network topology implemented to carry on the tests.

38 CHAPTER 4. RESULTS

Figure 4.10: ROS’ network topology

4.3.1 Integration with ROS’ topic
The first results achieved by integrating the framework with ROS have been about
the communication between two nodes: the one representing the hand gestures
recognizer and the TurtleSim. TurtleSim is a “simulator” provided by ROS which
takes inspiration from the turtle programming languages, where you control a turtle
by telling it to go forward, turn left, and turn right. The turtle has a pen attached
to it that draws the path on the screen. Figure 4.11 shows what it looks like at the
startup.

Figure 4.11: TurtleSim.

At this point in the implementation, the hand gesture recognizer creates a node
and communicates with the TurtleSim exchanging messages on two topics. The
messages sent represented the direction and the velocity of the turtle. Four positions
were defined, each of them linked to a static hand gesture (A, B, C, and D). Based
on the gesture recognized, a sequence of messages were picked and sent to the turtle.
These messages told the turtle how to reach the target position from its current

4.3. INTEGRATION WITH ROS 39

position.

(a) Recognition of the ‘A’ gesture. (b) Turtle starts moving.

(c) Turtle reaches position ‘A’.

Figure 4.12: Recognition of the ‘A’ gesture and turtle movement toward position ‘A’.

4.3.2 Integration with the navigation system

The next step has been testing the integration with the navigation system “Nav2”.
I translated the test made with the TurtleSim in a Gazebo World. The map used
was an empty map (figure 4.13a) to ensure that communication between the hand
gesture recognizer and the navigation system is working properly. The test had been
successful and the simulated robot moved into the correct position. Figure 4.13b
shows the RViz tool, which is integrated with the navigation system and shows the
path the robot is following. RViz also gives some feedback and actions regarding
the navigation status, as figure 4.14 shows.

40 CHAPTER 4. RESULTS

(a) Gazebo Empty World. (b) RViz showing the path to position ‘A’.

Figure 4.13: Test navigation system in a Gazebo Empty World.

Figure 4.14: RViz detail - feedback and actions.

4.3.3 Test in a warehouse environment

The last test to carry on regarding the integration with ROS was in a more real sce-
nario. The small warehouse environment provided by amazon1, shown in figure 4.15,
has been chosen to test the framework’s final implementation with the automaton
described in 4.1.2. In the world, the TurtleBot v3 has been inserted, which executes
commands given via hand gestures recognized by the framework.

1
https://github.com/aws-robotics/aws-robomaker-small-warehouse-world

https://github.com/aws-robotics/aws-robomaker-small-warehouse-world

4.3. INTEGRATION WITH ROS 41

Figure 4.15: AWS Robomaker’s small warehouse Gazebo world.

When a complex world is used, RViz provides more interesting data. It displays the
obstacles seen by the robot as well as the path computed by the “Nav2” algorithm
to avoid them, for example. Figure 4.16 shows the RViz’s interface when the small
warehouse world is loaded.

Figure 4.16: RViz’s interface during simulation in the small warehouse world.

The test carried on regarding the recognition of several sequences of gestures
involving both dynamic and static hand gestures, the set of navigation goals, and

42 CHAPTER 4. RESULTS

the proper reception of some messages exchanged on a ROS’ topic. Moreover, with
this whole environment set up, some data has been gathered during the simulation
to prove the capabilities and lightness of the framework.

4.3.4 System resource usage
As in 4.2.3, a tests has been performed to gather some data about the system
resource usage during the execution of the program in operational mode. This test
has been executed in the virtual machine. I ran the simulator and the navigation
tool. Then, I used the method described in section 3.5.2 to collect the usage of CPU
and RAM of the program. I performed the following sequence of gesture:

1. Go to;
2. B;
3. Pick up;
4. D;
5. Go to;
6. C;
7. Drop down.

The results are shown in figure 4.17

(a) CPU usage. (b) RAM usage.

Figure 4.17: System resource utilization during the “operational mode”

4.3.5 Execution time
As explained in 3.3.3 the execution time between two actions is four seconds, at
least. The execution time of the action performed by the robot is not related to the
framework. Meanwhile, I performed some tests to find which is the minimal amount
of time to wait before receiving the next command and four seconds resulted to be
the best choice. But, this amount of time is subjective so, it can be changed by the
configuration.

Chapter 5

Discussion

5.1 Hand gestures
To choose the dynamic hand gestures to use I took inspiration from the literature. I
tried to invent my own gestures but, without the possibility to perform a preliminary
study involving people from the context of use, it would have resulted in unrealistic
and unusable gestures in the real world.

Regarding the static hand gestures, the choice to use the ASL seemed an obvious
choice to me because it is the common way to express letters using hands in societies
where the Latin alphabet is used.

5.2 Deep learning models
The results achieved with the deep learning models to recognize hand gestures are
astonishing. The choice to use MediaPipe has proven to be a winning one. While I
was designing the ML part of the project, I took into consideration the idea of using
a YOLO network to recognize the hand gestures because it is known as one of the
best networks to work on images and videos. But, the downside of this choice would
have been the necessity of a large dataset to train the network. On the Internet,
there are a lot of projects that use YOLO to recognize hand gesture.1 However,
none of them are easily adaptable to different scenarios, or, to put it another way,
it is extremely difficult to add a new gesture. Moreover, YOLO utilizes images or
sequences of them in the case of video, and this is another drawback because when
training on images, the network has to manage the environment (i.e., where the
image is taken), the lightning, and also the skin color.

The method utilized (i.e. MediaPipe’s landmarks coordinates plus a simple feed-
forward neural network) leaves all the above-explained drawbacks to MediaPipe
engineers because it uses only the landmarks’ coordinates (i.e. numbers) to classify
the different hand gestures. Obviously, MediaPipe could be substituted with another
ML model capable of performing hand tracking and returning the coordinates of

1
https://www.kaggle.com/search?q=hand+gesture

43

https://www.kaggle.com/search?q=hand+gesture

44 CHAPTER 5. DISCUSSION

the conjunctions of the hand, but, looking at the results obtained, it seems to be a
very good solution.

5.2.1 Static hand gestures recognizer
The feed-forward deep neural network used to classify the static hand gestures
turned out to be a very good solution with an accuracy greater than the 99% and
a time of only 6 seconds to train it. Moreover, the results show that it works even
with a very small dataset. Furthermore, the time to add a new gesture and train
the network is very low.

5.2.2 Dynamic hand gestures recognizer
The two kinds of networks tested, the feed forward network and the LSTM network,
achieved similar results. I expected that the latter would perform better than the
former because the LSTM network should achieve better results in the context
where past data matters. A difference could not be noticed because of the short
sequence of landmarks that have been used to train the networks.

Moreover, the results show that the more landmarks are taken into consideration,
the more accurate the prediction is. When the tips of all fingers are used, the
network achieves an accuracy of 98%. Instead, with just the tip of the index finger,
the accuracy is 93%, and the difference increases if the dataset size is reduced.
Furthermore, the time spent on training the network is doubled when the one_finger
dataset is used.

5.3 Integration with ROS
The requirement to work with ROS has been fulfilled. The implementation allows
other users to expand the capabilities of the framework. Up to now, it can work
with Nav2 to guide the robot to a position and send any type of message to the
robot utilizing the ROS topic. In the future, the framework could be expanded,
making it compatible with other packages and more ROS’ built-ins.

5.4 Resource utilization
The data in 4.2.3 shows that the training process is fast and not resource-demanding.
During the training, RAM consumption is only 2% of 16GB. Meanwhile, the CPU
usage is around 14% in the case of the static hand gesture recognizer and 8% in
the case of the dynamic hand gesture recognizer.

The data gathered during the simulations about the system resource utilization
shows that the framework is not resource demanding. All simulations were run in
a virtual machine equipped with a 4 CPU core and 8GB of RAM. Regarding the
CPU, the results show that after the initialization (the first spike in figure 4.17a)
the utilization is between 12% � 14%. While, as far as RAM is concerned, its

5.5. COMPLEXITY SCORE 45

occupancy stabilizes below 7% and thus for a total of ⇠ 560MB.

Looking at the results, NVIDIA’s Jetson Nano, with its 4GB of RAM, a four core
CPU, and GPU, could be taken into consideration as a possible hardware to test
the framework in a real environment. Maybe one of the latest Raspberry-Pi could
handle it as well. This is an important fact because those two micro-computers are
among the most widely used for the development of robotic applications.

5.5 Complexity score
There is no common way to evaluate the complexity of a JSON file, as explained
in 3.3.3. The method adopted has been chosen to give an objective evaluation of the
difficulty of writing and reading a JSON file to meet the non-functional requirement
of being easily configurable.
Therefore, it is important to have a low complexity score obtained. To achieve this
goal, it is important to wisely design the automaton that describes the accepted
input. For example, one can verify that the represented automaton is in its
minimized version. The automaton obtained from the configuration can be proven
to be in its minimized version.

5.6 Problems
The solution proposed is not without issues. An easy to fix one is the lack of
functionalities regarding the integration with ROS. Up to now, the integration is
just at the beginning. The framework can only work with Nav2 as the navigation
system and can only send messages through topics. Thanks to how it has been
implemented, the framework’s developers can integrate new functionalities and
other packages very easily. It is sufficient to write the wrapper and update the
accepted actions in the AutomataManager class.
Another problem regards MediaPipe. It is a black box from the point of view of
the implementation because the framework gives in input a frame and receives in
output a list of landmarks. As explained in 3.2.3, MediaPipe is a very good tool
with a high level of accuracy, but it is not without problems. For example, in some
scenarios it can not recognize the hand, and without that functionality, the whole
framework falls apart. Figure 5.1 shows the difference when the users wear a glove
and when they do not. In figure 5.1a the hand tracking works perfectly as the
presence of landmarks is highlighted by the black dots on the hand. Meanwhile, in
figure 5.1b, the glove prevents MediaPipe from working correctly and no landmark
is recognized. This is an important threat to the framework’s functionality as it
could be used in some environments where the users wear clothes or there are other
things that block the key component of the framework from doing its job. Most
importantly, there is nothing that can be done to resolve this issue other than to
wait for MediaPipe’s engineer to find a solution or change tool.

46 CHAPTER 5. DISCUSSION

(a) Hand tracking without glove.

(b) Hand tracking with glove.

Figure 5.1: Difference between wearing a glove and not for MediaPipe.

Chapter 6

Conclusion

Through the work done in this thesis, a novel framework to simplify human robot
interaction has been proposed, implemented with Python, tested in a Gazebo
simulation, and documented to enable other people to use and improve it. The idea
behind the framework is to use the hand to control a robot. This was successfully
achieved by exploiting MediaPipe to track hands in real-time and two deep neural
networks to classify which hand gesture the users are doing by exploiting the
coordinates of the hand’s conjunctions obtained from MediaPipe. Moreover, the
framework handles the communication with the robot through the ROS framework.
In this way, the developed framework can communicate with any kind of robot, as
long as it is compatible with ROS.

Thanks to the combination of MediaPipe and light deep neural networks (less than
ten layers) a set of dynamic and static hand gestures can be recognized in real-time
and the training process is really fast. Moreover, the addition of a new gesture is
really easy and can be done in a couple of minutes. This is achievable because to
recognize hand gestures, the framework uses only the coordinates of twenty-one
landmarks representing the junctions of the hand and a sequence of them in the
case of dynamic hand gestures.

The possibility to add new gestures “to the need” opens the framework to several
scenarios. To handle all the possible input sequences and related actions for the
robot to perform, the framework asks the users to declare a finite state automa-
ton through a configuration file whose structure was made as simple as possible.
In this way, anyone can relate a sequence of gestures to actions performed by a robot.

The integration with ROS is just at the beginning. At the moment, users can only
set a navigation goal and publish a message on a topic. Nevertheless, as a proof-of-
concept of what is possible to achieve with this framework, it has been tested in a
warehouse environment. The ASL has been used as static hand gestures to recognize
and six gestures taken from the literature have been used as dynamic hand gestures
to recognize. Thanks to the framework’s integration with Nav2 as the navigation
system and ROS’ topics, a finite state automaton has been described to achieve
several tasks, for example, going to a position, picking up a parcel, and dropping
off the parcel. A Turtlebot v3 has been simulated in the Gazebo simulator, and the

47

48 CHAPTER 6. CONCLUSION

AWS small warehouse was the environment where the simulation has been executed.

In addition, a way to describe macros has been implemented. In this way, users can
pre-record a sequence of gestures and run it at another moment or edit it with any
text editor. The correctness of the sequence is enforced by the same automaton
that enforces the correctness of the users input in the real-time scenario.

Furthermore, several tests have been performed to evaluate the quality of the
implementation. Those concerning system resource utilization, in particular, are
encouraging in terms of a possible deployment on real hardware such as an NVIDIA
Jetson Nano or a Raspberry-Pi, two boards widely used in the robot and automation
ecosystem.

The solution proposed is not without limitations and challenges to overcome. In
particular, the integration with ROS is just at the beginning. For example, the
framework can work only with Nav2 as the navigation system and can only send
messages through topics. In future development, the framework should be able
to use different navigation systems and exploit all the capabilities provided by
ROS to exchange messages. Moreover, the ROS community is active and there
are a lot of developers who are creating new ROS packages; the framework should
be able to integrate with them as it does with Nav2. This would make it really
easy for the community around the development of robotic applications to exploit
the capability of the framework when the simplification of the HRI is taken into
consideration.

Appendix A

Data gathering

A.1 JSON file complexity

Listing A.1: JavaScript script to compute the complexity of a JSON file

const {isNull} = require(’ u t i l ’);

fs = require(’ f s ’)

let isType = (val , Cls) => val != null && val.constructor ===
Cls;

let getComplexity = (json , d=1.05) => {

// Here ‘d‘ is our " depth f a c t o r "

return d * (() => {

// String
if (isType(json , String)) return 1;

// Number
if (isType(json , Number)) return 1;

// Null values
if (isNull(json)) return 1;

// Arrays are 1 + (average complexity of nested elements)
if (isType(json , Array)) {

let avg = json.reduce ((o, v) => o + getComplexity(v, d)
, 0) / (json.length || 1);

return avg + 1;
}

// Objects are 1 + (average complexity of their keys) + (
average complexity of their values)

if (isType(json , Object)) {

49

50 APPENDIX A. DATA GATHERING

// ‘getComplexity ‘ for Arrays will add 1 twice , so
subtract 1 to compensate

// return getComplexity(Object.keys(json), d) +
getComplexity(Object.values(json), d) - 1;

return getComplexity(Object.values(json));
}

throw new Error(‘Couldn ’ t g e t comp l ex i ty o f ${ j s on } ‘) ;

}) () ;

} ;

f s . r e a dF i l e (p r o c e s s . argv [2] , ’ utf8 ’ , f u n c t i o n (e r r , data) {

i f (e r r) {

r e tu rn c on s o l e . l o g (e r r) ;

}

j s o n F i l e = JSON . pa r s e (data) ;

c o n s o l e . l o g (getComplex i ty (j s o n F i l e)) ;

}) ; ⇧

A.2 System resource

Listing A.2: Python script to collect system resource usage by a process

import psutil
from subprocess import DEVNULL , STDOUT
from sys import argv
from time import sleep

import seaborn as sns
from matplotlib import pyplot as plt

def plot_and_save(x, y, path , title , ylabel):
graph = sns.lineplot(x=x, y=y)

graph.set(title=title)
graph.set(xlabel="Time (s) ")
graph.set(ylabel=ylabel)
graph.get_figure ().savefig(path)
plt.close(graph.get_figure ())

cmd = [command for command in argv [1:]]
sleep_time = 5.0
graph_path = " graphs "

times = []

A.2. SYSTEM RESOURCE 51

t = 0.0
cpu_percents = []
ram_percents = []
number_of_cpu = psutil.cpu_count ()

with psutil.Popen(cmd) as p:
print(" S t a r t i n g l o g g i n g . . . ")

while p.status () == psutil.STATUS_RUNNING or p.status ()
== psutil.STATUS_SLEEPING:
times.append(t)
t += sleep_time

cpu_percents.append(p.cpu_percent ())
ram_percents.append(p.memory_percent ())
#print(f"CPU: {p.cpu_percent ()}%")
#print(f"RAM: {p.memory_percent ()}%")
sleep(sleep_time)

print(" . . . f i n i s h e d ")

if len(cpu_percents) > 0 and len(ram_percents) > 0:
print(f"Data ga the r ed : { l e n (t imes) }")
plot_and_save(times ,

[cpu_perc/number_of_cpu for cpu_perc in
cpu_percents],

f"{graph_path }/ cpu . png",
"CPU usage ",
"% o f CPU")

plot_and_save(times ,
ram_percents ,
f"{graph_path }/ram . png",
"RAM usage ",
"% o f RAM") ⇧

Appendix B

Configuration file

B.1 Automaton configuration

Listing B.1: JSON configuration file for the automaton

{
" i n i t i a l _ s t a t e ": "q0",
" t r a n s i t i o n s ": [

{
" from": "q0",
" to ": "q1",
" with ": "pick_up",
" a c t i o n ": null

},
{

" from": "q0",
" to ": "q2",
" with ": "go_to",
" a c t i o n ": null

},
{

" from": "q2",
" to ": "q0",
" with ": "A−Z",
" a c t i o n ": {

" type ": " s e t_nav iga t i on_goa l ",
" c o o r d i n a t e ": " $with "

}
},
{

" from": "q1",
" to ": "q3",
" with ": "A−Z",
" a c t i o n ": {

" type ": " send_message ",
" message ": {

" type ": "/ control_arm ",

53

54 APPENDIX B. CONFIGURATION FILE

" data ": "pick_up $with "

}
}

},
{

" from": "q3",
" to ": "q0",
" with ": "drop_down",
" a c t i o n ": {

" type ": " send_message ",
" message ": {

" type ": "/ control_arm ",
" data ": "drop_down"

}
}

},
{

" from": "q3",
" to ": "q4",
" with ": "go_to",
" a c t i o n ": null

},
{

" from": "q4",
" to ": "q3",
" with ": "A−Z",
" a c t i o n ": {

" type ": " s e t_nav iga t i on_goa l ",
" c o o r d i n a t e ": " $with "

}
}

]
} ⇧

Glossary

ASL Way to represent each letter of the latin alphabet using only one hand. xiii,
20, 57

DDS Standard by the Object Management Group that aims to enable dependable,
high-performance, interoperable, real-time, scalable data exchanges using a
publish–subscribe pattern. 57

HCI Studies about the usability of computational devices.. 55, 57
HRI The set of interactions that a human and a robot can have. It starts from

Human-Computer Interaction and adds the robot component to the equation.
57

IL The Intuitiveness Level of each gesture is defined as the arithmetic mean of
the normalized occurrence rates. Namely, the general occurrence rate, the
volunteer occurrence rate, and the occurrence rate by time. 57

LSTM Recurrent neural network within you try to make the network remember
what happened in the past. 57

Macro A saved sequence of actions that can be executed in a very simple way. 2,
55

ROS The Robot Operating System (ROS) is a set of software libraries and tools
that help you build robot applications [15]. 57

SDF SDFormat (Simulation Description Format), sometimes abbreviated as SDF,
is an XML format that describes objects and environments for robot simulators,
visualization, and control. Originally developed as part of the Gazebo robot
simulator, SDFormat was designed with scientific robot applications in mind.
57

YOLO An object detection algorithm of the type regression-based. Firstly intro-
duced by Redmon et al.[14] in 2015 and then deeply studied for its character-
istics. 57

55

Acronyms

ASL American Sign Language. xiii, 19, 20, 22, 29, 43, 47, 55

CNN Convolutional Neural Network. 8

DDS Data Distribution Service. 9, 10, 55

HCI Human-Computer Interaction. 5, 55
HRI Human-Robot Interaction. 1, 2, 3, 48, 55

IL Intuitiveness Level. 6, 55

LSTM Long Short-Term Memory. xiii, 9, 22, 23, 44, 55

ML Machine Learning. 1, 7, 8, 14, 43

NLP Natural Language Processing. 5

ROI Region Of Interest. 8, 9
ROS Robot Operating System. 1, 2, 3, 9, 10, 13, 15, 16, 17, 25, 29, 37, 38, 40, 42,

44, 45, 47, 48, 55

SDF Simulation Description Format. 16, 55

YOLO You Only Look Once. 9, 55

57

Bibliography

[1] Robert Bogue. “Growth in e-commerce boosts innovation in the warehouse
robot market”. In: Industrial Robot: An International Journal (2016) (cit. on
p. 2).

[2] Clebeson Canuto, Eduardo O Freire, Lucas Molina, Elyson AN Carvalho,
and Sidney N Givigi. “Intuitiveness Level: Frustration-Based Methodology
for Human-Robot Interaction Gesture Elicitation”. In: IEEE Access (2022)
(cit. on p. 6).

[3] Bo Chen, Chunsheng Hua, Bo Dai, Yuqing He, and Jianda Han. “Online
control programming algorithm for human–robot interaction system with a
novel real-time human gesture recognition method”. In: International Journal
of Advanced Robotic Systems 16.4 (2019), p. 1729881419861764 (cit. on p. 3).

[4] Ds13. ASL alphabet. url: https://commons.wikimedia.org/w/index.php?
curid=79729279 (cit. on p. 20).

[5] Tatsuya Fujii, Jae Hoon Lee, and Shingo Okamoto. “Gesture recognition
system for human-robot interaction and its application to robotic service
task”. In: 1 (2014) (cit. on p. 5).

[6] Cheng Guo and Ehud Sharlin. “Exploring the use of tangible user interfaces
for human-robot interaction: a comparative study”. In: (2008), pp. 121–130
(cit. on p. 3).

[7] Wittawin Kahuttanaseth, Alexander Dressler, and Chayakorn Netramai.
“Commanding mobile robot movement based on natural language processing
with RNN encoderdecoder”. In: (2018), pp. 161–166. doi: 10.1109/ICBIR.
2018.8391185 (cit. on p. 5).

[8] G Drew Kessler, Larry F Hodges, and Neff Walker. “Evaluation of the Cyber-
Glove as a whole-hand input device”. In: ACM Transactions on Computer-
Human Interaction (TOCHI) 2.4 (1995), pp. 263–283 (cit. on p. 3).

[9] Seong-Whan Lee. “Automatic gesture recognition for intelligent human-robot
interaction”. In: (2006), pp. 645–650. doi: 10.1109/FGR.2006.25 (cit. on
p. 5).

[10] Steve Macenski, Francisco Martín, Ruffin White, and Jonatan Ginés Clavero.
“The Marathon 2: A Navigation System”. In: (2020). url: https://github.
com/ros-planning/navigation2 (cit. on p. 15).

[11] MediaPipe website. url: https://mediapipe.dev/ (cit. on p. 15).
[12] Christopher Olah. Understanding LSTM Networks. url: http://colah.

github.io/posts/2015-08-Understanding-LSTMs/ (cit. on p. 9).

59

https://commons.wikimedia.org/w/index.php?curid=79729279
https://commons.wikimedia.org/w/index.php?curid=79729279
https://doi.org/10.1109/ICBIR.2018.8391185
https://doi.org/10.1109/ICBIR.2018.8391185
https://doi.org/10.1109/FGR.2006.25
https://github.com/ros-planning/navigation2
https://github.com/ros-planning/navigation2
https://mediapipe.dev/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

60 BIBLIOGRAPHY

[13] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, Andrew Y Ng, et al. “ROS: an open-source Robot
Operating System”. In: 3.3.2 (2009), p. 5 (cit. on pp. 9, 10).

[14] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi.
“You Only Look Once: Unified, Real-Time Object Detection”. In: CoRR
abs/1506.02640 (2015). arXiv: 1506.02640. url: http://arxiv.org/abs/
1506.02640 (cit. on p. 55).

[15] ROS website. url: https://www.ros.org (cit. on p. 55).
[16] Vaidyanath Areyur Shanthakumar, Chao Peng, Jeffrey Hansberger, Lizhou

Cao, Sarah Meacham, and Victoria Blakely. “Design and evaluation of a hand
gesture recognition approach for real-time interactions”. In: Multimedia Tools
and Applications 79.25 (2020), pp. 17707–17730 (cit. on pp. 3, 5, 6).

[17] Kazuhito Takahashi. Hand gesture recognition using mediapipe. url: https://
github.com/Kazuhito00/hand-gesture-recognition-using-mediapipe
(cit. on pp. 9, 16).

[18] Taiqian Wang, Yande Li, Junfeng Hu, Aamir Khan, Li Liu, Caihong Li,
Ammarah Hashmi, and Mengyuan Ran. “A Survey on Vision-Based Hand
Gesture Recognition”. In: (2018). Ed. by Anup Basu and Stefano Berretti,
pp. 219–231 (cit. on p. 8).

[19] William Woodall. ROS on DDS. url: https://design.ros2.org/articles/
ros_on_dds.html (cit. on p. 10).

[20] Fan Zhang, Valentin Bazarevsky, Andrey Vakunov, Andrei Tkachenka, George
Sung, Chuo-Ling Chang, and Matthias Grundmann. “MediaPipe Hands: On-
device Real-time Hand Tracking”. In: CoRR abs/2006.10214 (2020). arXiv:
2006.10214. url: https://arxiv.org/abs/2006.10214 (cit. on p. 15).

[21] Thomas G. Zimmerman, Jaron Lanier, Chuck Blanchard, Steve Bryson, and
Young Harvill. “A Hand Gesture Interface Device”. In: SIGCHI Bull. 18.4
(May 1986), pp. 189–192. issn: 0736-6906. doi: 10.1145/1165387.275628.
url: https://doi.org/10.1145/1165387.275628 (cit. on p. 6).

https://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
https://www.ros.org
https://github.com/Kazuhito00/hand-gesture-recognition-using-mediapipe
https://github.com/Kazuhito00/hand-gesture-recognition-using-mediapipe
https://design.ros2.org/articles/ros_on_dds.html
https://design.ros2.org/articles/ros_on_dds.html
https://arxiv.org/abs/2006.10214
https://arxiv.org/abs/2006.10214
https://doi.org/10.1145/1165387.275628
https://doi.org/10.1145/1165387.275628

	Dedication
	Abstract
	Acknowledgment
	Sommario
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background and motivation
	1.2 Problem statement
	1.3 Related works
	1.4 Organization

	2 State of the Art
	2.1 Human-Robot Interaction
	2.1.1 Using a third party device
	2.1.2 Using the human body

	2.2 Hand gesture recognition
	2.2.1 Machine learning

	2.3 Robot Operating System (ROS)
	2.3.1 Communication
	2.3.2 Multi-lingual
	2.3.3 Tools-based
	2.3.4 Thin
	2.3.5 Free and Open-Source
	2.3.6 Nomenclature

	3 Method
	3.1 Preliminary study
	3.2 Choice of technologies and tools
	3.2.1 Python
	3.2.2 Tensorflow
	3.2.3 MediaPipe
	3.2.4 OpenCV
	3.2.5 Robot Operating System
	3.2.6 Gazebo simulator
	3.2.7 Git

	3.3 System design and implementation
	3.3.1 System capabilities and data flows
	3.3.2 Hand gesture recognizer
	3.3.3 Hand gesture controller
	3.3.4 Integration with ROS
	3.3.5 User interface

	3.4 Documentation
	3.5 Data collection
	3.5.1 Hand gesture recognizer
	3.5.2 System resource utilization

	4 Results
	4.1 Configuration
	4.1.1 Environment description
	4.1.2 Automaton

	4.2 Hand gesture recognizer
	4.2.1 Static hand gestures
	4.2.2 Dynamic hand gesture
	4.2.3 System resource usage during training

	4.3 Integration with ROS
	4.3.1 Integration with ROS' topic
	4.3.2 Integration with the navigation system
	4.3.3 Test in a warehouse environment
	4.3.4 System resource usage
	4.3.5 Execution time

	5 Discussion
	5.1 Hand gestures
	5.2 Deep learning models
	5.2.1 Static hand gestures recognizer
	5.2.2 Dynamic hand gestures recognizer

	5.3 Integration with ROS
	5.4 Resource utilization
	5.5 Complexity score
	5.6 Problems

	6 Conclusion
	A Data gathering
	A.1 JSON file complexity
	A.2 System resource

	B Configuration file
	B.1 Automaton configuration

	Glossary
	Acronyms
	Bibliography

