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Abstract

The study in the radio band of large scale structures, complemented by their forma-
tion and evolution, can lead the exploration of new frontiers on particle acceleration
processes in the Cosmic Web and in our Universe. The largest gravitationally bound
structures are galaxy clusters. However, the discovery of large filamentary structures
connecting pairs of clusters of galaxies in a pre-merger state has left us wondering
what the origin of this recently observed class of phenomena might be. They are
usually referred to as radio bridges.
In this work, I will focus my effort on what may be the most prominent example of
this new class of phenomena, a radio bridge that spans over the 3 Mpc scale con-
necting the clusters Abell 399 and Abell 401. The nature of this bridge may be of
great relevance, since it could represent an initial portion of a Cosmic Web filament,
that up until the recent LOFAR observations has remained undetected in the radio
band. Therefore, understanding the mechanisms that generate the emission and
properties of the population of particles that resides in the region can allow us to
derive the properties of particle acceleration in a poorly explored density regime, in
particular regarding the formation of structures, since Abell 399 and Abell 401 are
two clusters in a pre-merger phase.
Mostly using a semi-analytical approach, my Thesis will focus on constraining the
plausible mechanisms for the formation of this radio bridge, in particular by con-
fronting different model’s predictions on the Inverse Compton emission from this
region, which up until now has remained undetected.
From the detection of synchrotron emission in the region of the bridge, I derive dif-
ferent models that revolve around the presence of a relativistic population of Cosmic
Rays electrons (CRe), emitting in radio. These electrons can be accelerated to higher
relativistic energies via Fermi I or Fermi II processes, if we assume them to undergo
shock or turbulent (re-)acceleration respectively. In particular, if the acceleration
model for the CRe population is a Fermi I (re-)acceleration by weak shocks, then
we are considering a system in which the emission of the bridge is caused by the
overlapping of multiple shocks along the line of sight.
My Thesis is mostly concerned about constraining whether a Fermi I model can
describe the observed synchrotron emission from the bridge while, at the same time,
estimating the Inverse Compton emission that falls under the observational limit as-
sociated with our current instrumental possibilities, thus justifying the undetection
of the emission.
Of particular importance in my modelling are the roles of the magnetic field distri-
bution and strengths, the spectral index of the electron population, and the fraction
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of the volume that is responsible for the emission of synchrotron radiation, since
they are closely linked parameters for the Fermi I (re-)acceleration model that are
in a degeneracy. I will consider how different combinations of these parameters may
produce a suitable Inverse Compton emission and under which combination the val-
ues for these parameters are likely or not.
All this considered, in this work I will use statistical magnetic field models of increas-
ing realism to describe the 3D distribution of magnetic fields in the bridge volume,
in a variety of volume filling factors. Then I will compute the Inverse Compton lu-
minosities predicted by the different models, and I will confront them with current
observational constraints to see if a weak shock (re-)acceleration model can describe
the emission from the A399-A401 bridge or whether other scenarios are required to
explain its observation. Among the most important findings of my work, from the
unreasonably large values of magnetic fields and filling factors for shocks required
for the Fermi I model not to exceed the available IC limits, it can be inferred that
this model is unlikely to describe the emission from the bridge, and thus that other
particle acceleration mechanisms should be at play here.
My Thesis work is organized as follows:

• In Chapter (1) I introduce the physical background of interest for this work,
in particular I write about large scale structure formation, galaxy clusters,
emission mechanisms in the Intra-Cluster Medium and Cosmic rays in large
scale structures;

• In Chapter (2) I talk about the scientific case of radio bridges, their main
characteristics and some of the attempted models used to describe them, with
a particular interest for the A399-A401 bridge;

• In Chapter (3) I compute the Inverse Compton emission for the bridge A399-
A401 produced by a Fermi I (re-)acceleration model under various combina-
tions of magnetic field distribution, filling factor and radio spectral index;

• In Chapter (4) I report the results of my work and I give my final remarks on
the likelihood of a Fermi I model being able to describe the emission from the
bridge;

• In Appendix (A)-(B) I show two examples for the codes that I have created
to produce the graphs in Chapter (3), where from this two examples some
modifications to them would allow to reproduce the majority of the graphs
seen in that Chapter.





Riassunto

Lo studio di strutture su larga scale nella banda radio, insieme alla loro formazione
ed la loro evoluzione, può condurre all’esplorazione di nuove frontiere per i processi
di accelerazione delle particelle nel Cosmic Web e nel nostro Universo. Le più grandi
strutture gravitazionalmente legate sono gli ammassi di galassie. Tuttavia la scop-
erta di grandi strutture filamentari che connettono coppie di ammassi di galassie in
una fase di pre-merger ci ha portato a interrogarci su quale potrebbe essere l’origine
di questa nuova classe di fenomeni recentemente osservata. Sono di solito chiamati
radio bridges.
In questo elaborato, concentrerò i miei sforzi su quello che potrebbe essere l’esempio
più prominente di questa nuova classe di fenomeni, un ponte radio che si estende
oltre i 3 Mpc connettendo gli ammassi Abell 399 e Abell 401. La natura di questo
ponte potrebbe essere di grande importanza, visto che potrebbe essere una porzione
iniziale di un filamento del Cosmic Web, un tipo di fenomeno che è rimasto invisi-
bile nella banda radio fino a recenti osservazioni LOFAR. Perciò, capire i meccanismi
che generano l’emissione e le proprietà delle popolazioni di particelle che risiedono in
quella regione può permetterci di derivare le proprietà dell’accelerazione di particelle
in quello che è un regime di densità scarsamente esplorato, in particolare riguardo
alla formazione di strutture, visto che Abell 399 e Abell 401 sono due cluster in una
fase di pre-merger.
Usando un approccio semi-analitico, il mio lavoro di Tesi si concentrerà sul vin-
colare il possibile meccanismo di formazione di questo radio bridge, in particolare
confrontando le predizioni di differenti modelli con l’emissione Inverse Compton da
questa regione, che fino ad oggi è rimasta inosservata.
Dall’osservazione dell’emissione di sincrotrone nella regione del bridge derivo diversi
modelli riguardanti la presenza di una popolazione di Cosmic Ray electrons (CRe)
relativistici, che emettono nel radio. Questi elettroni possono essere accelerati a
più alte energie relativistiche tramite processi Fermi I o Fermi II, se assumiamo
che vadano incontro a una (ri-)accelerazione tramite shock o turbolenta, rispettiva-
mente. In particolare, se il modello di accelerazione per la popolazione di CRe è una
(ri-)accelerazione Fermi I da shock deboli, allora stiamo considerando un sistema
nel quale l’emissione dal bridge è causata dalla sovrapposizione di vari shock lungo
la linea di vista.
La mia Tesi è principalmente focalizzata sul determinare se un modello Fermi I possa
descrivere l’emissione di sincrotrone osservata dal bridge e se, allo stesso tempo,
possa predire un’emissione Inverse Compton che sia al di sotto del limite osservativo
associato con le nostre attuali possibilità strumentali, e dunque giustificando la sua
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non detezione.
Di un’importanza particolare per i miei modelli sono i ruoli che rivestono la dis-
tribuzione e l’intensità dei campi magnetici, l’indice spettrale della popolazione
e la frazione di volume responsabile per l’emissione di sincrotrone, siccome sono
parametri strettamente collegati per il modello di (ri-)accelerazione Fermi I, per
il quale sono in una degenerazione. Considererò come differenti combinazioni di
questi parametri possano produrre un’adeguata emissione Inverse Compton e per
quali combinazioni i valori di questi parametri siano plausibili o no.
Ciò detto, in questo elaborato userò modelli statistici di distribuzione dei campi
magnetici che siano di crescente realismo, in modo da descrivere la distribuzione
3D dei campi magnetici nel volume del bridge, con una varietà di fattori di riem-
pimento del volume totale. Poi calcolerò le luminosità Inverse Compton predette
dai vari modelli e le confronterò con gli attuali vincoli osservativi per controllare
se un modello di (ri-)accelerazione con shock deboli possa descrivere l’emissione dal
bridge A399-A401 o se altri scenari siano richiesti per spiegare la sua osservazione.
Tra i risultati più importanti del mio lavoro, dagli elevati ed inspiegabili valori dei
campi magnetici e dei fattori di riempimento che sono richiesti affinchè gli shock
per il modello Fermi I non facciano eccedere i limiti Inverse Compton disponibili,
è possibile evincere che sia improbabile che questo modello descriva l’emissione dal
bridge e che dunque altri meccanismi per l’accelerazione delle particelle dovrebbero
avere un loro ruolo nel bridge.
Il mio lavoro di tesi è organizzato come segue:

• Nel Capitolo (1) introduco il background fisico di interesse per questo elabo-
rato, in modo particolare scrivo riguardo alla formazione di strutture su larga
scale, ad ammassi di galassie, ai meccanismi di emissione nell’Intra-Cluster
Medium e ai raggi cosmici in strutture su larga scala;

• Nel Capitolo (2) parlo del caso scientifico dei radio bridge, le loro principali
caratteristiche e alcuni dei modelli con cui si è tentato di descriverli, con un
interesse particolare per il bridge A399-A401;

• Nel Capitolo (3) calcolo l’emissione Inverse Compton per il bridge A399-A401
prodotta da un modello a (ri-)accelerazione Fermi I sotto varie combinazioni
di distribuzioni di campi magnetici, fattori di riempimento e indice spettrale
radio;

• Nel Capitolo (4) riporto i risultati del mio elaborato e fornisco i miei com-
menti finali sulla plausibilità che un modello Fermi I sia capace di descrivere
l’emissione dal bridge;

• Nelle Appendici (A)-(B) mostro due esempi per i codici che ho ideato per
produrre i grafici nel Capitolo (3), dove alcune modifiche a partire da questi
due esempi permetterebbero di riprodurre la maggior parte dei grafici visti in
quel Capitolo.



Chapter 1

Introduction

In this introduction I will give a quick review on the basic concepts of cosmology,
and in particular the model Λ Cold Dark Matter (ΛCDM) and the nature of the
Cosmic Web, of galaxy clusters and their characteristics and finally on the ICM,
with a particular attention to particle acceleration models. In later Chapters, I will
move on to study how exactly each model that may describe bridge A399-A401
withstands the comparison with our observational constraints.

1.1 Large scale structure formation

In all of my analysis I have assumed a cosmology of the model ΛCDM so a universe
that has a flat geometry composed by dark matter, baryonic matter, radiation and
dark energy. A universe of this kind is currently undergoing accelerated expansion
because of the dominant presence of dark energy over the other components.
There are several fundamental cosmological parameters for which I have to assign a
certain value to conduct this work, some of the most important ones are the Hubble
constant H(t) = ȧ/a, where a is the expansion factor, and the density parameters
for each component of the universe, represented by Ω = ρ/ρcrit, where ρcrit is the
critical value of density, a discriminant for whether or not our universe is open,
closed or flat. When I want to express these quantities at the present time (t = 0)
I can write them as a0, H0, Ω0 and so on.
The difference between flat, open or closed geometry manifests, amongst other phe-
nomena, into the measures of distance at cosmological scales, therefore making it
extremely crucial to not only cosmological studies to discern in what type of universe
we have found our home.
There are two very significant ways in which we can define distance, and those are
luminosity [Eq. (1.1)] or angular [Eq. (1.2)] distance, as written in the equations
below

dL = a0r(1 + z) (1.1)

that we obtain with standard candles, and

dA = ar (1.2)

1
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that we obtain with standard rulers; since by definition 1 + z = a0/a, we have the
duality relation dA/dL = 1/(1 + z)2.
These distances differ in their results as a direct consequence from our use of the
metric of Robertson-Walker-Friedmann (RWF), that we will not discuss here, and
the duality relation is a strong test to check if we can indeed apply RWF to the
entirety of the universe. In this work I use luminosity distances, even if the bridge
A399-A401 is close enough to us such that no major difference would occur.
For consistency with the discovery paper by F. Govoni and al. (2019), the cosmo-
logical parameters chosen for this work are:

• H0 = 72 km s−1Mpc−1,

• Ω0,m = 0.258

• Ω0,Λ = 0.742

while the redshifts of A399 and A401 are respectively 0.071806 and 0.073664 (F.
Govoni and al. 2019).

1.1.1 Structure formation and growth

The consensus view of structure formation in an evolving universe is that a hierarchi-
cal model of galaxy and galaxy cluster formation, that means to assume that small
perturbations in the dark matter field of density grow at a certain pace, creating
potential wells that in turn facilitate the accretion of perturbation of barionic mat-
ter, inside these pre-existing wells, forming the various structures of our universe.
In particular, a hierarchical scenario states that small objects and structures are the
first things formed and then via merger bigger and bigger structures are formed, like
galaxies and clusters of galaxies. Each kind of component of the universe grows in a
different way at different rates, and those same ways vary accordingly to which epoch
we are considering. Here I give a quick overview of what are the main behaviours
of each component in different time periods, specifically: before the equivalence
(t < teq), between the equivalence and decoupling (teq < t < tdec) and after decou-
pling (t > tdec). For each of these periods I consider spatial scales bigger than the
horizon (λ > RH) and between the horizon and Jeans scale (RJ < λ < RH), that
are the only ones that allow a perturbation to grow.
If δ = δρ/ρ̄ represents a general perturbation in a density field then with δB, δR and
δDM we are considering the perturbations in the density fields of baryons, radiation
and dark matter, respectively. In Tab. (1.1) I display the trends of each component.

Table 1.1: Perturbation growth of various cosmological components

t < teq teq < t < tdec t > tdec

λ > RH δB,δR,δDM α a2 δB,δR,δDM α a δB,δR,δDM α a

δR oscillates δR oscillates δDM α a,
RJ < λ < RH δB oscillates δB oscillates

δDM stagnates δDM α a δB = δDM(1− adec
a
)
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I am particularly interested in what happens after the decoupling time of mat-
ter and radiation, since before that time matter and radiation perturbations could
not grow but instead oscillated, so they simply propagated through space without
increasing in amplitude. The role of dark matter is important because before the
equivalence its perturbations could not grow indefinitely but between teq and tdec
they were the only ones able to grow proportionally to a(t), therefore creating po-
tential wells into which baryons, after decoupling, could fall into; in fact, their trend
after decoupling is called baryon catch up since baryon perturbations rapidly catch
up to the dark matter ones, allowing the formation of galaxies and their later on
evolution and merging processes that will result in clusters of galaxies.

1.1.2 Cosmic web

How exactly perturbations form and then grow in their non-linear stage is best
modelled by the means of cosmological simulations, nonetheless the majority of
them results in a pattern of nodes and filaments commonly called Cosmic Web,
shown in Fig. (1.1).

Figure 1.1: Cosmic web; Credit: V.Springel, Max-Planck Institut für Astrophysik;

Every node in the cosmic web represents a cluster of galaxies, while the filaments
joining them are composed by gas and galaxies. The usual finding is that dark mat-
ter potential wells form fist, thus causing filaments of dark matter, and then barionic
matter falls into the pre-formed filaments leading to the formation of structures.
There are many ways to describe the evolution of perturbations, meaning also how
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the Cosmic Web comes to be, in particular it is important to consider a non lin-
ear regime of perturbations, so when δ in not much less than 1; in this regime
there are analytical theories in weakly non linear regimes, Gaussian’s peak theory,
Zel’Dovich’s approximation and cosmological simulations. The last ones obviously
require significant time and computational power, yet they can address in a better
way the need to deal with several bodies interacting with each other, and occasion-
ally colliding when a merger event happens.
It is of particular interest to us the concept of Cosmic Web, since A399-A401 could
possibly be the tip of the iceberg of the filamentary distribution of gas matter and
magnetic fields in the Cosmic Web, and it would be one of the first to be observed
in radio and measured in its quantities. There are however more recent detection of
Cosmic Web filaments, that we can see in Fig. (1.2)-(1.3), that have been obtained
via different routes.

Figure 1.2: In the left panel the data obtained from the stacking of millions of
close pairs of galaxies; in the middle panel the model for said pairs, which does not
have the bridge present in the left panel; in the right panel the observed filament is
highlighted; (A. de Graaff and al. 2019)

In Fig. (1.2) there is an example of a detection of a Cosmic Web statistical fil-
amentary emission through stacking of the Planck Compton-y map of the thermal
Sunyaev-Zel’Dovich effect for several pairs of galaxies; in particular, this has allowed
to find that up to 28± 12% of the missing baryon fraction in the universe might be
found in Cosmic Web filaments (A. de Graaff and al. 2019).
A similar result was obtained through X-ray stacking of Chandra, ROSITA and
XMM-Newton data for stacking of 15165 filaments already identified by SDSS where
emission at significance 4σ was observed around 1 keV (H. Tanimura and al. 2020).
In Fig. (1.3) I show the difference in count-rate for the stacked data and an aver-
age profile from random sampling; we can easily see that the presence of filaments
appears necessary to explain the differences between data and simulations.
Radio stacking of red galaxies as tracers for cluster pairs has also been attempted,
however the radio signal is higher than the predictions from cosmological simula-
tions, indicating that the filaments have sufficient CR and magnetic field strength
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Figure 1.3: In black the average radial profile of stacked filaments in the ROSAT
band 0.56 − 1.21 keV ; in blue the average radial profile of 1000 random sampling
(H. Tanimura and al. 2020);

to produce detectable synchrotron radiation (T. Vernstrom and al. 2021).

1.2 Galaxy clusters

Galaxy clusters are the biggest gravitationally bound structures in the universe and
they are thought to be formed when several galaxies reach virial equilibrium, to-
gether with the gas surrounding them. Clusters of galaxies are composed of many
galaxies, mainly elliptical, hot thermal gas called Intra-Cluster Medium (ICM), Cos-
mic Rays (CR) and dark matter.
The main characteristics of galaxy clusters typically consist in:

• 100-1000 galaxies

• velocity dispersion of 1000 km/s

• 1− 5 Mpc scale

• crossing time-scale ≈ 1 Gyr, implying plenty of mergers between its galaxies
have taken place

• 1014 − 1015 M⊙
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where the typical mass ratios are 1−5% Mtot for galaxies, 10−16% Mtot for the ICM
and 84− 90% Mtot for dark matter, making galaxy clusters some of the best probes
to study dark matter via gravitational lensing. They are also excellent cosmological
probes because they allow us to track how matter is distributed in the universe (A.
Cimatti 2020).

1.2.1 Optical, X-ray and radio observations

Observations in various bands have been performed, and here I show only a few
examples of how galaxy clusters appear at different wavelengths. Galaxies mainly
emit in the optical band, as seen in Fig. (1.4), however they are not the main bar-
ionic components of the clusters, that would be the ICM. We can therefore study

Figure 1.4: Galaxy cluster MACS J1149.5+2233; this image is the combination of X-
ray (blue), optical and radio (red) observations (Credit: X-ray: NASA/CXC/SAO;
Optical: NASA/STScI; Radio: NSF/NRAO/AUI/VLA)

with optical observations stellar formation, scale relations, distribution and mass of
galaxies, amongst other applications. To look at the ICM we have to observe the
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clusters in the X band, this way we can study it through bremsstrahlung emission
(free-free), recombination (free-bound), line emission (bound-bound) and IC. In par-
ticular, gas in the ICM has typical temperatures of 107 − 108 K that are reached
by gravitational and shock heating, while the CR component is non-thermal and
it is made of relativistic electrons (CRe) and protons (CRp), however the presence
of CRp in the ICM is not clear as the γ-rays produced as a byproduct of hadronic
decay of said CRp have yet to be observed, with an hypothesized upper limit of
roughly a percentage of the thermal energy of the ICM (G. Brunetti and T. W.
Jones 2014).

Figure 1.5: Radio relic in Coma cluster, where the white contours are at 3σrms (A.
Bonafede and G. Brunetti 2022).

In the radio band we can study how CR populating the ICM behave, especially
when we have synchrotron emission, since it allows us to inquire about the magnetic
fields that fill the region and influence the dynamics of the ICM and CRe. Also we
look at radio halos, radio relics and occasionally radio jets from AGN. All of these
different phenomena can span the sky at spatial scales comparable to the cluster
scale itself. The main source of emission is synchrotron radiation and this may in-
clude radio lobes caused by AGN jets interacting with the ICM and CRe interacting
with the magnetic fields that fill the region of the cluster, amongst the various other
sources. The latter are particularly interesting to this work because CRe emitting
in synchrotron should also emit in IC, therefore giving us a way to double-check the
origin of the radiation of the bridge A399-A401 and the nature of magnetic fields in
the region; the CRe are likely already relativistic and they may reach even higher
energies via shock (re-)acceleration and turbulence in the ICM, also these processes
likely contribute to an amplification of magnetic fields, that can roughly be of the
magnitude of the µG.
A radio halo is a class of diffuse radio emission located in the center of the cluster,
mainly filling the same space of the ICM, where particle (re-)acceleration is likely
due to the mechanisms spatially distributed over the ICM and it can be associated
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with turbulent re-acceleration or the production of secondary CRe due to the decay
of primary CRe through what is called the hadronic mechanism. Radio relics are
extended radio sources with a power-law spectrum and highly polarized emission
that are likely the aftermath of a merger between clusters. They are often symmet-
rical to the merger axis with two radio relics parallel to the equatorial plane and two
following ones perpendicular to it. In Fig. (1.5) we may see an example of a radio
relic in the famous Coma cluster, showing the elongated shape of the structure.

1.2.2 Scaling relations for galaxy clusters

Figure 1.6: Bullet cluster; in blue is where the mass of the two clusters is con-
centrated, in pink is where the ICM (or baryonic mass in general) is; Credit:
X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScI; Magel-
lan/U.Arizona/D.Clowe et al.; Lensing Map: NASA/STScI; ESO WFI; Magel-
lan/U.Arizona/D.Clowe et al.

Galaxy clusters are the biggest virialized structures in the universe, this means
that after billions of years the merging process occurring between the ensemble of
galaxies has led the system to reach an approximate virial equilibrium, a balance
between gravity and pressure due to the velocity dispersion of galaxies, as given by
Eq. (1.3)

M =
3σvrg
G

= 1015 (
σv

1000 km/s
)2 (

rvir
1 Mpc

) M⊙ (1.3)
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where σv is the velocity dispersion of galaxies and rvir the virial radius. However, the
use of the virial theorem is but one of the methods with which it can be possible to
measure the mass of a cluster, the others use the hydrostatic equilibrium between the
X-ray and SZ emission of the ICM and the gravitational lensing (A. Cimatti 2020).
That being said, Eq. (1.3) tells us that a typical value for the mass of a cluster is of
the order of 1015 M⊙, which can only be explained with a significant presence of dark
matter, if the hypothesis of virial equilibrium stands. A simple check that might be
done is the measurement of the mass of the cluster with gravitational lensing; a test
that up until now has been consistent with the presence of dark matter.
The hydrostatic equilibrium is another important relation to keep in mind, in fact by
assuming it we can estimate the mass of the ICM and we can also define a gradient
in temperature and density of the gas.
Assuming hydrostatic equilibrium allows us to define also a gradient in mass, as
expressed in Eq. (1.4)

M(r) =
kb

GµmH

r2

ρ
(−T

dρ

dr
− ρ

dT

dr
) (1.4)

where µ is the chemical potential of the gas, mh the mass of hydrogen and ρ(r)
and T (r) are, respectively, the density and the temperature of just the ICM gas,
excluding the dark matter component, obtained by observing the cluster in the X-
ray band. The gas is colder in the center of the cluster than in its outskirts for
cool − core clusters, and viceversa for non− cool − core clusters.
Density gradients for barionic and dark matter are more difficult to measure, in
fact not being able to see directly the dark matter component is, of course, a grave
obstacle; however, various models and simulations have been proposed, like NFW
or Einasto or King, even if the occurrence of a merger between clusters greatly com-
plicates the picture, take for example the Bullet cluster, in Fig. (1.6).
The stark contrast between the distribution of baryonic matter and matter in gen-
eral, measured with gravitational lensing, makes clear that the majority of the mass
in a cluster of galaxies is dark, and that in a merger event like the Bullet cluster the
distribution of matter cannot be inferred by observing only ordinary matter but it
is necessary to account for the predominant presence of dark matter.
However, we show here, in Eq. (1.5), NFW’s model, as it is one of the most sim-
ple models to describe a dark matter halo and it can give us an understanding on
what is the general distribution of cold dark matter when virialized and assumed
non-collisional, in a cluster

ρ(r) =
4ρs

( r
rs
)(1 + r

rs
)2

(1.5)

where ρs and rs are scale quantities for each dark matter halo. This model is
characterized by a central density cusp and is fit to describe clusters of galaxies,
while at smaller scales gravitational lensing measures seem to find it more lacking
(A. Cimatti 2020).

1.2.3 ICM

The gas constituting the ICM is perhaps the most ideal plasma that may be found in
Nature, since it is so rarefied that it can be considered almost perfectly collisionless.
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For a system to be collisionless it must be that all of its dynamics’ time-scales are
less then or of the same magnitude of the relaxation time-scale of the system, defined
as the time-scale necessary for the system to become virialized, written in Eq. (1.6)

trelax ≈ 0.1N

lnN
tcross (1.6)

where N is the number of particles of our system and tcross = R/σv is the crossing
time-scale of the system, with σv being in our case the velocity dispersion of particles
in the ICM (J. Binney and S. Tremaine 2008). After one relaxation time the system
has no memory of the initial conditions and its particles are subjected to a smooth
gravitational potential, rather than one generated by a collection of mass points
(ibidem).
The ICM is an almost perfect gas ionized plasma and this means that it is an
electrically conductive gas fluid with mean-free-path lv = 1/(nσv), where n is the
density of the absorbing medium into which the particle travels (G. B. Rybicki and
A. P. Lightman 1985). Being collisionless, the ICM does not have many events of
this kind, except maybe in shock events, allowing us to see the ICM primarily by
other types of emissions, like bremsstrahlung, IC and synchrotron, that we will see
later on in this introduction. However, due to the effects of the magnetic field on
the particles, the ICM becomes weakly collisional, meaning that collisions between
particles happens through the collective mediation of the plasma; magnetic fields
also inhibit heat conduction, mixing of gas, propagation of CR and other transport
processes (R. J. van Weeren and al. 2019). I will talk more about magnetic fields,
in particular the methods used to estimate them, in later paragraphs.

1.3 Thermal and non-thermal observables of the

ICM

A399-A401 was first found because of an excess in Sunyaev-Zel’Dovich radiation in
the region and then synchrotron radiation was observed with LOFAR, however it is
not the only phenomena that might interest us in this region (Planck Collaboration
and al. 2012). IC emission is the other main one, with bremsstrahlung, however
it is also worth to talk about Faraday Rotation as it is strictly related to in-situ
magnetic fields.
In this Section, I will give a quick overview on what may be the main emission
mechanisms in the ICM, as they are also likely to play a role in the production of
emission in the bridge A399-A401. Bremsstrahlung emission has not been observed
in the region, however, for completeness I report its main characteristics, while
Faraday rotation has been used to estimate the strength of magnetic fields in the
bridge.

1.3.1 Bremsstrahlung (or free-free) emission

Bremsstrahlung emission, or breaking or free-free emission, happens when unbound
charged particles undergo a deceleration due to the presence of other charged parti-
cles in the nearby region. Depending on the regime in which we are we may study
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bremsstrahlung radiation only with classical effects or with quantistic effects.
Let us first consider the case of an electron with charge e moving inside the Coulomb
field of an ion with charge Ze, as represented in Fig. (1.7),

Figure 1.7: Electron moving inside the Coulomb field of an ion (G. B. Rybicki and
A. P. Lightman 1985);

where b is the collision parameter, useful in order to define the collision time-
scale τ = b/v. This configuration implies an acceleration a⃗ = −eE⃗/me on the
electron, which it can be inserted inside Larmor’s equation and in turn produce the
expression for bremsstrahlung radiation in Eq. (1.7)

dE

dt
≈ Z2e6

24π3ϵ30c
3meh̄

ln(
bmax

bmin

) (1.7)

where bmax and bmin are, respectively, the maximum and the minimum collision
parameter of the system. Eq. (1.7) is an approximated equation at low frequencies,
as it has a simpler notation and it is not our purpose to define in detail this type
of radiation; at high frequencies energy losses have an exponential decrement with
frequency. The first one is rather difficult to define, as it is arbitrary to decide where
the influence of the ion is negligible on the electron, however it is of the order of v/ω
so we will assign bmax that value. On the other hand, bmin is the maximum value
between its classical or quantistic definition. In particular in Eq. (1.8)

bmin,c =
Ze2

8πϵ0mev2
(1.8)

we see the form bmin takes when classical orbit’s physics has a predominant role,
while Eq. (1.9)

bmin,q =
h̄

2mev
(1.9)

ought to be used when the uncertainty principle becomes more relevant.
A combination of bmax and bmin can be seen in Eq. (1.10), and it results in a
parameter

gff =

√
3

π
ln(

bmax

bmin

) (1.10)
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called Gaunt factor, which depends on the energy of the electrons and frequency
of emission, crucial to define the time-scale of losses (G. B. Rybicki and A. P.
Lightman 1985).
If we want to consider a stream of electrons, we may describe it as having a
maxwellian distribution of velocities that, when taken into account, provides en-
ergy losses, of the form shown in Eq. (1.11)

dE

dt
≈ Z2NNe ¯gffT

1/2 (1.11)

where ¯gff = 1.2 is the mean value of the Gaunt factor over all frequencies and for
which we only showed the general behaviour, that being that free-free losses scale
with the square root of the temperature of the gas.
Therefore, as written in Eq. (1.12), we can find that the cooling time for bremsstrah-
lung emission is approximately

tcool ≈
6 103

ne ¯gff
T 1/2 yrs (1.12)

in a classical regime.
However, the CR in the ICM move at relativistic speeds, making it worthwhile
to analyse what is the behaviour of free-free emission when we find ourselves in a
relativistic regime. In particular, Eq. (1.13) shows the behaviour of free-free losses
in this regime

dE

dt
≈ Z2neni ¯gffT

1/2(1 + 4.4× 10−10T ) (1.13)

where the second term in inside the brackets is a relativistic correction to the classical
expression of free-free energy losses (G. B. Rybicki and A. P. Lightman 1985).
Roughly, the general behaviour between the two regimes is the same, given the
general temperatures of ICM, although the relativistic correction may become more
relevant for CRe.

1.3.2 Synchrotron emission

When a particle is deflected by a magnetic field at relativistic energies it also loses
energy via synchrotron radiation; it is of particular interest for this work since it is
the kind of emission that was seen in the region of the bridge A399-A401.
If we have a uniform magnetic field B⃗, an electron motion follows the relation in
Eq. (1.14)

d

dt
(γmv⃗) = −e

c
v⃗ × B⃗ (1.14)

where γ is the common relativistic factor. If we separate the components of the
velocity in one that is parallel to B⃗ (v//) and one that is perpendicular to it (v⊥),
we find that the modules of them both are constant but, in addition, v⊥ also suffers
a uniform acceleration normal to it. Therefore, the motion of relativistic electrons
inside a magnetic field is that of a spiral, where the parallel component to B⃗ is a
uniform rectilinear motion and where the perpendicular component to B⃗ is a uniform
circular motion. In Fig. (1.8) we can see a diagram for this particular motion.
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Figure 1.8: Electron moving in a uniform magnetic field (G. B. Rybicki and A. P.
Lightman 1985);

The emitted power [Eq. (1.15)] resulting from this motion is

dE

dt
=

2

3
r20cβ ⊥2 γ2B2 (1.15)

but if we consider an isotropic distribution of velocity than it is necessary to integrate
between all possible pitch angles α, thus resulting in an emitted power in the form
of Eq. (1.16)

dE

dt
=

4

3
σT cβ

2γ2UB (1.16)

where σT is the Thomson cross-section and UB = B2/(8π) is the magnetic energy
density (G. B. Rybicki and A. P. Lightman 1985). It is also possible to define a
critical frequency [Eq. (1.17)] such that

νc =
3

4π
γ3ωBsinϕ (1.17)

where ϕ is the pitch angle between the magnetic field and the velocity of the particle,

and ωB = − eB⃗
γmc

is the pulsation of rotation. This critical frequency marks the point
after which the spectrum tends to fall away.
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We can extend this concept for a population of non-thermal electrons, for which Eq.
(1.18) shows their distribution

N(E)dE = kE−δdE (1.18)

where k is a simple numerical constant depending on the entity of the population
and δ defines the particle index of the population and it lets us define α = (δ−1)/2,
the radio spectral index, that it is in the form of a power law too if the population
is homogeneous and isotropic. In Eq. (1.19) we show the intensity spectrum I(ν)

I(ν)dν = kναdν (1.19)

that when ν < νc it has a spectral slope of 5/2 and when instead it has ν > νc it
has a spectral slope α as above mentioned, the latter being the case more fitting for
the spectral band in which the region of the bridge has been observed.
Synchrotron radiation is polarized and we can measure the entity of its polarization

Π(δ) =
δ + 1

δ + 7
3

(1.20)

with the polarization parameter in Eq. (1.20), which depends on the population of
electrons via the particle index and can reach up to 70% (M. S. Longair 2011).
The cooling time-scale [Eq. (1.21)], which is the time needed for a system to emit
all of its energy through a certain emission mechanism, for synchrotron emission is

tcool ≈
7.75 108

B2γ
s (1.21)

with B expressed in Tesla, and the usual presence of IC emission in the same region
may quicken the losses.

1.3.3 Inverse Compton emission

An event of inelastic collision between a photon and a stationary particle is called
Compton scattering; this happens when the energy E of the photon is of the same
order of magnitude of the rest energy mec

2 of the particle, that here we will assume
for simplicity to be an electron. Fig. (1.9) gives us a diagram to describe the collision
where E and E1 (ϵ and ϵ1 in Fig. (1.9)) represent the energy of the incoming photon
and the scattered energy of that same photon, and where θ is the scattering angle.
In Eq. (1.22) we show how the wavelength of the photon changes with this scattering

λ− λ0 =
h

mec
(1− cosθ) (1.22)

in particular, this process always causes a loss of energy for the photon and in Eq.
(1.23) we can see how exactly its energy changes

E1 =
E

1 + E
mec2

(1− cosθ)
. (1.23)



1.3. THERMAL AND NON-THERMAL OBSERVABLES OF THE ICM 15

Figure 1.9: A photon and a stationary electron colliding (G. B. Rybicki and A. P.
Lightman 1985);

The cross-section for this process is in Eq. (1.24)

σK−N = πr3e
1

x
{[1− 2(x+ 1)

x2
]ln(2x+ 1) +

1

2
+

4

x
− 1

2(2x+ 1)

2

} (1.24)

that is Klein-Nishima cross-section, with x = h̄ω/(mec
2), that for x << 1, so for

low energy photons, tends to the Thomson cross-section σT (M. S. Longair 2011).
Inverse Compton scattering happens when the energy of the photon is much smaller
than that of the particle, because of this it is a phenomenon that usually interests
populations of relativistic electrons scattering with a low energy photon field, like
CRe, with energies of the order of GeV , in the ICM colliding with CMB photons,
with energies of the order of 10−4eV .
Fig. (1.10) shows how the scattering process takes place in the observer rest frame
and the rest frame of the electron.
The scattering in this process still causes a loss of energy in the photon, however
the Doppler effect that the photon undergoes twice

E ′ = Eγ(1− βcosθ) (1.25)

before the scattering and
E1 = E ′

1γ(1 + βcosθ′1) (1.26)

after the scattering, it causes the gains to be much more than the losses (G. B.
Rybicki and A. P. Lightman 1985). By substituting Eq. (1.23) in Eq. (1.26) and
combining Eq. (1.25)-(1.26) we can see that the scattered photon energy increases
by a factor γ2, reaching even high X-ray energies.
The resulting power spectrum for IC emission [Eq. (1.27)] is

dE

dt
=

4

3
σT cβ

2γ2Urad (1.27)
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Figure 1.10: A low energy photon and a relativistic electron colliding; to the left is
the observer rest frame K, to the right is the electron rest frame K’ (G. B. Rybicki
and A. P. Lightman 1985);

where Urad =
∫
EνdE is the initial photon energy density (M. S. Longair 2011).

Eq. (1.16) and Eq. (1.27), for synchrotron and IC emission, are heavily correlated,

(dE
dt
)syn

(dE
dt
)IC

=
UB

Urad

(1.28)

and with Eq. (1.28) we can see that the only major difference between the two
spectra is the ratio between the density of the magnetic field and the one of the
photons; the same stands for the typical timescale of losses for IC, which are related
to Eq. (1.21) by the ratio of the two energy densities too. These processes are
much alike in their spectrum and their similarity is manifested especially well when
we consider that both of them take place in regions with a population a relativistic
electrons, ideally with a low density of particles to avoid other kinds of energy losses.
Since synchrotron emission has been observed in A399-A401 bridge it is then safe
to assume that IC scattering is also happening in the region.

1.3.4 Magnetic field estimates

The nature of the origin of galactic, inter-galactic voids and intra-cluster magnetic
fields is still greatly debated and clouded in mystery; two main different types of
models attempt to describe the origin of seed magnetic fields, that only later on
will be heavily amplified through various processes: a cosmic relic of early universe
physics or a product of astrophysical processes in ionized plasma (F. Vazza and al.
2021).
Various structures in the universe are coupled with different typical magnetic field
strength, in particular I am interested in the typical strength of magnetic fields in the
ICM, as it is the most similar structure to the A399-A401 bridge, and that is of the
order of µG or less (F. Govoni and L. Feretti 2004). For the same reason, I am going
to limit myself to two methods used to estimate the magnetic field strength in the
ICM either directly or indirectly. One of these is based upon the direct observation
of synchrotron radiation, which is closely linked to the magnetic field density UB;
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the other one, the indirect approach, is the observation of Faraday rotation in radio
sources (M. Murgia and al. 2019).

Equipartition assumption

This assumption is usually applied to determine the strength of the magnetic field
from the observation of synchrotron radiation in a radio source, under the assump-
tion that the total energy of a synchrotron source, that being Etot = Ee +Ep +EB,
is minimized, where Ee and Ep are the energies of electrons and protons and where,
in Eq. (1.29), EB is the energy of the magnetic field inside a volume V

EB = UBϕV =
B2

8π
ϕV (1.29)

with ϕ as the filling factor, the fraction of the volume occupied by the magnetic field
(F. Govoni and L. Feretti 2004).
The electron energy can be related to synchrotron luminosity Lsyn in Eq. (1.30)

Lsyn =
dEe

dt
= V

∫ E2

E1

(−dE

dt
)N(E)dE = c2(Bsinθ)2V N0

∫ E2

E1

E−δ+2dE (1.30)

if sinθ = 1 and V N0 is discarded to ease the notation then

Ee = c12(α, ν1, ν2)LsynB
−3/2 (1.31)

is the electron energy [Eq. (1.31)], where E1 = hν1, E2 = hν2 and where c12
is a numerical constant depending on the spectral index and the initial and final
frequencies of the energy range of the spectrum, with its values tabulated (F. Govoni
and L. Feretti 2004).
Proton energy [Eq. (1.32)] is in turn related to electron energy by a constant

Ep = kEe (1.32)

therefore assuming that the same processes influence both electrons and protons,
although with different efficiencies.
Combining the expressions for the different kinds of energies, the total energy takes
the form of Eq. (1.33)

Etot = (1 + k)c12LsynB
−3/2 +

B2

8π
ϕV (1.33)

which can then be minimized to obtain an estimate on the magnetic field. To do
so, we assume that the energies of the magnetic fields and of the particles are equal,
therefore the minimal energy, written in Eq. (1.34), also called equipartition energy,
is

Eeq =
7

3
EB (1.34)

to which corresponds an equipartition value of B, that being

Beq = (6π(1 + k)c12Lsynϕ
−1V −1)2/7. (1.35)
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In Eq. (1.35) the estimate on B is directly proportional to the entity of synchrotron
luminosity in the region, and inversely proportional to the filling factor (F. Govoni
and L. Feretti 2004); k, ν1, ν2 and the filling factor are quantities linked to a certain
amount of difficulties in their measurements, so this method used to estimate the
magnetic field strength of a radio source, although simple, is associated with a fair
amount of uncertainties.

Faraday rotation

The propagation of synchrotron light inside a magnetized and ionized medium is
affected by a rotation of the polarization plane as the two opposite-handed circularly
polarized components of the radiation have two different phase velocities (F. Govoni
and L. Feretti 2004).

Figure 1.11: A comparison of observed (top left panel) and simulated RM images
in the radio source 0053-016 in A119 (M. Murgia and al. 2019);

The observed angle of polarization ΦObs(ν) is

ΦObs(ν) = ΦInt + (c/v)2RM (1.36)

where ΦInt is the intrinsic polarization angle and RM is the Faraday rotation mea-
sure (M. Murgia and al. 2019). The RM is correlated to the component of B
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parallel to the line of sight, that being B//, and in Eq. (1.37) it takes the form

RM =
e3

2πm2
ec

4

∫ L

0

ne(l)B//(l)dl (1.37)

where L is the path length of the system, in this case the ICM, and ne(l) the
local density of electrons (F. Govoni and L. Feretti 2004). Because ΦObs is an
observable and it is related to RM by direct proportionality, RM can be obtained
by a linear fit of Eq. (1.36), and from that an estimate of B// can be made. There are
various complexities associated with this method, par example the fact that every
observation is a projection of the magnetic field in the 2D plane of the night sky, the
randomness of said magnetic field and the determination of ne(l); a de-projection
of the magnetic field and a measure on the population of electrons can, however, be
done with X-ray observations and their comparison with RM images simulations,
for which I show an example in Fig. (1.11) in which one of the models (n = 2) has
shown a remarkable similarity to the RM of the source A399 (M. Murgia and al.
2019).

1.4 Cosmic rays in Large scale structures

Cosmic rays (CR) are highly energetic particles that are accelerated to relativistic
energies by a variety of sources and mechanisms, like shock waves, turbulence and
ejection currents from compact objects. The composition, the origin and acceleration
mechanisms may, in particular, provide a set of categories to better identify them.
I briefly summarise here some of the labels that may be applied to a CR particle,
whilst I will explain them in more detail later in this Section.
First and foremost if the CR is a proton or an electron then it is called, respectively,
CR proton (CRp) or CR electron (CRe) and a population of CR can be usually
comprised of both CRe and CRp, the latter typically in the form of secondary
products due to the decay of the primary CRp; then the energy of the particle
allows us to identify it in CR and Ultra-High Energy CR (UHECR), which belongs
to the highest energy CR and, as we will see in shortly, they also differ in origin and
acceleration mechanisms.

CR spectrum observed at Earth

Numerous detections of CR particles at different energies, with ground or space
detectors, have led to the observation of what is called the CR spectrum, with its
composition measured at the top of our atmosphere that is of roughly 98% protons
and nuclei, of which 87% are protons, 12% are helium nuclei and 1% are heavier
nuclei, and of the remaining 2% electrons (M. S. Longair 2011).
Fig. (1.12) shows an example of the observed spectrum of CR at Earth, a pow-
erlaw type spectrum, with slope and energy range depending on the acceleration
mechanism; the spectrum was obtained by combining detections from different ex-
periments.
Some of its most important features are the knee around 1015eV and the ankle
around 1018eV ; CR right of the ankle are called UHECR. Energies left of the knee
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Figure 1.12: Example of powerlaw spectra of CR obtained by the combination of
different experiments (W. Hanlon 2008);

usually belong to galactic CR while those right of it usually belong to extra-galactic
CR, because the size of our Galaxy is not enough to contain those CR before they
can get accelerated to those high energies. The difference between these energy
regimes even manifests in deployed detection techniques, as CR left of the knee
can be observed directly with particle detectors while CR to the right of it can be
observed indirectly with an air-shower technique. This technique utilizes the differ-
ence between the spectrum of primary or secondary CR, so if the observed radiation
comes from a CRe emitting or from a CRp that has decayed, usually in pions, emit-
ting γ-rays, through the hadronic mechanism: this is the production of a cascade
of secondary CR originating from the primary CRp that can be measured by the
above mentioned air-shower technique.
Also, CRe less than a GeV have a spectrum that can be easily influenced by solar
modulation, while CRe from roughly 1 GeV to the order of 1011GeV do not feel
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this effect, even though they can all be described by a powerlaw spectrum (M. S.
Longair 2011). Fig. (1.12), ideally, represents all the CR spectra observed from the
sky, with a slope of −2.7 left of the knee and of −3.1 to the right of it.

CR spectrum from a single source

The spectrum of CR observed at Earth is obtained from the compositions of CR
spectra from single sources or populations, in general in the form of powerlaws, with
each one that may have very different slopes depending on the system of origin and
the acceleration mechanism.

Figure 1.13: Pion bump due to the decay of pions and to bremsstrahlung emission
in SNR HB 21 (L. Ambrogi and al. 2019);

CRe populations are usually found with a powerlaw distribution, but CRp spectra
are characterized by a different form, due to the decay of CRp signaling the pro-
duction of secondary CR that produce what is called the the pion bump, which is
exemplified by Fig. (1.13) that illustrates the CR spectrum of a SuperNova Rem-
nant (SNR) and its pion bump.
Now that I have given some general characteristic on CR spectra, I can write about
some of the most important aspects that can help define how CR gain energy, prop-
agate and become visible. Those are the maximum energy Emax that the CR popu-
lation can reach with a certain acceleration mechanism, the minimum energy Emin

that can be affected by said mechanism, since the negative slope of the powerlaw
distribution means that the majority of the CR population will have energy close
to this one, greatly influencing our understanding of the population, and finally the



22 CHAPTER 1. INTRODUCTION

cooling processes that oppose the acceleration of CR but nonetheless make them
observable.
The maximum energy Emax of the CR population is particularly significant be-
cause it is the quantity used to confront the typical acceleration (gain) time-scale
τgain = Emax/(dE/dt)gain and cooling (loss) time-scale τcool = Emax/(dE/dt)cool; if
τgain ≥ τcool then it means that, in general, the acceleration mechanism used to
describe that CR is not likely to be correct, because it would lose its energy before
reaching Emax; also Emax can be roughly estimated by putting τgain ≈ τcool. In
general, for a hypothesis on the nature of some CR to be plausible it has to have
that τgain ≤ min(τcool, τage, τescape), where τage and τescape are respectively the age of
the source of the CR and the time it takes the particle to escape the acceleration
region.

Figure 1.14: Hillas plot, that shows what are the magnetic field and size needed so
that a source of CR can accelerate them at energies up to 1020eV (R. Aloisio 2017);

Since the particles need to remain inside the acceleration region for a sufficient
amount of time, the strength of magnetic fields in said region and the size of it are
linked, as we can see in an example of an updated Hillas plot in Fig. (1.14), where
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the colored regions in the graph indicate under what conditions several astrophysi-
cal phenomena can confine a CR of certain energy; this plot in particular considers
protons or nuclei that are UHECR, while Fermi models and their application to this
work affect CR that are 10 order of magnitude less. However the concept of the
Hillas plot still stands.
Acceleration mechanisms can be either stochastic or systematic, respectively if they
are due to a process that involves losses and gain of energy, with the latter that are
predominant, or either by processes that only provide a gain of energy. For example,
a systematic process may happen through collisions of particles or motions of chunks
of plasma, like in Fermi I models, or either a stochastic process may happen through
turbulence, like in Fermi II models; an acceleration mechanism can be a mix of these
typologies. In particular, I will talk about Fermi I and Fermi II acceleration mecha-
nism and the Diffusive Shock Acceleration, as they are the main processes that may
be considered responsible for the acceleration of CR in the bridge A399-A401.

1.4.1 Fermi I and Fermi II models

Fermi introduced in 1949 a stochastic acceleration mechanism that consists in parti-
cles colliding with clouds in the interstellar medium, during which the particles gain
energy through the collision with moving magnetic fields (E. Fermi 1949). Fermi
used this mechanism to try and explain the origin of galactic cosmic rays, even if it
was incapable of reaching their required amount of energy. The magnetic fields act

Figure 1.15: Collision between a particle of velocity v and mass m at an angle theta
with a cloud of velocity V and mass M ; in panel a the collision is head− on while
on panel b it is a following collision (M. S. Longair 2011);

like mirrors to the particles, as Fig. (1.15) shows, and the random movements of the
magnetic fields ensure a stochastic gain of energy through each interaction, making
this model especially fitting to describe turbulent mediums, although the ionization
losses are too large to allow this early Fermi II model to reach the energies required
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to explain the galactic CR. Both modern Fermi I and Fermi II models are based
on the same concept of the original Fermi model: a particle gains energy through
collisions with a cloud; if the collisions are mono-directional then we are in a Fermi
I model, if they are stochastic then we are in a Fermi II model.
I will now explain in more detail the basic mechanism for both the models. Let the
momentum and the energy of a particle about to undergo a Fermi acceleration be
respectively

p⃗ = γmv⃗ (1.38)

and
E = γmc2 (1.39)

with γ being the Lorentz factor. The momentum and energy of the cloud can be
expressed in the form of Eq. (1.38)-(1.39) too, and in general we have that M ≫ m
and V ≪ v so that collision with particles can be considered elastic and the velocity
of the cloud itself remains the same.
We want to determine the distribution of particles in the acceleration region because
that is of key importance to define the spectrum of CR associated with said pop-
ulation. If the initial population is composed of N0 particles with an energy of E0

such that N(E0) = N0 and we assume for simplicity, even if it will not be the case
later on, that with each interaction the gain in energy is the same positive fraction
β, then after k collisions

E = βkE0 (1.40)

is the average energy of the particles. At the same time, after k collisions the number
of particles inside the acceleration region is

N = P kN0 (1.41)

where P is the probability of a particle to stay in the system and so to keep on
accelerating.
By combining Eq. (1.40)-(1.41) and by using the parameter in Eq. (1.42)

ξ =
lnP

lnβ
(1.42)

a distribution can be defined, in fact

N(E) = N0(
E

E0

)ξ (1.43)

but since these particles will keep on being accelerated, Eq. (1.43) has the meaning of
a cumulative distribution function for the number of particles with energies greater
than E, whose differential may be written as

N(E)dE ∝ E−1+ξdE = E−pdE (1.44)

where p = 1−ξ is the slope of the powerlaw distribution of particles and Eq. (1.44) is
the key result for Fermi acceleration models. The value of p may depend on various
factors, those being the galactic or extra-galactic nature of the CR population and
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the source of acceleration, like a SNR or a shock in the ICM, amongst other factors.
The energy gain can be better quantified if we consider the change in momentum
of the particle that is inverted from pcosθ to −pcosθ in the x direction, where if
cosθ > 0 then we have a head − on collision or viceversa, if cosθ < 0. Let us
consider the energy and the momentum in the x direction of the particle in the rest
frame of the cloud, those are

E ′ = γV (E + V pcosθ) (1.45)

and

p′x = γV (pcosθ +
V E

c2
) (1.46)

where Eq. (1.45)-(1.46) have been obtained using Lorentz transformations and γV =
1/
√

1− V 2/c2 is the Lorentz factor of the cloud. After the collision p′x = −p′x, while
the energy remains the same, so by combining Eq. (1.38)(1.39) and by returning to
the rest frame of the observer Eq. (1.45) becomes the energy of the particle after
the collision [Eq. (1.47)]

E ′′ = γ2
V (E + 2pV cosθ +

V 2

c2
E). (1.47)

The fractional energy gain β = ∆E/E is therefore

β ≈ 2vV

c2
cosθ + 2

V 2

c2
(1.48)

with an approximation at 2nd order.
Now it is possible to lift the simplifying assumption that with each collision comes
an energy gain, in fact the sign of cosθ determines whether the particle is accelerated
or decelerated. Not only that, but if the first right-hand term of Eq. (1.48) is much
greater than the second term, so 2vV

c2
cosθ >> 2V 2

c2
, then the acceleration is of type

Fermi I, while if 2vV
c2

cosθ << 2V 2

c2
it is of type Fermi II, as in the case of the original

Fermi acceleration model.
In particular Fermi I accelerations are usually associated to shocks in a medium,
because it is possible to define the angle of collision, and so a cosθ, between the
wavefront of the shock and the velocity of the particle; Fermi II accelerations are
usually associated with a turbulent medium (G. Brunetti and F. Vazza 2020).
The average efficiency of Fermi acceleration can be calculated by integrating Eq.
(1.48) over all θ and in the ultra-relativistic case (v ≈ c) it is

< β >=
8

3

V 2

c2
. (1.49)

< β > in Eq. (1.49) is the average energy gain per collision and it is only of second
order in V (M. S. Longair 2011). In general V << v therefore to reach the highest
energies long times or a re-acceleration of pre-existing particles are required.
Let us take Eq. (1.49), if L is the mean free path of the CR then it is possible to
define an average rate of energy gain [Eq. (1.50)]

dE

dt
=

4

3

V 2

cL
= αE (1.50)
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which is particularly useful as it can allow us to compute the spectrum of CR
by substituting it to the energy-loss term b(E) = −αE in the Diffusion − loss
equation, that being

dN(E)

dt
= D∇2N(E) +

∂

∂E
[b(E)N(E)]− N(E)

τescape
+Q(E) (1.51)

where D is the spatial diffusion coefficient, even though this equation is not usually
applied to Fermi II models, since a Fokker-Plank equation is preferred (M. S. Lon-
gair 2011). The first term in Eq. (1.51) is due to diffusion effects, the second term
to losses of energy, the third to CR escaping and the forth and final to injection of
particles.
As above mentioned, Fermi II models have very slow gain of energy and they struggle
to explain how CR can reach high relativistic energies (higher than GeV ), however
Fermi I models can overcome these limits because various galactic and extra-galactic
media are subjected to strong shocks, allowing the particles to accelerate to rela-
tivistic energies rather quickly. The Diffusive Shock Acceleration model is the most
studied of how Fermi I shocks may accelerate CR.

1.4.2 Diffusive Shock Acceleration

The Diffusive Shock Acceleration (DSA) is a special case of Fermi I models applied
to shocks in a medium. It is particularly useful because it allows to link directly
the slope p of the particle distribution to the strength of shocks, not only that but
it can calculate Emax, the time evolution of N(E) and the possibility of the shock
being modified by the CR themselves, that act like a second fluid in the medium.
A shock wave is characterized by its Mach number M

M =
v

cs
(1.52)

where cs is the sound velocity of the medium, that from now on I will identify with
the ICM, as it is the one interesting to this work, even though this model works
especially well for SNR too. In Fig. (1.16) we see an illustration for a strong shock
with the major quantities of interest before and after the shock. The Mach number
of Eq. (1.52) is linked to the compression factor r = ρ2/ρ1 = v1/v2 as we can
see in the following equations, obtained through mass and momentum and energy
conservation, under the strong shock approximation,

r = 1 +
3

5M2
2

(1.53)

r2 = 1 +
3

M2
2

(1.54)

for a monoatomic plasma, where M2 is the downstream Mach number, and by
combining Eq. (1.53) and Eq. (1.54) we obtain that the compression factor r = 4.
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Figure 1.16: Illustration of a strong shock. the pressure p2, the temperature T2 and
the density ρ2 are for the ICM after the shock, while p1, T1 and ρ1 are for before
the shock; U is the velocity of the shock wave, v1 and v2 are the upstream and
downstream velocities in the rest frame of the shock wave. Panel a is in the rest
frame of the ICM, panel b is in the rest frame of the shock, panel c is in the rest
frame of the upstream gas with an isotropic velocity distribution of CR and panel d
is in the rest frame of the downstream gas with the same velocity distribution (M.
S. Longair 2011);

Particle distribution in DSA

Now that this quick overview of shock dynamics is out of the way I can proceed
in explaining how the DSA model can derive the slope of the distribution of CR
particles. The acceleration of particles happens for particles in the non − thermal
tail of the maxwellian distribution of velocities that when they meet the shock they
can begin to cross the shock wave front several times, bouncing back and forth from
the upstream to the downstream side of the shock and viceversa, increasing their
Larmor radius with each crossing. Each crossing brings about a head− on collision
between particles and the plasma on the other side of the shock that has a velocity of
V = v1 − v2 = 3/4U , so each crossing causes the particle to accelerate; the particles
that stay in the acceleration region the longest are the ones that eventually can
reach Emax.
Let us consider a non-relativistic shock with relativistic particles (v ≈ c), then Eq.
(1.48) becomes

β ≈ V

c
cosθ (1.55)

for each crossing, with 0 < θ < π/2, and if we integrate Eq. (1.55) over all angles
we obtain the average energy gain

< β >≈ 2V

3c
(1.56)
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that doubles if the particles bounce back to the starting region (upstream or down-
stream). Since V = v1 − v2 Eq. (1.56) becomes

< β >≈ 1 +
v1
c

(1.57)

for a strong shock, where v2 = 1/4v1.
To derive the probability 1 − P of a particle not escaping the region of the shock
the rate of the particle crossing the shock Ṅin and to be lost downstream Ṅout can
be compared, and those are respectively

Ṅin ≈ Ninccosθ ≈ nc

4π

∫ π/2

0

cosθsenθdθ ≈ nc

4
(1.58)

assuming a small diffusion, and
Ṅout ≈ nv2 (1.59)

where n is the density of particles and v2 = v1/4 in the strong shock approximation.
Therefore if we divide Eq. (1.59) with Eq. (1.58) we obtain

1− P ≈ v1
c
. (1.60)

From Eq. (1.60), the probability of a particle staying in the acceleration region can
be immediately obtained and that is

P = 1− v1
c

(1.61)

so, by substituting Eq. (1.57) and Eq. (1.61) inside Eq. (1.42) we obtain the slope
of the particle distribution in a strong shock approximation

p = 1− lnP

lnβ
≈ 2 (1.62)

where a second order Taylor expansion has been performed. So the particle distri-
bution is

N(E) ∝ E−2. (1.63)

However, for a generic shock the slope of Eq. (1.62) becomes

p = 2
M2 + 1

M2 − 1
(1.64)

and so Eq. (1.63) becomes

N(E) ∝ E
−2M2+1

M2−1 (1.65)

that it is the prediction of DSA for a CR distribution when the shock remains the
same during the acceleration process. In particular Eq. (1.65) tends to Eq. (1.63)
when M → ∞.
Now that I have established what is the distribution of CR in a DSA model I can
also talk about the minimum energy required to begin the acceleration process,
the maximum energy reachable and also, although briefly, the possibility of the
CR population modifying the shock that has accelerated them, in what is called a
two− fluid model.
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Minimum and maximum energy

The minimum energy Emin can be narrowed down when applying the thermal −
leakage model, that is the hypothesis that the ”tail” of the Maxwellian distribution
of velocities ”leaks” its highest energy particles, that from thermal become non-
thermal; Emin, or conversely its momentum pmin, is the critical energy after which
CR get accelerated by shocks. A useful parameter is ξinj, such that

pmin = ξinjpth (1.66)

where pth =
√
2mkbT1 is the momentum of the thermal maxwellian and ξinj ≈

3 − 3.5 (D. Caprioli and A. Spitkovsky 2014a). In Fig. (1.17) we can see the

Figure 1.17: Energy distribution of particles immediately after the shock (red), some
moments later (green) and far downstream (blue); Vsh is the velocity of the shock
(D. Caprioli and A. Spitkovsky 2014a);

distinction between the thermal particles and the non-thermal particles, because as
time progresses after the shock a clear neat turn appears in the spectrum. However,
defining Emin is not an easy task, also because it is near the tail of the maxwellian,
where there is a rapid drop in the distribution, therefore a small change in Emin will
cause a great difference in the resulting CR spetrum; simulations are often used to
try and constrain its value.
The maximum energy can be better defined and its value depends on the diffusion
coefficient D(E) = l2d/t, where ld = v1τd is the maximum distance swept by the
shock through diffusion in a time τd. In particular l2d = D(E)τd, so

τd(E) =
D(E)

v21
(1.67)

and since the energy of the particle only increases with time as it stays inside the
shock region we have that τd ≈ τacc, where τacc is the time required for a CR to
reach Emax. Therefore, Eq. (1.67) leads to

Emax ≈ (
v21τacc
D0

)α (1.68)
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where D(E) = D0E
α so that Eq. (1.68) may have a simplified notation, however

D0 and D(E) are in general unknown. A more precise definition of Emax, in Eq.
(1.69), is

Emax(t) ≈
Esh

3D(Emax)
DB(Emax)ωct (1.69)

where Esh is the energy of the shock, ωc is the cyclotron pulsation and DB is the
Bohm diffusion coefficient

DB(E) =
E

mωc

(1.70)

commonly used for non-relativistic shocks for which it can be assumed that Bohm
diffusion takes place, so that the mean-free path of the particles with mass m is
of the order of the gyroradius rg of the particles (D. Caprioli and A. Spitkovsky
2014b). The diffusion coefficient D(E) is not easily constrained, it could be the
Bohm diffusion coefficient, or it could derive from a model of turbulent diffusive
magnetic eddies, where particles have a mean-free path L0 >> rg; in general D(E)
cannot be solved with DSA but it needs an independent study.

1.4.3 Modified shocks

In a strong shock regime, for M >> 10, CRs are believed to be efficiently accel-
erated, even to the point where their pressure becomes comparable to that of the
shock. Consequentially, the dynamics of the shock is modified.
This regime does not occur for the predicted moderate Mach numbers, M < 10,
in the intracluster bridge that is of interest for my Thesis. However, this regime
is relevant to the case of SuperNova Remnant shocks, but for completeness I give
some of the most important features connected to shock modification by CRs in this
regime.
One of most prominent features of the CR-modified shock is the formation of a
precursor to the shock, that slows down the upstream flow because of the pressure
and density of the CR fluid (D. Caprioli and A. Spitkovsky 2014a). Some of its ulte-
rior effects are the beginning of a non-linear regime, since the shock is progressively
modified by the CR, and also the modification of the normal shock jump conditions
and of the particle distribution spectrum from Eq. (1.65). In Fig. (1.18) we see
a modified shock and the difference in the compression factor when the inclination
between the magnetic fields and the direction of the shock changes, in particular
the compression factor is different from the one predicted by DSA for strong shocks
because of the pressure and density of the CR fluid.
Let the compression factor rsub be the one for the CR fluid, it depends on the adia-
batic index Γeff of the fluid, that is the effective adiabatic index obtained through
Eq. (1.71)

Γeff =
ΓplEpl + ΓCRECR

Epl + ECR

(1.71)

where Γpl and Epl are the adiabatic index and the bulk energy for the plasma com-
ponent of the two-fluid model and where ΓCR and ECR are their counterpart for the
CR component of the system. In particular we take Γpl = 5/3 for a non-relativistic
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Figure 1.18: Density profile for a shock with M = 30 and with different angles of
inclination θ between the magnetic field and the direction of the shock (D. Caprioli
and A. Spitkovsky 2014a);

medium, and ΓCR = 4/3 for a relativistic CR fluid, so 4/3 ≤ Γeff ≤ 5/3. By using
Γeff , rsub takes the form of Eq. (1.72)

rsub =
(Γeff + 1)M̃2

1

(Γeff − 1)M̃2
1 + 2

(1.72)

where M̃1 is the Mach number of the fluid immediately upstream in the shock rest
frame and where the contribution of magnetic fields has been neglected for simplicity
(D. Caprioli and A. Spitkovsky 2014a). The total compression factor rtot for a strong
shock in the two-fluid model is

rtot ≈ rsub(1 +
1

ΓeffM̃2
1

) (1.73)

where I have neglected to write all numerical factors for brevity (D. Caprioli and
A. Spitkovsky 2014a). Eq. (1.73) gives the quantification of how much the CR
fluid has modified the shock and with simulations performed in D. Caprioli and
A. Spitkovsky (2014a) we have that rtot ≈ 4.23 so it has a value higher than the
DSA prediction for a non-modified shock, as we could expect due to the additional
compression that the CR fluid causes on the modified one.

1.4.4 Turbulence in Fermi II models

Turbulent media can be hosts to Fermi II type acceleration, for which the average
energy gain and average rate of energy gain are the ones in Eq. (1.49)-(1.50). The
random interactions between portions of the clouds in the medium, that again I
take as the ICM, lead to a stochastic ensemble of collisions that happen isotropically
and lead to the acceleration of CR, often inefficiently due to ionization losses that
overwhelm the gains in energy, and because of this turbulence is usually considered
to re-accelerate fossil particles in the ICM rather than accelerate a newly injected
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population (G. Brunetti and T. W. Jones 2014). For the ICM and for a re-
acceleration of a fossil population of CRe to energies in the order of 5 − 10 GeV ,
the typical re-acceleration time is of 0.4 − 1 Gyr, while a new injected population
of electrons would need much more time to reach the same energies (G. Brunetti
and A. Lazarian 2007). The acceleration time, if compared to the relatively short
life-time of roughly a few 100Myr for CRe emitting in radio, introduces the problem
of the necessity of a continuous acceleration of CRe happening in situ, for which
the mechanism is not so easily identifiable (G. Brunetti and T. W. Jones 2014).
Fermi II mechanisms can be divided in two major classes: resonant or non resonant.
Resonant type mechanisms can accelerate CR through an interaction particle-wave
only under a resonant condition, one of the most famous examples of it makes use
of Alfvén waves, while non resonant type mechanisms can accelerate CR without
requiring that the configuration particle-wave undergoes a narrow condition (R.
Kulsrud and W. P. Pearce 1969).
A resonant interaction between CR and Alfvén waves results in a scattering in pitch
angles with small energy changes. Now, to better understand the mechanism behind
this type of scattering, let us consider a CR moving at an ultra-relativistic velocity
(v ≈ c), for simplicity, around a magnetic field B0 and let us decompose its velocity
in the parallel and perpendicular component, respectively Eq. (1.74)-(1.75),

v// = µv (1.74)

and
v⊥ = (1− µ2)v (1.75)

where µ = cosϕ and ϕ is the pitch angle.
The hydromagnetic wave with which the CR interacts has an Alfvén wave velocity
[Eq. (1.76)] of

vA =
B0√

4πρICM

cosϕ (1.76)

(R. Kulsrud and W. P. Pearce 1969).
Now, we can also add a small perturbation δB << B0 perpendicular to B0, and
then the resulting equation of motion in the rest frame of the wave is

dp⃗

dt
= q

v⃗

c
× (B⃗0 + δB⃗) (1.77)

where q is the charge of the particle. In Eq. (1.77) only v⊥ has its direction changed
by the perturbation δB, as we can see in Eq. (1.78), and since

dp//
dt

=
q

c
(v⊥ × δB⃗) (1.78)

with p// = pµ, we have that

dµ

dt
=

q(1− µ2)1/2Bk

mγc
cos[(Ω− kvµ)t+ ϕ] (1.79)

where Ω = qB0/(mγc) is the Larmor frequency, k is the module of the wave number
and Bk is the magnetic field in the direction of k. However if we were to average it
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over all pitch angles then the mean would be null, so I will consider the quadratic
terms, integrating Eq. (1.79) in time and averaging over pitch angles. Therefore we
obtain

Dµµ =<
∆µ∆µ

∆t
>=

q2(1− µ2)πB2
k

m2γ2c2
1

vµ
δ(k − Ω

vµ
) (1.80)

with Dµµ being the diffusion coefficient for pitch angles, for a single wave k. Eq.
(1.80) has a non-null value, so it grows with time only under the resonant condition
of k = Ω/(vµ), in that case there is diffusion of pitch angles, a scattering. In this
case, we can define

τscatt =
µ2

Dµµ

(1.81)

that is the isotropization time [Eq. (1.81)], the time the particles require to com-
pletely lose memory of the initial pitch angle.
However, up until now we have considered only a single wave number k, therefore
generalizing the results just obtained is of key importance. If we consider the tur-
bulent power spectrum P (k) rather than a single k then Eq. (1.80) takes the form
of Eq. (1.82), in which

Dµµ =
4π2q2(1− µ2)

m2γ2c2
1

vµ

∫
dkP (k)δ(k − Ω

vµ
) (1.82)

where there are multiple resonant scales, depending on each wave k = Ω/vµ. The
scattering time-scale retains the same form of Eq. (1.81), even if Dµµ is now gener-
alized for multiple waves.
In the same time τscatt there is a change in particle momenta. In particular, the dif-
fusion coefficient in momentum space for an isotropic distribution of Alfvén waves
and CRe can be written as

Dpp(k, t) =
2π2e2v2A

c3

∫ kmax

kmin

P (k, t)

k
[1− (

vA
c

+
Ωm

pk
)2]dk (1.83)

(G. Brunetti and al. 2004). In Eq. (1.84), kmin is the minimum wave number that
can allow a CR-particle interaction, and it is

kmin =
Ωm

p
(

1

1− vA
v

) (1.84)

whilst kmax is the maximum wave number that can maintain the frequency of the
Alfvén wave under the cyclotron frequency of protons Ωp and kmax = Ωp/vM , with
vM being the magnetosonic velocity of the waves (G. Brunetti and al. 2004).
If however, the turbulent power spectrum has the simplifying form of a powerlaw
P (k) ∝ k−ω, then Eq. (1.83) becomes Eq. (1.85), that is

Dpp(k) = Aω(δB)2v2A(
p

B
)ω(1− vA

c
)ω{ 1

ω
− vA/c

1 + ω
− (vA/c)

2

ω(1 + ω)
} (1.85)

where δB [Eq. (1.86)] is

δB2 = 8π

∫
P (k)dk (1.86)
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and where Aω is a numerical factor depending on ω, the slope of P (k) (G. Brunetti
and al. 2004).
The diffusion coefficient in Eq. (1.85) can be used also to define the characteristic
time of acceleration of CR, that being

τacc ≈
p2

Dpp

(1.87)

and if we compare Eq.(1.81)-(1.87) then, in Eq. (1.88), we obtain that

τacc ≈ τscatt(
c

vph
)2 (1.88)

where vph is the phase speed of the wave; so the time needed for the particles to gain
energy via diffusion in particle momentum space is larger than the time needed for
the particles of the system to follow an isotropic distribution.
In galaxy clusters a Fermi II mechanism is often applied, based on Transit-Time
Damping (TTD) resonance, involving the interaction between magnetosonic/fast
modes and particles in a compressive collisionless turbulence (G. Brunetti and A.
Lazarian 2007). An example for the resulting acceleration time [Eq. (1.89)], in the
particular case of a turbulent power spectrum P (k) ∝ k−3/2, can be written as

τacc =
p2

4Dpp

≈ 2.5 <
βpl|B|2

16πW
>−1 f−1

x (
M0

1/2
)−4(

L0/300 kpc

cs/1500 km s−1
) Myr (1.89)

where βpl = 2c2s/v
2
A, < |Bk|2/W >= 16π/βpl, where W is the total energy in the

turbulent modes and fx ≈ 0.02 (G. Brunetti 2016).
However, in the case of radio bridges G. Brunetti and F. Vazza (2020) have pro-
posed another mechanism based on non-resonant turbulent re-acceleration. This
scenario assumes that relativistic particles scatter with magnetic field lines diffusing
in super-Alfvénic turbulence, which are in turn amplified in the region by the same
turbulence. In this model the diffusion coefficient in the particle momentum space
[Eq. (1.90)], from which it is possible to obtain τacc is

Dpp(k) ≈
48

c

F

ρICMvA
p2 (1.90)

where F is the turbulent energy flux (G. Brunetti and F. Vazza 2020). We will see
more about this in Chapter 3.
We can also make use of the diffusion coefficient from Eq. (1.85) to determine the
evolution of CRe populations by using the Fokker-Plank equation, that being

∂N±(p, t)

∂t
=

∂

∂p
(N±(p, t)[S±(p)−

p

3
(∇ · V )])+

∂

∂p
(Dpp

∂N±(p, t)

∂p
− 2

p
N±(p, t)Dpp) + C±

(1.91)

where + and − indicate if Eq. (1.91) is referring to CRp or CRe, S± are the net
energy losses for the two types of CR and C± is a term that is −N+(p, t)/τ+ for
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Figure 1.19: Time evolution of a CRe population as a function of its momentum,
with a continuous injection of CR (G. Brunetti and T. W. Jones 2014);

the escape rate of primary CRp or it is Q−(p, t) for the injection of secondary CRe,
with τ+ = (nσ++c)

−1 being the time-scale of proton-proton collision in the ICM (G.
Brunetti and F. Vazza 2020).
We can now use Eq. (1.91) to determine the evolution of the particle distribution
with time and in Fig. (1.19) we see an example of it; the population of CRe subtracts
energy from the turbulent medium, thus increasing in number up until the energy
losses do not become excessively high.
In general, a Fermi II mechanism has to carefully consider whether the acceleration
times are bigger than the loss time-scales, as they usually are, and if they are indeed
so, a continuous injection of accelerated particles may be needed to explain the
presence of radiation, even if the entity of the filling factor may solve the issue in
some cases.





Chapter 2

The scientific case of radio bridges

Cosmic Web filaments are yet to be observed, however, in recent years filaments of
hot gas connecting galaxy clusters in a pre-merger phase have been observed. This
new class of phenomena has been referred to as radio bridges and even though they
are not believed to provide the physical characteristics for Cosmic Web filaments,
radio bridges are the type of structure which is closest to them.

Figure 2.1: Radio bridge A1758N-A1758S observed with LOFAR at 144 MHz (A.
Botteon and al. 2020);

Assuming that they are indeed similar in their nature, we can attempt to investigate
the physical parameters of filaments even in previous phases and not only in their

37
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radio bridge phase. In this Chapter we will see how radio bridges have been ob-
served and what models have been attempted to describe the nature of this extended
filament structures.

2.1 Radio bridge observation

Radio bridges are a newly discovered class of extended cosmic radio sources that
emit diffuse X-ray and radio light connecting two clusters in a pre-merger phase.
They have been recently discovered by LOFAR observations and they have been seen
to extend on scales larger than the clusters themselves; the most famous bridges are
A399-A401 and the bridge connecting A1758N and A1758S.

A1758N-A1758S and A399-A401 bridge

I briefly show the first example, A1758N-A1758S, in Fig. (2.1) where the bridge
between the two clusters has been observed with LOFAR (A. Botteon and al.
2020). However this work is focused on A399-A401, as it is the most spectacular

Figure 2.2: A399-A401 as observed in the X-ray (red) and the radio (blue) bands;
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between the two, so I will move onto that.

Figure 2.3: Compton map of A399-A401 observed with ACT and Planck (A. D.
Hincks and al. 2022);

Abell 399 (RA=02h57m56s; DEC=+13°00’59”) and Abell 401 (RA=02h58m57s;
+13°34’46”) are two galaxy clusters in an early merger phase joined by a luminous
bridge that has been observed with LOFAR, with:

• a central frequency of 0.14 GHz

• a sky projected length of 3 Mpc

• a width of 1.3 Mpc

• a flux density of 822 mJy, to which corresponds a radio power of 1025 W/Hz

as reported in F. Govoni and al. (2019).
In Fig. (2.2) we can see an image of the bridge as seen in both the X and the radio
bands, in particular the amount of SZ emission is predominantly produced by the
two clusters. Fig. (2.3) shows one of the most recent images of the bridge as a
Compton map obtained with Planck data, where the presence of radiation in the
bridge becomes more evident.
To explore in more detail what we are expecting from this type of phenomena, let
us consider what are some of the expected characteristics of Cosmic Web filaments
and some of the main techniques applied to try and observe them.

2.1.1 X-ray observation of radio bridges

Filaments are thought to host a hot diffuse baryonic gas with a temperature of
105 − 107 K. On the other hand, the magnetic field level in filaments is much less
constrained and, from theoretical viewpoints, a large range of values spanning from
roughly 10−3 nG to 0.1 µG, is possible, at least in principle (C. Gheller and F. Vazza
2019). However, the recent modelling of radio detection through stacking emission
from Cosmic Web filaments has been used to derive typical values of magnetic field
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Figure 2.4: X-ray stacking simulated spectrum from gas cores in filaments; the red
profiles are simulated spectra for different combination of gas temperature and gas
overdensities, the blue profile is a simulated background spectrum (H. Tanimura
and al. 2020);

strength of 30 ≤ B ≤ 60nG, that in turn may cause synchrotron emission through
interaction with a CR population in the region (T. Vernstrom and al. 2021). CR
may not be present in the region, however the increasing number of observation of
synchrotron emission by independent studies (e.g. F. Govoni and al. 2019; T. Vern-
strom and al. 2021) bolsters the hypothesis of a CR population inside radio bridges,
even though its acceleration mechanism remains largely unknown. Nonetheless var-
ious X-ray observations have been attempted and have been successful.
One exemplary technique used to identify the X-ray emission of radio bridges is
X-ray stacking (e.g. H. Tanimura and al. 2020; T. Vernstrom and al. 2021; T.
Hodgson and al. 2022). For example, the study of H. Tanimura and al. (2020)
utilized 15165 filaments with 0.2 < z < 0.6 identified with the Sloan Digital Sky
Survey (SDSS), then the count-rate maps from ROSAT data used to break the
degeneracy between gas density and temperature were stacked, subtracting signals
from resolved galaxies and point-like sources independently identified by Chandra,
XMM −Newton and ROSAT . The result was the identification of an X-ray signal
with a significance of roughly 4σ in the 0.56− 1.21 keV band (H. Tanimura and al.
2020).
In Fig. (2.4) we may see an example of X-ray stacked simulated spectra, that
showcases the important role of the gas temperature-density degeneracy, which can
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be lifted by independent observations, although the extended and faint nature of
filaments is a substantial obstacle to other kind of observational techniques. In
particular, as the energy increases so does the difference between different models,
even to several orders of magnitudes, resulting eventually in the simulated X-ray
emission to fall under the simulated background emission. Perhaps due to this rea-
son, no emission in other bands was observed (H. Tanimura and al. 2020); higher
energy bands are more likely to produce only a faint emission that is suppressed by
the noise, inhibiting our chances to explore those energies, at least for most of our
current instruments.
Another X-ray stacking study uses pairs of Luminous Red Galaxies (LRG) as probes
for the presence of Cosmic Web filaments (T. Vernstrom and al. 2021). LRG are
usually located in the center of galaxy groups or clusters and the stacking of their
emission, together with the subtraction of the estimated background and halo emis-
sion can provide us with a relevant signal from the filaments between the pairs of
LRG. This results in an X-ray signal in concordance with cosmological thermal sim-
ulations and even 5 times higher than the signal predicted by H. Tanimura and al.
(2020); also it allowed the identification of a radio signal with a spectral index of
α = −1.0 (T. Vernstrom and al. 2021). However the stacking technique does not
always allow the observation of both X-ray and radio emission, as other works have
attempted to replicate the one of T. Vernstrom and al. (2021) but only managed
to replicate the X-ray stacked images and not the radio ones (T. Hodgson and al.
2022).
Another way to investigate the X-ray emission of a filament resides in the thermal
Sunyaev-Zel’Dovich (tSZ) effect, so a frequency dependent distortion of the Cosmic
Microwave Background (CMB) spectrum by IC; its entity depends on the Compton
y-parameter, in Eq. (2.1)

y =
σT

mec2

∫
ne(r)kBTe(r)dr (2.1)

where ne(r) is the distribution of electrons (A. D. Hincks and al. 2022). In partic-
ular, this effect produces a variation in the CMB temperature, that being

∆T = TCMB y[
hν

kbTCMB

coth(
hν

2kbTCMB

)− 4]. (2.2)

A measurement of the temperature variation, in Eq. (2.2), therefore results in an
estimate of the population of particles in the region, since from Eq. (2.1)-(2.2) we
gain information on both the distribution of particles ne(r) and their temperature
Te(r), even if without other independent observation there is a degeneracy between
the two.
In the A399-A401 bridge, using a temperature-map taken by Suzaku, this technique
allowed to constrain the mass of the bridge to (3.3± 0.7)1014 M⊙, which is around
8% of the total mass of the pair A399-A401 (A. D. Hincks and al. 2022). A
previous work, instead estimated a mass of 7.7 1013 M⊙, together with a Compton
y-parameter of (14.5±1.3)10−6 for the filament and a metallicity ≈ 0.3 Z⊙; spectral
modelling for X-ray sky sources, X-ray background and X-ray from the filament
were used (H. Akamatsu and al. 2017).
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Observations in the X-ray with Suzaku have further allowed the formation of a
simple model predicting an angle of 16.6 (−3.8, + 5.5) degrees between the line of
sight and the axis of the bridge. This result is still uncertain, but it were true that
would mean that the distance between A399 and A401 would not be of 3.2 Mpc
but of 11.1 (−2.6, + 3.2) Mpc , meaning that the bridge would have a significant
component along the line of sight and could be treated like a Cosmic Web filament
(A. D. Hincks and al. 2022). However, if the bridge were this extended then it
would be harder to explain the temperature of 108 K of the gas measured in the
bridge, that would be one order of magnitude higher than the predicted temperature
of a classical filament.
In this work, I have made my analysis with the conservative assumption that the
projected distance of ≈ 3 Mpc between A399-A401 and the physical length of the
bridge are of similar size.

2.1.2 Radio observation of radio bridges

As above mentioned, one technique to infer the presence of radiation in a radio
bridge is stacking, however this technique is not easily performed. In this section I
will instead focus in direct observations of radio emission. In particular, two works
(F. Govoni and al. 2019; A. Botteon and al. 2020) used LOFAR observations at
140 MHz, with the addition of 53 MHz emission in A. Botteon and al. (2020)
that focuses however on the bridge A1758N-A1758S and therefore I will only cite
as similar in deployed techniques to the work of F. Govoni and al. (2019), that is
my main focus. Another work worth mentioning studied the region of the bridge
A399-A401 at 140 MHz and 346 MHz, observing radio emission for both of the
frequencies (C. D. Nunhokee and al. 2022). Fig. (2.5) shows a radio image of
A399-A401 as obtained from LOFAR at 140 MHz, where the presence of radio
emission between the two clusters is evident when compared to the radio emission
of surrounding background regions.
The parameters of reference for the bridge A399-A401 in this Thesis come primarily
from F. Govoni and al. (2019). In addition to the ones already reported in Section
(2.1), I may add that no spectral index was derived in F. Govoni and al. (2019),
and also that the emissivity of A399-A401 is a few orders of magnitude lower than
the emissivity of the average filament candidate, and that at 1.4 GHz the radio
emissivity is ≈ 4.3 10−44erg s−1Hz−1cm−3, assuming that α = 1.3. In Section (2.2)
I will report how F. Govoni and al. (2019) used shock models to describe the nature
of the bridge.
The observation of A399-A401 by C. D. Nunhokee and al. (2022), instead focuses
more on the A399-A401 cluster pair, observed at various wavelengths, allowing an
estimate of α for the cluster pair and its connecting radio bridge between 140 MHz
and 346 MHz with the Westerbork Synthesis Radio Telescope (WSRT). In partic-
ular for A399 it has been estimated that α = 1.75 ± 0.14, however this is not the
case for the bridge: as we can glean from Fig. (2.6), while contours at 140 MHz
show the presence of the bridge, in the 346 MHz image of the region there is no
clear evidence of a bridge, since the emission falls under the noise intensity (C. D.
Nunhokee and al. 2022). To help and constrain a spectral index value for this re-
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Figure 2.5: Image of the A399-A401 bridge observed with LOFAR at 140 MHz (F.
Govoni and al. 2019);

gion, an upper limit for the flux density of the bridge, and therefore a lower limit on
α has been investigated through extrapolation of the LOFAR image at 140 MHz.
The result is a lower limit on the spectral index of the bridge of α > 1.5 at 95%
confidence level (C. D. Nunhokee and al. 2022).
Another recent study worth mentioning has investigated the local spatial correla-
tions in the bridge A399-A401 between radio data, X-ray data and the SZ map,
which has allowed to better constrain the magnetic field scaling index η, that being
the slope of the profile B(r) ∝ ne(r)

η for the injection and re-acceleration models
(F. Radiconi and al. 2022). If Fradio is the measured radio brightness, FX is the
X-ray count rate per solid angle unit and y is the Compton y-parameter, then this
quantities are correlated and they follow the relations in Eq. (2.3)-(2.4)-(2.5), which
are respectively

log(Fradio) ∝ 0.7 log(FX) (2.3)
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Figure 2.6: Image of A399-A401 cluster pair at 346 MHz with 140 MHz contours
overlaid to it; the arrows point at the bridge observed at 140MHz (C. D. Nunhokee
and al. 2022);

for the correlation between the radio brightness and the X-ray count rate,

log(Fradio) ∝

{
2.8 log(y) , for A399

1.5 log(y) , for A401
(2.4)

for the correlation between the radio brightness and the y-parameter, and

log(y) ∝ 0.5 log(FX) (2.5)

for the correlation between the y-parameter and FX (F. Radiconi and al. 2022).
Using the radio, X-ray and SZ correlations it was possible to define the slope of
the radial dependence profile of magnetic fields, and in particular it is between
η ≈ 0.6 − 0.8 (F. Radiconi and al. 2022). Although this result is not of particular
relevance for my Thesis work, I decided to report it, since it is from one of the latest
articles on the matter of the A399-A401 bridge.
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Now that we have seen some of the main characteristics of the phenomena we can
move on to the various theories that may describe the particular nature of radio
bridges. I will focus on particle acceleration models, in particular Fermi I and Fermi
II that, respectively, find in shock re-acceleration and turbulent re-acceleration of a
population of CRe the means via which these electron can reach relativistic energies
and emit by a synchrotron process.

2.2 Shock model for A399-A401 radio bridge

In this section, I will report the DSA acceleration model that F. Govoni and al.
(2019) have applied to the bridge A399-A401, with the aim of showing what are the
main results from this model and its main limitations.

Figure 2.7: Image of the system A399-A401 coloured for its gas density, with black
contours from SZ radiation and blue contours from radio emission; the left panel
shows the simulated emission for a DSA model for injected electrons, while the
right panel shows the simulated emission for a DSA model for a fossil population of
relativistic electrons (F. Govoni and al. 2019);

First of all, the pair A399-A401 is in an early stage of merger, where the two clusters
are yet to collide, however the presence of radio emission already indicates that a
portion of the energy of the merger has been transformed into non-thermal energy.
The origin of this emission, in this model, is likely due to CRe that are accelerated
via shock waves prior to the merging of the clusters (F. Govoni and al. 2019).
Assuming a homogeneous gas density of roughly 3 10−4cm−3 in the bridge, with
a magnetic field less than 1 µG, we have that the energy losses from synchrotron
and IC emission [Eq. (1.16)-(1.28)] cause the life-time of CRe in the region to be
only less than 230 Myr, which is too low to allow the electrons to cross even a small
fraction of the bridge. It is therefore necessary to include a mechanism of continuous
injection or re-acceleration of electrons that happens in situ.
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Let us first consider an injection of new CRe in the region, in this case the emission
of the bridge is difficult to describe with a DSA model that accelerates a freshly
injected population of electrons, as shown by MHD simulations with ENZO code. In
particular, we have that for an isothermal plasma of ≈ 5 107 K and CRe acceleration
only for M > 3, the produced radio emission is 1000 times lower than the LOFAR
observation, with only the region transverse to the line of sight capable of emitting
a detectable emission due to a weak shock (F. Govoni and al. 2019). However, this
model does not reproduce the observed emission of the bridge, which is shown in the
left panel of Fig. (2.7), and therefore we can move on to consider the next option.

Figure 2.8: Magnetic field distribution for the pair A399-A401; black contours rep-
resent SZ emission and white contours represent the simulated radio emission for a
DSA model for a re-accelerated population of CRe (F. Govoni and al. 2019);

Still in a DSA model, now it is applied to a fossil population of relativistic electrons
that is then re-accelerated to higher energies by shocks happening in situ. To meet
the necessary requirements, the bulk of the pre-existing population should have a γ ≥
103, which would mean a life-time of roughly 1 Gyr, and it should be re-accelerated
by shocks with M ≈ 2 − 3. This results in an increment to the DSA acceleration
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efficiency, that it has been estimated by adding to the standard acceleration efficiency
a contribution based on the predicted CRp acceleration efficiency and by assuming a
ratio between CRe and CRp energies of 10−3; in particular the acceleration efficiency,
which is a function of the Mach number and the temperature of the gas, goes from
10−7 to 10−5 (F. Govoni and al. 2019). The life-time of the population is, however,
still too short so the need for injection of new electrons remains.
Fig. (2.7) shows, in the right panel, the simulated radio emission in blue contours
and it can be inferred that it can reproduce the observed emission more accurately
than the one due to the previous model of pure injection of new electrons, that is
incapable of reproducing the observed emission for a large enough portion of the
bridge. In Fig. (2.8) we see instead the distribution of the expected magnetic fields,
that can go up to the 0.2 µG mark, over the region of the bridge, where the white
contours represent the simulated emission from a DSA model for a pre-existing
population of fossil electrons, since it is the most likely model between the two that
are shown in this section. The maximum expected magnetic field strength in A399-
A401 bridge is of 0.2 µG, as above mentioned, and I will later use its value as a limit
to check the likelihood of a Fermi I acceleration model to describe the emission from
the bridge, as we will later see in Chapter (3).

2.3 Turbulence model for A399-A401 radio bridge

Another way in which we can hypothesize the nature of the bridge A399-A401 is
through a Fermi II turbulent acceleration model, and in this section I will particu-
larly focus on the analysis perpetuated by G. Brunetti and F. Vazza (2020).
In their work, they simulated the emission produced from a pre-existing popula-
tion of CRe that is then re-accelerated by super-Alfvénic turbulent motions caused
by the diffusion of magnetic fields. In particular, Magneto-HydroDynamic (MHD)
simulations with ENZO code have been attempted to provide a first estimate of
the distribution of magnetic fields in a simulated pre-merger galaxy cluster system
similar to A399-A401, together with the turbulent energy flux distribution, 60%
of which is due to solenoidal motions. These motions in the ICM usually allow
the amplification of local magnetic field, however, in a radio bridge the dynamo
process, which is responsible for the amplification, cannot be studied through the
same simulation because of the limited resolution of it. Nonetheless, the resulting
turbulent luminosity from the simulation is of the order of FV ≈ 1045 erg s−1,
which is comparable in magnitude to the luminosity of a merger event, and where
F = 1/2 ρICMδV 3/L is the turbulent energy flux with a turbulent injection scale of
roughly 400 kpc− 1 Mpc (G. Brunetti and F. Vazza 2020).
An estimate on magnetic field strength can be attempted separately, hypothesizing
that after a turbulent eddy reaches its dissipation scale then a fraction of its energy
is converted into magnetic field strength, thus amplifying it. Two regimes of growth
may be identified for the magnetic fields, a relatively quick exponential regime and a
successive linear regime, where in Eq. (2.6) we see the time needed for the transition
between the two regimes:

∆T ≈ 60τeRe−1/2ln(

√
4πρICMδV

B0Re1/4
) (2.6)
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Figure 2.9: Magnetic field distribution for ηB = 0.02, 0.03, 0.05, respectively the red,
blue and green profiles; the dotted grey line is the seed magnetic field distribution
of the simulation (G. Brunetti and F. Vazza 2020);

where Re is Reynolds’ number, ρICM the density of the ICM and τe is the turnover
time of an eddie. The transition time in Eq. (2.6) is smaller than a time-scale τe for
a Re > 1000 and since for magnetic fields of the order of 0.1 µG we find ourselves in
this regime, the exponential growth phase for the magnetic fields can be neglected.
The amplification of magnetic fields provides different results, that we can see in Fig.
(2.9), depending on the efficiency of the dynamo process ηB, which is the fraction of
turbulent kinetic energy that is responsible to the amplification of B. In particular,
G. Brunetti and F. Vazza (2020) take ηB as being 0.02, 0.03 and 0.05.
The mean magnetic field reached with this simulation is 0.5− 0.6 µG which is three
or five times smaller than the typical magnetic field strength in an ICM, meaning
that the ratio between thermal and magnefic field pressure βpl = Pth/PB ≈ 100−200
is a bit larger than the one for the typical ICM (G. Brunetti and F. Vazza 2020).
Also, since the life-time of 1 − 1.5 Gyr of radio bridges is relatively short, we have
that it is only slightly larger that the eddy turnover time of 0.4−1.0 Gyr. Therefore
the assumption that magnetic fields can be amplified in only an eddy turnover time
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is reasonable.
In Chapter (3), I will later use this magnetic field value as a limit to infer the
likelihood of the Fermi I acceleration model that I will introduce. Although the
estimate on magnetic field has been obtained for a Fermi II re-acceleration model,
we can still use it to gain an idea on the likelihood of certain magnetic field strengths.
In particular if a magnetic field for a model is higher than the ones predicted by G.
Brunetti and F. Vazza (2020) and F. Govoni and al. (2019) then the prediction on
magnetic fields of the new model, in Chapter (3), would be unlikely.





Chapter 3

Constraints from the Inverse
Compton flux

One first step to assess which models are the most adequate ones to explain the radio
properties of the A399-401 bridge is to use the available IC limits from this region
and to constrain different model’s predictions on the average magnetic field in the
region. Depending on the population of electrons, their distribution and injection
spectrum, and the magnetic fields, we may obtain different theoretical limits on the
IC luminosity for the different scenarios of cosmic rays acceleration. We can then
compare them with the current observational constraints; if the predicted levels of
IC luminosity are above the latter, then the model or the utilized set of parameters
must be recalibrated, while otherwise they may provide a viable explanation to the
emission in the region. Here we will mainly consider shock accretion models, and we
will discuss what they imply on the nature of the local magnetic fields (G. Brunetti
and T. W. Jones 2014).

3.1 Inverse Compton limits on Fermi I models

This chapter focuses on how to apply already defined models and processes to predict
limits on the IC flux of the A399-A401 bridge. I begin by reporting the equations
for the two main loss mechanisms in our energy range of interest (0.1 − 2.4 keV ),
namely IC and synchrotron radiation, which may provide us with a clearer insight
on how the possible configurations of parameters in our model influence the validity
of the to be determined IC flux constraints.
The loss rate for IC and synchrotron emission may be written as

[
dp

dt
]rad = −4.8 10−4 p2[(

BµG

3.2
)2 + (1 + z)4] s (3.1)

where BµG represents the magnetic field of the bridge in units of µG, under the
assumption of it being isotropic, where z is the redshift and where p is the momentum
of CRe (G. Brunetti and T. W. Jones 2014). In particular Eq. (3.1) tells us that, at
a fixed energy, the higher the magnetic field the bigger the losses. This also has an
immediate impact on the lifetime of the CRe, which gets shorter with the increase

51
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in losses and it does especially so when we consider that in the bridge synchrotron
emission is present, being one of the few observational measures on the region. Here,
in Eq. (3.2) I show how the intensity of magnetic fields may influence the lifetime
of the CRe population

[
p

dp/dt
]rad ≈ 104

1

p[(
BµG

3.2
)2 + (1 + z)4]

s (3.2)

so a BµG > 3.2 will result in a short lifetime of the population, implying that it
should be either continuously injected by new CRe or that the magnetic field esti-
mate is too high to allow us to see synchrotron emission as we do in the bridge.

Figure 3.1: IC flux as a function of α and BµG with radiation being emitted by the
whole volume (fill=1.0); the horizontal plane represents the current upper limit on
the flux, represented by the inclined plane, while the blue line roughly signals which
combinations of the free parameters meet that limit;

In the case of the A399-A401 bridge we are considering a system where ultra-
relativistic CRe are undergoing IC scattering with CMB photons and are emitting
synchrotron radiation. In the simplest scenario (e.g. following from direct shock
acceleration of the radio emitting particles), we assume a powerlaw type energy dis-
tribution of the form N(E) = KeE

−δ, which provides us with a radio spectral index
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α = (δ − 1)/2. We can link the IC flux with the observed synchrotron flux through
the following relation:

FICS(νX)

ν20keV
= 1.38 10−34 (

Fsyn(νR)

Jy
)
(1 + z)α+3〈

B1+α
µG

〉 (
νX/keV

νR/GHz
)−α C(α) (3.3)

expressed in c.g.s units (G. Brunetti and T. W. Jones 2014). The numerical factor
derives from the current upper limit on IC emission; also we have that νX is the
equivalent in erg of 20 keV , νR = 0.14 GHz, Fsyn = 0.822 Jy, and that the redshift
of A399 is 0.071806 and that of A401 is 0.073664, so in our calculation we utilized
a mean z = 0.072735 (F. Govoni and al. 2019).

Figure 3.2: IC flux as a function of α and BµG with fill = 0.01;

Using Eq. (3.3), we analyzed how the IC flux varies in regards to both BµG and α,
which are our most relevant free parameters. In particular, we consider values of α
that range between 0.7 and 2.0, corresponding to values of C(α) given by Table 1
in G. Brunetti and T. W. Jones (2014). The observational limit that we used for
the IC flux corresponds to 4.135 10−32 erg/s/Hz/cm2.
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The behaviour of the IC flux can be seen in Fig. (3.1) and in particular we can see
how it is below the observational limit if the combination of B and α is to the left of
the segment in blue, B = 0.35α − 0.06, that has for extremes (α = 1.3, B = 0.40)
and (α = 2.0, B = 0.65), for a simple case in which we assume that the synchrotron
emission is produced by the entire volume of the bridge, albeit this is probably an
overly simplistic scenario.
We have also computed the IC flux for different values of the filling factor fill,
a parameter describing which fraction of the volume we consider to be producing
synchrotron radiation.
Since in a shock model we have that the shocks are roughly 2D surfaces that fill the
extensive volume of the bridge we expect to obtain a few percentiles for the filling
factor, and in particular MHD simulations suggest that for bridges of this nature we
expect a fill < 1 − 10 %, this means that only a low portion of the bridge is able
to produce synchrotron radiation that fills the entirety of the volume uniformly (G.
Brunetti and F. Vazza 2020). At the same time the IC radiation is produced also
by the remaining portion of the volume so to have correct estimates for the IC we
multiply its flux for 1/fill.
For brevity, we display with Fig. (3.2) only the case in which fill = 1/100, since it
showcases the effect of a diminishing filling factor, so an increment in IC flux, and
an issue associated with this first attempt at constraining BµG and α.
As we can see in Fig. (3.2) we meet our criteria, an IC flux less than the observational
limit, roughly for B < 3 µG while there’s almost no dependence on α. This is due
to the fact that we are freezing one parameter while the other is allowed to vary and
this causes the unwanted convergence of the IC flux around B = 3 µG.
In general, an increasing magnetic field and a decreasing index α both cause a
diminishing IC flux; concerning the expected values, since we are considering a
shock model, we expect α = 1.3, corresponding to a particle spectrum of δ = 3.6.
Also, since δ = 2(M2+1)/(M2−1), we expect a typical Mach number of M =

√
3.5.

Despite all of its limits, the analysis above still gives us a rough estimate of which
values of BµG and α could replicate an IC flux that falls under the observational
constraints for a powerlaw distribution of CRe. However a more complex test is
needed.

3.2 Inverse Compton limits for powerlaw distri-

butions

In this section I will consider how the IC flux varies as a function of the magnetic
field B, while at the same time applying all our models on a volume of 1 Mpc3,
as a first estimate of the volume of the bridge. In particular I will study the case
in which B remains constant over the whole volume and then I will move on to
different distributions of the magnetic field over the bridge.
By assuming a powerlaw distribution we can define simple expressions for the IC
and synchrotron flux, which in turn can be used in combination with the observed
synchrotron flux of 0.822 Jy (or 1025 W/Hz at the luminosity distance of roughly
290 Mpc for this object, which gives a certain value of Ke) to define more realistic
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values of Ke than the initial guess.
For the IC we have that

dE

dt dϵ1
=

1

π

r20
h̄3 c2

Ke(kb T )
δ+5
2 F (δ)ϵ

− δ−1
2

1 (3.4)

is the emissivity, where ϵ1 is the energy of the scattered photons and F (δ) =
2(δ+3) [(δ2 + 4δ + 11)/(δ + 3)2(δ + 1)(δ + 5)] Γ[1

2
(δ + 5)]ζ[1

2
(δ + 5)] (G. R. Blu-

menthal and R. J. Gould 1970). In Fig. (3.3) I show the variation that the

Figure 3.3: IC emissivity as a function of energy and δ;

emissivity goes through when δ, and so the flatness of the spectrum, changes, in
particular the difference is of 16 order of magnitudes and the steeper the spectrum
the lower the emissivity. Also δ = 1 is the discriminant between the δ for which the
emissivity increases with the energy, lower δ, and decreases with the energy, higher
δ. Between the values of δ considered for Fig. (3.3) I will take δ = 3.5 for most of
my successive analysis, as its the closest value to the 3.6 assumed by F. Govoni and
al. (2019).
Our observational constraint was measured in the energy range of 0.1− 2.4 keV by
our collaborators (M. Balboni and F. Gastadello), that informed us through private
communication. Our collaborators analyzed the XMM observation 0112260201, cen-
tered on the bridge and then extracted a spectrum from a box of 15 × 11 arcmin.
Then, they modeled the background component of the spectrum and fitted the inter-
cluster emission with a thermal component in the range 0.5−10 keV , finding a result
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Figure 3.4: IC luminosity (left) and synchrotron flux (right) as a function of δ and
BµG, in the energy band 20 − 80 keV . For LIC each δ value has an associated
Ke, while for Fsyn we have assumed Ke = 1064. The orizontal lines represent the
observational limits for LIC in the corresponding band and the observed Fsyn;

that agrees with the work of H. Akamatsu and al. (2017). Our collaborators have
then added the IC emission as a powerlaw with a photon spectral index of 2.5 and
then fitted this model to obtain an upper limit on its normalization and flux. In
particular, it is equal to 1.4553 10−14 (+0.1476,−0.2839) (c.l.99.7%) erg/s/Hz/cm2

which then becomes 1.31 1041 erg/s when we take into account a luminosity distance
of 290 Mpc (M. Balboni and al.; in preparation). So, we have to integrate the IC
emissivity for that same range: to do that we can use Eq. (3.5):

LIC =
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where ϵf is the equivalent in erg of 2.4 keV and where ϵi is the equivalent in erg of
0.1 keV , the end and the start of the energy range of interest.
For the synchrotron emissivity we have instead that:
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(3.6)
where ν1 = ϵ1/h and Γ is the Gamma function (G. R. Blumenthal and R. J. Gould
1970). We do not have to do the same operation we did for the IC luminosity for the



3.2. INVERSE COMPTON LIMITS FOR POWERLAW DISTRIBUTIONS 57

Figure 3.5: IC luminosity (left) and synchrotron flux (right) as a function of δ and
BµG, in the energy band 0.1 − 2.4 keV . For LIC each δ value has an associated
Ke, while for Fsyn we have assumed Ke = 1064. The orizontal lines represent the
observational limits for LIC in the corresponding band and the observed Fsyn;

synchrotron emissivity since we only need to use the latter to estimate the entity of
the constant Ke, which can be simply obtained by dividing the observed synchrotron
flux at 0.14 GHz by Eq. (3.6).
Although the energy band 0.1 − 2.4 keV is the one studied in this work I think
it is useful to report here a brief comparison between the IC luminosity and the
synchrotron flux obtained in this band and the band 20− 80 keV , that was the first
band considered for this work, with an associated IC limit of 2 10−13 erg/s/Hz/cm2,
before I switched to the 0.1 − 2.4 keV for having a more recent and accurate IC
limit. For an easier identification of the two limits that I have considered I collect
them in Tab. (3.1).
Before proceeding on what is the main focus of this section I report in Fig. (3.4)-
(3.5) how Eqs. (3.5)-(3.6) vary as a function of δ and B, with a particular interest
in how a difference in the spectral index influences the generated fluxes.
In particular, Eqs. (3.5)-(3.6) depend on Ke, which in turn is related to the amount
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Table 3.1: IC observational limits used in my Thesis; the left column represents the
energy band and the right column the corresponding limit

Energy band IC limit

20− 80 keV 2 10−13 erg/s/Hz/cm2

0.1− 2.4 keV 1.4553 10−14 erg/s/Hz/cm2

of the population of CRe inside of the volume of the bridge; we can obtain an esti-
mate for Ke for each couple (δ, B) by measuring the observed synchrotron emission
and dividing it for Eq. (3.6). However, if we want to observe how the variation of
δ and B influence the synchrotron flux then we cannot use this Ke in Eq. (3.6),
otherwise we would obviously obtain the observed flux; this is the reason why in
Fig. (3.4)-(3.5) we have assumed Ke = 1064 for each δ in the Fsyn graph.
We can now proceed in our analysis; in particular we can observe in Fig. (3.4)-(3.5)
how a steeper spectra causes a decrement in the synchrotron flux while it weakly
increments the IC luminosity, in fact it is the magnetic field that is the main cause
of increment for the IC luminosity, while B weakly influences the synchrotron flux.
Therefore the magnitude of the magnetic field inside the region of the bridge is a
key factor in establishing the validity of our models. The main difference between
Fig. (3.4) and Fig. (3.5) is that in the band 0.1 − 2.4 keV the IC luminosity is
much steeper and that for a given B in this band the luminosity always increases
with δ, while in the band 20− 80 keV we have that as the magnetic field increases
the steepness of the synchrotron flux decreases and that for B ≥ 2.0 µG the IC
luminosity even decreases as δ increases. It is therefore much simpler for us to work
in the band 0.1−2.4 keV because a slight increment of δ, almost independently from
the magnetic field, would increase the IC luminosity and viceversa; considering this
band going forward, together with the fact that the IC limit is more accurate than
in the band 20− 80 keV , would be our best course of action.
In this particular regard, in Fig. (3.5) we can observe how in our range of B pos-
sibly all values of δ could reproduce a luminosity that falls under the observational
IC limit; however, higher magnetic field strengths allow for a wider range of viable
δ and, viceversa, a higher δ allows for a narrower range of viable magnetic field
strengths. For our future analysis with this simple model (so with a δ = 3.5) we
have that magnetic fields larger than 3.0 µG produce an IC luminosity that does
not defy the observational constraint; this is also a much more stringent magnetic
field limit rather than the 0.5 µG in the band 20 − 80 keV , that from now on I
will no longer consider. This is already a result that may show how a shock model
for acceleration is unlikely to describe the emission of the bridge, however a more
complex distribution of magnetic fields may still save this model.

3.2.1 Inverse Compton from different distributions of mag-
netic fields

Now that I have given a rough estimate of how the synchrotron and IC fluxes vary
with δ, I can consider precisely how different spatial distributions of B may influence
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Figure 3.6: Probability distribution function (PDF) for different box functions,
which vary accordingly to the length of the range on the magnetic fields, and differ-
ent B0;

the aforementioned observables. We will also see how a different filling factor may
shift the critical B (Bcrit), for which the IC luminosity matches the observational
limit.
Such an analysis is necessary, considering the very little information available on the
magnetisation of intra-cluster bridges, both from observations (lacking of Faraday
Rotation measurements, for example) and from direct numerical simulations (which
struggles to properly resolve the process of dynamo amplification of magnetic fields
in this rarefied environment, and hence only give a lower limit on the plausible
magnetisation of the A399-401 bridge).
I mark with B0 what is the mean value of B over the bridge, and so I will show
what are the two distributions for the magnetic field that I have considered, apart
from the uniform one: the simplest one is the rectangle distribution, as seen in Eq.
(3.7):

Π(B) =

{
1

Bmax−Bmin
if |B −B0| > B0

n

0 if |B −B0| > B0

n

(3.7)

where n is a parameter which defines the extension of the available values of B; I
also show in Fig. (3.6) some of the different instances of this distribution that I have
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Figure 3.7: PDF for different maxwellian distributions which vary accordingly to
the wideness of the main ”bell” of the PDF and to B0;

used.
It is important to say that this first distribution is not considered as a very realistic
one yet it gives us a first idea into how a distribution of magnetic fields may change
the IC luminosity compered to a uniform distribution, as we will see later on.
The second magnetic field model is a maxwellian distribution, with its Probability
Distribution Function (PDF) written in Eq. (3.8):

fMax(B) =

√
2

π

B2

σ3
exp−{ B

2

2σ2
} (3.8)

where σ =
√

3π−8
2

B0 defines the standard deviation of the distribution, with its

value given by M. Murgia and al. (2019); its behaviour is shown in Fig. (3.7)
where each distribution varies in the dispersion of the central value. I also report
the expression for the Cumulative Distribution Function (CDF) of the maxwellian
distribution, in Eq. (3.9), since it will be used to calculate the synchrotron flux later
on, and that is

cdfMax(B) = erf(
B√
2σ

)−
√

2

π

B exp {−B2/2σ2}
σ

(3.9)

where erf is the error function.
The maxwellian distribution can be expected to better represent the distribution
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Figure 3.8: IC luminosity obtained from a uniform distribution of B under a vari-
ation on δ; the lower graph assumes a δ = 3.5; the horizontal line represents the
observational constraint.

of magnetic fields in the region and it can be inferred through the Faraday RM,
whether it is internal or foreground, since it can provide insight on the distribution
of magnetic fields in a radio source. If the RM is internal then the gas is mixed with
the radio emitting region whilst if it is foreground then it is due to the material sur-
rounding the region of interest. Therefore measuring the RM can help to constrain
the magnetic field strength and distribution P. C. Tribble (1991). In particular,
following the works of P. C. Tribble (1991) and M. Murgia and al. (2019), it can
be shown via numerical simulations that each component of the magnetic field is
Gaussian distributed, meaning that the distribution of B itself is maxwellian (M.
Murgia and al. 2019).
As in the case of the box distribution, the maxwellian one will be compared to a
uniform distribution of B over the whole volume of the bridge, however I will also
treat the results from this comparison as physically more realistic, since I expect
the maxwellian to reflect the real distribution of magnetic fields over the bridge,
resulting from the turbulent dynamo amplification of magnetic fields and as above
mentioned (G. Brunetti and F. Vazza 2020).
Before comparing the luminosities obtained for the different distributions for a fixed
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Figure 3.9: IC luminosity obtained from a rectangle distribution of B under a vari-
ation on δ; the lower graph assumes a δ = 3.5; the horizontal line represents the
observational constraint.

particle spectrum, it is useful to see how a variation in δ may affect our system for
each distribution that I report: uniform, box, maxwellian. It is important to know
that the upper and lower graphs in Fig. (3.8) through (3.10) have been obtained by
comparing Eq. (3.6) with the observed synchrotron flux to obtain the constant Ke

to insert into Eq. (3.5), which gives us the IC luminosity.
In the simpler case of a uniform distribution, as we can see in Fig. (3.8), an increas-
ing δ causes a steeper profile of IC while B increases, in particular this implies that
the critical value of B is shifted to the right as δ increases. However, even if the
change in IC luminosity between two close δ is not large, if we are looking for a first
estimate of Bcrit, choosing between two adjacent δ, where their values are written
in the caption of Fig. (3.8), may change the magnitude of Bcrit of ≈ 1 µG, since as
the strength of B0 increases the flatness of the profile does too. In particular, for a
δ = 3.5 then Bcrit ≈ 3.12 µG, in accordance with what we obtained from Fig. (3.5).
A different filling factor may significantly change Bcrit because it can increase the
IC luminosity up to two orders of magnitude (since the smaller filling factor used is
0.01); this means that the maximum Bcrit that I have obtained are actually much
greater than 3.12 µG, those being respectively 8.65 µG and 24.08 µG for filling
factors 0.10 and 0.01, even though that is hard to explain by the sole physics of
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Figure 3.10: IC luminosity obtained from a maxwellian distribution of B under a
variation on δ; the lower graph assumes a δ = 3.5; the horizontal line represents the
observational constraint.

magnetic field amplification.
A similar behaviour can be seen in Fig. (3.9) where I consider a box distribution of
magnetic fields, however the obtained IC luminosities are in general slightly fainter
than the ones obtained for a uniform distribution. For a given δ, Bcrit is of the same
order of magnitude, even if it is slightly lower than the one obtained through the
previous distribution. The box distribution decreases the expected IC luminosity
produced by the bridge but it follows the same steepness of the IC luminosity profile
for a uniform distribution of magnetic fields.
On the other hand the maxwellian distribution in Fig. (3.10) produces spectra that
are roughly one order of magnitude less than the ones from the uniform distribution
and Bcrit ≈ 2.09 µG. At the same time the IC luminosities produced vary less with
δ, for the maxwellian distribution produces luminosities that are steeper for lower
B0 and flatter for higher B0 as compared to the ones from the other distributions.

3.2.2 IC limits for a fixed spectrum

In the following, I will stick to a δ = 3.5 spectrum, which means having a Mach
number M =

√
11/7. In particular, we expect to obtain Bcrit ≈ 3.12, 2.97, 2.09 µG
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respectively for a uniform, box and maxwellian distribution of magnetic fields, as
we gleaned from Fig. (3.8) to (3.10). However, I will explore different instances of
our distributions of magnetic fields and I will extend the range on B0 to infer what
the entity of Bcrit may be for lower filling factors.
I begin by showing how the three distributions (uniform, rectangle and maxwellian)
behave when compared to one another. As we see in Fig. (3.11), the uniform dis-

Figure 3.11: In the upper graph we assumed a filling factor of 1.0 and the IC lu-
minosity changes with the type of distribution; In the lower graph (we assumed a
range of B0−B0/2 < B0 < B0+B0/2 for the rectangle distribution) the IC luminos-
ity changes with the filling factor; the horizontal lines represent the observational
constraint.

tribution produces the higher IC luminosity for a fixed B0, while the maxwellian
produces the lower one, also the rectangle distribution, which has a range on B in
the bridge of B0−B0/2 < B0 < B0+B0/2, is much closer to the uniform one, while
the luminosity obtained with the maxwellian, which is independent on the range
of B, is systematically lower than the other two. This overall gives us the idea of
the uncertainty associated with the spatial distribution of B, which is presently not
constrained by observations. Also the difference in magnitude between the three
analysed distribution remains roughly the same.
I can now analyse how the individual distributions behave, and we start with the
rectangle one of Eq. (3.7), compared to the uniform distribution. We can immedi-
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Figure 3.12: In the upper graph we assumed a filling factor of 1.0 and the IC
luminosity changes with the range on B, solid lines represent a rectangle distribution
while the dashed line represents the uniform distribution; In the lower graph we
assumed a value n = 2.0 and the IC luminosity changes with the filling factor; the
horizontal line represents the observational constraint.

ately see that in the upper graph of Fig. (3.12) the rectangle distribution always
produces a fainter IC luminosity than that of the uniform distribution, and also
that the narrower the range on B the closer the two fluxes are, as we could expect.
The range on B changes the IC luminosity because the rectangle distribution is the
simplest approximation for a distribution of magnetic field that is not uniform, it is
not realistic.
I obtain the IC luminosity profile by assuming a range of B outside of which there
is no emission, then I divide the volume of the bridge in a large enough number of
1000 sub-volumes where each of them has a different value of B assigned, let us call
it Bsub, with the magnetic field strength varying in the range of allowed B. I then
consider the each sub-volume of the bridge to emit IC as with a uniform distribution
of magnetic field with a magnetic field strength equal to the Bsub corresponding to
the sub-volumes. Finally I sum all the contributions of IC luminosity from each
sub-volume to obtain the IC luminosity from the whole bridge. For a fixed number
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Figure 3.13: In the upper graph I assumed a filling factor of 1.0 and the IC luminosity
changes with B0, solid lines represent a maxwellian distribution while the dashed line
represents the uniform distribution; In the lower graph the IC luminosity changes
with the filling factor; the horizontal line represents the observational constraint.

of sub-volumes, the narrower the range on B the smaller the difference between each
Bsub, thus approaching a uniform distribution of magnetic fields, and viceversa.
Since the highest IC luminosity is from the uniform distribution, I can say that
the upper limit for Bcrit is approximately 3.12 µG, to which the box distribution
approaches for as the range on B gets narrower, at least if the radiation is pro-
duced by the whole volume (filling factor = 1.0). For a range 0 < B < 2B0

then Bcrit ≈ 2.61 µG, for B0/2 < B < 3/2B0 then Bcrit ≈ 2.97 µG and for
2/3B0 < B < 4/3B0 we have that Bcrit ≈ 3.04 µG.
If we move to the lower graph of Fig. (3.12) we see that for a range of |∆B| < B0/2,
as the filling factor the IC luminosity increases, for a fixed value of B0, the IC lumi-
nosity increases, so instead in this case 3.12 µG is the minimum value of Bcrit that
we obtain; for a filling factor of 0.1 we have that Bcrit ≈ 8.25 µG and while we have
a filling factor of 0.01 we have that Bcrit ≈ 22.93 µG, which is too high of a value
to be plausible, as we will see in a later section.
We have seen now what are the generic changes that a variation in range of B and
in filling factor might produce, however the rectangle distribution is not a very plau-
sible model for the distribution of B so to further improve our analysis I will switch



3.2. INVERSE COMPTON LIMITS FOR POWERLAW DISTRIBUTIONS 67

to the maxwellian distribution of Eq. (3.8), for which the results can be observed
in Fig. (3.13).
I obtain the IC luminosity profile for this distribution by letting the magnetic field
strength B vary through a sufficiently large range, that may cover the whole PDF
of the maxwellian, centered around B0. Using Python, I integrated the synchrotron
flux, Fsyn in Eq. (3.6), by summing the Fsyn obtained from each B weighted by the
maxwellian PDF in Eq. (3.8) and the step of the integral on B, after that I divided
the sum by the CDF of the maxwellian in Eq. (3.9). Having now the total Fsyn, I
can obtain the constant Ke to insert inside Eq. (3.5) to obtain the IC luminosity.
The Python program used to this end is reported in Appendix A.
In the upper graph we find that Bcrit ≈ 2.09 µG for a filling factor of 1.0, so it is less
than the Bcrit for the rectangle distribution, also the luminosity that we obtain does
not depend on the range of B, but only on the dispersion of the distribution, which
varies only with B0. Moving on to the lower graph we see that the IC luminosity
increases with the filling factor and so does Bcrit, in particular Bcrit ≈ 5.81 µG for a
filling factor of 0.10 and Bcrit ≈ 16.18 µG for a filling factor of 0.01. As previously
stated, it is likely that the filling factor is between 0.01 and 0.1 so, since the only
available range of B0 inside the bridge would need to be greater than 5.81 µG in
order to produce an IC luminosity lower than the constraint, this current model is
highly unlikely. A filling factor of 1.0 or 0.1, between the ones that I have considered
is more likely since it allows a wider range of viable B0.

3.2.3 Results on critical magnetic field strengths

Now that I have established how different magnetic field distributions may influence
the production of synchrotron emission, and in turn IC emission from the same pop-
ulation of electrons, I can summarise the main results. The strength of the critical
magnetic fields is of particular interest, since it is the main quantity that we can use
to determine the likelihood of our shock acceleration model, where a power-law type
particle distribution has been assumed. We will see how Bcrit, so the critical value
of B above which the IC luminosity falls under the observational limit, changes with
the filling factor, which is the other free parameter in my analysis.

Table 3.2: Critical magnetic field strength (in µG) as a function of filling factor and
magnetic field distribution for a spectral index δ = 1.3; on the top row are different
filling factor values (fill.) and on the left column are the magnetic field distributions
(distr.);

distr./fill. 0.01 0.10 1.00

uniform 24.08 8.65 3.12

rectangle 22.93 8.25 2.97

maxwellian 16.18 5.81 2.09

In Table (3.2), I summarise the various Bcrit that I have obtained for the three dis-
tributions considered in the previous Section. It can be seen how the the critical
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magnetic field for the uniform and the rectangle distribution have a maximum differ-
ence between their Bcrit of roughly 1 µG for a filling factor of 0.01 while of roughly
0.1 µG for the maximum filling factor of 1.00; this means that for smaller filling
factors the difference between this two distributions increases, even if only slightly.
As said already, the maxwellian distribution is probably the most realistic and, in
particular, we can immediately see the significant difference between the other two
distributions. Perhaps due to the more realistic nature of the maxwellian, Bcrit is
significantly lower than the ones obtained through the other, simpler, distributions,
even 8 µG lower. Nevertheless, in all of the cases the Bcrit implied even by the
maxwellian model are extremely large, and well above any realistic estimate of a
plausible magnetic field in the bridge volume as long as the filling factor is assumed
to be smaller than 1.00. This overall makes the shock acceleration model physically
unlikely, despite potentially able to explain the synchrotron emission detected by
LOFAR.

Figure 3.14: Critical magnetic field strength as a function of filling factor for a
uniform, a rectangle and a maxwellian distribution of magnetic fields, with α = 1.3;
respectively, the lower, the middle and the higher horizontal lines are the 0.2 µG
magnetic field limit from G. Brunetti and F. Vazza (2020), the 0.5 µG limit from F.
Govoni and al. (2019) and the 8 µG limit from the equivalence between the thermal
and magnetic pressure;

To gain a clearer picture on the issue of the likelihood of this acceleration model I
have extended the previous reasoning to all filling factors between 0.01 and 1.00 in
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Fig. (3.14), where the three horizontal lines are the three magnetic field limits that
I have presented in Chapter (2); to recap those limits, the lower ones are due to the
simulations performed by F. Govoni and al. (2019) and G. Brunetti and F. Vazza
(2020). The higher limit on the magnetic field can be computed as the equipartition
(magnetic energy/thermal energy ∼ 1) value of the magnetic field strength, in par-
ticular if we take the limit of 0.5 µG which corresponds to a βpl ≈ 100− 200, from
the work of G. Brunetti and F. Vazza (2020), then B ≈ 0.5

√
βpl ≈ 8 µG is roughly

the limit on B due to the equivalence between thermal and magnetic field pressure.
In Fig. (3.14), we see that Bcrit is a monotonous decreasing function of the filling
factor, as we would expect, since a lower filling factor means an increase in IC lumi-
nosity and therefore a shift to the right of the critical magnetic field for which the
IC luminosity meets the observational limit.
Each one of the distributions has a minimum Bcrit, that can be found for a filling
factor of 1.00, much higher than the two limits expected from the simulations of
G. Brunetti and F. Vazza (2020) and F. Govoni and al. (2019). This is already
a very important result since it shows well that the Fermi I shock re-acceleration
model cannot reproduce IC luminosities that fall under the observational constraint,
while at the same time using a magnetic field and a filling factor compatible with
the results by dynamical, MHD simulations.
The highest limit on B comes from the equivalence on the thermal and magnetic field
pressure and, considering that limit, we have that Bcrit < 8 µG if the filling factors
are higher than 0.12, 0.11, 0.05 respectively for the uniform, the rectangle and the
maxwellian distribution. In particular, for the Bcrit obtained from the maxwellian
distribution, we have a filling factor of 0.05 that is the only one still under the 0.1
expectation on filling factors from MHD simulations in G. Brunetti and F. Vazza
(2020).
The spectral index of 1.3 is a first assumption made by F. Govoni and al. (2019),
however in the work of C. D. Nunhokee and al. (2022) what seems to be a more ac-
curate prediction is made, albeit limited to a smaller fraction of the bridge emission
visible with LOFAR. In particular, the spectral index of A399 should be around 1.75,
whilst for the bridge a lower limit of α > 1.5 has been established (C. D. Nunhokee
and al. 2022). In Fig. (3.15) we may see how Bcrit changes for α = 1.3, 1.5 and
1.75, and as we could expect it grows monotonously with α, since a steeper spectral
radio slope means an higher IC luminosity, and therefore a shift of Bcrit to greater
magnetic field strengths.
We can infer that for this lower limit on α the shock acceleration model becomes
already even more unlikely than before, unlikelihood that would only increase if the
spectral index were higher, given that an increase in α always means an increment in
IC luminosity for the energy band 0.1− 2.4 keV , as stated in Section (3.2). It shall
also be remarked that an even steeper radio spectral slope implies an even steeper
distribution of radio emitting electrons from the bridge area, making it even harder
for the shock re-acceleration scenario to explain the radio emission from A399-A401,
given the typical population of shocks formed by the numerical simulation of this
system.
To give a more quantitative result, I will try and compare the values of Bcrit that
can be obtained for the maxwellian distribution of magnetic fields, the most realis-
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Figure 3.15: Critical magnetic field strength as a function of filling factor for a
maxwellian distribution of magnetic fields, and changing with α; respectively, the
lower, the middle and the higher horizontal lines are the 0.2 µG magnetic field limit
from G. Brunetti and F. Vazza (2020), the 0.5 µG limit from F. Govoni and al.
(2019) and the 8 µG limit from the equivalence between the thermal and magnetic
pressure;

tic distribution amongst the ones that I have considered in this work, as stated in
Section (3.2.1), and as they vary with α = 1.3, 1.5, 1.75. In Tab. (3.3), I report
the values of Bcrit obtained for these different values of α and for the filling factors
used in this work.
The increment of Bcrit is more significant for the lower filling factors, up to roughly
6 µG for a filling factor of 0.01, so the major differences that a change in α causes
manifest themselves for the lower filling factors. The higher ones vary less, however
since we expect the filling factor of the bridge to be less than 0.1, from the work of
G. Brunetti and F. Vazza (2020), we can focus our attention in this range of filling
factors < 0.1 when considering how Bcrit may varies with α. This holds, especially
if in the future more stringent constrains on α were to be measured.
In particular, we find that for all of the cases studied in this Section, the upper
limits on the magnetic field in the bridge that have been found from F. Govoni and
al. (2019) and G. Brunetti and F. Vazza (2020) have been far exceeded by Bcrit

which, to recall, is the minimum strength of magnetic fields in the bridge that can
lead to the production of an IC luminosity lower than the observational constraint.
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Table 3.3: Critical magnetic field strength (in µG) as a function of filling factor and
different α values, for maxwellian magnetic field distributions; on the top row are
different filling factor values (fill.) and on the left column are the values of alpha;

α/fill. 0.01 0.10 1.00

1.3 16.18 5.81 2.09

1.5 19.17 7.64 3.03

1.75 22.27 9.62 4.16

Therefore, a shock re-acceleration model is unlikely. The only limit on magnetic
field strength that may allow this model to describe the emission from the bridge is
the 8 µG limit. The values of filling factors for which Bcrit = 8 µG are 0.05, 0.09
and 0.17, respectively for α = 1.3, 1.5, 1.75.
A spectral index of 1.75 would therefore need a filling factor too high to explain
the undetection of the IC emission in the bridge and, at the same time, to keep to
the magnetic field in the region from becoming too high itself. The lower limit on
α of 1.5, with a filling factor of 0.09 could still barely remain under the 0.1 filling
factor upper limit predicted by G. Brunetti and F. Vazza (2020), while an α = 1.3
produces more likely results, but its value is a first estimate made by F. Govoni and
al. (2019), and a more stringent value for α can be found in C. D. Nunhokee and al.
(2022). However, this results are for an upper limit on magnetic field strengths of
8 µG, which is much higher than the 0.2 µG and 0.5 µG limits found by F. Govoni
and al. (2019) and G. Brunetti and F. Vazza (2020), which have been far exceeded
from all of the models that I have presented.

Comparison between IC from a Fermi I and a Fermi II model

Since the previous analysis have convincingly shown that attempts to explain with
a shock model the radio emission from A399-A401 are hardly compatible with the
IC limits, in a last step of my Thesis, I will briefly discuss how different models
compare with the same IC limits. In particular, I compare a subset of the possible
Fermi II turbulent re-acceleration models, in particular the ones used in Fig. 3 of
G. Brunetti and F. Vazza (2020), with the IC luminosity produced by a shock
re-acceleration model, with the purpose of explaining the observed radio emission
in the bridge. I have superposed to the IC luminosities obtained in that work one
of the IC luminosity obtained in my Thesis work, and the resulting spectra can be
seen in Fig. (3.16).
Firstly, let us consider the models from G. Brunetti and F. Vazza (2020), these
are Fermi II turbulent re-acceleration models for populations of fossil CR electrons
and CR protons, with ηB = 0.02 for the red lines, ηB = 0.03 for the blue line and
ηB = 0.05 for the green lines. The dashed lines represent models that take into
account only a primary electron spectrum. It can be inferred that the predictions
of the models vary little with the initial population, that might be because of the
turbulent re-acceleration mechanisms, which imply that after an isotropization time
the system loses memory of the initial conditions.
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Figure 3.16: IC luminosity by a CRe and CRp population as a function of frequency;
the red, blue and green lines represent the models used in G. Brunetti and F. Vazza
(2020), respectively for ηB = 0.02, ηB = 0.03 and ηB = 0.05, also the dashed
coloured lines represent spectra produced only by primary electrons; The horizontal
and obliques black lines represent the IC observational limit and the IC luminosity
from a Fermi I re-acceleration model with a maxwellian distribution of magnetic
fields, the lower one has a filling factor of 1.0 and the higher one has a filling factor
of 0.1;

In Fig. (3.16), the horizontal solid grey line represents the IC observational con-
straint in the energy range 0.1− 2.4 keV , while the black lines represent a Fermi I
model from a maxwellian distribution of magnetic fields with α = 1.3, B = 0.5 µG
and filling factors of 1.0 (pointed black line) and 0.1 (dashed black line), that go
up to 100 keV to better show how the models behave and compare them to the
turbulent ones, also at higher energies. I chose a magnetic field strength of 0.5 µG
to be consistent with the predictions used in G. Brunetti and F. Vazza (2020).
Fermi I models produce a powerlaw type spectrum which implies a higher emis-
sion for lower energies, since the majority of the population of particles is at those
energies. Instead, Fermi II models manifest a bump around the 1018.5 Hz mark,
thus producing less emission for energies that are lower or higher than the peak
one. Because of this, the predictions for Fermi II models are more realistic and less
constrained by the IC; investigating the IC emission in the energy band of the peak
may provide a better insight on the likelihood of Fermi II models to describe the
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bridge.
Returning to Fig. (3.16), we have that for a filling factor of 1.0 we should expect
the IC by Fermi I to be almost equal to the peak emission of the IC by turbulent
re-acceleration, however it is slightly higher. This is because, although the mean
magnetic field is 0.5 µG, its distribution amongst the volume of the bridge is not
uniform and a variety of magnetic fields populates the volume, therefore a decrease
in IC emission should occur, considering also that the magnetic field determines the
acceleration efficiency, as seen in Eq. (1.90) given by the model in G. Brunetti and
F. Vazza (2020), and so also the radio and IC spectrum.
The main comparison between the powerlaw Fermi I models and the turbulent Fermi
II models is that, with the used combination of parameters, the shock models are
way higher than the observational limits, as previously stated, while the turbulent
models are below it.
This means that, while using magnetic field strengths and a filling factor that are
under the predicted simulated limits by G. Brunetti and F. Vazza (2020), a Fermi I
model is unlikely to describe the emission of the bridge but turbulent re-acceleration
models may still be able to describe it and to justify the undetection of IC radiation
in the region of the bridge. However, this exercise also shows that deeper limits
from IC in the hard-X band (> 5−10 keV ) or from much deeper XMM integrations
in the soft-band will also have the potential of representing a tough stress test for
the turbulent re-acceleration model, considering that all of the investigated model
variations are consistently producing estimates which are just below the currently
available IC constraints.





Chapter 4

Conclusion

In this work, I have investigated the possible origin of the synchrotron emission
in the radio bridge A399-A401 at a luminosity distance of roughly 290 Mpc as
observed with LOFAR at 140 MHz, for a total flux of 0.822 mJy. The presence of
synchrotron radiation in such a large scale structure, as it extends for at least the
projected distance of 3 Mpc, also implies the presence of very faint IC radiation,
that has remained undetected up until now. From the available limits on the total
IC flux from this object, in the X-ray band, it is thus possible to put additional
strong constraints on the acceleration model to produce the relativistic electrons
responsible for the radio emission detected by LOFAR.
For this Thesis work, my collaborators have derived updated limits on the IC, using
either ROSAT or XMM-Newton, within the energy bands 20 − 80 keV and 0.1 −
2.4 keV , respectively 2 10−13 erg/s/Hz/cm2 and 1.4553 10−14 erg/s/Hz/cm2 1.
Some of the differences between the first and the second energy band are that the
first limit is also the oldest amongst the two of them and that in the 0.1− 2.4 keV
range the IC luminosity produced has a monotonous increase with δ.
I have then assumed that the synchrotron emission from the bridge is produced by
a Fermi I model that re-accelerates a pre-existing population of CRe to relativistic
energies. The only data in our possession were the observed synchrotron flux, based
on F. Govoni and al. (2019), and the undetection of IC emission. Therefore, I
compared the observed synchrotron flux to the one predicted by the Fermi I shock
re-acceleration model [Eq. (3.6)] by dividing them and thus obtaining a value for
Ke, the number of radiating particles expected to be located in the region of the
bridge. Obviously a variation in filling factor, the portion of the bridge responsible
of producing synchrotron emission, will lead to a direct change in Ke, which I then
insert into Eq. (3.5) to compute the predicted IC emission. The magnetic field in
the bridge region is a key ingredient here, whose variation in amplitude affects the
ratio between the IC and the radio emission, assuming both emissions come from
the same distribution of relativistic electrons. For magnetic field strengths higher
than a critical value, called Bcrit, the IC luminosity falls under the observational
constraint, and from a decrease in filling factor the IC luminosity increases as does

1I would like to thank Marco Balboni and Fabio Gastadello for producing and sharing their
X-ray limits on the non-detection of IC emission that I have used here.
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the consequent Bcrit.
The main results of my Thesis can be summarized as follows:

• The predicted limits on the magnetic field strength of the bridge for a δ = 3.5
are around 0.5 µG and 3.1 µG, respectively for the 20 − 80 keV and the
0.1 − 2.4 keV energy bands. All this considered I choose the lower energy
band to proceed in my analysis. Therefore, all of my successive Thesis work
refers to the energy band 0.1− 2.4 keV ;

• The next step was to investigate how different distributions of magnetic fields
over the volume of the bridge may change the predicted IC luminosity. I have
considered distributions of magnetic fields of increasing realism: a uniform, a
rectangle [Eq. (3.7)] and a maxwellian [Eq. (3.8)]. The first two distributions
served as a preliminary analysis to provide an element of comparison between
the simplest assumption of a uniform distribution and the effects of a more
complex one, in particular the effect is a decrement on the IC luminosity. The
maxwellian distribution is the one which is expected to be more realistic from
previous works (P. C. Tribble 1991; M. Murgia and al. 2019) so I used it as
the main source of results to verify the likelihood of the hypothesized Fermi I
re-acceleration model;

• I was able to infer the Bcrit values obtained from the maxwellian distribution
under different combinations of filling factor and radio spectral index α. From
simulations and calculations it was possible to obtain upper limits on the mag-
netic field strength in the bridge, those being roughly 0.2 µG, from simulations
in F. Govoni and al. (2019), 0.5 µG, from simulations in G. Brunetti and F.
Vazza (2020), and 8 µG as a computed value coming from the equality between
thermal and magnetic pressure. A range of plausible filling factors could be
< 0.1, coming from simulations in the work of G. Brunetti and F. Vazza
(2020). The expected values on α were taken from the work of F. Govoni and
al. (2019), who inferred α = 1.3, and from the work of C. D. Nunhokee and
al. (2022), who instead inferred a lower limit on the radio spectral index of
1.5, to be compared with the 1.75 value obtained for the A399 cluster;

• I checked under which combination of filling factors and α the Fermi I model
that I used was able to produce a Bcrit that would fall under the above men-
tioned upper limits, and under no conditions it was able to give a Bcrit under
the limits of F. Govoni and al. (2019) and G. Brunetti and F. Vazza (2020).
We obtain very large values of Bcrit in all cases, and even larger than the
8 µG magnetic field limit corresponding to the equipartition with the thermal
gas energy, a scenario which would not be explained by any known dynamical
model. If α = 1.3 then the filling factor would need to be ≥ 0.05, but if
α = 1.5, whose value is backed by simulations, then the filling factor would
need to be ≥ 0.09, bordering the 0.1 upper limit computed by G. Brunetti
and F. Vazza (2020), and thus already making this result unlikely. More than
this, the limit of 8 µG comes from a simple analytical computation and not
from more complex simulations like the ones in F. Govoni and al. (2019) and
G. Brunetti and F. Vazza (2020).
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Therefore, a Fermi I re-acceleration through shocks is highly unlikely to describe the
origin of the observed emission of the radio bridge A399-A401, making it necessary
to consider other models with which to glean its nature.

In particular, a Fermi II turbulent re-acceleration model may instead be able to
describe the emission from the bridge and the undetection of the IC radiation, while
still respecting the limits predicted by G. Brunetti and F. Vazza (2020) on the
magnetic field strength and the filling factor.





Appendix A

Python code to compute Inverse
Compton

In this Appendix, I give a relevant example of the Python program that I compiled
to produce Fig. (3.11) specifically, even if by selecting the portions of the code that
calculate the IC luminosity for a single magnetic field distribution it is possible to
reproduce the programs that I created to calculate the graphs in Fig. (3.12)-(3.13).
Also, by adding a for loop that goes through the possible values of δ, which are
represented here specifically by the numpy array d, it can be seen how the IC lumi-
nosity changes with δ, thus obtaining the graphs of Fig. (3.8) through Fig. (3.10).
I do not report all the different programs that I used to obtain the graphs above
mentioned since the code written in this Appendix can function as a summary of
the other programs, that can be obtained easily with some modifications.
In the code written below every sentence preceded by the symbol # is not part of
the code itself but a comment to it.

————————————————————————————————————–

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
import scipy.constants as sp
from scipy import special
from scipy.stats import maxwell
import astropy.constants as ap
from astropy.coordinates import Distance
from astropy.cosmology import FlatLambdaCDM
import math
mpl toolkits.mplot3d import Axes3D
from matplotlib.collections import LineCollection

# Definition of physical constants
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Pi=sp.pi
c=ap.c.cgs.value
c nc=ap.c.value
G=ap.G.cgs.value
e=ap.e.value*2.998e9 #in cgs
h=ap.h.cgs.value
h nc=ap.h.value
k b=ap.k B.cgs.value
m e=ap.m e.cgs.value
m p=ap.m p.cgs.value
s T=ap.sigma T.cgs.value
s sb=ap.sigma sb.cgs.value
L sun=ap.L sun.cgs.value
T cmb=2.73
r0=sp.physical constants[’classical electron radius’][0]*100
cosmo = FlatLambdaCDM(H0=72, Om0=0.258)

# Finished the definition of the constants

# Definition of parameters used during the production of the graph

d=np.arange(0.0, 5.5, 0.5) #values of delta from 0 to 5.5
Fd=np.array([3.48, 3.00, 3.20, 3.91, 5.25, 7.57, 11.54, 18.44, 30.62, 52.57, 92.90])
#numerical factor depending on the value of delta
z 1=1.072735 #z 1 = 1+z
dl=Distance(z=z 1-1, unit=’Mpc’, cosmology=cosmo).value*3.086e24 # luminosity
distance (from Mpc to cm)
bg IC =1.4553e-14*4*Pi*dl*dl #IC limit in erg/s in the band 0.1-2.4 keV
keV erg = 1.60218e-9 #conversion factor from keV to erg
en = np.linspace(0.1, 2.4, 1000) #energy range from 0.1 to 2.4 keV (to put in erg)
nu=140e6 #frequency of observation of the bridge of 140 MHz
J erg = 1e7 #conversion factor from J to erg
L140 = 1e25*J erg #Synchrotron luminosity as observed by Govoni 2019 in erg/s/Hz
at 140 MHz
B0=np.linspace(0.1e-6, 4e-6, 1000) #B 0 in G
normalization=1.38e-34 #normalization factor in erg/s/cmˆ 2
fill=np.array([0.01, 0.10, 1.00]) #filling factor
N=1000 #number used to define the step of integration
nu i=0.1 #initial frequence of the energy band in keV
nu f=2.4 #final frequence of the energy band in keV
delta=d[7] #delta=3.5
n value=2.0 #number that defines the range on the rectangle magnetic field distri-
bution

g factor=np.empty([len(d)]) #function composed of multiple gamma functions
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for i, s d in enumerate(d):
g factor[i] = special.gamma(s d/4+19/12) * special.gamma(s d/4-1/12) * spe-

cial.gamma(s d/4+5/4)/special.gamma(s d/4+7/4)

# Finished the definition of the parameters

n = len(d)
colors = plt.cm.jet(np.linspace(0,1,n)) # colormap
fig, ax = plt.subplots(2, 1)

Ke=np.empty([len(B0)]) #volume constant
F syn part=np.empty([len(B0)]) #array of partial values of synchrotron flux used
during integration
F syn box=np.empty([len(B0)]) #array of partial values of synchrotron flux used
during integration
F syn=np.empty([len(B0)]) #synchrotron flux
F IC=np.empty([len(B0)]) #IC luminosity

#Production of the higher graph

#IC luminosity from a maxwellian distribution

B=B0/(N*B0)*1e-6 #starting value for the integration
sigma=np.sqrt((3*Pi-8)/2)*B0 #dispertion on B
for i in range(0, 10*N-1):

F syn part=0
pdf max = np.sqrt(2/Pi) * np.float power(B, 2) * np.exp(-np.float power(B,

2)/(2*sigma*sigma))/(sigma*sigma*sigma) #maxwellian PDF
deltaB=B0/(N*B0)*1e-6 #step of integration
F syn part=np.sqrt(3*Pi)/2*(e**3)/(m e*(delta+1)*c**2)*np.float power(2*Pi*m e*c

/(3*e), -(delta-1)/2) * np.float power(B, (delta+1)/2) * g factor[7] * np.float power(nu,
-(delta-1)/2)

F syn box += F syn part*pdf max*deltaB
B=(B0/(N*B0)+B0/(N*B0)*(i+1))*1e-6

B i=B0/(N*B0)*1e-6
cdf max=special.erf(B/(np.sqrt(2)*sigma))-np.sqrt(2/Pi)*B * np.exp( -np.float power(
B, 2)/(2*sigma*sigma))/sigma-special.erf(B i/(np.sqrt(2)*sigma))+np.sqrt(2/Pi)*B i
* np.exp( -np.float power(B i, 2)/(2*sigma*sigma))/sigma #maxwellian CDF
F syn = F syn box/cdf max
Ke=L140/(F syn)
F IC=(r0**2)/(Pi*(c**2)*(h/(2*Pi))**3)*Ke*np.float power(k b*T cmb*z 1, (delta+5)/2)
* Fd[7] * (2/(3-delta))*(np.float power(nu f*keV erg, (3-delta)/2) -np.float power(
nu i*keV erg, (3-delta)/2))
ax[0].plot(B0*1e6, F IC, linestyle=’–’, label=’maxwellian’)
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ax[0].set yscale(’log’)
ax[0].plot(B0*1e6, [bg IC]*len(B0))
ax[0].grid()
ax[0].set title(r’$L IC$ vs. $B$’)
ax[0].set xlabel(r’$B 0$ ($\mu$G)’)
ax[0].set ylabel(’$L IC$ (erg/s)’)

#IC luminosity from a uniform distribution

F syn=0
F IC=0
Ke=0

F syn = np.sqrt(3*Pi)/2*(e**3)/(m e*(delta+1)*c**2)*np.float power(2*Pi*m e*c
/(3*e), -(delta-1)/2)*np.float power(B0, (delta+1)/2)*g factor[7]*np.float power(nu,
-(delta-1)/2)
Ke = L140/F syn
F IC = (r0**2)/(Pi*(c**2)*(h/(2*Pi))**3)*Ke * np.float power( k b*T cmb*z 1,
(delta+5)/2) * Fd[7]*(2/(3-delta)) * (np.float power(nu f*keV erg, (3-delta)/2) -
np.float power(nu i*keV erg, (3-delta)/2))
ax[0].plot(B0*1e6, F IC, linestyle=’-’, label=’uniform’)
ax[0].set yscale(’log’)
ax[0].grid()
ax[0].set title(r’$L IC$ vs. $B$’)
ax[0].set xlabel(r’$B 0$ ($\mu$G)’)
ax[0].set ylabel(’$L IC$ (erg/s)’)

#IC luminosity from a rectangle distribution

F syn=0
F syn part=0
F syn box=0
F IC=0
Ke=0
B=B0-B0/n value #starting value of B for the integration

for i in range(0, 2*N+1):
F syn part=0
F syn part=np.sqrt(3*Pi)/2*(e**3)/(m e*(delta+1)*c**2)*np.float power(2*Pi*m e*c

/(3*e), -(delta-1)/2) * np.float power(B, (delta+1)/2) * g factor[7] * np.float power(nu,
-(delta-1)/2)

F syn box += F syn part*B0/(N*n value)
B=B0-B0/n value+B0/(n value*N)*i

B i=B0-B0/n value
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F syn=F syn box/(B-B i)
Ke=L140/F syn
F IC=(r0**2)/(Pi*(c**2)*(h/(2*Pi))**3) * Ke * np.float power( k b*T cmb*z 1,
(delta+5)/2) * Fd[7]*(2/(3-delta)) * (np.float power(nu f*keV erg, (3-delta)/2) -
np.float power( nu i*keV erg, (3-delta)/2))
ax[0].plot(B0*1e6, F IC, linestyle=’:’, label=’rectangle’)
ax[0].set yscale(’log’)
ax[0].grid()
ax[0].set title(r’$L IC$ vs. $B$’)
ax[0].set xlabel(r’$B 0$ ($\mu$G)’)
ax[0].set ylabel(’$L IC$ (erg/s)’)
ax[0].legend(title=’Distribution of B’)

#Production of the lower graph

#IC luminosity from a maxwellian distribution and changing for the filling fac-
tor

n = len(fill)
colors = plt.cm.jet(np.linspace(0,1,n)) # colormap

for j, f in enumerate(fill):
F IC=0
F syn box=0
F syn=0
B=B0/(N*B0)*1e-6
for i in range(0, 10*N-1):

F syn part=0
pdf max = np.sqrt(2/Pi) * np.float power(B, 2) * np.exp(-np.float power(B,

2)/(2*sigma*sigma))/(sigma*sigma*sigma)
deltaB=B0/(N*B0)*1e-6
F syn part = np.sqrt(3*Pi)*f/2*(e**3)/(m e*(delta+1)*c**2) * np.float power(

2*Pi*m e*c/(3*e), -(delta-1)/2) * np.float power(B, (delta+1)/2) * g factor[7] *
np.float power(nu, -(delta-1)/2)

F syn box += F syn part*pdf max*deltaB
B=(B0/(N*B0)+B0/(B0*N)*(i+1))*1e-6

B i=B0/(N*B0)*1e-6
cdf max=special.erf(B/(np.sqrt(2)*sigma))-np.sqrt(2/Pi)*B*np.exp(-np.float power(

B, 2)/(2*sigma*sigma))/sigma-special.erf(B i/(np.sqrt(2)*sigma))+np.sqrt(2/Pi)*B i
* np.exp( -np.float power(B i, 2)/(2*sigma*sigma))/sigma

F syn = F syn box/cdf max
Ke=L140/(F syn)
F IC=(r0**2)/(Pi*(c**2)*(h/(2*Pi))**3)*Ke * np.float power(k b*T cmb*z 1,

(delta+5)/2) * Fd[7] * (2/(3-delta)) * (np.float power(nu f*keV erg, (3-delta)/2)-
np.float power(nu i*keV erg, (3-delta)/2))
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ax[1].plot(B0*1e6, F IC, linestyle=’–’, label=’maxwell’, color=colors[j])
ax[1].plot(B0*1e6, [bg IC]*len(B0))

#IC luminosity from a uniform distribution and changing for the
filling factor

for j, f in enumerate(fill):
F syn = np.sqrt(3*Pi)*f/2*(e**3)/(m e*(delta+1)*c**2)*np.float power(2*Pi*m e*c

/(3*e), -(delta-1)/2) * np.float power(B0, (delta+1)/2) * g factor[7] * np.float power(nu,
-(delta-1)/2)

Ke = L140/F syn
F IC = (r0**2)/(Pi*(c**2)*(h/(2*Pi))**3)*Ke * np.float power(k b*T cmb*z 1,

(delta+5)/2) * Fd[7]*(2/(3-delta)) * (np.float power(nu f*keV erg, (3-delta)/2) -
np.float power( nu i*keV erg, (3-delta)/2))

ax[1].plot(B0*1e6, F IC, linestyle=’-’, label=’uniform’, color=colors[j])

#IC luminosity from a rectangle distribution and changing for the filling factor

for j, f in enumerate(fill):
F IC=0
F syn box=0
F syn=0
B=B0-B0/n value
for i in range(0, 2*N+1):

F syn part=0
F syn part=np.sqrt(3*Pi)*f/2*(e**3)/(m e*(delta+1)*c**2) * np.float power(

2*Pi*m e*c/(3*e), -(delta-1)/2) * np.float power(B, (delta+1)/2) * g factor[7] *
np.float power(nu, -(delta-1)/2)

F syn box += F syn part*B0/(N*n value)
B=B0-B0/n value+B0/(n value*N)*i

B i=B0-B0/n value
F syn=F syn box/(B-B i)
Ke=L140/F syn
F IC=(r0**2)/(Pi*(c**2)*(h/(2*Pi))**3)*Ke * np.float power(k b*T cmb*z 1,

(delta+5)/2) * Fd[7]*(2/(3-delta)) * (np.float power(nu f*keV erg, (3-delta)/2) -
np.float power(nu i*keV erg, (3-delta)/2))

ax[1].plot(B0*1e6, F IC, linestyle=’:’, label=’rectangle’, color=colors[j])
ax[1].set yscale(’log’)
ax[1].grid()
ax[1].set xlabel(r’$B 0$ ($\mu$G)’)
ax[1].set ylabel(r’$L IC$ (erg/s)’)
ax[1].legend(fill, title=’Filling factor’)
plt.show()
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Python code to infer critical
magnetic fields

In this Appendix, I show the Python program that I created to produce the Fig.
(3.14)-(3.15), that manifest what is the interaction between the critical value of mag-
netic field Bcrit, for a certain distribution of magnetic fields, and the filling factor.
The values of Bcrit in the two figures differ because of the chosen value of δ, so to
switch between the programs used to produce Fig. (3.14) and Fig. (3.15) it is only
necessary to change the value of delta, and the corresponding Fd, to the desired
one.
In the program written below, sentences that are comments to the text are preceded
by the symbol #.

————————————————————————————————————–

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
import scipy.constants as sp
from scipy import special
from scipy.stats import maxwell
import astropy.constants as ap
from astropy.coordinates import Distance
from astropy.cosmology import FlatLambdaCDM
import math
mpl toolkits.mplot3d import Axes3D
from matplotlib.collections import LineCollection

# Definition of physical constants

Pi=sp.pi
c=ap.c.cgs.value
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c nc=ap.c.value
G=ap.G.cgs.value
e=ap.e.value*2.998e9 #in cgs
h=ap.h.cgs.value
h nc=ap.h.value
k b=ap.k B.cgs.value
m e=ap.m e.cgs.value
m p=ap.m p.cgs.value
s T=ap.sigma T.cgs.value
s sb=ap.sigma sb.cgs.value
L sun=ap.L sun.cgs.value
T cmb=2.73
r0=sp.physical constants[’classical electron radius’][0]*100
cosmo = FlatLambdaCDM(H0=72, Om0=0.258)

# Finished the definition of the constants

# Definition of parameters used during the production of the graph

d=np.arange(0.0, 5.5, 0.5) #values of delta from 0 to 5.5
Fd=np.array([3.48, 3.00, 3.20, 3.91, 5.25, 7.57, 11.54, 18.44, 30.62, 52.57, 92.90])
#numerical factor depending on the value of delta
z 1=1.072735 #z 1 = 1+z
dl=Distance(z=z 1-1, unit=’Mpc’, cosmology=cosmo).value*3.086e24 # luminosity
distance (from Mpc to cm)
bg IC =1.4553e-14*4*Pi*dl*dl #IC limit in erg/s in the band 0.1-2.4 keV
keV erg = 1.60218e-9 #conversion factor from keV to erg
en = np.linspace(0.1, 2.4, 1000) #energy range from 0.1 to 2.4 keV (to put in erg)
nu=140e6 #frequency of observation of the bridge of 140 MHz
J erg = 1e7 #conversion factor from J to erg
L140 = 1e25*J erg #Synchrotron luminosity as observed by Govoni 2019 in erg/s/Hz
at 140 MHz
B0=np.linspace(0.1e-6, 30e-6, 1000) #B 0 in G
normalization=1.38e-34 #normalization factor in erg/s/cmˆ 2
fill=np.linspace(0.01, 1.00, 10) #filling factor
N=1000 #number used to define the step of integration
nu i=0.1 #initial frequence of the energy band in keV
nu f=2.4 #final frequence of the energy band in keV
delta=d[7] #delta=3.5
n value=2.0 #number that defines the range on the rectangle magnetic field distri-
bution

g factor=np.empty([len(d)]) #function composed of multiple gamma functions
for i, s d in enumerate(d):

g factor[i] = special.gamma(s d/4+19/12) * special.gamma(s d/4-1/12) * spe-
cial.gamma(s d/4+5/4)/special.gamma(s d/4+7/4)
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# Finished the definition of the parameters

F IC=np.empty([len(B0)]) # IC luminosity
B crit max=np.empty([len(fill)]) #array of critical B from the maxwellian distribu-
tion
B crit uni=np.empty([len(fill)]) #array of critical B from the uniform distribution
B crit box=np.empty([len(fill)]) #array of critical B from the rectangle distribution

# Production of the profiles of B crit as the filling factor changes

# B crit from the uniform distribution

for j, f in enumerate(fill):
F syn = np.sqrt(3*Pi)*f/2*(e**3)/(m e*(delta+1)*c**2)*np.float power( 2*Pi*m e*c

/(3*e), -(delta-1)/2) * np.float power(B0, (delta+1)/2) * g factor[7] * np.float power(nu,
-(delta-1)/2)

Ke = L140/F syn
F IC = (r0**2)/(Pi*(c**2)*(h/(2*Pi))**3)*Ke * np.float power(k b*T cmb*z 1,

(delta+5)/2) * Fd[7]*(2/(3-delta)) * (np.float power(nu f*keV erg, (3-delta)/2) -
np.float power(nu i*keV erg, (3-delta)/2))

diff=(F IC-bg IC)*(F IC-bg IC) #to find what is the value of B that more closely
reproduces the IC observational limit

crit=diff.argmin() #to obtain the index of the array element corresponding to
B crit

B crit uni[j]=B0[crit]*1e6

# B crit from the rectangle distribution

for j, f in enumerate(fill):
F syn box=0
B=B0-B0/n value #starting value for the integration
for i in range(0, 2*N+1):

F syn part=np.sqrt(3*Pi)*f/2*(e**3)/(m e*(delta+1)*c**2) * np.float power(
2*Pi*m e*c/(3*e), -(delta-1)/2) * np.float power(B, (delta+1)/2) * g factor[7] *
np.float power(nu, -(delta-1)/2)

F syn box += F syn part*B0/(N*n value)
B=B0-B0/n value+B0/(n value*N)*i

B i=B0-B0/n value
F syn=F syn box/(B-B i)
Ke=L140/F syn
F IC=(r0**2)/(Pi*(c**2)*(h/(2*Pi))**3)*Ke * np.float power(k b*T cmb*z 1,

(delta+5)/2) * Fd[7]*(2/(3-delta)) * (np.float power(nu f*keV erg, (3-delta)/2) -
np.float power(nu i*keV erg, (3-delta)/2))

diff=(F IC-bg IC)*(F IC-bg IC)
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crit=diff.argmin()
B crit box[j]=B0[crit]*1e6

# B crit from the maxwellian distribution

for j, f in enumerate(fill):
F syn box=0
B=B0/(N*B0)*1e-6 #starting value for the integration
sigma=np.sqrt((3*Pi-8)/2)*B0 #dispersion of B
for i in range(0, 100*N-1):

pdf max = np.sqrt(2/Pi)*np.float power(B, 2) * np.exp( -np.float power(B,
2)/(2*sigma*sigma))/(sigma*sigma*sigma) #maxwellian PDF

deltaB=B0/(N*B0)*1e-6 #step of the integration
F syn part=np.sqrt(3*Pi)*f/2*(e**3)/(m e*(delta+1)*c**2) * np.float power(

2*Pi*m e*c/(3*e), -(delta-1)/2) * np.float power(B, (delta+1)/2) * g factor[7] *
np.float power(nu, -(delta-1)/2)

F syn box += F syn part*pdf max*deltaB
B=(B0/(N*B0)+B0/(B0*N)*(i+1))*1e-6

B i=B0/(N*B0)*1e-6
cdf max=special.erf(B/(np.sqrt(2)*sigma)) -np.sqrt(2/Pi)*B*np.exp( -np.float power(B,

2)/(2*sigma*sigma))/sigma -special.erf(B i/(np.sqrt(2)*sigma))+np.sqrt(2/Pi)*B i*np.exp(
-np.float power(B i, 2)/(2*sigma*sigma))/sigma #maxwellian CDF

F syn = F syn box/cdf max
Ke=L140/(F syn)
F IC=(r0**2)/(Pi*(c**2)*(h/(2*Pi))**3)*Ke * np.float power(k b*T cmb*z 1,

(delta+5)/2) * Fd[7]*(2/(3-delta)) * (np.float power(nu f*keV erg, (3-delta)/2) -
np.float power(nu i*keV erg, (3-delta)/2))

diff=(F IC-bg IC)*(F IC-bg IC)
crit=diff.argmin()
B crit max[j]=B0[crit]*1e6

plt.plot(fill, B crit uni, label=’uniform’, linestyle=’-’)
plt.plot(fill, B crit box, label=’box’, linestyle=’:’)
plt.plot(fill, B crit max, label=’max’, linestyle=’–’)
plt.plot(fill, [8.0]*len(fill)) #limit on B due to the equilibrium between magnetic and
thermal pressure
plt.plot(fill, [0.5]*len(fill)) #limit on B from Brunetti and Vazza 2020
plt.plot(fill, [0.2]*len(fill)) #limit on B from Govoni and al. 2019
plt.xlabel(’Filling factor’)
plt.ylabel(’$B crit$’)
plt.grid()
plt.legend(title=’Distribution of B’)
plt.show()
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