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Introduzione

Negli ultimi anni le convolutional neural networks (CNNs) hanno ot-

tenuto ottimi risultati in molti campi relativi all’elaborazione delle immagini.

Questo fenomeno ha portato molti ricercatori a interessarsi maggiormente

alla generalizzazione degli operatori convoluzionali ad altre tipologie di dati,

come ad esempio i grafi e le mesh, che possiamo definire dati di tipo non

Euclideo. Le molteplici tecniche emerse da questi studi appartengono a un

nuovo campo del machine learning, noto come geometric deep learning. I

dati di tipo non Euclideo sono però caratterizzati da una alta dimensiona-

lità e una irregolarità propria della struttura, queste due proprietà rendono

l’estensione del concetto di convoluzione non immediata. In particolare, le

maggiori difficoltà sono state riscontrate a causa dell’impossibilità di definire

un filtro invariante per traslazione.

Le reti neurali per l’elaborazione di grafi concepite come generalizzazione

delle CNNs sulle immagini sono dette graph neural networks (GNNs). Il pre-

sente lavoro si propone come descrizione dei più noti operatori convoluzionali

che caratterizzano i layers delle GNNs. Trattata la mesh come caso parti-

colare di grafo, analizziamo i risultati dell’applicazione degli operatori con-

voluzionali introdotti. La trattazione si divide in due parti, una teorica e una

sperimentale. La parte teorica si estende nei primi cinque capitoli. Nel primo

capitolo sono esposti i concetti preliminari di two-manifold e di mesh, inoltre

viene fornita la definizione chiave dell’operatore di Lablace-Beltrami nel caso

discreto. Nel secondo capitolo, seguendo la teoria ralativa ai grafi, illustri-

amo l’analogo sui segnali discreti della trasformata di Fourier. Questo ultimo

i



ii INTRODUZIONE

concetto è introduttivo alla definizione di convoluzione spettrale su mesh. I

capitoli successivi sono dedicati all’esposizione delle GNNs. Innanzitutto,

nel terzo capitolo della tesi definiamo quali sono gli elementi caratterizzanti

una rete neurale, in particolare forniamo un noto esempio di architettura, la

Graph U-Net. Nel quarto e quinto capitolo notiamo che le GNNs possono ap-

partenere a due differenti categorie: in base all’operatore di convoluzione che

le caratterizza si dividono in spectral convolutional neural networks e spatial

convolutional neural networks. Per entrambe le categorie individuiamo le reti

più note. Appartengono alla prima categoria le Chebyshev neural networks

e le graph convolutional networks (GCNs), appartengono alla seconda cate-

goria le reti caratterizzate dal modello Graph SAGE e le reti graph attention

networks (GATs). In coda al quinto capitolo, viene anche esposto il tentativo

di definire una struttura matematica unificata da cui far discendere gli opera-

tori convoluzionali. La parte sperimentale occupa l’ultimo capitolo. In parti-

colare riportiamo i risultati ottenuti durante il tirocinio in preparazione alla

tesi conseguito all’interno dell’ateneo. Applichiamo la teoria approfondita

nei precendenti capitoli ad uno dei maggiori problemi di computer grafica:

il denoising delle superfici. L’obiettivo è quello di utilizzare le GNNs per ri-

costruire superfici danneggiate a causa delle misurazioni imperfette eseguite

dagli scanner 3D. La fase di sperimentazione si sviluppa in cinque sezioni.

Una prima sezione è dedicata alla scelta dell’operatore di convoluzione più

adatto. Nella seconda sezione indaghiamo invece il tipo di architettura più

idoneo, in particolare valutiamo i vantaggi di una architettura di tipo en-

coding e decoding come, ad esempio, la Graph U-Net. Nella terza sezione

tentiamo di arricchire la loss function imponendo la fedeltà alla curvatura du-

rante il training. Nella penultima sezione proviamo le reti addestrate su un

dataset meno rumoroso. Infine l’ultima sezione è dedicata alla visualizzazione

delle features in output dei layer convoluzionali intermedi che costituiscono

una rete. I risultati ottenuti dalla ricostruzione di superfici perturbate uti-

lizzando i diversi operatori convoluzionali suggeriscono una nuova direzione

di ricerca e applicazione.
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Chapter 1

The Geometry of Manifolds

A large field of computer graphics concerns the processing of 3D shapes,

that is, two-manifolds embedded in R3. Basically, a d-manifold is a topo-

logical space with the property that each point has a neighborhood that is

homeomorphic to an open subset of d-dimensional Euclidean space. In or-

der to act on these topological spaces, we bring the two-manifolds back to a

suitable discrete representation, the polygonal meshes.

In this chapter we give a brief description of the geometry of discrete ma-

nifolds, in particular, we introduce the notion of polygonal mesh and we

generalise the concept of Laplacian operator on a discrete domain. Since we

assume the basic notation of geometry, like Riemannian manifold, we invite

the reader to consult [1] and [4] for more details. With regards to the defi-

nition of Laplacian operator in the discrete domain we recommend reading

[2].

1.1 Discrete Manifolds

We devote this section to the definition of discrete manifold, that is,

polygonal mesh. In particular, we introduce two fundamental matrices, the

adjacency matrix and the degree matrix.

1
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A two-manifold X embedded in R3 can be approximated in the discrete

domain by polygonal mesh representations.

Definition 1.1.1. A polygonal mesh (or discrete manifold) is a triplet of

finite sets X = (V , E , T ) , where, given that Nv = |V| and Ne = |E| :

• V = { vi }Nv
i=1, with v = (x, y, z) ∈ R3, ∀v ∈ V , its elements are the

vertex coordinates ;

• E = V × V = {(i, j), ∀i, j = 1, . . . , Nv}, its elements are the indices to

the vertices that define the edges ;

• T = V × V × V = {(i, j, k), ∀i, j, k = 1, . . . , Nv}, its elements are the

indices to the vertices that make up the flat facets.

In addition, the following conditions must apply to define consistent polygo-

nal meshes:

1. each edge is shared by a maximum of two adjacent faces;

2. one edge connects two vertices, faces are sequences of closed edges;

3. a vertex is shared by at least two edges.

The most common two-manifold representation is given by the triangular

mesh, i.e. a polygonal mesh with triangular faces.

From now on, we may refer to polygonal mesh simply as mesh.

We notice that in the definition of polygonal mesh, we also have a graph

structure consisting of (V , E). We then define the adjacency matrix of a mesh

as the adjacency matrix of its underlying graph.

Definition 1.1.2. The adjacency matrix W defined on a meshX = (V , E , T )

is an Nv ×Nv matrix of edge weights where:{
wi,j > 0 if (i, j) ∈ E
wi,j = 0 otherwise

for suitable wi,j ∈ R.
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(a) Topological manifold (b) Triangular mesh

Figure 1.1: From two-manifold to discrete manifold

In this work any two vertices of the mesh will be assumed connected but

without direction, i.e. (i, j) ∈ E if and only if (j, i) ∈ E . In other words, the

graph (V , E) underlying the mesh is supposed undirected. In this case we say

the mesh is undirected. Moreover, let X be an undirected mesh, we assume

wi,j = wj,i, ∀i, j = 1, ..., Nv, leading the adjacency matrix to be symmetric.

From the definition of adjacency matrix follows that of degree matrix.

Let us define the degree of a vertex v ∈ V as the weighted sum of connecting

edges. From this notion follows the definition of a very important matrix.

Definition 1.1.3. Given a polygonal meshX = (V , E , T ), with an adjacency

matrix W , the degree matrix D is a Nv×Nv diagonal matrix whose elements

are the degree of vertices:

∀i = 1, . . . , Nv

Di,i =
Nv∑
j=1

wi,j (1.1)

In Fig. 6.9 we show an example of triangular mesh characterized by

X = (9548, 114552, 19092).
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1.2 The Laplace-Beltrami Operator in

Riemannian Geometry

In differential geometry, a d-manifold is provided with an additional struc-

ture, the Riemannian metric. The definition of a metric allows us to introduce

the meaningful concepts of length, distance, angle, area and volume on ma-

nifolds. In this case, we refer to manifolds as Riemannian manifolds.

In this section we introduce the Laplace-Beltrami operator in classical Rie-

mannian geometry, which is a generalization of the Euclidean Laplace ope-

rator. to functions defined on Riemannian manifolds. We invite the reader

to consult [4] for more details.

Let us give the definition of a scalar field on a Riemannian manifold X .

Definition 1.2.1. A scalar field defined on a Riemannian manifold X is a

real function f : X → R.

For any twice-differentiable real valued function f defined on Euclidean

space Rn, the Laplace operator (also known as the Laplacian) takes f to

the divergence of its gradient vector field. Similarly, the Laplace-Beltrami

operator is defined as the divergence of the gradient.

Definition 1.2.2. The Laplace-Beltrami operator acts on scalar field f and

it is defined on a Riemannian manifold X as

∆Xf = −div (∇Xf), (1.2)

where the divergence and the intrinsic gradient on X are understood via the

metric (see [5], pag. 24).

Remark 1.2.1. The Laplace-Beltrami is a self-adjoint operator (symmetric),

i.e. the following formula holds:

⟨∇Xf,∇Xf⟩L2(TX ) = ⟨∆Xf, f⟩L2(X ) = ⟨f,∆Xf⟩L2(X ) (1.3)
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1.3 The Mesh Laplacian Operator

We are now interested in the generalisation to a discrete domain of the

Laplacian operator discussed above on a continuous domain. In particular,

we will consider discrete manifolds, that is, polygonal meshes. We invite the

reader to consult [2] for more details.

We need some preliminary definitions, such as the gradient and divergence

operators, defined on the vertices and edges of the mesh, respectively.

Let X = (V , E , T ) be a polygonal mesh, we define:

L2(V) = {f : V → R, vi 7→ fi}, L2(E) = {F : E → R, (i, j) 7→ Fi,j}.

Notice that, once an order of V and of E are given we have L2(V) ∼= RNv

and L2(E) ∼= RNe . Let f ∈ L2(V), F ∈ L2(E) be two functions, we denote

as fi and Fi,j the scalar value corresponding to the vertex vi ∈ V and the

edge (i, j) ∈ E realizing the above identifications L2(V) ∼= RNv , f = (fi),

i = 1, . . . , Nv, L2(E) ∼= RNe , F = (Fi,j), (i, j) ∈ E .

With the notations fixed, the two definitions can be given.

Definition 1.3.1. Given a polygonal mesh X = (V , E , T ), let f ∈ L2(V) be
a function on its vertices, we define the mesh gradient operator

∇X : L2(V) → L2(E), at the edge (i, j) ∈ E , as{
(∇Xf)i,j := fi − fj if (i, j) ∈ E ,
(∇Xf)i,j := 0 otherwise.

(1.4)

Definition 1.3.2. Given a polygonal meshX = (V , E , T ), with an adjacency

matrix W , let F ∈ L2(E) be a function on its edges. The mesh divergence

operator, div : L2(E) → L2(V), at the vertex vi ∈ V is

(divF )i :=
1

ai

∑
j:(i,j)∈E

wi,jFi,j, (1.5)

where ai > 0 is a suitable weight on the vertex vi.
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Figure 1.2: Triangular mesh

Finally, combining the two equations (1.4) and (1.5), we obtain the defi-

nition of mesh Laplacian operator.

Definition 1.3.3. Given a polygonal meshX = (V , E , T ), with an adjacency

matrix W and the weights ai > 0 associated to the vertices vi ∈ V , let

f ∈ L2(V) be a function on its vertices, the mesh Laplacian operator

∆X : L2(V) → L2(V) at the vertex vi is

(∆Xf)i := (div (∇Xf))i :=
1

ai

∑
j:(i,j)∈E

wi,j(fi − fj), (1.6)

Remark 1.3.1. Such a construction can be shown to converge to the conti-

nuous Laplacian of the underlying manifold, only when the vertex and edge

weights satisfy some technical conditions.

Let us consider the particular case of a triangular mesh. First, the optimal

weights assigned to the edges are the cotangent weights, that is, ∀ (i, j) ∈ E ,

wi,j :=
1

2
(cotαi,j + cotβi,j), (1.7)

where α and β are two angles as in Figure (1.2).

Secondly, the vertex weight has to be interpreted as the local area element:

given vi ∈ V , its weight is

ai :=
1

3

∑
j,k:(i,j,k)∈T

ai,j,k (1.8)

where ai,j,k :=
√

si,j,k(si,j,k − ℓi,j)(si,j,k − ℓj,k)(si,j,k − ℓi,k) is the area of trian-

gle (i, j, k) ∈ T given by the Heron formula, ℓi,j := ||vi−vj||R3 is the distance
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between the two vertices and si,j,k :=
1
2
(ℓi,j + ℓj,k + ℓk,i) is the semi-perimeter

of triangle (i, j, k).

There is also a more general definition of the Laplacian operator that

involves the introduction of a parameter p ≥ 1 (see the article [12] for details).

Definition 1.3.4. Let the notations be as above, let p ≥ 1, the mesh p-

Laplacian operator, ∆p : L2(V) → L2(V), at the vertex vi is given by

(∆pf)i := (div (||∇Xf ||p−2∇Xf))i. (1.9)

where the norm ||∇Xf ||p−2∈ RNe is element wise.

Once again, from the definitions of gradient and divergence operators

follows that:

(∆pf)i =
1

ai

∑
j:(i,j)∈E

wi,j ||(∇Xf)i,j||p−2 (fi − fj). (1.10)

Notice that, if p = 2, it is equivalent to the classical definition of mesh

Laplacian Beltrami operator defined in Def. 1.3.3.

Remark 1.3.2. Note that the Laplacian ∆2 is a linear operator, while in

general for p ̸= 2, the p-Laplacian is nonlinear.

1.4 Laplacian Matrix Representation

Once defined the mesh Laplacian operator, in this section we move on

to a most suitable matrix representation of it. For now, let us focus on the

main case, the definition of Laplacian operator in which p = 2.

Definition 1.4.1. Given a polygonal mesh X = (V , E , T ), the mesh Lapla-

cian matrix is the Nv ×Nv matrix

L = D −W, (1.11)
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where W and D are the adjacency matrix , Def. 1.1.2, and the degree matrix,

Def. 1.1.3, respectively.

It is possible to consider sligthy different definitions of Laplacian matrix

based on the normalization strategies. In particular, we are interested in the

following:

• unnormalized Laplacian:

Lun = D −W ; (1.12)

• normalized Laplacian:

Lnorm = D1/2LD1/2 = I −D1/2WD1/2; (1.13)

• random walk Laplacian:

Lrw = D−1L = I −D−1W. (1.14)

The application of the described Laplacian operator to a function

f ∈ L2(V) on mesh vertices corresponds to a matrix L, such that:

∆f = Lf (1.15)

in the identification L2(V) ∼= RNv which allows us to consider

∆ ∼= L : RNv → RNv .



Chapter 2

Mesh Spectral Convolution

Given the definition of Laplacian operator on meshes, described in the

previous chapter, we are ready to introduce the analogue on meshes of the

Euclidean Fourier transform, in order to provide the key definition of spectral

mesh convolution. In this chapter we assume the basic notions of analysis,

like Fourier transform, we invite the reader to consult [3] for more details.

With regards to the definition of spectral mesh convolution, we recommend

reading [2].

2.1 Laplacian Matrix Eigendecomposition

Prior the definition of the Fourier transform on meshes we must go over

the eigendecomposition of the Laplacian matrix, the subject of this first sec-

tion. We will follow [1] in our exposition.

We recall that the Laplacian operator is self-adjoint positive-semidefinite,

which allows us to apply the spectral theorem. This implies that the Lapla-

cian matrix, as defined in Sec. 1.4, admits an eigendecomposition on a com-

pact domain (see [6]). Given a mesh X = (V , E , T ), let L ∈ RNv×Nv be its

Laplacian matrix , we have

L = ΦΛΦT , (2.1)

9
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• Λ is a diagonal matrix of real, non-negative eigenvalues

Λ = diag(λ0, . . . , λNv−1), (2.2)

0 = λ0 ≤ . . . ≤ λNv−1;

with λi ∈ R, ∀i = 0, . . . , Nv − 1 .

• Φ is a matrix of corresponding orthonormal eigenfunctions

Φ = (ϕ0, . . . , ϕNv−1), (2.3)

such that ∀i = 0, . . . , Nv − 1, ϕi ∈ RNv and Lϕi = λiϕi.

Furthermore, the eigenfunction corresponding to the eigenvalue λ0 = 0

is ϕ0 = constant.

An example of Laplacian eigenfunctions on a non-Euclidean domain can

be seen in Fig. 2.1.

Figure 2.1: An example of Laplacian eigenfunctions on mesh
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2.2 Dirichlet Energy

An interesting interpretation of the mesh Laplacian matrix eigenfunctions

involves the generalization to the discrete domain of the concept of Dirichlet

energy.

We first recall the classical definition.

Definition 2.2.1. Let X be a Riemannian manifold, given a differentiable

function f ∈ L2(X ), its Dirichlet energy is

E(f) =

∫
X
||∇Xf ||2dx = −

∫
X
f∆Xfdx. (2.4)

Note that the Dirichlet energy is a measure of how variable a function is.

Then, given the classical optimization problem involving the Dirichlet energy:
argmin E(ϕ0) s.t. ||ϕ0||= 1

argmin E(ϕi) s.t. ||ϕi||= 1 and ϕi ⊥ span{ϕ0, . . . , ϕi−1}
ϕ0, ϕi ∈ L2(X ), ∀i = 1, . . . , K − 1,

(2.5)

this will result in the smoothest possible base.

We turn to examine the generalisation in the discrete setting.

Let X = (V , E , T ) be a mesh, we look for an orthonormal basis on L2(V)
containing theK ≤ Nv functions {ϕ∗

0, . . . , ϕ
∗
K−1} that will solve the equivalent

to the problem (2.5). Generalising the definition of Dirchlet energy in the

discrete setting, (2.5) is equivalent to:

Φ∗
K = arg min

ΦK∈RNv×K

ΦT
K ∆XΦK , s.t. ΦT

KΦK = I, (2.6)

Then Φ∗
K = (ϕ∗

0, . . . , ϕ
∗
K−1).

It follows that the solution of the problem (2.6) Φ∗
K = (ϕ∗

0, . . . , ϕ∗K−1) ∈
RNv×K satisfy the condition:

∆Xϕk = ϕkλk, ∀k = 0, . . . , K − 1 (2.7)
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that is, the mesh Laplacian matrix eigenfunctions are the smoothest functions

in the sense of the Dirichlet energy. In particular, they can be interpreted as

a generalisation of the standard Fourier basis.

2.3 Mesh Fourier Transform

By exploiting the eigendecomposition of the mesh Laplacian matrix, we

are able to define an operator that can be interpreted as the mesh analogue

of the Euclidean Fourier transform.

Definition 2.3.1. Let X = (V , E , T ) be a mesh, given f ∈ L2(V), we define
the mesh Fourier trasform as

f̂ := ΦTf, (2.8)

where Φ is the matrix of the mesh Laplacian eigenfunctions defined in (2.1).

Similarly, we define its inverse operation:

f := Φf̂ (2.9)

This means that the mesh Fourier transform projects the graph signal on

the eigenvectors of the Laplacian matrix L. Thus, similarly to the classical

Fourier transform, graph Fourier transform provides a way to represent a

signal in two different domains, to which we refer as the vertex (or spatial)

domain, where features are taken, and the spectral domain.

Remark 2.3.1. The definitions of the mesh Fourier transform and its inverse

depend on the choice of Laplacian eigenvectors, which are not necessarily

unique.

2.4 Mesh Convolutional Operator

The irregular structure of meshes makes the convolutions and filtering

not as well-defined as on the Euclidean domain, however we can exploit the
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convolution theorem to generalise this concept. The convolution theorem

states that, in the Euclidean domain, the Fourier transform of convolution is

the product of the Fourier transforms. It follows from the previous section

the definition of mesh Fourier transform, then an analogous of the definition

of convolution can be given.

Definition 2.4.1. Let X = (V , E , T ) be a mesh, given f ∈ L2(V), the mesh

convolution of f with a filter function h in the spectral domain is defined as

follows:

g(f) = Φh(Λ)ΦTf, (2.10)

where Φ is the matrix of the mesh Laplacian eigenfunctions and h(Λ) ∈ RNv

is a diagonal matrix of spectral multiplers.

Remark 2.4.1. Note that h(Λ) is a function of the eigenvalues of the Lapla-

cian matrix: if h is the identity function, the convolution is equal to the

application of the Laplacian operator.

Remark 2.4.2. The convolution and the Laplacian operators commutes, this

means that the following formula holds

g(∆Xf) = ∆Xg(f) (2.11)

Remark 2.4.3. One of the key differences of such a construction from the clas-

sical convolution is the lack of shift-invariance. In terms of signal processing,

it can be interpreted as a position-dependent filter.

While parametrized by a fixed number of coefficients in the frequency do-

main, the spatial representation of the filter can vary dramatically at different

points.
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Chapter 3

Graph Neural Networks

Graph neural networks (GNNs) are a class of neural networks for process-

ing data best represented by graph data structures. In the following chapters,

we exploit the interpretation of meshes as a special case of graphs in order

to apply neural networks to the processing of meshes.

In this first chapter we give a brief introduction to graph neural network

architecture and the layers application to meshes. In particular, we take a

closer look to the graph U-Net architecture, that is an encoding-decoding

neural network which provide the reduction and the increase of the number

of vertices in the mesh data. We invite the reader to consult [15] for more

details.

3.1 From Euclidean to non-Euclidean Domains

Graph neural networks (GNNs) are a class of neural networks for proces-

sing graph data, designed as a generalization of convolutional neural networks

(CNNs) on images.

In the recent years, CNNs have achieved impressive results on many fields

of image processing, as face detection, image segmentation, image classifica-

tion and more.

15
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These successes are due to an efficient architecture for extracting statisti-

cally significant patterns in large-scale, high-dimensional data sets. In fact,

CNNs make it possible to extract local properties of the input data, i.e.

local features shared throughout the data domain. These similar features

are identified with localised convolutional filters, which are learnt from the

data. These convolutional filters have compact support and are translation

invariant, i.e. they are able to recognise identical features regardless of their

spatial position.

Generalizing CNNs to graphs requires two fundamental steps:

• the design of localized convolutional filters on graphs,

• a graph pooling operation that exchange spatial resolution for higher

filter resolution.

Remark 3.1.1. Each node of the graph may have a different number of neigh-

bours. This fact prevents us from giving the definition of local and shift-

invariant convolutional operators.

Due to the irregularity and the large size of the data, the generalisation

of CNNs to graphs is not straightforward.

3.2 Basics of Deep Learning on Meshes

In this section we list the fundamental ingredients that make up a net-

work.

A basic definition of machine learning is that of features. Generally, a

mesh that is processed by a neural network have some features assigned to

each node. The neural network acts directly on them, i.e. the node features

are the values that the network takes as input.



3.2 Basics of Deep Learning on Meshes 17

Definition 3.2.1. Let X = (V , E , T ) be a mesh defined in Def. 1.1.1, we

denote by f ∈ RNv×Nc the feature map, where Nv is the number of the nodes

in the graph and Nc is the number of features associated to each node.

Graph neural networks process mesh data acting on the features assigned

to their nodes taking into account the structure of the underlying graph. The

architecture of the network consists of an input layer, hidden layers and an

output layer.

Below is a list of the elements that make up a convolutional network with a

brief description of them.

• Convolutional layer. Since GNNs are a generalisation of CCNs, the

main layers provide a convolutional operation, i.e. the features associ-

ated with each node are perturbed due to the influence of neighbouring

values: for a given node, the features are multiplied by the weights of

neighbours nodes and summed.

• Activation function. Each convolutional layer is followed by an ac-

tivation function, in general it is taken to be a nonlinear function to do

nonlinear regression and solve classification problems that are not line-

arly separable. Few example of activation functions: linear, sigmoid,

tanh, Rectified Linear Unit (ReLU).

• Pooling and unpooling layers. The pooling operation reduce the

size of the graph, the unpooling operation reverts the effect of the

pooling operation. There are different types of pooling operators and

they differ according to the sub-sampling criterion. In this work we

will use the MAX-pooling and unpooling.

Furthermore, it is very common to divide a graph neural network including

pooling and unpooling operators into two parts: encoding and decoding. An

example of such neural network architecture is the graph U-NET described

in the following section.
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3.3 The Graph U-Net

The U-Net is an encoder-decoder architecture originally defined for image

data based on convolutional, pooling and unpooling layers. For more details,

we invite the reader to consult [16] . Since it has achieved impressive results

on image pixelwise prediction tasks, it’s interesting to develop a U-Net like

architecture for mesh data and, in general, for graph data.

In the generalisation of the U-Net architecture to mesh data, the convolu-

tional layers are generally assumed to be GCN, for our task we prefer to

consider a more general definition and suppose the convolutional layers to be

arbitrary. The next chapters are devoted to the definition of different mesh

convolutional layers.

With regard to pooling and unpooling operators on meshes, since mesh nodes

do not have the spatial locality required by normal pooling operations, ex-

tending these operations is very challenging. To address these challenges,

we propose novel graph pooling (gPool) and unpooling (gUnpool) operations.

The gPool layer adaptively selects some nodes to construct a smaller mesh

based on their scalar projection values on a trainable projection vector. The

gUnpool layer restores the mesh into its original structure using the position

information of nodes selected in the corresponding gPool layer, we further

propose the gUnpool layer as the inverse operation of the gPool layer. Based

on our proposed gPool and gUnpool layers, we develop the encoder-decoder

model on mesh known as the graph U-Net.

3.3.1 Graph U-Net Architecture

Let X = (V , E , T ) be a mesh with Nv vertices, each of which with Nc

initial features assigned. Let f ∈ RNv×Nc be its feature map.

A Graph-U-Net with depth P is defined as

G U-Net := T2P ◦ · · · ◦ TP+1︸ ︷︷ ︸
decoder

◦TP ◦ · · · ◦ T1︸ ︷︷ ︸
encoder
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where (Tl)1≤l≤2P are the layer blocks that make up the network.

We build the encoder by stacking P encoding blocks, (Tl)1≤l≤P , each of which

contains a gPool layer followed by a convolutional layer. In the decoder part,

(Tl)P+1≤l≤2P , we stack the same number of decoding blocks as in the en-

coder part and each decoder block is similarly composed of a gUnpool layer

and a convolutional layer. Convolutional layers are always followed by activa-

tion functions. Notice that there are skip-connections between corresponding

blocks of encoder and decoder layers, which transmit spatial information to

decoders for better performance.

Formally, the other layer blocks are characterized by the composition of:

• G, a graph convolutional layer, for example a GCN convolutional op-

erator;

• σ, an activation function, for example a ReLU;

• p, a gPool/gUnpool operator.

Namely, let ∀l = 1, . . . , 2P , f l ∈ RN l
v×N l

c be the feature map that the l-th

block takes as input, then the encoding/decoding block is a composition of

functions

Tl : f
l 7→ f l+1 = σ(G(p(f l);W)),

where σ(·) is a nonlinear activation operator applied point-wise and Wl ∈
RN l

c×N l+1
c is the trainable weight matrix for the convolutional operator.

The encoding-decoding network reads as follows:

G U-Net := T gU
2P ◦ · · · ◦ T gU

P+1︸ ︷︷ ︸
decoder

◦T gP
P ◦ · · · ◦ T gP

1︸ ︷︷ ︸
encoder

. (3.1)

In the decoding part, for l = P + 1, . . . , 2P , let gl+1 the output of the un-

pooling layer that the convolution layer takes as input, the operator is:

p : f l 7→ gl+1 := gUnpool(f l),
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and for l = 1, . . . , P , the encoding part is defoined as

p : f l 7→ gl+1 := gPool(f l).

. Fig. 3.1 is a visual representation of the stacked layers that make up the

graph U-Net architecture. Note that the convolutional layers were assumed

GCN.

Figure 3.1: Graph U-Net architecture

3.3.2 Graph Pooling Layer

In order to reduce the size of the feature map and enlarge receptive fields,

in this section, we propose the graph pooling (gPool) layer to enable down-

sampling on mesh data. In this layer, we adaptively select a subset of veritices

to form a new but smaller mesh. To this end, we employ a trainable projec-

tion vector q ∈ RNc . Let X = (V , E , T ) be a mesh with Nv vertices, each of

which with Nc initial features assigned. Let f ∈ RNv×Nc be its feature map.

Given a vertex v ∈ V , we denote its feature vector f(v) ∈ RNc . The scalar

projection of f(v) on q is

ϕ(v) = ⟨f(v), q

||q||
⟩ ∈ R. (3.2)

with the Eucledean norm, and the Euclidean scalar product. Here, ϕ(v)

measures how much informations of vertex v can be retained when projected

onto the direction of q. By sampling vertices, we wish to preserve as much

informations as possible from the original mesh. To achieve this, we select

vertices with the largest scalar projection values on q to form a new mesh.
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Let us consider the l-th pooling layer, with l = 1, . . . , P . The input values

are the feature associated to the verteces of a mesh X l with feature map

f l ∈ RN l
v×N l

c and adjacency matrix W l ∈ RN l
v×N l

v . The pooling layer returns

a smaller mesh X l+1 characterized by a new feature map gl+1 ∈ RN l+1
v ×N l

c

and a new adjacency matrix W l+1 ∈ RN l+1
v ×N l+1

v .

The layer-wise propagation rule of the mesh pooling layer l is defined as:

ϕ = ⟨f l,
ql

||ql||
⟩, (3.3)

idx = rank(ϕ, k), (3.4)

ϕ̃ = sigmoid(Sϕ), (3.5)

f̃ l = Sf l. (3.6)

Then, the adjacency matrix and the feature map of the new down-sampled

mesh can be updated.

W l+1 = SW lST , (3.7)

gl+1 = f̃ l ⊙ (ϕ̃ 1TN l
c
). (3.8)

Where, ql ∈ RN l
c is the trainable projection vector, k = N l+1

v is the

number of vertices selected in the new mesh, rank(ϕ, k) is the operation of

vertex ranking, which returns indices of the k-largest values in ϕ, the idx

returned by rank(ϕ, k) contains the indices of nodes selected for the new

mesh. S ∈ Rk×N l
v is the sampling matrix obtained by eliminating from the

identity matrix IN l
v
the rows corresponding to the vertices selected by idx.

1N l
c
∈ RNl

c is a vector of size N l
c with all components being 1, and ⊙ repre-

sents the Hadamard product (that is the element-wise matrix multiplication).

Using element-wise matrix product of f̃ l and ϕ̃ 1T
N l

c
, information of selected

vertex is controlled. The ith row vector in gl+1 is the product of the ith row

vector in f̃ l and the ith scalar value in ϕ̃. Notably, the gate operation makes

the projection vector p trainable by back-propagation. Fig. 3.2 provides an

illustration of our proposed graph pooling layer.



22 3. Graph Neural Networks

Compared to pooling operations used in grid like data, our graph pooling

layer employs extra training parameters in projection vector ϕ.

Figure 3.2: Graph Pooling Layer

3.3.3 Graph UnPooling layer

Up-sampling operations are important for encoder-decoder networks such

as U-Net. The encoders of networks usually employ pooling operations to

reduce feature map size and increase receptive field. While in decoders, fea-

ture maps need to be up-sampled to restore their original resolutions.

To enable up-sampling operations on mesh data, we propose the graph un-

pooling (gUnpool) layer, which performs the inverse operation of the gPool

layer and restores the mesh into its original structure. To achieve this, we

record the locations of vertices selected in the corresponding gPool layer

and use this information to place vertices back to their original positions

in the mesh. Let us consider the l-th unpooling layer, with l = P + n,

and n = 1 . . . , 2P . The corresponding pooling layer is the one of indice

l′ = P − (n−1), let X l be the initial mesh with feature map f l ∈ RN l
v×N l

c and

adjacency matrix W l ∈ RN l
v×N l

v . Let us denote X l+1 the up-sampled mesh

characterized by a new feature map gl+1 ∈ RN l+1
v ×N l

c and a new adjacency

matrix W l+1 ∈ RN l+1
v ×N l+1

v .

Formally, we propose the layer-wise propagation rule of graph unpooling layer
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as

gl+1 = STf l, (3.9)

where S ∈ Rk×N l
v is the same sampling matrix as the corresponding gPool

layer, defined according to the vector idx ∈ Zk, which contains indices of

selected vertices in the corresponding gPool layer that reduces the mesh size

from N l
v vertices to k = N l+1

v vertices. Finally, the updated Adjacent matrix

is:

W l+1 = STW lS. (3.10)
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Chapter 4

Frequency Domain Convolution

Operators

In the following chapters we analyze some of the convolutional operators

characterizing graph neural networks. Generally speaking, the graph convo-

lutional neural networks can be divided into two categories. The first one

refers to the definition of convolution based on the spectral graph theory,

the other category exploits a second definition of convolution, named spatial

domain convolution, which directly carries out the operation. We invite the

reader to consult [6] for more details.

These operators can easily be adapted to convolutional operators on meshes.

In this chapter, given a brief description of the convolution operator that

characterises the layers of a convolution neural networks (CNNs) acting on a

regular grid, we will take a closer look at some of the main convolution opera-

tors that belongs to the first category of GNN. In particular we will introduce

the convolution operators of the Spectral GNN (SGNN), the Chebyshev neu-

ral network (ChebNet), the Graph Convolutional Network (GCN) and the

p-Laplacian based graph neural networks (pGNNs).We invite the reader to

consult [7, 8, 12] for more details. Note that in the definition of the convo-

lutional layer we consider the action of the activation function.

25
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4.1 The Euclidean Convolutional Operator

In recent years, many researchers have designed the deep neural network

architectures in graph data by referring to the CNNs on images. In fact,

such networks have achieved great results on image processing. However,

due to the irregularity (each vertex may have different number of neighbours)

and the large scale of mesh data, a generalization of CNNs to graph is not

straightforward. Let us define the CNN convolutional operator.

Definition 4.1.1. Let I be an image.

For each pixel x ∈ I, we denote f(x) = (f1(x) . . . fp(x)) the p-dimensional

input feature map and g(x) = (g1(x) . . . gq(x)) the q-dimensional output

feature map. The CNN operator on the euclidean domain is defined:

∀l = 1 . . . q,

gl(x) = σ(

p∑
l̄=1

(fl ∗ ωl,l̄)(x)) (4.1)

where σ is the nonlinear activation function and W = (ωl̄,l), l̄ = 1 . . . p,

l = 1 . . . q, is a bank of learnable filters s.t. its components have compact

spatial support.

The definition of feature map on images is analogous analogous to that

on meshes, recall Def. 3.2.1

4.2 The Spectral Convolutional Operator

Similarly to the CNN convolutional operator (4.1) of a classical Euclidean

CNN, we define the spectral convolutional operator of a Spectral GNN on

meshes.

Definition 4.2.1. Let X = (V , E , T ) be a mesh. Given f = (f1, . . . , fp) ∈
RNv×p the input feature map associated to the vertices of a mesh and g =

(g1, . . . , gq) ∈ RNv×q the output feature map, the spectral convolutional ope-

rator is defined:
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∀l = 1 . . . q,

gl = σ(

p∑
l̄=1

ΦkWl,l̄Φ
T
k fl̄) (4.2)

where σ is the nonlinear activation function and given l = 1 . . . q, Wl̄,l =

diag(ωl̄,l) ∈ Rk×k is a matrix of spectral multipliers that represents a learnable

filter in the frequency domain.

Remark 4.2.1. Using only the first k Laplacian eigenvectors (ΦK) sets a cutoff

frequency (tipically K << Nv), describing the smooth structure of the mesh.

See the mesh Laplacian matrix eigendecomposition at Sec. 2.1.

Moreover, the Laplacian matrix eigenfunctions are domain-dependent.

The filter coefficients learnt on one mesh domain cannot be applied to another

one in a straightforward manner. If we learn a filter with respect to basis ΦK

on the mesh domain, and then lay to apply it on another mesh characterized

by another basis ΨK , the result could be very different.

Figure 4.1: Same filter on different domains

An example illustrating the difficulty of generalizing spectral filtering

across non-Euclidean domains is reported in the Fig. 4.1. On the left we can

observe a function defined on a manifold (function values are represented by

color), in the middle we have the result of the application of an edge-detection

filter in the frequency domain. On the right we can observe the same filter,

applied on the same function, but on a different (nearly-isometric) domain,

it produces a completely different result.
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Remark 4.2.2. The pooling operation in traditional CNN framework is re-

placed by graph coarsening procedure (input a graph with Nv vertices, and

then produces a graph with N̄v < Nv vertices and transfers featres from the

vertices of the fine graph to those of the coarse one): the commonly used

coarsening algorithm is Graclus.

Set a factor α < 1, the matrix of Laplacian eigenvectors, from an original

Φ ∈ RNv×Nv , becomes a matrix Φ̃ ∈ RαNv×αNv .

We invite the reader to consult [17] for more details.

4.3 The Chebyshev Convolutional Operator

(Cheb-Conv)

The Chebyshev convolutional operator belongs to those spectral convolu-

tional operators exploiting parametric filters. This kind of filters represents

an improvement over Spectral GNN as they are responsible for overcoming

some of the major drawbacks as we will deepen later.

Such convolutional operators correspond to define the spectral filter Wl̄,l ∈
Rk×k as a combination, such that,

∀ l̄ = 1 . . . p, l = 1 . . . q,

Wl̄,l = hωl̄,l
(Λ) =

r−1∑
j=0

(ωl̄,l)jpolj(Λ), (4.3)

where Λ ∈ Rk×k is the diagonal matrix of the first k ≤ Nv mesh Laplacian

matrix eigenvalues.

In particular, the Chebyshev convolutional operator is based on the Cheby-

shev polynomial basis.

Definition 4.3.1. The Chebyshev polynomials Ti : R → R, ∀i ≤ 0, are

defined in a recursive form as:

T0(λ) = 1, (4.4)
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T1(λ) = λ,

Tk(λ) = 2λTk−1(λ)− Tk−2(λ).

We can transponse the definition from R to the square matrices domain

RN×N , assuming that the first polynomial would be T0(λ) = IN .

Let X = (V , E , T ) be a mesh, Λ be the Nv×Nv diagonal matrix of Lapla-

cian eigenvalues, Tj(Λ̄) is the Chebyshev polynomial of order j evaluated at

Λ̄ = 2 1
λNv

Λ− I, aiming to reduce the size of the eigenvalues from [0, λNv ] to

[-1, 1], since the Chebyshev polynomial form an orthonormal basis that lies

in [-1, 1]. Combining the recursive form of Chebyshev polynomial applied to

the matrix of Laplacian eigenvalues, the filter in (4.3) describing Chebyshev

convolution can be parametrized as the truncated expansion of order r − 1:

hωl̄,l(Λ) =
r−1∑
j=0

(ωl̄,l)j Tj(Λ̄) (4.5)

where ωl̄,l ∈ Rr is the vector of Chebyshev coefficients for the input and

output features with indices l̄, l. Let Φ ∈ RNv×Nv be the matrix of Laplacian

eigenvectors, due to the eigen-decomposition of the Laplacian matrix, the

ChebNet’s filtering operation can be written as:

Φhωl̄,l(λ)Φ
T =

r−1∑
j=0

(ωl̄,l)jTj(L̄) (4.6)

where L̄ = 2 1
λNv

L− I is the scaled Laplacian.

Once the filter has been described, the definition of the Chebyshev con-

volutional operator is given.

Definition 4.3.2. Given a mesh X = (V , E , T ), let F = (f1, . . . , fp) ∈
RNv×p be the input feature map associated to the vertices of a mesh, denoted

G = (g1, . . . , gq) ∈ RNv×q the output feature map, the Chebyshev filtering

operation is defined as following:
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∀l = 1 . . . q,

gl = σ(

p∑
l̄=1

(
r−1∑
j=0

(ωl̄,l)jTj(L̄)) fl̄ ) (4.7)

where σ is the non-linear activation function, ∀ l = 1, . . . , q,

ωl̄,l ∈ Rr is the vector of learnable parameters and Tj(L̄) is the Chebyshev

polynomial of order j applied on the scaled Laplacian matrix L̄.

Remark 4.3.1. Tj(L̄) is the L̄’s polynomial of order j, which corresponds to

the j-ring neighborhood.

Indeed, given two vertices denoted by the two indices m,n ∈ {1, . . . , Nv},
dG(m,n) > j implies (Lj)m,n = 0, where dG is the shortest path distance, i.e.

the minimum number of edges connecting two vertices on the mesh. Con-

sequently, spectral filters represented by (r − 1)th-order polynomials of the

mesh Laplacian are exactly (r − 1)-localized.

Finally, there are two remarkable improvement of Cheb-Conv operator

over the spectral convolutional operator:

• unlike the spectral convolutional operator, that is very costly, the Cheby-

shev offers an efficient filtering scheme that does not require an explicit

computation of the Laplacian eigenvectors.

• Tk(L̄)fl̄ can operate locally on each vertex, which means that the filters

of ChebNet is localized in spatial domain.

Despite the advantages there are still some drawbacks to overcome:

• the weights assigned to different neighbors in the same order neighbor-

hood are exactly the same

• the learned weights of the model can’t be adapted to different domains.
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4.4 The Graph Convolutional Operator (GCN-

Conv)

The graph convolutional operator can be defined as the first-order ap-

proximation of the Chebyshev convolutional operator, i.e. GCN simplifies

ChebNet architecture by using filters operating on 1-ring neighborhood of

the mesh. The definition of the GCN-Conv is given by the two following

assumptions:

• r = 2,

• λNv = 2.

Note that the second condition follows automatically from the choice of the

normalized Laplacian Lnorm = I−D1/2WD1/2 (see Sec 1.4).

Then, let us consider the Cheb-Conv operator (4.7), the output of the GCN-

Conv is:

gl = σ
( p∑

l̄=1

(
1∑

j=0

(ωl̄,l)jTj(L̄)) fl̄

)
(4.8)

= σ
( p∑

l̄=1

(ωl̄,l)0 fl̄ + (ωl̄,l)1 L̄ fl̄

)
= σ

( p∑
l̄=1

(ωl̄,l)0 fl̄ + (ωl̄,l)1 (L
norm − I) fl̄

)
= σ

( p∑
l̄=1

(ωl̄,l)0 fl̄ − (ωl̄,l)1D
−1/2WD−1/2 fl̄

)
, ∀l = 1 . . . q.

In order to prevent the occurrence of overfitting due to the excessive

number of parameters, a unified hypothesis is used ωl̄,l = (ωl̄,l)0 = −(ωl̄,l)1.

Then the definition of GCN convolution operator becomes:

gl = σ
( p∑

l̄=1

ωl̄,l (I+ D−1/2WD−1/2) fl̄

)
, ∀l = 1 . . . q. (4.9)

Then the set of learnable parameter of the network is Θ = {ωl̄,l}
l̄=1,...,p
l=1,...,q

with dimension p× q.
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Remark 4.4.1. Successive application of filters of this form then effectively

convolve the Kth-order neighborhood of a node, where K is the number of

successive filtering operations or convolutional layers in the neural network

model.

4.5 The p-Laplacian Convolutional Operator

(pGNN-Conv)

Note that GCN-Conv consists on the application of the mesh Laplacian

operator to the features in order to propagate the signal on the mesh. In

this section, we define a convolutional operator using the mesh p-Laplacian

defined in Def. 1.3.4. The strength of this method involves the fact that

different choices of p result in different smoothness constraint on the vertex

features. We invite the reader to consult [18] for more details.

The definition of this convolutional operator follows from the solution of

a variational problem. Note that it doesn’t involve learnable parameters.

Let X = (V , E , T ) be a mesh and W be its adjacency matrix , f ∈ RNv×s

denotes the input feature map. Furthermore, only in this section we denote,

∀i ∈ {1, . . . Nv, }, fi ∈ Rs, the i-th row of the feature map, that is, the vector

of features associated to the vertex vi ∈ V . Then, we denote ∀j ∈ {1, . . . , s},
f j ∈ RNv the j-th column of the feature map, that is, a scalar function on

the vertices. Note that in this section we don’t denote the number of input

features with each vertex as p anymore: the number of input features is s.

Set p ≥ 1, the aim is to update node features according to the following

variational problem, the output of the convolutional layer is g∗ ∈ RNv×s

solution of:

g∗ = arg min
g∈RNv×s

1

p
||∇g||pp+

µ

2
||f̄ − g||2F . (4.10)

Note that the number of features with each vertex doesn’t change. The first

term of the right-hand side is a measurement of variation of the feature map
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over the mesh based on p-Laplacian, see the mesh p-laplacian Def. 1.3.4.

The second term is the constraint that the optimal feature map g∗ should

not change too much from a given data f̄ . Finally, µ ∈]0, inf[ provides a

trade-off between these two constraints. Thus, the solution of the variational

problem is a feature map on the mesh such that meets a smoothness criterion

without departing from the initial map.

Recall the definition of ∇g ∈ RNe×s in the Sec. 1.3. We will denote

(∇g)i := {(∇g)i,j, ∀j : (i, j) ∈ E} ∈ RN̄ , with N̄ = |Nv(i)|, and Nv(i) the

vertex neighborhood, the vector of partial derivatives at the vertex vi ∈
V , while we will denote (∇g)i,j the scalar value of the partial derivative of

function g with respect to the direction defined by the edge (i, j).

Then, we define the p-norm as:

||∇g||pp :=
1

p

Nv∑
i=1

||(∇g)i||p2 (4.11)

=
1

p

Nv∑
i=1

( ∑
j:(i,j)∈E

(gi − gj)
2
) p

2
(4.12)

Remark 4.5.1. When p = 1, the formulation (4.10) is named total variation

regularization.

Let us consider the easiest case p = 2, we require the first derivative to

be equal to 0, then the solution of (4.10), g∗, satisfy

∆g + µ (g − f̄) = 0, (4.13)

that is the discrete analogue of the Euler-Lagrange equation. Then, g∗ is

solution of a linear system,

(L+ Iµ) g = µf̄ . (4.14)

where L is the mesh Laplacian matrix (1.4.1) that discretise the Laplacian

operator.

Let us replace L with Lnorm defined in (1.4), we obtain:

(I−D−1/2WD−1/2 + Iµ) g = µf̄ (4.15)
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where D is the mesh degree matrix and W the adjacency matrix. Then, g∗

can be given as a closed form solution:

g∗ = ((1 + µ)I−D−1/2WD−1/2)−1µf̄ . (4.16)

Then g∗ represents the output feature map of the convolutional layer.

In the more general case in which p ≥ 1, imposing the optimality condi-

tions, equation (4.10) is equivalent to:

∆pg + µ (g − f̄) = 0, (4.17)

(∆p + Iµ) g = µf̄ . (4.18)

After recall the mesh p-laplacian definition, Def. 1.3.4, we carry out the

discretization ∀i = 1, . . . , Nv,

1

ai

∑
j:(i,j)∈E

wi,j ||gi − gj||p−2 (gi − gj) + µgi = µf̄i (4.19)

1

ai
gi

∑
j:(i,j)∈E

wi,j ||gi − gj||p−2− 1

ai

∑
j:(i,j)∈E

wi,j ||gi − gj||p−2gj + µgi = µf̄i

( 1

ai

∑
j:(i,j)∈E

wi,j ||gi − gj||p−2+µ
)
gi =

1

ai

∑
j:(i,j)∈E

wi,j ||gi − gj||p−2gj + µf̄i.

Set αi =
1(

1
ai

∑
j:(i,j)∈E wi,j ||gi−gj ||p−2+µ

) , βi = αiµ ∈ R, (4.17) is equivalent to:

gi = αi
1

ai

∑
j:(i,j)∈E

wi,j ||gi − gj||p−2gj + βif̄i, (4.20)

i = 1, . . . , Nv

Let us consider the linear system (4.20) as the stationary state of an evo-

lutionary process, the solution can be obtained through an iterative method,

that is,

gk+1
i = αk

i

∑
j:(i,j)∈E

Mk
i,j g

k
j + βk

i f̄i , i = 1, . . . , Nv (4.21)

with Mk ∈ RNv×Nv , αk, βk ∈ RNv s.t.
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• Mk
i,j =

1
ai
wi,j ||gki − gkj ||p−2∈ R,

• αk
i = 1(

1
ai

∑
j:(i,j)∈E wi,j ||gi−gj ||p−2+µ

) ∈ R,

• βk
i = αk

i µ ∈ R.

We rewrite the equation in a matrix form, we obtain the formula

gk+1 = αkMkgk + βkf̄ (4.22)

in which the αk,Mk, βk are updated according to (4.21). This iterative result

is independent of the setting of the initial value. In this case the output of

the convolutional layer is g∗ = gK , where K is the number of iterations.

Based on the defined convolutional operator, we introduce a network

architecture.

Definition 4.5.1. Let X = (V , E , T ) be a mesh with an adjacency matrix

W , f = (f 1, . . . fp) and g = (g1, . . . , gq) ∈ RNv×q the input and output

features. Set p ≥ 1 and the maximum number of iteration K, we define the
pGNNs as

f̃ = ReLU(fΘ0) (4.23)

gk+1 = αkMkgk + βkf̃ , ∀k = 0, . . . , K − 1

g = softmax(g̃KΘ1)

where the learnable parameters are Θ0,Θ1.
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Chapter 5

Spatial Domain Convolutional

Operators

The second category of graph neural networks working on meshes is cha-

racterised by the emergence of a spatially-based convolutional operator.

Basically, the spatial based convolution consists of a subdivision of the do-

main into charts. Then the convolution operation on images,

f ∗ g,

can be expressed by: ∑
j

gjDj(x)f, (5.1)

where gj denotes the template coefficients applied on the patch extracted at

each point and

Dj(x)f =

∫
X
f(x′)uj(x, x

′)dx′, j = 1 . . . J (5.2)

is the patch operator specified by the weighting function uj.

Spatial approaches define convolutions directly on the meshes based on the

topology. They usually follow the same pattern:

• the vertex feature vectors are transformed using some sort of projection;

• they are aggregated by a permutation-invariant function;

37
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• the feature vector of each vertex is updated based on its current values

and the aggregated neighbourhood representation.

In this chapter, we will analyse two popular mesh convolutional operators,

that of the GraphSAGE model and that of the graph attention network

(GAT). Both belong to the spatial domain convolution category. For more

information we invite the reader to consult [9] for the first convolutional

operator, [10, 11] for the second.

5.1 SAGE Convolutional Operator (SAGE-

Conv)

A very popular spatial based convolutional operator is the one characte-

rizing the GraphSAGE (SAmple and aggreGatE) framework.

It introduces aggregation function to define the convolution in the spatial

domain and learns the embedding of each vertex in an inductive way. The

aggregation function is essentially the aggregation of the neighborhood in-

formation of the vertices, and its output should be invariant to the order

of vertices. That is, the input order will not affect the output result of the

aggregation function, such as mean, sum and max functions. In this way,

each vertex is represented by the aggregate result of its neighborhood.

Definition 5.1.1. Let X = (V , E , T ) be a mesh, we consider the input

feature map associated f = (f1, . . . fp) ∈ RNv×p. We denote ∀v ∈ V , f(v) =
(f1(v), . . . , fp(v)) ∈ Rp the vector of features associated to the vertex. All

vertices v ∈ V are updated through the SAGE convolutional operator as

following:

f̃(v) = AGGREGATE(f(u),∀u ∈ N(v)), (5.3)

g̃(v) = σ(W · CONCAT (f(v), f̃(v))), (5.4)

g(v) =
g̃(v)

||g̃(v)||2
, (5.5)
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where g = (g1, . . . gq) ∈ RNv×q is the output feature map, N(v) is the set of

neighboring vertices of vertex v ∈ V , AGGREGATE represents the diffe-

rentiable aggregator function, CONCAT : Rp × Rp → R2p is the function of

concatenation, W ∈ Rq×2p is a weight matrix of learnable parameters, σ is a

nonlinear activation function.

In 5.4, an alternative to concatenation is the sum, the formula turns to

g̃(v) = σ(W0f(v) +W1f̃(v)), (5.6)

where W0,W1 ∈ Rq×p (note that the number of learnable parameter doesn’t

change).

Remark 5.1.1. A sequence of K SAGE convolutional layers allows to aggre-

gate information on the K-ring neighborhood

∀k ∈ {1, . . . , K}, the k-th layer is defined by its aggregation function

AGGREGATEk and a weight matrixWk used to propagate between different

layers of the model.

5.2 Graph Attention Network Convolution

(GAT-Conv)

Graph attention networks are spatial-based convolution networks in which

attention mechanism is used to determine the importance of each neighbor

vertex to the center vertex of a mesh when the neighbor information of ver-

tices is aggregated.

The convolutional layer is built as following.

Let X = (V , E , T ) be a mesh and f = (f1, . . . fp) ∈ RNv×p the feature map

that is the input to our layer. We denote f(v) = (f1(v), . . . fp(v)) the fea-

ture vector of a single vertex. The layer produces a new feature map (with

potentially a different size), g = (g1, . . . gq) ∈ RNv×q, as its output.
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1. As an initial step, a shared linear transformation, parametrized by a

learnable weight matrix, W ∈ Rqxp, is applied to each vertex.

2. Next, a shared learnable attention mechanism a : RqxRq → R computes

attention coefficients, that is ∀ v ∈ V

ev,u = a(Wf(v),Wf(u)), (5.7)

with u ∈ Nv, that is, we only compute ev,u for vertices u s.t. (u, v) ∈ E ,
including v.

The attention coefficient indicate the importance of vertex u’s features

to vertex v.

3. To make coefficients easily comparable across different vertices, ∀v ∈ V
we normalize them across all choices of u ∈ Nv using the softmax

function:

αu,v = softmaxu(eu,v) =
exp(eu,v)∑

w∈Nv
exp(ev,w)

(5.8)

4. Once obtained, the normalized attention coefficients are used to com-

pute a linear combination of the features corresponding to them, to

serve as the final output features for every vertex. Finally, a non-

linearity, σ, can be applied.

Now, we have the ingredients for define the convoluional layer:

Definition 5.2.1. Let X = (V , E , T ) be a mesh, let f, g be the input and

output feature maps of the layer, W the weight matrix and au,v the attention

coefficient described previously. We define ∀v ∈ V the GAT convolutional

operator as

g(v) = σ
( ∑

u∈Nv

αu,vWf(u)
)
. (5.9)

Remark 5.2.1. Since it is beneficial to stabilize the learning process of self-

attention, several networks use a multi-head attention.
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Specifically, K independent attention mechanisms execute the transfor-

mation, and then their features are concatenated, resulting in the following

output feature representation:

g(v) = CONCATk=1...K

(
σ(

∑
u∈Nv

αk
u,vWf(u))

)
(5.10)

where αk
u,v are normalized attention coefficients computed by the kth atten-

tion mechanism and Wk is the corresponding input linear transformation’s

weight matrix.

If we perform multi-head attention on the final (prediction) layer of the net-

work, we employ averaging:

g(v) = σ
( 1

K

K∑
k=1

∑
u∈Nv

αk
u,vWkf(u)

)
. (5.11)

5.3 Discrete Beltrami Flow on Meshes

The research activity is aimed at defining a unified mathematical struc-

ture that describes the convolutional operators on mesh. An attempt is to

make the operators descend from the discretization of the Beltrami flow.

Given the definition of the Laplace operator on meshes, now we are able

to discretize non-Euclidean diffusion PDEs. In particular in this section we

will see the discretized Beltrami flow. For more information consult [14].

From the definition of the mesh Laplacian operator, Def. 1.3.3, follows

that:

Definition 5.3.1. Let X = (V , E , T ) be a mesh, we define a function

f : [0,+∞[×V → RNc s.t. ∀ t ∈ [0,+∞[, f(t) ∈ RNv×Nc is theX feature map

at time t. For all v ∈ V we denote f(t, v) the vector of features associated to

the vertex. We consider the discrete Beltrami flow to be the discrete diffusion

equation:

∂f(t, v)

∂t
=

∑
u:(u,v)∈E

a(f(t, u), f(t, v)) (f(t, u)− f(t, v)) (5.12)
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where the function a : RNc × RNc → R is the diffusivity map controlling the

diffusion strength between nodes and it is assumed to be normalised:

∀v ∈ V , ∑
u:(u,v)∈E

a(f(t, u), f(t, v)) = 1. (5.13)

The solution to the diffusion equation is computed by applying scheme

multiple times in sequence, starting from some initial feature map f̄ . Equa-

tion (5.12) is solved numerically by replacing the continuous time derivative
∂f(t)
∂t

with forward time difference:

f(v)(k+1) − f(v)(k)

τ
=

∑
u:(u,v)∈E

a(f(u)(k), f(v)(k)) (f(u)(k) − f(v)(k)) (5.14)

Here k denotes the discrete time index (iteration), while τ is the time step

(discretiation parameter).

We rewrite the formula (5.12) in matrix form:{
∂f(t)
∂t

= (A(t)− I)f(t)

f(0) = f̄ ,
(5.15)

where t ≥ 0 and A(t) = (a(v, u))(t) is s.t.

a(v, u)(t) =

{
a(f(t, v), f(t, u)) if (v, u) ∈ E
0 otherwise.

(5.16)

Rewriting 5.14 in matrix form leads to the explicit Euler scheme:

f (k+1) = f (k) + τ(A(k) − I)f (k) = Q(k)f (k), (5.17)

With f, A, τ , k defined as above, and Q defined as following:

Q(v, u)(t) =

{
τ a(k)(f(v)(k), f(u)(k)) if u ̸= v

τ a(k)(f(v)(k), f(u)(k)) + (1− τ) otherwise.
(5.18)
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Remark 5.3.1. The network consisting of k GAT stacking layers can be inter-

preted as a method to solve numerically a particular setting of the discrete

Beltrami Flow.

In fact, let us consider the learnable parametric attention functions play

the role of diffusivity, assuming a discretization of time step τ , the result of

each layer of the network represent the updated features of the mesh at the

k-th iteration (time interval).
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Chapter 6

Mesh Denoising using Graph

U-Net

In the following we report a practical application of the graph neural

networks theory read in the previous chapters to the reconstruction of noisy

meshes. The task is to use the GNNs just mentioned to perform mesh denoi-

sing on surfaces damaged due to imperfect scanner measurements. The basic

concepts related to graph neural networks were introduced. In particular,

we describe the graph U-Net architecture in Sec. 3.3 and we list in Chapter

4 and in Chapter 5 some of the well-known mesh convolutional operators:

Cheb-Conv and GCN-Conv as frequency domain convolutional operators,

SAGE-Conv and GAT-Conv as spatial domain convolutional operators. Our

aim is to test how convolutional operators work and to analyze the role of

pooling/unpooling operators. For the tests we exploit PyTorch and PyTorch

Geometric libraries, which provide a suitable representation of mesh as input

of graph neural networks and an implementation of convolutional, pooling

and unpooling operators.

45
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6.1 Dataset Setting

We design neural networks to eliminate noise from corrupted meshes. To

perform supervised learning we need a sample made up of noisy meshes ac-

companied by the corresponding ground truths. In this section we describe

the dataset used to train, evaluate and test neural networks. Refer to Def.

1.1.1 for the definition of polygonal mesh.

For each model of the dataset we denote X = (V , E , T ) the original mesh

(the ground truth) and X̃ = (Ṽ , E , T ) the mesh corrupted by noise. The o-

riginal meshes are given, we have a set of 32 files available named as follows:

’Guided-trim-star rescaled.obj’, ’GuidedBunny.obj’, ’GuidedJulius.obj’,

’Macchia.obj’, ’Original.obj’, ’Original2.obj’, ’angelo.obj’, ’ant.ply’, ’bird.ply’,

’block.obj’, ’bunny st.obj’, ’bunny st small.obj’, ’bust.ply’, ’cube hole.obj’,

’cube hole tri.obj’, ’distcap.obj’, ’dolphin.ply’, ’fandisk.ply’, ’foot-open.ply’,

’gargo50k.obj’, ’gargoyle.obj’, ’hand.ply’, ’hand38k.obj’, ’horse.ply’, ’igea-

coarse.obj’, ’igea.obj’, ’mech1.ply’, ’mech2.ply’, ’mechpart.obj’, ’oilpmp.obj’,

’sphere6.ply’, ’teddy.ply’.

Each file describes the ground truth, X = (V , E , T ), of a specific model.

It contains the vertices coordinates vi = (xi, yi, zi), ∀ i = 1, . . . , Nv and the

indices at the vertices that make up the faces, (i, j, k) ∈ T , with i, j, k =

1, . . . , Nv.

From the ground truth recorded in the file, we need to build the correspon-

ding noisy mesh to carry out the training. Recall that mesh denoising is an

inverse ill posed problem since both the ground truth and the noise level are

unknown. To make it tractable the noise on each vertex position is assumed

to follow a Gaussian distribution and to be independent and identically dis-

tributed. The noisy mesh X̃ = (Ṽ , E , T ) is obtained by the ground truth

X = (V , E , T ) perturbing vertex coordinates vi ∈ V , ∀i = 1, . . . , Nv. The

vertex coordinates of the noisy mesh are defined as follows:

∀ i = 1, . . . , Nv,

ṽi = vi + noise level (νi ⊙ ni),
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where ni ∈ R3 is the normal vector to the vertex, νi ∈ R3 is a vector of

random variables independent and identically distributed as a Gaussian with

mean 0 and standard deviation 1. The parameter noise level is necessary to

reduce the noise according to the length of the edges that make up the mesh,

firstly we set the value at 0.005.

To obtain a data type compatible with machine learning techniques, it

is desirable to represent all meshes as graphs: the graph nodes would cor-

respond to the vertices of the mesh and two nodes would be associated if

there was a face to which both respective vertices belong. In this regard, the

PyTorch Geometric library provides the object torch geometric.data.Data.

We have implemented a function, called mesh2Data, that takes as input the

mesh in the ”.obj” or ”.ply” file and the noise parameter noise level, and

returns a graph as torch geometric.data.Data, which includes three tensors,

x, edge index and y, related to node features, edge indices and labels. In the

feature tensor x are recorded the vertex coordinates of the noisy mesh, while

in the label tensor y are recorded the coordinates related to the ground truth

after centering and scaling. It directly follows that the size of both the two

described tensors is the number of nodes that define the mesh multiplied by

three. Finally, the edge index tensor is a matrix of dimension two times the

number of edges. The number of edges follows from the description of the

faces in the input file and corresponds to the number of faces multiplied by

three.

In some cases it’s useful to record in the Data object, in addition to the

three tensors, for each face of the model the indices to the three vertices, we

denote the variable as pos. To clarify, we report below the data describing

’mechpart.obj’:

Data(x = [1900, 3], edge index = [2, 22848], y = [1900, 3], pos = [3808, 3]).

Finally, to accomplish what we set out to do, our dataset needs to be split

into three subsets: the training, the evaluating and the testing dataset. The

meshes belonging the dataset are listed in Table 6.1. The Fig. 6.1 shows
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the ground truth mesh and the noisy mesh with noise level = 0.005 for each

model of the testing dataset.

(a) mechpart.obj (b) oilpomp.obj

(c) sphere6.ply (d) teddy.ply

Figure 6.1: Testing dataset
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filename vertices edges faces

Train dataset

Guided-trim-star rescaled.obj 5192 62304 10384

GuidedBunny.obj 34834 416706 69451

GuidedJulius.obj 36201 431472 71912

Macchia.obj 14846 176622 29437

Original.obj 4610 55296 9216

Original2.obj 10443 125292 20882

angelo.obj 29670 351744 58624

ant.ply 7038 84432 14072

bird.ply 6475 77676 12946

block.obj 8771 105300 17550

bunny st.obj 2503 29808 4968

bunny st small.obj 2503 29808 4968

bust.ply 25467 305580 50930

cube hole.obj 10232 122880 20480

cube hole tri.obj 2552 30720 5120

distcap.obj 7513 89280 14880

dolphin.ply 7573 90852 15142

fandisk.ply 6475 77676 12946

foot-open.ply 10010 119844 19974

gargo50k.obj 25006 300000 50000

gargoyle.obj 100002 1200000 200000

hand.ply 6607 79260 13210

hand38k.obj 38219 458628 76438

horse.ply 8078 96912 16152

Eval dataset

igea-coarse.obj 8268 99192 16532

igea.obj 134345 1612116 268686

mech1.ply 8759 105084 17514

mech2.ply 10400 124776 20796

Test dataset

mechpart.obj 1900 22848 3808

oilpmp.obj 10274 123264 20544

sphere6.ply 16386 196608 32768

teddy.ply 9548 114552 19092

Table 6.1: Dataset
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6.2 Metrics

To evaluate the neural networks we trained, it was necessary to define

metrics on which to base ourselves to calculate the error made during de-

noising. In this section we introduce two metrics we used.

Suppose there are two meshes, the ground truth X = (V , E , T ) and the

mesh restored by the neural network Y = (V̄ , E , T ), evaluating a model in-

volves calculating their degree of similarity. Therefore, we apply two different

metrics:

• MAD metric: the value is related to the width of the angle between

the normal vectors to the corresponding faces in the two meshes.

• EV metric: the value describes the distance between the corresponding

vertices in the two meshes.

Basically, the MAD metric:

1. computes the unitary normals to the faces for both the two meshes;

2. for each face (i, j, k) ∈ T , applies the inner product to the two normals,

rispectively, of the restored mesh and the ground truth;

3. returns the mean of the arccosine of the values obtained for each face,

i.e. the angles between the two normals.

Formally, meshes are defined by the vertices coordinates and the indices to

the vertices that make up the faces. Let’s denote vj a generic vertex and fi

a generic face of the ground truth X. To each vertex vj of the ground truth

corresponds a vertex v̄j of the restored mesh Y with the restored vertex

coordinates. Likely, to each face fi of the ground truth we can associate a

face f̄i on the restored mesh made up by the correspondent vertices. Let Nf

be the number of faces, we denote ni, n̄i the unitary normal vectors to the
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faces fi, f̄i, ∀i = 1 . . . Nf , then

MAD(X, Y )2 =
1

Nf

N∑
i=1

f⟨ni, n̄i⟩.

The EV metric corresponds to the L2-metric . Given V = {vi : i =

1, . . . , Nv} and V̄ = {v̄i : i = 1, . . . , Nv}, the sets of vertex coordinates

respectively of the ground truth X and the restored mesh Y . Then, the

returned error is

EV (X, Y ) =
Nv∑
i=1

||vi − v̄i||22.

6.3 Numerical Experimentation

Methodologies

Once described the dataset and the metrics used to compare neural net-

works performance, we introduce the results obtained from the trained neural

networks. The experimental phase developed in the following points:

• Graph convolutional operator choice (Sec. 6.3.1): we train neural

networks with graph U-Net architecture by changing the convolutional

operator;

• Architecture choice, Graph U-Net versus Basic Net (Sec.6.3.2):

we investigate the role of pooling and unpooling operators;

• Loss function strategies(Sec.6.3.3): we enrich the loss function with

two additional terms to control the curvature;

• Robustness to the noise(Sec.6.3.4): we test the graph U-Net neural

network with the GAT-Conv operator on a testing dataset with a lower

noise level;

• Layer output results(Sec.6.3.5): we visualize the output of interme-

diate layers.
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6.3.1 Graph Convolutional Operator Choice

First, we perform mesh denoising by observing how the choice of the

convolutional operator affects the results. We train several neural networks

with the same architecture replacing the convolutional layer, for the expe-

riment we assume the graph U-Net, its definition is in the Sec. 3.3. The

convolutional operators involved in this project are the Cheb-Conv, in which

convolution concerns the first and second ring neighbors, the GCN-Conv, the

SAGE-Conv and the GAT-Conv.

Let’s consider the dataset as described in Sec. 6.1: each mesh is rep-

resented by the data type torch geometric.data.Data. Our neural networks

accept as input two tensors, x and edge index. The tensor x contains the

vertex coordinates of the noisy mesh and it is the feature map that the net-

work takes as input. The edge index tensor defines the mesh structure, it is

the analogue of the adjacency matrix.

For the graph U-Net architecture, in particular we use the PyTorch Geomet-

ric implementation with the following parameter setting:

• the number of input and output channels equal to three, that is the

number of vertex coordinates;

• sixteen hidden channels (this value has been choosen experimentally);

• eight convolutional leyers, this value depends on the assigned depth, in

this case we set the value of the depth to four, that is the number of

layers on both the encoding part and the deconding part;

• the pool ratios equal to 0.5, the pool ratio concerns the pooling/unpooling

operators,in this case the number of nodes is halved for each pooling

layer.

The Table 6.2 records errors obtained with both the two metrics, the MAD

metric and the EV metric (Section 6.2), from the graph U-Net denoiser using
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the convolutional operators just mentioned. We highlight in yellow the best

result, in red the worst result for each model of the dataset.

Noisy Restored Restored Restored Restored

GCNConv ChebConv SAGEConv GATConv

MAD metric

mechpart.obj 21.607 22.118 21.299 18.521 20.118

oilpomp.obj 31.878 21.568 30.354 17.596 13.540

sphere6.ply 26.060 4.655 22.126 10.119 3.691

teddy.ply 32.454 38.187 33.562 12.404 5.244

EV metric

mechpart.obj 3.845e-05 12.244e-05 5.166e-05 9.330e-05 11.253e-05

oilpomp.obj 1.640e-05 4.783e-05 2.110e-05 4.197e-05 2.867e-05

sphere6.ply 1.298e-05 1.781e-05 1.419e-05 2.793e-05 1.078e-05

teddy.ply 1.699e-05 4.762e-05 1.927e-05 1.935e-05 0.885e-05

Table 6.2: Graph U-Net denoiser performance

We can observe that, indipendently form the metric, the convolutional

operator GAT has the best performance, while the GCN and Chebyshev op-

erators give the worst results. These results are not unexpected, in fact a

huge drawback of the frequency domain convolutional operators is that for

each vertex of the mesh, its coordinates are updated according to the coor-

dinates of the neighboring vertices, but two vertices belonging to the same

ring contribute in the same way. Moreover, the Cheb-Conv operator involves

a greater number of vertices than the GCN-Conv in the computation, which

does not necessarily imply a better performance, in fact the vertices involved

could be too far away and describe other details of the 3D shape. On the

other hand; GAT-Conv allows the network to learn the weight of each neigh-

boring vertex regarding the similarity of features.

In the Fig. 6.2, for all the meshes that make up the test dataset, we show

the ground truth, the noisy mesh and the mesh restored with the GAT-Conv

operator.

It should be noticed, however, that if the mesh is characterized by sharp
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edges, the results change from the used metric: if we compare normal vec-

tors to facets of the restored mesh and of the ground truth GAT achieves

higher performance than the other operators, but with regard to vertices

coordinates, a grater smoothing causes a move away from the original shape.

(a) mechpart.obj

(b) oilpomp.obj

(c) sphere6.ply

(d) teddy.ply

Figure 6.2: Graph U-Net with GAT-Conv operator obtained results
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6.3.2 GNN Architecture Choice: Graph U-Net

VS Basic Net

This section is intended to compare two neural network architectures, the

graph U-Net and the Basic-Net. The aim is to determine an architecture that

benefits our work.

We call Basic-Net a neural network simply consisting of eight stacked

convolutional layers. The difference between the two architectures is there-

fore the presence of pooling and unpooling operators in the Graph U-Net.

The Table 6.3 shows the results of both architectures assuming GAT convo-

lutional layers. We observe that the Graph U-Net denoiser is generally better

than the Basic-Net denoiser. In the case of the ’teddy.ply’ and ’sphere6.ply’

meshes, however, the error calculated using the MAD metric is greater if we

consider an encoding-decoding architecture.

Noisy Restored Restored

G-U-Net Basic Net

MAD metric

mechpart.obj 21.607 20.118 30.310

oilpomp.obj 31.878 13.540 20.103

sphere6.ply 26.060 3.691 2.807

teddy.ply 32.454 5.244 4.998

EV metric

mechpart.obj 3.845e-05 11.253e-05 27.750e-05

oilpomp.obj 1.640e-05 2.867e-05 5.651e-05

sphere6.ply 1.298e-05 1.078e-05 2.253e-05

teddy.ply 1.699e-05 0.885e-05 2.490e-05

Table 6.3: Comparison between the two architectures using GAT-Conv op-

erator

As we printed the meshes restored through Graph U-Net neural Network,

it’s interesting to view the meshes restored without pooling and unpooling
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operators intervention. The Fig. 6.3 shows how the Basic Net affects the

model. Its stronger smoothing is suitable for model without sharp edges.

(a) Graph U-Net (b) Graph Basic-Net

Figure 6.3: Differences between graph U-Net and Basic-Net

6.3.3 Loss Function Strategies

One of the main problems of mesh restoration using the proposed neural

networks is the strong smoothing that causes the loss of the original shape of

the models. To contain this behaviour, we enrich the loss function by com-

bining fidelity terms and we train new neural networks. For the experiment

we use the Graph U-Net model with GAT-Conv operator.

We define the loss function as a combination

L(Θ) = λ1L1(Θ) + λ2L2(Θ) + λ3L3(Θ), (6.1)
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where Θ represents the learnable parameters of the network and

• L1 is the MSE loss function;

• L2 is the curvature fidelity loss function;

• L3 is the flatness loss function.

We denote λi, ∀i = 1, 2, 3, the weights of the three loss function terms.

The MSE loss function

At each epoch of the training phase, all the corrupted meshes of the

training dataset feed a new neural network. In order to update its weights,

the denoiser accuracy is computed comparing each restored mesh Y with the

corresponding ground truth X, then their difference is recorded on a loss

variable useful to set the new weights of the next neural network.

The MSE provided by the PyTorch Geometric library computes the distance

between vertex coordinates. Given the restored mesh Y = (V̄ , E , T ) and the

corresponding ground truth X = (V , E , T ), the MSE function takes as input

the feature associated to each node, i.e. the vertex coordinates, and returns

a real value as follows:

L1(Θ) =
1

Nv

Nv∑
i=1

1

3
[(x̄2

i − x2
i ) + (ȳ2i − y2i ) + (z̄2i − z2i )], (6.2)

where vi = (xi, yi, zi) ∈ R3 are the coordinates of the vertex vi ∈ V of the

ground truth and v̄i = (x̄i, ȳi, z̄i) ∈ R3 are the coordinates of the correspond-

ing vertex v̄i ∈ V̄ on the restored mesh.

The curvature fidelity loss function

Given the restored mesh Y = (V̄ , E , T ) and its corresponding ground

truth X = (V , E , T ), let ḡ and g ∈ RNv×3 be two feature maps respectively

of Y and X. The curvature fidelity loss function computes

L2(Θ) = ||L̄ḡ − Lg||F , (6.3)
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where L̄ and L are the Laplacian matrices associated to the meshes and || · ||F
is the Frobenius norm. Recall that, in this case, each row of g is the vector

vi = (xi, yi, zi) ∈ R3, similarly for ḡ.

Let X = (V , E , T ) be a mesh and let g ∈ RNv×3 the feature map, the link

between curvature and Laplacian matrix is given by the formula:

Lg = hn (6.4)

where h is the mean curvature field and n the normal vector field on X.

The flatness loss function

Given the restored mesh Y = (V̄ , E , T ), let ḡ ∈ RNv×3 be its feature maps,

the flatness loss function simply computes

L3(Θ) = ||L̄ḡ||F , (6.5)

this constraint causes the restored mesh to be flat.

The main challenge is to give each term its proper weight. In the previ-

ous experiments we were assuming an MSE loss function, that is, λ1 = 1 and

λ2, λ3 = 0. In order to perform an edge preserve mesh denoising, we enrich

the loss function with the two fidelity terms that control curvature.

The Table 6.4 shows the errors calculated by different networks trained

with different loss functions. In particular λ1 = 1, λ3 = 0 and the weight

relating to the curvature fidelity λ2 is gradually increased. Moreover, let us

consider the particular case in which λ2 = 1e − 6. In the Fig. 6.4 we plot

the total training loss function, the MSE loss function and the curvature

fidelity loss function values with respect to the epochs: the contribution of

the curvature loss function is minimal.

In the second Table 6.5 we add the flatness loss function term to com-

pute the total loss function, the proposal is to decrease the curvature. This
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Noisy Restored Restored Restored Restored

λ2 = 0 λ2 = 1e− 7 λ2 = 1e− 6 λ2 = 1e− 4

MAD metric

mechpart.obj 21.607 20.118 20.145 20.547 23.627

oilpomp.obj 31.878 13.540 13.677 13.837 21.098

sphere6.ply 26.060 3.691 3.798 5.189 26.233

teddy.ply 32.454 5.244 5.309 6.208 28.118

EV metric

mechpart.obj 3.845e-05 11.253e-05 11.646e-05 11.586e-05 32.081e-05

oilpomp.obj 1.640e-05 2.867e-05 2.750e-05 3.186e-05 18.963e-05

sphere6.ply 1.298e-05 1.078e-05 1.075e-05 2.675e-05 30.669e-05

teddy.ply 1.699e-05 0.885e-05 0.9422e-05 2.314e-05 28.621e-05

Table 6.4: Mesh restored with different contributions of fidelity terms

(a) Total loss (b) MSE loss (c) Curvature fidelity loss

Figure 6.4: Loss-plots with weights: λ1 = 1.0, λ2 = 1e− 6, λ3 = 0.0

procedure lead the mesh to be flat in order to preserve edges. We set λ1 = 1,

λ2 = 0, as in the previous case, increasing the weight related to the flatness

loss function term, λ3, the denoiser performance get worse.

Let us consider the weight λ1 = 1.0, λ2 = 0.0, λ3 = 1e − 07, in Fig. 6.5

we plot the total training loss function, the MSE loss function term and the

flatness fidelity loss function term with respect to the epochs.
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Noisy Restored Restored Restored

λ1 = 1 λ1 = 1 λ1 = 1

λ2 = 0 λ2 = 0 λ2 = 0

λ3 = 0 λ3 = 1e− 7 λ3 = 1e− 5

MAD metric

mechpart.obj 21.607 20.118 20.112 20.843

oilpomp.obj 31.878 13.540 13.528 14.554

sphere6.ply 26.060 3.691 4.173 5.392

teddy.ply 32.454 5.244 5.288 6.537

EV metric

mechpart.obj 3.845e-05 11.253e-05 11.326e-05 17.090e-05

oilpomp.obj 1.640e-05 2.867e-05 2.786e-05 8.241e-05

sphere6.ply 1.298e-05 1.078e-05 1.407e-05 5.754e-05

teddy.ply 1.699e-05 0.885e-05 0.811e-05 4.709e-05

Table 6.5: Mesh restored with different contributions of fidelity terms

(a) Total loss (b) L2 fidelity loss (c) Lx loss

Figure 6.5: Loss-plots with weights: λ1 = 1.0, λ2 = 0.0, λ3 = 1e− 07

6.3.4 Robustness to the Noise

Let us consider a new testing dataset. The prevoius dataset has been

generated as discribed in the Sec. 6.1. We generate the same dataset de-

creasing the level of perturbation, that is, we set the parameter noise level

equal to 0.001 (a lower value then 0.005). In Fig. 6.6 we show the model

’teddy’, perturbed with both the two noise level settings: 0.001, 0.005.
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(a) noise level = 0.001 (b) noise level = 0.005

Figure 6.6: Mesh ’teddy’ perturbed with two different noise levels

In Table 6.6 we record the results obtained by mesh denoing performed

by the neural network with U-Net architecture and GAT convolutional layers

trained with a dataset perturbed by noise level 0.005.

Noisy Restored

MAD metric

mechpart.obj 4.834 19.433

oilpomp.obj 7.439 12.246

sphere6.ply 5.600 1.236

teddy.ply 7.443 2.122

EV metric

mechpart.obj 0.775e-05 11.216e-05

oilpomp.obj 0.330e-05 2.843e-05

sphere6.ply 0.259e-05 1.021e-05

teddy.ply 0.341e-05 0.746e-05

Table 6.6: Denoising with U-Net model and GAT convolutional layer

In Fig. 6.7 we show the ’teddy’ model perturbed with noise level= 0.001

and restored with a graph U-Net architecture and GAT convolutional layers.



62 6. Mesh Denoising using Graph U-Net

Figure 6.7: Restoration of ’teddy’ with noise˙level = 0.001

For completeness, in Fig. 6.8, 6.9, 6.11 and 6.10, we visualize the results

obtained with the GAT-Conv operator on smooth meshes. In particular we

enrich the testing dataset with two meshes:

• ’Julius.obj’: X = (36201, 431472, 143824);

• ’nicolo.obj’: X = (14846, 176622, 58874).

The denoising performances are recorded in Table 6.7.

6.3.5 Layer Output Results

The aim of this section is the convolutional layers monitoring. Let us

consider the Basic Net model made up by eight GAT convolutional layers:

• Input layer: takes as input three features for each vertex and returns

sixteen features for each vertex.

• Six hidden layers: take as input sixteen features for each vertex and

return sixteen features for each vertex.

• Outout layer: takes as input sixteen features for each vertex and returns

three features for each vertex.
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Noisy Restored Restored

G-U-Net Basic Net

MAD metric

sphere6.ply 26.060 3.691 2.807

teddy.ply 32.454 5.244 4.998

Julius.obj 52.061 9.893 8.337

nicolo.obj 39.952 8.038 9.203

EV metric

sphere6.ply 1.298e-05 1.078e-05 2.253e-05

teddy.ply 1.699e-05 0.885e-05 2.490e-05

Julius.obj 0.873e-05 0.635e-05 1.662e-05

nicolo.obj 1.375e-05 1.350e-05 2.928 e-05

Table 6.7: Denoising of smooth meshes

Figure 6.8: ’sphere’ restoration
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Figure 6.9: ’teddy’ restoration

Figure 6.10: ’nicolo’ restoration
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Figure 6.11: ’julius’ restoration

We use the ’teddy’ mesh to test the trained network, as the GAT convolu-

tional operator is particularly efficient on it. In order to analyse the values

of the output vertex features, at each layer we display as many meshes as

there are output features (sixteen for the first seven layers, three for the last

one) and we assign a colour to mesh vertices that coincides with the values

of the feature associated. At the end of this chapter we show the meshes cor-

responding to the output features of the first, the fourth and the last GAT

convolutional layers. In the first layer we can identify two kind of features,

in some cases, features highlight a detail of the surface, as in Fig. 6.13.a

(Feature 8), in other cases, features are an approximation of vertex coordi-

nates, as in Fig. 6.12.g (Feature 6). It can also be seen that in the fourth

layer there are already features that describe the coordinates as in Fig. 6.14.e

(Feature 4), moreover greater is the number of the layer, grater is the number

of features equal to zero over the entire domain, see both the two figures, Fig.

6.14 and Fig. 6.15 . A possible efficency improvement may be the choice of

a smaller number of layers and a smaller number of output features. Finally,

Fig. 6.16 shows the output of the last layer, that is vertex coordinates of the

restored mesh. This check proof the efficacy of the network.
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(a) Feature 0 (b) Feature 1

(c) Feature 2 (d) Feature 3

(e) Feature 4 (f) Feature 5

(g) Feature 6 (h) Feature 7

Figure 6.12: First layer output, part 1
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(a) Feature 8 (b) Feature 9

(c) Feature 10 (d) Feature 11

(e) Feature 12 (f) Feature 13

(g) Feature 14 (h) Feature 15

Figure 6.13: First layer output, part 2
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(a) Feature 0 (b) Feature 1

(c) Feature 2 (d) Feature 3

(e) Feature 4 (f) Feature 5

(g) Feature 6 (h) Feature 7

Figure 6.14: Fourth layer output, part 1
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(a) Feature 8 (b) Feature 9

(c) Feature 10 (d) Feature 11

(e) Feature 12 (f) Feature 13

(g) Feature 14 (h) Feature 15

Figure 6.15: Fourth layer output, part 2
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(a) Feature 0

(b) Feature 1

(c) Feature 2

Figure 6.16: Last layer output



Conclusions

The aim of this thesis was to analyse the convolutional operators that

characterise graph neural networks and to apply them to the denoising of

surfaces corrupted due to imperfect scanner measurement. First, we have

represented the surfaces as meshes, i.e. a special case of graph. This rep-

resentation allows us to process 3D shapes with deep learning techniques.

Following the investigation of several convolutional operators, four were se-

lected: the GCN-Conv, the Cheb-Conv, the SAGE-Conv and the GAT-Conv.

The study of these operators revealed their strengths, in particular the su-

periority of the GAT operator. In fact, the operator just mentioned is able

to aggregate the features of the nodes of a mesh (and in general a graph) by

giving the nodes a degree of importance through an attention mechanism.

This property also yielded impressive results in the experimental part of the

thesis. We have used the GAT-Conv operator both within a network with

a graph U-Net type architecture and in the case of a simpler type archi-

tecture, which did not include pooling and unpooling operators. Given the

good results achieved with GAT convolutional operator on smooth meshes

we are interested to continuing our research and further investigate the neu-

ral networks which exploit the definition of mesh p-Laplatian reported in Sec

4.5.

71
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