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5 INTRODUCTION 

 

INTRODUCTION 

Hydrology is a science that deals with water on Earth, studying the chemical and 

physical characteristics, distribution in space and time, the dynamic behaviour 

and relationships with the environment during all phases of the complex cycle of 

exchanges between ocean, atmosphere and back to ocean, either directly or after 

surface runoff on land or water penetration and movement in the subsurface 

(water cycle or hydrologic cycle). 

Hydrology is integrated with other disciplines working with the earth 

sciences as geology, meteorology, oceanography, geochemistry etc... (The 

Columbia Electronic Encyclopedia,2007). 

Strictly speaking the field of investigation concerns the study of the 

hydrology of the waters in their precipitation on land and runoff into the oceans, 

which deals with the waters, because the study of marine waters is the 

responsibility of oceanography, while that of the various aspects of water in the 

atmosphere (rain water) falls within the field of meteorology.  

Hydrology deals with surface water (hydrography) and groundwater 

(geohydrology). The study of surface water not only concerns the waterways, but 

also the lakes (limnology), glaciers (glaciology) and also the drainage and 

irrigation. Among the fundamental tasks of the hydrology within the study of 

methods for ensuring effective and practical for quantitative determination of 

parameters relating to the water balance, data interpretation and formulation of 

principles and laws relating to the dynamic and the work of active water in the 

hydrological cycle. Applied hydrology sets itself the task of providing the 

necessary data to determine the intensity and distribution of rainfall, runoff 

values of the waterways on the basis of systematic and continuous sections in 

river characteristics and consequences of their regime, the rate of evaporation on 

lakes and reservoirs, underground water absorption etc. 

Having relevant data is possible to reconstruct, with the use of 

mathematical models and computers, the flow of water and then predict the 

consequences of any actions undertaken by man. The results thus obtained can 

be compared with those derived from direct experimentation on physical models 
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appropriately reduced, but which need to be effective, required that all measured 

data are available and accurate. 

The above considerations highlight the fundamental role of hydrology 

and hydrological modelling in water resources management and engineering. 

However, hydrological modelling is still imprecise and affected by limitations in 

general. The main reason is a result of the limitations of hydrological 

measurement techniques, since we are not able to measure everything about 

hydrological systems. Increasing demands on water resources throughout the 

world require improved decision-making and improved models. 

The present study is focusing on rainfall-runoff modelling and in 

particular on techniques for parameter calibration. The objectives of the study is 

to assess the efficiency of currently used parameter estimation methods with 

respect to hypothetical and real world case studies. An established models is 

used for which calibration techniques are tested therefore deriving indications on 

their efficiency and suitability. 
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CHAPTER 1 

WATERSHEDS 

The watershed (Figure 1.1) is defined as that portion of land whose water runoff 

surface is directed towards a fixed section of a stream that is defined in section 

closure of the basin.  

As the process of modelling the earth's surface that are formed due 

mainly just the erosive action of water flowing on the surface. Referring to 

collection only water catchment precipitation is talking about. 

Watersheds can be large or small. Every stream, tributary, or river has an 

associated watershed, and small watersheds join to become larger watersheds. 

Watersheds can also be called basins and drainages. Here is an example 

of what a watershed looks like: 

 

Figure 1.1: Example of watershed (North and south rivers watersheds association). 

The catchment area is the fundamental physiographic units which refer to the 

study of phenomena of the river and hydro-geomorphological processes 

associated with them. 
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These dynamics are analyzed under the more general knowledge of hydrological 

cycle (water cycle changes on the Earth's surface and atmosphere) and the order 

to obtain the determination of elements essential for the proper sizing of the 

works hydraulic system interventions and river basins. For example, can affect 

estimate of the volume of water flowing through a section of a stream in a given 

period of time, the full extent of which can occur with a given return period, the 

amount of solid material eroded from the surface of the basin. The determination 

of these quantities is the subject of deterministic or statistical processing. 

The hydrological response of a basin depends on rainfall that occur 

naturally on it (and thus indirectly from its position and altitude), from their 

interception and from the subsequent disposal (and thus the permeability 

determined by the texture and soil depth, the type of coverage etc.), by solar 

radiation and the orientation respect winds etc. 

Watersheds are associated with creeks, streams, rivers, and lakes, but 

they are much more. A watershed is a highly evolved series of processes that 

convey, store, distribute, and filter water that, in turn, sustain terrestrial and 

aquatic life. Here we explore a cross-section of a natural, undeveloped river 

corridor to see how trees and wetlands, floodplains and uplands handle water as 

shown in Figure 1.2. 

 

Figure 1.2: Natural systems (Watersheds Atlas). 
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It is estimated that 80 to 90 % of streams in our watershed are headwater streams 

starting in forested woodlands. Moving constantly downstream, a stream widens, 

its shape and structure changes, and so do its aquatic habitats, temperatures and 

food sources. Below are four factors involved with changes in complex stream 

dynamics: 

• Water temperatures vary: Tree-covered headwaters are considered 

cold water streams because they are fed by cold groundwater and shaded 

overhead from the heat of the sun. Cold water streams enter larger rivers 

that have warmer temperatures because they have less shade and more 

sunlight hitting their mid-channels and sides. 

• Food sources change; 

• Aquatic habitats vary within a stream reach: high energy waters scour 

and erode stream channels. Deposition of soil sediments, silts, and sands 

happens in slower, low-energy river stretches, where benthic habitats 

tend to have more silts and sands and less grave 

• Water quality changes: Streams tend to start out uncontaminated in 

headwaters and experience sediment and chemical loading as they 

traverse tilled, residential and industrialized landscapes. Headwaters are 

almost always cleaner than big river waters. 

Riparian forests refer to forest vegetation occurring alongside streams and rivers 

and offer the last opportunity for runoff waters to have a lively exchange with 

vegetation and soils before entering streams and rivers. 

Riparian forests have two main functions: 

o Filtering : Runoff from rain or snow is intercepted by riparian 

vegetation, where it slows down and drops out sediments. 

o Stabilizing: Interwoven root systems of streamside vegetation 

prevent erosion during high water events. Undisturbed riparian 

vegetation is usually made up of mature, native forest trees like red 

maples, sycamores, and willows, with a range of native shrubs and 

grasses that tolerate wetter soils. 

After infiltrating natural systems, water evaporates from rivers and wetlands, 

soils and plants. It returns to the atmosphere to fall again as precipitation. 

Precipitation is water that falls from clouds in the sky as rain (liquid form of 

water) or as snow, sleet, or hail (solid forms of water). Runoff is water that flows 
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over the surface of the land. It usually occurs when the rate of precipitation (rain) 

exceeds infiltration, that is the soil becomes saturated with water and can absorb 

no more. In the built environment, runoff occurs on asphalt surfaces where the 

soil has been covered with an impervious material. 

Water cycling cools the planet, cleans the air, and sustains life. This is the 

water cycle as shown in Figure 1.3: 

 

Figure 1.3: Water cycle (Watersheds Atlas). 

 

Hydrological modelling of water balances or extremes (floods and droughts) is 

important for planning and water management. Unfortunately the small number 

(or even the lack) of observations of key variables that influence hydrological 

processes limits the applicability of rainfall-runoff models; so modelling is an 

important tool for assessing the data of the water cycle in the areas of interest. In 

principle, if the models are based on the basic principles of physics and so the 

estimation of model parameters should be an easy task. 

Hydrological models describe the natural processes of the water cycle 

(see Figures 1.4 and 1.5). 

 



 

 

 

 

Due to the large complexity of the corresponding natural phenomena, these 

models contain substantial simplifications. They consist of basic equations, often 

loosely based on physical premises, whose parameters are specific for the 

selected catchment and problem under study

watershed models and in particular, we 

Understanding and model

is important from both engineering and scientific perspectives. Hydrological 

rainfall runoff models may be used in managing the water resources of river 

basins. They can be employed for assessing anthropogenic e

regime, water quantity and quality, for estimating design flow values, 

river flow forecasting (e.g., Beven, 2001

rainfall runoff models water balance models were developed. These range from 

simple black box models, to conceptual models and complex physically based 

distributed models (Singh and Frevert

In engineering application conceptual models are mostly used. In these, 

the basic processes such as interception, infiltration, evaporation, surface and 

subsurface runoff, etc., are reflected to some extent. In real life applications the 

algorithms that are used to describe the processes are essentially calibrated input

output relationships, formulated to mimic the functional 

in question (e.g., Beven et al.

There is an important aspect in the calibration of catchment models

which is the time scale dependence of model performance (

Figure 1.4 

Figure 1.5  

complexity of the corresponding natural phenomena, these 

models contain substantial simplifications. They consist of basic equations, often 

loosely based on physical premises, whose parameters are specific for the 

selected catchment and problem under study. In this project we will

in particular, we will see an application of HBV model.

Understanding and modelling the water balance dynamics of catchments 

is important from both engineering and scientific perspectives. Hydrological 

rainfall runoff models may be used in managing the water resources of river 

basins. They can be employed for assessing anthropogenic effects on runoff 

regime, water quantity and quality, for estimating design flow values, 

e.g., Beven, 2001). In the past decades a large amount of 

rainfall runoff models water balance models were developed. These range from 

imple black box models, to conceptual models and complex physically based 

Singh and Frevert et al., 2001a, 2001b).  

In engineering application conceptual models are mostly used. In these, 

the basic processes such as interception, infiltration, evaporation, surface and 

subsurface runoff, etc., are reflected to some extent. In real life applications the 

e used to describe the processes are essentially calibrated input

output relationships, formulated to mimic the functional behaviour of the process 

et al., 2001). 

There is an important aspect in the calibration of catchment models

which is the time scale dependence of model performance (Merz et al, 2009
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During model calibration the user usually attempts to use a sufficiently long 

period of meteorological and runoff observations to make certain that the 

calibration can be regarded as a good fit to the data and it also properly 

represents the streamflow variability (Bergstrom et al., 1991).  

The choice of record length is often determined by data availability in 

practice. So in many cases only short records (few years of data) can be used for 

calibration. In the literature it is recommended to choose the minimum 

calibration period as one that samples all different types of hydrological 

behaviours, including extreme events. This is usually checked by comparing 

model efficiencies for the calibration and verification periods (Refsgaard et al., 

2000) rather than by varying the length of the calibration period. If the 

verification efficiency is not much poorer than the calibration efficiency, one 

concludes that the model genuinely represents the population of streamflow 

variability (Merz et al, 2009). 

Both the estimation of model parameters and the issues of calibration and 

verification efficiencies are connected to problems of parameter uncertainty 

(Montanari, 2005, 2007; Refsgaard et al., 1996, 2006; Gotzinger and Bardossy, 

2008; Freer et al., 1996). An analysis of the variability (uncertainty) of  

calibrated model parameters as a function of calibration time scale is therefore 

useful. The goal of such analysis would be to find out when the parameter 

uncertainty is smaller than possible time scale effects.  

Many important scientific and practical questions can be risen in 

connection with the record length and calibration strategies of rainfall runoff 

models. It is important to learn for instance whether the model efficiency 

changes with the period of runoff data used for calibration and what is a 

sufficiently long period to acquire sufficient confidence in the performance of 

the model for future applications. The performance of optimisation algorithms 

with respect to the uncertainty (variability) of model parameters is also of 

interest.  

This project therefore is organised as follows:  

1. Calibration of the original data, using the HBV model, from the Hron 

catchment located in Slovak measured in a daily step in a period between 

01/01/1980 and 31/12/2000 giving us 20 years of observed data. 

Obtaining parameters used to create generated data. Using of two 
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optimization algorithms: genetic algorithm – GA and harmony search – 

HS and their comparison. Selecting better algorithm used in next 

calibrations. 

2. Reproduction of the model by calibrating the generated data – use of the 

whole dataset. 

3. Reproduction of the model by calibrating the generated data – use of 

various calibration strategies. 

4. Results of the rainfall-runoff modelling in the Hron catchment.  

 

1.1 Classification of watersheds models 

Watersheds models are fundamental to integrated water management. The 

watershed models abound in hydrological literature and the state of art of 

modelling is reasonably advanced, especially when viewed in the context of 

practical application.  

However, these models have yet to become common planning or 

decision-making tools. To that end, two milestones will have to be achieved. 

First, these models will have to be transformed and packaged at the level of a 

common user. Second these models will have to be integrated with social, 

economic and management models yielding information that is easily interpreted 

or understood by the user. 

A majority of watershed models simulate watershed response either 

without consideration of water quality or inadequate consideration thereof. 

A decision maker wants to know as much about a watershed as he can, 

not just water- quantity information. (Vijay P. Singh et al., 1995). 

The models are of different types and can be developed for different 

purposes. Many of the models share structural similarities and some of the 

models are distinctly different. 

The hydrological models can be broken down by classification of 

different kinds. The most famous and used are the following: 

1. Process based classification: single process models, integrated models. 

2. Structure classification for black-box models: conceptual and 

physically based. Stochastic models and deterministic models. 
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3. Space-scale based classification: lumped and spatially distributed 

models. 

4. Land-use based classification: models of generation of synthetic 

variables and simulation models of real variables (observable). 

5. Model-use based classification: continuous simulation models, scale 

models of events. 

1.1.1 Process based classification  

Many models are proposed to describe the dynamics of a single hydrologic 

process, representing a limited phase of the water cycle. Typical examples are 

the models of infiltration, interception models and many others.  

Other models are proposed to describe larger portions of the hydrological 

cycle; an example is the rainfall-runoff model. 

A model, as shown in Fig. 1.6 has five components: 

1. System (watersheds) geometry 

2. Input 

3. Governing laws 

4. Initial and boundary conditions 

5. Output 

 

Figure 1.6: Model components (Vijay P. Singh, 1995). 
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1.1.2 Structure classification for black-box models 

In connection with hydrological models of their structure rainfall-runoff 

transformation can be classified as: 

- Hydraulic or detailed simulation models: based on experimental observations 

and analytical models attempt to simulate the individual hydrological processes 

that are then connected by appropriate mathematical relationships. 

- Conceptual models: assimilate the real transformation of rainfall to bring in 

another, referred to a physical system, even different, but can provide a similar 

response. In this category, you can frame models with very different structures: 

one can identify both models is complex, similar to hydraulic models, and 

models such as linear parameters, simple structure, similar to that of synthetic 

models. 

- Synthetic model (or empirical or black box): are not intended to represent the 

processes hydrological and physical phenomena involved in rainfall-runoff 

transformation or physically or mathematically. They see the system as a closed 

box (black box) on which there is no specific hypotheses. Modelling, therefore, 

end with the search for a mathematical operator that links between them, in the 

best possible way, and incoming out of the system, or the meteor influx with 

flow flowing out to the closing section river basin. 

Furthermore the models can be described as deterministic or stochastic.  

 A deterministic model is a physical-mathematical model that tries to 

predict numerically the evolution of the climate system in space-time, through 

the approximate solution (not analytical) of the system of mathematical 

equations that describe the physical laws (the classical mechanics and of 

thermodynamics) that govern the system atmosphere. 

Once the initialization process is terminated the system of equations, that 

make up the deterministic model, evolves towards a unique solution. In this way 

we have achieved something unique number for each point in space and at every 

point in time future. 

A stochastic model is a model consisting of a finite set of random 

variables that depend on a parameter "t", with which we generally mean time, 

and the values that the individual random variables have undertaken in the past, 

namely with respect to a statistical basis of departure.  
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The initialization of the random variables is done through the identification of 

the probability distribution that characterizes each variable, through statistical 

analysis of a database collected in the past, which represents the probability 

space of the values that the random variable can assume.  

Once rebuilt, the probability distribution of individual random variables 

can be simulated via the stochastic model, the variation in time of the probability 

distribution of random variables, resulting in a new probability space of values 

for each random variable. 

1.1.3 Space-scale based classification  

This classification is extremely important from a practical point of view. The 

hydrological model is said concentrate when the volume control reference for the 

application of constitutive equations is extended to large spatial scales, typically 

entire river basin. In this case, the model has no spatial dimensions. The model 

is, instead, said spatially distributed if the volume control is extended to very 

small spatial scale, so that within it is plausible the assumption of homogeneity 

of hydrological processes. Typically, the watersheds with area of 100 km2 or less 

can be called small, those with area of 100 to 1000 km2 medium, and those with 

area of larger than 1000 km2 large. 

1.1.4 Land-use based classification  

Hydrological models divided into two major categories. We talk about patterns 

of generation of synthetic series when the aim of work is to reproduce artificial 

hydrological variables, or variables that do not occur in reality. An example are 

the models for estimating flood flow. 

The simulation models of observable variable, however, are designed to 

reproduce the variables that have occurred or will occur in the real world, 

independently from the availability or otherwise of the corresponding observed 

value. For instance, forecasting models and reconstruction models of observed 

events. 
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1.1.5 Model-use based classification  

Many hydrological models are designed to produce simulations that are carried 

out over short time periods. This approach is justified by the necessity, which 

occurs when applying rainfall-runoff models, to have extended simulations to a 

single flood event, because we do not consider the simulation in periods of lean 

and tender. In this case we say that the model works at scale event. We speak 

instead of a continuous simulation model over time if the model is designed to 

produce simulations of long time span. 

Nowadays, continuous simulation models receive attention from the 

scientific community, because are gaining interest the problems of the 

management of water resources during low flows. 

. 
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CHAPTER 2 

MODEL CALIBRATION 

The practice application of a hydrological model is divided into the following 

stages: 

1. Operational problems identification; 

2. Model identification; 

3. Calibration procedure selection; 

4. Calibration; 

5. Model verification. 

Operational problems identification is a very delicate phase for the operator that 

must clarify what is the purpose of applying the model, in all its facets. 

Availability of data and technical requirements should be analyzed with great 

precision.  

Model identification is made on the basis of technical requirements, and 

also according to the models available in the literature, hydrologist chooses the 

most appropriate model but the superiority of one approach than another is 

influenced from the scope. 

For the selection of the calibration procedure we can make similar 

considerations. The calibration can be performed by two different alternatives: 

the manual calibration and automatic calibration which will be discussed in the 

next paragraph. In general, the automatic calibration requires more time and 

more availability of observed data. The manual calibration instead requires great 

sensitivity  of the engineer who must understand how to change the parameters 

for improving the model performance. The parameters, that most influence on 

the results of the simulation, will be subject to more study in the calibration 

phase. 

Model verification is a very important step because it gives information 

about the real functioning of the model unlike the calibration. After testing the 

model, it is appropriate to repeat the calibration using the full range of available 

data, in order to maximize the consistency of the database used to estimate 

parameter values. 



 
19 MODEL CALIBRATION MODEL CALIBRATION 

2.1 Introduction to model calibration 

The hydrological models are characterized by the presence of parameters to be 

set by the user. Obviously, different values of parameters correspond to different 

responses of the model and thus parameters variability allows the model to 

interpret the different characteristics of different river basins. 

The procedure for assigning parameter values, which must precede so any 

practical application, is called parameters (or models) calibration, model 

parameterization, parameters (or model) optimization. 

Usually the calibration is carried out by searching the parameter values 

that maximize the reliability of the simulation made by the model. 

For modelling the rainfall–runoff process, models, that have been 

developed, are based on conceptual representations of the physical processes of 

the water flow lumped over the entire catchment area (lumped conceptual type of 

models). Examples of this type of model are the Sacramento model (Burnash et 

al., 1995), the Tank model (Sugawara et al., 1995), the HBV model (Bergstrom 

et al., 1995), and the MIKE 11/NAM model (Nielsen and Hansen, 1973; Havnø 

et al.,1995). 

All rainfall-runoff models are so a simplifications of the real-world 

systems under investigation. The model components are aggregated descriptions 

of real world hydrologic processes. One consequence of this is that the model 

parameters often do not represent directly measurable entities, but must be 

estimated using measurements of the system response through a process known 

as model calibration. In fact all rainfall-runoff models are to some degree 

lumped, so that their equations and parameters describe the processes as 

aggregated in space and time. As a consequence, the model parameters are 

typically not directly measurable, and have to be specified through an indirect 

process of parameter estimation, that is called calibration. 

To calibrate a model, values of the model parameters are selected so that 

the model simulates the hydrological behaviour of the catchment as closely as 

possible. 
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2.2 Model parameters 

Such models typically have two types of parameters: “physical” parameters and 

“process” parameters.  

• Physical parameters: represent measurable properties of the watershed 

like the area of the watershed, the fraction of the watershed area that 

is impervious, and so on. 

• Process parameters: represent watersheds properties that are not 

directly measurable like the depth of surface soil moisture storage, the 

effective lateral interflow rate, and so on. 

Due to the fact that in the range of possible (or already observed) input data, 

different model parameters lead to a similar performance, the identification of a 

unique dataset is practically impossible (Beven and Freer, 2001). 

2.3 Manual calibration 

In manual calibration, a trial-and-error parameter adjustment is made. In this 

case, the goodness-of-fit of the calibrated model is basically based on a visual 

judgment by comparing the simulated and the observed hydrographs. For an 

experienced hydrologist it is possible to obtain a very good and hydrologically 

sound model using manual calibration.  

However, since there is no generally accepted objective measure of 

comparison, and because of the subjective judgment involved, it is difficult to 

assess explicitly the confidence of the model simulations. Furthermore, manual 

calibration may be a very time consuming task, especially for an inexperienced 

hydrologist. 

2.4 Automatic calibration 

In automatic calibration, parameters are adjusted automatically according to a 

specified search scheme and numerical measures of the goodness-of-fit. As 

compared to manual calibration, automatic calibration is fast, and the confidence 

of the model simulations can be explicitly stated. The development of automatic 

calibration procedures has focused mainly on using a single overall objective 
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function (e.g. the root mean square error between the observed and simulated 

runoff) to measure the goodness-of-fit of the calibrated model.  

For automatic calibration is therefore necessary to establish a criterion for 

automatically and quantitatively compare the goodness of the simulation. For 

doing this, it use an objective function which is then minimized (or maximized) 

using the algorithms. The need for an objective function makes the automatic 

calibration using the shell is mainly when there are observed values of the data to 

be simulated, which are automatically compared with the corresponding 

simulated values. In this case, the objective functions can also be used in case of 

manual calibration, if you want the comparison between observed and simulated 

values occur quantitatively. 

2.4.1 Objective functions 

An objective function is an equation that is used to compute a numerical measure 

of the difference between the model-simulated output and the observed 

(measured) watersheds output. 

The aim is so to find those values of the model parameters that optimize 

the numerical value of the objective function. 

The objective functions mostly used are: 

1.  Weighted Least Squares: it is one of the most common used objective 

function. The weights wt indicate the importance to be given to fitting a 

particular hydrograph value 

 

���� = ∑ �� ∙ 
���� − ���������� 2                                              [2.1] 

 

where: 

− ���� = observed (measured) streamflow value at time t; 

− ����� = model simulated streamflow value at time t; 

− � = vector of model parameters; 

− �� = weight at time t; 

− � = the number of data points to be matched. 
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2. Daily root-mean square (DRMS): The daily root-mean square (DRMS) 

computes the standard deviation of the model prediction error (difference 

between measured and simulated values). The smaller the DRMS value, 

the better the model performance (Gupta et al., 1999). Gupta et al. (1999) 

determined that DRMS increased with wetness of the year, indicating 

that the forecast error variance is larger for higher flows. According to 

Gupta et al. (1999), DRMS had limited ability to clearly indicate poor 

model performance. The function is: 

���� = ���∑ ��� − ���������� 2                                             [2.2] 

 

3. Nash-Sutcliffe measure (NS): used to assess the predictive power of 

hydrological models. It is defined as: 

 

���� = 1 −
�
�∑ 
�� ���!��"��#�
�
�∑ ��� �$�"��#�

                                                   [2.3] 

 

Where d is observed discharge, ot  is modelled discharge and dt is 

observed discharge at time t. Nash–Sutcliffe efficiencies can range from 

−∞ to 1. An efficiency of 1 (E = 1) corresponds to a perfect match of 

modelled discharge to the observed data. An efficiency of 0 (E = 0) 

indicates that the model predictions are as accurate as the mean of the 

observed data, whereas an efficiency less than zero (E < 0) occurs when 

the observed mean is a better predictor than the model or, in other 

words, when the residual variance (described by the numerator in the 

expression above), is larger than the data variance (described by the 

denominator). 

Essentially, the closer the model efficiency is to 1, the more accurate the 

model is. It should be noted that Nash–Sutcliffe efficiencies can also be 

used to quantitatively describe the accuracy of model outputs other than 

discharge. This method can be used to describe the predictive accuracy 

of other models as long as there are observed data to compare the model 

results. (Nash, J. E. and J. V. Sutcliffe et al.1970). 
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4. Bias (mean daily error):   

 

E�θ� = �
'∑ �d) − o)�θ��')��                                                  [2.4] 

 

In statistics, bias (or bias function) of an estimator is the difference 

between this estimator's expected value and the true value of the 

parameter being estimated. An estimator or decision rule with zero bias 

is called unbiased. Otherwise the estimator is said to be biased. 

 

5. ABSERR (mean absolute error): is a quantity used to measure how 

close forecasts or predictions are to the eventual outcomes. The mean 

absolute error is given by: 

F�θ� = �
'∑ |d) − o)�θ�|')��                                            [2.5] 

 

The mean absolute error is a common measure of forecast error in time 

series analysis, where the terms "mean absolute deviation" is sometimes 

used in confusion with the more standard definition of mean absolute 

deviation. 

The mean absolute error is one of a number of ways of comparing 

forecasts with their eventual outcomes. Well-established alternatives are 

the mean absolute scaled error and the mean squared error. 

Where a prediction model is to be fitted using a selected performance 

measure, in the sense that the least squares approach is related to the 

mean squared error, the equivalent for mean absolute error is least 

absolute deviations. (Hyndman, R. and Koehler A. et al.,2005). 

 

6. ABSMAX (maximum absolute error): 

 

F�θ� = max|d) − o)���|                                                     [2.6] 

 

Where ot is modelled discharge and dt is observed discharge at time t.  
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2.5 Optimization methods 

An optimization algorithm is a logical procedure that is used to search the 

response surface, constrained to the allowable ranges on the parameters, for the 

parameter values that optimize (maximize or minimize, as appropriate) the 

numerical value of the objective function. The procedure is typically 

implemented on a digital computer to enable a very rapid search. There are a lot 

of methods for automatic calibration but we will describe just two that we will 

see in the application with HBV model, Genetic Algorithm (GA) and Harmony 

Search (HS). 

2.5.1 Genetic algorithm (GA) 

A genetic algorithm (GA) is a search heuristic that mimics the process of natural 

evolution. This heuristic is routinely used to generate useful solutions to 

optimization and search problems. Genetic algorithms belong to the larger class 

of evolutionary algorithms (EA), which generate solutions to optimization 

problems using techniques inspired by natural evolution, such as inheritance, 

mutation, selection, and crossover (Eiben, A. E. et al, 1994).  

With a genetic algorithm calibration algorithm, optimized parameter sets 

are found by an evolution of parameter sets using selection and recombination. 

An initial population of n parameter sets is generated randomly in the parameter 

space and “fitness” of each set was evaluated by the value of the objective 

function. From this population (generation) is generated by n times combining of 

two parameter sets. The two sets were chosen randomly but the chance of being 

picked is related to the fitness of the parameter set giving the highest probability 

to the set with the highest fitness. A new parameter set was generated from the 

two parent sets (set A and B) by applying one of the following four rules for 

each parameter randomly with certain probabilities, p: 

• Value of set A 

• Value of set B 

• Random between the values of set A and set B 

• Random value within the limits given for the parameter 
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The fitness of each set in the new population is evaluated and the new generation 

replaced the old one. This evolution is repeated for a number of generations (Jan 

Seibert et al.2000). 

2.5.2 Harmony Search (HS) 

A new heuristic algorithm has been developed and named Harmony Search 

(HS).  Harmony search (HS) is a phenomenon-mimicking algorithm (also known 

as metheuristic algorithm, soft computing algorithm or evolutionary algorithm) 

inspired by the improvisation process of musicians. In the HS algorithm, each 

musician (= decision variable) plays (= generates) a note (= a value) for finding a 

best harmony (= global optimum) all together. 

The goal of the process is to reach a perfect state of harmony. The 

different steps of the HS algorithm are described below: 

Step 1: 

The 1st step is to specify the problem and initialize the parameter values. 

The optimization problem is defined as minimize (or maximize) f(x) such that Lxi 

< xi<Uxi, where f(x) is the objective function, x is a solution vector consisting of 

N decision variables (xi) and Lxi and Uxi are the lower and upper bounds of each 

decision variable, respectively. The parameters of the HS algorithm i.e. the 

harmony memory size (HMS), or the number of solution vectors in the harmony 

memory; harmony memory considering rate (HMCR); pitch adjusting rate 

(PAR); distance bandwidth parameter (bw); and the number of improvisations 

(NI) or stopping criterion are also specified in this step. 

Step 2: 

The 2nd step is to initialize the Harmony Memory. The initial harmony 

memory is generated from a uniform distribution in the ranges [Lxi, Uxi], where 1 

< i < N. This is done as follows: 

 

012 = 013 + 5 × � 017 − 013 �                                                     [2.7] 

 

where j = 1,2,3....,HMS and 5~9�0,1�. 
Step 3: 

The third step is known as the “improvisation” step. Generating a new 

harmony is called “improvisation”. The New Harmony vector is generated using 
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the following rules: memory consideration, pitch adjustment, and random 

selection. 

Step 4: 

In this step the harmony memory is updated. The generated harmony 

vector replaces the worst harmony in the HM (harmony memory), only if its 

fitness (measured in terms of the objective function) is better than the worst 

harmony. 

Step 5: 

The stopping criterion (generally the number of iterations) is checked. If 

it is satisfied, computation is terminated. Otherwise, Steps 3 and 4 are repeated. 

2.6 Calibration strategies 

There are different calibration strategies to meet two objectives: good discharge 

simulations in terms of least mean square errors and the ability to reproduce one 

functional characteristic of the system and the autocorrelation function of the 

discharge, which quantifies the linear dependency of successive values over 

time. 

2.6.1 Split sample-test 

The available record should be split into two segments one of which should be 

used for calibration and the other for validation. If the available record is 

sufficiently long so that one half of it may suffice for adequate calibration, it 

should be split into two equal parts, each of them should be used in turn for 

calibration and validation, and results from both arrangements compared. The 

model should be judged acceptable only if the two results are similar and the 

errors in both validations are acceptable. If the available record is not long 

enough for a 50/50 splitting, it should be split in such a way that the calibration 

segment is long enough for a meaningful calibration, the remainder serving for 

validation. In such a case, the splitting should be done in two different ways, e.g. 

(a) the first 70% of the record for calibration and the last 30% for validation; (b) 

the last 70% for calibration and the first 30% for validation. The model should 

qualify only if validation results from both cases are acceptable and similar. If 

the available record cannot be meaningfully split, then only a model which has 

passed a higher level test should be used. (Klemeš, V. et al., 1986). 
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2.6.2 Proxy-basin test 

This test should be required as a basic test for geographical transposability of a 

model, i.e transposability within a region, such as for instance, the European 

Alps, the prairie region of Canada and the USA, etc. If streamflow in an 

ungauged basin C is to be simulated, two gauged basins A and B within the 

region should be selected. The model should be calibrated on basin A and 

validated on basin B and vice versa. Only if the two validation results are 

acceptable and similar can the model command a basic level of credibility with 

regard to its ability to simulate the streamflow in basin C adequately. 

This kind of test should also be required when an available streamflow 

record in basin C is to be extended and is not adequate for a split-sample test as 

described above. In other words, the inadequate record in basin C would not be 

used for model development and the extension would be treated as simulation in 

an ungauged basin (the record in C would be used only for additional validation, 

i.e. for comparison with a record simulated on the basis of calibrations in A and 

B). 

Geographical transposability between regions I and II (e.g. the Inland 

Waters Directorate of Environment Canada has identified a need to develop 

models for simulating streamflow in ungauged basins of northern Ontario; such 

models would have to be developed on the basis of data from gauged basins in 

southern Ontario or Quebec which have different physical conditions). If 

streamflow needs to be simulated in an as yet unspecified ungauged basin C (or 

on a number of such basins) in region II the procedure should be as follows. 

First, the model is calibrated on the historic record of a gauged basin D in region 

I. Streamflow measurements are started on at least two different substitute 

basins, A and B, in region II and maintained for at least three years. Then the 

model is validated on these three-year records of both A and B and judged 

adequate for simulation in a basin C if errors in both validation runs, A and B, 

are acceptable and not significantly different. After longer records in A and B 

become available, these two basins can be used for model development and 

subjected to the simpler test for transposability within a region as described 

above, using A and B as proxy basins for C. Of course, the substitute basins A 

and B, would not be chosen randomly but would be selected so as to be 
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representative of the conditions in region II, and, as far as possible, with due 

consideration of future streamgauging needs (Klemeš, V. et al.1986). 

2.6.3 Differential split-simple test 

This test should be required whenever a model is to be used to simulate flows in 

a given gauged basin under conditions different from those corresponding to the 

available flow record. The test may have several variants depending on the 

specific nature of the change for which the flow is to be simulated. 

For a simulation of the effect of a change in climate, the test should have 

the following form. Two periods with different values of the climate parameters 

of interest should be identified in the historic record, e.g. one with high average 

precipitation, the other with low. If the model is intended to simulate streamflow 

for a wet climate scenario then it should be calibrated on a dry segment of the 

historic record and validated on a wet segment. If it is intended to simulate flows 

for a dry climate scenario, the opposite should be done. In general, the model 

should demonstrate its ability to perform under the transition required: from drier 

to wetter conditions or the opposite. 

If segments with significantly different climatic parameters cannot be 

identified in the given record, the model should be tested in a substitute basin in 

which the differential split-sample test can be done. This will always be the case 

when the effect of a change in land use, rather than in climate, is to be simulated. 

The requirement should be as follows: to find a gauged basin where a similar 

land-use change has taken place during the period covered by the historic record, 

to calibrate the model on a segment corresponding to the original land use and 

validate it on the segment corresponding to the changed land use. 

Where the use of substitute basins is required for the testing, two 

substitute basins should be used, the model fitted to both and the results for the 

two validation runs compared. Only if the results are similar can the model be 

judged adequate. Note that in this case (two substitute basins) the differential 

split-sample test is done on each basin independently which is different from the 

proxy-basin test where a model is calibrated on one basin and validated on the 

other (Klemeš, V. et al, 1986). 
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2.6.4 Proxy-basin differential split-sample test 

This test should be applied in cases where the model is supposed to be both 

geographically and climatically (or land-use-wise) transposable. 

Such universal transposability is the ultimate goal of hydrological 

modelling, a goal which may not be attained in decades to come. However, 

models with this capability are in high demand (e.g. in Canada for assessing the 

climate-change impact in northern regions where most basins are not gauged) 

and hydrologists are being encouraged to develop them despite the fact that thus 

far even the much easier problem of simple geographical transposability within a 

region has not been satisfactorily solved. (Klemeš, V. et al, 1986).  

  



 

 

 

30 CALIBRATION OF RAINFALL-RUNOFF MODELS 

CHAPTER 3 

HBV MODEL - HYDROLOGINSKA BYRANS 

VATTENBALANSAVDELNING  

The HBV hydrology model, or Hydrologiska Byråns Vattenbalansavdelning 

model, is a computer simulation used to analyze river discharge and water 

pollution. Developed originally for use in Scandinavia, this hydrological 

transport model has also been applied in a large number of catchments on most 

continents. 

The HBV model is a conceptual hydrological model capable of 

simulating outflow from a river catchment, given meteorological input data and 

set of parameters. 

3.1 Introduction 

The HBV model (Bergstrom et al., 1976; 1992) is a conceptual model that 

simulates daily discharge using daily rainfall and temperature, and monthly 

estimates of potential evaporation as input. The model consists of different 

routines representing snow by a degree-day method, soil water and evaporation, 

groundwater by three linear reservoir equations and channel routing by a 

triangular weighting function. 

The first successful run with an early version of the HBV hydrological 

model was carried out in the spring of 1972 (Bergstrom et al., 1972) (Figure 3.1): 
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Figure 3.1: The first successful application of the HBV model (Sten Bergstrom et al., 1972). 

 

After twenty years the HBV model has become a standard tool for runoff 

simulations in the Nordic countries, and the number of applications in other 

countries is growing. Some of applications abroad are carried out by the Swedish 

Meteorological and Hydrological Institute using a standard computer code. 

Its successor, the PULSE model, is used for hydrochemical simulations 

and simulations in ungauged catchments. 

Work with HBV model has been reported on numerous occasions and in 

a large number of scientific papers. 

The general structure of HBV model is shown in a Figure 3.2: 
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Figure 3.2: Scheme of the HBV model. 

Symbols: 

o Ssf  is the snow storage in forest; 

o Sso  is the snow storage in open areas; 

o Ssm is the  soil moisture storage; 

o Fc  is the Max. soil moisture storage; 

o Wp  is the Min. soil moisture storage; 

o Suz   is the  storage in upper zone; 

o Luz   is the limit for third runoff component; 

o Slz  is the  storage in lower zone; 

o Q0,Q1,Q2  are the  runoff components; 

o K0,K1,K2  are the recession coefficients. 
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Below is a summary of the input data required and output data produced by the 

HBV model. The model requires little geographical input data, only the size of 

the modeled catchments is needed. 

 

Input data (daily values): 

− Size of modeled catchments (km2); 

− Lake surface height (m) – lake surface area (km2) curve; 

− Precipitation (mm/d), one station, or weighted sum of several stations; 

− Potential evaporation computed from one of the following: 

o Pan evaporation (mm/d); 

o Min and max temperature);  

o Average temperature (°C), cloudiness (%); 

o Average temperature (°C), short wave radiation (MJ/d), wind 

speed (m/s) and relative humidity (%); 

− Average outflow (m3/s), one station; 

Computed result (daily values): 

− Average outflow (m3/s); 

− Optionally model state variables (mm), evaporation (mm/d), corrected 

precipitation (mm), lake surface height (m) and lake area (km2); 

3.2 The HBV model and its parameters 

The HBV model is a rainfall-runoff model, which includes conceptual numerical 

descriptions of hydrological processes at the catchment scale. The general water 

balance can be described as: 

 

< − � − = = �
�� 
>< + >? + 9@ + A@ + BCDEF�                           [3.1] 
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Where: 

o P is the precipitation;  

o E  is the evapotranspiration;  

o Q is the  runoff;  

o SP is the  snow pack;  

o SM is the  soil moisture;  

o UZ is the  upper groundwater zone ; 

o LZ   is the lower groundwater zone;  

o lakes  is the  lake volume. 

In different model versions HBV has been applied in more than 40 countries all 

over the world. It has been applied to countries with such different climatic 

conditions as for example Sweden, Zimbabwe, India and Colombia. The model 

has been applied for scales ranging from lysimeter plots (Lindström and Rodhe 

et al., 1992) to the entire Baltic Sea drainage basin (Bergström and Carlson et al., 

1994; Graham et al., 1999). HBV can be used as a semi-distributed model by 

dividing the catchment into subbasins. Each subbasin is then divided into zones 

according to altitude, lake area and vegetation. The model is normally run on 

daily values of rainfall and air temperature, and daily or monthly estimates of 

potential evaporation. The model is used for flood forecasting in the Nordic 

countries, and many other purposes, such as spillway design floods simulation 

(Bergström et al., 1992), water resources evaluation (for example Jutman et al., 

1992; Brandt et al., 1994), nutrient load estimates (Arheimer et al., 1998). 

3.2.1 Parameters 

In summary the model parameters of the HBV model are sixteen and the 

following definitions give basic information about the meaning of particular 

parameter, about their possible names and also some information about the 

interval from which it should be taken. 
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The parameters that we have to calibrate are: 

� Fc, field capacity – maximum amount of water the soil can hold [mm]; 

� Rc (BETA), recharge coefficient – determines the contribution of 

precipitation and melted snow to the soil and upper zone; 

� Emp (C), empirical parameter – used only when calculating daily PET from 

monthly values of PET; 

� Uzl (luz), upper zone limit – determines the threshold in upper zone when 

the discharge q0 occurs [mm];  

� tempRain – temperature threshold above which all precipitation is liquid 

[°]; 

� tempMelt (TT) – temperature threshold determining the melting of snow 

cover [°]; 

� tempSnow – temperature threshold below which all precipitation is solid 

(snow) [°]; 

� ddf (CMELT), degree day factor – determines the speed of snow melting 

[mm]; 

� perc , percolation – amount of water from upper to lower zone [mm]; 

� lpe (LP), limit of potential evapotranspiration – used to estimate actual 

evapotransipration [-]; 

� k0,k1,k2, empirical parameters influencing the discharge from upper and 

lower zones; 

� croute- parameter affecting the distribution of flow into several days; 

� scf, CSF, snow correction factor – Snow accumulation is adjusted by a free 

parameter; it should remain 1; 

� maxbas, number of days into which the flow from particular storages is 

distributed. 

The HBV model can best be classified as a semi-distributed conceptual model. It 

uses subbasins as primary hydrological units, and within these an area-elevation 

distribution and a crude classification of land use (forest, open, lakes) are made. 
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 The HBV model consists of three main components: 

1. Subroutines for snow accumulation and melt; 

2. Subroutines for soil moisture accounting; 

3. Response and river routing subroutines.  

The model has a number of free parameters, values of which are found by 

calibration. There are also parameters describing the characteristics of the basin 

and its climate which remain untouched during model calibration. ( Bergstrom et 

al., 1992). 

Input data are precipitation and, in areas with snow, air temperature. The 

soil moisture accounting procedure requires data on the potential 

evapotranspiration. 

Areal averages of the climatological data are computed separately for 

each subbasin. 

 

1. Snow submodel 

The snow routine of the model controls snow accumulation and melt. The 

precipitation accumulates as snow when the air temperature drops below a 

threshold value (TT). Snow accumulation is adjusted by a free parameter, CSF, 

the snowfall correction factor. 

Melt starts with temperatures above the threshold, TT; according to a 

simple degree-day expression: 

 

?�AG = HIJ3K ∙ �G − GG�                                                              [3.2.] 

Where: 

o MELT is a snowmelt (mm/day); 

o CMELT is degree-day factor (mm/°C); 

o TT is the threshold temperature (°C). 

Thus the snow routine of the HBV model has primarily three free parameters that 

have to be estimated by calibration: TT, CSF and CMELT. 
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2. Soil moisture submodel 

The soil moisture accounting routine computes an index of the wetness of the 

entire basin. It is controlled by three free parameters, FC, BETA and LP which 

will be discussed later. 

Recently a modification of the evapotranspiration routine has been 

introduced in order to improve the model performance when the spring and 

summer is much colder or warmer than normal (Lindstrom and Bergstrom et al., 

1992). This routine accounts for temperature anomalies by a correction which is 

based on mean daily air temperatures and long term averages according to this 

equation: 

<�L = �1 + H ∙ �G − GI�� ∙ <�I                                     [3.3] 
 

Where:  

o PEA is a adjusted potential evapotranspiration; 

o C is a  empirical model parameter; 

o T is the daily mean air temperature; 

o TM is the monthly long term average temperature; 

o PEM is the  monthly long term average potential transpiration.  

The three free parameters are: 

o FC is a maximum soil moisture storage in the basin; 

o BETA determines the relative contribution to runoff from a 

millimeter of rain or snowmelt at a given soil moisture deficit; 

o LP controls the shape of the reduction curve for potential 

evaporation. 

3. Runoff response submodel 

The runoff response routine transforms excess water (∆Q) from the soil moisture 

routine, to discharge for each subbasin. The routine consist of two reservoirs 

with the following free parameters:  

o K0, K1, K2 are  three recession coefficients; 

o UZL is the  threshold; 

o PERC  is the constant percolation rate. 
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Finally there is a filter for smoothing of the generated flow.  This filter consists 

of a triangular weighting function with one free parameter, MAXBAS. It is a 

model parameter affecting the distribution of flow into several days. 

3.3 Model calibration 

The agreement between observed and computed runoff is evaluated by Nash and 

Sutcliffe efficiency criterion (Nash and Sutcliffe et al., 1970) which is commonly 

used in hydrological modeling: 

MN =	∑�P$Q PQ�" ∑�P	R PQ�"∑�P$Q PQ�"                                                                 [3.4] 

Where: 

o Q0 is a observed runoff 

o =$Sis the mean of observed runoff 

o Qc is the computed runoff  

A perfect fit would give a value of R2 = 1 , but in practice the value above 

0.8 means good fit and measured hydrographs (IHMS, 1999). 
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CHAPTER 4 

STUDY CATCHMENT: THE HRON RIVER 

BASIN 

One catchment was used in this study, the Hron river basin, located in Slovakia. 

The Hron River is a left-side tributary of the Danube River; its basin is located in 

Central Slovakia. The catchment is feather-shaped, located along the long main 

river with numerous shorter tributaries. It covers an area of 5465 km2; its upper 

and middle parts are situated in the area of Inner Carpathian Mountains, while 

the lower part of the basin belongs to the Danubian Lowlands. The spring of the 

Hron River is at an altitude of 934 m a.s.l. near the village of Telgárt and it flows 

into the Danube near Štúrovo at an altitude of at 103 m a.s.l. The total length of 

the Hron River is 284 km. The mean slope of the river varies from about 7.6 ‰ 

in the upper part to 0.9 ‰ in the lowlands. The Hron River drains 11.2 % of 

Slovakia. After the Váh and Bodrog catchments, the Hron is the third largest 

river in Slovakia. The most important tributaries in the upper part of the basin are 

Hronec, Čierny Hron and Rohožná from the left, Bystrá, Vajskovský and 

Jasenský potok from the right side. In the middle part of the basin the Slatina is 

the largest tributary; other important tributaries are Bystrica, Kremnický and 

Žarnovický potok. 

With regards to the availability of hydro-meteorological data and also 

according to the character of the hydrologic processes in the catchment the 

alluvial part of the river has not sufficient data suitable for hydrologic modelling 

(short series and less a dense network). However, due to its lowland character 

and very low specific discharge (mostly less than 1.5 l s-1 km-2), modelling 

approaches have to be applied which better account for the physically based 

description of processes in the unsaturated zone than conceptual rainfall-runoff 

models. Therefore the discharge gauging station Banská Bystrica was selected as 

the closing cross section for this study (the term “Hron River basin” refers 

mainly to the Hron catchment to Banská Bystrica hereafter). This upper Hron 

River basin up to the Banská Bystrica gauging station has an area of 1766 km2, 

the minimum elevation of the basin is 340 m a.s.l.; the maximum elevation is 
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2004 m a.s.l.; and the mean elevation is 850 m a.s.l. The location of the basin in 

Slovakia is shown in Figure 4.1: 

 

Figure 4.1: Location of the Hron River in Slovakia. 

 

The climatic conditions of the Hron River basin correspond to the European-

continental climatic region of the mild zone, with oceanic air masses 

transforming into continental ones. The annual precipitation in the basin varies 

from 570 to 700 mm year-1 in the lowlands to about 700 - 1400 mm year-1 in the 

valleys and upper mountainous areas. The overall average is approximately 

800 mm year-1. Evaporation amounts to approximately 300 to 600 mm year-1. 

Three regional subdivisions of the catchment can be made according to 

relief and elevation: the warm region (lowlands), which is spreading out in the 

Danube lowland, the Žiar and Zvolen Valleys, the mild-warm region (valleys), 

which covers the mountain slopes up to 800 m a.s.l., and the whole Upper Hron 

Valley. The third, the cold region (mountainous slopes), is located above 800 m 

a.s.l. in all mountains surrounding the upper part of the basin. The basic climatic 

characteristics of these sub-regions are given in Table 4.1. 

The Hron River has a snow-rain combined runoff regime type. The 

precipitation in the upper part of the Hron basin reaches 1600 mm, while in 

lower flat areas it is only 600 mm. The runoff represents in the upper part up to 

60 % of the precipitation, while in the flatlands only 10 %, the mean value for 

the whole basin being 37 %. The long-term mean annual discharge for the Hron 

in Brezno is 8.12 m3 s-1, in Banská Bystrica 28.0 m3 s-1, and at the confluence 

with the Danube it increases to 55.2 m3 s-1 (Table 4.2). 
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The specific runoff in the Hron River basin varies between 1.6 in the lowlands to 

28 l s-1 km-2 in the mountains. The richest tributaries are Bystrianka, Jaseniansky 

potok, Vajskovský potok and Bystrica, where these values reach 22 - 25 l s-1 km-

2. In the flatland areas the specific yield is only 1.5 l s-1 km-2. The mean values 

for the whole basin is 10.1 l s-1 km-2 which is 20 % more than that for the whole 

territory of Slovakia.  

The flood generation problem in the basin is complex. In the alpine high 

mountain regions floods from snowmelt, mixed events and flash floods represent 

a threat to local villages build in narrow valleys all over the year. Due to runoff 

concentration snowmelt floods and floods of cyclonic origin represent danger to 

major cities and industrial areas with heavy and chemical industry, electric and 

atomic power plants in the middle of the catchments. 

 

Table 4.1: Climatic characteristics of the Hron Basin (based on data provided by the Slovak 
Hydrometeorological Institute). 

Climatic characteristics Lowlands Valleys Mountainous slopes 

Mean temperature in January [°C]  -1.5 to -2.5 -2.5 to -6.5 -2.5 to-8.0 

Mean temperature in July [°C] 20.3 to 19.5 19.5 to 14.5 19.5 to 9.5 

Days with temperature above 0 [°C] 320 - 300 300 - 245 300 – 195 

Number of summer days 75 - 60 60 - 20 60 - 0 

Number of ice days  25 - 35 35 - 50 35 - 75 

Days with precipitation above 1 mm 85 - 100 100 - 120 100 - 150 

Annual precipitation [mm] 580 - 700 700 - 900 700 - 1400 

Precipitation in the warm season [mm] 330 - 400 400 - 500 400 - 750 

Precipitation in the cold season [mm] 250 - 300 300 - 400 300 - 650 

Number of days with snow cover 35 - 50 50 - 100 50 - 220 

Evapotranspiration [mm] 600 - 500 500 - 400 500 - 300 
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Table 4.2: Discharge characteristics in selected profiles in the Hron basin (based on data provided by the 
Slovak Hydrometeorological Institute). 

River Profile Basin area Mean 

discharges 

Mean annual runoff Mean monthly discharges  

for period 1931 – 1980 [m3 s-1] 

 [km2] [m3 s-1] [106 m3 y-1] 11 12 1 2 3 4 

    5 6 7 8 9 10 

Hron    26.690 24.440 17.490 20.020 37.050 57.230 

Banská 

Bystrica 

1766.48 27.990 883.3 42.850 31.080 23.850 18.960 16.450 19.760 

 

Table 4.3: Water balance characteristics of the Hron River and its tributaries in the period of 1931 – 1980 
(based on data provided by the Slovak Hydrometeorological Institute). 

 Hron River mouth Bystrianka Vajskovský 

potok 

Jaseniansky potok Bystrica 

Precipitation [mm] 869 1414 1466 1407 1194 

Runoff [mm] 319 755 820 704 722 

Losses [mm] 550 659 646 703 472 

Runoff coefficient 0.37 0.53 0.56 0.50 0.60 

Specific runoff  

[l s-1 km-2] 

10.10 23.92 25.98 22.31 22.89 

 

Extensive studies conducted by the Slovak Hydrometeorological Institute have 

shown that hydrological time series from the periods 1931 to 1960 and from 

1931 to 1980 can be considered stationary. When comparing statistical data from 

the period 1961 – 2000 with the long term behaviour of the catchments as 

described by data from the period 1931 – 1980, occasionally a slight decrease in 

runoff can be shown. The decrease in runoff is approximately the same for the 

Hron as for the whole country (about 10 %), precipitation decrease is less 

significant (about 1 to 4 %). In consequence there was a slight increase in 

evapotranspiration in the water balance. As for long-term mean monthly 

discharges for the same two periods, both increase an decrease can be detected in 
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the Hron river basin; the mean monthly discharges do not necessarily decrease in 

all months in all catchments. An increasing tendency can be detected in some 

catchments in the spring and early winter. 

4.1 Description of the pilot basins 

For the estimation of climate change impact on the annual, monthly and flood 

runoff one gauging station was selected in this study: Banská Bystrica. Table 4.4 

contains the characteristics of the upper Hron basin and of the nested 

subcatchment: the mean basin values of air temperature, precipitation and runoff 

represent the mean annual averages from the period 1981 – 1990.  

Table 4.5 shows the basin averages of long-term mean annual potential 

evapotranspiration (EP) and long-term mean annual actual evapotranspiration 

(ET) period 1981 – 1990 computed by the Turc model, which is used in this 

study. The spatial estimates of the long-term mean annual air temperature 

(1981 – 1990) from the six climatic stations, where the daily measurements of air 

temperature, air humidity, sunshine duration, vapour pressure and wind speed 

were carried out, are shown in Figure 4.2. Figure 4.3 shows the map of spatial 

estimates of the long-term mean annual precipitation (1981 – 1990) and 

precipitation stations (as points) used in interpolation of the map. The grid maps 

of the long-term mean annual potential and actual evapotranspiration (1981 –

 1990) as estimated by the Turc empirical model from the precipitation, air 

temperature and runoff maps are shown in Figures 4.4 and 4.5. 

 

Table 4.4: Basic characteristics of Banská Bystrica sub-basins from the period 1981 – 1990. 

Basin Banská Bystrica 

Area [km2] 1763.2 

Elevation mean/range [m a.s.l.] 847/1672 

Air temperature [ºC] 5.4 

Precipitation [mm] 828 

Runoff [mm] 394 
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Table 4.5: Basin averages of long-term mean annual potential evapotranspiration (EP) and long-term mean 
annual actual evapotranspiration (ET) for the period 1981 – 1990 computed by the Turc model. 

Basin Banská Bystrica 

EP Turc [mm] 475 

ET Turc [mm] 445 

 

 

 

 

Figure 4.2: Spatial estimates of the long-term mean annual air temperature (1981 – 1990) and the six climatic 
stations. 

 

 

 

 

Figure 4.3: Map of the long-term mean annual precipitation (1981 – 1990) and precipitation stations (points) 
used in interpolation. 
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Figure 4.4: Grid map of the long-term mean annual potential evapotranspiration (1981 – 1990) as estimated by 
the Turc empirical model. 

 

 

 

Figure 4.5: Grid map of the long-term mean annual actual evapotranspiration (1981 – 1990) as estimated by 
the Turc empirical model. 

 

The time of concentration to the basin’s outlet in Banská Bystrica is around one 

day. The largest travel time of 28 hours was estimated by hydraulic routing, 

considering the overland and subsurface flow from the basin’s cells on the 

catchment’s boundary to the basin with the physically-based distributed rainfall-

runoff model of WetSpa (Liu and De Smedt et al., 2004) (taking into account the 

flow length, the slope, the soil properties and surface roughness as a function of 
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the land-use). This estimate is supported by travel times computed from the 

commonly used Kirpich and Nash formula, which yielded values of 19 and 23 

hours respectively.  
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CHAPTER 5 

RESULTS 

In this chapter we are going to present the results of the rainfall-runoff modelling 

in the Hron catchment using the HBV model. The model calculates discharge 

from the catchment using various meteorological and climatic data such as 

precipitation, temperature and daily potential evapotranspiration. In this study we 

have been working with data from the Hron catchment measured in a daily step 

in a period between 01/01/1980 and 31/12/2000 giving us 20 years of observed 

data. 

Since the main objective of this study was to compare various calibration 

strategies and optimization algorithms we have decided that the best way how to 

evaluate their performance is to eliminate the measurements errors. By doing this 

we have achieved that the goodness of fit of a particular model was given only 

by the different parameters obtained from various calibration strategies. In order 

to eliminate the effect of the data errors we have created a new time series of 

flows calculated with the HBV model with parameters that were calibrated on 

the whole period of the original data. 

The whole process of the calculations can be divided into these steps. 

Step 1: calibration of the original data and obtaining parameters used to 

create generated data. Using of two optimization algorithms: genetic algorithm – 

GA and harmony search – HS and their comparison. Selecting better algorithm 

used in next calibrations. 

Step 2: reproduction of the model by calibrating the generated data – use 

of the whole dataset. 

Step 3: reproduction of the model by calibrating the generated data – use 

of various calibration strategies. 
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5.1 Calibration of the original data 

In order to create the generated flows, further used in the study, we had to 

calibrate the original dataset to obtain the best set of parameters. We have used 

two types of optimization algorithms: genetic algorithm and harmony search. To 

compare these algorithms we have decided to do 50 calibrations for both 

algorithms. Their comparison is depicted in Figure 5.1 showing that both 

algorithms gave similar values of the Nash-Sutcliffe coefficient (NS) used as an 

objective function. Since the highest value of NS was achieved by the GA we 

have decided to use only the GA in further calibrations. The distribution of the 

parameters for both GA and HS is shown in Figures 5.3 and 5.4 after 50 

calibration using GA and HS and triangle transformation. 

 

 

Figure 5.1: Comparison between GA and HS. 
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Using the best set of parameters we have achieved a value of NS of 0.826. 

Furthermore we have two graphics about: 

• snow water equivalent (swe),   

• upper zone storage (suz),  

• lower zone storage (slz),  

• soil moisture (sm),  

• daily potential evapotranspiration (DPET), 

• actual evapotranspiration (aet),  

• temperature, 

• precipitation,  

• runoff components q0, q1, q2. 

Which can be compared. The values of a particular parameters are shown in 

Table 5.1. These parameters were then used to create simulated flows, which 

together with observed flows, are depicted in Figure 5.2. 

 

Table 5.1: Parameters used to create generated data. 

Parameter Value 
fc 162.61369 
rc 1.00315 
emp 1.0000 
uzl 10.171452 
tempRain 7.42226 
tempMelt -1.52136 
tempSnow -8.97445 
ddf 0.75727 
perc 2.67033 
lpe 0.50453 
k0 48.56770 
k1 4.19195 
k2 22.79866 
scf 1.0000 
maxbas 3.36842 
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Figure 5.2: Simulated (blue) and observed (red) flows plotted together with their errors (observed – 
simulated). 

 

As we can see, the blue line shows the simulated flows, meanwhile the red line 

the observed flows. We can observe a good result of the calibration as well as for 

the errors In fact the maximum value is 150 in the first year and we have another 

two peaks between 1984 and 1986, but in general we can conclude the first step 

is good and from these new parameters we can obtain, subsequently, the new 

generated data. 
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Hereinafter the distribution of the parameters after 50 calibrations for both GA 

and HS is shown: 

 

Figure 5.3: Parameter variation after 50 calibrations using GA. Red hatched area represents the interval from 
which particular parameter was selected. 
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Figure 5.4: Parameter variation after 50 calibrations using HS. Red hatched area represents the interval from 
which particular parameter was selected. 
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As we can see in the Figure 5.3 the parameter distribution is almost stable for 

each sixteen parameters. We can observe, for instance, that the values of the field 

capacity (fc) are very stable around the value of 160 and the same we can say 

about the recharge coefficient (rc) that is stable around 1. 

Instead we can note how the values distribution of the recession 

coefficient (k0) are not so much distributed, in fact we have a range between 10-

30 and so we can say that the distribution is not stable. 

We got almost the same parameter distribution using Harmony Search 

(HS) as we can see in the Figure 5.4. We can observe the most significant 

difference  for the values  of  limit of potential evapotranspiration (lpe). In fact, 

the parameter variation using GA is stable around the value 0.5, instead , using 

HS, is not so stable and we have a range between 0.65-0.75. That for further 

analysis the parameters estimated using GA were selected. 

In these other five graphics we can compare the simulated flow with a 

observed flow and we can observe lines of simulated and observed flow almost 

overlapping, that means, very good results:  

 

 

Figure 5.5: Apportionment of the system outputs. 
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As we can see in the Figure 5.5 the actual evapotranspiration (AET) is just a 

little bit more than 50 % (precisely 51%) of the system outputs. The runoff 

components q0, q1, q2 represent the remaining 49 % are distributed in this way: 

• q0 < 1% 

• q1 = 8% 

• q2 =40% 

 

Figure 5.6: Comparison of cumulative observed and simulated flow. 

 

In this Figure 5.6 instead we can observe that the lines of cumulative observed 

floe (QOBS) and cumulative simulated flow (QSIM) are almost the same. We can 

note as after the first 1300 steps the two lines start to deviate but with a 

difference that is always irrelevant. 
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In this Figure 5.7 is shown the comparison of discharge simulated flow and 

discharge observed: 

 
Figure 5.7: Comparison of discharge simulated and discharge observed. 

 

We can note that, if we put the simulated flow in the abscissa axis and the 

observed flow in ordinate axis, below the value 100, there is a strong distribution 

around  the line y = x, that is perfect comparison, and we can say that the values 

are not properly similar and  very close, but however the results are very good. 

We can say the same about the Figure 5.8, where is shown empirical distribution 

function, or empirical cdf, that is the cumulative distribution function associated 

with the empirical measure of the sample: 
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Figure 5.8: Comparison of simulated and observed flow. 

 

As we can see the two lines deviate slightly and we can say that ECDF for Qobs 

and ECDF for Qsim are almost the same. 
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Hereinafter (Figure 5.9) is shown the comparison between the input data and 

output data. 

 

Figure 5.9: Comparison of input and output data. 

 

As we can see precipitation (P) + snow (S) constitute the 50 %. The actual 

evapotranspiration (AET) 25%, the remaining 25% is done by runoff 

components q0,q1,q2 distributed in this way: 

• q0 < 1% 

• q1 = 4% 

• q2 = 20% 

Furthermore there is another very small (less 1%) percentage of S. 
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In order to analyze the correlation dependence among the parameters we have 

performed correlation analysis to identify relations among the parameters. After 

we analyzed the parameters and we calculated Pearson coefficient. The most 

familiar measure of dependence between two quantities is the Pearson 

correlation coefficient. 'Pearson correlation index, also called Pearson's 

correlation coefficient (or Bravais-Pearson), between two random variables is a 

coefficient that expresses the linearity between their covariance and the product 

of their standard deviations. 

In fact it is obtained by dividing the covariance of the two variables by 

their standard deviations. 

The correlation coefficient ρX,Y between two random variables X and Y 

with expected values µX and µY and standard deviations σX and σY is defined as: 

 

TU,V = W�55�X, Y� = Z�[	�\,]�
^_^` = �
�X − a\��Y − a]��                             [5.1] 

 

where E is the expected value operator, cov means covariance, and, corr a widely 

used alternative notation for Pearson's correlation. 

The Pearson correlation is +1 in the case of a perfect positive (increasing) 

linear relationship (correlation), −1 in the case of a perfect decreasing (negative) 

linear relationship and some value between −1 and 1 in all other cases, indicating 

the degree of linear dependence between the variables. As it approaches zero 

there is less of a relationship. The closer the coefficient is to either −1 or 1, the 

stronger the correlation between the variables. 
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In the following Figure 5.10 is shown “Scatter” plot with the correlations 

between model parameters: 

 

Figure 5.10: Scatter plot with the correlations between model parameters. 

The scatter plot  represents the relationship between the set of 50 calibrated 

model parameters. The histograms represent graphical interpretation of the 

frequency distribution of the selected parameters. 

 Linear smoothing was used to see the relationship. We can observe a 

high correlation between degree day factor (ddf) and tempmelt or between 

recession coefficients k0 and k1. The same we can say for limit of potential 

evapotranspiration (lpe) and recharge coefficient (rc). Instead we can note a high 

inverse correlation between tempsnow and tempmelt as well as k1 and perc. 

In the Table 5.2  the Pearson correlation matrix with the values of 

correlation coefficients between calibrated model parameters is shown: 
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Table 5.2: Correlation matrix with the values of correlation coefficients between calibrated model parameters. 
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fc 1                         

rc 
0.066 

1                       

uzl -0.079 0.368 1                     

tempRain -0.196 -0.121 -0.200 1                   

tempMelt 0.097 -0.108 0.170 0.017 1                 

tempSnow -0.045 0.089 -0.028 -0.442 -0.871 1               

ddf 0.002 -0.144 0.253 0.011 0.892 -0.696 1             

perc -0.435 -0.293 0.038 0.216 -0.145 0.174 0.135 1           

lpe 0.053 0.969 0.384 -0.122 -0.116 0.099 -0.138 -0.227 1         

k0 0.020 -0.155 -0.428 -0.132 -0.234 0.308 -0.179 0.043 -0.228 1       

k1 0.315 0.200 -0.111 -0.282 0.261 -0.237 -0.016 -0.911 0.178 -0.094 1     

k2 0.278 0.308 -0.022 -0.248 0.210 -0.188 -0.038 -0.887 0.233 -0.058 0.830 1   

maxbas/k -0.034 -0.380 -0.243 0.276 -0.042 -0.015 0.068 0.597 -0.395 -0.004 -0.615 -0.460 1 

 

Where the values of  Pearson correlation coefficient between calibrated 

parameters  are presented we can observe high correlations between the set of 

parameters in snow subroutine: tempmelt with tempsnow and ddf, perc with k1 

and k2 and both parameters with maxbas. High correlation was observed 

between lpe and rc. Furthermore moderate correlation was observed between 

Perc with fc and between maxbas and k2. 

In particular, the values  marked in yellow are: 

 

o Tempsnow-temp melt = -0.87132 

o ddf -tempMelt = 0.892121 

o Ipe-rc = 0.968776 

o perc-k1 = -0.91122 

o perc-k2 = -0.8868 

o perc-maxbas = 0.596702  

o k1-k2 = 0.829575 

o k1-maxbas = -0.61466 
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Instead, the values marked in red, that is with a moderate correlation, are: 

 

o Perc- fc = -0.4350 

o Maxbas-k1 = -0.46007 

 

5.2 Calibration of the generated data 

After obtaining the best set of parameters calibrated on the observed data we 

have used the parameters and measured precipitations, temperatures and glare 

indexes to create simulated flows - hereinafter referred to as generated data.  

These generated data were further used to calibrate another set of 

parameters which should show us whether we are able to reproduce the model 

itself (we are already calibrating simulated data). The result of the calibration 

shows (see Figure 5.11) that the fit of the model is very good with the Nash-

Sutcliffe value equal to 0.99983. This means that with the use of genetic 

algorithm we have managed to reproduce the model itself. 

 

 

Figure 5.11: Generated (red) and simulated (blue) data plotted together with their errors (generated – 
simulated). The fit of the data is so good (NS=0.99983) that red line overlaps the blue one. 
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Furthermore we got the same five graphics of the original data but with the little 

difference that here the results are just a little bit more excellent as we can see 

hereinafter. In fact we can compare the simulated flow with a observed flow and 

we can observe lines of simulated and observed flow  overlapping, that means, 

excellent results:  

 

 

Figure 5.12: Apportionment of the system outputs. 

 

As we can see in the Figure 5.12 the actual evapotranspiration (AET) is just a 

little bit more than 50 % (precisely 51%) of the system outputs. The runoff 

components q0, q1, q2 represent the remaining 49 % are distributed in this way: 

• q0 < 1% 

• q1 = 8% 

• q2 =40% 

We can say that this graphic of generated data is practically equal to the same 

graphic of original data. 
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Better results we can observe in the Figure 5.13 where the two lines of 

cumulative observed floe (QOBS) and cumulative simulated flow (QSIM) are 

overlapping.  

 

 

Figure 5.13: Comparison of cumulative observed and simulated flow. 

 

In the Figure 5.14  hereafter is shown the distribution  discharge simulated and 

discharge observed around  the line y = x, that means Qsim = Qobs, that is 

perfect comparison. The results are of course better than original data because 

we have a perfect comparison between Qsim and Qobs: 



 

 

 

64 CALIBRATION OF RAINFALL-RUNOFF MODELS 

 

Figure 5.14: Comparison of discharge simulated and discharge observed. 

We can say the same about the Figure 5.15, where is shown empirical 

distribution function, or empirical cdf. We can observe a perfect coincident of 

the two lines ECDF for Qobs and ECDF for Qsim: 

 

 

Figure 5.15: Comparison of simulated and observed flow. 
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The last graphic (see Figure 5.16) that we got from the generated data shows the 

comparison of input and output data. 

 
Figure 5.16: Comparison of input and output data. 

 

We can note the same things we have already seen in the same graphic of the 

original data. As we can see precipitation (P) + snow (S) constitute the 50 %. 

The actual evapotranspiration (AET) 25%, the remaining 25% is done by runoff 

components q0,q1,q2 distributed in this way: 

• q0 < 1% 

• q1 = 4% 

• q2= 20% 

Furthermore there is another very small (less 1%) percentage of S. 
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5.3 Split-sample test 

There are different calibration strategies  to meet two objectives: good discharge 

simulations in terms of least mean square errors and the ability to reproduce one 

functional characteristic of the system and the autocorrelation function of the 

discharge. One of these calibration strategies is split-sample test.  

The available record should be split into two segments one of which 

should be used for calibration and the other for validation. It should be split into 

two equal parts, each of them should be used in turn for calibration and 

validation, and results from both arrangements compared. The model should be 

judged acceptable only if the two results are similar and the errors in both 

validation runs acceptable. 

So in the next step we have tried to calibrate model parameters with the 

use of only one half of the generated data. The second half was then used as a 

validation period used to verify that the calibrated parameters can also be used 

on different data. We have also used the second half of the data as a calibration 

period and the first half as a validation period.  The generated data were split in 

the 31.12.1990 creating two periods spanning 1.1.1980 and 31.12.1990 and 

1.1.1991 and 31.12.2000. When calibrating the model on the first period we have 

achieved the NS values of 0.999 for the calibration period and 0.998 for the 

validation period. Calibration on the second period brought similar results with 

the NS values of 0.999 and 0.999 for calibration and validation periods 

respectively.  
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Since both of these values are very close to 1 and the visual assessment of the 

models (see Figure 5.17 and 5.18) is also very good we can say that in both cases 

we have managed to reproduce the model itself. 

All the calibrated parameters are listed in Table 5.3. 

 

Figure 5.17: Comparison of generated and simulated data. Calibrated on the first period. 

 

 

Figure 5.18: Comparison of generated and simulated data. Calibrated on the second period. 
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Table 5.3: Summary table showing all the calibrated periods and boundaries that were used in the calibration. 

Parameter Original Gen all Period 1 Period 2 lower bound upper bound 

fc 162.61 164.25 164.59 162.02 100 400 

rc 1.00 1.04 1.03 1.02 0.1 4 

emp 1.00 1.00 1.00 1.00 1 1 

uzl 10.17 26.45 14.43 30.86 10 40 

tempRain 7.42 7.09 7.20 7.20 0.5 10 

tempMelt -1.52 -1.48 -1.52 -1.53 -5 2 

tempSnow -8.97 -8.81 -8.77 -8.76 -10 0 

ddf 0.76 0.76 0.76 0.76 0 3 

perc 2.67 2.68 2.67 2.71 0.5 4 

lpe 0.50 0.53 0.52 0.52 0.5 1 

k0 48.57 20.75 27.92 18.68 1 50 

k1 4.19 4.07 4.17 4.02 1 30 

k2 22.80 23.05 22.81 22.90 10 100 

scf 1.00 1.00 1.00 1.00 1 1 

maxbas 3.37 3.16 3.02 3.05 1 6 

 

5.4 Additional split-sample test  

In the next step we have done the same as described previously but with the 

difference that we have chosen two different periods: the first period of 15 years 

and the second of 5 years. The procedure is the same as described above: the 

generated data were split in the 31.12.1995 creating two periods spanning 

1.1.1980 and 31.12.1995 and 1.1.1996 and 31.12.2000. When calibrating the 

model on the first period we have achieved the NS values of 1.000 for the 

calibration period and 0.9885 for the validation period. Also in this additional 

split-sample test calibration on the second period brought similar results with the 

NS values of 0.9841 and 0.9789 for calibration and validation periods 

respectively. 
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As we can see the values are very close to 1 and the visual assessment of the 

models (see Figure 5.19 and 5.20) is also very good we can say, also here, that in 

both cases we have managed to reproduce the model itself. 

 

 

Figure 5.19: Comparison of generated and simulated data. Calibrated on the first period. 

 

 

Figure 5.20: Comparison of generated and simulated data. Calibrated on the second period. 

 

We have repeated this procedure, but changing again the periods: we have 

chosen for the last split-sample test the first period of 5 years and the second 

period of 15 years. And so the generated data were split in the 31.12.1985 
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creating two periods spanning 1.1.1980 and 31.12.1985 and 1.1.1986 and 

31.12.2000. When calibrating the model on the first period we have achieved the 

NS values of 0.9999 for the calibration period and 0.9997 for the validation 

period. Also in this additional split-sample test calibration on the second period 

brought similar results with the NS values of 0.9997 and 0.9998 for calibration 

and validation periods respectively.  

 

 

 

Figure 5.21: Comparison of generated and simulated data. Calibrated on the first period. 

 

 

Figure 5.22: Comparison of generated and simulated data. Calibrated on the second period. 
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Even here we can conclude that since both of these values are very close to 1 and 

the visual assessment of the models (see Figure 5.21 and 5.22) is also very good. 

So we can say that in both cases we have managed to reproduce the model itself. 

  



 

 

 

72 CALIBRATION OF RAINFALL-RUNOFF MODELS 

CONCLUSIONS 

The present study is focusing on rainfall-runoff modelling and in particular on 

techniques for parameter calibration. The objectives of the study is to assess the 

efficiency of currently used parameter estimation methods with respect to 

hypothetical and real world case studies. An established models is used for 

which calibration techniques are tested therefore deriving indications on their 

efficiency and suitability. 

We got results of the rainfall-runoff modelling in the Hron catchment (in 

the middle of Slovack) using the HBV model.  The model calculates discharge 

from the catchment using various meteorological and climatic data such as 

precipitation, temperature and daily potential evapotranspiration. In this study we 

have been working with data from the Hron catchment measured in a daily step 

in a period between 01/01/1980 and 31/12/2000 giving us 20 years of observed 

data.  

Since the main objective of this study was to compare various calibration 

strategies and optimization algorithms we have decided that the best way to 

evaluate their performance is to put ourselves in an ideal conditions where 

measurements errors are not present. By doing this we have achieved that the 

goodness of fit of a particular model was given only by the different parameters 

obtained from various calibration strategies. In order to eliminate the effect of 

the data errors we have simulated a synthetic time series of flows calculated with 

the HBV model with parameters that were calibrated on the whole period of the 

original data. 

We have used two types of optimization algorithms for the whole dataset: 

genetic algorithm and harmony search and we have used the Nash-Sutcliffe 

coefficient (NS) as an objective function.  

After obtaining the best set of parameters calibrated on the observed data 

we have used the parameters and measured precipitations, temperatures and glare 

indexes to create simulated flows (generated data).  

These generated data were further used to calibrate another set of 

parameters which have shown us whether we are able to reproduce the model 

itself. The result of the calibration shows that the fit of the model is very good 
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with the Nash-Sutcliffe value equal to 0.99983. This means that with the use of 

genetic algorithm we have managed to reproduce the model itself. 

Then we have used various calibration strategies. 

We have tried to calibrate model parameters with the use of only one half 

of the generated data. The second half was then used as a validation period used 

to verify that the calibrated parameters can also be used on different data. We 

have also used the second half of the data as a calibration period and the first half 

as a validation period.  The generated data were split in the 31.12.1990 creating 

two periods spanning 1.1.1980 and 31.12.1990 and 1.1.1991 and 31.12.2000. 

When calibrating the model on the first period we have achieved the NS values 

of 0.999 for the calibration period and 0.998 for the validation period. 

Calibration on the second period brought similar results with the NS values of 

0.999 and 0.999 for calibration and validation periods respectively. Since both of 

these values are very close to 1 and the visual assessment of the model is also 

very good we can say that in both cases we have managed to reproduce the 

model itself. 

We have repeated this procedure, but changing again the periods: we 

have chosen for the last split-sample test the first period of 5 years and the 

second period of 15 years. And so the generated data were split in the 31.12.1985 

creating two periods spanning 1.1.1980 and 31.12.1985 and 1.1.1986 and 

31.12.2000. When calibrating the model on the first period we have achieved the 

NS values of 0.9999 for the calibration period and 0.9997 for the validation 

period. Also in this additional split-sample test calibration on the second period 

brought similar results with the NS values of 0.9997 and 0.9998 for calibration 

and validation periods respectively.  

Even here we can conclude that since both of these values are very close 

to 1 and the visual assessment of the models is also very good. So we can say 

that in both cases we have managed to reproduce the model itself. 

We can conclude that the HBV model is an efficient tool for runoff 

simulation. The model is simple and has been applied in some 40 countries, in all 

parts of the world and the number of applications in other countries is growing. It 

is also used for many other purposes, such as spillway design floods simulation, 

water resources evaluation, nutrient load estimates. 



 

 

 

74 CALIBRATION OF RAINFALL-RUNOFF MODELS 

REFERENCES 

The Columbia Electronic Encyclopedia, (2007) - 

http://encyclopedia2.thefreedictionary.com/Hydrology 

 

Nation master - 

http://www.nationmaster.com/encyclopedia/Hydrology 

 

North and south rivers watersheds association - 

http://www.nsrwa.org/Page.121.html 

 

Watersheds Atlas - 

http://www.watershedatlas.org/watershed/fs_natsys.html 

 

Watersheds Atlas - 

http://www.watershedatlas.org/watershed/fs_watercyclens.hml 

 

Bergstrom S. (1972); The HBV model-its structure and applications; 

SMHI RH no. 4, Norrkôping, Sweden. 

 

Bergstrom, S. (1991), Principles and confidence in hydrological 

modelling, Nord. Hydrol., 22, 123-136. 

Beven, K. J. (2001), Rainfall-Runoff Modelling—The Primer, 360 pp., 

Eiben, A. E. (1994); Genetic algorithms with multi-parent recombination; PPSN 

III: Proceedings of the International Conference on Evolutionary Computation. 

Freer, J., K. J. Beven, and B. Ambroise (1996), Bayesian estimation of 

uncertainty in runoff prediction and the value of data: An application of the 

GLUE approach, Water Resour. Res., 32, 2161-2173. 

Geem, Z.W.  Recent Advances In Harmony Search Algorithm. Studies in 

Computational Intelligence Vol. 270 Springer 2010. 



 
75 REFERENCES REFERENCES 

Gotzinger, J., and A. Bardossy (2008), Generic error model for calibration and 

uncertainty estimation of hydrological models, Water Resour. Res., 44, W00B07, 

doi:10.1029/2007WR006691. 

Hyndman, R. and Koehler A. (2005); Another look at measures of forecast 

accuracy; International Journal of Forecasting Volume 22, Issue 4, October-December 

2006, Pages 679-688 

Lindström, G. and Rodhe (1992); Parameterized Slantwise Convection in a 

Numerical Model;  Mon. Wea. Rev., 120, 742–756. 

Lindstrôm, G.,  Johansson, B.,  Persson, M., Gardelin, M. and Bergstrôm, S. (1997) 

Development and test of the distributed HBV-96 hydrological model. J. Hydrol. 201, 

272-288. 

Montanari, A.  (2005), Large sample behaviors of the generalized likelihood 

uncertainty estimation (GLUE) in assessing the uncertainty of rainfall- runoff 

simulations, Water Resour. Res., 41, W08406, doi:10.1029/ 2004WR003826. 

Montanari, A.  (2007), What do we mean by "uncertainty"? The need for a 

consistent wording about uncertainty assessment in hydrology, Hydrol. 

Processes, 21(6), 841-845, doi:10.1002/hyp.6623. 

Merz, R. Parajka,  J. and Bloeschl, G. (2009) : Scale effects in conceptual 

hydrological modelling ,WRR,VOL.45,W09405, doi:10.1029/2009WR007872  

Nash, J. E. and J. V. Sutcliffe (1970); River flow forecasting through 

conceptual models part I; Journal of Hydrology, Volume 10, Issue 3, April 1970, 

Pages 282-290  

Refsgaard, J. C., and J. Knudsen (1996), Operational validation and inter- 

comparison of different types of hydrological models, Water Resour. Res., 32(7), 

2189-2202. 

Refsgaard, J. C. (2000), Towards a formal approach to calibration and 

validation of models using spatial data, in Spatial Patterns in Catchment 

Hydrology: Observations and Modelling, edited by R. Grayson and G. Bloeschl, 

chap. 13 pp. 329-354, Cambridge Univ. Press, Cambridge, U. K. 



 

 

 

76 CALIBRATION OF RAINFALL-RUNOFF MODELS 

Refsgaard, J. C., J. P. van der Sluijs, J. Brown, and P. van der Keur (2006), 

A framework for dealing with uncertainty due to model structure 

error,Adv.WaterResour.,29,1586-1597,doi:10.1016/j.advwatres.2005.11.013. 

Seibert, J. (1997) Estimation of parameter uncertainty in the HBV model. 

Nordic Hydrology, Vol. 28, No. 4/5. pp 247-262. 

Seibert, J. (2000); Multi-criteria calibration of a conceptual runoff model using 

genetic algorithm; Hydrology and Earth System Sciences 4, 2 (2000) 215-224 

Singh Vijay P. (1995); Watersheds modeling. In: Computer models of 

watershed hydrology (ed. By V. P. Singh), 1-23. Water Resources Publications, 

Littleton, Colorado, USA. 

Singh, V. P. and D. K. Frevert (Eds.) (2001a), Mathematical Models of Small 

Watershed Hydrology, 972 pp., Water Resour. Publ., Highlands Ranch, Colo. 

Singh, V. P. and D. K. Frevert (Eds.) (2001b), Mathematical Models of Large 

Watershed Hydrology, 914 pp., Water Resour. Publ., Highlands Ranch, Colo. 

 



 
77 ACKNOWLEDGMENTS 

 

 

 

 

 

ACKNOWLEDGMENTS  

 

First of all, I would like to thank my supervisor, Prof. Alberto Montanari, for the 

great help and kindness he showed throughout the drafting of this thesis. 

I would also like to thank Prof. Jan Szolgay who gave me a warm welcome in 

Bratislava and made me feel at home, as well as Eng. Peter Valent with whom I 

had the pleasure of working. Thank you also to all my fellow students at the 

University of Bratislava. 

My warmest thanks to my brother, Andrea, and my parents who, with their 

unshakable support, allowed me to reach this splendid goal. 

A deep thank you goes to my grandparents, aunts, uncles and cousins who have 

always been close to me during these wonderful years. 

A big thanks to my fellow tenants of Bologna for having always stood by me, as 

well as to my friends in Soverato. 

Finally, my thanks to Antonietta, unique and special. 

 

 


