
Alma Mater Studiorum · Università di
Bologna

SCUOLA DI SCIENZE

Corso di Laurea in Informatica

ASYMMETRIES IN
ADVERSARIAL SETTINGS

Relatore:
MICHELE LOMBARDI

Presentata da:
SAMUELE MARRO

I Sessione
A.A. 2021-22





To my family,

which never stopped

believing in me.





Abstract

Even without formal guarantees of their effectiveness, adversarial attacks
against Machine Learning models frequently fool new defenses. We identify
six key asymmetries that contribute to this phenomenon and formulate four
guidelines to build future-proof defenses by preventing such asymmetries.
We also prove that attacking a classifier is NP -complete, while defending
from such attacks is ΣP

2 -complete. We then introduce Counter-Attack (CA),
an asymmetry-free metadefense that determines whether a model is robust
on a given input by estimating its distance from the decision boundary.
Under specific assumptions CA can provide theoretical detection guarantees.
Additionally, we prove that while CA is NP -complete, fooling CA is ΣP

2 -
complete. Even when using heuristic relaxations, we show that our method
can reliably identify non-robust points. As part of our experimental evaluation,
we introduce UG100, a new dataset obtained by applying a provably optimal
attack to six limited-scale networks (three for MNIST and three for CIFAR10),
each trained in three different manners.





Sommario

Pur non fornendo garanzie formali sulla loro efficacia, gli attacchi avversariali
ingannano frequentemente le difese più recenti. Identifichiamo sei asimmetrie
chiave che contribuiscono a questo fenomeno e formuliamo quattro linee guida
per costruire difese prive di queste debolezze. Dimostriamo inoltre che attac-
care un modello è un problema NP -completo, mentre difenderlo è un problema
ΣP

2 -completo. Illustriamo quindi Counter-Attack (CA), una metadifesa priva
di asimmetrie che stabilisce la distanza di un input dal suo decision boundary,
determinando quindi la robustezza del modello su quell’input. Sotto ipotesi
specifiche, CA offre garanzie formali della sua efficacia. Dimostriamo inoltre
che, mentre eseguire CA è un problema NP -completo, ingannare CA è un
problema ΣP

2 -completo. Mostriamo infine che, anche quando vengono utiliz-
zati rilassamenti euristici, CA riesce a identificare consistentemente input non
robusti. Come parte del nostro studio sperimentale, costruiamo UG100, un
nuovo dataset ottenuto applicando attacchi esatti a sei reti di scala ridotta
(tre per MNIST e tre per CIFAR10), ciascuna addestrata con tre tecniche
diverse.
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Chapter 1

Introduction

Machine Learning (ML) models have seen widespread application in
numerous fields, from natural language generation [23] and image classification
[37] to autonomous driving [26] and drug development [68].

However, adversarial attacks, i.e. algorithms designed to fool such models,
represent a significant threat to the applicability of ML in real-world contexts
[8, 9, 95]. Despite several years of research effort, countermeasures (i.e.
“defenses”) to adversarial attacks are frequently fooled by applying small
tweaks to existing techniques [11, 12, 16, 31, 34, 85]. This phenomenon is
present even when neither attacks nor defenses provide provable guarantees
of their effectiveness.

We argue that this pattern is due to differences between the fundamental
mathematical problems that defenses and attacks need to tackle. We identify
six of such differences, which we refer to as asymmetries. Additionally, we
formulate four guidelines that can help to even out the field w.r.t. attacks.

We formalize these observations by showing that, under reasonable as-
sumptions, attacking a classifier is NP -complete, while defending from an
attack is ΣP

2 -complete.

Motivated by this analysis, we introduce a new metadefense, named
Counter-Attack (CA), that can determine if a defended model is not robust
on a given input. The main idea in CA is to mitigate asymmetries by

1



1. Introduction

relying on attacks themselves as a detection tool. The use of adversarial
attacks also ensures that CA can be applied in any setting where at least one
untargeted adversarial attack is known, while also allowing one to capitalize
on future improvements in the field of adversarial attacks. Moreover, we
prove that running CA with exact attacks is NP -complete, while fooling CA
is ΣP

2 -complete.
While using CA in combination with exact attacks is not scalable, existing

attacks may serve as an effective proxy. We provide empirical evidence for
this claim via the introduction of UG100, a dataset of provably optimal
adversarial examples found on 2.2k samples of MNIST and CIFAR10 for six
differently configured Neural Networks (NNs). We also benchmark seven
heuristic adversarial attacks and find that they provide an accurate (average
over-estimate between 2.04% and 4.65%) and predictable (average R2 > 0.99)
approximation of the true optimum. UG100 can also represent a benchmark
for future attacks, and allow for a comparison with both exact and heuristic
approaches. All our code, datasets, pretrained weights and results are available
at https://github.com/samuelemarro/counter-attack under MIT license.

https://github.com/samuelemarro/counter-attack


Chapter 2

Preliminaries

2.1 Background and Related Work

2.1.1 Adversarial Examples

Adversarial examples can be informally defined as inputs that cause an
undesirable behavior in a target model. For instance, a spam email that fools
a spam detector is a type of adversarial example, since it achieves a certain
behavior (getting classified as legitimate) against the wishes of the recipient.
In the context of Machine Learning, the most common adversarial examples
in the literature are those against image classifiers. These are inputs that are
visually indistinguishable from regular images (also known as genuine inputs)
but are classified incorrectly. Refer to Figure 2.1 for an example. Adversarial
examples were first identified in image classifiers by [81]. The same paper also
introduced what is now known as the L-BFGS attack, the first adversarial
attack against a NN.

2.1.2 Adversarial Attacks

An adversarial attack is an algorithm designed to find adversarial examples.
Attacks against classifiers are commonly classified depending on three factors:

• Admissible input constraints;

3



2.1 Background and Related Work 2. Preliminaries

(a) Genuine

Predicted class:

Tiger Cat

(b) Adversarial

Predicted class:

Frying Pan

(c) Difference

Figure 2.1: Adversarial example against the Inception V3 ImageNet-1000
classifier. For ease of visualization, the difference has been multiplied by a
factor of 15.

• Objective;

• Information requirements.

Admissible Input Constraints Attacks are usually constrained on which
inputs can be used as adversarial examples. This is due to the fact that only
some inputs are beneficial to the attacker. For example, in the context of
attacks against spam detectors, an email that does not convey the intended
malicious message is likely to be of little use to the spammer. For image
classifiers, the most common utility metric is the perceptive similarity with a
given starting image. This is frequently approximated by the Lp norm of the
difference between the adversarial example and the starting point. Depending
on the setting, p is usually 0 [80], 2 [47, 51] or ∞ [25, 47].

Objective In the contest of image classification, the objective of the attack
is usually to find an input that is classified with a label other than the correct
one (i.e. the class of the starting point). If there are no additional restrictions
on the predicted class, these attacks are referred to as untargeted attacks.
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On the other hand, if the objective of the attack is to find an input with a
specific (and incorrect) predicted class, such an attack is said to be targeted.

Information Requirements Not all adversarial attacks require the same
level of information regarding the target. While most attacks (known as
white-box attacks) require unrestricted access to both the predictions and
the gradients of the model, gray- and black-box attacks require only partial
information, such as predictions alone. [15] and [53] are two examples of
black-box attacks.

2.1.3 Defenses

The threat of adversarial attacks has led to the development of adversarial
defenses, i.e. techniques aimed at preventing models from being fooled. Some
of the first defenses focused on hiding information (e.g. gradients) from the
attacker [25, 28, 63]. These defenses were broken in [3, 4, 59].

A different line of work focused on detecting adversarial examples, either by
making assumptions regarding their nature [33, 71] or by training detectors to
identify common properties [24, 27]. These defenses were broken in [12, 34, 85].

Defensive distillation [58, 60] attempted to improve robustness by making
a student network learn to imitate a temperature-scaled teacher model. The
defense was broken by adjusting existing techniques in [11]. Early attempts
to combine multiple defenses were also found to be ineffective [31].

The same pattern repeated for MagNet [48] and Bounded ReLU [103]
(broken in [13]), as well as relatively recent defenses such as k-Winners Take
All [96] and Mixup Inference [57] (broken in [85]).

One of the few consistently effective defenses in the literature is adversarial
training [7, 81] (specifically, PGD adversarial training [47]). In adversarial
training, the model is trained on a dataset augmented with adversarial
examples. While this approach provides notable robustness gains, it often
comes at the expense of other properties such as accuracy [47] and fairness
[99].
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Refer to [2] for an in-depth overview of recent developments in the field.

2.1.4 Provable Methods

Robustness bounds for NNs were first provided in [81], followed by [32] and
[92]. One major breakthrough was the introduction of automatic verification
tools, such as the Reluplex solver [36]. However, the same work also showed
that proving arbitrary properties of a ReLU network is NP-complete.

Researchers tried to address this issue by working in three directions.
The first is building more efficient solvers based on alternative formulations
[22, 76, 83]. The second involves training models that can be verified with
less computational effort [43, 97] or provide inherent robustness bounds [77].
The third focuses on guaranteeing robustness under specific threat models
[30] or input distribution assumptions [17, 65, 77]. Since all these approaches
have limitations that reduce their applicability [75], heuristic defenses tend
to be more common in practice.

Exact approaches can also be used to compute provably optimal adversarial
examples [10, 83]. Such optimal attacks are subject to the same limitations
as provable defenses and thus have limited applicability.

2.1.5 Robustness Studies

Another line of research has focused on understanding the nature of
robustness and adversarial attacks. Frameworks such as [21], [62] and [64]
focused on formalizing the concept of adversarial robustness. Some studies
have also highlighted trade-offs between robustness (under specific definitions)
and properties such as accuracy [20, 105], generalization [50] and invariance
[84]. However, some of these results have been recently questioned, suggesting
that these trade-offs might not be inherent in considered approaches [100, 107].

Adversarial attacks have also been studied from the point of view of
Bayesian learning, which has been used to derive robustness bounds and
provide insight into the role of uncertainty [67, 70, 88].
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Finally, adversarial attacks have also been studied in the context of game
theory [69], identifying Nash equilibria between attackers and defenders
[54, 108].

2.2 Formalization

In this section, we provide key definitions and notations for our analysis.
Compared to existing frameworks, we focus on obtaining formulations for strict
forms of defenses and attacks: while less practical for designing algorithms,
this approach will clarify the motivations for our identified asymmetries.

Let fθ : X → {1, . . . , N} be a discrete classifier with parameter vector θ.
Let d : X ×X → R+ be a function representing a measure of the similarity
between two examples. Let B(x, ε) = {x′ ∈ X | d(x′, x) ≤ ε} be a ball of
radius ε and center x. We define an adversarial example as follows:

Definition 1 (Adversarial Example). Given an input x, an adversarial
example is an input x′ ∈ B(x, ε) such that fθ(x

′) ∈ C(x), where C(x) ⊆
{1, . . . , N} \ {fθ(x)}

An adversarial attack for a classifier fθ can then be viewed as follows:

Definition 2 (Adversarial Attack). An adversarial attack is a function
af,θ : X → X that solves (in an heuristic or exact fashion) the following
optimization problem:

argmin
x′∈X

{d(x′, x) | fθ(x′) ∈ C(x)} (2.1)

The attack is then deemed successful if the returned solution x′ = af,θ(x) also
satisfies d(x′, x) ≤ ε. We say that an attack is exact if it finds an optimal
solution to Equation (2.1); otherwise, we say that the attack is heuristic. An
attack is said to be targeted if C(x) = Ct,y′(x) = {y′} with y′ ̸= fθ(x); it is
instead untargeted if Cu(x) = {1, . . . , N} \ {fθ(x)}).

Additionally, we define the decision boundary distance as follows:
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Definition 3 (Decision Boundary Distance). The decision boundary distance
of a given input x is the minimum distance between x and another input x′

such that fθ(x) ̸= fθ(x
′).

Note that this is also the value of d(af,θ(x), x) for an exact, untargeted, attack.
Finally, we formalize the concept of robustness. Intuitively, a classifier

is robust w.r.t. an example x iff x cannot be successfully attacked. More
formally:

Definition 4 (Local Robustness). fθ is locally robust w.r.t. an example
x ∈ X iff ∀x′ ∈ B(x, ε) we have fθ(x

′) = fθ(x).

By extending the reasoning to all possible genuine examples we obtain a
definition of global robustness:

Definition 5 (Global Robustness). Let D be the genuine data distribution
and let X(D) be the projection of its support on X. fθ is robust w.r.t. D iff
fθ is locally robust ∀x ∈ X(D).



Chapter 3

Adversarial Asymmetries

3.1 Overview

We now proceed to describe the asymmetries between attacks and defenses.
Note that not all defenses are affected by all asymmetries. Moreover, a defense
that is subject to an asymmetry is not necessarily ineffective, but it will have
a higher chance of being circumvented. We start by observing that, based
on Definition 1, the problem that an attack needs to actually solve to be
considered successful is:

find x′ ∈ B(x, ε) s.t.
∨

c∈C(x)

fθ(x
′) = c (3.1)

By building over Definition 5 and using a similar rationale, we can determine
the problem that a defense needs to solve:

find θ s.t. Ex,y∼D [L(y, fθ(x))] ≤ κ︸ ︷︷ ︸
acceptable performance

∧∀x ∈ X(D),∀x′ ∈ B(x, ε) : fθ(x
′) = fθ(x)︸ ︷︷ ︸

global robustness

(3.2)
where D is the data distribution and κ is a threshold value. The condition
is a conjunction of two terms: the left-most one captures the fact that the
“defended” model still needs to be acceptably accurate, while the right-most
term corresponds to global robustness. Note that here fθ refers to the
combination of the model and any attached defense mechanisms.

9



3.1 Overview 3. Adversarial Asymmetries

Comparing Equation (3.1) and Equation (3.2) suggests that, to some
degree, adversarial attacks can be viewed as a relaxation of adversarial defenses.
This provides the basis for our analysis, throughout which we will assume
that both attacks and defenses rely on the same definition of d and ε.

Asymmetry 1 (Target Information Asymmetry). The attacker can always
obtain more information about the defender than the defender can obtain
about the attacker.

Based on Equation (3.1), the attacker needs information about the target
model fθ. However, this can be usually be obtained, since the model necessarily
predates the attacker. For example, the attacker can use genuine queries to
collect samples and train a surrogate model [4, 59]. Defenses often employ
information about attacks to reduce the computational cost of the robustness
check, i.e. they replace B(x, ε) in Equation (3.2) with a subset Ba(x, ε). For
instance, they may assume that adversarial examples satisfy some properties
or that they follow a specific distribution. However, since attacks are deployed
after defenses, they can actively try to violate such assumptions [4, 59]. Note
that the reasoning stands even if a defense is updated in response to new
attacks.

Asymmetry 2 (Data Asymmetry). Defenses need information regarding the
genuine data distribution, while attacks do not.

This is reflected in Equation (3.1), which contains no reference to the
distribution D. In fact, an attack can be executed even if the prediction fθ(x)

is incorrect. Conversely, information on the genuine distribution (labeled or
unlabeled) is needed specifically by some defenses, and in general for training
the classifier. Such information typically comes in the form of samples (e.g. a
training set), thus leading to generalization errors that increase the success
chance of attacks. This is the case for MagNet [48], which was broken in [13]
by finding adversarial examples that are also classified as in-distribution. A
similar issue would arise by using a small sample size in adversarial training.
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Asymmetry 3 (Objective Asymmetry). While the attacker only needs to
satisfy the constraints mentioned in Equation (3.1), the defender also needs
to account for the model loss.

The natural loss L is targeted explicitly when the defense is stated as an
optimization problem (e.g. adversarial training) or by adding a constraint
(such as in Equation (3.2)). Even when this is not the case, no defense
mechanism can compromise the accuracy of a model to the point that it
becomes useless. This additional requirement can be at odds with robustness,
as discussed in [86]. Additionally, solving Equation (3.2) can be expected to
be more challenging than solving Equation (3.1).

Asymmetry 4 (Input Space Asymmetry). Defended models are expected
to be robust on the input distribution, while attacks only focus on a single
provided starting point.

The defender does not know in advance which inputs will be provided to
the model and will therefore need to aim for global robustness, or more likely
to an approximation due to the involved computational cost. Typically, the
term ∀x ∈ X(D) is replaced with ∀x ∈ X̂, where X̂ is the training set. Such
an approach may lead to exploitable generalization errors, while still leaving
a computational advantage to the attacker as long as |X̂| > 1.

Asymmetry 5 (Success Condition Asymmetry). While a defense needs to
ensure that every input close to the original has the same prediction, an attack
only needs to find one adversarial example.

In other words, even one blind spot is sufficient for the attack to succeed
and the defense to fail. Formally, Equation (3.1) has the term ∀x′ ∈ B(x, ε),
while its counterpart in Equation (3.1) lacks universal quantification. This
asymmetry is particularly relevant for high-dimensional input spaces.

Asymmetry 6 (Constraint Asymmetry). A defense needs to ensure a specific
prediction for inputs close to the original, while an attack may succeed with
more than one prediction value.
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Specifically, the strictest possible constraint for Equation (3.1) is obtained
for |C(x)| = 1, which will be typically as restrictive as the constraint fθ(x′) =

fθ(x) in Equation (3.2). As a consequence, untargeted attacks can be expected
to have an additional advantage over defenses. Note that this observation may
not hold in cases where certain classes are rarer than others (e.g. anomaly
detection) and generally depends on the shape of the decision boundaries
over the input space X.

3.2 Computational Robustness

A direct consequence of our definition of heuristic defense is that, given
enough computational effort, any heuristic defense can be fooled. In the
worst case, a motivated attacker could create an almost-perfect clone of fθ
and run a brute force attack on every input in B(x, ε). We thus argue that
heuristic defenses should instead focus on computational robustness. We
define computational robustness informally as follows:

Definition 6. A defense is computationally robust if the computational
resources required to fool it represent a higher cost than the potential gain.

A game-theoretical analysis of the game between the attacker and the
defender would be heavily influenced by the choice of utility functions, which
are fundamentally dependent on the specific application context of the classi-
fier. For this reason, we instead focus on the more general (and tractable)
problem of maximizing the difference between the computational complexity
of defending and attacking.

In other words, if fθ is a defended model, achieving computational robust-
ness involves increasing the complexity of the following constraint satisfaction
problem:

find x′ ∈ B(x, ε) s.t. fθ(x
′) ∈ C(x)∧d(x′, af,θ(x

′))− b(x′, af,θ(x
′)) > ε (3.3)

Unlike provable robustness, computational robustness is compatible with
efficient defenses and is thus more suitable for real-world applications.
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A trivial analysis from the point of view of computational robustness
involves the sample efficiency of the attack. If a defense has complexity
O(f) and an attack requires O(g) calls to the model to find an adversarial
example, then the complexity of fooling the defense is in O(fg). However, a
custom-crafted attack could exploit the structure of the defense in order to
achieve a higher sample efficiency. Proving a lower bound on the number of
required samples to fool a defense can thus provide evidence in favor of its
computational robustness.

A more effective argument involves proving that running a defense and
fooling it are complete w.r.t to different levels of the polynomial hierarchy.
Under reasonable assumptions (i.e. strict inclusion between the two levels),
this difference leads to a significant computational gap between the two
problems.

3.3 Guidelines

Based on our analysis, we formulate four guidelines to mitigate the effect
of the asymmetries and achieve computational robustness. These guidelines
can be used as a “checklist” when designing or evaluating a defense. The
checklist can also be used by attackers in order to identify potential weak
points of a defense, thus representing a potential ethical concern. We argue
that, due to the repeated failures of “security by obscurity” in the context
of adversarial machine learning [3, 4, 59], the benefits of exposing potential
issues of adversarial defenses outweigh the risks.

Guideline 1. In order to not be affected by Asymmetry 1 and Asymmetry 2,
a defense should not rely on information outside of the target model itself.

Guideline 2. In order to not be affected by Asymmetry 3, a defense should
not take into account (explicitly or implicitly) the natural loss. Alternatively,
the defense should offer an explicit trade-off between robustness and loss so as
to align itself with the priorities of the defender.
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Guideline 3. In order to not be affected by Asymmetry 4, a defense should
take the input x as a parameter at inference time.

Guideline 4. In order to not be affected by Asymmetry 5 and Asymmetry 6,
a defense should solve a problem with success condition and constraints that
are not stricter than those of the attack.

Note that Guideline 4 is often difficult to verify, mostly due to two reasons:

• The problem formulation might not be comparable with the one used
by attacks;

• The success condition is often context-dependent.

3.4 Analysis of Existing Defenses

We now analyze whether existing defenses in the literature follow our
guidelines in Tables 3.2 and 3.3. Due to the large number of defenses and the
frequency of the same observations, we provide a legend for our findings in
Table 3.1.
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Table 3.1: Reference for observations in Tables 3.2 and 3.3.

Letter Observation

A Assumes or learns properties of adversarial examples
B Relies on the assumption that the attacker does not

have full information
C Relies on the assumption that the attacker cannot

deal with randomness
D Requires genuine data
E Explicit role of loss
F Implicit loss constraint (effect on loss or accuracy)
G Provides an explicit accuracy-robustness trade-off
H A non-trivial part of the computation is performed

before the input is known
I Problem statements are not directly comparable
J Partially broken
K Classifies sets of inputs
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Table 3.2: Relation between existing defenses and guidelines.

Defense
Follows...

Broken?
G1 G2 G3 G4

AAT (detector) [102] No (D) No (F) No No [85]
AAT (ensemble) [102] No (D) No (F) No No [85]
Adversarial Training [47] No (D) No (E) No No No
Adversarial Retraining [27] No (A, D) Yes No No [12]
APE-GAN [74] No (A, D) No (F) ∼ (H) N/A (I) [13]
Are Generative Classifiers... [45] No (A, D) Yes No N/A (I) [85]
Artifact Detection [24] No (A, D) Yes No No [12]
Attacking Adversarial Attacks [93] No (A) No (F) Yes Yes [16]
Beating Attackers... [94] No (A, D) Yes Yes Yes No
Bounded ReLU [106] No (D) No (F) Yes Yes [13]
Cascade Adversarial Training [52] No (D) No (E) No No No
Counteracting Adversarial... [104] No (A) No (F) Yes Yes No
Defense-GAN [72] No (D) No (F) ∼ (H) N/A (I) [4] (J)
Defensive Distillation [60] No (D) No (F) No N/A (I) [11]
Defensive Dropout [90] Yes No (F) Yes Yes [4] (J)
Dimensionality Reduction [6] No (A) No (F) Yes N/A (I) [12]
Dropout Randomization [24] No (A) Yes Yes Yes [12] (J)
EMPIR [73] No (D) No (E) No No [85]
Ensemble Diversity [56] No (D) No (E) No No [85]
Error Correcting Codes [87] No (A, D) No (E) No No [85]
Examining Convolutional... [49] No (A, D) Yes No No [12] (J)
Gaussian Data Augmentation [106] No (D) No (F) No N/A (I) [13]
Hidden Layer PCA [44] No (A, D) Yes No No [12]
Input Image PCA [33] No (A, D) Yes No No [12]
Input Transformations [28] No (A, B) No (F) Yes Yes [4]
k-Winners Take All [96] No (B) No (F) No Yes [85]
Local Intrinsic Dimensionality [46] No (A, D) Yes No No [4]



3. Adversarial Asymmetries 17

Table 3.3: Relation between existing defenses and guidelines (cont.).

Defense
Follows...

Broken?
G1 G2 G3 G4 (L)

MagNet (classifier) [48] No (A, D) No (F) ∼ (H) No [13]
MagNet (detector) [48] No (A, D) Yes ∼ (H) N/A (I) [13]
Maximum Mean Discrepancy [27] No (A, D) No N/A (K) No [12]
ME-Net [101] No (A, D) No (F) ∼ (H) N/A (I) [85]
Mean Blur [44] No (A) Yes Yes No [12] (J)
Mixup Inference [57] Yes No (F) Yes Yes [85]
Mitigating Through... [98] No (A, C) No (F) Yes Yes [4]
OOAT [89] No (D) Yes (G) No No No
PixelDefend [78] No (B, D) No (F) ∼ (H) N/A (I) [4]
Re-Attacking [1] No (A, D) Yes ∼ (H) N/A (I) No
Rethinking Softmax.. [55] No (D) No (E) No No [85]
RSFT [5] No (A) No (F) Yes Yes [85]
ShieldNets (classifier) [82] No (D) No ∼ (H) N/A (I) No
ShieldNets (detector) [82] No (D) Yes ∼ (H) N/A (I) No
Stochastic Activation Pruning [18] No (C) No (F) Yes Yes [4]
The Odds are Odd [71] No (A, B, D) Yes No No [85]
Thermometer Encoding [25] No (A, B) No (F) No Yes [4]
Turning a Weakness... [35] No (A, D) Yes Yes Yes [85]





Chapter 4

Counter-Attack

We now introduce Counter-Attack, an asymmetry-free technique to de-
termine whether a model is robust on a given input. We start by observing
that, according to Definition 4, a classifier fθ is not locally robust w.r.t. an
example x iff:

∃x′ ∈ X : d(x′, x) ≤ ε ∧
∨

c∈Cu(x)

fθ(x
′) = c (4.1)

If d is symmetric, this equation can be rewritten as:

∃x′ ∈ X : d(x, x′) ≤ ε ∧
∨

c∈Cu(x)

fθ(x
′) = c (4.2)

This condition is true if and only if x can be successfully attacked using
an untargeted approach. For an asymmetric d, one can rework the attack
formulation from Equation (2.1) by replacing d(x′, x) with d(x, x′) and obtain
an analogous result. In both cases, we obtain by negation that fθ is locally
robust w.r.t. x if and only if x cannot be successfully attacked. This is the
core idea behind Counter-Attack.

From here we can obtain the actual method by introducing a “buffer”
function to account for the gap between the example found by an attack
method and the actual optimal solution of Equation (3.1). Formally, let fθ

be a discrete classifier, let af,θ : X → X be an untargeted attack method and
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let b : X ×X → [0,∞) be the buffer function. We define Counter-Attack as
follows:

Definition 7 (Counter-Attack). The CA method marks an example x as not
robust if and only if:

d(x, af,θ(x))− b(x, af,θ(x)) ≤ ε (4.3)

In other words, after finding an adversarial example, we compute its
similarity w.r.t. x, we subtract a buffer value and we compare the result with
the threshold ε.

The action taken in case an input is marked as non-robust depends on the
specific context. Examples include analyzing with slower but more robust tools
(e.g. a human being), requesting additional information from the submitter
or rejecting the example altogether. Additionally, the flagged examples can
be then used to increase the robustness of the model (e.g. through adversarial
training).

4.1 Properties

The properties of the attack function af,θ and the buffer function b affect
those of the method as a whole. Let d∗(x) be the decision boundary distance
for x. Then an example x is not robust iff d∗(x) ≤ ε. As a consequence:

Statement 1. If af,θ is an an exact attack and b is constant and equal to 0,
then CA is an exact robustness check.

This property is a direct consequence of the fact that for an exact attack
we have d(x, af,θ(x)) = d∗(x).

If instead the buffer function systematically under-estimates the gap w.r.t.
the decision boundary distance, we obtain the following property:

Statement 2. If ∀x ∈ X we have that d∗(x) + b(x, af,θ(x)) ≤ d(x, af,θ(x)),
then CA cannot lead to false positives.
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With the stated assumption d(x, af,θ(x))− b(x, af,θ(x)) will always over-
estimate d∗(x), so that any point that is reported as non-robust is guaran-
teed to be such. This scenario is easy to reproduce in practice by setting
b(x1, x2) = 0 ∀x1, x2 ∈ X and using any attack method.

Conversely, if the buffer function systematically over-estimates the simi-
larity gap, we have that any example marked as robust by CA is guaranteed
to be robust:

Statement 3. If ∀x ∈ X we have that d∗(x) + b(x, af,θ(x)) ≥ d(x, af,θ(x)),
then CA cannot lead to false negatives.

This scenario could be achieved by using as an attack method an algorithm
with a guaranteed approximation factor, i.e. one such that d(x, af,θ(x)) ≤
αd∗(x) for a given α. Therefore, the development of such attacks represents
a promising research direction towards improving the robustness of future
models.

CA does not rely on information outside of the model itself (Guideline 1)
and takes x as parameter (Guideline 3). Moreover, it does not affect accuracy
(thus preventing the need for implicit constraints related to the loss, as per
Guideline 2), although it can increase reliance on other robust classifiers.
Finally, using the same constraints as an untargeted attack trivially satisfies
Guideline 4.

4.2 Fooling CA

If the buffer function is not guaranteed to be either an over- or under-
estimator (e.g. because it has been empirically calibrated), the method offers
no theoretical guarantees. Therefore, an attacker could design a method
asf,θ to find adversarial examples with an over-estimated decision boundary
distance. Formally, the attacker would need to solve the following feasibility
problem:

find x′ ∈ B(x, ε) s.t. fθ(x
′) ∈ C(x)∧d(x′, af,θ(x

′))− b(x′, af,θ(x
′)) > ε (4.4)
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However, even in this situation CA offers two major advantages.

Asymmetry 7 (Defense Information Asymmetry). The attack used by the
attacker has at most as much information regarding the target model as the
attack used by the defender.

In other words, while CA is guaranteed access to the true model, the
attacker will obtain a perfect replica only as a best case.

Asymmetry 8 (Defense Complexity Asymmetry). Counter-Attack can be
viewed as a relaxation of the problem of fooling Counter-Attack.

Specifically, verifying the feasibility of a single input x′ in Equation (4.4)
involves solving Equation (3.1) while at the same time determining if CA fails
to solve an equivalent problem. Depending on how efficiently the attacker
can simulate CA, this can significantly increase the computational load.

While neither asymmetry guarantees that Equation (4.4) is infeasible,
they both provide a reasonable advantage to the defender, increasing the
cost of fooling CA. We also provide a formal analysis of the computational
complexity of CA and asf,θ in Chapter 5.

Note that improving CA does not necessarily involve developing stronger
attacks. Collecting more information about the behavior of existing attacks,
designing weak but predictable attacks and training models that are easier to
attack (such as in [97]) are all reasonable ways to decrease the chances of an
unexpected over-estimate.

4.3 Buffer Models

We provide an overview of potential buffer models, focusing on their
strengths and weaknesses in the context of achieving robustness.

Note that all the listed models require some form of calibration or training,
which, if done using sampled data, can represent a violation of Guideline 1.
In order to reduce the impact of this violation, designers should thus take into
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account the potential impact of misplaced assumptions and adapt the model
accordingly (e.g. by multiplying b(x, af,θ(x)) by a fixed correction factor).

4.3.1 Least-Squares Linear Model

A least-squares linear model aims to predict the true decision boundary
distance given the heuristic one by minimizing the mean squared error on a
given dataset. While easy to train and understand, this type of model tends to
be significantly influenced by outliers, which means that a few unusually over-
estimated heuristic distances can cause the buffer model to under-estimate
the true decision boundary distance.

4.3.2 Quantile Linear Model

A more reliable procedure involves modeling a certain quantile τ of the true
decision boundary distance through quantile regression [39]. Such a technique
allows the designer to pick the acceptable fraction and type of mistakes on
the training data. For certain choices of τ (e.g. 0.5), the model also tends
to be more robust to outliers, since unusually high over-estimates have a
significantly smaller impact on such quantiles of the distance distribution.

4.3.3 Chance-Constrained Least-Squares Model

A hybrid approach involves solving a constrained least-squares problem,
where the model is required to under- or over-estimate a given quantile of the
distance distribution:

argmin
α

Ex∼D
[
(d(x, af,θ(x)) + bα(x, af,θ(x))− d∗(x))2

]
s.t. P (d∗(x) + bα(x, af,θ(x)) ≤ d(x, af,θ(x))) ≥ τ

(4.5)

where α is the parameter vector for b. While partially influenced by outliers,
this approach is more robust than regular least-squares models, while also
providing a similar intuition.
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4.3.4 Beyond Linear Models

Linear models based on the heuristic distance are by no means the only
possible approach. It is possible to both use more sophisticated models (e.g.
binary trees or NNs) and rely on additional information (e.g. the output of
the model or the density of the genuine distribution). However, increasing
the complexity of the buffer model carries the risk of introducing flaws that
can be exploited by the attacker. Designers should thus be mindful of such a
risk when employing large, non-explainable buffer models.

4.4 Comparison with Attack-Based Defenses

Counter-Attack shares some similarities with attack-based defenses, i.e.
defenses that employ adversarial attacks. Both CA and attack-based defenses
run an adversarial attack on the input that should be classified by the target
model. However, these defenses use adversarial attacks not to verify local
robustness, but rather to check properties that are assumed to be correlated
with adversarial examples (thus violating Guideline 1). Specifically:

• [35] assumes that adversarial examples can be corrupted by Gaussian
noise and/or require a high number of iterations to be attacked;

• [93] postulates that the loss function w.r.t. false classes has a greater
local Lipschitzness compared to the ground-truth class;

• [94] assumes that perturbing an adversarial example leads to an anoma-
lous variation of the output of the classifier;

• [1] assumes that the difference between the features of an input x and
those of af,θ(x) can be used to identify adversarial examples;

• [104] assumes that adding targeted perturbations for non-predicted
labels to an adversarial example causes the score of the ground-truth
class to increase.
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At the moment of writing, [35] has been fooled in [85], while [93] has been
fooled in [16]. In both cases, the attackers used an approach similar to the
one described in Section 3.1. We postulate that applying the same technique
to [1], [94] and [104] would lead to similar results.





Chapter 5

Complexity Analysis

In this chapter, we provide theoretical bounds for several classes of relevant
problems. We will focus on L∞-bounded attacks against ReLU networks, i.e.
networks containing only linear combinations and ReLUs. In the context of
CA, we will also restrict our analysis to polynomial-bounded buffer models,
i.e. buffer models that can be used in polynomial time w.r.t the size of x.

We prove the following statements:

• All of the following problems are NP -complete:

– Running an exact attack;

– Running an exact untargeted attack;

– Running Counter-Attack in its exact form;

• All of the following problems are coNP -complete:

– Verifying the local robustness of a classifier;

– Verifying the global robustness of a classifier;

• All of the following problems are ΣP
2 -complete:

– Fooling CA;

– Finding a locally robust classifier;
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– Finding a globally robust classifier;

– Training a defense with constrained loss;

• Training a defense with optimal loss is ΣP
2 -hard.

5.1 Preliminaries

5.1.1 Notation

We use fi to denote the i-th output of a network. We define f as

f(x) = argmax
i

{fi(x)} (5.1)

for situations where multiple outputs are equal to the maximum, we use the
class with the lowest index.

5.1.2 Polynomial-Bounded Input Spaces

We focus on polynomial-bounded input spaces, i.e. spaces for which there
exists a polynomial p such that ∀x.∀ε.∀x′ ∈ B(x, ε).|x′| ≤ p(|x|+ |ε|), where
|x| is the size of the representation of x. Examples of polynomial-bounded
input spaces (using L∞ balls) include:

• Integers;

• Fixed-point numbers;

• IEE754 floating-point numbers;

• Fixed-length vectors of all of the above;

• Images with known size and bit depth;

• Audio files and videos with known duration and bitrate.
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A consequence of this definition is that the cardinality of B(x, ε) is finite for
all choices of x and ε. This implies that, for all values of ϵ, given X ′ ⊆ B(x, ε)

there exists a value µ such that ∀x′, x′′ ∈ X ′.µ ≤ d(x′, x′′).

Note that, given a sufficiently small choice of µ, it is possible to compute
the value µ′ of a polynomial bounded space that has been transformed by the
following functions:

• Sum;

• Multiplication by constants;

• ReLU.

in polynomial time w.r.t. the size of the inputs.

5.1.3 Functions

We now provide an overview of several functions that can be obtained by
using linear combinations and ReLUs.

max [10] showed that we can implement the max function using linear
combinations and ReLUs as follows:

max(x, y) = ReLU(x− y) + y (5.2)

We can also obtain an n-ary version of max by chaining multiple instances
together.

step If X is a polynomial-bounded space and xs ∈ X, then ∀ε > 0 and
∀x ∈ B(xs, ε) the following function:

step0(x) =
1

µ
(ReLU(x)−ReLU(x− µ)) (5.3)

is such that step0(x) = 0 for all representable x ≤ 0 and step0(x) = 1 for all
representable x > 0.
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Similarly, let step1 be defined as follows:

step1(x) =
1

µ
(ReLU(x+ µ)−ReLU(x)) (5.4)

Note that step1(x) = 0 for all representable x < 0 and step1(x) = 1 for
all representable x ≥ 0.

Boolean Functions We then define the Boolean functions neg : {0, 1} →
{0, 1}, and : {0, 1} × {0, 1} → {0, 1} and or : {0, 1} × {0, 1} → {0, 1} as
follows:

not(x) = 1− x (5.5)

and(x, y) = step1(x+ y − 2) (5.6)

or(x, y) = step1(x+ y) (5.7)

Note that we can obtain n-ary variants of and and or by chaining multiple
instances together.

cnf3 Given a set z = {{z1,1, . . . , z1,3}, . . . , {zn,1, zn,3}} of Boolean atoms
(i.e. zi,j(x) = xk or ¬xk for a certain k) defined on an n-long Boolean vector,
cnf3(z) returns the following Boolean function:

cnf ′
3(x) =

∧
i=1,...,n

∨
j=1,...,3

zi,j(x) (5.8)

We refer to z as a 3CNF formula.

Since cnf ′
3 only uses negation, conjunction and disjunction, it can be

implemented using respectively neg, and and or. Note that, given z, we can
build cnf ′

3 in polynomial time.
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Comparison Functions We can use step0, step1 and neg to obtain com-
parison functions as follows:

geq(x, k) = step1(x− k) (5.9)

gt(x, k) = step0(x, k) (5.10)

leq(x, k) = not(gt(x, k)) (5.11)

lt(x, k) = not(geq(x, k)) (5.12)

eq(x, k) = and(geq(x, k), leq(x, k)) (5.13)

Moreover, we define open as follows:

open(x, a, b) = and(gt(x, a), lt(x, b)) (5.14)

5.2 Untargeted Attacks are NP -Complete

We will now prove that running an untargeted attack with L∞-bounded
perturbations (which we will refer to as U -ATT ) is NP -complete.

5.2.1 Definition of U -ATT

We define U -ATT as the set of all tuples ⟨x, ε, f⟩ such that:

∃x′ ∈ B(x, ε).f(x′) ̸= f(x) (5.15)

where:

• x ∈ X;

• X is a polynomial-bounded space;

• f is a ReLU classifier;

• B(x, ε) = {x′ ∈ X | ∥x− x′∥∞ ≤ ε}, where ∥ · ∥∞ is the L∞ norm,

Theorem 1. U -ATT is NP -complete.
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5.2.2 U -ATT ∈ NP

To prove that U -ATT ∈ NP , we show that there exists a polynomial-
bounded certificate for U -ATT that can be checked in polynomial time. The
certificate is the value of x′, which will have polynomial size w.r.t to the size
of x (due to the polynomial-bounded space assumption) and can be checked
by verifying:

• ∥x− x′∥∞ ≤ ε, which can be checked in linear time;

• fθ(x
′) ̸= f(x), which can be checked in polynomial time.

5.2.3 U -ATT is NP -Hard

We will prove that ATT is NP -Hard by showing that 3SAT ≤ U -ATT .

Given a set of 3CNF clauses z = {{z11, z12, z13}, . . . , {zm1, zm2, zm3}}
defined on n Boolean variables x1, . . . , xn, we construct the following query
q(z) for U -ATT :

q(z) = ⟨xs,
1

2
, f⟩ (5.16)

where xs =
(
1
2
, . . . , 1

2

)
is a vector with n elements. Verifying q(z) ∈ U -ATT

is equivalent to checking:

∃x′ ∈ B

(
xs,

1

2

)
.f(x′) ̸= f(xs) (5.17)

Note that x ∈ B
(
xs,

1
2

)
is equivalent to x ∈ [0, 1]n.

Truth Values We will encode the truth values of x̂ as follows:

x′
i ∈

[
0,

1

2

]
⇐⇒ x̂i = 0 (5.18)

x′
i ∈

(
1

2
, 1

]
⇐⇒ x̂i = 1 (5.19)

We can obtain the truth value of a scalar variable by using isT (xi) =

gt
(
xi,

1
2

)
. Let bin(x) = or(isT (x1), . . . , isT (xn)).
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Definition of f We define f as follows:

f1(x) = and(not(isxs(x)), cnf
′
3(bin(x))) (5.20)

f0(x) = not(f1(x)) (5.21)

where cnf ′
3 = cnf3(z) and isxs is defined as follows:

isxs(x) = and

(
eq

(
x1,

1

2

)
, . . . , eq

(
xn,

1

2

))
(5.22)

Note that f is designed such that f(xs) = 0.

Lemma 1.1. z ∈ 3SAT =⇒ q(z) ∈ U -ATT

Proof. Let z ∈ 3SAT . Therefore ∃x∗ ∈ {0, 1}n such that cnf3(z)(x
∗) = 1.

Since bin(x∗) = x∗ and x∗ ̸= xs, f(x∗) = 1, which means that it is a
valid solution for Equation (5.17). From this we can conclude that q(z) ∈
U -ATT .

Lemma 1.2. q(z) ∈ U -ATT =⇒ z ∈ 3SAT

Proof. Since q(z) ∈ U -ATT , ∃x∗ ∈ [0, 1]n \ {xs} that is a solution to Equa-
tion (5.17). Then cnf ′

3(bin(x
∗)) = 1, which means that there exists a x̂

(i.e. bin(x∗)) such that cnf ′
3(x̂) = 1. From this we can conclude that

z ∈ 3SAT .

Since:

• q(z) can be computed in polynomial time;

• z ∈ 3SAT =⇒ q(z) ∈ U -ATT ;

• q(z) ∈ U -ATT =⇒ z ∈ 3SAT .

we can conclude that 3SAT ≤ U -ATT .



5.2 Untargeted Attacks are NP -Complete 5. Complexity Analysis

5.2.4 Corollaries

Corollary 1.1 (Attacks are NP -Complete). Let ATT be the set of all tuples
⟨x, ε, f, C⟩ such that:

∃x′ ∈ B(x, ε).f(x′) ∈ C(x) (5.23)

where f(x′) ∈ C(x) can be verified in polynomial time. Then ATT is NP -
complete.

Proof. ATT is NP -hard due to U -ATT being a special case of ATT where
C = Cu. Moreover, since f(x′) ∈ C(x) can be verified in polynomial time,
there exists a polynomial-bounded certificate (the same as the one for ATT )
that can be checked in polynomial time.

Corollary 1.2 (Counter-Attack is NP -Complete). Let CA be the set of all
tuples ⟨x, ε, f, b, af⟩ such that:

∃x′ ∈ B(x, ε+ b(x, af (x))).fθ(x
′) ̸= f(x) (5.24)

where b and af can be computed in polynomial time. Then CA is NP -complete.

Proof. Since a certificate for CA can be verified in polynomial time, CA ∈ NP .
Additionally, CA is NP -hard due to the fact that U -ATT is a special case of
CA where b(x, af (x)) = 0. Therefore, CA is NP -complete.

Note that since af must be computable in polynomial time, and since exact
attacks are NP -complete, af cannot be an exact attack, unless P = NP .

Corollary 1.3 (Verifying Local Robustness is coNP -Complete). Let L-ROB

be the set of all tuples ⟨x, ε, f⟩ such that:

∀x′ ∈ B(x, ε).f(x′) = f(x) (5.25)

Then L-ROB is coNP -complete.

Proof. L-ROB is coNP -complete due to being the complement of U -ATT ,
which is NP -complete.
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Corollary 1.4 (Verifying Global Robustness is coNP -Complete). Let G-ROB

be the set of all tuples ⟨χ, ε, f⟩ such that:

∀x ∈ X. (χ(x) =⇒ (∀x′ ∈ B(x, ε).f(x′) = f(x))) (5.26)

where X is a polynomial-bounded space and χ(x) can be verified in polynomial
time. Then G-ROB is coNP -complete.

Proof. We first prove that G-ROB ∈ coNP . Let coG-ROB be the set of all
tuples ⟨χ, ε, f⟩ such that:

∃x.χ(x) ∧ (∃x′ ∈ B(x, ε).f(x′) ̸= f(x)) (5.27)

Since there exists a polynomial-boundeded certificate for coG-ROB that can
be verified in polynomial time, coG-ROB ∈ NP and thus G-ROB ∈ coNP .

We now prove that L-ROB is coNP -hard. This is a consequence of the
fact that L-ROB is a special case of G-ROB where χ(x) for only one x.

Therefore, G-ROB is coNP -complete.

5.3 Fooling CA is ΣP
2 -Complete

We now show that the problem of fooling CA (which we will refer to as
CCA) is ΣP

2 -complete.

5.3.1 Definition of CCA

We formalize CCA as the set of all tuples ⟨x, ε, C, f, b, af⟩ such that:

∃x′ ∈ B(x, ε). (f(x′) ∈ C(x) ∧ d(x′, af (x
′))− b(x′, af (x

′)) > ε) (5.28)

where:

• x ∈ X;

• X is a polynomial-bounded space;

• f is a ReLU classifier;



5.3 Fooling CA is ΣP
2 -Complete 5. Complexity Analysis

• Whether an output is in C(x∗) for some x∗ can be decided in polynomial
time;

• b can be computed in polynomial time;

• af can be computed in polynomial time;

• B(x, ε) = {x′ ∈ X | ∥x− x′∥∞ ≤ ε}.

Theorem 2. CCA is ΣP
2 -complete.

5.3.2 Preliminaries

Alternative Formulation For ease of reading, we rewrite Equation (5.28)
as:

∃x′ ∈ B(x, ε).f(x′) ∈ C(x) ∧ ∀x′′ ∈ B(x′, ε+ b(x′, af (x
′)).f(x′′) = f(x′)

(5.29)

Σ23SAT ∀∃3SAT is the set of all z such that:

∀x̂∃ŷ.R(x̂, ŷ) (5.30)

where R(x̂, ŷ) = cnf3(z)(x̂1, . . . , x̂n, ŷ1, . . . , ŷn).
[79] showed that Π23SAT is ΠP

2 -complete. Therefore, Σ23SAT , which is
defined as the set of all z such that:

∃x̂∀ŷ¬R(x̂, ŷ) (5.31)

is ΣP
2 -complete.

5.3.3 CCA ∈ ΣP
2

By the Kuratowski-Tarski Theorem, CCA ∈ ΣP
2 iff there exists a problem

A ∈ P and a polynomial p such that ∀Γ = ⟨x, ε, C, f, b⟩:

Γ ∈ CCA ⇐⇒ ∃y.|y| ≤ p (|Γ|) ∧ (∀z.(|z| ≤ p(|Γ|) =⇒ ⟨Γ, y, z⟩ ∈ A))

(5.32)
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This can be proven by setting y = x′,z = x′′ and A as the set of all triplets
⟨Γ, x′, x′′⟩ such that all of the following are true:

• ∥x− x′∥∞ ≤ ε

• f(x′) ∈ C(x)

• ∥x′′ − x′∥∞ ≤ ε+ b(x′, af (x
′))

• f(x′′) = f(x′)

Since all properties can be checked in polynomial time, A ∈ P .

5.3.4 CCA is ΣP
2 -Hard

We will show that CCA is ΣP
2 -hard by proving that Σ23SAT ≤ CCA.

First, suppose that the length of x̂ and ŷ differ. In that case, we pad the
shortest one with additional variables that will not be used.

Let n be the maximum of the lengths of x̂ and ŷ.

Given a set z of 3CNF clauses, we construct the following query q(z) for
CCA:

q(z) = ⟨xs,
1

2
, C, h, b⟩ (5.33)

where xs =
(
1
2
, . . . , 1

2

)
is a vector with n elements and where b is defined

as:

b(x′, af,θ(x
′)) =

−ε+ 2γ x′ ∈ {0, 1}n

−ε+ δ otherwise
(5.34)

where 0 < γ < 1
4

and δ > 1 + 2γ. Verifying q(z) ∈ CCA is equivalent to
checking:

∃x′ ∈ B

(
xs,

1

2

)
. (h(x′) ∈ C(x) ∧ (∀x′′ ∈ B(x′, ε+ b(x′, af,θ(x

′))). h(x′′) = h(x′)))

(5.35)

Note that x′ ∈ [0, 1]n.
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Truth Values We will encode the truth values of x̂ and ŷ as follows:

x′′
i = −2γ ⇐⇒ x̂i = 0 ∧ ŷi = 0

x′′
i = −γ ⇐⇒ x̂i = 0 ∧ ŷi = 1

x′′
i = 1 + γ ⇐⇒ x̂i = 1 ∧ ŷi = 0

x′′
i = 1 + 2γ ⇐⇒ x̂i = 1 ∧ ŷi = 1

(5.36)

Let ex̂(x) = gt(x, 1). Let:

eŷ(x) = or(and(geq(x, γ), lt(x, 0)), and(gt(x, 1 + γ), leq(x, 1 + 2γ))) (5.37)

Note that ex̂(x′′
i ) returns the truth value of x̂i and eŷ(x

′′
i ) returns the truth

value of ŷi. We will also use e−1(x̂, ŷ) to denote the encoding of x̂ and ŷ.

Definition of h Let g be a Boolean formula defined over

ex̂(x1), . . . , ex̂(xn), eŷ(x1), . . . , eŷ(xn)

that returns the value of R (using the same technique as cnf ′
3). Let invF be:

invF (x) = max
i=1,...,n

or(open(xi,−2γ,−γ), open(xi,−γ, 1+γ), open(xi, 1+γ, 1+2γ))

(5.38)
Let invT be:

invT (x) = max
i=1,...,n

or(lt(xi,−2γ), gt(xi, 1 + 2γ)) (5.39)

We define h as a two-class classifier, where:

h1(x) = or(invT (x), and(not(invF (x)), g(x))) (5.40)

and h0(x) = not(h1(x)).
Note that:

• If xi ∈ (−∞,−2γ) ∪ (1 + 2γ,+∞) for some i, the top class is 1;

• Otherwise, if xi ∈ (−2γ,−γ) ∪ (−γ, 1 + γ) ∪ (1 + γ, 1 + 2γ), the top
class is 0;

• Otherwise, the top class is 1 if the formula is true and 0 if the formula
is false.

Additionally, ∀x′ ∈ B
(
xs,

1
2

)
.h(x′) = 0.
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Definition of C We define C as C(x) = {0, 1}.

Lemma 2.1. z ∈ Σ23SAT =⇒ q(z) ∈ CCA

Proof. If z ∈ Σ23SAT , then there exists a Boolean vector x∗ such that
∀ŷ.¬R(x∗, ŷ).

Then all of the following statements are true:

• h(x∗) = 0, since x∗ ∈ {0, 1}n ⊆ (−γ, 1 + γ)n;

• h(x∗) ∈ C(xs), since C(xs) = {0, 1};

• b(x∗, ah(x
∗)) = −ε+2γ, since x∗ ∈ {0, 1}n. As a consequence, the inner

ball is B(x∗, 2γ).

We still need to prove that, ∀x∗∗ ∈ B(x∗, 2γ), h(x′′) = h(x′), which we
have already shown to be equal to 0.

Let x∗∗ ∈ B(x∗, 2γ). For all i = 1, . . . , n, x∗∗
i ∈ [x∗

i − 2γ, x∗
i +2γ]. In other

words, x∗∗
i ∈ [−2γ, 2γ] or x∗∗

i ∈ [1 − 2γ, 1 + 2γ], depending on the value of
x∗∗
i .

There are two cases:

• x∗∗
j ̸∈ {−2γ,−γ, 1 + γ, 1 + 2γ} for at least one j:

– There are two sub-cases:

∗ x∗
j = 0:

· Then x∗∗
j ∈ (−2γ, γ) ∪ (γ, 2γ];

· Since this interval is a subset of (−2γ,−γ)∪ (−γ, 1+ γ)∪
(1 + γ, 1 + 2γ), h(x∗∗) = 0;

∗ x∗
j = 1:

· Then x∗∗
j ∈ [1− 2γ, 1 + γ) ∪ (1 + γ, 1 + 2γ);

· Since this interval is a subset of (−2γ,−γ)∪ (−γ, 1+ γ)∪
(1 + γ, 1 + 2γ), h(x∗∗) = 0;

• x∗∗
j ∈ {−2γ,−γ, 1 + γ, 1 + 2γ} for all j:
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– Then the top class of h is either 0 or 1, depending on the truth
value of R(x̂, ŷ);

– Since the original formula is false for all choices of ŷ (and thus all
possible encodings of x̂ and ŷ), h(x∗∗) = 0.

Therefore, we proved that all conditions are satisfied, which means that
q(z) ∈ CCA.

Lemma 2.2. q(z) ∈ CCA =⇒ z ∈ Σ23SAT

Proof. Since q(z) ∈ CCA, there exists a x∗ ∈ B
(
xs,

1
2

)
such that h(x∗) ∈

C(xs) and ∀x′′ ∈ B(x∗, ε+ b(x∗, ah(x
∗)).h(x′′) = h(x′). We will prove that x∗

is a solution to Σ23SAT .

We first prove by contradiction that x∗ ∈ {0, 1}n.
Suppose that x∗

i ∈ (0, 1) for some i. Then b(x∗, ah(x
∗)) = −ε+ δ, which

means that the inner ball is B(x∗, δ). Let x∗∗ be defined as follows:

x∗∗
j =

δ j = i

x∗
j otherwise

(5.41)

Note that x∗∗ ∈ B(x∗, δ). h(x∗∗) = 1, since x∗
i = δ ∈ (1 + 2γ,+∞).

However, h(x∗) = 0, since x∗ ∈ [0, 1]n. This implies that there exists a
x∗∗ ∈ B(x∗, ε + b(x′, ah(x

∗)) such that h(x∗) ̸= h(x∗∗), which contradicts
the hypothesis that ∀x′′ ∈ B(x∗, ε+ b(x∗, ah(x

∗)).h(x′′) = h(x∗). Therefore,
x∗ ∈ {0, 1}n.

Since x∗ ∈ {0, 1}n, h(x∗) = 0 and b(x∗, ah(x
∗)) = −ε+ 2γ, which means

that the inner ball is B(x∗, 2γ). This ball thus contains the encodings e−1(x∗, ŷ)

for all possible choices of ŷ.

Consider a generic ŷ. Then e−1(x∗, ŷ) ∈ {1 − 2γ, 1 − γ, 1 + γ, 1 + 2γ}n,
which means that h(e−1(x∗, ŷ)) = 1 iff the formula is true. Since we know
that h(x∗) = 0 and since ∀x′′ ∈ B(x∗, 2γ).h(x′′) = h(x′), we can conclude
that h(e−1(x∗, ŷ)) = 0 and thus R(x∗, ŷ) is false.
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In other words, R(x∗, ŷ) is false for all choices of ŷ, which means that x∗

is a solution to Equation (5.31) and thus that z ∈ Σ23SAT .

Since:

• q(z) can be computed in polynomial time;

• z ∈ Σ23SAT =⇒ q(z) ∈ CCA;

• q(z) ∈ CCA =⇒ z ∈ Σ23SAT ;

we can conclude that Σ23SAT ≤ CCA.

5.4 Finding a Locally Robust Model is ΣP
2 -

Complete

Finally, we shift our attention towards the parameterized version of
L-ROB, which involves finding the parameters for a classifier such that
the resulting model is locally robust.

5.4.1 Definition of PL-ROB

Let PL-ROB be the set of tuples ⟨x, ε, fθ, v⟩ such that:

∃θ′ ∈ v(f).∀x′ ∈ B(x, ε).fθ′(x
′) = fθ′(x) (5.42)

where:

• x ∈ X;

• X is a polynomial-bounded space;

• v(f) is the set of valid parameter vectors for f ;

• θ′ ∈ v(f) can be checked in polynomial time w.r.t. the size of the tuple.

Theorem 3. PL-ROB is ΣP
2 -complete.
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5.4.2 PL-ROB ∈ ΣP
2

Similarly to the proof for CCA, we can prove that PL-ROB ∈ ΣP
2 by

showing that there exists a problem A ∈ P and a polynomial p such that
∀Γ = ⟨x, ε, fθ, v⟩:

Γ ∈ PL-ROB ⇐⇒ ∃y.|y| ≤ p(|Γ|) ∧ (∀z.(|z| ≤ p(|Γ|) =⇒ ⟨Γ, y, z⟩ ∈ A))

(5.43)
This can be proven by setting y = θ′, z = x′ and A as the set of triplets
⟨Γ, θ′, x′⟩ such that all of the following are true:

• θ′ ∈ v(f);

• ∥x− x′∥∞ ≤ ε;

• fθ(x) = fθ(x
′).

Since all properties can be checked in polynomial time, A ∈ P and thus
PL-ROB ∈ ΣP

2 .

5.4.3 PL-ROB is ΣP
2 -Hard

We will prove that PL-ROB is ΣP
2 -hard by showing that Σ23SAT ≤

PL-ROB.

Let nx̂ be the length of x̂ and let nŷ be the length of ŷ.

Given a set z of 3CNF clauses, we construct the following query q(z) for
PL-ROB:

q(z) = ⟨xs,
1

2
, fθ, v⟩ (5.44)

where xs =
(
1
2
, . . . , 1

2

)
is a vector with nŷ elements and v(f) = {0, 1}nx̂ . Note

that θ′ ∈ v(f) can be checked in polynomial time w.r.t. the size of the tuple.

Truth Values We will encode the truth values of x̂ using θ′, while we will
encode the truth values of ŷ using x′ through the same technique mentioned
in Section 5.2.3.



5. Complexity Analysis 43

Definition of fθ We define fθ as follows:

• fθ,1(x) = and(not(isxs(x)), cnf
′′
3 (x)), where cnf ′′

3 is defined over θ and
bin(x) using the same technique mentioned in Section 5.2.3;

• fθ,0(x) = not(fθ,1(x)).

Note that fθ(xs) = 0 for all choices of θ. Additionally, fθ is designed such
that:

∀x′ ∈ B

(
xs,

1

2

)
\ {xs}.∀θ′ ∈ v(f).(fθ′(x

′) = 1 ⇐⇒ R(θ′, bin(x′)))) (5.45)

Lemma 3.1. z ∈ Σ23SAT =⇒ q(z) ∈ PL-ROB

Proof. Since z ∈ Σ23SAT , there exists a Boolean vector x∗ such that
∀ŷ.¬R(x∗, ŷ).

Then both of the following statements are true:

• x∗ ∈ v(f), since x∗ ∈ {0, 1}nx̂ ;

• ∀x′ ∈ B(xs, ε).fx∗(x′) = 0, since fx∗(x′) = 1 ⇐⇒ R(x∗, bin(x′));

Therefore, x∗ is a valid solution for Equation (5.42) and thus q(z) ∈ PL-ROB.

Lemma 3.2. q(z) ∈ PL-ROB =⇒ z ∈ Σ23SAT

Proof. Since q(z) ∈ PL-ROB, there exists a θ∗ such that:

θ∗ ∈ v(f) ∧ ∀x′ ∈ B(xs, ε).fθ∗(x
′) = fθ∗(xs) (5.46)

Note that θ∗ ∈ {0, 1}nx̂ , since θ∗ ∈ v(f). Moreover, ∀ŷ.¬R(θ∗, ŷ), since
bin(ŷ) = ŷ and fθ∗(ŷ) = 1 ⇐⇒ R(θ∗, ŷ).

Therefore, θ∗ is a valid solution for Equation (5.31), which implies that
z ∈ co∀∃3SAT .

Since:
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• q(z) can be computed in polynomial time;

• z ∈ Σ23SAT =⇒ q(z) ∈ PL-ROB;

• q(z) ∈ CCA =⇒ z ∈ co∀∃PL-ROB.

We can conclude that Σ23SAT ≤ PL-ROB.

5.4.4 Corollaries

Corollary 3.1 (Finding a Globally Robust Model is ΣP
2 -Complete). Let

PG-ROB be the set of tuples ⟨χ, ε, fθ, v⟩ such that:

∃θ′ ∈ v(f).∀x ∈ X. (χ(x) =⇒ (∀x′ ∈ B(x, ε).fθ′(x
′) = fθ′(x))) (5.47)

where:

• θ′ ∈ v(f) can be checked in polynomial time w.r.t. the size of the tuple;

• X is a polynomial-bounded space;

• χ(x) can be verified in polynomial time w.r.t. the size of the tuple.

Then PG-ROB is ΣP
2 -complete.

Proof. PG-ROB ∈ ΣP
2 is a consequence of the Kuratowski-Tarski Theorem

(using a language A defined in the same way as in Section 5.4.2). Since
PL-ROB is a special case of PG-ROB where χ(x) for only one x, PL-ROB ≤
PG-ROB and thus PG-ROB is ΣP

2 -hard.

Corollary 3.2 (Training a Defense with Constrained Loss is ΣP
2 -Complete).

Let D-DEF be the set of tuples ⟨χ,L, κ, ε, fθ, v⟩ such that:

∃θ′ ∈ v(f).L(f, θ′) ≤ κ∧(∀x ∈ X. (χ(x) =⇒ (∀x′ ∈ B(x, ε).fθ′(x
′) = fθ′(x))))

(5.48)
where:

• L(f, θ) is the loss of f with parameter vector θ;
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• L(f, θ′) ≤ κ can be verified in polynomial time w.r.t. the size of the
tuple;

• θ′ ∈ v(f) can be verified in polynomial time w.r.t. the size of the tuple;

• X is a polynomial-bounded space;

• χ(x) can be verified in polynomial time w.r.t. the size of the tuple.

Then D-DEF is ΣP
2 -complete.

Proof. D-DEF ∈ ΣP
2 is a consequence of the Kuratowski-Tarski Theorem

(using a language A defined in the same way as in Section 5.4.2). Since
D-DEF is a special case of D-DEF where κ = 0 and L(f, θ) = 0, PG-ROB ≤
D-DEF and thus D-DEF is ΣP

2 -hard.

Corollary 3.3 (Training a Defense with Optimal Loss is ΣP
2 -Hard). Let

O-DEF be the following optimization problem:

argmin
θ′∈v(f)

L(f, θ′) s.t. ∀x ∈ X. (χ(x) =⇒ (∀x′ ∈ B(x, ε).fθ′(x
′) = fθ′(x)))

(5.49)
where:

• L(f, θ) is the loss of f with parameter vector θ;

• L(f, θ′) ≤ k can be verified in polynomial time w.r.t. the size of the
tuple;

• θ′ ∈ v(f) can be checked in polynomial time w.r.t. the size of the tuple;

• X is a polynomial-bounded space;

• χ(x) can be verified in polynomial time w.r.t. the size of the tuple.

Then O-DEF is ΣP
2 -hard.

Proof. Since D-DEF is the decision version of O-DEF and since D-DEF is
ΣP

2 -hard, O-DEF is ΣP
2 -hard.





Chapter 6

Experimental Evaluation

We now evaluate the effectiveness of CA as a metadefense. Specifically,
we test whether d(x, xh), where xh is an adversarial example found by a
heuristic attack, is close to the true decision boundary distance (i.e. d∗(x)).
Specifically, we test whether pools of heuristic attacks approximate d∗(x) in
a predictable manner. The underlying rationale is that different adversarial
attacks should be able to cover for their reciprocal blind spots, providing a
more reliable estimate.

One key limitation of our evaluation is that studying the estimation
consistency requires sampling from a chosen distribution (in our case the
MNIST [42] and CIFAR10 [40] datasets), thus violating Guideline 1. Therefore,
studying the behavior of adversarial attacks on other distributions (as well
as with other types of defended models) represents an important topic for
future work.

6.1 Experimental Setup

6.1.1 General Information

All our code is written in Python + PyTorch [61], with the exception of
the MIPVerify interface, which is written in Julia.

We randomly selected ∼2.3k samples each from the test set of two datasets,

47
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MNIST and CIFAR10, sampling uniformly across each ground truth label. The
first 250 samples of the test set of each dataset were used for hyperparameter
tuning and were thus not considered in our analysis.

6.1.2 Models

We used three architectures per dataset (named A, B and C), each trained
in three settings, namely standard training, PGD adversarial training [47]
and PGD adversarial training with ReLU loss and pruning [97] (from now on
referred to as ReLU training), for a total of nine configurations per dataset.
All models were trained using Adam [38] and dataset augmentation.

When performing adversarial training, following [47] we used the final
adversarial example found by the Projected Gradient Descent attack, instead
of the closest. To maximize uniformity, we used for each configuration the
same training and pruning hyperparameters (when applicable), which we
report in Table 6.1.

Since our analysis requires computing exact decision boundary distances,
and since size and depth both have a strong negative impact on solver times,
we used small and shallow networks with parameters between ∼2k and ∼80k.
We performed a manual hyperparameter and architecture search to find a
suitable compromise between accuracy and exact attack convergence. The
process required approximately 4 months.

Overall, the natural accuracies for standard training are significantly
below the state of the art (89.63% - 95.87% on MNIST and 47.85% - 55.81%
on CIFAR10). Adversarial training also had a negative effect on natural
accuracies (84.54% - 94.24% on MNIST and 45.19% - 51.35% on CIFAR10),
similarly to ReLU training (83.69% - 93.57% on MNIST and 32.27% - 37.33%
on CIFAR10).

We report the chosen architectures in Tables 6.2 and 6.3, while Table 6.4
outlines their accuracies and parameter counts.
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Table 6.1: Training and pruning hyperparameters.

Parameter Name
Value

MNIST CIFAR10

Common Hyperparameters

Epochs 425
Learning Rate 1e-4
Batch Size 32 128
Adam β (0.9, 0.999)
Flip % 50%
Translation Ratio 0.1
Rotation (deg.) 15°

Adversarial Hyperparameters (Adversarial and ReLU only)

Attack PGD
Attack #Iterations 200
Attack Learning Rate 0.1
Adversarial Ratio 1
ε 0.05 2/255

ReLU Hyperparameters (ReLU only)

L1 Regularization Coeff. 2e-5 1e-5
RS Loss Coeff. 1.2e-4 1e-3
Weight Pruning Threshold 1e-3
ReLU Pruning Threshold 90%
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Table 6.2: MNIST Architectures.

(a) MNIST A

Input

Flatten

Linear (in = 784, out = 100)

ReLU

Linear (in = 100, out = 10)

Output

(b) MNIST B

Input

Conv2D (in = 1, out = 4, 5x5 kernel, stride = 3, padding = 0)

ReLU

Flatten

Linear (in = 256, out = 10)

Output

(c) MNIST C

Input

Conv2D (in = 1, out = 8, 5x5 kernel, stride = 4, padding = 0)

ReLU

Flatten

Linear (in = 288, out = 10)

Output
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Table 6.3: CIFAR10 architectures.

(a) CIFAR10 A

Input

Conv2D (in = 3, out = 8, 3x3 kernel, stride = 2, padding = 0)

ReLU

Flatten

Linear (in = 1800, out = 10)

Output

(b) CIFAR10 B

Input

Conv2D (in = 3, out = 20, 5x5 kernel, stride = 4, padding = 0)

ReLU

Flatten

Linear (in = 980, out = 10)

Output

(c) CIFAR10 C

Input

Conv2D (in = 3, out = 8, 5x5 kernel, stride = 4, padding = 0)

ReLU

Conv2D (in = 8, out = 8, 3x3 kernel, stride = 2, padding = 0)

ReLU

Flatten

Linear (in = 72, out = 10)

Output
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Table 6.4: Parameter counts and accuracies of trained models.

Architecture #Parameters Training Accuracy

MNIST A 79510
Standard 95.87%
Adversarial 94.24%
ReLU 93.57%

MNIST B 2674
Standard 89.63%
Adversarial 84.54%
ReLU 83.69%

MNIST C 3098
Standard 90.71%
Adversarial 87.35%
ReLU 85.67%

CIFAR10 A 18234
Standard 53.98%
Adversarial 50.77%
ReLU 32.85%

CIFAR10 B 11330
Standard 55.81%
Adversarial 51.35%
ReLU 37.33%

CIFAR10 C 1922
Standard 47.85%
Adversarial 45.19%
ReLU 32.27%
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6.1.3 Heuristic Attacks

We first ran a pool of heuristic adversarial attacks on each example.
Specifically, we used the Basic Iterative Method [41], the Brendel & Bethge
attack [8], the Carlini & Wagner attack [14], Deepfool [51], the Fast Gradient
Sign Method [25] and the Projected Gradient Descent attack [47], as well as
simply adding uniform noise to the input. Consistently with [4] and [91], we
set d(x1, x2) = ∥x1 − x2∥∞, where ∥ · ∥∞ is the L∞ norm. For each example,
we considered the closest feasible adversarial example found by any attack in
the pool.

For the Basic Iterative Method (BIM), the Fast Gradient Sign Method
(FGSM) and the Projected Gradient Descent (PGD) attack, we used the
implementations provided by the AdverTorch library [19]. For the Brendel &
Bethge (B&B) attack and the Deepfool (DF) attack, we used the implemen-
tations provided by the Foolbox Native library [66]. The Carlini & Wagner
and the uniform noise attacks were instead implemented by the authors. For
attacks that take ε as parameter (i.e. BIM, Carlini & Wagner, Deepfool,
FGSM and PGD), we first performed an initial search with a decaying value
of ε, followed by a binary search..

In order to pick the attack parameters, we performed an extensive manual
search and obtained the “strong” parameter set, which prioritizes finding
adversarial examples at the expense of computational time. The process took
approximately 3 months. We then modified the strong set in order to obtain
the “balanced” parameter set. We report the parameters of both sets (as well
as the parameters of the binary and ε decay searches) in Tables 6.5 and 6.6.

6.1.4 MIPVerify

We then ran the exact solver-based attack MIPVerify [83], which is able
to find the closest adversarial example to a given input. We used the im-
plementation provided by the Julia library MIPVerify.jl in conjunction with
Gurobi [29].



6.1 Experimental Setup 6. Experimental Evaluation

Table 6.5: Parameters of heuristic attacks.

Attack Parameter Name
MNIST CIFAR10

Strong Balanced Strong Balanced

BIM

Initial Search Factor 0.75
Initial Search Steps 30
Binary Search Steps 20
#Iterations 2k 200 5k 200
Learning Rate 1e-3 1e-2 1e-5 1e-3

Brendel & Bethge

Initial Attack Blended Noise
Overshoot 1.1
LR Decay 0.75
LR Decay Every n Steps 50
#Iterations 5k 200 5k 200
Learning Rate 1e-3 1e-3 1e-5 1e-3
Momentum 0.8

Carlini & Wagner

Minimum τ 1e-5
Initial τ 1
τ Factor 0.95 0.9 0.99 0.9
Initial Const 1e-5
Const Factor 2
Maximum Const 20
Reduce Const False
Warm Start True
Abort Early True
Learning Rate 1e-2 1e-2 1e-5 1e-4
Max Iterations 1k 100 5k 100
τ Check Every n Steps 1
Const Check Every n Steps 5
Iter. Check Every n Steps Disabled
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Table 6.6: Parameters of heuristic attacks (cont.).

Attack Parameter Name
MNIST CIFAR10

Strong Balanced Strong Balanced

Deepfool

#Iterations 5k
Candidates 10
Overshoot 1e-5
Loss Logits

FGSM
Initial Search Factor 0.75
Initial Search Steps 30
Binary Search Steps 20

PGD

Initial Search Factor 0.75
Initial Search Steps 30
Binary Search Steps 20
#Iterations 5k 200 5k 200
Learning Rate 1e-4 1e-3 1e-4 1e-3
Random Initialization True

Uniform Noise

Initial Search Factor 0.75
Initial Search Steps 30
Binary Search Steps 20
Runs 8k 200 8k 200
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Since MIPVerify can be sped up by providing a distance upper bound,
we used the same pool of adversarial attack utilized throughout the paper.
For CIFAR10 we used the strong parameter set, while for MNIST we used
the strong parameter set with some differences (reported in Table 6.7). Since
numerical issues might cause the distance upper bound computed by the
heuristic attacks to be slightly different from the one computed by MIPVerify,
we ran a series of exploratory runs, each with a different correction factor
(1.05, 1.25, 1.5, 2), and picked the first factor that caused MIPVerify to find
a feasible (but not necessarily optimal) solution. If the solution was not
optimal, we then performed a main run with a higher computational budget.
We provide the parameters of MIPVerify in Table 6.8. We also report in
Table 6.9 the percentage of tight bounds for each combination.

We removed the examples for which MIPVerify crashed in at least one
setting, obtaining 2241 MNIST examples and 2269 CIFAR10 examples. We
also excluded from our analysis all adversarial examples for which MIPVerify
did not find optimal bounds (atol = 1e− 5, rtol = 1e− 10). These examples
represent on average 4.38% of MNIST examples and 1.56% of CIFAR10
examples.

Table 6.7: Parameter set used to initialize MIPVerify for MNIST. All other
parameters are identical to the strong MNIST attack parameter set.

Attack Name Parameter Name Value

BIM
#Iterations 5k
Learning Rate 1e-5

Brendel & Bethge Learning Rate 1e-3

Carlini & Wagner
Tau Factor 0.99
Learning Rate 1e-3
#Iterations 5k
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Table 6.8: Parameters of MIPVerify.

Parameter Name
Value

Exploration Main

Absolute Tolerance 1e-5
Relative Tolerance 1e-10
Threads 1
Timeout (s) 120 7200
Tightening Absolute Tolerance 1e-4
Tightening Relative Tolerance 1e-10
Tightening Timeout (s) 20 240
Tightening Threads 1

6.1.5 Hardware

MIPVerify and the strong attack pool were run on the CINECA Galileo100
HPC cluster. Each node of the cluster has 384 GB of RAM and features two
Intel CascadeLake 8260 CPUs, each with 24 cores and a clock frequency of
2.4GHz. The entire process (including test runs) required ∼45k core-hours.

The balanced attack pool was run on a single machine with an AMD
Ryzen 5 1600X six-core 3.6 GHz processor, 16 GB of RAM and an NVIDIA
GTX 1060 6 GB GPU. The process took approximately 8 hours.
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Table 6.9: MIPVerify bound tightness statistics.

Architecture Training % Tight

MNIST A
Standard 99.46%
Adversarial 96.61%
ReLU 96.52%

MNIST B
Standard 99.73%
Adversarial 91.70%
ReLU 98.66%

MNIST C
Standard 91.34%
Adversarial 89.29%
ReLU 97.23%

CIFAR10 A
Standard 97.40%
Adversarial 96.34%
ReLU 100.00%

CIFAR10 B
Standard 98.55%
Adversarial 97.31%
ReLU 100.00%

CIFAR10 C
Standard 99.34%
Adversarial 97.05%
ReLU 100.00%
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6.2 Approximation Consistency

Across all settings, the mean distance found by the strong attack pool
is 4.09±2.02% higher for MNIST and 2.21±1.16% higher for CIFAR10 than
the one found by MIPVerify. For 79.81±15.70% of the MNIST instances and
98.40±1.63% of the CIFAR10 ones, the absolute difference is less than 1/255,
which is the minimum distance in 8-bit image formats. The balanced attack
pool performs similarly, finding distances that are on average 4.65±2.16%
higher for MNIST and 2.04±1.13% higher for CIFAR10. The difference is
below 1/255 for 77.78±16.08% of MNIST examples and 98.74±1.13% of
CIFAR10 examples. We plot the distances found by the attack pools in
relation to the true decision boundary distance in Figures 6.1 to 6.6.

For all datasets, architectures and training techniques there appears to
be a strong, linear, correlation between the distance of the output of the
heuristic attacks and the true decision boundary distance. This observation
suggests that even a simple linear model for the buffer function b may lead to
good results. Therefore, we calibrate a buffer using least-squares fitting on
each combination. Tables 6.10 to 6.13 detail the performance of both attack
sets on every combination.

For the strong parameter set, we find that the average R2 across all
settings is 0.992±0.004 for MNIST and 0.997±0.003 for CIFAR10. The
balanced parameter set performs similarly, achieving an R2 of 0.990±0.006 for
MNIST and 0.998±0.002 for CIFAR10. From these results, we conjecture that
increasing the computational budget of heuristic attacks does not necessarily
improve predictability, although further tests would be needed to confirm
such a claim.

Additionally, both attack pools perform more consistently on standard
training compared to adversarial and ReLU training, as shown in Tables 6.14
to 6.17. This suggests that adversarial training and ReLU might have a
negative effect on the ability of an attack to correctly evaluate the robustness
of a model.
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(f) MNIST A ReLU Balanced

Figure 6.1: Decision boundary distances found by the attack pools compared
to those found by MIPVerify on MNIST A. The black line represents the
theoretical optimum.
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(d) MNIST B Adversarial Balanced
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(f) MNIST B ReLU Balanced

Figure 6.2: Decision boundary distances found by the attack pools compared
to those found by MIPVerify on MNIST B. The black line represents the
theoretical optimum.
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(d) MNIST C Adversarial Balanced
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(f) MNIST C ReLU Balanced

Figure 6.3: Decision boundary distances found by the attack pools compared
to those found by MIPVerify on MNIST C. The black line represents the
theoretical optimum.
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(f) CIFAR10 A ReLU Balanced

Figure 6.4: Decision boundary distances found by the attack pools compared
to those found by MIPVerify on CIFAR10 A. The black line represents the
theoretical optimum.
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(f) CIFAR10 B ReLU Balanced

Figure 6.5: Decision boundary distances found by the attack pools compared
to those found by MIPVerify on CIFAR10 B. The black line represents the
theoretical optimum.
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Figure 6.6: Decision boundary distances found by the attack pools compared
to those found by MIPVerify on CIFAR10 C. The black line represents the
theoretical optimum.
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Table 6.10: Performance of the strong attack set on MNIST.

Architecture Training Success Rate Difference % Below 1/255 R2

MNIST A
Standard 100.00% 1.51% 98.16% 0.996
Adversarial 100.00% 2.48% 81.43% 0.994
ReLU 100.00% 2.14% 84.33% 0.995

MNIST B
Standard 100.00% 3.38% 97.36% 0.995
Adversarial 100.00% 4.34% 75.09% 0.991
ReLU 100.00% 4.80% 68.02% 0.992

MNIST C
Standard 100.00% 4.52% 96.92% 0.996
Adversarial 100.00% 8.76% 48.78% 0.981
ReLU 100.00% 4.84% 68.24% 0.988

Table 6.11: Performance of the balanced attack set on MNIST.

Architecture Training Success Rate Difference % Below 1/255 R2

MNIST A
Standard 100.00% 1.68% 97.94% 0.995
Adversarial 100.00% 2.87% 77.64% 0.993
ReLU 100.00% 2.55% 80.86% 0.993

MNIST B
Standard 100.00% 4.09% 96.55% 0.995
Adversarial 100.00% 4.90% 72.60% 0.988
ReLU 100.00% 5.53% 62.96% 0.989

MNIST C
Standard 100.00% 5.43% 96.04% 0.995
Adversarial 100.00% 9.50% 48.43% 0.977
ReLU 100.00% 5.28% 66.96% 0.986
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Table 6.12: Performance of the strong attack set on CIFAR10.

Architecture Training Success Rate Difference % Below 1/255 R2

CIFAR10 A
Standard 100.00% 1.62% 100.00% 0.999
Adversarial 100.00% 4.42% 95.88% 0.995
ReLU 100.00% 0.26% 100.00% 1.000

CIFAR10 B
Standard 100.00% 1.44% 100.00% 0.999
Adversarial 100.00% 3.17% 97.69% 0.997
ReLU 100.00% 1.38% 98.81% 0.999

CIFAR10 C
Standard 100.00% 2.11% 100.00% 0.999
Adversarial 100.00% 3.10% 97.14% 0.996
ReLU 100.00% 2.35% 96.12% 0.990

Table 6.13: Performance of the balanced attack set on CIFAR10.

Architecture Training Success Rate Difference % Below 1/255 R2

CIFAR10 A
Standard 100.00% 1.71% 100.00% 0.999
Adversarial 100.00% 4.18% 96.57% 0.995
ReLU 100.00% 0.18% 100.00% 1.000

CIFAR10 B
Standard 100.00% 1.53% 100.00% 0.999
Adversarial 100.00% 2.92% 98.46% 0.996
ReLU 100.00% 1.19% 98.94% 0.999

CIFAR10 C
Standard 100.00% 2.06% 100.00% 0.999
Adversarial 100.00% 3.12% 97.28% 0.996
ReLU 100.00% 1.45% 97.44% 0.995
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Table 6.14: MNIST strong pool performance by training technique.

Training Difference < 1/255 R2

Standard 3.14±1.24% 97.48±0.51% 0.996±0.000
Adversarial 5.19±2.63% 68.43±14.14% 0.989±0.006
ReLU 3.93±1.26% 73.53±7.63% 0.991±0.003

Table 6.15: MNIST balanced pool performance by training technique.

Training Difference < 1/255 R2

Standard 3.73±1.55% 96.84±0.80% 0.995±0.000
Adversarial 5.76±2.77% 66.22±12.75% 0.986±0.007
ReLU 4.45±1.35% 70.26±7.67% 0.989±0.003

Table 6.16: CIFAR10 strong pool performance by training technique.

Training Difference < 1/255 R2

Standard 1.72±0.29% 100.00±0.00% 0.999±0.000
Adversarial 3.56±0.61% 96.90±0.76% 0.996±0.001
ReLU 1.33±0.85% 98.31±1.62% 0.996±0.005

Table 6.17: CIFAR10 balanced pool performance by training technique.

Training Difference < 1/255 R2

Standard 1.76±0.22% 100.00±0.00% 0.999±0.000
Adversarial 3.41±0.55% 97.43±0.78% 0.996±0.000
ReLU 0.94±0.55% 98.80±1.05% 0.998±0.002
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6.3 Attack Pool Ablation Study

Due to the nontrivial computational requirements of running several at-
tacks on the same input, we now study whether it is possible to drop some
attacks from the pool without compromising its predictability. Specifically,
we consider all possible pools of size n (with a success rate of 100%) and
pick the one with the highest average R2 value over all architectures and
training techniques. As show in Figure 6.7, adding attacks does increase
predictability, although with diminishing returns. For example, the pool
composed of the Basic Iterative Method, the Brendel & Bethge Attack and
the Carlini & Wagner attack achieves on its own a R2 value of 0.988±0.004
for MNIST+strong, 0.986±0.005 for MNIST+balanced, 0.935±0.048 for CI-
FAR10+strong and 0.993±0.003 for CIFAR10+balanced. Moreover, dropping
both the Fast Gradient Sign Method and uniform noise leads to negligible
(≪ 0.001) absolute variations in the mean R2. These findings suggest that,
as far as consistency is concerned, the choice of attacks represents a more
important factor than the number of attacks in a pool.

We outline the best attack pools by size in Tables 6.18 to 6.21. Addition-
ally, we report the performance of pools composed of individual attacks in
Tables 6.22 to 6.25. Finally, we detail the performance of dropping a specific
attack in Tables 6.26 to 6.29.
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Figure 6.7: Best mean R2 value in relation to the number of attacks in the
pool.

Table 6.18: Best pools of a given size by success rate and R2 for MNIST
strong.

n Attacks Success Rate Difference < 1/255 R2

1 PGD 100.00±0.00% 10.98±4.41% 51.83±27.78% 0.975±0.010
2 C&W, PGD 100.00±0.00% 7.99±3.31% 60.68±25.43% 0.986±0.005
3 B&B, C&W, PGD 100.00±0.00% 4.71±1.97% 77.97±15.52% 0.989±0.004
4 B&B, C&W, DF, PGD 100.00±0.00% 4.36±2.03% 79.02±15.62% 0.991±0.005
5 No FGSM, Uniform 100.00±0.00% 4.09±2.02% 79.81±15.70% 0.992±0.005
6 No Uniform 100.00±0.00% 4.09±2.02% 79.81±15.70% 0.992±0.005
7 All 100.00±0.00% 4.09±2.02% 79.81±15.70% 0.992±0.005
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Table 6.19: Best pools of a given size by success rate and R2 for MNIST
balanced.

n Attacks Success Rate Difference < 1/255 R2

1 BIM 100.00±0.00% 11.72±4.18% 50.92±26.43% 0.965±0.010
2 BIM, B&B 100.00±0.00% 6.11±2.28% 73.23±15.90% 0.980±0.007
3 BIM, B&B, C&W 100.00±0.00% 5.29±2.06% 75.72±16.10% 0.986±0.005
4 BIM, B&B, C&W, DF 100.00±0.00% 4.85±2.10% 77.33±15.85% 0.989±0.005
5 No FGSM, Uniform 100.00±0.00% 4.65±2.16% 77.78±16.08% 0.990±0.006
6 No Uniform 100.00±0.00% 4.65±2.16% 77.78±16.08% 0.990±0.006
7 All 100.00±0.00% 4.65±2.16% 77.78±16.08% 0.990±0.006

Table 6.20: Best pools of a given size by success rate and R2 for CIFAR10
strong.

n Attacks Success Rate Difference < 1/255 R2

1 DF 100.00±0.00% 6.11±3.49% 95.06±4.81% 0.989±0.011
2 DF, PGD 100.00±0.00% 4.71±2.37% 96.32±3.56% 0.995±0.007
3 C&W, DF, PGD 100.00±0.00% 2.54±1.30% 98.17±2.00% 0.996±0.006
4 B&B, C&W, DF, PGD 100.00±0.00% 2.21±1.16% 98.40±1.63% 0.997±0.003
5 No FGSM, Uniform 100.00±0.00% 2.21±1.16% 98.40±1.63% 0.997±0.003
6 No Uniform 100.00±0.00% 2.21±1.16% 98.40±1.63% 0.997±0.003
7 All 100.00±0.00% 2.21±1.16% 98.40±1.63% 0.997±0.003
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Table 6.21: Best pools of a given size by success rate and R2 for CIFAR10
balanced.

n Attacks Success Rate Difference < 1/255 R2

1 DF 100.00±0.00% 6.11±3.49% 95.06±4.81% 0.989±0.011
2 B&B, DF 100.00±0.00% 2.52±1.51% 98.23±1.81% 0.995±0.004
3 BIM, B&B, DF 100.00±0.00% 2.21±1.25% 98.53±1.52% 0.997±0.002
4 BIM, B&B, C&W, DF 100.00±0.00% 2.06±1.16% 98.73±1.32% 0.998±0.002
5 No FGSM, Uniform 100.00±0.00% 2.04±1.13% 98.74±1.29% 0.998±0.002
6 No FGSM 100.00±0.00% 2.04±1.13% 98.74±1.29% 0.998±0.002
7 All 100.00±0.00% 2.04±1.13% 98.74±1.29% 0.998±0.002

Table 6.22: Performance of individual attacks for MNIST strong.

Attack Success Rate Difference < 1/255 R2

BIM 100.00±0.00% 10.90±4.42% 53.57±28.07% 0.966±0.012
B&B 99.99±0.01% 18.50±7.09% 58.78±9.91% 0.812±0.044
C&W 100.00±0.00% 17.52±2.74% 48.02±21.28% 0.910±0.024
Deepfool 100.00±0.00% 21.59±7.73% 44.15±20.02% 0.923±0.027
FGSM 99.72±0.51% 44.43±15.76% 28.20±17.30% 0.761±0.132
PGD 100.00±0.00% 10.98±4.41% 51.83±27.78% 0.975±0.010
Uniform 99.52±0.91% 414.47±140.54% 0.82±0.55% 0.623±0.138
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Table 6.23: Performance of individual attacks for MNIST balanced.

Attack Success Rate Difference < 1/255 R2

BIM 100.00±0.00% 11.72±4.18% 50.92±26.43% 0.965±0.010
B&B 99.99±0.03% 18.65±7.29% 58.43±9.61% 0.812±0.039
C&W 100.00±0.00% 22.55±3.83% 38.95±22.49% 0.904±0.025
Deepfool 100.00±0.00% 21.59±7.73% 44.15±20.02% 0.923±0.027
FGSM 99.72±0.51% 44.43±15.76% 28.20±17.30% 0.761±0.132
PGD 100.00±0.00% 16.23±6.59% 48.08±28.88% 0.905±0.070
Uniform 98.66±1.90% 521.61±181.40% 0.57±0.38% 0.484±0.122

Table 6.24: Performance of individual attacks for CIFAR10 strong.

Attack Success Rate Difference < 1/255 R2

BIM 91.96±7.40% 19.97±5.95% 80.32±12.97% 0.934±0.041
B&B 100.00±0.00% 508.66±196.37% 42.74±7.85% 0.174±0.074
C&W 99.98±0.02% 10.67±3.64% 90.09±5.51% 0.926±0.030
Deepfool 100.00±0.00% 6.11±3.49% 95.06±4.81% 0.989±0.011
FGSM 100.00±0.00% 31.80±11.12% 69.20±17.72% 0.847±0.123
PGD 100.00±0.00% 19.36±5.99% 77.23±15.89% 0.952±0.027
Uniform 99.99±0.02% 1206.79±277.68% 2.48±0.88% 0.910±0.044
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Table 6.25: Performance of individual attacks for CIFAR10 balanced.

Attack Success Rate Difference < 1/255 R2

BIM 100.00±0.00% 19.23±5.92% 77.33±15.89% 0.954±0.025
B&B 100.00±0.00% 50.64±52.17% 81.20±10.68% 0.615±0.349
C&W 99.89±0.09% 17.44±4.01% 84.82±8.51% 0.923±0.026
Deepfool 100.00±0.00% 6.11±3.49% 95.06±4.81% 0.989±0.011
FGSM 100.00±0.00% 31.80±11.12% 69.20±17.72% 0.847±0.123
PGD 100.00±0.00% 20.18±6.56% 76.97±16.07% 0.947±0.031
Uniform 99.85±0.26% 1617.74±390.50% 1.80±0.67% 0.853±0.068

Table 6.26: Performance of pools without a specific attack for MNIST strong.

Dropped Attack Success Rate Difference < 1/255 R2

None 100.00±0.00% 4.09±2.02% 79.81±15.70% 0.992±0.005
BIM 100.00±0.00% 4.35±2.03% 79.02±15.62% 0.991±0.005
B&B 100.00±0.00% 6.76±3.31% 64.46±25.01% 0.990±0.005
C&W 100.00±0.00% 4.65±2.20% 77.70±16.02% 0.989±0.006
Deepfool 100.00±0.00% 4.33±1.97% 79.04±15.75% 0.990±0.004
FGSM 100.00±0.00% 4.09±2.02% 79.81±15.70% 0.992±0.005
PGD 100.00±0.00% 4.26±1.99% 79.36±15.59% 0.991±0.004
Uniform 100.00±0.00% 4.09±2.02% 79.81±15.70% 0.992±0.005



6. Experimental Evaluation 75

Table 6.27: Performance of pools without a specific attack for MNIST bal-
anced.

Dropped Attack Success Rate Difference < 1/255 R2

None 100.00±0.00% 4.65±2.16% 77.78±16.08% 0.990±0.006
BIM 100.00±0.00% 5.13±2.27% 76.14±15.98% 0.988±0.007
B&B 100.00±0.00% 7.93±3.69% 60.79±25.99% 0.987±0.006
C&W 100.00±0.00% 4.93±2.22% 77.05±15.96% 0.988±0.006
Deepfool 100.00±0.00% 5.03±2.14% 76.34±16.36% 0.988±0.005
FGSM 100.00±0.00% 4.65±2.16% 77.78±16.08% 0.990±0.006
PGD 100.00±0.00% 4.85±2.10% 77.33±15.85% 0.989±0.005
Uniform 100.00±0.00% 4.65±2.16% 77.78±16.08% 0.990±0.006

Table 6.28: Performance of pools without a specific attack for CIFAR10
strong.

Dropped Attack Success Rate Difference < 1/255 R2

None 100.00±0.00% 2.21±1.16% 98.40±1.63% 0.997±0.003
BIM 100.00±0.00% 2.21±1.16% 98.40±1.63% 0.997±0.003
B&B 100.00±0.00% 2.54±1.30% 98.17±2.00% 0.996±0.006
C&W 100.00±0.00% 3.83±2.06% 96.84±3.12% 0.996±0.004
Deepfool 100.00±0.00% 4.02±1.19% 95.65±3.10% 0.992±0.005
FGSM 100.00±0.00% 2.21±1.16% 98.40±1.63% 0.997±0.003
PGD 100.00±0.00% 2.50±1.48% 98.11±1.93% 0.995±0.005
Uniform 100.00±0.00% 2.21±1.16% 98.40±1.63% 0.997±0.003
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Table 6.29: Performance of pools without a specific attack for CIFAR10
balanced.

Dropped Attack Success Rate Difference < 1/255 R2

None 100.00±0.00% 2.04±1.13% 98.74±1.29% 0.998±0.002
BIM 100.00±0.00% 2.07±1.15% 98.72±1.31% 0.998±0.002
B&B 100.00±0.00% 4.08±1.95% 97.26±2.70% 0.996±0.006
C&W 100.00±0.00% 2.18±1.22% 98.54±1.50% 0.997±0.002
Deepfool 100.00±0.00% 4.00±0.99% 95.89±3.13% 0.993±0.003
FGSM 100.00±0.00% 2.04±1.13% 98.74±1.29% 0.998±0.002
PGD 100.00±0.00% 2.06±1.16% 98.73±1.32% 0.998±0.002
Uniform 100.00±0.00% 2.04±1.13% 98.74±1.29% 0.998±0.002

6.4 Quantile-Based Calibration

We test quantile-based calibration using 5-fold cross-validation on each
configuration. Specifically, we calibrate the model using 1%, 50% and 99% as
quantiles. Tables 6.30 to 6.33 provide a comparison between the expected
quantile and the average true quantile of each configuration on the validation
folds.

Additionally, we build quantile-calibrated detectors of robust inputs (i.e.
inputs with a decision boundary distance that is greater than ε) and plot in
Figures 6.8 to 6.13 their mean F1 score in relation to the choice of ε. For
most choices of ε, 50th-percentile (i.e. median) calibration achieves the best
results, suggesting that median calibration might be more robust (possibly
due to its lower sensitivity to outliers). Moreover, the non-monotonicity of
the F1 scores indicates that picking higher values of ε (thus using a more
restrictive definition of “robust”) does not necessarily improve the quality of
the detector.
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Table 6.30: Expected vs true quantile for MNIST strong with 5-fold cross-
validation.

Architecture Training Exp. Quantile True Quantile

A

Standard
1.00% 0.99±1.02%
50.00% 49.93±2.35%
99.00% 95.60±3.77%

Adversarial
1.00% 1.11±0.53%
50.00% 50.25±1.58%
99.00% 89.84±6.42%

ReLU
1.00% 1.11±0.45%
50.00% 50.02±1.72%
99.00% 91.95±5.64%

B

Standard
1.00% 1.07±0.48%
50.00% 49.80±0.76%
99.00% 97.76±0.71%

Adversarial
1.00% 1.22±1.01%
50.00% 49.88±4.63%
99.00% 98.10±0.36%

ReLU
1.00% 1.04±0.77%
50.00% 49.98±3.17%
99.00% 97.69±1.41%

C

Standard
1.00% 1.07±0.37%
50.00% 50.17±1.64%
99.00% 98.73±0.42%

Adversarial
1.00% 1.05±0.29%
50.00% 49.87±3.58%
99.00% 99.00±0.47%

ReLU
1.00% 1.06±0.67%
50.00% 50.02±1.85%
99.00% 93.99±3.51%
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Table 6.31: Expected vs true quantile for MNIST balanced with 5-fold cross-
validation.

Architecture Training Exp. Quantile True Quantile

A

Standard
1.00% 1.30±0.79%
50.00% 49.98±3.10%
99.00% 93.99±2.59%

Adversarial
1.00% 0.97±0.40%
50.00% 50.12±1.14%
99.00% 90.44±1.90%

ReLU
1.00% 1.02±0.31%
50.00% 50.02±1.05%
99.00% 95.10±2.82%

B

Standard
1.00% 1.03±0.36%
50.00% 49.98±0.70%
99.00% 98.88±0.45%

Adversarial
1.00% 1.17±0.97%
50.00% 50.17±4.54%
99.00% 98.69±0.59%

ReLU
1.00% 1.04±0.49%
50.00% 50.34±2.49%
99.00% 98.73±0.53%

C

Standard
1.00% 1.07±0.33%
50.00% 49.98±0.91%
99.00% 98.88±0.55%

Adversarial
1.00% 1.10±0.37%
50.00% 50.12±4.15%
99.00% 99.00±0.35%

ReLU
1.00% 1.06±0.67%
50.00% 50.12±2.67%
99.00% 98.62±0.50%
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Table 6.32: Expected vs true quantile for CIFAR10 strong with 5-fold cross-
validation.

Architecture Training Exp. Quantile True Quantile

A

Standard
1.00% 1.09±0.86%
50.00% 50.09±1.84%
99.00% 98.82±0.63%

Adversarial
1.00% 1.05±0.23%
50.00% 49.86±3.59%
99.00% 98.90±0.62%

ReLU
1.00% 0.97±0.41%
50.00% 49.93±3.42%
99.00% 97.66±1.35%

B

Standard
1.00% 0.98±0.18%
50.00% 49.91±1.18%
99.00% 98.84±0.56%

Adversarial
1.00% 0.91±0.48%
50.00% 50.00±3.58%
99.00% 98.69±0.72%

ReLU
1.00% 1.10±0.72%
50.00% 49.98±2.21%
99.00% 98.85±0.61%

C

Standard
1.00% 0.93±0.60%
50.00% 50.00±1.86%
99.00% 98.71±0.71%

Adversarial
1.00% 1.09±0.17%
50.00% 50.14±2.63%
99.00% 98.27±0.81%

ReLU
1.00% 1.01±0.62%
50.00% 50.02±2.09%
99.00% 96.17±2.40%
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Table 6.33: Expected vs true quantile for CIFAR10 balanced with 5-fold
cross-validation.

Architecture Training Exp. Quantile True Quantile

A

Standard
1.00% 0.95±0.61%
50.00% 50.32±2.38%
99.00% 98.87±0.59%

Adversarial
1.00% 1.05±0.23%
50.00% 50.23±2.65%
99.00% 98.81±0.96%

ReLU
1.00% 4.14±5.32%
50.00% 50.37±1.02%
99.00% 94.62±2.87%

B

Standard
1.00% 1.07±0.46%
50.00% 49.91±2.78%
99.00% 98.93±0.73%

Adversarial
1.00% 1.13±0.57%
50.00% 50.18±2.05%
99.00% 98.82±0.71%

ReLU
1.00% 1.23±0.38%
50.00% 50.11±0.38%
99.00% 98.77±0.51%

C

Standard
1.00% 0.98±0.50%
50.00% 50.09±2.21%
99.00% 98.85±0.43%

Adversarial
1.00% 1.09±0.26%
50.00% 49.96±2.72%
99.00% 98.86±0.32%

ReLU
1.00% 1.01±0.36%
50.00% 49.93±1.60%
99.00% 97.93±0.63%
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(d) MNIST A Adversarial Balanced
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(e) MNIST A ReLU Strong
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(f) MNIST A ReLU Balanced

Figure 6.8: F1 scores in relation to ε for MNIST A for each considered
percentile. For ease of visualization, we set the graph cutoff at F1 = 0.8. We
also mark 8/255 (a common choice for ε) with a dotted line.
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(c) MNIST B Adversarial Strong
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(d) MNIST B Adversarial Balanced
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(e) MNIST B ReLU Strong
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(f) MNIST B ReLU Balanced

Figure 6.9: F1 scores in relation to ε for MNIST B for each considered
percentile. For ease of visualization, we set the graph cutoff at F1 = 0.8. We
also mark 8/255 (a common choice for ε) with a dotted line.
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(a) MNIST C Standard Strong
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(b) MNIST C Standard Balanced
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(c) MNIST C Adversarial Strong
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(d) MNIST C Adversarial Balanced
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(e) MNIST C ReLU Strong
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(f) MNIST C ReLU Balanced

Figure 6.10: F1 scores in relation to ε for MNIST C for each considered
percentile. For ease of visualization, we set the graph cutoff at F1 = 0.8. We
also mark 8/255 (a common choice for ε) with a dotted line.
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(b) CIFAR10 A Standard Balanced
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(c) CIFAR10 A Adversarial Strong
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(d) CIFAR10 A Adversarial Balanced

0 2 4 6 8 10 12 14

·10−2

0.8

0.85

0.9

0.95

1

ε

M
ea
n
F
1

1%

50%

99%

(e) CIFAR10 A ReLU Strong
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(f) CIFAR10 A ReLU Balanced

Figure 6.11: F1 scores in relation to ε for CIFAR10 A for each considered
percentile. For ease of visualization, we set the graph cutoff at F1 = 0.8. We
also mark 8/255 (a common choice for ε) with a dotted line.
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(d) CIFAR10 B Adversarial Balanced

0 2 4 6 8 10 12

·10−2

0.8

0.85

0.9

0.95

1

ε

M
ea
n
F
1

1%

50%

99%
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(f) CIFAR10 B ReLU Balanced

Figure 6.12: F1 scores in relation to ε for CIFAR10 B for each considered
percentile. For ease of visualization, we set the graph cutoff at F1 = 0.8. We
also mark 8/255 (a common choice for ε) with a dotted line.
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Figure 6.13: F1 scores in relation to ε for CIFAR10 C for each considered
percentile. For ease of visualization, we set the graph cutoff at F1 = 0.8. We
also mark 8/255 (a common choice for ε) with a dotted line.
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6.5 UG100 Dataset

We collect all the adversarial examples found by both MIPVerify and the
heuristic attacks into a new dataset, which we name UG100. UG100 can be
used as a benchmark for new adversarial attacks, since we can compare its
performance with both the theoretical optimum and heuristic attack pools.
Another potential application involves studying the factors that affect whether
a certain attack over-estimates the decision boundary distance. Examples
include the true distance from the decision boundary and the landscape of the
attack loss. Finally, UG100 can be used to perform small-scale adversarial
training against the worst-case adversarial examples.

We report the composition of the UG100 dataset by ground truth label in
Table 6.34.



6.5 UG100 Dataset 6. Experimental Evaluation

Table 6.34: Ground truth labels of the UG100 dataset.

(a) MNIST

Ground Truth Count %

0 219 9.77%
1 228 10.17%
2 225 10.04%
3 225 10.04%
4 225 10.04%
5 220 9.82%
6 227 10.13%
7 221 9.86%
8 225 10.04%
9 226 10.08%

(b) CIFAR10

Ground Truth Count %

Airplane 228 10.05%
Automobile 227 10.00%
Bird 228 10.05%
Cat 228 10.05%
Deer 226 9.96%
Dog 227 10.00%
Frog 227 10.00%
Horse 227 10.00%
Ship 225 9.92%
Truck 226 9.96%



Chapter 7

Conclusion

We studied six key asymmetries that undermine adversarial defenses and
formulated four guidelines to minimize their effect. We then proved that while
attacking a model is NP -complete, defending it is ΣP

2 -complete. From these
observations, we formulated Counter-Attack, an asymmetry-free metadefense
that can detect defense failures. We provided both a theoretical and an
empirical analysis, showing that as long as the employed attacks are reliable,
CA can correctly identify non-robust points. We also proved that running the
exact formulation of CA is NP -complete and fooling the exact formulation of
CA is ΣP

2 , providing a strong formal argument in a favor of the computational
robustness of CA.

One key aspect of CA is that it relies on a very general property of adver-
sarial attacks, i.e. the way they approximate the distance from the decision
boundary. This makes the approach “future-proof”: as the understanding of
robustness improves and more reliable attacks are developed, CA becomes
inherently stronger. Moreover, the fact that CA relies on adversarial attacks
suggests that designing robust models is not at odds with training models
that are easy to attack. Therefore, the development of these “attack-friendly”
models represents a promising research direction. Our work also showcases
the potential impact of developing adversarial attacks that, even without be-
ing stronger than state-of-the-art attacks, provide guaranteed approximation
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factors.
Due to its independence from the specific characteristics of the defended

model, CA can also be applied to non-ML tools (e.g. signature-based mal-
ware detectors). We also believe that it is possible to extend CA beyond
classification.

Overall, Counter-Attack represents an important step towards viewing
adversarial attacks not as a threat to the robustness of models, but rather as
a fundamental tool to build more robust models.
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