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Abstract

In this master’s thesis, the formation of Primordial Black Holes (PBHs) in the
context of multi-field inflation is studied. In these models, the interaction of isocur-
vature and curvature perturbations can lead to a significant enhancement of the
latter, and to the subsequent production of PBHs. Depending on their mass, these
can account for a significant fraction (or, in some cases, the entirety) of the uni-
verse’s Dark Matter content.

After studying the theoretical framework of generic N -field inflationary models,
the focus is restricted to the two-field case, for which a few concrete realisations
are analysed. A numerical code (written in Wolfram Mathematica) is developed
to make quantitative predictions for the main inflationary observables, notably the
scalar power spectra. Parallelly, the production of PBHs due to the dynamics of
2-field inflation is examined: their mass, as well as the fraction of Dark Matter they
represent, is calculated for the models considered previously.
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Chapter 1

Introduction

O ne of the greatest achievements of 20th century cosmology is the formulation of
a self-consistent model that accurately describes the universe around us, provid-
ing an explanation for most of the revolutionary observations made over the last

hundred years. A number of shortcomings of the model nevertheless persist; in order to
solve them, the idea of cosmic inflation was introduced [1]. This is a short period of
extremely rapid expansion of space, taking place during the very early universe. Fur-
thermore, high energy physics considerations are shifting the attention from “standard”
inflation to models with multiple interacting fields driving the expansion.

Additional open questions relate to the nature of Dark Matter and Dark Energy,
which are included in the standard model of cosmology without having a fundamental
description. Interesting candidates for the former are Primordial Black Holes (PBHs),
which could in some models account for a significant fraction or even the totality of Dark
Matter [2, 3]. These are the result of the collapse of local energy overdensities generated
during inflation.

The work presented in this thesis focuses on these two aspects of great scientific interest
within the world of theoretical physics and cosmology. Joining the two topics, we show
how (and in what amount) PBHs could have formed in models of multi-field inflation,
and what impact these results may have on our understanding of the universe.

∗ ∗ ∗

In the present Chapter, we introduce the subject by looking at its historical context and
by highlighting its new-found scientific interest. We also comment on the notation that
will be used throughout this work. In Chapter 2, the standard model of cosmology – the
ΛCDM model – is briefly reviewed before moving to the discussion of single-field inflation.
Multi-field inflation is the topic of Chapter 3, in which we detail its theoretical framework
from both the background and the perturbation theory points of view.

Switching gears, we study the theory and interest of Primordial Black Holes in Chap-
ter 4, focusing on their significance as a candidate for Dark Matter. PBHs are then
discussed within the framework of 2-field inflation in Chapter 5, where we explain how

1



CHAPTER 1. INTRODUCTION

we analytically and numerically reproduced the 2-field models of Huston & Christopher-
son [4], Achúcarro et al. [5], and Braglia et al. [6, 7].

Chapter 6 summarises our work and formulates its main conclusions. A discussion on
its interest and future legacy concludes this thesis.

1.1 Historical Overview
Understanding the universe around us – and our place within it – has been a key question
in humanity’s search for understanding since the dawn of time. Significant progress in
this regard was made in the 16th century during the Copernican revolution, and with
the subsequent invention of the telescope. These theoretical and observational advances
relegated the Earth to the outskirts of (or rather, to an insignificant place in) the known
universe, giving rise to what is now called the cosmological principle:

The universe on the largest scales is homogeneous (it looks the same every-
where) and isotropic (there exist no special directions).

This approximation, which clearly only holds for scales greater than those of galaxy
clusters, i.e. & 100 Mpc1, is the foundation of modern cosmology [8, 9]. It has now been
proven by deep galaxy surveys such as the Sloan Digital Sky Survey [10].

1.1.1 The Standard Model of Cosmology
At the beginning of the past century, Einstein’s theory of General Relativity revolutionised
our way of thinking about the universe, relating the geometry of spacetime with the
distribution of mass (or energy) within it [11]. Einstein was philosophically in favour of a
static universe (infinite in time but finite and constant in space), notably pushing him to
add (and later remove) the cosmological constant Λ to his field equations as an attempt
to counterbalance gravity [8,12]. Nevertheless, solutions to his equations – notably those
by Friedmann [13] – suggested that the universe is expanding spatially in time.

Eventually, Hubble’s observations [14] showed that the recessional radial velocity, v,
of remote galaxies (their velocity in our line-of-sight direction) is proportional to their
distance from us, d; this relation takes the name of Hubble’s law, the proportionality
being given by the omonimous constant, H0 [15]:

v = H0d . (1.1)

The quantities appearing in this relation are not directly measured. The distance to
remote objects is often calculated by measuring the flux of incoming photons from a
source of known luminosity, i.e. a “standard candle”, such as type IA supernovae [16].
The velocity of distant galaxies is instead inferred from their observed redshift, z, such

1Megaparsecs are the typical cosmological units of length: 1 Mpc = 3.086× 1022 m.

2



CHAPTER 1. INTRODUCTION

that z = v/c in the limit v/c� 1 2. Cosmological redshift can be thought of as a Doppler
effect of light waves with respect to the galaxy’s known absorption and emission spectra,
and is defined as

z ≡ λo − λe
λe

.

Here λe and λo are the emitted and observed photon wavelengths respectively, the latter
having been stretched by travelling across an expanding universe [8, §2.4]. Redshift can
be used to describe the temporal evolution of the universe: high-z events took place in
early epochs of the universe.

Hubble’s law, often rewritten as z = Hd [17, §2.1], tells us that the further away a
galaxy is (in any direction on the sky), the faster it moves away from us. As argued by
Lemaître [18], the cosmological principle then implies that the universe itself is expanding.
This expansion is characterised by the dimensionless scale factor a = a(t), which is related
to cosmological redshift by

a = 1
1 + z

and grows in time, such that the distance between any two distant objects is ∝ a(t). The
Hubble parameter – itself a function of time – is then defined as

H ≡ ȧ

a
, (1.2)

such that it describes the rate of the expansion, and it is positive in an expanding universe.
The present-day value of H, denoted by the subscript 0, is nonetheless than the Hubble
constant of Equation (1.1) and is measured to be3 H0 = 67.7 km s−1Mpc−1. The present-
day value of a, denoted as a0, is usually set to unity, and a → 0 as t → 0. Since H
has units of inverse time, the Hubble time tH = H−1 sets the scale for the age of the
universe, while the Hubble radius dH = cH−1 defines the size of the observable universe,
i.e. a sphere of radius dH centred around the observer, which delimits the portion of the
universe that can be directly observed.

∗ ∗ ∗

Tracing this cosmological expansion back in time leads to the appearance of an initial
singularity, when all matter is concentrated in a single point of extreme temperature [23].
This paved the way to the Hot Big Bang (HBB) scenario in the 1930s, although consensus
on this theory was not reached until much later. The age of the present universe (i.e. the
time that passed since the initial singularity) is related to H−1

0 , today’s Hubble time.
Formalising this model, the decrease of temperature and energy density as the uni-

verse expands was studied. This led to estimates for the production of nuclei in the early

2Notice that Hubble’s linear law is only valid in the limit z � 1, while the relation is more complicated
at higher z [9, §I.1.2.2].

3It is important to note that a tension between the measured values of H0 coming from different
observations (Planck [19] on one side, SH0ES [20] on the other) is one of the hot topics of modern
cosmology, as it questions the validity of the ΛCDM model [21]. A study by Blanchard et al. [22]
that just appeared on the arXiv nevertheless opposes this claim, finding that the tension vanishes when
considering a unknown bias in the distance calibration of Cepheid variables.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Diagram of the evolution of the universe in ΛCDM cosmology, highlighting its
key features. The Big Bang singularity is represented on the left, and time flows rightwards.
Image adapted from NASA/WMAP Science Team [30]

universe (the Big Bang Nucleosynthesis) [24] and to the prediction of the Cosmic Mi-
crowave Background (CMB) [25], the relic radiation from the epoch when photons began
propagating freely. The CMB was first observed in 1965 by Penzias and Wilson [26], and
currently represents the richest available source of cosmological data.

Further progress was achieved in the following decades, partly due to the technolog-
ical advances that allowed for more precise observations. Galaxy rotation curves [27]
and gravitational lensing events provided new evidence for the existence of Dark Matter
(DM), a concept first introduced in the late 19th century [28], while observations of an
acceleration in the present-day expansion of the universe [29] indicated the presence of a
new unknown energy density opposing gravity, denominated Dark Energy (DE).

These last ingredients led to the formulation of the current Standard Model of Hot
Big Bang cosmology, the ΛCDM model [9]. The reinstated cosmological constant Λ is
the simplest way to represent Dark Energy, in the form of a vacuum energy permeating
all of space. CDM, on the other hand, stand for Cold Dark Matter, “cold” meaning that
it is considered to be non-relativistic. The ΛCDM model is the simplest theory that fits
even the most recent observations, notably those from the Planck satellite [19]; these have
shown that the universe is almost flat (see §2.1), and is composed by around 5% ordinary
baryonic matter, 26% DM, and 69% DE (Λ) [19, Table 2]. Its principal features are shown
in Figure 1.1, together with the initial inflationary phase introduced hereafter.
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CHAPTER 1. INTRODUCTION

1.1.2 Shortcomings of ΛCDM Cosmology
While the ΛCDM model has proven to be successful at making accurate predictions, some
observations cannot be explained within this framework without requiring extreme and
unnatural fine-tuning of initial conditions [31, §II.11.1]. As argued in [32, §5.1], a complete
cosmological theory should explain how a particular universe evolved from generic initial
conditions, and Hot Big Bang cosmology does not provide this answer. The most notable
drawbacks of the theory are illustrated below.

Horizon problem. The CMB temperature has been observed to be homogeneous
to δT/T0 ∼ 10−5 (where T0 ∼ 2.7 K is its monopole temperature) [33], even across regions
of the universe that should have never been in causal contact. Because of the finite age of
the universe, a CMB photon (emitted shortly after the Big Bang) can only have travelled
a finite distance dH(t0) ∼ H−1

0 c, accounting for the expansion of space. Since information
cannot travel faster than light, regions separated by a distance greater than this horizon
have never been causally connected. No known physical process can thus be used to
explain the observed homogeneity across diametrically-opposite regions of the observable
universe.

Flatness problem. As will be explained in Chapter 2, an expanding universe that
satisfies the Cosmological Principle can have one of three spatial geometries, differing in
their spatial curvature. Observations show that the present-day universe is very close to
being flat (it has almost no curvature): since this quantity increases during the evolution
of the universe, we would need to require an unnaturally small initial value for the cur-
vature. In fact, the quantity accounting for the curvature is inversely proportional to the
combination aH, which decreases in time during HBB cosmology [17, §3.1].

Primordial perturbations problem. Clearly, the universe is not homogeneous
on small scales, cosmologically speaking: there are structures such as galaxies and voids.
Tracing their evolution backwards in time leads to the presence of small-scale primordial
density perturbations; however, no suitable mechanism for their generation exists within
the Hot Big Bang model, and their initial power spectrum needs to be inserted ad hoc as
an initial condition of the theory.

∗ ∗ ∗

There furthermore exist a number of open questions in ΛCDM cosmology, such as the
observed matter-antimatter asymmetry of the universe [34] or those regarding the fun-
damental nature of Dark Matter and Dark Energy. The latter fluids are included in the
model, but a definitive explanation of what they are composed of is still missing, and a
variety of hypotheses have been postulated to this regard. It cannot be excluded that the
whole of ΛCDM cosmology, or even General Relativity on some scales, may be incorrect;
an alternative approach is that of modified gravity theories, such as f(R) theories [35],
MOND [36], or teleparallel gravity [37]. In some of these theories, for example, DM
and DE could arise naturally. These considerations nevertheless exceed the scope of this
thesis.
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CHAPTER 1. INTRODUCTION

1.1.3 Inflation
As a solution to the horizon and flatness problems, Alan Guth postulated in 1981 the
existence of an inflationary epoch of accelerated expansion of space taking place during
the very early universe, before the Hot Big Bang stage [1]. During inflation, causally-
connected regions were expanded to encompass many of what would now seem to be
causally-disconnected areas, and could thus explain the observed CMB homogeneity. That
is, the entire present-day observable universe would have expanded from a small region
that was within the particle horizon at early times. Meanwhile, the spatial curvature
of the universe would decrease during an accelerated expansion, allowing for its present-
day value to be small. This is because, during an accelerated expansion of space (i.e.
ä > 0), the combination aH would increase in time. Since the fields of conventional
matter (i.e. those described by the Standard Model of particle physics) do not allow for
ä > 0, inflation introduces a new hypothetical field – or, as we will see later, a set of fields
– called inflaton, which drives the accelerated expansion of space [9, §1.7].

Inflation in its current formulation also includes a built-in reheating mechanism for
particle creation, providing a transition from the inflationary epoch to standard Hot
Big Bang cosmology. When at some point the conditions for inflation get violated, the
inflaton’s energy gets transferred to conventional matter. This process also gives rise to
primordial density perturbations coming from vacuum fluctuations of the inflaton field,
and thus explains structure formation [9, §1.7]. An inflationary era would solve additional
outstanding problems, such as the absence of magnetic monopoles and other unwanted
relics that were predicted to form in Grand Unified Theories: these would be spread apart
by inflation, so much so as to be presently undetectable [38, §1.5].

∗ ∗ ∗

Guth initially suggested the inflationary phase to correspond to a de Sitter (dS) universe,
the expansion being driven by a vacuum energy with equation of state ρ = −p, where
ρ is the fluid’s energy density and p its pressure. Starting from a state of very high
temperature, the universe inflates as it supercools to temperatures below that of some
phase transition, with the potential that drives inflation reaching an unstable false vacuum
state. Eventually, the inflaton decays to true vacuum by quantum tunneling (the phase
transition happens), albeit it does so gradually, at random points in space: this creates
“bubbles” of true vacuum that expand in an (itself expanding) false vacuum background.
The energy density of the false vacuum is contained in the bubble domain walls, and is
released under the form of particles when bubbles collide [39, Chapter 11]. This process
nevertheless concentrates most of the universe’s energy in large expanding bubbles, thus
not allowing for an homogeneous universe. This is called the problem of graceful exit from
the inflationary phase of what is known as the old inflation model.

Shortly after Guth’s work, Linde [40] and Albrecht & Steinhardt [41] postulated infla-
tion to take place in a deformed dS universe, lasting for a finite time and being followed by
a built-in reheating mechanism to produce particles and allow for usual HBB cosmology.
As opposed to the old model in which the field driving inflation would need to tunnel from
a false vacuum of the potential to a true vacuum, abruptly terminating the inflationary
phase, in this new inflation the field rolls slowly down the potential slope, eventually

6



CHAPTER 1. INTRODUCTION

oscillating around its minimum and allowing for particle creation [39, Chapter 12]. In
this scenario, the energy density of the false vacuum is gradually released within a true
vacuum bubble, which expands generating an homogeneous universe. This theory took
the name of Slow-Roll (SR) inflation, and solved Guth’s graceful exit problem. Slow-roll
is nowadays the most common paradigm of inflation, and is the one we will consider
in later Chapters. Note that alternative mechanisms for inflation exist, such as Dirac–
Born–Infeld inflation [42] or k-Inflation [43]; these go beyond our scope and will not be
considered further.

In its simplest form, the SR paradigm requires flat inflaton potentials, and models are
divided between small and large field depending on the “distance” traveled by the field,
φ, during inflation. Various models of SR have been suggested, notably Linde’s chaotic
inflation [44], which was the first not to depend on early universe high-temperature phase
transitions; a chaotic set of initial conditions (φ’s value is randomly distributed throughout
space) can be shown to always reach SR in any region in which the field is large enough [44].

1.1.4 Primordial Black Holes
Let us focus on the subject of Dark Matter. This has been indirectly detected: it behaves
as ordinary baryonic matter except that it does not interact with light, and is estimated
to account for ∼ 85% of the matter content of the universe [19]. Nevertheless, different
particle physics and cosmological theories exist as to what it is composed of. From
the particle physics point of view, one such hypothesis is that of Weakly Interacting
Massive Particles (WIMPs) [45]; this has received a lot of interest, and experiments
are being carried out to try to constrain it. In this work, however, we are interested in
another candidate for Dark Matter: Primordial Black Holes. These have received renewed
attention in recent years, ever since the first Gravitational Wave events were observed at
LIGO/Virgo in 2016 [46].

∗ ∗ ∗

The theory of General Relativity predicts that if a massM is contained within a spherical
region of radius smaller than its Schwarzschild radius RS = 2GNM , the curvature of
spacetime will be so extreme that not even light will be able to escape it. Such an object
takes the name of Black Hole (BH), since it cannot be directly observed. Black Holes
can exist over a wide mass range. Those of order several solar masses (denoted in what
follows by M�) are produced by stars which cease to be able to sustain nuclear fusion
at their core (or rather, where this is not sufficient to counterbalance the gravitational
collapse of the star on itself), and are expected to be quite common. Supermassive BHs,
of masses 106M� . M . 1010M�, are instead found at the centre of galaxies, the first
(indirect) image of one causing quite some excitement not long ago [47]4.

Another possibility is that BHs formed in the early universe – thus dubbed Primor-
dial Black Holes (PBHs). These were first considered by Zel’dovich & Novikov [49] and
Hawking [50], and were found to have an initial mass close to that of the cosmological

4The first results of the Event Horizon Telescope’s new imaging of the supermassive BH at the centre
of our own galaxy have just been published: see [48].

7



CHAPTER 1. INTRODUCTION

horizon [51]. PBHs would have been formed from the gravitational collapse of the pri-
mordial fluctuations generated during inflation. No decisive proof exists yet regarding
the existence of PBHs (as is in fact the case for WIMPs and other candidates as well),
but they are thought to be able to account for either a fraction or, in some models, the
entirety of DM [51]; in either case, their study would prove beneficial. An additional in-
teresting aspect of PBHs is that they neither require physics beyond the Standard Model
of particle physics, nor modified theories of gravity. These considerations make them an
interesting candidate for DM, and a natural one in the context of inflation. We will detail
the theory of their formation and evolution in Chapter 4, after having studied the theory
of cosmological perturbations in §3.3.

1.2 Notation
Below are listed a few noteworthy details regarding the notation used throughout this
report. These are given here for ease of reference, and will become clear in later Chapters.

Units. Natural units c = ~ = 1 are adopted. Unless otherwise stated, the Planck
mass MPl = 1/

√
8πGN (where as usual GN is Newton’s gravitational constant) will be

written explicitly. Notice that H has dimensions of mass in these units.
Spacetime metric. We will adopt the (−+++) signature for the spacetime metric,

as is done e.g. in [17,52,53]. Furthermore, we will usually work in a flat universe in which
the curvature parameter, k, and the Ricci scalar, R, are both equally zero.

Indices. The greek indices (µ, ν, ... = 0, 1, 2, 3) will refer to spacetime coordinates,
while the latin indices (i, j, ... = 1, 2, 3) indicate spatial coordinates. A different set of
latin indices (a, b, ... = 1, 2, ...,N ) will instead refer to field-space coordinates.

Derivatives. The dot notation will refer to time derivatives, ˙ ≡ ∂/∂t ≡ ∂t. The
prime notation will instead indicate derivatives with respect to the number of e-foldings,
Ne ≡ ln a, a being the scale factor: ′ ≡ ∂/∂Ne ≡ ∂Ne ≡ H−1∂t. Here H ≡ ȧ/a is the
Hubble parameter. Conformal time derivatives will be used in a couple of occasion, but
will be written explicitly as ∂τ ≡ a∂0 to avoid polluting the notation.

∗ ∗ ∗

Closing this Chapter, let us mention a few aspects regarding the format of this thesis.
The document was typeset in LATEX from a class file prepared by the author, based on
the memoir document class. The title page matches the University’s required house style,
the characteristic double line being then used in the Chapter headings. Overall, the
focus of the page layout was set on allowing for the best possible readability. Various
tweaks and tools were introduced for ease of writing. The class file – almathesis.cls –
is well-documented and can be used as-is: contact the author for a copy.

All the Figures in this thesis are the author’s own production, unless otherwise stated
(such as the case of Figure 1.1). Most of them were produced using Wolfram Mathematica.
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Chapter 2

Cosmology and Inflation

A fter the qualitative introduction to the topic given in the previous Chapter, we
review here the fundamental elements of ΛCDM cosmology: the spacetime geome-
try, its dynamics, and the content of the universe. We then present the theoretical

framework of standard single-field inflation, describing its background dynamics, Slow-
Roll limit, and providing a simple example.

2.1 The ΛCDM Model
An homogeneous and isotropic universe, as required by the cosmological principle dis-
cussed in §1.1, can have one of three possible spatial geometries: 3-sphere, 3-plane (Eu-
clidean space), and 3-hyperboloid. Note that homogeneous and isotropic spaces are re-
spectively translation- and rotation-invariant [53, §3.1]. The 3-sphere and 3-hyperboloid
manifolds can be understood by embedding them in hypothetical 4-dimensional Euclidean
and Minkowski spaces (see [9, §I.2.1] for a detailed description), and have positive and
negative spatial curvature, respectively. The curvature is labelled by the parameter κ,
such that

κ =


+1 3-sphere, positive curvature, closed universe

0 3-plane, zero curvature, flat universe
−1 3-hyperboloid, negative curvature, open universe

,

and has an associated radius of curvature of space, R. In polar coordinates (χ, θ, ϕ), the
κ = ±1 metrics include terms sin(χ/R) and sinh(χ/R), respectively. Unifying the three
possible spatial metrics, one finds the line element

ds2
III = dχ2 + S2

κ(χ)
(
dθ2 + sin2 θ dϕ2

)
,

9



CHAPTER 2. COSMOLOGY AND INFLATION

where

Sκ(χ) =


R sin (χ/R) if κ = +1
χ if κ = 0
R sinh (χ/R) if κ = −1

.

Embedding this line element in a 4-dimensional spacetime manifold, ds2 = −dt2 + ds2
III,

and accounting for the expansion of space as well (i.e. including the scale factor intro-
duced in §1.1, ds2

III → a2(t) ds2
III), we obtain the Friedmann–Lemaître–Robertson–Walker

(FLRW) metric:

ds2 = −dt2 + a2(t)
[

dr2

1− kr2 + r2dΩ2
]

. (2.1)

To reach this form, known as the Astronomer’s metric, the substitution r = Sκ(χ) was
made, together with the rescaling k = κ/R2. It is common to consider unit 3-sphere
and 3-hyperboloid in the above, such that R = 1 and k = κ [9, §I.2.2]. The term
dΩ2 = dθ2 + sin2 θ dϕ2 is the element solid angle. From the metric (2.1), one can compute
the Christoffel symbols, Γλµν , the Riemann tensor, Rλ

µνσ, the Ricci tensor, Rµν , and the
Ricci (curvature) scalar, R: refer to Appendix A.1 for their definitions.

The coordinates (r, θ, ϕ) are called comoving coordinates: an observer who is only
subject to the expansion of the universe (said to move with the Hubble flow) is at rest
in these coordinates. This can be seen by solving the geodesic equation for this metric
for the worldline xi = const [54, §1.1]. Distances expressed in these coordinates are fixed
with respect to the expansion of the universe, and should be multiplied by a to obtain the
corresponding “physical” distance [55, §2.1]. The time coordinate t is called cosmological
(or cosmic) time, and is the one measured by a comoving observer. For such an observer
at constant (r, θ, ϕ), in fact, ds2 = dt2.

To understand the causal structure of a FLRW universe, we consider the propagation
of massless photons, which follow null geodesics (ds2 = 0). In terms of the conformal
time

τ ≡
∫ dt
a(t) , (2.2)

which can be understood as a time coordinate which slows down as the universe expands
[53, §3.2], the FLRW metric can be written as

ds2 = a2(τ)
(
−dτ 2 + dχ2 + S2

κ(χ) dΩ
)

.

Radial (dΩ2 = 0) null (ds2 = 0) geodesics then satisfy dτ 2 = dχ2, such that

χ(τ) = ±τ + const .

These are straight lines at ±45◦ in the plane τ − χ, which define the FLRW light cones;
in terms of cosmological time t, the light cones would be curved [53, §3.2].

For a flat universe, i.e. when the curvature constant k = 0, the FLRW metric in
conformal-time coordinates reduces to the Minkowski one multiplied by the scale factor,

ds2 = a2(τ)
(
−dt2 + dx2

)
≡ a2(τ)g(M)

µν dxµdxν , (2.3)

where dx is the 3-dimensional spatial line element and g(M)
µν = diag(−1,+1,+1,+1) is the

Minkowski metric tensor (see Appendix A.1).
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CHAPTER 2. COSMOLOGY AND INFLATION

2.1.1 Dynamics of an Expanding Universe
The time evolution of a FLRW universe is implicitly embedded in the time dependence
of the scale factor a(t). To make this dependence explicit, one needs to solve the Einstein
Field Equations,

Rµν −
1
2Rgµν ≡ Gµν = 8πGNTµν , (2.4)

for a(t) [9, §I.3.1]. Here Gµν is defined to be the Einstein tensor, and Tµν is the energy-
momentum tensor, which describes the matter content of the universe.

The left-hand side of the Einstein equations can be calculated directly from the FLRW
metric (2.1). As carefully shown in Appendix A.2, the only non-vanishing components of
the Ricci tensor are

R00 = −3 ä
a

and
Rij =

(
ä

a
+ 2 ȧ

2

a2 + 2 k
a2

)
gij ,

the Ricci scalar then being

R = 6
(
ä

a
+ ȧ2

a2 + k

a2

)
.

To calculate the left-hand side of the Einstein equations (2.4), we consider the matter
content of the universe to be a homogeneous perfect fluid, with energy density ρ = ρ(t)
and pressure p = p(t). The energy-momentum tensor for such a fluid is given by [56, §5.4]

Tµν = (p+ ρ)uµuν + p gµν . (2.5)

Since this fluid is comoving with the Hubble flow, i.e. it is at rest in the comoving coor-
dinates, its only non-vanishing 4-velocity component is u0 = 1, subject to gµνuµuν = −1.
The energy-momentum tensor thus reduces to T00 = ρ and Tij = p gij.

The (00) component of the Einstein equations then gives

ȧ2

a2 ≡ H2 = 8πGN

3 ρ− k

a2 , (2.6)

which is known as the Friedmann equation, while the (ii) components give the so-called
Raychaudhuri equation [9, §I.3.1],

2 ä
a

+ ȧ2

a2 = −8πGN p−
k

a2 . (2.7)

The difference of the two above equations gives a relation for the acceleration ä, that
is [55, §3.1]

ä

a
≡ Ḣ +H2 = −4πGN

3 (ρ+ 3p) , (2.8)

sometimes called the second Friedmann equation.
The Friedmann equation is supplemented by the covariant conservation of Tµν ,

∇νT
µν = 0 .

11



CHAPTER 2. COSMOLOGY AND INFLATION

Its µ = 0 component gives the First Law of Thermodynamics d(ρa3) = −pd(a3) or, more
conveniently,

ρ̇+ 3 ȧ
a

(ρ+ p) = 0 , (2.9)

known as the fluid equation or the energy conservation equation. Notice that only two
of the three equations (2.6), (2.8), and (2.9) are independent, as they are related by the
Bianchi identities [55, §3.1].

The dynamical equations (the two Friedmann equations (2.6) and (2.8), as well as the
energy conservation equation (2.9)) are complemented by the equation of state for the
perfect fluid,

p = ωρ , (2.10)

with ω a dimensionless, time-independent parameter (the equation of state parameter)
whose value depends on the characteristics of the fluid considered [55, §3.1]. Before
moving on to discussing ω and the composition of the universe, we point out that the
Friedmann equation (2.6) can be rewritten as

1 = ρ

3H2/8πGN
− k

H2a2 ≡ Ω + Ωκ , (2.11)

where the density parameter Ω ≡ ρ/ρcrit was defined, as well as the curvature density
parameter Ωκ ≡ −k/H2a2. The critical density, that is the density of matter for which
the universe is exactly flat, is defined to be

ρcrit ≡
3H2

8πGN
,

found by evaluating the Friedmann equation with k = 0. For ρ0 > ρcrit,0 we would be
living in a closed universe, while ρ0 < ρcrit,0 would indicate a closed universe; here and
throughout this Section, the subscript 0 indicates present time, such that ρ0 ≡ ρ(t0).
Note that ρcrit, Ω, and Ωk are all functions of time, and Equation (2.11) holds for any t.

2.1.2 Composition and History of the Universe
So far, the matter content of the universe was considered to be a perfect fluid. We know
in reality that various components of matter exist, which can be modelled as independent
perfect fluids satisfying separate energy conservation equations and equations of state.
The assumption here is that the components are decoupled, so that they do not interact
with one another [9, §I.3.1]. The energy density ρ appearing in the Friedmann equation
(2.6) then represents the sum of the components’ energy densities; similarly, the density
parameter Ω of Equation (2.11) is the sum of the single density parameters.

For a generic fluid with parameter of state ω (for which we use the label ρω), Equa-
tion (2.9) can be solved by substituting the equation of state for p and rewriting ρ̇ω as
dρω/dt and similarly for a:

dρω
ρω

= −3(1 + ω)da
a

.

12
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Integrating this, we obtain a relation for the evolution of the energy density [55, §3.1],

ρω(a) = ρω,0

(
a

a0

)−3(1+ω)
, (2.12)

where a0 is the present-day value of the scale factor, which is usually set to unity; we will
adopt the convention a0 = 1 from here onwards, unless otherwise stated. Furthermore,
substituting the above result in the Friedmann equation, we get the a-dependence of ȧ,
which is nonetheless than the quantity aH that will be introduced in Figure 2.1 below:

ȧ ≡ aH =
√

Ωω,0H2
0 a
− 1

2 (1+3ω) . (2.13)

Integrating this, we can find the explicit time-dependence of the scale factor,

a ∝

t
2

3(1+ω) if ω 6= −1
eHt if ω = −1

, (2.14)

where the constant of proportionality in the first case depends on Ωω,0 – the present-day
value of the density parameter for the fluid with state parameter ω –, H0, and ω. For
the ω = −1 case introduced hereafter and corresponding to the constant density ρΛ of
Equation (2.15), we used the fact that Ωω,0H

2
0 = H2 = Λ/3; note that H is constant in

this scenario.

∗ ∗ ∗

The principal matter components of our universe – a ΛCDM universe – are non-relativistic
matter (commonly referred to as dust in cosmology1), radiation, and dark energy. The
former includes ordinary baryonic matter as well as dark matter, while radiation refers to
massless relativistic particles (photons and neutrinos). As mentioned in §1.1, the simplest
model of dark energy – and the one considered by the ΛCDM model – is that of a vacuum
energy permeating all of space, in the form of a cosmological constant Λ. We use the
self-descriptive subscripts m, r, and Λ for the dust, radiation, and cosmological constant
components, respectively; below, the subscript κ will refer to curvature.

We consider dust to be pressureless (pm = 0 and thus ωm = 0) since the particles
it is composed of are well separated and rarely interact [8, §5.3]. Photons and other
relativistic particles have a radiation pressure due to their kinetic energy, which can be
found to result in pr = ρr/3, or ωr = 1/3 [8, §5.3]. Lastly, the cosmological constant has
equation of state pΛ = −ρΛ, i.e. ωΛ = −1. This can be seen by solving the Einstein
equations (2.4) with the addition of the Λ term, that is Rµν − 1

2Rgµν = 8πGNTµν + Λ gµν .
In this case, the Friedmann equations (2.6) and (2.8) have an additional additive term
Λ/3 on their right hand sides, which can be recast as a component of the total energy
density ρ by defining

ρΛ ≡
Λ

8πGN
. (2.15)

1The term “matter” is often used as a synonym for “dust”, as well as to represent the whole matter
content of the universe (i.e. dust + radiation + Λ). While we will try to avoid using the former meaning
of the word to avoid possible confusion, note that matter-dominated epoch (see below) refers to dust-
domination.
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This density is constant, and the energy conservation equation (2.9) thus gives the above-
mentioned result [8, §7.2]. Note that a generic dark matter component needs to have
ωde < −1/3 in order to cause an accelerated expansion of the universe, ä > 0 (this can be
seen by substituting Equation (2.12) into the acceleration equation (2.8)).

∗ ∗ ∗

The evolution of these single components is found by solving Equations (2.12), (2.13),
and (2.14) for the different values of ω, i.e. by solving for a universe dominated by
that component of matter (meaning that other components, including curvature, are
negligible). The results summarised in Table 2.1 are thus obtained. The Λ-dominated case
is called a de Sitter (dS) universe and is often considered in the context of inflation [54,57].

Table 2.1: Temporal evolution of the matter components of a ΛCDM universe.

Dust ωm = 0 ρm = ρm,0 a
−3 ȧ ∝ a−1/2 a ∝ t2/3

Radiation ωr = 1
3 ρr = ρr,0 a

−4 ȧ ∝ a−1 a ∝ t1/2

Λ ωΛ = −1 ρΛ = ρΛ,0 ȧ ∝ a a ∝ eHt

In a generic universe containing all of the above fluids, the total energy density would
be ρ = ρm+ρr+ρde+ρκ, where we also defined the energy density for curvature, albeit this
is not a proper cosmological fluid; from Equation (2.11) we see that ρκ = ρκ,0 a

−2. Con-
sidering the a-dependence of each component, we can then write the Friedmann equation
(2.6) as

H2(a) = H2
0

(
Ωm,0

a3 + Ωr,0

a4 + Ωde,0

a3(1+ω) + Ωκ,0

a2

)
. (2.16)

We see that when the dark energy component corresponds to the cosmological constant
(ω = −1), the denominator of ΩΛ goes to unity: its density is constant in time.

∗ ∗ ∗

Since the densities of the matter components evolve differently in time, and we assumed
that these do not interact with one another, they will tend to separate from within
a mixture of the various fluids. A universe containing several matter components will
therefore evolve through different phases, each dominated by a particular fluid. During
every phase, the evolution of the scale factor will be influenced by that of the dominating
fluid. The time – or a value – of a transition between two epochs is calculated by requiring
that the densities of the two fluids at that time be equal. For instance, the matter-
radiation transition happens when ρr(aeqrm) = ρm(aeqrm).

The evolution of the energy density in a ΛCDM universe containing dust, radiation,
and a cosmological constant is shown in the left panel of Figure 2.1. We see here that
at early times (low a values, a < aeqrm) the radiation component is dominating, defining
a radiation-dominated epoch. This is followed by a matter-dominated stage (aeqrm < a <
aeqmΛ), and eventually a Λ-dominated one at recent times (a > aeqmΛ). If a non-negligible

14



CHAPTER 2. COSMOLOGY AND INFLATION

Figure 2.1: Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel: Evolution of the energy density for the matter components of a ΛCDM
universe. Radiation (ρr ∝ a−4) dominates at early times (a < aeqrm), dust (ρm ∝ a−3) at
intermediate times (aeqrm < a < aeqmΛ), and Λ (ρΛ ∝ const) at late times (a > aeqmΛ). RightRightRightRightRightRightRightRightRightRightRightRightRightRightRightRightRight
panel:panel:panel:panel:panel:panel:panel:panel:panel:panel:panel:panel:panel:panel:panel:panel:panel: Evolution of the quantity aH for the matter components of a ΛCDM universe. The same
epochs as in the left panel can be seen, where here radiation corresponds to aH ∝ a−1, dust to
aH ∝ a−1/2, and Λ to aH ∝ a. Both panels:Both panels:Both panels:Both panels:Both panels:Both panels:Both panels:Both panels:Both panels:Both panels:Both panels:Both panels:Both panels:Both panels:Both panels:Both panels:Both panels: The solid lines indicate the dominating behaviour
in each epoch, with the dotted lines of the same colour being their (subleading) contributions
in other epochs. Green, red, and blue represent radiation, dust, and Λ, respectively. The
vertical dashed lines indicate the transitions between epochs, at aeqrm and aeqmΛ. The cosmological
parameters were taken from the latest Planck results [19], and are reported in Table 2.2. The
behaviour of ρ and aH was extrapolated to a > 1 (i.e. to the future) for clearer readability.

curvature component2 were present (its observed value gives a subleading contribution
on all scales, not shown in the Figure), a curvature-dominated epoch would take place
between the matter- and Λ-dominated ones. In the right panel of Figure 2.1, we see the
corresponding evolution of the quantity aH, which we introduce here as it will be useful
when discussing inflation. This follows from Equation (2.13), and determines the rate of
expansion of the universe during each epoch.

Note that we extrapolated the behaviour of ρ and aH to a > 1 (i.e. to the future) in
both panels of this Figure for clearer readability. The parameters used in Figure 2.1 are
those of the latest Planck results [19, Table 2, Planck TT,TE,EE+lowE+lensing+BAO],
from which we inferred a radiation component Ωr,0 = 10−4. The parameters used are
reported in Table 2.2.

2Recent studies [58] based on the latest Planck results have shown evidence of a closed universe with
−0.095 < Ωκ, 0 < −0.007. If confirmed, these results could strongly affect our understanding of the
universe, requiring modifications of the ΛCDM model.
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Table 2.2: The values for the parameters used in Figure 2.1. These are taken from the latest
Planck results [19, Table 2, Planck TT,TE,EE+lowE+lensing+BAO]. The approximate Ωr,0
value was calculated through the use of Ωm,0 and zeqrm reported there, as Ωr,0 = Ωm,0/(1 + zeqrm).
We also give the values for the present baryon and Cold Dark Matter density parameters for
future reference. These parameters are given here without their associated errors.

H0 [km s−1 Mpc−1] ΩΛ,0 Ωm,0 Ωr,0 Ωb,0 ΩCDM,0

67.66 0.6889 0.3111 10−4 0.0490 0.2607

2.1.3 Towards Inflation
It is important to notice from the right panel of Figure 2.1 that the combination aH is
a decreasing function of time during the radiation- and matter-dominated epochs. This
is an important property of the horizon and flatness problems qualitatively introduced in
§1.1.2 (and discussed in more detailed in e.g. [31, §II.11.1] and [17, §3.1]). By introducing
an inflationary epoch preceding HBB cosmology during which aH increases with time
(similarly to what happens in the late-time Λ-dominated epoch seen in Figure 2.1), these
problems can therefore be solved. This behaviour is shown in Figure 2.2.

The need for an increasing aH is evident in the case of the flatness problem: from
Equation (2.11), Ωκ ∝ (aH)−2 and thus increases with time, requiring an unnaturally
small initial value Ωκ,i to explain the current Ωκ,0 ∼ 0. The inflationary phase would
instead minimise a more realistic Ωκ,i ∼ O(1) before it starts increasing. The discussion
of the horizon problem requires additional care.

The idea of (physical) Hubble radius was introduced in §1.1 as dH = H−1, setting the
size of the observable universe at time t [9, §I.3.2.1]. The comoving Hubble radius is then
defined to be

χH = dH
a

= (aH)−1 , (2.17)

and therefore increases in time during HBB cosmology. We can furthermore introduce
the concept of comoving particle (or cosmological) horizon to be the greatest comoving
distance that photons can propagate between an initial time ti and a time t: in terms of
the conformal time defined in Equation (2.2),

χp = τ − τi =
∫ t

ti

dt′
a(t′) .

Correspondingly, the physical particle horizon will be dp = aχp. The initial time is usually
taken to be ti = 0, when a(0) = 0 and – for HBB cosmology – τi = 0. The comoving
particle horizon can then be rewritten as (dropping the prime label for simplicity) [53, §4.1]

χp(τ) = τ =
∫ t

0

dt
a(t) =

∫ a

0

da
a2H

=
∫ a

0
d ln a (aH)−1 . (2.18)

A subtle yet important distinction between χH and χp, described in [52, §6.3.1], is to
be noted: the comoving Hubble radius sets the scale for causality at a given time (two
particles separated by a distance greater than χH are not in causal contact now), while
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Figure 2.2: Sketch of the evolution of the quantity (aH) throughout the history of the
universe. The left-hand side shows how aH increases during inflation – denoted by the field
φ that drives this expansion, see §2.2 –, while in the right-hand side we see how it behaves
during HBB cosmology (i.e. what is shown in the right panel of Figure 2.1). The evolution of
aH during inflation was calculated by considering the results of Equations (2.38) and (2.39) of
the next Section. The vertical dashed lines indicate the start and end values of inflation, astart
and aend, as well as the radiation-matter and matter-Λ equalities, aeqrm and aeqmΛ. The present
time a0 is not shown explicitly, as it would overlap with aeqmΛ in this sketch. We also indicate
the time of recombination, arec, i.e. when the CMB was formed. The period between the end
of the exponential expansion and recombination is called reheating, and is an important aspect
of inflationary cosmology as it explains the origin of elementary particles and provides the link
with HBB theory; reheating will nevertheless not be considered in this work: see e.g. [59,60] for
reviews. The scales for HBB match those of Figure 2.1, as we used the parameters of Table 2.2,
while those on the left-hand side of the plot – including aend – are arbitrary. The plot is in
log− log scale.

the comoving particle horizon sets the total scale for causality (two particles separated
by a distance greater than χp never were in causal contact). At present time, the latter
distance could thus possibly be greater than the former. As illustrated by the logarithmic
integral over the comoving Hubble radius of Equation (2.18), χp could have received most
of its contribution from some hypothetical early epoch during which χH was much larger
than it is today. At that time, the comoving Hubble horizon would have encompassed
all of today’s cosmologically-relevant scales. This would mean that particles that are not
in causal contact now could have been connected at early times, solving the core of the
horizon problem. This early epoch would have preceded inflation, the condition of an
increasing aH translating to a decreasing χH.

Looking back at Equation (2.18), we point out that including the inflation stage (which
as we will show below drives an exponential expansion of space) the initial conformal time
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is pushed back to τi = −∞. Now τ = 0 corresponds to the time of reheating, i.e. the end
of inflation.

∗ ∗ ∗

On top of solving the horizon and flatness problems of HBB cosmology, the fact that χH
decreases during inflation also leads to understanding the formation of primordial density
perturbations. Cosmological objects with comoving wavelengths that enter the comoving
Hubble radius today were outside it at the time of CMB decoupling, but within it during
inflation: see Figure 2.3 (or equivalently [52, Figure 6.4]). From now on, we will often call
the comoving Hubble radius “horizon” as done in the literature (we talk of subhorizon
and superhorizon evolution).

During inflation, quantum perturbations are generated; in physical coordinates, these
are stretched to distances greater than dH, which remains roughly constant during in-
flation. In comoving coordinates, this means that the perturbations are generated on
subhorizon scales (i.e. their time-independent comoving wavelengths are smaller than the
comoving Hubble radius at that time) and exit the horizon when χH becomes smaller
than their comoving wavelength. They then evolve as classical superhorizon (density)
perturbations, their amplitude remaining constant (they are “frozen” [61, 62]), and re-
enter the horizon during HBB cosmology forming large-scale structures by gravitationally
collapsing [52, §6.3.1].

∗ ∗ ∗

From Equation (2.14) (in the ω 6= 1 case3), a ∝ tα so that aH = ȧ ∝ α tα−1. An
increasing aH therefore requires α > 1 (the scale factor growing faster than time) or,
from Equation (2.14), ω < −1/3. This is the same condition that was found below
Equation (2.15) when requiring that ä > 0: inflation in fact corresponds to a phase of
accelerating expansion of the universe (which was already understood when requiring that
aH = ȧ be a increasing function of time).

Three equivalent conditions for inflation can therefore be formulated: an increasing
aH (or decreasing comoving Hubble radius), an accelerated expansion, or a negative
pressure [53, §5.2]. In equations,

d
dt(aH)−1 < 0 ⇔ ä > 0 ⇔ ω < −1

3 . (2.19)

The latter corresponds to a violation of the Strong Energy Condition [53, §5.2].
As discussed in §2.1.2 and reported in Table 2.1, baryonic matter and radiation do

not satisfy the negative pressure requirement ω < −1/3; a different energy component is
therefore needed to drive inflation. It turns out that such a component can be easily and
efficiently described in terms of a scalar field (the inflaton). This description will be the
matter of the following Section. In Chapter 3 we will instead see how inflation can be
described by a number of scalar fields. Alternatively, from the particle physics point of
view (which motivated the use of a scalar field in the first place), one can use a vector
field to drive inflation; this not only complicates things, but does not seem to work better
either [52, §6.3].

3In the ω = −1 case, H = const and a ∝ eHt, thus aH ∝ HeHt, increasing for any H > 0.
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★ ★

Figure 2.3: Sketch of the evolution of the Hubble radius (aH)−1 (the opposite of the quantity
aH shown in Figure 2.2) throughout the history of the universe; notice that reheating and Λ-
domination are ignored here. The left-hand side shows the decreasing Hubble radius of inflation,
while in the right-hand side we see how it increases during HBB cosmology. The evolution of
aH during inflation was calculated by considering the results of Equations (2.38) and (2.39)
of the next Section. The vertical dashed lines indicate the starting and values of inflation,
astart and aend, as well as the radiation-matter equality aeqrm and the pseudo-present-time a0 (we
extend matter-domination to a0). The evolution of an arbitrary perturbation is also shown as
a straight grey line: we highlight with a grey star the moments where it exits and re-enters
the horizon, during inflation and radiation-domination respectively. This perturbation could
correspond to Primordial Black Holes (see Chapter 4). Furthermore, the grey band shows
CMB-scale perturbations: just like the grey line, these are within the horizon at the beginning
of the inflationary epoch, then become superhorizon. These perturbations re-enter the horizon
around present-time, and are thus the ones we observe nowadays [52, §6.3.1]. The scales for
HBB match those of Figure 2.1, as we used the parameters of Table 2.2, while those on the
left-hand side of the plot – including aend – are arbitrary. The plot is in log− log scale.

2.2 Single-Field Inflation
In order to build a model of single-field slow-roll inflation, one needs only consider a
generic scalar field φ that is minimally coupled to Einstein gravity through the canonical
Einstein-Hilbert action [9, §I.4.8.1],

S =
∫

d4x
√
−g

[
−1

2g
µν∂µφ∂νφ− V (φ) + M2

Pl
2 R

]
, (2.20)

where g ≡ det gµν is the determinant of the FLRW metric tensor (2.1) and R is its
associated Ricci scalar. The field-dependent potential, V (φ), is specified by the particular
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model considered; it describes the field’s self-interactions. The field’s Energy-Momentum
tensor (EMt), as determined in Appendix B, is given by

Tµν = ∂µφ ∂νφ− gµν
(1

2∂
αφ ∂αφ+ V (φ)

)
, (2.21)

while its Equations of Motion (EoM) are found through the use of the Euler–Lagrange
equations to be (c.f. Equation (B.14))

Dµ∂
µφ = V,φ , (2.22)

where V,φ = ∂V/∂φ and the covariant spacetime derivative satisfiesDµA
ν = ∂µA

ν+ΓνµλAλ,
with Γνµλ the Christoffel symbols associated to the FLRW metric.

We now consider the standard splitting of our fields (clearly the inflaton, but also the
metric and the EMt) into classical homogeneous backgrounds and sets of perturbations
around the background, which will then be quantised (semiclassical approach). For a
generic field,

X(t,x) = X0(t) + δX(t,x) .

Let us begin by focusing on the background fields. The study of cosmological perturba-
tions is quite involved, and is postponed to §3.3, where it will be tackled in the multi-field
framework.

2.2.1 Background Dynamics
In the present Section and for the rest of this Chapter, we focus on the homogeneous
universe for which all perturbations can be set to zero. We therefore have that φ = φ0(t)
here: we will drop the 0 subscript notation for the remainder of this Chapter and will
make it explicit when we reintroduce it later.

The background metric in a flat FLRW universe is the Minkowski one multiplied by
the scale factor, as was encountered in Equation (2.3). In cosmic time coordinates, this
reads

ds2 = −dt2 + a2(t)dx2 , (2.23)
such that gµν = diag(−1, a2, a2, a2), for which g = −a6. For this homogeneous universe
we have ∂iφ = 0, and Equation (2.22) then gives us the background Equation of Motion

φ̈+ 3Hφ̇+ V,φ = 0 , (2.24)

that is, a Klein–Gordon equation for φ [63, Chapter 8]. Here we noticed that Γ0
00 = 3H

from the property Γµµν = ∂ν ln√−g of the Christoffel symbols [9, Equation (I.A.24)].
Notice that the background EoM can equivalently be obtained by varying the action
(2.20) for φ = φ0(t) and gµν = gµν,0:

δS =
∫

d4x a3
(
φ̇δφ̇− V,φδφ

)
=
∫

d4x

(
− d
dt(a

3φ̇)− a3V,φ

)
δφ ,
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where we integrated by parts the first term and noticed that δφ vanishes at the boundaries.
The EoM (2.24) then correspond to δS/δφ.

We point out that the background EoM (2.24) is the same equation as that for the
motion of a classical particle of coordinates φ rolling a potential well V (φ), for which Hφ̇
is a time-dependent friction term, called the Hubble friction [31, §II.12.1].

Assuming the background field φ to be a perfect fluid [64], the Energy-Momentum
tensor takes the form introduced in (2.5), such that T00 = ρφ and Tii = a2pφ. Equating
this to the inflaton EMt (2.21), we find that

ρφ = 1
2 φ̇

2 + V (φ) , (2.25)

pφ = 1
2 φ̇

2 − V (φ) . (2.26)

Inserting these results into the Friedmann equations (2.6) and (2.8) allows to find expres-
sions for the evolution of H and Ḣ in terms of the inflaton field:

H2 = 1
3M2

Pl

(1
2 φ̇

2 + V (φ)
)

, (2.27)

Ḣ = − 1
2M2

Pl
φ̇2 , (2.28)

written in terms of the Planck massMPl = 1/
√

8πGN. These equations, together with the
EoM (2.24), determine the dynamics of the system of background fields when no other
matter components are present [31, §II.12.1].

Furthermore, the Equation of State (2.10) for the inflaton component described by
Equations (2.25) and (2.26) gives

ωφ =
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
. (2.29)

2.2.2 Slow-Roll
The scalar field’s Equation of State (2.29) allows for negative pressure and especially for
the condition ωφ < −1/3 of (2.19) to be satisfied if the potential energy dominates over
the kinetic energy,

1
2 φ̇

2 � V (φ) .

In the extreme case where φ̇2/2 ∼ 0, a quasi-de Sitter expansion ωφ ∼ −1 would take
place. In general, for φ̇2/2 � V we have that H2 ∝ V from Equation (2.27), which
becomes very large for large V . This leads to a significant Hubble friction term Hφ̇ in
the background EoM (2.24) [53, §6.1]: the field φ is therefore slowly rolling down the
potential well V (φ).
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The first Hubble Slow-Roll (SR) parameter4 is defined as

ε ≡ − Ḣ

H2 = −d lnH
dNe

= 1
2M2

Pl

φ̇2

H2 , (2.30)

where the second equality requires the introduction of the number of e-foldings (or e-folds)
of inflationary expansion, dNe = Hdt = d ln a, and the third equality comes from using
Equation (2.28). The physical meaning of Ne is that during an e-folding, the universe
expands by a factor e: over Ne e-folds, it expands by eNe . Rewriting the second Friedmann
equation (2.8) in terms of ε, one finds that

ä

a
= Ḣ +H2 = H2 (1− ε) .

The inflation acceleration condition ä > 0 of Equation (2.19) therefore translates to
requiring that ε < 1. This can be read as the fractional change of H per e-folding (i.e.
per Hubble time) being small – the Hubble parameter varies slowly, and is therefore
roughly constant during inflation [53].

In the case that φ̇2/2 � V , we have from Equations (2.27) and (2.28) that H2 ∝ V
and Ḣ ∝ −φ̇2, such that ε ∼ φ̇2/V and therefore

ε� 1 .

While ε < 1 is the generic requirement for inflation, ε� 1 is the first Slow-Roll condition.
The de Sitter case corresponds to the limit ε→ 0.

∗ ∗ ∗

In order to sustain a sufficiently long inflation period, the acceleration of the scalar field
must be much smaller than the friction and potential terms of the EoM (2.24),

|φ̈| � |3Hφ̇|, |V,φ| .

Introducing the second Hubble Slow-Roll parameter,

η ≡ − φ̈

Hφ̇
= −d ln φ̇

dNe

= ε− 1
2
ε̇

Hε
= ε− 1

2
d ln ε
dNe

, (2.31)

the above requirement translates to

|η| � 1 ,

i.e. that the fractional change of ε per Hubble time (or per e-folding) is small.
Note that different definitions of η exist in the literature. We choose to follow the

notation of Baumann [53] for consistency with the multi-field generalisation of this pa-
rameter as used by Achúcarro et al. [5] and (differing by a minus sign) Groot Nibbelink

4As pointed out in [65, §2.4], the parameter ε describes the deviation of the inflationary spacetime
from perfect de Sitter. Being finite (although small), the universe never is perfectly de Sitter; in such a
universe, in fact, inflation would never end.
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& van Tent [66, 67] – see Equation (3.22) in §3.2. Other choices are that of Gorbunov &
Rubakov [31], η(GR) = ε− φ̈/Hφ̇ = ε+ η, or that of Braglia et al. [6, 7],

η(B) = ε̇

Hε
= d ln ε

dNe

= 2ε− 2η , (2.32)

which will also be considered in the multi-field case: see Equation (3.28). Importantly,
all of these choices equivalently satisfy |η| � 1.

The SR conditions can be shown to be equivalent to requiring a flat enough potential,
such that it can behave as an effective cosmological constant driving near-exponential
expansion. Following the reasoning of [31, §II.12.1], the potential Slow-Roll parameters

εV ≡
M2

Pl
2

V 2
,φ

V 2 (2.33)

and

ηV ≡M2
Pl
V,φφ
V

(2.34)

are introduced, where V,φφ = ∂2V/∂φ2. Using the Friedmann equations and the EoM, the
SR conditions translate to

εV, ηV � 1 ⇔ V,φ
V
,
V,φφ
V
� 1 . (2.35)

The precise relation between the Hubble and potential SR parameters is discussed in [53,
Appendix D]. For our concerns, we can write that ε ≈ εV and η ≈ ηV− εV. For the other
definitions of η introduced above, η(B) ≈ 4εV − 2ηV while η(GR) ≈ ηV: see [31, §II.12.1].

∗ ∗ ∗

We showed that Slow-Roll inflation is allowed to take place while the Slow-Roll conditions,

ε, |η| � 1 , (2.36)

are satisfied. Inflation ends when at least one of ε or η reach unity: usually, the end of
inflation is defined to satisfy ε(φend) = 1.

During Slow-Roll, the evolution of the background fields is simplified: the EoM (2.24)
and Friedmann equation (2.27) in fact reduce to

φ̇ ≈ − V,φ3H (2.37)

and
H2 ≈ 1

3M2
Pl
V (φ) ≈ const . (2.38)

Integrating the latter equation, we see that the time evolution of the scale factor in the
SR regime is near-exponential [31, §II.12.1],

a(t) ≈ astart exp
(∫ t

tstart
H(t′)dt′

)
∼ eHt , (2.39)
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where tstart is the time at which inflation begins. In other words, spacetime is approxi-
mately de Sitter during Slow-Roll inflation.

Considering the discussion of §2.1.2, we see from Equations (2.39) and (2.38) that
aH ∼ HeHt, similarly to the Λ case of the late-time universe. aH is therefore an increasing
function of time, as advertised.

∗ ∗ ∗

The duration of inflation is determined by the total number of e-foldings, N tot
e . First, the

number of e-folds between a time t within inflation and the end of that epoch at tend is
given as

Ne(φ) = ln aend
a

=
∫ tend

t
Hdt =

∫ φ

φend

H

φ̇
dφ =

∫ φ

φend

1√
2M2

Plε
dφ , (2.40)

where the definition of ε, Equation (2.30), was used in the last equality.
A minimum number of e-folds of around 60 is needed in order to solve the flatness and

horizon problems (see e.g. [31, §II.11.2] for a discussion). Regarding the flatness problem,
this can be found by requiring that the curvature parameter of Equation (2.11) at the
end of inflation be |Ωκ| . 10−60 (as found by working backwards from its present-day
value), and of order unity at the start of the expansion (the most natural assumption):
since Ωκ ∝ a−2 [68],

|Ωend
κ |

|Ωstart
κ |

≈ a2
start
a2
end

= e−2Ntot
e .

The commonly quoted value for N tot
e (although this value is model-dependent) is

N tot
e = ln aend

astart
& 60 .

The fluctuations on CMB scales are produced at NCMB
e ∼ 40− 60 e-folds before inflation

ends: this is required for perturbations to grow to reach the observed amplitude, and
depends on post-inflationary thermal processes [69]. From the definition of Ne(φ), we can
then calculate φCMB, the field value corresponding to NCMB

e :∫ φCMB

φend

1√
2M2

Plε
dφ = NCMB

e .

2.2.3 Simple Example: Quadratic Inflation
Before introducing multi-field inflation, which will be the main topic of this work, let us
have a look at the simplest concrete model of inflation. In this case, the potential takes
the quadratic form

V (φ) = 1
2m

2φ2 , (2.41)

with m�MPl the mass of the scalar field. The potential is shown in Figure 2.4.
The dynamical equations for the background (EoM and Friedmann equation) can

be solved for φ(Ne) to determine the evolution of the field given the appropriate initial
conditions. This will be done explicitly in Chapter 5 for 2-field models.
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Figure 2.4: Sketch of the single field quadratic inflaton potential, V (φ) = 1
2m

2φ2. The dashed
vertical lines represent the field values corresponding to the start and end of inflation, and to
perturbations on CMB scales. The field rolls down the potential from left to right towards the
minimum of V (φ), to then oscillate around it. The value N tot

e = Ne(φstart) ≈ 80 e-folds was
taken here, so that φstart ≈ 18 from Equation (2.40). An arbitrary mass m = 10−3 MPl was
chosen.

The potential Slow-Roll parameters (2.33) and (2.34) are thus found to be [53, §6.3]

εV = ηV = 2M
2
Pl
φ2 ,

such that, for the SR conditions εV, ηV < 1 to be satisfied, we need the field to take values

φ >
√

2MPl ≡ φend .

With this φend, the number of e-foldings before the end of inflation found in Equa-
tion (2.40) gives

N(φ) =
∫ φ

φend

φ

2M2
Pl
dφ = φ2

4M2
Pl
− 1

2 .

The field value corresponding to fluctuations on CMB scales is then found from NCMB
e =

N(φCMB),
φCMB = 2MPl

√
NCMB
e ≈ (12− 15) MPl .
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Chapter 3

Multi-Field Inflation

W hile the most natural assumption, considered thus far, is to account for a single
scalar field driving inflation, this is not the only possibility: starting from the
mid 1980s, different hypotheses of multiple field inflation were brought forward

(see for example [70, 71]). Using multiple fields induces new phenomenology, increasing
the amount of physics that can be explained by the theory. For example, multi-field
inflation predicts isocurvature fluctuations [72] and allows for new consistency relations
to be defined [73]. These, as well as other effects such as significant non-Gaussianity,
increase the observational prospects of inflation [53]. Furthermore, realistic models of
high energy physics comprise multiple interacting scalar fields: a model that takes them
into account is therefore expected to be more reliable from this point of view.

3.1 Theoretical Framework
As an extension to single-field inflation, one substitutes the field φ by a set of N scalar
fields φa, with a = 1, . . . ,N . The N -field action is then given by a generalisation of
Equation (2.20).

In its canonical form, the kinetic term of the Lagrangian would look like gµν∂µφa∂νφa.
We are nevertheless interested in a more general case, in which the fields φa span an
abstract N -dimensional real manifold Mφ endowed with a metric γab. This allows for
non-trivial couplings between the fields to be due not only to the fields potential V (φ)
(where from now on φ denotes the set of all φa), but also to this metric1. The N -field
action therefore takes the form

S =
∫

d4x
√
−g

[
−1

2γabg
µν∂µφ

a∂νφ
b − V (φ) + M2

Pl
2 R

]
. (3.1)

1Note that the non-minimal kinetic coupling between the fields appears naturally in supergravity
models: see [66] and references therein.
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The Christoffel symbols of the field-space manifoldMφ, upon which the fields φa act
as coordinates, are given by2

La
bc = 1

2γ
ad (∂bγdc + ∂cγbd − ∂dγbc) , (3.2)

where we defined the partial derivatives with respect to the scalar fields, ∂a ≡ ∂/∂φa.
The corresponding Riemann tensor is

R
a
bcd = ∂c

La
bd − ∂d

La
bc + La

ce

Le
db −

La
de

Le
cb , (3.3)

and the field-space Ricci tensor and Ricci scalar are respectively defined as Rab = R
c
acb

and R = γabRab. In correspondence with Equation (A.6), the field-space Ricci tensor can
be written as

Rab = ∂c
Lc
ab − ∂a

Lc
bc + Lc

ab

Ld
cd −

Lc
ad

Ld
cb . (3.4)

For a detailed discussion of the geometry of the field-space manifoldMφ, see References
[66,67].

The metric γab as well as the scalar potential V (φ) appearing in Equation (3.1) are
given a concrete form by the choice of the N -field model one chooses to study. Specific
examples will be considered in Chapter 5, where different 2-field models will be analysed.

∗ ∗ ∗

The action (3.1) leads to the following equations of motion (EoM), as detailed in Ap-
pendix B:

2φa + La
bcg

µν∂µφ
b∂νφ

c = V ,a . (3.5)
We defined here the covariant spacetime d’Alembert operator 2φ ≡ Dµ∂

µφ acting on a
scalar, where DµA

ν ≡ ∂µA
ν + ΓνµλAλ is the covariant spacetime derivative acting on a

(spacetime) vector. The potential’s derivative V ,a ≡ γab∂bV was also used. Notice that
it is visible in the EoM how the fields are coupled through both the potential and the
field-space metric (i.e. through the Labc term), as mentioned earlier.

The action also leads to the definition of the multi-field Energy-Momentum tensor,

T µν = γac∂
µφa∂νφ

c − δµν
(1

2γac∂
αφa∂αφ

c + V (φ)
)

, (3.6)

as shown again in Appendix B.
The semiclassical approximation is now considered. All of our fields are separated in

the sum of a background value, assumed to be homogeneous, and a perturbative term.
The former is taken to be classical, while the latter will be quantised. For a generic field,
X, this means that

X(t,x) ≡ X0(t) + δX(t,x) . (3.7)
The background dynamics will be analysed first; this will allow the definition of the
various quantities that describe our system. The evolution of the perturbations, which

2The notation we introduced for the geometrical quantities of the N -dimensional field-space (Labc,
R, ...) is defined such as to avoid confusion with the corresponding geometrical quantities of the four-
dimensional spacetime. The latter are the spacetime Christoffel symbols, Γλµν , Riemann tensor, Rλµνσ,
Ricci tensor, Rµν , and Ricci scalar, R, as defined in Appendix A.1.
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will then lead us to the subsequent study of PBH formation, will be discussed in §3.3.
This separation also matches the chronological development of our numerical work.

We note that we will work here in terms of comoving time, t, for consistency with
the literature; our code is nevertheless written in terms of the number of e-foldings,
Ne = ln a, for ease of numerical calculations. These are related through Ẋ = HX ′ for any
time-dependent quantity X, where the prime notation indicates derivatives with respect
to Ne. The principal results will therefore be presented in both fashions.

3.2 Background Dynamics
We analyse here the case in which all the perturbations are considered to be null, i.e.
δX = 0 in Equation (3.7). We therefore study the dynamics of the background fields
φa0(t) in this Section.

The background metric in a flat FLRW universe is that of (2.23). The background
Equations of Motion are derived from Equation (3.5) by noticing that the space derivatives
of the homogeneous background fields all vanish, ∂iφa0 = 0. Using the property Γµµν =
∂ν ln√−g of the Christoffel symbols [9, Equation (I.A.24)] to show that Γttt = 3H, we
find the Klein–Gordon equation [63, §8.2]

Dtφ̇a0 + 3Hφ̇a0 + V ,a = 0 . (3.8)

The covariant spacetime derivative acting on a field-space vector was defined here as
DµAa ≡ ∂µA

a + La
bc∂µφ

b
0A

c, and the usual dot notation φ̇a0 ≡ ∂tφ
a
0 was used for time

derivatives. Since Dµ is equal to the partial derivative ∂µ when acting on a field-space
scalar, this result clearly reduces to Equation (2.24) when only considering a single scalar
field. Notice the use of the subscript t rather than 0 to indicate time derivatives, to avoid
polluting the latter, already in use for the background quantities.

In terms of Ne, the background EoM read

DNeφ
′a
0 + (3− ε)φ′a0 + 1

H2V
,a = 0 , (3.9)

where the substitution ε = −H ′/H was used. As a shorthand, we will sometimes write
the field derivatives as πa0 ≡ φ′a0 .

Since the multi-field Energy-Momentum tensor (3.6) has no additional terms with
respect to its single-field equivalent (2.21), the considerations of the previous Chapter
still hold. The (00) Friedmann equation (2.6) takes the same form as in Equation (2.27),
that is

H2 = 1
3M2

Pl

(1
2 φ̇

2
0 + V (φ)

)
, (3.10)

and similarly the second Friedmann equation (2.8) gives the variation of H,

Ḣ = − 1
2M2

Pl
φ̇2

0 , (3.11)
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with φ̇2
0 ≡ γabφ̇

a
0φ̇

b
0. The latter can be used to rewrite the first slow-roll parameter ε from

its definition (2.30) as

ε = − Ḣ

H2 = 1
2M2

Pl

φ̇2
0

H2 , (3.12)

which then allows to rewrite (3.10) as a function of ε and V (φ):

H2 = 1
M2

Pl

V (φ)
3− ε , (3.13)

which is the form we used in our numerical calculations.
In terms of Ne, Equation (3.11) is trivially rewritten as

H ′ = − 1
2M2

Pl
Hσ2 , (3.14)

where we defined the shorthand σ2 ≡ φ′20 = H2φ̇2
0. Writing ε = −H ′/H = σ2/2M2

Pl as in
(3.12) then leads to rewriting Equation (3.10) in terms of Ne as

H2 = 1
M2

Pl

V

3− σ . (3.15)

These equations can be solved for a particular realisation of γab and V (φ) to determine
the trajectory φa0(t) (or φa0(Ne)) of the background fields on the manifoldMφ. This will
be shown in Chapter 5 for the case of N = 2 fields.

∗ ∗ ∗

It is important to notice that in (3.10) and (3.11), the “field velocity” φ̇2
0 ≡ γabφ̇

a
0φ̇

b
0 is the

(square of the) rate of change of φ0 along the trajectory followed by the background fields,
φ0 being the fields’ vacuum expectation value [5]. The “field acceleration” Dtφ̇0 then rep-
resents the (covariant) rate of change of φ̇0 with respect to the field-space manifoldMφ,
and will generally not point in the same direction as φ̇0. This motivates the introduction
of unit vectors parallel and perpendicular to the trajectory of the fields, respectively ea‖
and ea⊥, which satisfy e‖ a ea⊥ = 0. Their derivation through the Gram-Schmidt orthogo-
nalisation process is carefully explained by Groot Nibbelink & van Tent [66,67], the main
takeaway being that ea‖ points in the direction of φ̇a, while ea⊥ is determined by the part
of Dtφ̇a0 normal to ea⊥. We can then write

ea‖ ≡
φ̇a0
φ̇0

, (3.16)

Dtea‖ ≡ −Ω ea⊥ , (3.17)
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where Ω is an angular velocity which parametrises the rate of bending of the background
trajectory [74]. Projecting Equation (3.17) along ea‖ and ea⊥,

Dtea‖ = 1
φ̇0
Dtφ̇a0 −

φ̇a0
φ̇2

0
Dtφ̇0

= − 1
φ̇0

(
3Hφ̇a0 + V ,a

)
− φ̈0

φ̇0
ea‖

= −3Hea‖ + 1
φ̇0

(
Vφe

a
‖ + VNe

a
⊥

)
− φ̈0

φ̇0
ea‖ ,

where we substituted the EoM (3.8) in the second row, and have expanded V ,a = Vφe
a
‖ +

VNe
a
⊥ in terms of its projections along the two orthogonal directions, Vφ ≡ ea‖V,a and

VN ≡ ea⊥V,a. One obtains

φ̈0 + 3Hφ̇0 + Vφ = 0 , (3.18)

Ω =VN
φ̇0

. (3.19)

The first equation specifies the evolution of the background fields along their trajectory,
while the second one completes Equation (3.17) by showing that Ω equals the slope of VN
in the direction perpendicular to the trajectory [74].

Note that the angle-formalism first introduced by Gordon et al. [72] and often found
in the literature for two-field models (and expanded upon in [75], then used by Braglia et
al. [6]) is a special limit of this basis. While this will not be used further, we briefly mention
it here for completeness, as it provides a helpful visual representation; we temporarily
ignore the field-space metric (set it to the identity matrix, γ = 12) for simplicity. The
“path-length-elements” along- and orthogonal to the trajectory of two fields φ1 = ϕ and
φ2 = χ are given by

dσ = cos θ dϕ+ sin θ dχ , (3.20)
ds = − sin θ dϕ+ cos θ dχ , (3.21)

where in these authors’ formalism σ is the “adiabatic field” (not to be confused with our
σ = φ′0!) and s is the “entropy field”, and

cos θ = ϕ̇√
ϕ̇2 + χ̇2 ,

sin θ = χ̇√
ϕ̇2 + χ̇2 .

We refer the reader to [72, Figure 1] for a clear visualisation of this directional system.

∗ ∗ ∗

Following the reasoning of Achúcarro et al. [5], we define the second slow-roll parameter
vector as a generalisation of the single-field η of Equation (2.31):

ηa ≡ −Dtφ̇
a
0

Hφ̇0
. (3.22)
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This comes from the multi-field slow-roll vector η̃(n) introduced by Groot Nibbelink &
van Tent [66,67], which in our notation reads

η̃a,(n) ≡ D
n−1
t φ̇a0

Hn−1φ̇0
, (3.23)

and we identify ηa = −η̃a,(2). We will continue using the simpler notation of Achúcarro et
al. for the remainder of this discussion, but refer the reader to References [66,67] for the
generalisation of these parameters.

When projected along ea‖ and ea⊥, the parameter ηa can be decomposed as

ηa = η‖e
a
‖ + η⊥e

a
⊥ ,

where, using again the EoM (3.8),

η‖ ≡ −
φ̈0

Hφ̇0
, (3.24)

η⊥ ≡
VN

Hφ̇0
. (3.25)

Notice that, by comparing Equations (3.19) and (3.25), the angular velocity of (3.17)
becomes Ω = Hη⊥: this hints at the fact that η⊥ is strictly related to the rate of change
of ea‖, i.e. to the presence of curves in the trajectory of the background fields. As detailed
in [5], this can be seen by introducing the radius of curvature, k, of a trajectory of the
fields on the field-space manifoldMφ. Quoting only the results, this radius – which has
units of mass – can be shown to satisfy

|η⊥| =
φ̇0

H

1
k

=
√

2εMPl

k
.

A geodesic onMφ would have no curvature, i.e. infinite radius of curvature or equivalently
k
−1 = 0: such a curve therefore has η⊥ = 0. This parameter thus describes the bending of

the trajectory of the system of fields with respect to a geodesic on the field-space manifold.
Closing this discussion, we point out that Peterson & Tegmark [73, 76], in their geo-

metric approach to the matter, use a parameter ηa(PT) ≡ DNeφ
′a
0 that is related (but not

equal) to our ηa of Equation (3.22). They then call the quantity η(PT)⊥/φ′0, which matches
our η⊥, the turn rate, since it determines how quickly the trajectory of the fields changes
direction with respect toMφ.

In terms of Ne, the components of ηa read

η‖ = H ′σ +Hσ′

Hσ
, (3.26)

η⊥ = VN
H2σ

. (3.27)

We also define the η parameter used by Braglia et al. [6], which we introduced in
Equation (2.31). It is slightly different from the above definitions while being closely
related to η‖,

η(B) ≡
d ln ε
dNe

= ε′

ε
= 2σ

′

σ
= 2ε− 2η‖ . (3.28)

31



CHAPTER 3. MULTI-FIELD INFLATION

∗ ∗ ∗

Lastly, we introduce here the third slow-roll parameter vector,

ξa = D
2
t φ̇

a
0

H2φ̇0
, (3.29)

which was identified as ξa = −η̃a,(3) from Groot Nibbelink & van Tent’s multi-field slow-
roll vector of Equation (3.23) [66,67]. This parameter decomposes into ξ‖ and ξ⊥ just like
ηa does:

ξa = ξ‖e
a
‖ + ξ⊥e

a
⊥ ,

its components being, following again the notation of Achúcarro et al. [5, Equations (2.28)
and (4.13)],

ξ‖ ≡ −
...
φ 0

Hφ̈0
, (3.30)

ξ⊥ ≡ −
η̇⊥
Hη⊥

, (3.31)

or equivalently, in terms of Ne,

ξ‖ ≡ −
(H ′2 +HH ′′)σ + 3HH ′σ′ +H2σ′′

HH ′σ +H2σ′
, (3.32)

ξ⊥ ≡ −
η′⊥
Hη⊥

. (3.33)

The relation for ξ⊥ will be useful in the following Section.
Rewriting Equation (3.13) as follows, and substituting (3.24) in the relation (3.18),

one finds

3− ε = V

M2
PlH

2 ,

3− η‖ = − Vφ

Hφ̇
.

Squaring the ratio of these equations, and substituting the definition of ε, Equation (3.12),
we get

ε = M2
Pl

2

(
Vφ
V

)2 ( 3− ε
3− η‖

)2

.

On the other hand, by differentiating the relation (3.18) with respect to time, dividing by
H2φ̇0, and identifying ε, η‖, and ξ‖ as well as using (3.13), we see that

3
(
ε+ η‖

)
= η‖η‖ +M2

Pl
∂φVφ
V

(3− ε) .
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Finally, in the regime where ε, η‖, ξ‖ � 1, we recover from the above relations the
potential Slow-Roll parameters (2.33) and (2.34):

ε ≈ M2
Pl

2
V 2
φ

V 2 = εV ,

ε+ η‖ ≈M2
Pl
∂φVφ
V

= ηV .

As a related side note, we mention that Peterson & Tegmark [73, 76] identify the
condition for which the turn rate η(PT)⊥/φ′0 � 1 to be a slow-turn behaviour: in this
regime, the trajectory of the fields curves slowly. These authors also show that the turn
rate is related to the amount of multi-field behaviour. We will ourselves principally not
be interested in the slow-turn behaviour, as we shall see that drastic turns in the field
trajectory greatly enhance the scalar power spectrum – which we shall shortly introduce
–, and could thus lead to significant production of Primordial Black Holes.

3.3 Cosmological Perturbation Theory
Having carefully analysed the dynamics of the background fields, and having introduced
the ea‖ − ea⊥ basis, we are now ready to tackle the second term of (3.7): the perturbations
δX(t,x) about the homogeneous background X0(t). In the semiclassical approximation,
X0 is a classical field, and the perturbations will be quantised. We consider the pertur-
bations to be small, δX � X0, thus only keeping first-order terms in the δ quantities.

With this approach, the matter fields (i.e. the scalar fields φa and the density and
pressure) are written as

φa = φa0 + δφa ,

ρ = ρ0 + δρ , (3.34)
p = p0 + δp .

Consequently, the Energy-Momentum tensor becomes (where we write the index 0 as a
superscript for clarity)

Tµν = T 0
µν + δTµν .

Through the Einstein field equations (2.4), we then understand that the Einstein tensor
needs to be perturbed as well,

Gµν = G0
µν + δGµν ,

which leads us to realise that perturbations of the spacetime geometry – i.e. of the metric
– must also be considered:

gµν = g0
µν + δgµν .

We will mostly follow the treatment of Bassett et al. [68] in the following review.
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3.3.1 Metric Perturbations
In its most generic form, the perturbed FLRW metric (2.1) can be written as [77]

ds2 = −(1 + 2A)dt2 + 2a (B;i − Si) dxidt
+ a2 [(1− 2ψ)γij + 2E;ij + 2 (Fi;j + Fj;i) + hij] dxidxj , (3.35)

the semicolon ;i indicating covariant derivatives with respect to the background metric γij
of constant-time hypersurfaces, which accounts for non-flat universes. In the κ = 0 case,
which will be considered in the following discussion3, these reduce to partial derivatives
,i, and γij = δij. The different perturbations are separated between scalars (A, ψ, B,
and E)4, transverse three-vectors (Si and Fi), and a transverse traceless symmetric three-
tensor (hij) based on how they transform on spatial hypersurfaces. Notice there are
exactly 10 perturbation components, matching the 10 degrees of freedom of δgµν [77].

The Scalar, Vector, and Tensor modes decouple to first order in the perturbations
(SVT decomposition), and can thus be studied independently [64, 78]. Tensor perturba-
tions lead to the production of gravitational waves – a fascinating and related subject
which is nevertheless beyond the scope of this work – while vector perturbations vanish
in a universe filled with only scalar fields, which we consider to be the case during infla-
tion [68]. Scalar perturbations, on the other hand, show instabilities and could eventually
seed (large-scale) structure formation [77]. We will therefore focus on these modes (i.e.
set Si = Fi = Hij = 0 in Equation (3.35)).

The four scalar quantities A,B, ψ,E are functions of space and time coordinates, and
the corresponding perturbations are constructed from their spatial derivatives and the
background metric δij (or γij in the generic case) of constant time hypersurfaces. Using
the spatial Laplacian ∇2 = δij∂i∂j, the corresponding Ricci (curvature) scalar can be
found to be

R̃ = 4
a2∇

2ψ .

This is the reason why ψ is called the curvature perturbation.
A generic gauge (or coordinate) transformation for the perturbed metric (3.35) is given

by the temporal and spatial gauge parameters δt, δx,

t→ t+ δt ,

xi → xi + δij∂jδx .
(3.36)

The perturbed metric tensor will transform accordingly, and the perturbations will satisfy
[68]

A→ A− δ̇t ,

B → B + a−1δt− a ˙δx ,

ψ → ψ +Hδt ,

E → E − δx .

3This is to avoid considering the anisotropic stress, which vanishes in a spatially flat background such
as our universe seems to be. Notice that this γij has nothing to do with the field-space metric γab.

4We call the perturbation of the lapse function A rather than φ as it is denoted in [77] to avoid
confusion with the homonymous scalar field, as done in [68].
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These are clearly not gauge-invariant quantities (they take different values for different
choices of δt and δx). As explained in [77], one can take two approaches to calculating
the perturbations. The first option is to work with a particular choice of gauge, such
as the conformal Newtonian (or longitudinal) gauge B = E = 0, making sure that the
derived quantities are gauge invariant [32, Sec. 7.3.1]. Alternatively, it is possible to
construct gauge invariant variables, such as those first introduced by Bardeen [64], from
the perturbations of the metric tensor. Both of these methods are possible because only
two out of A,B, ψ,E correspond to physical scalar perturbations.

In particular, we notice that the combination Ė − B/a is independent of the spatial
gauge. This motivates the choice of the gauge-invariant variables [79,80]

Φ ≡ A− d
dt

[
a2
(
Ė − B

a

)]
, (3.37)

Ψ ≡ ψ + a2H
(
Ė − B

a

)
. (3.38)

The physical interpretation of these quantities is evident in the Newtonian gauge, B =
E = 0. The perturbed metric becomes

ds2 = −(1 + 2Ψ)dt2 + a2 [(1− 2Ψ)δij] dxidxj ,

such that Φ and Ψ correspond to the metric perturbations [79]. These are in fact called
longitudinal gauge metric perturbations (or Bardeen potentials [64]).

3.3.2 Matter Perturbations
The matter perturbations (δφa, δρ, δp) are not gauge-invariant either: under the transfor-
mation (3.36), they obey

δφa → δφa − φ̇a0δt ,

δρ→ δρ− ρ̇0δt ,

δp→ δp− ṗ0δt .

As a side note, in the single-field case a simple gauge-invariant variable can be defined for
the scalar field as [79]

δφ̄ ≡ δφ+ φ̇0

H
ψ .

For future reference, we introduce the adiabatic and non-adiabatic (or entropy) pres-
sure perturbations,

δpad ≡
ṗ0

ρ̇0
δρ , (3.39)

δpnad ≡ δp− ṗ0

ρ̇0
δρ , (3.40)

the latter being a gauge-invariant quantity. Another gauge-invariant quantity is the co-
moving density perturbation

δρm = δρ− 3Hδq , (3.41)

35



CHAPTER 3. MULTI-FIELD INFLATION

with δq = ∂iδu
i the three-momentum potential (δui being the perturbation of the three-

velocity), which satisfies
δq → δq + (ρ0 + p0)δt .

Finally, and most importantly, the curvature perturbation on uniform-density hyper-
surfaces and the comoving curvature perturbation are defined as

−ζ ≡ ψ + H

ρ̇0
δρ , (3.42)

R ≡ ψ − H

ρ0 + p0
δq , (3.43)

such that these gauge-invariant variables are related through

−ζ = R+ H

ρ̇0
δρm .

3.3.3 Adiabatic and Entropy Perturbations
Before continuing with our discussion, a digression on the significance of the curvature
and isocurvature perturbations is in order. In single-field inflation, perturbations can
clearly only occur along the trajectory of the field, ea‖. They affect the total density (thus
curvature) of different regions of the universe once inflation ends, keeping the number ra-
tios of particle species (baryons, dark matter, photons, and neutrinos) spatially constant
(δ(ni/nγ) = 0). For this reason, these perturbations are called adiabatic, and are charac-
terised by the comoving curvature perturbation R of Equation (3.43), which is common
to all cosmological fluids [53, 72]. R can be recast in terms of the Bardeen potentials as

R = Ψ− H

Ḣ

(
Ψ̇ +HΦ

)
,

such that its relation to the curvature density on uniform-density hypersurfaces ζ becomes
(borrowing the result (3.49) from below)

−ζ = R+ 2ρ
3(ρ+ p)

(
k

aH

)2

Ψ .

The two curvature perturbations thus coincide in the large-scale limit k � aH
In multi-field inflation, we have additional perturbations which allow ni/nγ to vary,

but leave the total energy density unperturbed [81]. These take the name of entropy or
isocurvature perturbations, and are characterised by the automatically-gauge-invariant
total entropy perturbation [72]

S = H

(
δp

ṗ0
− δρ

ρ̇0

)
. (3.44)

We expect N − 1 entropy perturbation modes in addition to the adiabatic one, corre-
sponding to the directions perpendicular to the trajectory of the fields, ea⊥. Entropy
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perturbations are strongly dependent on the physics of reheating, that is, the condi-
tions inflation ends with. In particular cases, such as too strong interaction between the
particles to which the different fields decay, can cause the entropy perturbations to be
short-lived; this increases the difficulty of their observation [66].

Curvature and isocurvature modes are orthogonal, so that any other perturbation can
be described as a linear combination of these. Importantly, the two can be correlated and
may in some contexts source one another, giving distinctive observational signatures.

3.3.4 Field Equations
The Einstein field equations (2.4) can be decomposed in background and perturbation
parts,

G0
µν = 8πGNT

0
µν ,

δGµν = 8πGNδTµν .

We thus have the linearised Einstein equations, as well as the linearised covariant conser-
vation of the Energy-Momentum tensor,

∇µδT
µ
ν = 0 .

The derivation of the perfect fluid δT µν and of δGµ
ν in the conformal Newtonian gauge can

be found in [31, §II.2.3], while the gauge-invariant approach is taken in [32, §7.3].
The components of the perturbed Einstein tensor are derived in [82, Equation (D.7)]

or equivalently in [77, Equations (4.6)–(4.8)]. The components of the perturbed EMt are
instead calculated in [77, Equation (5.10)] for the perfect fluid approximation. Moving
to Fourier space5, such that ∇2φ = −k2φ, we can then write the (00), (0i), and (ij)
components of the linearised Einstein field equations (EFE) as

3H
(
ψ̇ +HA

)
+ k2

a2

[
ψ +H

(
a2Ė − aB

)]
= 4πGNδρ , (3.45)

ψ̇ +HA = −4πGNδq , (3.46)
ψ̈ + 3Hψ̇ +HȦ+ A

(
3H2 + 2Ḣ

)
= 4πGNδp , (3.47)

∂t

(
Ė − B

a

)
+ 3H

(
Ė − B

a

)
+ ψ − A

a2 = 0 . (3.48)

The last two equations both come from the (ij) component, and we have ignored the
anisotropic stress, which vanishes to linear order for N scalar fields minimally coupled to
gravity [72], which is our case. Equations (3.45)–(3.48) can be easily rewritten in terms
of the Bardeen potentials Ψ and Φ from their definitions (3.38) and (3.37); from the last
one, we will find that Ψ = Φ. This means that there is only one dynamical degree of

5We decompose a perturbation ψ with respect to the complete set of eigenvectors of the Laplacian,
such that the comoving wavenumber k = 2π/λ indicates the eigenvalues corresponding to a mode of
physical wavelength λ [68, 72].
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freedom in the linearised EFE. Notice also that the first two of the above equations give
the generalised Poisson equation, relating Ψ and the comoving density perturbation:

k2

a2 Ψ = −4πGNδρm . (3.49)

On the other hand, the conservation of the Energy-Momentum tensor gives

δ̇ρ+ 3H (δρ+ δp) = k2

a2 δq + (ρ0 + p0)
[
3ψ̇ + k2

(
Ė + B

a

)]
, (3.50)

δ̇q + 3Hδq = −δp− (ρ0 + p0)A . (3.51)

The first relation can be rewritten in terms of ζ of Equation (3.42), giving

ζ̇ = −H δpnad
ρ0 + p0

− Σ , (3.52)

where the scalar shear Σ/H ∝ (k2/a2H2)(ζ + Ψ). This means that, for a finite Ψ, the
curvature perturbation ζ remains constant for adiabatic perturbations on super-horizon
scales, that is scales for which k/aH � 1. This is what was previously mentioned when
talking of super-horizon modes being frozen.

3.3.5 Scalar Field Perturbations
The N -field Equations of Motion (3.5) can be expanded by considering that φa = φa0 +δφa0
and simultaneously gµν = g0

µν + δgµν . Working in the ψ = B = 0 (flat) gauge and taking
into account the linearised EFE (3.45) and (3.46), Nakamura & Stewart [83, Appendix B]
determine the Fourier-space EoM for the perturbations δφak for the most general N -field
case. We report it here in coordinate space,

D2
t δφ

a + 3HDtδφa + Ra
cbdφ̇

c
0φ̇

d
0δφ

b − ∇
2

a2 δφ
a + δφbV

;ab = δφb
a3 Dt

(
a3

H
φ̇a0φ̇

b
0

)
. (3.53)

This result is often quoted in the literature (see e.g. [5, 73, 84]) and reduces to the
commonly-found equations of [68,72] in the flat field-space case, γab = 1N .

We now introduce another gauge-invariant combination, the field perturbations in the
spatially-flat gauge ψ = 0. These take the name of Mukhanov–Sasaki (MS) variables [79,
80] and were found by comparing the perturbed metric (3.35) with the ADM (Arnowitt–
Deser–Misner [85]) formalism:

Qa ≡ δφa + φ̇a

H
ψ . (3.54)

These variables allow for the field perturbations to decouple from the metric perturbations
[73]. Furthermore, in terms of the Mukhanov–Sasaki variables the comoving curvature
perturbation (3.43) can be written as

R = γab
φ̇a0
φ̇2

0
Qb . (3.55)
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Substituting these variables in the EoM (3.53), Achúcarro et al. [5] rewrite it in terms
of the basis vectors ea‖ and ea⊥ of the previous Section (see Equations (3.16) and (3.17)):

D2
tQ

a + 3HDtQa − ∇
2

a2 Q
a + Ca

bQ
b = 0 , (3.56)

with the tensor Ca
b, which satisfies the symmetry relation Cab = γacC

c
b = Cba, being

defined as

Ca
b ≡ ∇bV

,a − φ̇2
0Ra

cbde
c
‖e
d
‖ + 2εH

φ̇0

(
ea‖V,b + e‖,bV

,a
)

+ 2ε (3− ε)H2ea‖e‖,b .

Following the steps of these authors (see [5, §3] for a more detailed discussion), we recast
the Mukhanov–Sasaki variables in a local orthogonal frame that is parallel-transported
along the background inflationary trajectory φa0(t) [83]. By introducing a complete set
of vielbeins eIa(t), where the new I index indicates this local frame while the a index is
that of the field-space manifold Mφ, we define QI(t,x) ≡ eIa(t)Qa(t,x). Considering the
properties of the vielbeins and introducing the antisymmetric matrix Y I

J = eIaDteaJ , a new
covariant derivative acting on the I indices is introduced, such that

DtQ
I ≡ Q̇I + Y I

JQ
J . (3.57)

This allows to rewrite the perturbations’ EoM (3.56), with CI
J = eIae

b
JC

a
b, as

D2
t Q

I + 3HDtQ
I − ∇

2

a2 Q
I + CI

JQ
J = 0 . (3.58)

Finally, we rescale the MS variables by introducing a new set of perturbations vI ≡ aQI ,
and rewrite the EoM in terms of conformal time (dτ = dt/a, as defined in Equation (2.2)),
such that Dτ = aDt. By defining the symmetric mass matrix as ΩIJ = −a2H2(2− ε)δIJ +
a2CIJ , Equation (3.58) becomes

D2
τ v

I −∇2vI + ΩI
Jv

J = 0 . (3.59)

In Fourier space, this reads

D2
τ v

I
k + k2vIk + ΩI

Jv
J
k = 0 , (3.60)

i.e. a generalised Mukhanov–Sasaki equation [79, 80], which can now be quantised. In
fact, the Fourier space solution of the MS equation allows for the calculation of the
power spectrum of the curvature perturbations R [84]. Before moving on, we mention
the considerations of [83], who reach a similar MS equation with a variable corresponding
to our vI . It is shown there that in the limit of small-scale perturbations (−kτ → ∞,
such that the effective mass term in (3.60) vanishes with respect to the k2 term), the vI
behave like real massless Klein–Gordon fields. On the other hand, it can be seen that
perturbations become classical on super-horizon scales (−kτ → 0).

We also point out that the EoM (3.59) can be directly derived from the N -field action
(3.1) by performing the substitutions illustrated above. This would lead to the action

S = 1
2

∫
dτd3x

[∑
I

(
Dτv

I
)2
−
∑
I

(
∇vI

)2
− ΩIJv

IvJ
]

,

which is a generalisation of the action considered in the original paper deriving the MS
equations [79].
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3.3.6 Quantising the Perturbations
The system is quantised by demanding the standard equal-time canonical commutation
relations6 between the fields vI and their associated momenta, ΠI ≡ Dτv

I :[
vI(τ,x),ΠJ(τ,y)

]
. (3.61)

The vI fields can then be written in terms of N linearly-independent creation and an-
nihilation operators a†α(k) and aα(k) (α = 1, . . . ,N ), where the α label indicates scalar
quantum modes (one for each field), and not directions in field space (various α modes can
contribute to the same perturbation along some direction I7), by considering the Fourier
decomposition

vi(τ,x) =
∫ d3k

(2π)3/2 e
ik·xvI(k, τ)

=
∫ d3k

(2π)3/2 e
ik·x∑

α

[
vIα(k, τ)aα(k) + vI∗α (k, τ)a†α(−k)

]
. (3.62)

The creation and annihilation operators naturally need to satisfy the commutation rela-
tions [

aα(k), a†β(q)
]

= δαβδ
(3)(k− q) , (3.63)

with the other commutators vanishing, such that they define a (non-unique) vacuum
state aα(k)|0〉 = 0. The mode functions then need to satisfy the previously anticipated
generalised Mukhanov–Sasaki equation,

D2
τ v

I
α(k, τ) + k2vIα(k, τ) + ΩI

Jv
J
α(k, τ) = 0 . (3.64)

The last step is to impose the initial conditions for the system. Inflation exhibits the
limit a → 0 as τ → −∞ (i.e. at the start of inflation), in which case the mass matrix is
subleading, ΩIJ → 0 in (3.60), and the EoM reduce to(

D2
τ + k2

)
vIα(k, τ) = 0 ,

where no α-mode mixing occurs. On these grounds, we choose the Bunch–Davies vacuum
as an initial condition, imposing the (Minkowski) initial conditions,

vIα(k, τ) = δIα
1√
2k
e−ikτ , (3.65)

to our Mukhanov–Sasaki equations. Equation (3.65) is a solution to (3.64) that indeed
satisfies the commutation relations (3.61). Furthermore, a condition on the momentum
is also imposed by taking the Dτ derivative of (3.65):

ΠI
α(k, τ) = −iδIα

√
k

2e
−ikτ + aδIαY

I
J

1√
2k
e−ikτ . (3.66)

This will be necessary for our numerical considerations. The Bunch–Davies initial condi-
tions (3.65)–(3.66) are imposed at early times, before perturbations exit the horizon.

6We point out that, as discussed in [5], this quantisation prescription in justified by considering a
transformation to an alternative set of canonical fields, uI .

7While α runs over field labels (1, 2, . . .), I could be the direction of the inflation trajectory, or one
of those perpendicular to it.
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3.3.7 Power Spectra and Observables
The (physical) power spectrum is the Fourier transform of the two-point correlation func-
tion:

〈0|vI(k, τ)vJ∗(q, τ)|0〉 ≡ δ(3)(k− q)2π2

k3 P
IJ
v (k, τ) .

Therefore, in terms of the mode functions, PIJv becomes

PIJv (k, τ) = k3

2π2

∑
α

vIα(τ, k)vJ∗α (k, τ) .

The spectrum in terms of the QI = vI/a variables is instead given by

PIJQ (k, τ) = k3

2π2

∑
α

QI
α(τ, k)QJ∗

α (k, τ) = 1
a2P

IJ
v (k, τ) . (3.67)

The single-field curvature power spectrum is also introduced, following the reasoning
of [65, §2.4], as it will be useful for comparison with our results. The two-point correlation
function in that case similarly gives us that

〈0|v(k, τ)v∗(q, τ)|0〉 = |vk|2δ(k + q) ≡ δ(k− q)2π2

k3 P
1-field
v (k, τ) ,

and it can be found from the decomposition considerations that on super-horizon scales,

|vk|2 = 1
2k3

1
τ

= a2H2

2k3 .

Looking back at (3.55), and remembering that v = aQ, we find that R = H
φ̇0a
v and

therefore

P1-field
R = H2

a2φ̇2
0
P1-field
v

= 1
2a2ε

k3

2π2 |vk|
2

= H2

8π2ε

∣∣∣∣∣
k=aH

, (3.68)

where we evaluate the right-hand side at horizon crossing, since R is frozen on super-
horizon scales.

∗ ∗ ∗

Since H and ε are time-dependent, the power spectrum PR(k) is not scale invariant.
Nevertheless, as these quantities vary slowly with time, the departure from perfect scale
invariance is small; it is described by the spectral index, defined as

ns − 1 ≡ dPR(k)
d ln k

∣∣∣∣∣
k=aH

. (3.69)
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This is also valid in the multi-field case.
The spectral index is related to the curvature power spectrum by observational con-

straints [19]: at the reference (pivot) scale a0H0 ≡ k∗ = 0.005 Mpc−1, the power spectrum
is normalised to a value As = 2.1× 10−9, such that

PR(k) = As

(
k

k∗

)ns−1

.

The latest observations (Planck 2018 TT,TE,EE+lowE+lensing+BAO) constrain ns =
0.9665 ± 0.0038 [19, Table 2]. Further related measured quantities are the running and
the running of the running of the scalar index,

dns
d ln k = −0.0041± 0.0067 ,

d2ns
d ln k2 = 0.009± 0.012,

respectively.

∗ ∗ ∗

Although this is beyond the present scope, we mention another important topic that is
related to our discussion. In this Section’s considerations, we only worked to linear or-
der in the perturbations, and looked solely at the two-point function at the beginning of
3.3.7; arbitrary higher-order perturbation theory is quite involved, but some results may
be obtained, notably the three-point correlation function. This approach leads to calcu-
lating the bispectrum of perturbations, which describes the departure from the Gaussian
distribution of perturbations. This non-Gaussianity (NG) is characterised by a model-
dependent non-linearity parameter, fNL, and is a powerful test of inflation. Without
dwelling deeper into the subject, which can be found in e.g. [86, 87], we mention that
significant NG could be an important indicator of multi-field inflation. So far, this is not
ruled out by obsevations, although no significant evidence of NG was found [88]; see also
the recent review by Acúcarro et al. [89].

Finally, Gravitational Waves (GWs) are produced during inflation both directly, by
fluctuations of the perturbed spacetime metric (primordial GWs, i.e. the tensor modes
of (3.35)), and by PBHs, which induce the Stochastic Gravitational Wave Background
(the Energy-Momentum tensor of scalar perturbations behaves like a source term when
computing the GW Equations of Motion). These GWs could be observed by current
and upcoming experiments, and provide important insight into inflationary physics. This
topic is discussed e.g. in [90], and by Braglia et al. [6] in the context of the model we will
consider in §5.4.
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Chapter 4

Primordial Black Holes

H aving studied the framework of N -field inflation in some detail, acquiring famil-
iarity with the theory of cosmological perturbations, we are now interested in
determining how inflation models could lead to a production of Primordial Black

Holes (PBHs). If an overdensity in the early Universe is large enough, it may in fact
collapse to form a PBH when it re-enters the Hubble radius during the radiation dom-
inated era. The main reason we are interested in this study is that these objects could
account for a significant fraction of the Dark Matter component of the universe. We begin
by explaining how PBHs are formed and how they may account for Dark Matter, then
review the current theoretical and observational constraints on their abundance.

4.1 PBH Formation
The theory of General Relativity predicts that Black Holes form when a mass M is
contained within the Schwarzschild radius RS = 2GNM . This is true for BHs of order
a few solar masses (which we denote by M�) that form at the end of the life cycle of
massive stars, but can also happen in the early universe. In the latter case, we talk of
Primodial Black Holes [50]. Contrarily to late-universe BHs, which require masses of
order M� to be able to form, these can be as small as 10−18M�, the lower limit being set
by BH evaporation as shown by Hawking [91].

While different approaches have been taken to explaining how PBHs are generated
(see [51] for a discussion), we will follow the most natural one in the context of inflation, i.e.
that they form from primordial inhomogeneities. The curvature perturbations introduced
in the previous Chapter re-enter the horizon1 during the radiation-dominated era after
having been frozen super-horizon: see the grey line in Figure 2.3 on page 19. If their
mass is larger than the Jeans mass, MJ ∼ ρ/k3 [31, §II.1.1], they undergo gravitational
collapse. That is, a whole Hubble region (of physical radius H−1) collapses. Naturally,

1As a reminder, by “horizon” we are talking of the comoving Hubble radius, (aH)−1.
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not all fluctuations will form PBHs; the collapse fraction for a region of mass M is given
by the initial abundance (i.e. that at the time of horizon re-entry or PBH formation,
denoted by the subscript f from here onwards),

βf(M) ≡ ρPBH(M)
ρtot

∣∣∣∣∣
f
, (4.1)

which is calculated as follows.
Consider the comoving density contrast of perturbations, that is, the fractional over-

density δρ with respect to the average density ρ of the universe: δ ≡ δρ/ρ. PBHs will
form if δf at horizon re-entry is larger than a critical value δc, which was found to be
δc = 0.45 [92, 93]2. PBHs will have a mass comparable to the horizon mass at that
time [49,51],

Mf = 4
3π

( 1
H

)3
ρtot

∣∣∣∣∣
f
= 1

2GNHf
∼ tf
GN
∼ 5× 105 tf

sM� , (4.2)

where in the first equality we consider H−1
f to be the (physical) Hubble radius at re-entry,

and in the third one we take it to be the corresponding Hubble time. In the second
equality, we used ρtot = ρcritΩ with Ω = 1 (see Equation (2.11) on page 12). The PBH
mass is defined as

MPBH ≡ γMf ,

where 0 6 γ 6 1 is a correction factor described in References [94] which accounts for the
efficiency of collapse, and is sometimes assumed to correspond to unity3. Equation (4.2)
also shows that the earlier in radiation-domination the PBHs form, the smaller their mass
will be.

Using the Press–Schechter formalism [95], Carr [96] first calculated the fraction of the
universe’s total energy density that is contained within regions where δ > δc, i.e. that
can sustain PBH formation:

βf(M) = 2
∫ ∞
δc

MPBH

M
P (δ(R)) dδ(R) .

Here the factor two is a bookkeeping that accounts for locally underdense regions collaps-
ing into globally overdense ones [97], and δ(R) is the smoothed (over a comoving scale
R) density contrast at horizon re-entry, which we assume to be Gaussian with a mass
variance σ(R):

P (δ(R)) = 1√
2πσ(R)

e−δ
2(R)/2σ2(R) .

Assuming also that all PBHs form contemporarily, such that M is the same, and they all
have a common dependency on M (i.e. γ), we find that the mass function of PBHs is

2An approximate but immediate result is given by considering δc = c2
s where cs = 1/

√
3 is the speed

of sound for the radiation-dominated epoch.
3Other authors, such as Braglia et al. [7], consider the efficiency factor to be γ = 0.2.
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monochromatic. Therefore,

βf(M) =
√

2
π

γ

σ(R)

∫ ∞
δc

e−δ
2(R)/2σ2(R)dδ(R)

= γErfc
(

δc√
2σ(R)

)
, (4.3)

where we introduced the complementary error function from its definition (and rescaled
our variable). The variance is given by [94]

σ2(R) = 16
81

∫ ∞
0

(kR)4W̃ 2(kR)PR(k)T 2(kR/
√

3)dk
k

,

with the Fourier transform of the window function, W̃ (kR), being usually taken to be a
top-hat or Gaussian function4, and the transfer funtion,

T (y) = 3sin y − y cos y
y3 ,

modelling the sub-horizon evolution of fluctuations [94].
For a Gaussian distribution of curvature perturbations on horizon scales, as considered

here5, Motohashi & Hu [97] compare the result (4.3) to the analogous probability of finding
perturbations above a threshold Rc:

βf(M) = 2
∫ ∞
Rc

1√
2π∆R

e−R
2/2∆2

RdR

= Erfc
(
Rc√
2∆R

)

≈ 1√
2π

∆R
Rc

e−R
2
c/2∆2

R , (4.4)

where ∆R(k)2 ≡ PR(k). The last approximation comes from assuming Rc � ∆R, i.e.
that PBH formation is due to rare peaks in the spectrum. This allows to directly relate
βf(M) to the curvature power spectrum. Assuming a near-scale invariant PR around the
time of horizon re-entry, the density contrast and curvature thresholds can be related
by [99,100]

Rc = 9
4δc . (4.5)

Notice from Equation (4.4) that, in order for β(M) to be significant, we need PR to
be much greater than its CMB normalisation As ≈ 2.1 × 10−9 at k∗ = 0.05 Mpc−1 (see
§3.3.7). We will soon come back to this observation.

4The value of σ(R), and thus of βf(M), strongly depends on the choice of the window function: a
study of its consequences can be found in [98].

5As explained in [51, §2.12], the abundance of Primordial Black Holes strongly depends on the
departure from Gaussianity of the perturbations’ density profile. This is because PBHs are generated by
extreme-density perturbations, which populate the tail of the distribution.
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4.2 PBHs as Dark Matter
Since PBHs form during radiation-domination, by considering the Friedmann equation
(2.11) one sees that the Hubble parameter at that time evolves as [101]

H2
f = H2

0
Ωr,0

a4
f

(
g∗f
g∗0

)− 1
3

, (4.6)

where the g∗ indicate the number of relativistic degrees of freedom at formation and
present time. Substituting this in Equation (4.2), we find the PBH mass in terms of the
horizon crossing time (or rather, a):

MPBH = 4πγ a2
f

H0
√

Ωr,0

(
g∗f
g∗0

) 1
6

MPl . (4.7)

PBHs will behave as matter, and their density will therefore evolve as ρPBH(M) ∝ a−3;
noticing that ρPBH depends on the PBH mass, we define their density parameter as (where
as usual the lack of subscript refers to a general time t)

ΩPBH(M) = ρPBH(M)
ρcrit

= ΩPBH,0(M)
a3 . (4.8)

The PBH energy density fraction at formation can then be related to the present one
by [101]

βf(M) = ΩPBH,0(M)
a3
f

(
H0

Hf

)2
.

Introducing the fraction of PBHs against (Cold) Dark Matter (CDM) – i.e. the fraction
of CDM that is composed by PBHs – for a given mass M ,

fPBH(M) ≡ ΩPBH(M)
ΩCDM

, (4.9)

where ΩCDM = ΩCDM,0a
−3 is the Dark Matter density parameter6, we can rewrite the

above expression as

βf(M) = ΩCDM,0

a3
f

(
H0

Hf

)2
fPBH,0(M) .

Substituting H0/Hf from Equation (4.6) and the resulting af from Equation (4.7), we find

βf(M) = 1
√
γ

ΩCDM,0H
1/2
0√

4πΩ3/4
r,0

(
g∗f
g∗0

) 1
4
√
MPBH

MPl
fPBH,0(M)

≈ 4
√
γ
× 10−9

(
g∗f
g∗0

) 1
4
√
MPBH

M�
fPBH,0(M) , (4.10)

whereM = MPBH is the mass of the PBHs. See also the enlightening alternative derivation
of this result by Motohashi & Hu [97].

6ΩCDM,0 ≈ 0.26 as given in Table 2.2 on page 16
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∗ ∗ ∗

We can now equate the result (4.10) to βf(M) of Equation (4.4): this will allow us
to determine the necessary enhancement of the curvature power spectrum PR that an
inflationary model must predict in order to allow for mass–M PBHs to account for a
fraction fPBH,0(M) of the total Dark Matter content of today’s universe. In particular,
setting fPBH,0(M) = 1 gives the condition that all of the universe’s Dark Matter be in the
form of PBHs (of a single mass M).

We set the collapse efficiency factor γ = 1 and consider only the relativistic degrees of
freedom of the Standard Model of particle physics, such that g∗0 = 3.36 and g∗f = 106.75
[101]. Setting also Rc = 1 in Equation (4.4) by considering Equation (4.5) with δc = 0.45,
we get for fPBH,0(M) = 1 that

∆Re−1/2∆2
R ≈
√

2π10−8
√
M

M�
. (4.11)

As an example, for a PBH mass M = 10−15M� we find that ∆R ≈ 0.12, in agreement
with [101], and therefore PR ∼ 10−2, which is approximately 107 times larger than the
normalised spectrum As ∼ 10−9. In other words, in order to have all of DM be made of
PBHs of mass 10−15M�, we need an inflationary model that produces a local enhancement
of PR by O(107). We point out that choosing a lower γ slightly increases the required PR,
while using a lower Rc greatly decreases it (using Rc = 0.1, we find that ∆R decreases by
an order of magnitude, meaning the required power spectrum enhancement would now
“only” need to be O(105)).

While in our discussion we have considered a mass function tightly peaked around
M = MPBH, that is generally not the case, and contributions from various masses should
be considered. This is explained in detail e.g. by Sasaki et al. [102]. The total fraction of
PBHs against CDM is then given by

f totPBH ≡
ΩPBH

ΩCDM
=
∫

dfPBH(M) =
∫ dfPBH(M)

d lnM d lnM ,

where dfPBH(M) is the fraction of PBH with masses M 6MPBH 6M + d lnM , and

dfPBH(M)
d lnM = ν(M)2

∣∣∣∣∣d ln ν(M)
d lnM

∣∣∣∣∣ fPBH(M) ,

fPBH(M) being given by Equation (4.10) and ν(M) = R/∆R.

∗ ∗ ∗

Another important quantity is the number of inflationary e-foldings over which the en-
hancement takes place, ∆Ne. Looking back at Figure 2.3 on page 19, it is evident that
the aH values when a perturbation exits and re-enters the horizon are equal (the mode
has a constant k). Considering H to be constant at a value Hi during inflation, we
get for the CMB modes7 that aCMBHi = a0H0 ≡ k∗, while for the PBH perturbations

7The modes that re-enter the horizon at present time are called CMB modes because that is the
largest-scale fluctuation we can currently observe; they are not produced (neither exit/re-enter the hori-
zon) at the time of CMB production.
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aexitHi = afHf. Manipulating this with the previous results, we find an upper bound
for ∆Ne by calculating the number of e-folds between CMB scales and those of PBH
production [97,101]:

NPBH
e ≡ ln

(
aexit
aCMB

)
= ln

(
afHf

k∗

)
= 18.4− 1

12 ln
(
g∗f
g∗0

)
+ 1

2 ln γ − 1
2 ln

(
M

M�

)
. (4.12)

This is such that ∆Ne 6 NPBH
e .

To find the maximum value that NPBH
e can take, Motohashi & Hu [97] make the

following considerations regarding PBH evaporation. As first discovered by Hawking [91],
Black Holes radiate thermally and eventually evaporate8 over a timescale

tev = 5120πG2
NM

3

~c4 = 6.6× 1074
(
M

M�

)3

s .

The smallest PBHs that can contribute to Dark Matter will be those that survive until
the time of matter-radiation equality, which can be found from Equation (4.6). Finally,
the minimum mass that a PBH needs to have is found to be [97]

Mmin = 1.5× 10−21
(

Ωm,0h
2

0.14

)−2/3

M� ,

which, for the value of Ωm,0 given in Table 2.29 and those for g∗ mentioned above, gives
a maximum value for NPBH

e being

NPBH,max
e = 42 + 1

2 ln γ .

What we have just calculated is actually the first of the constraints that are set on
PBH masses and abundance, the discussion of which will be the topic of the next Section.

4.3 Constraints
There exist a number of theoretical and observational constraints on the possible abun-
dance of PBHs for determined mass ranges. These are constantly updated, and some
disagreement on a few constraints exists in the literature. Following the recent reviews
by Carr & Kühnel [51,103], Carr et al. (CKSY) [104], and Inomata et al. [105], we briefly
introduce some of the most stringent bounds, which are shown in Figure 4.1.

The current bounds leave a few mass windows of interest, for which PBHs could
account for a significant fraction of Dark Matter. For our considerations, as can be seen
from Figure 4.1, these are around M ∼ 10−15M�, M ∼ 10−12M�, and to some extend
around M ∼ 10−6M�.

8The quantum properties of BHs make it so that they emit radiation with a temperature proportional
to the BH’s surface gravity. This emission decreases the BH’s mass, thus increasing its surface gravity
and reinforcing the thermal radiation. Eventually, BHs will therefore evaporate [91].

9Although Motohashi & Hu [97] refer to values that have since been refined, the result is not varied.
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Figure 4.1: Constraints on PBH abundance as a function of PBH mass, fPBH(MPBH). The
Evaporation, Microlensing, GWs, and Dynamical bounds comprise a number of separate obser-
vations; a few noteworthy ones are shown explicitly as well. The neutron stars and femtolensing
constraints (which would appear in the empty mass ranges around 10−15M� and 10−12M�) are
not shown, since they are contested in the literature. Labels are described in the main texts,
and further discussion can be found in [51,103–105] and references therein. Image created using
Kavanagh’s PBHBounds python code [94,106].
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Evaporation. We saw at the end of the previous Section that PBHs radiate and
eventually evaporate. It was calculated that the minimum mass a PBH needs to have
in order to contribute to the present DM content is around M ∼ 10−19M�. Slightly
heavier PBHs in the range 10−19M� . M . 10−17M� could still exist, but are radiating
strongly; this leaves an imprint in the extragalactic radiation background, observations of
which set bounds on this mass range. These are shown on the left-hand side of Figure 4.1,
labelled as EGRB. Other related observations exist, such as those coming from the 511 keV
annihilation seen towards the centre of our galaxy. These are included within the orange
Evaporation bound in Figure 4.1.

Gravitational Lensing. Observations (or rather, the non-observation) of gravita-
tional lensing – the distortion of light coming from known background sources, due to tran-
siting compact object – on various scales set constraints over a wide range of PBH masses.
Femtolensing of γ-ray bursts would cover the range 10−17M� .M . 10−13M�, but these
have been contested in the literature. On the other hand, microlensing from galactic
sources (OGLE), from M31 (Subaru Hyper Suprime-Cam HSC), and from the Magellanic
clouds (EROS) stringently constrain fPBH in the range 10−10M� . M . 10M�: see the
overall Microlensing bounds in Figure 4.1.

Dynamical and Accretion Constraints. Dynamical interactions (collisions) of
PBHs with astrophysical objects could be detected by observing the latter; in particular,
the objects could be destroyed by transiting PBHs. This is the case for white dwarf
stars (WD in the Figure) for the mass range 10−15M� . M . 103M�, although these
have been disputed by the results of hydrodynamical simulations. On higher mass scales,
bonds come from ultra-faint dwarf galaxies, from wide binaries in the galaxy, and from
globular clusters. Overall, these cover the high-mass range 10M� . M . 109M�, and
are labelled as Dynamical in Figure 4.1. Accretion of background gases on PBHs could
lead to increased luminosity at early times. This can be probed through X-ray and
radio observations, and also applies to the high-mass range M & 10M�; the bounds are
not shown in our Figure as they would overlap with Dynamical and CMB constraints,
hindering the readability.

CMB. In the simplest PBH formation scenario discussed in the previous Sections,
these form from the high-density tail of a Gaussian distribution. Silk damping could
dissipate these density fluctuations at later times, leading to a distortion in the observed
CMB spectrum; this sets constraints in the range 103M� . M . 1012M�. The bound is
shown on the right-hand sided of Figure 4.1 with the label CMB. Small non-Gaussianities
could “free” the mass window 106M� . M . 1010M�, not considered in our Figure,
and assuming PBHs formed at M . 106M� to then accrete mass would avoid these
constraints.

Gravitational Waves. As calculated above, PBH formation at horizon re-entry of
the perturbations requires a significant enhancement of the curvature power spectrum
at horizon exit. As briefly introduced in §3.3.7, this would also induce a production
of second-order Gravitational Waves. Furthermore, PBHs could coalesce at later times,
producing additional GW events. (Non-)observation of these signals therefore strongly
constrains fPBH in the range 10−1M� . M . 102M�, as shown by the GWs bounds in
Figure 4.1.
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From the discussion of the previous Sections, the reasoning is now two-fold: either we
insert the mass values for the range of interest in the equations for βf(M) and determine
the required value of the power spectrum, as was done below Equation (4.11), or we
calculate the mass of the formed PBHs in terms of a comoving scale of interest, k. The
second approach was taken by Inomata et al. [105], as well as by Braglia et al. [7]: from
the relations of §4.2, they find that

M(k)
M�

= 30
(
γ

0.2

)(
g∗,f

10.75

)−1/6
(

k

2.9× 105Mpc−1

)−2

. (4.13)

Braglia et al. then proceed to use the k values corresponding to the peak of their
previously-found curvature power spectra [7, Figure 2], finding PBH masses in the al-
lowed windows; for the M ∼ 10−12M� and M ∼ 10−15M� cases they calculate fPBH = 1.

Alternatively, for the model-building approach, one calculates the necessary PR(k)
enhancement from Equation (4.11) and the number of e-fold over which it needs to take
place from Equation (4.12), and then searches for a model that accommodates such values.
This is the method we will follow in the next Chapter. To this aim, we calculate here
the necessary enhancement and duration for the three mass windows we individuated: we
find that (PR,∆Ne) vary between (1.5× 10−2, 35) for M ∼ 10−12M� and (2.0× 10−2, 25)
for M ∼ 10−6M�, where in the last case we accounted for the fact that fPBH can reach a
maximum of ∼ 0.1. To the purpose of our subsequent analysis, we can approximate these
results to an enhancement of O(107) with respect to As, with a duration of . 30 e-folds.
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Chapter 5

PBHs from 2-Field Inflation

T he enhancement of the curvature power spectrum required for Primordial Black
Holes formation can in principle be attained in single-field inflation models with a
rich enough structure. This requires an inflaton potential that remains sufficiently

flat for some time during its evolution. Such models have been studied extensively in the
literature, see e.g. [51, 102] and references therein. One of the promising aspect of multi-
field inflation is that, on top of the potential’s shape, such an enhancement can also be
due to turns in the field space.

Let us focus our attention on the case of 2-field inflation, for which the N -field dynam-
ics of Chapter 3 simplify. Three main models of 2-field inflation will be studied, setting
particular focus on whether they could allow for PBH production. We will find that the
canonical Double Quadratic model of Huston & Christopherson [4] and that of Achúcarro
et al. [5] do not provide sufficient enhancement of the curvature power spectrum to sustain
PBH formation. On the other hand, substantial production can occur for the model of
Braglia et al. [6, 7].

5.1 Reducing to N = 2 Fields
In the case N = 2, only two field-space orientations exist: tangent and normal to the
inflationary trajectory. The index I of Chapter 3 then takes the values N, T , or equiv-
alently ⊥, ‖. The vielbeins eaI are simply ea⊥, e

a
‖ and, substituting the result Ω = Hη⊥

(found from Equation (3.25)) in Equation (3.17), one obtains

Dtea‖ = −Hη⊥ea⊥ , (5.1)

which can be coupled to the corresponding

Dtea⊥ = −Hη⊥ea‖ , (5.2)
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where the latter result has an additional term proportional to the projector tensor Pab
in the N -field case (see [5, Appendix A]), which vanishes in the 2-field case. The basis
vectors then take the explicit form

ea‖ = 1
φ̇

(ϕ̇, χ̇) ,

ea⊥ = 1
φ̇
√
γ

(−γ12ϕ̇− γ22χ̇, γ11ϕ̇+ γ21χ̇) ,
(5.3)

where, in order to simplify the notation (in particular to avoid double indexing), we
started denoting our two fields (

φ1, φ2
)

= (ϕ, χ) .

The perturbations will either be parallel or orthogonal to the background trajectory,
(I, J) = (N, T ) ≡ (⊥, ‖), and we find that YIJ = Hη⊥. The Equations of Motion for the
perturbation, Equation (3.64), then reduce to the coupled system

d2vTα
dτ 2 + 2ζ dv

N
α

dτ
− ζ2vTα + dζ

dτ
vNα + ΩTNv

N
α + (ΩTT + k2)vTα = 0 ,

d2vNα
dτ 2 − 2ζ dv

T
α

dτ
− ζ2vNα −

dζ

dτ
vTα + ΩNTv

T
α + (ΩNN + k2)vNα = 0 ,

(5.4)

which are actually four coupled equations (two for α = 1 and two for α = 2). Here
ζ = aHη⊥ and we decomposed vI = aQI = ∑

α v
I
α(k, τi). The symmetric mass matrix ΩIJ

of Equation (3.59) is now given by

ΩTT = −a2H2
(
2 + 2ε− 3η|| + η||ξ|| − 4εη|| + 2ε2 − η2

⊥

)
,

ΩNN = −a2H2(2− ε) + a2M2 ,

ΩTN = a2H2η⊥(3 + ε− 2η|| − ξ⊥) = ΩNT ,

(5.5)

with M2 ≡ VNN + H2εR the effective squared mass of the vN -mode and the Slow-Roll
parameters being defined in §3.2.

We point out the important role of η⊥ as the coupling between the two perturbations
vT and vN , which are respectively proportional to the curvature and isocurvature modes
R and S. Setting η⊥ to zero in Equations (5.4) and (5.5), we can clearly see that the two
perturbations decouple.

For consistency with our numerical approach, the EoM (5.4) are rewritten in terms of
derivatives with respect to the number of e-foldings:

vT ′′α + (1− ε)vT ′α + 2η⊥vN ′α +
[
Ω̃TN + ((1− ε)η⊥ + η′⊥)

]
vNα + ωTT v

T
α = 0 ,

vN ′′α + (1− ε)vN ′α − 2η⊥vT ′α +
[
Ω̃NT − ((1− ε)η⊥ + η′⊥)

]
vTα + ωNNv

N
α = 0 ,

(5.6)

where we temporarily introduced the shorthand ωIJ = Ω̃IJ − η2
⊥ + k2/a2H2, and rescaled

the mass matrix as Ω̃IJ ≡ ΩIJ/a
2H2.

We supplement these equations by imposing the Bunch–Davies initial conditions (3.65)
and (3.66).
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∗ ∗ ∗

Recalling the definition of the comoving scalar perturbation (3.55), in this case we will
have

R = H

φ̇0
QT , (5.7)

S = H

φ̇0
QN , (5.8)

where we have correspondingly defined the isocurvature perturbation through the normal
direction vector. Following Equation (3.67), the power spectra for R and S then take the
form

PR(k,Ne) = H2

φ̇2
0
PTTQ (k,Ne) = k3

4π2a2M2
Plε

∑
α=1,2

vTα (k,Ne)vT∗α (k,Ne) , (5.9)

PS(k,Ne) = H2

φ̇2
0
PNNQ (k,Ne) = k3

4π2a2M2
Plε

∑
α=1,2

vNα (k,Ne)vN∗α (k,Ne) , (5.10)

PRS(k,Ne) = H2

φ̇2
0
PTNQ (k,Ne) = k3

4π2a2M2
Plε

∑
α=1,2

vTα (k,Ne)vN∗α (k,Ne) . (5.11)

In the last line, we have also defined the cross-correlation spectrum. Calculating these
quantities at the end of inflation, Ne = N end

e , the total curvature, isocurvature, and
cross-correlation spectra are determined:

PR(k) ≡ PR(k,N end
e ) , (5.12)

PS(k) ≡ PS(k,N end
e ) , (5.13)

PRS(k) ≡ PRS(k,N end
e ) . (5.14)

We are mainly interested in calculating the former, in order to determine if it can be
enhanced enough as to allow for PBH production from the consideration of the previous
Chapter.

With this knowledge, let us now analyse a few concrete models of 2-field inflation.

5.2 Double Quadratic model
In the simplest model of 2-field (or double) inflation, the massive scalar fields do not
interact and are minimally coupled [107]. This means that no coupling is inserted in the
field-space metric,

γab = 12 , (5.15)
and the kinetic term of the fields’ Lagrangian is canonical.

The potential – shown in Figure 5.1 – is quadratic (such as that of Equation (2.41))
in each field, giving

V (φ) = 1
2m

2
ϕϕ

2 + 1
2m

2
χχ

2 . (5.16)
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Figure 5.1: Double Quadratic potential for the two field ϕ and χ, as given in Equation (5.16).
The fields satisfy the mass hierarchy mχ = 7mϕ with mϕ = 1.395 × 10−6 MPl [4]. Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:
Potential in linear scale, as usually visualised. Right panel:Right panel:Right panel:Right panel:Right panel:Right panel:Right panel:Right panel:Right panel:Right panel:Right panel:Right panel:Right panel:Right panel:Right panel:Right panel:Right panel: Potential in logarithmic scale, ex-
tending to non-physical negative field values. This is to highlight the shape of the potential in
the ϕ-direction (i.e. that of the light field), and the potential’s minimum at (ϕ, χ) = (0, 0).

The fields satisfy a mass hierarchy, χ being the heavier one. We follow the definitions of
Huston & Christopherson [4] here, setting mχ = 7mϕ and mϕ = 1.395× 10−6 MPl.

Lastly, initial conditions on the field values and their derivatives need to be given; we
have φai ≡ φa0(N i

e) = (12, 12) MPl and πai ≡ φ′a0 (N i
e) = (0.1, 0.1) MPl.

With these ingredients, we were able to solve the Equations of Motion for the back-
ground, i.e. Equation (3.9). Code-wise, we used Mathematica’s numerical differential
solution method NDSolve, with the condition ε− 1 = 0 as an end point. Note that all the
derivatives that appear in the quantities defined in §3.2 were differentiated analytically,
rather than numerically, for better accuracy: comparing the two methods, significant
discrepancies were in fact found.

∗ ∗ ∗

Let us consider the right panel of Figure 5.1. The system of fields will start in the top right
corner of the plot to then roll down the potential’s slope in the χ-direction until χ = 0:
this corresponds to a first inflation stage driven by the heavy field. At this point, the
fields’ trajectory will turn and the system will roll down the potential in the ϕ-direction,
all the way to (ϕ, χ) = (0, 0): this is a second inflation stage driven by the light field.

The evolution of the fields we just described can be seen in the first panel of Figure 5.2
on page 56. That figure also shows the temporal evolution of the Hubble parameter and of
the Slow-Roll parameters ε and η‖, η⊥. The main takeaway is that the transition between
the two stages of inflation – the first one driven by the heavy field χ and the second by
the light field ϕ – generates a temporary enhancement of the SR parameters. Due to η⊥
being the coupling between the curvature and isocurvature perturbations, this feature, as
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Figure 5.2: Temporal evolution of the background quantities φa0, H, ε, and η‖, η⊥ for the
Double Quadratic model [4]. Top Left panel:Top Left panel:Top Left panel:Top Left panel:Top Left panel:Top Left panel:Top Left panel:Top Left panel:Top Left panel:Top Left panel:Top Left panel:Top Left panel:Top Left panel:Top Left panel:Top Left panel:Top Left panel:Top Left panel: Evolution of the background fields ϕ and χ: the
heavy field χ decays first, driving a first stage of inflation; when it reaches its minimum at
χ = 0, the light field also decays, driving a second stage of inflation. Top Right panel:Top Right panel:Top Right panel:Top Right panel:Top Right panel:Top Right panel:Top Right panel:Top Right panel:Top Right panel:Top Right panel:Top Right panel:Top Right panel:Top Right panel:Top Right panel:Top Right panel:Top Right panel:Top Right panel: Evolution
of the Hubble parameter H: its amplitude varies very little, as expected, but we do notice a
“dip” at the Ne value corresponding to the transition between the ϕ- and χ-driven inflation
stages. We note that, when plotting the quantity aH in log scale, the same increasing behaviour
as in Figure 2.2 can be observed, with a faint saddle point when the transition takes place.
Bottom Left panel:Bottom Left panel:Bottom Left panel:Bottom Left panel:Bottom Left panel:Bottom Left panel:Bottom Left panel:Bottom Left panel:Bottom Left panel:Bottom Left panel:Bottom Left panel:Bottom Left panel:Bottom Left panel:Bottom Left panel:Bottom Left panel:Bottom Left panel:Bottom Left panel: Evolution of the first Slow-Roll parameter ε: this evolves from ∼ 0 (i.e.
satisfying SR) to ε(N end

e ) = 1 which signals the end of inflation; the feature at the transition
between inflation stages is quite noticeable here. Bottom Right panel:Bottom Right panel:Bottom Right panel:Bottom Right panel:Bottom Right panel:Bottom Right panel:Bottom Right panel:Bottom Right panel:Bottom Right panel:Bottom Right panel:Bottom Right panel:Bottom Right panel:Bottom Right panel:Bottom Right panel:Bottom Right panel:Bottom Right panel:Bottom Right panel: Evolution of the parallel
and perpendicular components of the second Slow-Roll parameter η‖ and η⊥: these satisfy η � 1
throughout, except for the feature noticed previously.
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we shall call it in what follows, will cause an enhancement of the scalar power spectra. We
will later refer to the time at which this feature takes place as N f

e . We point out the fact
that the results for ε and η‖, η⊥ precisely match those of Avgoustidis et al. [108, Figure 3],
who study this same model.

∗ ∗ ∗

Having calculated the background quantities, we were now ready to solve the EoM for the
perturbations (5.6), with the appropriate Bunch-Davies initial conditions (3.65)–(3.66),
which we imposed at a time NBD

e (k) ≡ NHX
e (k)− 5.

This was the most computationally challenging aspect of our numerical code, since
it required a high number of calculations. We in fact solved (using again the numerical
differential solver NDSolve) the EoM for O (103) different k-modes, which were defined
from their horizon-crossing time NHX

e .
Having solved the EoM for the perturbations, it was finally possible to calculate the

scalar power spectra PR(k,Ne) and PS(k,Ne) for each k-mode, as well as the overall spec-
tra PR(k) and PS(k). As discussed previously, we are mostly interested in the curvature
power spectrum in this work.

∗ ∗ ∗

The PR(k,Ne) and PS(k,Ne) are shown in Figure 5.3 on page 58 for four different k-
modes: one exiting the horizon before the feature takes place, NHX

e < N f
e , two which exit

the horizon during the feature, NHX
e ∼ N f

e , and a last one which exits the horizon after
the feature, NHX

e > N f
e . The pseudo-single-field behaviour (see Equation (3.68)),

P1-field
R (k,Ne = NHX

e ) = H2(NHX
e )

8π2ε(NHX
e ) ,

is also shown; by “pseudo” we mean that this was calculated with the H and ε quantities
of the 2-field model which, as we saw in Figure 5.11, do depart from the single-field
behaviour.

The impact of the multi-field behaviour is explicit in this Figure. Consider the first
panel: apart from the initial decaying behaviour, due to the initial conditions that were
imposed, the curvature spectrum PR stabilises onto the single-field behaviour from the
moment of horizon exit, around NHX

e ≈ 10 in this case, up until Ne ≈ N f
e . At this point,

while the single-field spectrum remains constant (the mode is frozen [61]), the multi-
field one is enhanced by the isocurvature perturbation. In the meantime, in fact, the
isocurvature spectrum decays slowly for NHX

e < Ne < N f
e , increases abruptly around N f

e ,
and eventually decays slowly, having transferred its energy to the curvature perturbation.
At lower PS values, numerical errors begin to appear – the decaying trend is nevertheless
maintained. We point out the fact that these results precisely match those of Huston
& Christopherson [4, Figure 1] (our PS is their PS̃) as well as those of Avgoustidis et
al. [108, Figure 3], who study this same model. This comparison was one of the main
reasons for considering this model in the first place: the fact that our results matched
those of the literature – computed with different methods, such as Pyflation in the
case of Huston & Christopherson – showed us that our numerical code gave the expected
predictions.
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Figure 5.3: Temporal evolution of the curvature (in blue) and isocurvature (in red) power
spectra, PR(k,Ne) and PS(k,Ne), for the Double Quadratic model [4]. The pseudo-single field
value of the former, P1-field

R (k,Ne), is also shown (dashed blue lines). Top Left panel:Top Left panel:Top Left panel:Top Left panel:Top Left panel:Top Left panel:Top Left panel:Top Left panel:Top Left panel:Top Left panel:Top Left panel:Top Left panel:Top Left panel:Top Left panel:Top Left panel:Top Left panel:Top Left panel: k-mode
exiting the horizon before the feature takes place. The enhancement of the curvature power
spectrum at Nf

e with respect to its single-field limit can be seen, in correspondence with the
abrupt enhancement and consecutive decay of the isocurvature spectrum. Top Right panel:Top Right panel:Top Right panel:Top Right panel:Top Right panel:Top Right panel:Top Right panel:Top Right panel:Top Right panel:Top Right panel:Top Right panel:Top Right panel:Top Right panel:Top Right panel:Top Right panel:Top Right panel:Top Right panel: k-
mode exiting the horizon when the feature begins (NHX

e . Nf
e ). The behaviour of the spectra

is similar to the previous case, albeit more accentuated. Bottom Left panel:Bottom Left panel:Bottom Left panel:Bottom Left panel:Bottom Left panel:Bottom Left panel:Bottom Left panel:Bottom Left panel:Bottom Left panel:Bottom Left panel:Bottom Left panel:Bottom Left panel:Bottom Left panel:Bottom Left panel:Bottom Left panel:Bottom Left panel:Bottom Left panel: k-mode exiting the
horizon while the feature takes place. With respect to the previous panels, the curvature power
spectrum never reaches the single-field limit and the isocurvature spectrum shows no sudden
increase, decaying rapidly since the beginning. Bottom Right panel:Bottom Right panel:Bottom Right panel:Bottom Right panel:Bottom Right panel:Bottom Right panel:Bottom Right panel:Bottom Right panel:Bottom Right panel:Bottom Right panel:Bottom Right panel:Bottom Right panel:Bottom Right panel:Bottom Right panel:Bottom Right panel:Bottom Right panel:Bottom Right panel: k-mode exiting the horizon
after the feature takes place. While the isocurvature spectrum decays quickly, the curvature
spectrum tends to its single-field limit.
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Figure 5.4: Curvature power spectrum PR(k) for the Double Quadratic model [4]. An
enhancement with respect to the single-field behaviour for k-modes leaving the horizon before
the feature takes place can be seen at low k scales. Notice that the pseudo-single field spectrum
exhibits a decrease around Nf

e that would not appear in a real single-field spectrum.

For the k-modes exiting the horizon (roughly) during the feature (top right and bottom
left panels of 5.7), the same behaviour can be observed. In the bottom left panel, the
curvature spectrum is enhanced from the beginning, not even reaching the single-field
limit. The isocurvature spectrum decays faster each time, not showing the enhancement
around N f

e in the bottom panels. In the last panel, we see that for k-modes exiting
the horizon after the feature, the curvature spectrum goes back to its single-field limit:
the isocurvature perturbation has in fact already decayed. This can be understood by
thinking that, in the second stage of inflation, the heavy field has already decayed and
cannot influence the dynamics in any way.

Finally, the overall curvature power spectrum PR(k) = PR(k,N end
e ) is shown in Fig-

ure 5.4. Here, the pseudo-single field spectrum is shown for completeness, but differs
significantly from the real single-field behaviour by the “dip” at the scales k(NHX

e ≈ N f
e )

(due to the increase in ε in the denominator). The point of this plot is to notice the
additional contribution to the curvature power spectrum for scales exiting the horizon
before (and especially around) the feature (i.e. the enhancement seen for Ne > N f

e in
the first three panels of Figure 5.3). When plotted together with PS(k), the spectra ex-
hibit a similar shape, albeit separated by ∼ 40 orders of magnitude: see e.g. Huston &
Christopherson’s [4, Figure 2], (or think of the results in Figure 5.9 without the oscillatory
behaviour). Overall, the enhancement in PR(k) due to the multi-field behaviour is only
of O(1); this is not nearly enough to generate Primordial Black Holes, as we saw at the
end of Chapter 4.

This concludes the discussion of the Double Quadratic model of 2-field inflation. Mov-
ing on to the models of Achúcarro et al. [5] and Braglia et al. [6,7], the methods described
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Figure 5.5: Coupling parameter Γ(ϕ) for the Achúcarro model [5], as defined in Equa-
tion (5.18). The peak value is given by Γ(ϕi = 15) = Γmax = 0.9, and the coupling lasts
for ∆ϕ = 0.12 MPl. The horizontal dashed line corresponds to Γmax, and the vertical one to ϕi.

above will be the same and will thus not be repeated.

5.3 Achúcarro’s model
The following model was introduced by Achúcarro et al. [5]. A coupling between the fields
is inserted in the field-space metric,

γab =
(

1 Γ (ϕ)
Γ (ϕ) 1

)
, (5.17)

through the dimensionless ϕ-dependent parameter Γ(ϕ), which needs to satisfy Γ2(ϕ)� 1.
The explicit choice

Γ(ϕ) = Γmax

cosh2 [2(ϕ− ϕi)/∆ϕ]
(5.18)

is considered, where Γmax = 0.9 is the maximum value that Γ(ϕ) can reach, at ϕ = ϕi, and
∆ϕ is the field-space distance over which the coupling takes place. The field-dependence
of the parameter Γ(ϕ) is show in Figure 5.5, and a more detailed discussion on its physical
meaning can be found in [5].

The potential is instead given by

V (φ) = V0(ϕ) + 1
2m

2
χχ

2 , (5.19)

where V0(ϕ) was not explicitly specified in the original paper [5]. Considering the condi-
tions that V0 needs to satisfy, a parameter study of plausible quadratic and quartic poten-
tials was performed. We eventually identified in the following model the most promising
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candidate, in that it produced a significant enhancement of the SR parameters at N f
e ,

which as we saw previously is related to the enhancement of the curvature power spec-
trum. We therefore chose to use V0(ϕ) = 1

2m
2
ϕϕ

2, such that the potential (5.19) reduces to
the double quadratic one of Equation (5.16). The mass hierarchy in this case is given by
mϕ = 1

20mχ, with the latter satisfying m2
χ = 300H2 = 3 × 10−8 MPl, using the standard

result H = 10−5 MPl [5]. While the numerical scale of V (φ) for the Achúcarro model will
be different from that of the Double Quadratic model of §5.2, their shapes are approxi-
mately equal: we therefore refer the reader to Figure 5.1 for a visualisation of the fields
potential.

The initial conditions were chosen to be φai = (15, 15) MPl and πai = (0.1, 0.1) MPl.

∗ ∗ ∗

Analogously to the Double Quadratic case, the evolution of the background quantities is
shown in Figure 5.6 on page 62. Starting from the top left panel, we see the mechanism
by which the heavy field, χ, decays first while the light one, ϕ, only evolves after that;
as noted before, these decays drive two separate stages of inflation. At the transition
between them, we now observe a (small but significant) oscillation of the fields. While H
(top right panel) behaves very similarly to the previous case, the oscillatory behaviour is
seen in the Slow-Roll parameters η (bottom left panel) and η‖, η⊥ (bottom right panel)
as well. This is highlighted in the respective insets.

The magnitude of the feature in the SR parameters is also much greater than in the
Double Quadratic case (compare this Figure to the bottom panels of Figure 5.2). Focusing
on the last panel, we point out that the results for η‖ and η⊥ are quite similar to those
found by the original authors [5, Figure 6], the discrepancy being due to the possibly
different forms of V0(ϕ) that were considered.

∗ ∗ ∗

The scalar power spectra PR(k,Ne) and PS(k,Ne) are again shown in Figure 5.7 for four
k-modes leaving the horizon before, during, and after the feature. Their evolution is
similar to the one discussed previously, if not for the oscillatory behaviour around N f

e

that comes from the background quantities analysed above. In the first three panels of
this Figure, the numerical errors in PS(k,Ne) can be appreciated: the curve’s overall
trend is nevertheless unaffected.

The overall spectrum PR(k) is instead shown in Figure 5.8. As previously, we notice
how the low-k modes are enhanced with respect to the (pseudo-)single-field limit, while
high-k modes match this behaviour. Furthermore, the oscillatory behaviour of k-modes
exiting the horizon at NHX

e ≈ N f
e , which is typical of this model, is translated to the

overall power spectrum as well. These results in fact resemble those of the original authors:
see [5, Figures 5 and 6]. The discrepancy is most likely due to the possibly different models
considered for V0(ϕ).

We also show the comparison between the curvature, PR(k), and isocurvature, PS(k),
spectra in Figure 5.9, together with the correlation spectrum PRS(k). As anticipated at
the end of §5.2, these all exhibit the same behaviour, albeit separated by many orders
of magnitude. The oscillation observed in Figure 5.8 therefore appears here as well.
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Figure 5.6: Temporal evolution of the background quantities φa0 (top left panel), H (top
right panel), ε (bottom left panel), and η‖, η⊥ (bottom right panel) for Achúcarro’s model [5].
The behaviour of these quantities is as explained in Figure 5.2 for the Double Quadratic case,
albeit more accentuated. Notice in particular the oscillatory behaviour exhibited by φa0, ε, and
the η components when the feature takes place. The cut-outs in the bottom panels show a
magnification of this feature; the one in the η plot also clarifies how the two curves overlap.
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Figure 5.7: Temporal evolution of the curvature (in blue) and isocurvature (in red) power
spectra, PR(k,Ne) and PS(k,Ne), for Achúcarro’s model [5]. The pseudo-single field value of
the former, P1-field

R (k,Ne), is also shown (dashed blue lines). As for the case of Figure 5.3,
we illustrate k-modes exiting the horizon before, during, and after the feature takes place. The
behaviour is as discussed in that Figure, except for the fact that the curvature spectrum exhibits
some oscillatory behaviour at Nf

e . The above-mentioned numerical errors in the isocurvature
spectra can be seen here; they nevertheless do not modify the overall evolution of PS .
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Figure 5.8: Curvature power spectrum PR(k) for Achúcarro’s model [5]. An enhancement
with respect to the single-field behaviour for k-modes leaving the horizon before the feature
takes place can be seen at low k scales. Notice that the pseudo-single field spectrum exhibits a
decrease around Nf

e that would not appear in a real single-field spectrum. Furthermore, notice
the additional oscillatory behaviour with respect to Figure 5.4.
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Figure 5.9: Comparison between the curvature, isocurvature, and correlation power spectra
PR(k), PS(k), and PRS(k) for Achúcarro’s model [5].
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Numerical errors can be seen to appear on the right-hand side of the plot for the latter
two spectra.

In this model, the enhancement of PR(k) with respect to its single-field limit is almost
of order O(102), thus more significant than the simple Double Quadratic case found in
Figure 5.4. This is nevertheless still not sufficient to cause the generation of Primordial
Black Holes (this model was in fact not designed to this purpose by the authors [5]).

5.4 Braglia’s model
Lastly, we introduce the model of Braglia et al. [6, 7]. In this case, the coupling between
the fields is a ϕ-dependent parameter in the χ− χ matrix element of the metric:

γab =
(

1 0
0 f(ϕ)

)
. (5.20)

Two forms of the coupling function are considered in [7], f(ϕ) = e2b1ϕ and f(ϕ) = e2b2ϕ2 ,
with b1 and b2 being parameters of dimensions M−1

Pl and M−2
Pl respectively. While both

cases were analysed, no drastic differences were found in our study; the remainder of this
discussion will therefore focus on the former case, f(ϕ) = e2b1ϕ, and we invite the reader
to refer to [6, 7] for a complete analysis. A range of values was considered for the b1
parameter: 6.4 6 b1 6 8.4. For this choice of the metric γab, the field space exhibits a
constant and negative curvature given by the Ricci scalar R = −b2

1.
The potential takes the form discussed in Reference [109] (i.e. the potential of [110,

Equation (5.319)] with p = 5) for the heavy field ϕ, and a simple quadratic form for the
light field χ:

V (φ) = V0
ϕ2

ϕ2
0 + ϕ2 +

m2
χ

2 χ2 . (5.21)

The values V0 = 1, ϕ0 =
√

6 MPl, mχ =
√
V0/500 were taken, and the potential is shown

in Figure 5.10. Notice how the light and heavy fields are exchanged with respect to the
Double Quadratic (§5.2) and Achúcarro (§5.3) models.

In this model, the initial conditions are φai = (7, 7.31) MPl and πai = (0, 0) MPl.
A parameter study in the 8-dimensional space spanned by (b1, V0, ϕ0,mχ, φ

a
i , π

a
i ) was

performed: the above-mentioned values gave the clearest results, by which we mean the
strongest enhancement of the SR parameters and eventually of the power spectrum.

∗ ∗ ∗

Figure 5.11 shows the evolution of the background quantities for six values of the model
parameter b1, its values being given in the colorbar. The parameter η(B) of Equation (3.28)
is considered, rather than the pair η‖, η⊥; this both allows for easy comparison with the
authors’ results, and improves the readability, which would be highly hindered by the
overlapping sets of colours.

Similarly to the previous cases (Figures 5.2 and 5.6), a feature – i.e. a temporary
increase in magnitude – appears in the Slow-Roll parameters in correspondence of the
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Figure 5.10: Braglia et al.’s potential for the two fields ϕ and χ, as given in Equation (5.21).
Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel:Left panel: Potential in linear scale, as usually visualised. Right panel:Right panel:Right panel:Right panel:Right panel:Right panel:Right panel:Right panel:Right panel:Right panel:Right panel:Right panel:Right panel:Right panel:Right panel:Right panel:Right panel: Potential in logarithmic
scale, extending to non-physical negative field values. This is to highlight the shape of the
potential in the χ-direction (i.e. that of the light field), and the potential’s minimum at (ϕ, χ) =
(0, 0).

transition between the first (driven by the heavy field, ϕ in this case) and second stage
(driven by the light field, χ here) of inflation. This feature is now much more accentuated,
ε reaching values close to unity (and thus the end of inflation) at its peak. The oscillatory
behaviour around the feature, which was noticed in Achúcarro’s model, is present in this
case as well, and magnified in the insets of each panel. These results correspond to those
shown in [7, Figure 1].

∗ ∗ ∗

It can be seen that inflation lasts longer for higher-b1 curves. On the other hand, the
oscillations do not seem to depend on b1 in a clear way, and zooming in on the peak of ε
one can observe that all curves overlap. What is very important, though, is that this is not
the case for η(B): as shown in Figure 5.12, higher b1 values lead to greater enhancement
of η(B), and correspondingly of η‖ and η⊥. Clearly, only the top of the feature is shown in
the Figure for simplicity, but the same behaviour can be observed at the bottom.

As was noticed below Equation (5.4), the η parameters regulate the coupling between
curvature and isocurvature perturbations: we therefore expect to see a significant inter-
action between the two modes. This can be thought of as a tachyonic instability1 of
the isocurvature perturbation [7]: its squared mass becomes in fact temporarily negative,
and greatly enhanced, at the time of the feature. This can be seen in the top left and
bottom right panels of Figure 5.13, which respectively illustrate the effective mass of the
vN perturbation, M2

vN
, and its mass matrix element, ΩNN . This instability feedbacks

1Tachyonic particles were hypothesised as being superluminar, requiring them to have imaginary
masses, or negative m2 [111]. It is now common to use the term tachyonic to refer to the latter property.
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Figure 5.11: Temporal evolution of the background quantities φa0 (top left panel), H (top
right panel), ε (bottom left panel), and η(B) (bottom right panel) for Braglia’s model [6, 7]. All
the quantities are shown for different values of the parameter b1 which characterises this model.
Note that we are plotting η(B) here rather than the pair η‖, η⊥, both for best readability and to
more easily compare this Figure to that of the authors, [7, Figure 1]; as explained in §2.2.2 and
§3.2, the various η are related. The behaviour of these quantities is as explained in Figure 5.2 for
the Double Quadratic case, albeit much more accentuated. Notice that the oscillatory behaviour
encountered in the case of Achúcarro’s model appears here as well; this is highlighted in the
insets which magnify the interested region of each panel.
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Figure 5.12: Top of the feature’s peak for the three η parameters (η(B) in the left panel, η‖
and η⊥ in the right one) in Braglia’s model [6, 7]. Varying the value of the parameter b1 leads
to variations in the local enhancement, and thus in the subsequent power spectrum.

on the curvature perturbation (see the increase in ΩTT ), and we thus expect to see an
enhancement in its power spectrum PR.

Furthermore, we see from Figure 5.13 that the higher the parameter b1 is (i.e. the
stronger the kinetic coupling between the scalar fields), the more violent the instability.

This enhancement of the curvature perturbation is indeed what we find in Figure 5.14
for the spectra of the single k-modes, P(k,Ne), and in Figure 5.15 for the overall cur-
vature power spectrum, PR(k). The former follow the trend of the previous models,
although they now depend strongly on the b1 parameter; this is somewhat obfuscated by
the considerable numerical errors in PS .

The curvature power spectrum in Figure 5.15 is shown against the ratio of k to the
Planck [19] normalisation k∗ = 0.005 Mpc−1 and against the corresponding time of horizon
exit, NHX

e . It can be seen that, depending on the value of b1 one chooses, the spectrum
can be significantly enhanced with respect to the CMB value As ∼ 10−9. In particular, it
can be enhanced by more than O(107).

The enhancement by O(107) is found for the curve with b1 = 7.6. Higher values of
the parameter give even stronger enhancement (up to ∼ O(1010)), which is more than
required. We also see that the ∆Ne of the enhancement is well within the limit found
at the end of Chapter 4. We can therefore conclude that this model is suitable for PBH
production. We see in fact that the results shown in this Figure are consistent with those
of the original authors: see [7, Figure 2].

∗ ∗ ∗
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Figure 5.13: Temporal evolution of the mass matrix elements ΩIJ, as well as the effective
squared mass of the vN -mode, M2

vN
. All of these quantities exhibit a b1-dependent amplitude.

Top Left and Bottom Right panels:Top Left and Bottom Right panels:Top Left and Bottom Right panels:Top Left and Bottom Right panels:Top Left and Bottom Right panels:Top Left and Bottom Right panels:Top Left and Bottom Right panels:Top Left and Bottom Right panels:Top Left and Bottom Right panels:Top Left and Bottom Right panels:Top Left and Bottom Right panels:Top Left and Bottom Right panels:Top Left and Bottom Right panels:Top Left and Bottom Right panels:Top Left and Bottom Right panels:Top Left and Bottom Right panels:Top Left and Bottom Right panels: The masses relating to the orthogonal mode vN (itself pro-
portional to the isocurvature perturbation) exhibit a transient tachyonic instability around the
time of the feature, becoming negative and strongly enhanced.
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Figure 5.14: Temporal evolution of the curvature and isocurvature power spectra PR(k,Ne)
and PS(k,Ne) for Braglia’s model [6, 7]. The pseudo-single field value of the former,
P1-field
R (k,Ne), is also shown (dashed lines). As for the case of Figure 5.3 and Figure 5.7,

we illustrate k-modes exiting the horizon before, during, and after the feature takes place; the
behaviour is as discussed in those Figures. It is evident here that higher-b1 curves are more
enhanced by the feature. The numerical errors on PS are quite large, but the general trend is
visible.
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Figure 5.15: Curvature power spectrum PR(k) for Braglia’s model [6, 7]. The enhancement
with respect to the single-field behaviour is evident, and strongly b1-dependent. Notice that the
red line was not normalised correctly, and should be thought of as slightly shifted upwards.

Since this model has proven to be of phenomenological interest, a few additional remarks
are in order. We first quote the value that the authors obtain for the spectral index of this
power spectrum, that is ns = 0.9537: this is in slight tension with Planck’s results [19].
This model is also used to calculate the induced GWs from PBH formation, suggesting
they could be within the range of sensitivity of upcoming experiments. A modification
of the model with the coupling f(ϕ) = e2b2ϕ2 is also considered, finding similar results to
ours and improving the tension on ns.

Lastly, Kallosh & Linde [112] recently argued that such a model could be formulated
in terms of α attractors, and interpreted as having a hyperbolic geometry. They then
related the PBH masses and GW frequencies to the curvature of the Kähler geometry,
which is simply given by −b2

1, and develop a supergravity extension of the model. One
interesting consequence of this study is a physical explanation for the sudden “drop” of
the light field’s value at the time of tachyonic instability (see top left panel of 5.11); this
would be due to a protection of the light (axion) field’s initial position caused by the
Kähler curvature.
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Chapter 6

Closing Remarks

6.1 Summary
Over the course of the year-long study that led to the writing of this thesis, we care-
fully analysed the theoretical framework of non-canonical N -field inflation, as well as the
production mechanisms for Primordial Black Holes. A numerical code (written in Mathe-
matica) was then developed to compute the power spectra of curvature and isocurvature
perturbations in models with N = 2 scalar fields minimally coupled to gravity. This code
is highly adaptable, allowing the user to define virtually any 2-field model they see fit
(i.e. giving a potential, a field-space metric, and initial conditions on the fields’ position
and velocity). This was tested using known models, and was shown to be consistent with
literature results.

∗ ∗ ∗

In the first Chapter of this thesis, we gave a general introduction to the topic, providing
a historical background of the field and highlighting the importance of our study. We
discussed in an informal way the Standard Model of cosmology, its shortcomings, and
inflation as a possible solution; the idea that Primordial Black Holes could explain the
nature of the elusive Dark Matter was also introduced. This Chapter was aimed at as
general a public as possible, allowing curious readers to get a sense of the topic with
virtually no a-priori knowledge.

Chapter 2 then formalised our discussion, deriving cosmology’s key dynamical equa-
tions to explain how our universe is composed and how it has evolved. This led us to the
study of inflation in its standard single-field formalism, for which we reviewed the dynam-
ics of the classical background fields, the Slow-Roll approximation, and briefly considered
a simple concrete model.

The previous discussion was generalised in Chapter 3 to the case of N interacting
scalar fields driving inflation. Having extended our understanding of the background evo-
lution to the multi-field framework, we proceeded to study the theory of cosmological
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perturbations. Reviewing many important results, we wrote the linearised Einstein equa-
tions and eventually arrived to the Equations of Motion for the perturbations of the scalar
fields about their background values. We then proceeded to quantise them, obtaining the
main inflationary observables, that is the curvature and isocurvature power spectra.

Chapter 4 focused instead on Primordial Black Holes: we explained how they are
formed from inflationary perturbations and in what way they could account for the Dark
Matter content of the universe. We then summarised some of the most important obser-
vational constraints on PBHs’ mass and abundance.

Finally, in Chapter 5, we focused on the most immediate N = 2 case of multi-field
inflation, showing how the dynamics simplify. Three particular models were then in-
troduced: these are the ones we studied numerically with the code we developed. The
evolution of the background quantities, the power spectra, and their implications for PBH
production were analysed in each instance.

6.2 Conclusions
It was found that two-field models can exhibit a significant enhancement of the curvature
power spectrum, mainly caused by a kinetic coupling in the field-space metric. The kinetic
coupling is in fact reflected in a transient feature in the Slow-Roll parameters at the time of
transition between two stages of inflation – the first one driven by the heavy field, and the
second by the light field. The second SR parameter, η⊥, represents the coupling between
the evolution of curvature and isocurvature perturbations, and is greatly amplified in the
presence of sharp turns in the inflationary trajectory. The above-mentioned feature causes
a temporary tachyonic amplification of the isocurvature mode, and produces feedback on
the curvature one. Finally, this leads to an enhancement of the primordial curvature
power spectrum.

If the kinetic coupling is large enough, the resulting enhancement of the power spec-
trum can be compatible with the production of PBHs. In particular, these could be
formed in one of the allowed mass ranges to be Dark Matter candidates, i.e. around
masses of M ∼ 10−15M�, M ∼ 10−12M�, and to some extent M ∼ 10−6M�. This fact
could have important implications for our understanding of the universe.

6.3 Future Outlook
Continuing from this study, future work could focus on different 2-field models: using
the same code and applying the same analysis, the search for PBHs could continue in
slightly different directions. A discussion on additional models of interest was started, the
criterion being to have a strong kinetic coupling between the fields. Additional potentials
were briefly investigated as well. From the literature, the following models seemed to be
promising candidates [113–115]; the goal would nevertheless be to develop a novel model.
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Aside from its linear continuation, an extension of this work could be centred on
analysing the related second-order production of Gravitational Waves (as done e.g. in
[6]). Analysing departures from Gaussianity, such as by calculating their bispectrum
[116], would also be important. Lastly, it would be interesting to consider a top-down
approach, i.e. finding inflation models motivated by theoretical considerations rather than
by phenomenology; this is often the case in models of Supersymmetry and string inflation
such as [101,117].

∗ ∗ ∗

Multi-field inflation and the search for Primordial Black Holes are topics of great scientific
interest, and a plethora of studies exists and continues growing. See for example the paper
by Geller et al. [118] that just appeared on the arXiv, where the focus is set on fields non-
minimally coupled to gravity.

Even if these inflationary theories were to be refuted by tighter future observational
constraints, studying them would nevertheless have proven useful. For example, Cicoli
et al. [119] recently postulated a model of late-time cosmology based on the same multi-
field framework considered in this work. In a similar fashion, were PBHs to be ruled
out as being the entirety of the universe’s Dark Matter content, their study would still
be important for astrophysical and cosmological processes, or for models of DM such as
those considering a mixture of PBHs and WIMPs [51].
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Appendix A

Key Elements of General
Relativity

S ome of the basic definitions and results of General Relativity, which were used
throughout this work, are stated in the present Appendix. The aim is not to be
thorough or self-contained, but rather to provide a very short summary of key

equations. The reader is strongly encouraged to refer to General Relativity textbooks
such as [56] for more detailed discussions.

A.1 Basic Definitions
Spacetime manifolds are endowed with ametric which describes its geometrical properties.
For a line element ds, the metric tensor gµν satisfies

ds2 ≡ gµνdxµdxν . (A.1)

We only consider four-dimensional spacetimes in this work, and adopt the (− + ++)
signature. The Einstein summation over repeated indices is implied. The metric tensor
is symmetric, gµν = gνµ, and its inverse, gµν , satisfies

gµνgνλ = δµλ ,

where δµν is the usual Kronecker delta (δµν = 1 if µ = ν, and 0 otherwise). The metric
tensor and its inverse are used to raise and lower spacetime indices.

The simplest spacetime metric is the Minkowski one, which reads

ds2 = −dt2 + δijdxidxj . (A.2)

The Minkowski metric tensor then corresponds to the diagonal matrix

g(M)
µν = diag(−1,+1,+1,+1) .
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When studying cosmology, a metric that satisfies the cosmological principle (homo-
geneity and isotropy of the large-scale universe, see §1.1) is required. This is provided by
the Friedmann–Lemaître–Robertson–Walker (FLRW) metric discussed in §2.1, that is

ds2 = −dt2 + a2(t)
[

dr2

1− kr2 + r2dΩ2
]

. (A.3)

For the case of a flat universe, i.e. k = 0, the FLRW metric tensor reduces to

g(FLRW,k = 0)
µν = diag(−1,+a2,+a2,+a2) .

A plethora of metrics exist that categorise equivalently many spacetime manifolds, such
as the Schwarzschild metric for ordinary non-rotating Black Holes. These are nevertheless
beyond the scope of this work.

∗ ∗ ∗

For a given metric gµν , one can define the Christoffel symbols (or affine connection),

Γλµν = 1
2g

λσ (∂µgνσ + ∂νgµσ − ∂σgµν) , (A.4)

where the shorthand notation ∂µ ≡ ∂/∂xµ was used. Note that the Christoffel symbols
are symmetric in their lower indices, Γλµν = Γλνµ. An important property of the Christoffel
symbols is that when contracting indices,

Γµνµ = ∂ν ln
√
−g ,

with g = det gµν the determinant of the metric tensor.
Building upon this, the Riemann tensor can be defined as

Rλ
µνσ = ∂νΓλµσ − ∂σΓλµν + ΓλναΓασµ − ΓλσαΓανµ . (A.5)

Contracting the Riemann tensor, one obtains the Ricci tensor, that is [31, Equation (A.41)]

Rµν = Rλ
µλν = ∂λΓλµν − ∂µΓλνλ + ΓλµνΓσλσ − ΓλµσΓσλν . (A.6)

Contracting this again allows for the determination of the Ricci (curvature) scalar,

R = Rµ
µ = gµνRµν . (A.7)

∗ ∗ ∗

Another important concept is that of the geodesic equation, where we remind that a
geodesic is the shortest line between two spacetime points. For the four-velocity uµ =
dxµ/ds (where s is the proper time),

duλ
ds + Γλµνuµuν = 0 . (A.8)
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A.2 Deriving the Friedmann Equations
This Section provides a few additional details to the sketch of the derivation of the Fried-
mann equations of §2.1.1. In particular, we focus here on the left hand side of the Einstein
equations,

Rµν −
1
2Rgµν ≡ Gµν = 8πGNTµν , (A.9)

i.e. the metric-dependent terms. The following discussion is based on [9, §I.3.1], [56,
§15.1], and [52, §2.1].

For the FLRW metric (A.3), we have

g00 = −1 , g0i = 0 , gii = a2
( 1

1− kr2 , r
2, r2 sin2 θ

)
≡ a2g̃ij , gij = 0 for i 6= j ,

such that, from the first term, ∂µg00 = 0. We introduced in the third term the time-
independent metric tensor for the three-dimensional maximally-symmetric space, g̃ij. The
Christoffel symbols with upper index 0 reduce to (notice that g00 = g00 = −1)

Γ0
µν = 1

2g
00 (∂µgν0 + ∂νgµ0 − ∂0gµν)

= 1
2∂0gµν .

Clearly, Γ0
00 = Γ0

i0 = 0 while
Γ0
ij = 1

2∂0gij = aȧg̃ij .

Conversely, the Christoffel symbols with upper index i reduce to

Γi00 = 1
2g

ii (∂0g0i + ∂0g0i − ∂ig00)

= 0 ,

Γi0j = 1
2g

ii (∂0gji + ∂jg0i − ∂ig0j)

= 1
2g

ii2aȧg̃ij

= aȧ δij
1
a2

= ȧ

a
δij ,

Γijk = 1
2g

il (∂jgkl + ∂kgjl − ∂lgjk)

= Γ̃ijk .

In the last result, Γ̃ijk are the Christoffel symbols for the metric g̃ij.
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The Ricci tensor has components

R00 = ∂λΓλ00 − ∂0Γλ0λ + Γλ00Γσλσ − Γλ0σΓσλ0

= −∂0

(
ȧ

a
δii

)
− ȧ

a
δij
ȧ

a
δji

= −3
(
ä

a
− ȧ2

a2

)
− 3 ȧ

2

a2

= −3 ä
a
,

R0i = ∂λΓλ0i − ∂0Γλiλ + Γλ0iΓσλσ − Γλ0σΓσλi
= ∂jΓj0i − ∂0Γjij + Γj0iΓkjk − Γj0kΓkji
= 0 ,

Rij = ∂λΓλij − ∂iΓλjλ + ΓλijΓσλσ − ΓλiσΓσλj
=
(
∂0Γ0

ij + ∂kΓkij
)
− ∂iΓkjk +

(
Γ0
ijΓk0k + ΓlijΓklk

)
−

−
(
Γ0
ikΓk0j + Γli0Γ0

lj + ΓlikΓklj
)

= R̃ij + ∂0 (aȧg̃ij) + (aȧg̃ij)
(
ȧ

a
δkk

)
−

− (aȧg̃ik)
(
ȧ

a
δkj

)
−
(
ȧ

a
δli

)
(aȧg̃lj)

= R̃ij +
(
2ȧ2 + aä

)
g̃ij

=
(
2ȧ2 + aä+ 2k

)
g̃ij

=
(

2 ȧ
2

a2 + ä

a
+ 2 k

a2

)
gij .

To understand that R0i = 0, notice that Γi0j does not depend on spatial coordinates,
Γiji = Γ̃iji is time-independent, and that Γi0j ∝ δij so that the ΓΓ terms cancel. For
the more involved case of Rij, we defined R̃ij, the Ricci tensor for the metric g̃ij of the
maximally-symmetric 3-space, which needs to satisfy [56, Equations (13.2.4) and (13.2.7)]

R̃ij = 1
3 g̃ijR̃

k
k

= 1
36kg̃ij ,

with R̃ = R̃k
k the Ricci curvature scalar associated to g̃ij.

The Ricci scalar R then becomes

R = gµνRµν

= g00R00 + gijRij

= −
(
−3 ä

a

)
+ gijgij

(
2 ȧ

2

a2 + ä

a
+ 2 k

a2

)

= 6
(
ä

a
+ ȧ2

a2 + k

a2

)
.
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It is now straightforward to show that the (00) and (ii) components of the Einstein
tensor Gµν (i.e. the left hand side of the Einstein equations (A.9)) read

G00 = 3
(
ȧ2

a2 + k

a2

)
,

Gii = −
(

2 ä
a

+ ȧ2

a2 + k

a2

)
gii .

Finally, recalling that the right hand side of the equations is given by the perfect fluid
Energy-Momentum tensor (T00 = ρ and Tii = pgii), we write the Friedmann and Ray-
chaudhuri equations,

ȧ2

a2 = 8πGN

3 ρ− k

a2

and

2 ä
a

+ ȧ2

a2 = −8πGNp−
k

a2 ,

as advertised in Equations (2.6) and (2.7).
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Appendix B

N -Field Equations of Motion

W e derive here the Equations of Motion (3.5) for a generic N -field system de-
scribed by the action (3.1), repeated here for simplicity:

S =
∫

d4x
√
−g

[
−1

2γabg
µν∂µφ

a∂νφ
b − V (φ) + M2

Pl
2 R

]
. (B.1)

This pedagogical discussion is deemed useful since the detailed derivation – which is less
obvious than one may think – was not found anywhere in the literature. The references
considered throughout this work give in fact only the initial action (B.1) and the resulting
Equations of Motion (EoM) – see for example [5, 66].

We will begin our discussion by considering the simpler case of single-field inflation,
in order to then generalise to the full N -field scenario. In either case, we use the fact
that the action is related to the Lagrangian density, L , by S =

∫
d4x L , since we will

work with the latter. We will furthermore only consider the part of L that describes
the field(s), denoted Lφ, since we use the fact that the field-derivatives of the spacetime
Ricci scalar are null, as well as its derivatives with respect to ∂αφ(c). Using the shorthand
notation φ(c) to denote both single- and multi-field cases, this means:

∂R

∂φ(c) = ∂R

∂ ∂αφ(c) = 0 .

The same relations hold for the derivatives of the spacetime metric, gµν , and of its mod-
ulus, g, with respect to the field(s) and the spacetime derivatives of the field(s):

∂gµν

∂φ(c) = ∂gµν

∂ ∂αφ(c) = 0 ,

∂g

∂φ(c) = ∂g

∂ ∂αφ(c) = 0 .

The above relations are important when considering that the derivation of the EoM
is based on the use of the (generalised) Euler–Lagrange (EL) equations, that is

∂α
∂Lφ

∂ ∂αφ(c) −
∂Lφ

∂φ(c) = 0 . (B.2)
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We will furthermore calculate the system’s energy-momentum tensor (EMt) [9, Appendix I.A.6],

T µν ≡
−1√
−g

(
∂Lφ

∂ ∂µφ(c)∂νφ
(c) − δµνLφ

)
, (B.3)

in either scenario.
From here onwards, the above shorthand notation is dropped. The field-derivatives

will be denoted by ∂φ = ∂/∂φ in the single-fields case, and by ∂c = ∂/∂φc when considering
N fields.

B.1 Single-Field Case
The field Lagrangian in the single-field case is given by

Lφ =
√
−g

(
−1

2g
µν∂µφ ∂νφ− V (φ)

)
. (B.4)

The second term of the EL equations (B.2) is calculated as, using V = V (φ),

∂Lφ

∂φ
=
√
−g

{
−1

2g
µν [(∂φ∂µφ) ∂νφ+ ∂µφ (∂φ∂νφ)]− ∂φV

}
= −
√
−g ∂φV , (B.5)

where we made use of the fact that ∂φ∂µφ = ∂µ∂φφ = ∂µ1 = 0. The first term of the EL
equations (B.2) is instead given by the ∂α derivative of

∂Lφ

∂ ∂αφ
=
√
−g

{
−1

2g
µν

[
∂(∂µφ)
∂(∂αφ)∂νφ+ ∂µφ

∂(∂νφ)
∂(∂αφ)

]
− ∂V

∂(∂αφ)

}

= −1
2
√
−g gµν

(
δαµ ∂νφ+ ∂µφ δ

α
ν

)
= −1

2
√
−g (gαν∂νφ+ gµα∂µφ)

= −
√
−g ∂αφ . (B.6)

Here we noticed that the potential is defined as V (φ) and not as V (φ, ∂αφ), i.e. it does
not depend on the field’s spacetime derivatives and thus the last term on the first row
of the above equation is set to zero. We also used the relation ∂(∂µφ)/∂(∂αφ) = δαµ with
δαµ being the Kronecker delta. To get to the last row, we noticed that both terms in the
bracket contract to the same derivative.

To calculate the derivative of Equation (B.6), we need to make use of the relations for
the variation of the modulus of the metric tensor

δg = g gβσδgβσ ⇒ δ
√
−g = 1

2
√
−g gβσδgβσ , (B.7)
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which can be derived using the properties of linear algebra, det(M + δM) = det(M)[1 +
Tr(M−1δM) +O(δM)] (see [9, §I.A.4]). In terms of ∂α, this gives

∂α
√
−g = δ

√
−g

δgβσ
∂αgβσ = 1

2
√
−g gβσ∂αgβσ . (B.8)

Furthermore, reminding ourselves that the spacetime Christoffel symbols are defined as

Γλαβ = 1
2g

λσ (∂αgσβ + ∂βgασ − ∂σgαβ) , (B.9)

it is evident (keeping in mind that the metric tensor needs be symmetric, gµν = gνµ) that
the contraction

Γβαβ = 1
2
(
gβσ∂αgβσ + ∂σgασ − ∂βgαβ

)
= 1

2g
βσ∂αgβσ , (B.10)

where we noticed that the last two terms in the first row are equal and thus cancel. This
is nonetheless than the right hand side of Equation (B.8).

Using these results, the first term of the EL equations becomes

∂α
∂Lφ

∂ ∂αφ
= −

(
∂α
√
−g
)
∂αφ−

√
−g ∂α∂αφ

= −
√
−g

(
Γββα∂αφ+ ∂α∂

αφ
)

= −
√
−g

(
Γααβ∂βφ+ ∂α∂

αφ
)

, (B.11)

where we switched the internal indices α↔ β in the first term of the second row.
Substituting the two terms (B.5) and (B.11) into the EL equations (B.2), dividing by√
−g, and changing signs, we finally get that

Γααβ∂βφ+ ∂α∂
αφ = V,φ ,

where we adopt – for this derivation only – the notation V,φ ≡ ∂φV . Defining the covariant
spacetime derivative,

DµA
ν ≡ ∂µA

ν + ΓνµλAλ , (B.12)
as well as the covariant spacetime d’Alembert (or box) operator acting on a scalar field,

2φ ≡ Dµ∂
µφ , (B.13)

it is then easy to cleanly rewrite the Equations of Motion of the single-field system de-
scribed by the Lagrangian density (B.4) as

2φ = V,φ . (B.14)

This equation is the same as that of [67, Equation (12)], as we expected.
Using the result (B.6), we can furthermore write the system’s EMt from Equation (B.3):

T µν = ∂µφ ∂νφ− δµν
(1

2∂
αφ ∂αφ+ V (φ)

)
. (B.15)

92



APPENDIX B. N -FIELD EQUATIONS OF MOTION

B.2 Multi-Field Case
The fields Lagrangian in the multi-field case is instead given by

Lφ =
√
−g

(
−1

2γabg
µν∂µφ

a∂νφ
b − V (φ)

)
, (B.16)

where now φ = (φa, . . . , φN ) denotes the set of all fields. We will again use V = V (φ).
The ∂L /∂φc term of the EL equations (B.2) is found using the same considerations

as in Equation (B.5), except for an additional term ∂cγab dependent on the multi-field
geometry:

∂Lφ

∂φc
= −
√
−g

[1
2 (∂cγab) gµν∂µφa∂νφb + ∂cV

]
. (B.17)

The term ∂L /∂ ∂αφ
c is instead

∂Lφ

∂ ∂αφc
=
√
−g

{
−1

2

(
∂γab
∂ ∂αφc

)
gµν∂µφ

a∂νφ
b − 1

2γabg
µν

[
∂(∂µφa)
∂(∂αφc)

∂νφ
b + ∂µφ

a ∂(∂νφb)
∂(∂αφc)

]
−

− ∂V

∂(∂αφ)

}

= −1
2
√
−g γabgµν

(
δαµδ

a
c∂νφ

b + ∂µφ
aδαν δ

b
c

)
= −1

2
√
−g

(
γbc∂

αφb + γac∂
αφa

)
. (B.18)

Similar considerations to the corresponding single-field case were again employed, notably
that ∂V/∂ ∂αφc = 0 and that ∂(∂µφa)/∂(∂αφc) = δαµ δ

a
c . We furthermore considered that

γab depends only on the fields and not on their spacetime derivatives, meaning the first
term of the first row vanishes.

Taking the ∂α derivative of the above, the first term will again be given by the relations
(B.8) and (B.10), while we will make use of the chain rule ∂αγac = (∂dγac)∂αφd for the
second:

∂α
∂Lφ

∂ ∂αφc
= −1

2
(
∂α
√
−g
) (
γbc∂

αφb + γac∂
αφa

)
− 1

2
√
−g

[
(∂αγbc) ∂αφb + (∂αγac) ∂αφa

]
−

− 1
2
√
−g

[
γbc∂α∂

αφb + γac∂α∂
αφa

]

= −1
2
√
−g


(1)

Γββα
(
γbc∂

αφb + γac∂
αφa

)
+

(2)

(∂dγbc) ∂αφd∂αφb +
(3)

(∂dγac) ∂αφd∂αφa +

+
(4)

γbc∂α∂
αφb + γac∂α∂

αφa

 .
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We then identify the terms (1) and (4) as the covariant derivatives (B.12), by switching
the internal indices α ↔ β in the former. We also rename the indices d → a and d → b
in terms (2) and (3), respectively:

= −1
2
√
−g


(1)

γbcDα∂
αφb +

(2)

γacDα∂
αφa +

(3)

(∂aγbc) ∂αφa∂αφb +
(4)

(∂bγac) ∂αφb∂αφa
 .

Finally, we rename the internal index b→ a in term (1) such that it equals term (2), and
we identify Dα∂

αφa = 2φa from Equation (B.12). We use ∂α = gαβ∂α in the last two
terms, where we redefine (α, β)→ (µ, ν) in (3) and (α, β)→ (ν, µ) in (4):

= −
√
−g

[
γac2φ

a + 1
2 (∂aγbc + ∂bγac) gµν∂µφa∂νφb

]
. (B.19)

Substituting the results (B.17) and (B.19) in the EL equations (B.2) we get that,
dividing by √−g and changing signs,

γac2φ
a + 1

2 (∂aγbc + ∂bγac − ∂cγab) gµν∂µφa∂νφb = ∂cV .

We now contract this equation with γdc. Using the definition of inverse metric γdcγac = δda,
the box term reduces to 2φd, while we define V ,d ≡ γdc∂cV on the right hand side. The
remaining term is easily identified with the field-space Christoffel symbol Ldab by looking
at Equation (3.2).

Lastly, we rotate the indices (a, b, c, d)→ (b, c, d, a) to find

2φa + La
bcg

µν∂µφ
b∂νφ

c = V ,a . (B.20)

This is the expected result (3.5) (see [5, Equation (2.4)] or [66, Equation (4)], where a
different notation is used) and thus concludes our derivation. Notice the similarity with
Equation (B.14), with the addition of the field-space-dependent Labc-term which provides
a further coupling between the different fields, on top of the one included in V (φ).

Using the result (B.18) – where we rename the internal index b→ a in the first term
to sum it to the secnd –, it is also possible to write the N -field EMt (3.6):

T µν = γac∂
µφa∂νφ

c − δµν
(1

2γac∂
αφa∂αφ

c + V (φ)
)

. (B.21)

Notice there are no additional terms with respect to the single-field EMt (B.3). This is
the expected result (see [66, Equation (5)], which uses a different notation), and is given
in the text as Equation (3.6).
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