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Abstract

The neutrino mass ordering and the leptonic CP violation phase are key parameters
of the three-neutrino flavour mixing still to be determined. Measuring these parameters
is the main goal of DUNE, a next generation Long Baseline neutrino experiment under
construction in the United States.

DUNE will feature a Near and a Far Detector site. An important component of the
Near detector complex is the SAND apparatus, which will include GRAIN, a novel liquid
Argon detector that aims at imaging neutrino interactions using scintillation light. For
this purpose, an innovative optical readout system based on Coded Aperture Masks is
under study.

This thesis work is aimed at a first quantitative assessment of a 3D neutrino event
reconstruction algorithm for GRAIN. The processing procedure is optimized and the
reconstruction performance is evaluated. Promising results are obtained.
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Introduction

The experimental study of neutrino oscillations has made it possible to determine many
of the parameters linked to neutrino masses by the complementary use of multiple ex-
perimental channels and sources. Some parameters are yet to be determined, most
importantly the ordering of neutrino masses and the potential CP violating phase of the
neutrino mixing matrix, the latter of which would have a profound impact on the whole
lepton sector of particle physics. The search for the remaining unknowns in neutrino
physics is the aim of the next generation of neutrino experiments. The Deep Under-
ground Neutrino Experiment (DUNE) will be one of the flagship projects, leveraging
innovative detector technologies and the most powerful neutrino beam available at the
time of completion.

DUNE will feature two experimental sites, the Near and Far Detector complexes, the
former being located at Fermilab, a few hundred meters from the neutrino beam source,
and the latter being housed at SURF, 1300 km away. For the oscillation parameters
to be determined through the data of the multi-kiloton Liquid Argon Time Projection
Chambers (LArTPC) of the Far Detector (FD), the neutrino beam must be characterized
before the onset of oscillations at the Near Detector (ND) complex: the three proposed
near detectors will be able to provide complementary information on the neutrino beam
and to refine the interaction models that will be necessary to analyse the FD data.
The ND will also be capable of conducting searches for New Physics, providing high
granularity ad resolution.

The SAND detector will be the only one in the ND complex to be fixed in an on-
axis position, from which it will monitor the neutrino beam flux. For the inner volume
of the SAND magnet and calorimeter, reused from the KLOE experiment, a system of
trackers and a LAr active target is planned. The proposed LAr active target of the ND
SAND detector, also known as GRAIN, aims at providing fast and granular vertex and
track identification capabilities, which will be helpful for ν-LAr interaction modelling
and to complement the tracking system. For GRAIN, an optical detection system is
being considered, aiming to provide a complete spatial and timing reconstruction of the
events with a timescale of a few nanoseconds. One of the two solutions that is being
developed for the optical readout system is based on the Coded Aperture Mask technique,
in which event reconstruction will be possible through the combination of images from
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multiple Coded Aperture cameras with different viewpoints. This will be performed by a
reconstruction algorithm based on a combinatorial approach: its output is a 3D neutrino
event reconstruction in terms of the probability for each unit voxel of the GRAIN inner
volume to be the source of a detected photon.

The aim of this thesis work is to perform the first quantitative assessment of the per-
formance of this new reconstruction technique, identifying its characteristics and issues
and determining the consistency of its results against the simulated Monte Carlo data. A
strategy for extracting the basic event observables is additionally outlined. Specifically,
the distributions of the reconstructed amplitudes will first be analysed, identifying their
features and the origin of reconstruction artefacts. A preliminary evaluation of the con-
sistency of the reconstructions to the true distributions will be performed by means of
the Structural Similarity index. Estimators for the basic event features, vertex position,
track length and total energy deposition are then developed and tested on the simulated
data in order to determine their validity and the optimal procedure for their extraction.

The standard and metrics for the reconstruction quality obtained by this work will
serve as a guide for the future development of the algorithm, enabling to test quantita-
tively the performance of new versions against the simulated data.

The dissertation is organized as follows:

• Chapter 1 will present an overview of the current status of neutrino physics, out-
lining the theoretical description of massive neutrinos and introducing the phe-
nomenology of neutrino oscillations and the experimental results on the mixing
parameters.

• Chapter 2 will describe the physics objectives, structure and detectors of the future
DUNE experiment.

• Chapter 3 will outline the principles and features of Coded Aperture imaging and
subsequently present the rationale and specifics of the GRAIN optical detection
system and of the reconstruction algorithm.

• Chapter 4 will present the preliminary analysis of the reconstructed amplitude
distributions, with the determination of their features and the comparison to the
Monte Carlo data through an image-similarity metric.

• Chapter 5 will describe the analyses performed to determine the quality of the
reconstruction estimates of basic features of the events, and to find an optimal
processing procedure.
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Chapter 1

Neutrino Physics

1.1 The physics of neutrinos

Ever since their proposal by Pauli in 1930, neutrinos have been at the forefront of particle
physics, as the study of their interactions has been crucial for the description of phenom-
ena ranging from β-decays and the quark structure of nucleons to stellar thermonuclear
reactions and the gravitational collapse in supernovas.

Neutrinos are, at present, the only known fundamental fermions with zero electric
charge and, as such, they only interact through weak charged and neutral current pro-
cesses, with cross sections at all available energies that are much smaller than the electro-
magnetic cross sections of both quarks and other leptons. Detecting such rare neutrino
processes required the development of special experimental techniques, which have since
provided unique handles on many aspects of fundamental physics.

Neutrinos were, in the initial formulation of the Standard Model, thought to be
massless, but the observations of Neutrino Flavour Oscillations by experiments operating
in many different regimes have since proven that the mass of these particles is indeed
non-zero. While the measurement of the absolute values of neutrino masses is still an
open problem, the available upper limits are so much smaller than the masses of the
other fundamental fermions that their natural production mechanism is thought to be
of a non-Standard Model origin.

Neutrinos can thus be an handle with which to probe beyond the Standard Model
physics: flavour oscillations represent the first hint for such a theory, and the searches for
neutrinoless double β-decay might provide additional evidence by proving the Majorana
nature of neutrinos and the non Standard Model origin of their masses.

This section aims at providing a brief theoretical overview of the main aspects of
neutrino physics, discussing the relevant observables and introducing the questions that
still remain open for next generation experiments to investigate.
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1.1.1 Neutrino flavour and mass

Three types, or flavours states, of neutrinos and antineutrinos are currently known; they
are distinguished into electron-type, muon-type and tau-type (νe, νµ and ντ respectively)
by the charged lepton that they couple to in weak charged current (CC) interactions.
The number of left handed, and thus interacting, flavour neutrinos is constrained by the
cancellation of the quantum anomalies of the Standard Model to be the same as that
of charged leptons and indeed results from LEP have ruled out extra neutrino flavours
with masses below MW/2 [1, 2].

Flavour neutrino states take part in weak CC and neutral current (NC) processes
described, to an impressive accuracy, by the Standard Model weak interaction lagrangian
terms [1, 2]:

LCCI = − g

2
√

2
jCCα Wα + h.c., jCCα = 2

∑
`=e,µ,τ

ν̄`Lγα`L

LNCl = − g

2 cos θW
jNCα Zα, jNCα =

∑
`=e,µ,τ

ν̄`Lγαν`L.

(1.1.1)

The discovery of neutrino oscillations, which by now has been followed up by detailed
studies over a wide region of the parameter space [3], has additionally established one
of the core aspects of neutrino physics: that neutrinos have a non-zero mass. Indeed
flavour mixing and thus oscillations require neutrino mass terms that feature the flavour
fields or a combination of them.

The simplest extension to the Standard Model that can accommodate neutrino mixing
is the introduction of the right-handed (RH) components of the flavour neutrino fields,
ναR. In this so-called minimally extended Standard Model the asymmetry between the
lepton and quark sector due to the absence of RH neutrino fields is eliminated, and Dirac
mass terms for neutrinos are generated through the Brout-Englert-Higgs mechanism
as with the other fundamental fermions. In particular, the SM Higgs-lepton Yukawa
lagrangian is extended with a term containing the conjugate Higgs doublet Φ̃:

LH,L = −
∑

α,β=e,µ,τ

Y ′`αβLαLΦ`′βR −
∑

α,β=e,µ,τ

Y ′ναβLαLΦ̃ν ′βR + h.c., (1.1.2)

where LαL are the left-handed lepton isospin doublets and

Φ̃ ≡ iσ2Φ∗ =
1√
2

(
v + h

0

)
. (1.1.3)

The complete Higgs-lepton lagrangian can then be written as:

LH,L = −
(
v + h√

2

)[
`
′
LY
′``′R + ν ′LY

′νν ′R

]
+ h.c. (1.1.4)

6



with `′L,R and ν ′L,R being the chiral lepton arrays:

`′i ≡

e′iµ′i
τ ′i

 , ν ′i ≡

ν ′eiν ′µi
ν ′τi

 , i = L,R. (1.1.5)

The matrices of Yukawa couplings Y ′` and Y ′ν can then be diagonalized in a similar way:

V `†
L Y

′lV `
R = Y `, with Y `

αβ = y`αδαβ (α, β = e, µ, τ)

and

V ν†
L Y ′νV ν

R = Y ν , with Y ν
k` = yνkδk` (k, j = 1, 2, 3)

(1.1.6)

with real and positive y`α and yνk and V `
L, V

`
R, V

ν
L , V

ν
R being appropriate 3 × 3 unitary

matrices. In order to be definite mass states, the lepton fields must have a diagonalized
Yukawa lagrangian, thus the massive lepton fields can be defined as:

`L = V `†
L `
′
L ≡

eLµL
τL

 , `R = V `†
R `
′
R ≡

eRµR
τR



nL = V ν†
L ν

′
L ≡

ν1L

ν2L

ν3L

 , nR = V ν†
R ν

′
R ≡

ν1R

ν1R

ν3R


(1.1.7)

leading to the diagonalized Higgs-lepton Yukawa Lagrangian:

LH,L = −
(
v + h√

2

)[
`LY

``R + nLY
νnR

]
+ h.c.

= −
(
v + h√

2

)[ ∑
α=e,µ,τ

y`α`αLlαR +
3∑

k=1

yνkνkLνkR

]
+ h.c.

(1.1.8)

which contains the Dirac mass terms mα and mk respectively for the charged lepton
fields `α = `αL + `αR and for the neutrino fields νk = νkL + νkR:

mα =
y`αv√

2
(α = e, µ, τ) and mk =

yνkv√
2

(k = 1, 2, 3). (1.1.9)

The Standard Model leptonic weak charged current lagrangian is written in terms of the
chiral lepton arrays `′ and ν ′ as:

LCC` = − g

2
√

2
jCCα Wα + h.c., jCCα ≡ 2ν ′Lγα`

′
L (1.1.10)
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and using eqn. (1.1.7), the lepton current jCCα becomes:

jCCα = 2ν ′Lγα`
′
L = 2nLV

ν†
L γαV

`
L`L = 2nLγαV

ν†
L V `

L`L. (1.1.11)

The charged lepton current thus depends on the product

U ≡ V ν†
L V `

L (1.1.12)

which, analogously to the CKM matrix for quarks, describes the mixing in the lepton
sector. Specifically, the leptonic weak charged current is written, in terms of U , as

jCCα = 2nLγαU
†`L. (1.1.13)

As charged lepton flavour states coincide with the massive fields `, it is customary to
define the left-handed flavour neutrino fields as:

νL ≡ UnL = V l†
L ν

′
L, with νL ≡

νeLνµL
ντL

 (1.1.14)

allowing to write the leptonic weak charged current as in eqn. (1.1.1):

jCCα = 2νLγα`L = 2
∑

`=e,µ,τ

ν`Lγα`L. (1.1.15)

The introduction of left-handed flavour neutrino fields allows to define the flavour
lepton numbers as in the Standard Model: the weak charged current in eqn. (1.1.15) is
invariant under the global U(1) transformations

`αL → eiϕα`αL, ναL → eiϕαναL (α = e, µ, τ) (1.1.16)

with each flavour having different phases. The charged lepton Yukawa lagrangian terms
are invariant if the right-handed chiral fields transform with the same phases:

`αR → eiϕα`αR (α = e, µ, τ). (1.1.17)

For neutrinos, conversely, it is not possible to find any transformation of the right-handed
flavour fields ναR that leaves simultaneously invariant the corresponding Yukawa terms
and the kinetic part of the neutrino lagrangian. Thus flavour lepton numbers are not
conserved in the neutrino sector: the next section shall describe the mixing of neutrino
flavours in weak interactions and derive how it leads to neutrino oscillations [1].
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1.1.2 Neutrino mixing and oscillations

The central object in the study of neutrino oscillations is the matrix U , defined in eqn.
(1.1.12): named Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, its parameters are
determinant to the phenomenology of neutrino oscillations and to the issues of CP invari-
ance in the lepton sector and the Majorana nature of neutrinos. Measuring the PMNS
matrix element has thus been one of the main objectives of oscillation experiments.

From its definition, in eqn. (1.1.12), it follows that the PMNS is a unitary 3 × 3
matrix and as such is characterized by 32 = 9 real parameters, which can be represented
by nangles = 3(3− 1)/2 = 3 mixing angles and nphases = 3(3 + 1)/2 = 6 phases. Not all
six of the phases are physical though, as the mixing matrix enters into the weak charged
currents in eqn. (1.1.1) together with the Dirac fields of the charged leptons and the
Dirac or Majorana fields of neutrinos. In the case of neutrinos being Dirac fields, the
current terms are invariant under the global phase transformations

`α → `αe
iϕα , νk → νke

iϕk and Uαk → Uαke
i(ϕα−ϕk) (1.1.18)

thus, as an overall phase Ueiϕ in the PMNS matrix has no physical consequence, five of
the six phases can be absorbed into the definition of the lepton fields, leaving a single
physical one. The case of Majorana neutrino fields, whose mass lagrangian term is not
invariant under the lepton number global U(1) transformation, will be discussed more
in detail in § 1.1.4, while in the following discussion of mixing and oscillations, Dirac
neutrinos will be assumed.

In the field of neutrino oscillations, the PMNS matrix is conventionally written as:

U ≡

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 ≡
1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13e

−iδ

0 1 0

−s13e
iδ 0 c23


 c12 s12 0

−s12 c12 0

0 0 1


(1.1.19)

where cij ≡ cos θij and sij ≡ sin θij. This notation has proved particularly convenient
because, as will be discussed in the following, θ13 has been measured to be relatively
small, so that the central matrix is approximately diagonal [4]. Performing the matrix
multiplication one gets the individual PMNS elements:Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 =

 c12c13 s12c13 s13e
−iδ

−s12c13 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 .

(1.1.20)
In the standard formulation of neutrino oscillations, neutrinos with flavour α and

momentum ~p are created in a weak charged-current (CC) process from a charged lepton
`−α or together with a charged antilepton `+

α . If the energies and momenta of the particles
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involved in the process are not measured with the accuracy needed to distinguish the
neutrino mass states, as is the case for all experiments so far, the flavour state can be
expressed as a coherent superposition of the mass eigenstates,

|να〉 =
3∑

k=1

U∗αk |νk〉 (α = e, µ, τ) (1.1.21)

as follows from eqn. (1.1.14). The massive neutrinos |νk〉 are eigenstates of the Hamil-
tonian with energy eigenvalues Ek

H |νk〉 = Ek |νk〉 , Ek =
√
~p2 +m2

k (1.1.22)

thus, by the Schrödinger equation they evolve in time as plane waves:

|νk(t)〉 = e−iEkt |νk〉 . (1.1.23)

The time evolution of a flavour state |να(t)〉 describing a neutrino created with a definite
flavour α at time t = 0 will thus be given by:

|να(t)〉 =
3∑

k=1

U∗αke
−iEkt |νk〉 (1.1.24)

so that |να(t = 0)〉 = |να〉. The unitarity relation U †U = 1 allows to express the massive
states in terms of flavour states:

|νk〉 =
3∑
α

Uαk |να〉 (1.1.25)

substituting this into eqn. (1.1.24) one obtains the time evolution of the |να(t)〉 in terms
of the flavour eigenstates:

|να(t)〉 =
∑

β=e,µ,τ

(∑
k

U∗αke
−iEktUβk

)
|νβ〉 . (1.1.26)

Thus, a pure flavour state |να〉 at t = 0 becomes a superposition of different flavour
states at t > 0, with the amplitude of a transition να → νβ at time t being

Aνα→νβ(t) ≡ 〈νβ|να(t)〉 =
∑
k

U∗αkUβke
−iEkt. (1.1.27)

The transition probability is then given by:

Pνα→νβ(t) = |Aνα→νβ |2 =
∑
k,j

U∗αkUβkUαjU
∗
βje
−i(Ek−Ej)t. (1.1.28)

10



For ultrarelativistic neutrinos, the energy momentum relation in eqn. (1.1.22) can be
approximated by:

Ek ' E +
m2
k

2E
, E = |~p| (1.1.29)

so that

Ek − Ej '
∆m2

kl

2E
(1.1.30)

where ∆m2
kl is the squared-mass difference

∆m2
kl ≡ m2

k −m2
j . (1.1.31)

The transition probability Pνα→νβ(t) is therefore approximated by:

Pνα→νβ(t) =
∑
k,j

U∗αkUβkUαjU
∗
βj exp

(
−i

∆m2
kjt

2E

)
. (1.1.32)

In order to move from the mixing of neutrino flavours to the phenomenon of oscilla-
tions as observed by experiments, one must finally consider that the propagation time
t is not measured: what is known is instead the distance L between the source and the
detector. As neutrinos are ultrarelativistic, it is possible to approximate L = t, leading
to:

Pνα→νβ(L,E) =
∑
k,j

U∗αkUβkUαjU
∗
βj exp

(
−i

∆m2
kjL

2E

)
. (1.1.33)

From this expression it follows that the phases of neutrino oscillations

Φkj = −
∆m2

kjL

2E
(1.1.34)

are determined by the source-detector distance L and the neutrino energy E, which
are quantities dependent on the experiment, as well as on the squared-mass differences
∆m2

kj, which are instead physical constants to be determined. The amplitudes of the
oscillations, on the other hand, only depend on the PMNS matrix elements, which are
constants of nature [1].

The main results of neutrino oscillation experiments are therefore the determination
of the squared-mass differences and the elements of the PMNS matrix: although the ob-
servation of neutrino oscillations implies massive neutrinos, it can’t provide information
on the absolute values of neutrino masses, except that either m2

k or m2
j must be larger

than |∆m2
kj|.

In Section 1.2 the strategies followed by experiments to determine the set of param-
eters of neutrino physics and the current results will be discussed in more detail.
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1.1.3 CP violation

The discovery of CP violation in the systems of neutral K and B mesons has been one
of the key results in the study of electroweak interactions: the amount that has been
observed is compatible with that generated by the physical phase of the CKM mixing
matrix [4].

The case of three-flavour Dirac neutrino mixing is equivalent to that of quarks, for
CP violation to occur the following conditions must be satisfied:

• No two charged leptons or neutrinos must be degenerate in mass.

• No mixing angle must be equal to 0 or π/2.

• The PMNS matrix must be complex, i.e. the physical phase δ must be different
from 0 or π. In the following the physical phase for Dirac-neutrino mixing will be
referred to as δCP

These 14 conditions can be summarized by the following:

−2J(m2
ν2
−m2

ν1
)(m2

ν3
−m2

ν1
)(mν3 −m2

ν2
)·

· (m2
µ −m2

e)(m
2
τ −m2

e)(m
2
τ −m2

µ) 6= 0,
(1.1.35)

where the Jarlskog Invariant J ≡ Im
[
Ue2U

∗
e3U

∗
µ2Uµ3

]
quantifies in a rephasing-invariant

way the CP violation in the lepton sector.
A CP transformation interchanges neutrinos with antineutrinos and reverses their

helicities:
να

CP←→ ν̄α, (1.1.36)

thus the oscillation channel να → νβ is transformed into ν̄α → ν̄β and experiments can
be performed to measure the CP asymmetry

ACPαβ = Pνα→νβ − Pν̄α→ν̄β (1.1.37)

and, as the conservation of the CPT implies that ACPαβ = −ACPβα , it follows that the CP
asymmetry can be only measured in transitions between different flavours.

The experimental channels that are being exploited to measure δCP will be detailed
in Section 1.2.

1.1.4 Majorana neutrinos

While Dirac neutrinos have been assumed so far for ease of discussion, the possibility of
them being Majorana particles has not yet been ruled out by experiments: indeed, it is
key to the See-saw Mechanisms, the most promising natural explanations for the of light
neutrino masses.
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For Majorana neutrinos, the chiral components νL and νR of the field are not inde-
pendent, and are instead related by the Majorana condition:

νR = νCL ≡ CνTL, (1.1.38)

where C ≡ iγ2γ0 is the charge conjugation operator. Substituting the previous definition
in the decomposition of the neutrino field allows to rewrite the Majorana condition as

ν = νL + νCL = νC . (1.1.39)

Majorana particles are thus equal to their antiparticles, so that only neutral fermions
like neutrinos can be described by a Majorana field.

As only the left-handed neutrino field interacts, the Dirac and Majorana descriptions
are phenomenologically different for massive neutrinos: for massless particles, indeed, the
same Weyl equations would hold for the chiral components in both cases. It follows then
that the Dirac or Majorana nature of neutrinos can be distinguished only by measuring
effects due to the neutrino mass.

The Majorana mass lagrangian for a single neutrino type can be generated using only
the left-handed chiral field νL as its charge conjugate νCL can be substituted in place of
νR thanks to the Majorana condition. The Majorana mass term is thus given by:

LMmass = −1

2
mνCLνL + h.c., (1.1.40)

with the full Majorana Lagrangian consisting of the kinetic terms for νL and νCL in
addition to the mass term.

The introduction of three generations of massive Majorana neutrinos requires the
Majorana mass term to be diagonalized as with Dirac neutrinos, expressing the left-
handed flavour fields ν ′L as linear combinations of massive neutrino fields νL:

ν ′L = V ν
LνL with nL =

ν1L

ν2L

ν3L

 (1.1.41)

so that the three-generation Majorana mass lagrangian can be written as:

LMmass = −1

2
nCLMnL + h.c. =

1

2

3∑
k=1

mkν
C
kLνkL + h.c. (1.1.42)

with M being the diagonalized mass matrix. It can be seen now that this mass term is
not invariant under the global U(1) gauge transformations

νkL → eiϕνkL (k = 1, 2, 3), (1.1.43)
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with the same phase ϕ for all massive neutrinos: this implies a violation of the total
lepton number conservation, leading to beyond the Standard Model phenomena, such as
the neutrinoless double-β decay, that represents the best handle to probe the potential
Majorana nature of neutrinos.

The above discussion can be trivially extended to global U(1) gauge transformations
νkL → eiϕkνkL, so that, recalling Section 1.1.2, the left-handed massive neutrinos cannot
be rephased to eliminate two of the PMNS phases, leaving three physical CP violating
phases. The mixing matrix of Majorana neutrinos can therefore be written as a product
of a Dirac unitary mixing matrix UD, similar to the usual PMNS, and a diagonal unitary
matrix DM featuring the two extra phases:

U = UDDM . (1.1.44)

While for UD the same parametrization and properties of the previously discussed PMNS
hold, the DM matrix can be written as

DM ≡ diag
(
eiλ1 , eiλ2 , eiλ3

)
, with λ1 = 0. (1.1.45)

Through the previous two relations, the oscillation formula, in eqn. (1.1.2) can be
extended to the case of Majorana neutrinos; in particular the products U∗αkUβk will
reduce to

U∗αkUβk = UD∗
αk D

M∗
αk U

D
βkD

M
βk = UD∗

αk U
D
βk (1.1.46)

as, recalling eqn. (1.1.45), Dαk = δαke
iλk . Thus Majorana phases do not enter into

the transition probabilities of neutrino oscillations, which are the same as with Dirac
neutrinos, so that lepton number violating processes like the aforementioned neutrinoless
double-β decay are the only handles to explore the Majorana nature of neutrinos [1, 2].

The determination of the Dirac or Majorana nature of neutrinos, together with the
quantification of the amount of CP violation in the lepton sector through the mea-
surement of δCP , is essential for our understanding of the process of leptogenesis and
baryogenesis [5].

1.2 Neutrino physics experiments

The aim of this section is to outline the experimental channels and techniques that can
be used to probe the core aspects of the neutrino sector, presenting the current results
and the future prospects of this field.

1.2.1 Neutrino oscillation experiments

Neutrino oscillation experiments aim at retrieving, through the relations derived in Sec-
tion 1.1.2, the PMNS parameters and the squared-mass differences. The measure of
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fluxes of flavour neutrinos at the production and detection points allows to determine
the probability of oscillation into a different neutrino flavour than the initial one. Two
broad categories of experiments are considered:

• Appearance experiments, which measure transitions between different neutrino
flavours, according to eqn. (1.1.2). As the final flavour can be either absent or
present as contamination in the initial beam, the background for its measurement
can be very small. Thus appearance experiments can be sensitive to rather small
values of the mixing angle.

• Disappearance experiments, which measure the survival probability of a neu-
trino flavour

Pνα→να(L,E) = 1− 4
∑
k>j

|Uαk|2|Uαj|2 sin2

(
∆m2

kjL

2E

)
, (1.2.1)

by comparing its initial and final interaction rates. As the interaction rates have
statistical fluctuations, apart from oscillations, small disappearances are difficult
to reveal, so that disappearance experiments are not suited for measuring small
mixing angles.

1.2.1.1 Two-neutrino mixing

For the description of neutrino oscillation data, the two-neutrino mixing approxima-
tion has proved particularly useful: this consists in neglecting the coupling of the flavour
neutrinos to the third massive eigenstate that exists in nature. Such an assumption has
two practical advantages:

• it leads to much simpler oscillation formulae that depend on fewer parameters than
in the actual case of three-neutrino mixing,

• many experimental channels are not sensitive to the influence of three-neutrino
mixing, so that data can be analysed with the effective two-neutrino mixing model.

In two-neutrino mixing, the two flavour neutrinos να and νβ can be pure flavour neu-
trinos (α, β = e, µ, τ) or linear combinations of such pure flavours; for instance, in
νe-disappearance experiments, να = νe and νβ = cµνµ + cτντ , as only the fluxes of νe are
measured. The flavour states are linear superposition of two massive neutrinos ν1 and
ν2 according to the effective mixing matrix

U =

(
cos θ sin θ

− sin θ cos θ

)
, (1.2.2)
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where 0 ≤ θ ≤ π/2. Furthermore, in two-neutrino mixing there is only the squared-mass
difference

∆m2 ≡ ∆m2
21 = m2

2 −m2
1, (1.2.3)

where ν1 can be taken as the lightest eigenstate, so that ∆m2 is positive. Starting
from eqn. (1.2.2), the probability of the oscillations να → νβ, α 6= β can be derived
straightforwardly:

Pνα→νβ(L,E) =
1

2
sin2 2θ

[
1− cos

(
∆m2L

2E

)]
(α 6= β), (1.2.4)

and from this the survival probability Pνα→να(L,E) follows trivially:

Pνα→να(L,E) = 1− Pνα→νβ(L,E) = 1− sin2 2θ sin2

(
∆m2L

4E

)
. (1.2.5)

1.2.1.2 Averaged transition probability

It is not possible, in oscillation experiments, to measure the transition probabilities for
precise values of the propagation distance L (or baseline) and of the neutrino energy E:,
as both the source and detection processes are subject to spatial and energy uncertainties.
Any actual measurement, therefore, must be averaged over the appropriate distributions
of L and E. In the case of two-neutrino mixing, this average probability is given by:

〈
Pνα→νβ(L,E)

〉
=

1

2
sin2 2θ

[
1−

〈
cos

(
∆m2L

2E

)〉]
with〈

cos

(
∆m2L

2E

)〉
=

∫
cos

(
∆m2

2E

)
φ

(
L

E

)
d
L

E
.

(1.2.6)

Under the assumption of a Gaussian distribution of the experimental L/E ratio with
average 〈L/E〉 and standard deviation σL/E, the averaged oscillation probability follows
the behaviour in Fig. 1.1 : for

∆m2L

2E
� 1, (1.2.7)

the transition probability averages out to〈
Pνα→νβ

〉
=

1

2
sin2 2θ (α 6= β), (1.2.8)

so that the experiment can only yield information on sin2 2θ.
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Fig. 1.1: Probability of the να → νβ transition for sin2 2θ = 1 as a function of 〈L/E〉∆m2.
Solid line: probability averaged over a Gaussian L/E distribution with σL/E = 0.2 〈L/E〉.
Dashed line: unaveraged transition probability where L/E = 〈L/E〉 [1].

1.2.1.3 Classes of oscillation experiments

As the oscillation phase only depends on the physical parameter ∆m2, experiments can
be designed to be sensitive to different values of the squared-mass differences by having
suitable values of the ratio L/E. This is because if

∆m2L

2E
� 1, (1.2.9)

the phase Φ ∼ 0 and transitions to different flavours have low probabilities as per eqn.
(1.2.4). On the other hand, referring to eqns. (1.2.7-1.2.8), oscillations are averaged
out for ∆m2L/2E � 1 and do not depend on the squared-mass differences. Thus, the
sensitivity to ∆m2, i.e. the value of ∆m2 for which

∆m2L

2E
∼ 1, (1.2.10)

represents one of the defining parameters of an oscillation experiment, as it determines
the lower limit for the squared-mass differences that can be measured.

The different types of neutrino oscillation experiments are indeed classified according
to the average value of their L/E ratio, which determines their sensitivity. In the fol-
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lowing, the main classes of of oscillation experiments, depending on the sensitivity, will
be presented, discussing briefly the possible design types.

Short Baseline experiments (SBL). Experiments reaching sensitivities of up to
∆m2 & 102 eV2, with source-detector distances below ∼ 1 km. Depending on the neu-
trino source, which determines the energy, they are divided as follows:

• Reactor SBL: experiments that utilize the large fluxes of νe produced in nuclear
reactors. As the typical energy of reactor antineutrinos is of the order of a few
MeV, baselines of ∼ 10 m give sensitivities to ∆m2 of

L

E
. 10 m/MeV ⇒ ∆m2 & 0.1 eV2. (1.2.11)

As the antineutrino energies are too low to produce µ’s or τ ’s, these experiments are
limited to the ν̄e disappearance channel, which can be studied in liquid scintillator
detectors through the inverse β-decay reaction.

• Accelerator SBL: experiments with neutrino beams produced by the decay of pions,
kaons and muons created by a proton beam hitting a target. Two designs in this
category, Pion Decay In Flight (DIF) and Muon Decay At Rest (DAR) experiments,
depending on the reaction that the muon neutrino beams, reach sensitivities to
∆m2 of ∆m2 & 1 eV2, while Beam Dump experiments reach, thanks to neutrino
energies of the order of 102 GeV and propagation distances L ∼ 1 km sensitivities
of ∆m2 & 102 eV2. Depending on the energy and the composition of the neutrino
flux, νµ/ν̄mu oscillations to electron and tau neutrinos and antineutrinos can be
measured.

Long Baseline experiments (LBL). These experiments generally have the same
sources, and thus energies, of SBL experiments, but with baselines larger by two or three
orders of magnitude, reaching sensitivities of ∆m2 & 10−4 eV2. LBLs are divided into:

• Reactor LBL: experiments in which the detector distance from the reactor source
is L ∼ 1 km, allowing to cover the sensitivity range of ∆m2 & 10−3 eV2 with the
ν̄e-disappearance channel.

• Accelerator LBL: experiments in which the source-detector distance is about 102−
103 km, leading, for the ∼ 1 GeV energies of accelerator neutrinos, to

L

E
. 103 km/GeV ⇒ ∆m2 & 10−3 eV2. (1.2.12)

• Atmospheric Neutrino Experiments (ATM): experiments that detect the neutrinos
coming from the decay of mesons produced in cosmic ray showers. The energies of
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these neutrinos cover a wide range, 500 MeV . E . 100 GeV, while the baseline
varies from L ∼ 20 km for neutrinos coming from the zenith, to L ∼ 1.3× 10−4 for
those produced at the opposite side of the planet. Thus, in ATM experiments the
sensitivities are typically of

L

E
. 104 km/GeV ⇒ ∆m2 & 10−4 eV2. (1.2.13)

Very Long-Baseline experiments (VLB). Experiments with source-detector dis-
tances larger than for LBL experiments by one or two orders of magnitude. VLBs are
divided into:

• Reactor VLB: experiments that measure the combined neutrino fluxes from many
nuclear reactors at distances of the order of 100 km, allowing sensitivities of

L

E
. 105 m/MeV ⇒ ∆m2 & 10−5 eV2. (1.2.14)

• Accelerator VLB: experiments in which accelerator neutrinos propagate for dis-
tances L ∼ 103 km, allowing to cover the sensitivity range of

L

E
. 104 km/GeV ⇒ ∆m2 & 10−4 eV2. (1.2.15)

• Solar Neutrino Experiments (SOL): experiments that detect the neutrinos gener-
ated by the thermonuclear reaction cycle in the core of the Sun. As the energies
of detectable solar neutrinos are in the range 0.2 − 15 MeV and the Sun-Earth
distance is about 1.5× 1011 m, the theoretical sensitivity of SOL experiments is of

L

E
. 1012 m/MeV ⇒ ∆m2 & 10−12 eV2, (1.2.16)

much smaller than any other experiment discussed above.

1.2.1.4 Results of neutrino oscillation experiments

As the first phase in the history of neutrino oscillation experiments ended, with the
results from Super-Kamiokande and SNO experiments, later confirmed by other collab-
orations, two main features of neutrinos had been proven: that neutrinos have small
masses, so that flavour neutrinos are combinations of mass eigenstates, and that all ob-
served data can be described assuming a three-neutrino mixing model [2].
Indeed, the data coming from the first solar and atmospheric neutrino experiments could
be modelled, in a two-neutrino approximation, according to two separate sets of parame-
ters: a solar mixing angle θ� and mass difference ∆m2

� and an atmospheric mixing angle
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θATM and mass difference ∆m2
ATM ; this implied, clearly, the existence of three massive

neutrino states.
In the following, the experimental results on the solar and atmospheric oscillation

parameters will be presented, discussing subsequently how the measurement of the θ13

PMNS parameter in SBL experiments allows to fit them into the three-neutrino mixing
framework.

Solar oscillation parameters. The Sun is a very powerful neutrino source, with the
thermonuclear reactions in its core producing νe with energies of the order of 1 MeV.
Despite the extremely large solar neutrino flux on Earth, of about 6 × 1010 cm−2s−1,
the detection of solar neutrinos is difficult, requiring large underground detectors to
compensate for the small neutrino interaction cross section and the background from
cosmic rays interactions.

The first experiment to detect solar neutrinos, the Homestake Mine radiochemical
experiment, was meant to test the Standard solar model of thermonuclear reactions, but
found instead a deficit of observed νe with respect to the predictions of this model [6].
This so-called Solar neutrino problem was later confirmed by radiochemical experiments
(GALLEX/GNO and SAGE [7, 8]) and Cherenkov detectors (Kamiokande and Super-
Kamiokande [9, 10]), and finally explained by the SNO experiment as due to neutrino
oscillations [11].

As anticipated, the solar neutrino oscillation data can be modelled, in a first order
approximation, as the result of two-neutrino mixing with the parameters ∆m2

� and θ�,
with the best estimates given by a global fit that includes SNO-III and KamLAND data:

∆m2
� = +7.59+0.19

−0.21 × 10−5eV2, θ� = 34.4+1.3
−1.2, (1.2.17)

having thus a quite large but not maximal mixing angle [12]. Fig. 1.2 shows the allowed
regions for the solar oscillation parameters obtained from the global analysis and the
KamLAND data.

The sign of the squared-mass difference could be determined thanks to the Mikheev-
Smirnov-Wolfenstein (MSW) effect which introduces a dependence on ∆m2 due to the
interaction of neutrinos inside the solar volume. As the nuclear reactions in the Sun
produce νe, the composition of the neutrino state exiting the Sun is given, in a two-
neutrino framework, by a superposition νX of νµ and ντ flavour and it depends on
the relative size of ∆m2

� cos 2θ� versus the value of the interaction potential at the
production point close to the solar core, A0 = 2EGFne,0, ne,0 being the corresponding
electron density. In particular, if the matter potential at production is well below the
resonant value AR = ∆m2 cos 2θ, matter effects are negligible.

In the case, instead, of AR = ∆m2 cos 2θ < A0, neutrinos can cross the resonant
condition on their way out of the Sun, as ne decreases farther from the center. As
the behaviour of the survival probability measured by experiments is consistent with
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such a crossing for E > 10 MeV, it follows from the definition of AR that the product
∆m2 cos 2θ must be positive, as the electron-νe interaction potential is positive; therefore,
as cos 2θ� > 0, as shown in the following, ∆m2

� must too be positive [3, 13, 14].

Fig. 1.2: Allowed regions for the solar oscillation parameters. (a) The global solar analysis
including rate measurements from Homestake, Gallex, GNO, Sage and Borexino, SK-I zenith
energy spectra, SNO-I summed kinetic energy spectra, NC, ES fluxes and CC kinetic energy
spectra from SNO-II, CC, ES and NC fluxes from SNO-III. The best fit point is: ∆m2

� =
4.90 × 10−5 eV2, tan2 θ� = 0.437. (b) KamLAND data are included; the best fit is: ∆m2

� =
7.59× 10−5 eV2, tan2 θ� = 0.468 [12].

Atmospheric oscillation parameters. The large underground Cherenkov experi-
ments that came online in the second half of the 1980s, Kamiokande and IMB, performed
the first observations of atmospheric neutrinos: they measured, however, a deficit of νµ
interactions with respect to the prediction based on the cosmic ray spectrum.

The breakthrough for the solution of this so-called atmospheric neutrino anomaly
came from the data of Super-Kamiokande (SK), the follow-up experiment to Kamiokande,
which revealed an up-down asymmetry in muon neutrino events, a clear effect of atmo-
spheric neutrino oscillations [15]. The SK experiment has provided, so far, high-statistics
data on the flux of atmospheric neutrino flux, allowing to model the oscillations as from
muon to tau neutrinos and to infer the values of the oscillation parameters with sig-
nificant accuracy. The SK results have also been corroborated by those of other ATM
experiments, such as Soudan 2 [16] and MACRO [17], as well as LBL accelerator exper-
iments like K2K [18].
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As with the solar oscillations, atmospheric neutrino oscillations could be modelled in
a two-neutrino approximation: the data collected during the first phase of the SK exper-
iments yielded the following 90% CL ranges for the atmospheric oscillation parameters
[19]:

sin2 2θ > 0.92, 1.5× 10−3 < |∆m2
ATM | < 3.4× 10−3 eV2. (1.2.18)

Fig 1.3 shows the 90% CL allowed region of the atmospheric νν ↔ ντ oscillation
parameters, obtained from the SK data in [19], for six subsamples of the events with
distinct topologies. The combined analysis defines the constraints in eqn. (1.2.18).

Fig. 1.3: 90% CL allowed oscillation parameter regions for νν ↔ ντ oscillations from six
sub-samples. The bold region is the interval in which all samples simultaneously fit [19].

Three-neutrino analysis. The minimal possibility of just the two independent squared-
mass differences ∆m2

� and ∆m2
ATM is realized in the three neutrino mixing framework,

which has been introduced in Section 1.1.2.
The solar and atmospheric squared-mass differences can be arbitrarily labelled so as

to have
∆m2

� ≡ ∆m2
21, ∆m2

ATM ≡ |∆m2
31|, (1.2.19)

so that, from eqns. (1.2.17-1.2.18):

∆m2
21 � ∆m2

31 ' ∆m2
32. (1.2.20)
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As the PMNS matrix features three mixing angles, replacing the separate solar and
atmospheric two-neutrino analyses with a combined three-neutrino one, could have dras-
tically changed the information on the mixing. This was not the case as |Ue3| is small,
as will be discussed in the following.

Indeed, as solar neutrino experiments are limited to the νe disappearance channel, the
oscillation probabilities only depend on the first row Uej of the PMNS. The probabilities
for atmospheric neutrino experiments depend instead on the θ13 and θ23 angles, which
are determined by the third column of the PMNS through

sin θ23 =
|Uµ3|√

1− |Ue3|
, sin θ13 = |Ue3|. (1.2.21)

Therefore |Ue3| is the only element that correlates solar and atmospheric neutrino oscilla-
tions [1]. In addition to that, sin θ13 multiplies the CP violating phase, thus determining
whether CP violation in the lepton sector is experimentally observable. Another prob-
lem, the solution of which requires θ13 to be nonzero is that of the neutrino mass ordering,
as will be discussed in Section 1.2.1.5 [2].

The experiments that can provide the most precise determination of the θ13 angle
are Medium Baseline reactor experiments, having L ∼ 1 km, for which the νe survival
probability can be approximated as

Pνe→νe ' 1− sin2 2θ13 sin2

(
∆m2

eeL

4E

)
where

∆m2
ee = cos2 θ12∆m2

31 + sin2 θ12∆m2
32

(1.2.22)

The θ13 angle was successfully measured by the Daya Bay [20], RENO [21] and D-Chooz
[22] experiments for the best-fit values shown in Tab 1.1 [2, 3]. The small value of the

θ13 measurements

Daya Bay sin2 2θ13 = 0.084± 0.0027 (stat)± 0.0019 (syst)

RENO sin2 2θ13 = 0.082± 0.009 (stat)± 0.006 (syst)

D-Chooz sin2 2θ13 = 0.111± 0.018 (stat+syst)

Table 1.1: sin2 θ13 parameters obtained from the Daya Bay, RENO and D-Chooz exper-
iments: Daya Bay imposed the most stringent constraints on the mixing angle [2].

θ13 angle thus justifies the independence, to the leading order, of solar and atmospheric
neutrino oscillations, with the remaining PMNS mixing angles being approximately

θ12 ' θ� and θ23 ' θATM . (1.2.23)
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Having established the validity of the three-neutrino mixing framework, the data of
VLB and LBL can be used, together with the measurements of θ13 to give the following
global best-fit values for θ12 and θ23 [3]:

sin2 θ12 = 0.310+0.013
−0.012, i.e. θ12/

◦ = 33.820.78
−0.76

sin2 θ23 = 0.558+0.020
−0.033, i.e. θ23/

◦ = 48.3+1.2
−1.9

(1.2.24)

The determination of the parameters of the neutrino sector requires a global analysis
of the data from the different experiments, with slightly variations depending on the
statistical analyses and data samples used by the different groups. Tab. 1.2 presents
the latest global analysis results, with the exclusion of the Super-Kamiokande data: the
estimates depend on the Mass ordering of the massive neutrinos, with Normal ordering
(NO) being

∆m2
32 < 0,∆m2

21 > 0 =⇒ m1 < m2 < m3 (1.2.25)

and Inverted Ordering (IO) being

∆m2
32 ' ∆m2

31 > 0,∆m2
21 > 0 =⇒ m3 < m1 < m2, (1.2.26)

where, thus far, only m2 > m1 has been determined. Fig. 1.4 illustrates the currently
determined patterns of NO and IO squared-mass differences and flavour mixing. The
global analysis finds the best fits for the NO hypothesis, with the IO being disfavoured
by ∆χ2 = 6.2 [3].

Fig. 1.4: Neutrino mass eigenstate flavour composition and mass pattern in the two cases of
Normal Ordering (left) and Inverted Ordering (right) [24].
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Normal ordering (NO)

Parameters best fit param. ±1σ 3σ range

θ12/
◦ 33.82+0.78

−0.76 31.61→ 36.27

θ23/
◦ 48.3+1.2

−1.9 40.8→ 51.3

θ13/
◦ 8.61+0.13

−0.13 8.22→ 8.99

δCP/
◦ 222+38

−28 141→ 370

∆m2
21/(10−5 eV2) 7.39+0.21

−0.20 6.79→ 8.01

∆m2
32/(10−3 eV2) 2.449+0.032

−0.030 2.358→ 2.544

Inverted ordering (IO)

Parameters best fit param. ±1σ 3σ range

θ12/
◦ 33.82+0.78

−0.76 31.61→ 36.27

θ23/
◦ 48.6+1.1

−1.5 41.0→ 51.5

θ13/
◦ 8.65+0.13

−0.12 8.26→ 9.02

δCP/
◦ 285+24

−26 205→ 354

∆m2
21/(10−5 eV2) 7.39+0.21

−0.20 6.79→ 8.01

∆m2
32/(10−3 eV2) −2.509+0.032

−0.032 −2.603→ −2.416

Table 1.2: Three-neutrino oscillation parameters obtained from the global fit analysis in
[23] excluding the SK data, in the assumption of NO and IO respectively [3].

1.2.1.5 Known Unknowns

Despite the high sensitivity reached in the determination of most of the neutrino oscil-
lation parameters, three of them still require further investigation. Recalling Tab. 1.2
these so-called known unknowns are the neutrino mass ordering, the octant of θ23 and
the CP violating phase δCP of the lepton sector. In the following, the current results
on the three known unknowns are presented, as well as the experimental strategies that
future experiments will use to finally determine these parameters.

The octant of θ23. The θ23 mixing angle can be studied at long baselines via the νµ →
νe and ν̄µ → ν̄e oscillation channels, which are open to both atmospheric and accelerator
neutrino experiments. Indeed, the νµ disappearance and νe appearance probabilities can
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be approximated, being ∆m2
21/∆m

2
31 � 1/30� 1, as:

P (νµ → νµ) ' 1− sin2 2θ23 sin2

(
∆m2

31L

4E

)
P (νµ → νe) ' sin2 θ23 sin2 2θ13 sin2

(
∆m2

31L

4E

) (1.2.27)

where matter and δCP -related terms have been neglected. Disappearance experiments
are capable of determining both ∆m2

31 and sin2 2θ23 with high accuracies. It is then easy
to notice that, for θ23 6= π/4, there is a twofold solution of θ23 for a certain value of
sin2 2θ23:

sin2 θ23 =
1

2

[
1±

√
1− sin2 2θ23

]
, (1.2.28)

leading to the so-called octant degeneracy, as the two solutions for θ23 are either below
45◦ (first octant) or above it (second octant).

The degeneracy can be lifted by combining the results of the νµ disappearance and
νe appearance channels, the latter depending on sin2 θ23 sin2 2θ13, with the independent
measurements of θ13 from reactor experiments, discussed in Section 1.2.1.4 [25].

Despite all analyses finding some preference for θ23 > 45◦, values of θ23 smaller, larger
or equal to π/4 are still all consistent at the 3σ level. With the current data, the status
of the maximality/non-maximality of the θ23 mixing angle is thus quite delicate; this
might change, however, with the implementation of T2K data [26] in the global fit [3,
27].

Mass ordering determination. In all analyses so far the best fit is for the Normal
mass ordering, with the IO being disfavoured with a ∆χ2 ranging from ∼ 2σ, driven
by the interplay of LBL accelerator and SBL reactor data, to 3σ when including the
atmospheric SK data. Current experiments, though, display too much of a limited
individual sensitivity for the discrimination to be finally resolved [3, 27].

In order to resolve the mass ordering, the next generation of experiments will thus
focus on three different oscillation configurations [28]:

• Medium baseline (L ∼ 50 km) reactor ν̄e → ν̄e oscillations, will be studied by the
JUNO [28] and RENO-50 [29] experiments.

• Long baseline accelerator muon (anti-)neutrino
(−)

νµ →
(−)

νe oscillations at experiments
like the already running NOνA [30] and the future DUNE [31].

• Atmospheric (anti-)neutrino oscillations with the same channel as above, studied
by experiments such as PINGU, ORCA, DUNE and Hyper-K [31–35].
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The medium baseline experimental channel relies on the oscillation interference between
∆m2

31 and ∆m2
32, allowed by the nonzero value of θ13. The survival probability of reactor

antineutrinos can be written as:

Pν̄e→ν̄e ' 1− cos4 θ13 sin2 2θ12 sin2

(
∆m2

21L

4E

)
− sin2 2θ13 sin2

(
∆m2

31L

4E

)
− sin2 θ12 sin2 2θ13 sin2

(
∆m2

21L

4E

)
cos

(
2|∆m2

31|L
4E

)
± sin2 θ12

2
sin2 2θ13 sin

(
2∆m2

21L

4E

)
sin

(
2|∆m2

31|L
4E

)
(1.2.29)

where the ± at the fourth term distinguishes the normal and inverted ordering. This
probability does not depend on the δCP phase and the MSW effect is negligible for the
baselines in question. Fig. 1.5 illustrates the reactor neutrino energy spectra for both
orderings compared to the unoscillated spectrum as a function of the L/E ratio.

The two experiments that are planning to leverage this channel are JUNO, in China
and RENO-50 in South Korea: their source-detector distance of ∼ 50 km maximises the
mass ordering interference term and using large (∼ 20 kt) liquid scintillator detectors
allows to reach the required high energy resolution [36].

Fig. 1.5: Relative shape difference of the reactor ν̄e flux for the two mass orderings. The
spectra are given as the product of neutrino flux times interaction cross section times survival
probability [24].

The second and third experiment types will leverage the matter effect of neutrino

propagation in the Earth crust at Long Baselines in the
(−)

νµ →
(−)

νe channels. Assuming a
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constant matter density, the oscillation probability can be expanded to the second order
in the small parameters θ13 and α ≡ ∆m2

21/∆m
2
31 to:

Pνµ→νe,(ν̄µ→ν̄e) ' 4 sin2 θ13 sin2 θ23
sin2 ∆

(1− A)2

+ α2 sin2 2θ12 cos2 θ23
sin2A∆

A2

+ 8αJmaxCP cos(∆± δCP )
sin ∆A

A

sin ∆(1− A)

1− A
,

(1.2.30)

with
JmaxCP = cos θ12 sin θ12 cos θ23 sin θ23 cos2 θ13 sin θ13 (1.2.31)

and

∆ ≡ ∆m2
31L

4E
, A ≡ 2EV

∆m2
31

, (1.2.32)

where V is the effective matter potential in the Earth crust and the + (−) in the third
term is for the neutrino (antineutrino) channel. In this expression α, ∆ and A are
sensitive to the sign of ∆m2

32 and therefore to the mass ordering. The probability is
also dependent on the CP violating phase of the lepton sector: indeed, as discussed

in the following, results on
(−)

νe -appearance at LBL experiments provide the dominant
information on δCP [3]. Fig. 1.6 illustrates the appearance probabilities for νe and ν̄e in
both mass ordering possibilities and for several values of δCP .

The determination of the mass ordering is thus a crucial factor for measuring the δCP
phase, as it appears in the same expressions for LBL oscillations as the latter: this could
lead to degenerate solutions for the ordering and CP phase merge. An independent
measurement, e.g. from medium baseline experiments, is thus important [28].

CP violation. As discussed in Section 1.1.3, the discovery of neutrino oscillations
opened up the possibility of CP symmetry being violated also in the lepton sector.
The subsequent measurement of a nonzero value for all mixing angles implies that an
experimental determination of δCP might be possible.

CP invariance can be tested by comparing neutrino and antineutrino channels Pνα→νβ
and Pν̄α→ν̄β and searching for the asymmetry [38]:

∆CP
αβ = P(να→νβ ,L) − P(ν̄α→ν̄β ,L). (1.2.33)

The current LBL experiments utilize
(−)

νµ beams and can therefore study this asym-

metry through the
(−)

νe -appearance and
(−)

νµ-disappearance channels. The dependence on
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Fig. 1.6: Electron neutrino and antineutrino appearance probabilities as a function of the
neutrino energy Eν at the baseline of the future DUNE experiment L = 1300 km and for the
indicated values of δCP . Top (bottom) panels correspond to NO (IO) while left (right) panels to
νe (ν̄e). In the NO (IO), the νe (ν̄e) appearance is enhanced, while that of ν̄e (νe) is suppressed
[37].

δCP of the oscillation probabilities is then given by eqn. (1.2.30), which, neglecting the
matter effect, becomes:

Pνµ→νe,(ν̄µ→ν̄e) ' sin2 θ23 sin2 2θ13 sin2 ∆

± sin 2θ12 sin 2θ23

2 sin θ13

sin
∆m2

21

4E
sin2 2θ13 sin2 ∆ sin δCP

+ (CP conserving term, solar term, matter term)

(1.2.34)

where ∆ is defined in eqn. (1.2.32) and the + (−) sign in the second term is for the
neutrino (antineutrino) channel [39].

From eqn. (1.2.34) the following CP violation asymmetry can be defined:

ACP ≡
P (νµ → νe)− P (ν̄µ → ν̄e)

P (νµ → νe) + P (ν̄µ → ν̄e)
(1.2.35)
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which, to the leading order in ∆m2
21, is given by:

ACP '
cos θ21 sin 2θ12 sin δCP

sin θ23 sin θ13

(
∆m2

12L

4E

)
+ matter terms

(1.2.36)

thus growing linearly with the distance L [40].
The best fit for the complex phase of the PMNS is at δCP ∼ 120◦, but CP conservation

is still allowed at a confidence level (CL) of 1− 2σ. The significance of CP violation has
recently been reduced in the global analysis with respect to the one reported by T2K
[41], as NOνA data does not show a significant indication of CP violation[3].

In the three-neutrino framework, CP violation can be quantified, as discussed in
Section 1.1.3, in terms of the leptonic Jarlskog invariant

J ≡ Im
[
Ue2U

∗
e3U

∗
µ2Uµ3

]
= JmaxCP sin δCP (1.2.37)

where the definition of Jmax
CP in eqn. (1.2.31) has been used. The global analysis in

[23],finds for JmaxCP a value of

Jmax
CP = 0.03359± 0.0006 (±0.0019), (1.2.38)

at 1σ (3σ) for both mass orderings, so that the preference of present data for nonzero
δCP implies a nonzero best fit value for J of Jbest = −0.0019.

The status of the determination of CP violation in the lepton sector is illustrated by
the leptonic unitarity triangle in Fig. 1.7: the triangle corresponding to the unitarity
conditions for the first and third columns of the PMNS matrix, as in the quark sector. In
this plot the absence of CP violation would result in a flat triangle, so that the confidence
level of CP violation observation would be given by the confidence level at which the
region crosses the horizontal axis.

Both leading LBL experiments in the search for leptonic CP violation, T2K and
NOνA,will be operating until 2024-2026. T2K will undergo a beam and near detector
upgrade, with the projected amount of data to be gathered by 2026 allowing a sensitivity
larger than 3σ for the exclusion of sin δCP = 0. NoνA should instead be able to reach a
2σ significance to disfavour CP conservation. Both experiment, though, only have the
indication potential for the search of CP violation, being unable to measure δCP with a
5σ significance.

The next generation of LBL experiment is thus needed to perform the measurement,
with two major project being in development [39]:

• Hyper-Kamiokande: the continuation of the T2K experiment with an upgraded
1.3 MW neutrino beam and a ∼ 500 kt far detector with the same technology
as SK. The goal of the data-taking, which should start in 2026, is to reach an
uncertainty on δCP as low as 7− 21 degrees over 10 years of running [35].
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Fig. 1.7: Leptonic unitarity triangle for the first and third columns of the PMNS matrix. The
triangle is scaled and rotated in order to have two vertices coinciding with (0,0) and (1,0). The
1σ, 90%, 2σ, 99% and 3σ CL allowed regions of the third vertex are given, assuming NO [3].

• DUNE: which will use a 1300 km baseline for the neutrino beam produced at Fer-
milab, with a 40 kt LAr far detector located at SURF. The expected resolution on
δCP over 10 years of exposure is set to reach 6− 10 degrees [31]. DUNE will be the
subject of the remainder of this thesis work.

1.2.2 Laboratory probes of neutrino masses

As described in the previous sections, the oscillations of neutrino flavours in vacuum
and in matter only depend on the differences between the squared-masses and on the
PMNS matrix elements. They are, conversely, insensitive to the absolute mass scales of
neutrinos and to their Dirac or Majorana nature.

While flavour oscillations imply a lower bound on the mass of the heavier neutrino

in ∆m2
ij, as trivially it must be |mi| >

√
∆m2

ij for ∆m2
ij > 0, there is no upper bound

on mi. Information on the absolute scale and production mechanism of neutrino masses
has to be provided via other types of experiments. The following will provide a brief
summary of the most sensitive probes of the mass scale and potential Majorana nature
of neutrinos that can be explored in laboratory experiments.
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1.2.2.1 Kinematics of weak decays

The only way to obtain model-independent information on neutrino masses is through
the kinematics of reactions involving neutrinos or antineutrinos, which yield a bound on
an effective mass for the flavour neutrino states.

The β decay of 3H has proved, so far, the optimal channel for this search: being a
superallowed decay, the electron spectrum is determined exclusively by the phase space:

dNe

dE
= CpE(Q− T )

√
(Q− T )2 − (meff

νe )
2F (E)

≡ R(E)
√

(E0 − E)2 − (meff
νe )

2,

(1.2.39)

where E0 is the mass difference between the initial and final nucleus, E = T + me is
the total electron energy, Q ≡ E0 −me is the maximum kinetic energy of the electron
and F (E) is the Fermi function containing the final state Coulomb interactions, so that
F (E) contains all the mν-dependent factors.

Defining the Kurie Function K(T ) ≡
√

dN
dE

1
pEF (E)

, it follows from eqn. (1.2.39)

that meff
νe = 0 would lead to a linear dependence of K(T ) on T , while a non-vanishing

antineutrino mass introduces a distortion at the end point, with the maximum electron
kinetic energy being Tmax = Q − meff

νe instead of Q.As the 3H decay has a very small
Q-value, Q = 18.6 keV, it is more sensitive to the meff

νe distortion.
The KATRIN experiment has provided the most recent results on the neutrino mass

search in the 3H decay, not yet finding an indication for mνe 6= 0 and setting the upper
limit

meff
νe < 1.1 eV, (1.2.40)

at 90% CL [42]. KATRIN is still running, with an estimated sensitivity limit of meff
νe ∼

0.2 eV. An alternative channel to the decay of 3H is 163Ho, which undergoes electron
capture to 163Dy with a smaller Q = 2.8 keV and allows to determine the effective mass
for νe. The ECHo, HOLMES and NuMECS experiments are currently probing this
channel, with techniques that are complementary to tritium decay experiments [43–45].

The effective masses of νµ and ντ have been studied through kinematical techniques
as well, albeit imposing much weaker upper bounds:

meff
νµ < 190 keV (90% CL) from π− → µ− + ν̄µ,

meff
νe < 18.2 MeV (95% CL) from τ− → nπ + ντ .

(1.2.41)

Given the present knowledge of the neutrino mass differences and PMNS parameters
from oscillation experiments, the information on mνe can be translated on a correspond-
ing range for the lightest neutrino mass which depends on the mass ordering. In Fig.
1.8-left the allowed regions of the analysis in [23] are recasted in terms of the allowed
range of mνe as a function of the lightest neutrino mass mligth ≡ m0: the results of
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oscillation experiments thus imply a lower bound at 95% CL on mνe > 0.048 (0.0085)
eV for IO (NO) [3].
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Fig. 1.8: Allowed 95% CL range for the mν̄e effective mass observable determined in 3H
(left) and in 0νββ decay (right) in the framework of three-neutrino mixing as a function of
the lightest neutrino mass mlight. The ranges are obtained from the projections of the global
analysis in [23] with each ordering defined with respect to its local minimum [3].

1.2.2.2 Majorana neutrinos

The most sensitive probe to the potential Majorana nature of neutrinos is the neutrinoless
double beta decay (0νββ):

(A,Z)→ (A,Z + 2) + e− + e−, (1.2.42)

which can only arise if neutrinos antineutrinos are described by the same field and the
lepton number can be violated, as is the case for Majorana neutrinos, discussed in Section
1.1.4.

The observable in 0νββ experiments is the half-life of the decay, which, under the
assumption that the Majorana mass term is the only source of lepton number violation,
is given by:

(T 0ν
1/2)−1 = G0ν |M0ν |2

(
mee

me

)2

, (1.2.43)

where G0ν is the phase space integral that includes the final atomic state, |M0ν | is the
nuclear matrix element of the transition and mee is the effective Majorana mass of νe,
which depends on the extra Majorana complex phases in addition to the masses and
PMNS parameters.

In Fig. 1.8-right the allowed regions for mee as a function of mlight according to the
global analysis in [23] are plotted: the allowed range is substantially broader than that
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of mν̄e for a given value of mlight as a consequence of the unknown Majorana phases.
While for IO the global analysis implies a lower bound of mee > 0.016 eV at 95% CL,
in the NO case the constraints reach down to mee = 0, in which case the observation of
0νββ would be impossible.

The strongest bound currently imposed on 0νββ lifetimes comes from the KamLAND-
Zen experiment [46] which, searching for the decay of 136Xe, has set an upper bound of
mee < 61 − 165 meV [3]. In addition to determining the Dirac or Majorana nature of
neutrinos, constraining mee mass would yield a bound on the absolute neutrino mass
scale, according to the previous relations.

34



Chapter 2

The DUNE experiment

The Deep Underground Neutrino Experiment (DUNE) will be installed in the Long
Baseline Neutrino Facility (LBNF) under construction in the United States. It will
consist of a Near Detector at a distance of 547 m from the neutrino source at Fermilab in
Illinos and a Far Detector located at the Sanford Underground Research Facility (SURF)
in South Dakota, for a baseline of 1300 km.

The far detector, located at a depth of about 1.5 km, will consist of four modular liquid
argon time-projection chambers (LArTPC) with a mass of 17 kt each. The LArTPC
technology will allow the reconstruction of neutrino interactions with image-like precision
[31].

2.1 DUNE physics objectives

The primary science goals of DUNE are:

• To perform a comprehensive program of neutrino oscillation measurements using
the νµ and ν̄µ beams from Fermilab’s Long-Baseline Neutrino Facility (LBNF).
The program includes the measurement of the CP violating phase of the lepton
sector, δCP , the determination of the neutrino mass ordering, the measurement of
the θ23 mixing angle and its octant, as well as sensitive tests of the three-neutrino
mixing framework. Of paramount importance in this program is the search for CP
violation in neutrino oscillations, as it might potentially offer insight into the origin
mechanisms of the matter-antimatter asymmetry.

• The search for proton decay. The observation of such a process would represent
a ground breaking discovery in physics, as it would satisfy a key requirement of
Grand Unified Theories (GUT).

• The detection and measurement of the νe flux from a core-collapse supernova within
our galaxy, should one such event occur during DUNE’s lifetime. The detection of

35



supernova neutrinos in an up-to-date experiment would provide unique information
on the early stages of the core-collapse event and could signal the birth of a black
hole.

The innovative characteristics of the LBNF beam and DUNE detectors will also allow
to perform a rich ancillary science program beyond the primary goals of the experiment,
including:

• Measurements of accelerator-neutrino flavour transitions with sensitivity to be-
yond the standard model (BSM) physics such as non-standard interactions (NSIs)
Lorentz and CPT invariance violation, sterile neutrinos, large extra dimensions and
heavy neutral leptons. Tau neutrino appearance tests could also be conducted.

• Measurement of neutrino oscillation phenomena through atmospheric neutrinos.

• Searches for dark matter exploiting a variety of signatures in both the near and
far detectors, as well as non-accelerator BSM physics searches such as that for
neutron-antineutron oscillations.

• A varied neutrino interaction physics program with the near detector, including
a wide range of measurements of neutrino cross sections and studies of nuclear
effects.

Further advancements in LArTPC technology over the course of the far detector develop-
ment and construction may enhance DUNE’s sensitivity to very low-energy phenomena
such as solar neutrinos or the supernova diffused neutrino flux [31].

2.1.1 Sensitivities of oscillation searches

In the following the oscillation parameters that will be object of study at DUNE, the
techniques employed for the measurements and the expected timeline of discoveries will
be presented.

The oscillation channels that DUNE will be able to observe are
(−)

ν µ →
(−)

ν e, whose
probability P(−)

ν µ→
(−)
ν e

, through matter in a constant density approximation, is given by

eqn. (1.2.30): both δCP phase and the effective matter potential introduce an asymmetry
between the νµ → νe and ν̄µ → ν̄e channels.

In the few-GeV range the ν/ν̄ asymmetry due to the matter effect increases with
the baseline, so that an experiment with a longer baseline will be more sensitive to the
mass ordering. The 1300 km baseline is thus one of DUNE’s key strengths as it allows
a high sensitivity to the matter effect: the asymmetry in the neutrino/antineutrino
oscillation probabilities, the sign of which depends on the mass ordering, amounts to
approximately ±40% in the peak flux region, larger than the maximal CP violation
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asymmetry associated to δCP . Thus, DUNE will be capable of removing the degeneracy
between the matter and CP violation asymmetries and determine the mass ordering

and δCP unambiguously and with a high confidence. Fig. 2.1 shows the
(−)

ν e appearance
probability at a baseline of 1300 km as a function of the neutrino/antineutrino energy
and for several values of δCP , this last quantity affecting both the amplitude and phase
of the oscillation. The difference in probability for different values of δCP is larger at
the higher oscillation nodes, for E < 1.5 GeV. A broadband experiment such as DUNE,
capable of mapping out the spectrum of observed oscillations down to at least 500 MeV,
is therefore optimal for the study of δCP .

Fig. 2.1: Appearance probability at the DUNE baseline of 1300 km, as a function of neutrino
energy, for δCP = −π/2 (blue), 0 (red) and π/2 (green), for neutrinos (left) and antineutrinos
(right). The θ13 = 0 case is plotted as the black line. Normal ordering is assumed [31].

The observation of the oscillation structure will enable DUNE to perform precision
measurements of all the individual mixing parameters with improved sensitivity. While
reactor experiments have yielded the most accurate measurements of θ13 to date, DUNE
will eventually be able to reach a comparable precision in its independent measurement
of the mixing angle through the νe and ν̄e appearance channels. Such data will provide
an independent constraint on the PMNS mixing matrix [31].

The simulated data samples for the far and near detectors have been taken as inputs
to fits for the CP violation sensitivity, mass ordering sensitivity and parameter measure-
ment resolutions. The resulting projections for seven, ten and fifteen years of exposure
are presented in this section, assuming the following staging plan for the experiment [31]:

• Start of beam run: two far detector (FD) module volumes for a total target mass
of 34 kt, 1.2 MW neutrino beam.
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• After one year: one FD module added, for a total target mass of 51 kt.

• After three years: one FD module added, for a total fiducial mass of 40 kt.

• After six years: upgrade to a 2.4 kt neutrino beam.

Equal running time for neutrino and antineutrino beams is assumed.

CP violation sensitivity Fig. 2.2a shows the significance of CP violation (δCP 6=
0, π) observation as a function of the true δCP value for exposures corresponding to
seven and ten years of data. The double peak structure is produced by the CP violation
significance necessarily dropping to zero at the CP conserving values of δCP = −π, 0, π.
The variation in the true value of sin2 2θ23 is responsible for a significant portion of the
variation in the fit projections, shown as the bands indicating 68% of the fits.

The significance that can be reached for CP violation for 75% and 50% of the δCP
values and for δCP = −π/2 is shown in Fig. (2.2b) as a function of the exposure in years:
CP violation can be observed with 5σ significance after 7 years for δCP = −π/2 and
after about 10 years for 50% of the δCP values. Around thirteen years of runtime allow
to reach a 3σ significance for 75% of the δCP values [31].

Mass ordering sensitivity The significance for the determination of the mass order-
ing as a function of the true value of δCP is shown in Fig. (2.3a), with the same exposures
and staging plan assumptions described above. The characteristic shape of the diagram
is due to the near degeneracy between matter and CP violating effects that occurs close
to δCP = π/2 for normal ordering.

The significance, as a function of exposure in years, that can be determined for 100%
of δCP values and when δCP = −π/2, is shown in Fig. 2.3b. DUNE will be able to
establish the neutrino mass ordering at a 5σ level for 100% of δCP values after between
two and three years, so the plot only extends to seven years of exposure, corresponding
to 500 kt·MW·years [31].

Oscillation parameters measurements In addition to the discovery potential for
mass ordering and leptonic CP violation, DUNE is set to improve the precision on the
key parameters governing neutrino oscillations, including δCP , sin2 2θ13, sin2 θ23 and its
octant as well as ∆m2

31. The resolution, in degrees, of DUNE’s measurement of δCP is
shown in Fig. 2.4a as a function of the true value of δCP : it is significantly better for
near CP conserving values of the CP phase compared to maximally CP violating ones.
Resolutions between 5◦ and 15◦ are possible for fifteen years of exposure depending on
the true value of δCP . Figs. 2.5a to 2.5d show the resolution of DUNE’s measurements of
δCP , sin2 2θ13, sin2 2θ23 and ∆m2

32 respectively, as a function of exposure in kt·MW·years.
The DUNE measurement of sin2 2θ13 will approach the precision of reactor experiments
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(a) (b)

Fig. 2.2: (a) Significance of the DUNE determination of CP violation as a function of the true
δCP value for seven (blue) and ten (orange) years of exposure. The width of the bands covers
68% of fits in which random throws are used to simulate statistical variations and select the
true values of oscillation and systematics parameters. The median sensitivities are represented
by the solid lines. Normal ordering is assumed. (b) Significance of DUNE’s determination of
CP violation for δCP = −π/2 and for 50% and 75% of possible δCP values, as a function of
time in calendar years. Normal ordering is assumed. Changes in trajectory correspond to the
upgrades in the staging plan. The widths of the bands are due to the application of an external
constraint on sin2 2θ23 [31].

for high exposures, allowing an independent comparison between the two values, which
would be useful as a test of the unitarity of the PMNS.

A combination of the νµ disappearance and νe appearance channels allows, as shown
in Section 1.2.1.5, to probe the octant of θ23. Fig. 2.4b shows the sensitivity to the
determination of the octant as a function of the true value of sin2 θ23: such sensitivity is
significant for values of sin2 θ23 less than about 0.47 and larger than about 0.55 [31].

2.1.2 Low-energy and supernova neutrinos

The DUNE experiment will be sensitive to neutrinos with energies between ∼ 5 MeV
to a few tens of MeV. This energy regime is of particular interest for the observation of
the neutrino burst produced in galactic core-collapse supernovae and other astrophysical
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sources, like the Sun and the Diffuse Supernova Neutrino background.

Study of supernova neutrino bursts The particular sensitivity to the νe component
of the supernova neutrino burst at DUNE should be due to the dominant reaction νe +
40Ar→ e−+ 40K∗, with e− and the de-excitation products of 40K∗ being the observables.
Other possibly significant transitions are under investigation.

In the event of a supernova in our galaxy, the predicted number of signal events at the
DUNE FD is of ∼ 3000, with preliminary simulation studies showing that cosmogenic
and radiological backgrounds will have minor effects on the reconstruction of a triggered
neutrino burst [31].

(a) (b)

Fig. 2.3: (a) Significance of the DUNE determination of the neutrino mass ordering as a
function of the true δCP value for seven (blue) and ten (orange) years of exposure. The width
of the bands covers 68% of fits in which random throws are used to simulate statistical variations
and select the true values of oscillation and systematics parameters. The median sensitivities
are represented by the solid lines. Normal ordering is assumed. (b) Significance of DUNE’s
determination of the neutrino mass ordering for δCP = −π/2 and for 100% of possible δCP
values, as a function of time in calendar years. Normal ordering is assumed. Changes in
trajectory correspond to the upgrades in the staging plan. The widths of the bands are due to
the application of an external constraint on sin2 2θ23 [31].
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(a) (b)

Fig. 2.4: (a) Resolution in degrees for DUNE’s measurement of δCP as a function of the true
value for seven (blue), ten (orange) and fifteen (green) years of exposure. Normal ordering is
assumed. The width of the bands shows the impact of external constraints on sin2 2θ13.
(b) Sensitivity to the determination of the θ23 octant, as a function of the true sin2 θ23 value,
for ten (orange) and fifteen (green) years of exposure. Normal ordering is assumed. The width
of the bands covers 68% of fits with statistical variations and true parameter values selected
by random throws. The solid lines show the median sensitivities [31].

Study of solar neutrinos The detection of solar and other astrophysical low-energy
neutrinos is challenging in a LArTPC because of the relatively high energy threshold
for detection of charged current interactions in argon (> 5 MeV). However, DUNE’s
LArTPC offer a large cross section and unique channel-tagging signatures from deexci-
tation photons. The solar neutrino event rate for a final Far Detector fiducial mass of
40 kt is of ∼ 100 per day. A high-statistics solar neutrino sample could plausibly be
selected with sophisticated event selection and possibly additional shielding [31].

Study of the Diffuse Supernova Neutrino Background. The Diffuse Supernova
Neutrino Background (DSNB) is the yet unobserved background of relic neutrinos pro-
duced by supernovae all over the universe, with energies in the few-to-30 MeV range.
Its observation would provide valuable information on the supernova neutrino emission
and the overall core-collapse process rate. DUNE’s far detector would complement, with
its sensitivity to the νe component of the DSNB, the observations of Cherenkov and
scintillator detectors, which are sensitive to the antineutrino component.

The DSNB detection will be limited down to 18.8 MeV of the neutrino from the solar
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(a) (b)

(c) (d)

Fig. 2.5: (a) Resolution of DUNE’s measurement of δCP as a function of the exposure in
kt-MW-years.The resolution depends significantly on the true value of the phase, so curves
for δCP = −π/2 (red) and δCP = 0 (green) are shown. The width of the bands is due to
the external constraint on sin2 2θ13. (b) Resolution of DUNE’s measurement of sin2 2θ13 as
a function of the exposure in kt-MW-years. As external constraints are irrelevant, only the
unconstrained curve is shown. (c) Resolution of DUNE’s measurement ofsin2 2θ23 as a function
of the exposure in kt·MW·years. The width of the bands is due to the external constraint on
sin2 2θ13. (d) Resolution of DUNE’s measurement of ∆m2

32 as a function of the exposure in
kt-MW-years. As external constraints are irrelevant, only the unconstrained curve is shown
[31].
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hep reaction and up to 40 MeV by the atmospheric νe flux, with event rates expected to
be of 1− 2 per MeV per 20 years in 10 kt in the 19− 31 MeV window: such a low signal
rate would make even rare radiological and cosmogenic backgrounds challenging [31].

2.1.3 BSM physics

The combination of the high intensity LBNF neutrino beam with DUNE’s near detector
and massive LArTPC far detector modules at a baseline of 1300 km will enable a variety
of probes of beyond the standard model (BSM) physics.

Search for active-sterile neutrino mixing. Experimental results in tension with the
three-neutrino framework which may be interpreted as mixing between the known active
neutrinos and one or more right-handed-only sterile states have led to a diverse program
of searches. DUNE is sensitive over a wide range of potential sterile neutrino mass
splittings by searching for unexpected disappearances of charged and neutral current
interactions over the long baseline between near and far detector or over the short baseline
to the near detector. DUNE is set to improve significantly on the sensitivities of previous
probes.

Searches for non-unitarities in the PMNS matrix. A characteristic of most of
the proposed mechanisms for neutrino mass generation is the presence of heavy neutrino
states in addition to the three light states of the standard model. This would imply a
deviation from unitarity of the PMNS matrix which, if of order 10−2, would decrease the
event rate at DUNE, and thus its reach to the standard parameters.

Searches for nonstandard interactions (NSI). Data collected by DUNE could be
significantly affected by NSI occurring during neutrino propagation through the Earth,
provided that the new physics parameters are large enough. DUNE will be sensitive to
such probes as it can leverage a very long baseline and a wide-band beam.

Searches for Lorentz or CPT symmetries violation. The present constraints on
the CPT and Lorentz symmetries, whose potential violation would have major conse-
quences on the standard model, can be improved by DUNE by several orders of magni-
tude, providing an important test of these assumptions of standard fundamental physics.

Searches for neutrino trident production. DUNE will be able to test the pos-
sibility that neutrinos may be charged under additional BSM symmetries and interact
with the new gauges bosons with unprecedented precision. The near detector will mea-
sure extremely rare neutrino trident interactions, which are neutrino-induced dilepton
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production in the Coulomb field of a heavy nucleus, searching for deviations from the
standard model rate of 100 per year.

Search for light dark matter (LDM). The parameter space of hypothetical light
dark matter particles, with masses below the electroweak scale, and of the mediator
that allows interactions with ordinary matter, can be covered by high-flux neutrino
beam experiments like DUNE in a complementary way to direct detection or collider
experiments. The LDM particles can be detected in the near detector through neutral-
current-like interactions with electrons or nucleons and the neutrino induced backgrounds
can be suppressed with timing and event kinematics.

Search for boosted dark matter (BDM). The large DUNE far detector will be
able to search for BDM, a dark matter model in which a relativistic light DM particle
is produced by the annihilation of a heavier one in astrophysical sources. The incoming
energy of the light DM components could be above the DUNE energy threshold over a
wide range of parameter space.

2.2 DUNE design

The remainder of this chapter will outline the features, design choices and science goals of
the components of the DUNE experiment: the Long Baseline Neutrino Facility (LBNF)
beam, the far detector (FD) and near detector (ND), a qualitative schematic of which is
shown in Fig. 2.6.

Fig. 2.6: Schematic of the LBNF/DUNE facilities at Fermilab and SURF. The existing facil-
ities are shown in blue, while the planned ones are in orange. The neutrino beam baseline of
1300 km is indicated [31].
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2.2.1 The LBNF neutrino beam

The LBNF beamline at Fermilab will provide a neutrino beam of with appropriate in-
tensity and energy range to meet the requirements of the long baseline neutrino physics
conducted at DUNE. The wide-band neutrino beam will be aimed the SURF detectors
1.5 km underground at a distance of 1300 km from the production point.

The primary proton beam will be provided by the PIP-II upgrade of the Main Injector
accelerator at Fermilab, which will deliver between 1.0 and 1.2 MW of proton beam in
the 60 to 120 GeV energy range at the start of DUNE operations. PIP-II will also provide
a platform for extending the beam power to DUNE to > 2 MW and a further update of
the accelerator complex will allow up to 2.4 MW of beam power by 2030.

The proton beam will be extracted at the new MI-10 installation and, passing through
the transport section, it will be bent in order to establish the final trajectory towards
the far detector. The proton beam will hit a solid target and produce, among others,
charged mesons that are focused by magnetic horns into a 194 m decay pipe, travelling
along which they decay producing the neutrino beam. The neutrino beam characteristics
are defined by the meson focusing system, which is optimized to provide a wide-band
beam in an energy of 0.5 to 5 GeV. Such an energy range will allow the coverage of the
first and second neutrino oscillation maxima which, for L ' 1300 km, are approximately
at 2.4 and 0.8 GeV. The polarity of the focusing horns allows to select either positive or
negative mesons, which yield neutrino and antineutrino beams respectively.

The goal for the proton beam is to accumulate 1.1 × 1021 protons on target per
year, with the resulting neutrino and antineutrino fluxes at the FD, in the absence of
oscillation, shown in Fig. 2.7. Focusing positive and negative particles respectively allows
to produce a beam composed mainly of νµ or ν̄µ, with a small contamination of νe and
ν̄e [47].

2.2.2 The DUNE Far Detector modules

The DUNE far detector, located 1.5 km underground at SURF, will consist, by the end of
the staging plan, of four LArTPC detector modules, each contained in a cryostat holding
17.5 kt of LAr. The LArTPC technology will provide good tracking and calorimetry
performances, and the use of four identically sized modules will allow flexibility for
staging construction and for potential evolution of the LArTPC technology [31].

The LArTPC technology that has been selected for the FD is the Single-phase (SP)
LArTPC: in this design charges drift in LAr and are read out on wire planes. As no signal
amplification occurs in the liquid, the SP design requires very low-noise electronics for a
good signal-to-noise ratio to be achieved. Two designs of SP-TPC are being considered:
a horizontal drift TPC, where the charges drift horizontally towards an anode plane,
and a vertical drift TPC, where the drift direction is vertical towards the anode planes
on the top and bottom. The DUNE collaboration has constructed the ProtoDUNE-SP
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(a) (b)

Fig. 2.7: (a) Neutrino fluxes at the far detector as a function of energy in the absence of os-
cillations, with horns focusing positive particles. The minor components are shown in addition
to the dominant νµ flux. (b) Antineutrino fluxes at the far detector as a function of energy in
the absence of oscillations, with horns focusing negative particles. The minor components are
shown in addition to the dominant ν̄µ flux [47].

prototype detector at CERN to test the technology of the horizontal drift TPC. This has
approximately 1/20 the size of a full-scale FD module and uses the same components as
the final detector. The large scale prototype has allowed to validate key aspects of the
TPC design, engineering procedures and collect valuable calibration data from a hadron
test beam. The ProtoDUNE-SP has started collecting data in fall 2018 and a new run
is planned to start by the end of 2022 [31].

Results obtained with the ProtoDUNE-SP detector have already provided valuable
information on the design, calibration and simulation of the FD modules. At the time of
writing of this dissertation, the plan is to utilize the SP horizontal and vertical drift design
for the first and second module respectively. The technology that will be implemented
in the third and fourth modules is still to be decided. The main features of DUNE’s two
LArTPC detector designs are outlined in the following.

2.2.2.1 Horizontal drift LArTPC

In the horizontal drift LAr TPC design, particles passing through the detector ionize the
argon atoms and the ionization electrons drift in the intense electric field to the Anode
Assembly Plane (APA) with a timescale of milliseconds. The APA consists of layers of
active wires forming a grid, with the relative voltage between the layers chosen so that
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the drifting electrons will only produce bipolar induction signals on all but the last layer,
where they are instead absorbed, inducing a monopolar signal.

Liquid Argon is an excellent scintillator which emits Vacuum Ultra-Violet light (VUV)
with a 1.27 nm wavelength. The prompt scintillation light, which crosses the detector
with a ns timescale, is collected by photon detectors after being shifted into the visible
range: this provides a starting time t0 for the ionization. The event topology along the
drift direction is thus reconstructed from the timing of the ionization electrons reaching
the anode. The coordinates along directions perpendicular to that of drift is given by
the pattern of currents on the grid of anode wires. Fig. 2.8 shows the general operating
principle of a LArTPC [48].

Fig. 2.8: General operating principle of a single-phase LArTPC [48].

The DUNE single-phase LArTPC will have each a total mass of 17.5 kt. Each TPC
module will be housed inside a cryostat of 65.8 m ×17.8 m ×18.9 m outer dimensions,
creating four 3.5 m drift volumes between five alternating anode and cathode walls, each
with dimensions 58 m ×12 m. Fig. 2.9 shows the internal structure of a SP module.

Each cathode wall is formed by and array of 150 Cathode Plane Assemblies, 1.2 m ×4
m panels held at −180 kV. With the anode walls being kept close to ground, a uniform
500 V/m electric drift field is produced across the drift volume. The remaining open
sides of the TPC are surrounded by a Field Cage which ensures a field uniformity better
than 1% throughout the active volume.

Anode walls are each composed of 50 Anode Plane Assemblies (APA) units of 6 m
×2.3 m dimensions. Each anode wall is two (APA) high and 25 (APA) wide. The APAs,
the scheme of which is shown in Fig. 2.10, are two-sided, with three active wire layers
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Fig. 2.9: A 10 kt DUNE far detector SP module, showing the alternating anode (A) and
cathode (C) planes, as well as the surrounding Field Cage surrounding the field regions. The
field cage on the right is shown in its undeployed state [48].

and an additional shielding layer wrapped around them. The spacing of the wires is of
∼ 5 mm.

The readout cold electronics (CE) are attached to the top end of the top APA and to
the bottom end of the bottom APA. The low LAr temperature benefits these front-end
electronics trough the reduction of the thermal noise. The signals from the collection and
induction wires are shaped, amplified and digitized by the front-end electronics thanks
to a series of three different ASIC types.

Charged particles passing through the liquid argon will produce, in addition to ioniza-
tion, scintillation light, with approximately 24× 103 photons per MeV. The scintillation
photons are collected by devices called X-Arapucas, bars running the 2.3 m width of the
APA in between the two sets of wire layers. Ten X-Arapucas are mounted on each of the
APAs. Each X-Arapuca bar consists of four Arapuca cells with dichroic filters transpar-
ent to VUV light, alternated with wavelength-shifter (WLS) plates, which convert the
UV photons into the visible spectrum at 430 nm. The visible photons emitted inside the
WLS plates with an inclination with respect to the surface grater than the critical angle
reach the SiPMs at the edges of the plates. The visible photons that, conversely, escape
the WLS are reflected by the dichroic filters back into the wavelength-shifter plates, as
the former have an optical cutoff for wavelengths > 400 nm. The working principle of
the X-Arapuca cells is illustrated in Fig. 2.11, while scheme of the X-Arapuca modules
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and their placement inside APAs is shown in Fig. 2.12.
The primary requirement for the LAr used in the TPCs is its purity, as electroneg-

ative contaminants can absorb ionization electrons and nitrogen contaminants quench
scintillation photons. The target purity from electronegative contaminants in argon is
below 100 ppt O2 equivalent, enough to ensure an ionization-electron lifetime > 3 ms at
the nominal drift voltage. This ensures the SNRs which are necessary to perform pat-
tern recognition and track separation. Detector components are also required to release
< 30 ppt of electronegative impurities in the LAr. ProtoDUNE data has confirmed the
possibility of exceeding the target purity, reaching lifetimes in excess of 6 ms. Nitro-
gen contaminants must be kept below 25 ppm to achieve the required minimum of 0.5
photoelectrons per MeV detected for events in all parts of the detector. LAr purity is
maintained by constantly cycling the argon through the purification system [48].

Fig. 2.10: Left: two APAs linked together to form one unit of an APA wall. Photon detection
X-Arapuca modules are installed across the width of the APAs.
Right: a closer look at the top and bottom of the APA stack, showing the readout electronics
and at the center, where the APAs are connected [48].
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Fig. 2.11: Working principle of an X-Arapuca cell: the VUV LAr scintillation light is shifted
into the visible spectrum upon entering the module. The escaping visible photons are reflected
back towards the SiPM by the dichroic filters.

Fig. 2.12: Left: an X-Arapuca photon detection module, showing the 24 X-Arapuca cells.
The 48 SiPMs that detect the light from the cells are long the long edges of the module. Right:
X-Arapuca modules mounted inside an APA [48].

2.2.2.2 Vertical Drift LArTPC

For the second module of the DUNE Far Detector, a Vertical Drift LArTPC has been
recently proposed, thanks to the experience gained by the run of ProtoDUNE at CERN.
In this design, the cathode plane hangs at mid height in the module with a −300 kV
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voltage, for a drift length of 6.5 m towards the anodes on the top and bottom. The field
cage ensures the uniformity of the electric field at 500 V/cm.

For the TPC anodes, perforated Printed Circuit Boards have been chosen, as they
can be hung horizontally without suffering significant deformations. Each section of
the anode plane will consist of two PCB boards, with the electron drifting trough the
amplified electric field in the induction PCB towards the collection board. The design
specifications are being optimized at the time of writing. The anodes are mounted within
Charge Readout Plane structures in the top and bottom of the module.

In the vertical drift design the Photon Detection System modules, using the same
X-Arapuca detectors as the horizontal drift version, can be placed on the walls of the
cryostat behind the field cage, designed to be semi-transparent, and on the cathode
surface. The latter position has most importantly required the development of novel
optoelectronic systems for signal and power transmission: a Power-over-Fiber solution
for the power distribution and an analog optical transmitter that allows the digitization
of the SiPM signals in warm.

The VD-TPC concept is currently undergoing an intense R&D campaign of test and
validate its different systems. Tests on a small scale prototype cryostat at CERN have
started in fall 2021 [49].

2.2.3 The DUNE Near Detector complex

The near detector (ND) is located approximately 547 m from the source of the LBNF
neutrino beam and includes three primary detector components: ND-LAr and ND-GAr,
which can move off-axis and SAND, with a fixed on axis position. The three detectors
are shown in the ND hall in Fig. 2.13. The ND will serve key roles in the oscillation
program [50]:

• It will allow a high-statistics characterization of the beam close to the source,
providing its initial state which is compared to the FD observations to extract
oscillation parameters. The use of LArTPC detectors that are functionally similar
to the FD helps in reducing the systematics.

• It will include a spectral beam monitor that can detect changes in the beam in a
timely fashion.

• The high statistics collected in the ND, together with its particle ID capabilities,
will make the ND instrumental for tuning the neutrino interaction models used
to move between the beam model and the experimental data, thus allowing a
reduction of the systematic errors.

• The ND components will take data at different off-axis positions, providing data
sets with different beam spectra. This allows to deconvolve the beam and cross-
section models and constrain each separately. Additionally, the creation of ND
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data sets similar to the oscillated FD ones will make it possible to minimize the
errors arising from near-to-far flux interference.

In the following, the features and objectives of each of the three detectors are outlined.

Fig. 2.13: Schematic of the DUNE ND hall with all components in the on-axis configuration
(left) and with ND-LAr and ND-GAr in an off-axis configuration (right). The SAND detector
is along the beam axis, indicated by the yellow arrow [50].

2.2.3.1 ND-LAr

The ND-LAr detector will be a LArTPC similar to those used at the far site. At the
near site, the LArTPC will be exposed to a much more intense neutrino flux, leading
to event pile-up. To overcome this limitation, ND-LAr will be based on the ArgonCube
technology, consisting of a large TPC fabricated out of a matrix of smaller, optically
isolated TPCs read out individually by a pixelized readout. Each of the TPCs will
be equipped with optical readout providing the timing necessary to associate tracks
and events across the matrix. The current design features a 5 × 7 matrix of modules.
The subdivision of the volume will allow for smaller drift distances and times, which,
together with the optical insulation will reduce the issues with overlapping interactions.
The smaller volumes will also reduce the requirements on high voltage and argon purity.

The pixelization of the readout will enable the full 3D reconstruction of tracks and
enhance the robustness in a high-multiplicity environment. New dielectric light detection
systems, which can be placed inside the field cage, will improve the localization of light
signals. The tracking and energy resolution will enable the measurement of the beam
flux using several techniques, including the rare νe− scattering process.

The ArgonCube TPCs configuration of ND-LAr will be large enough to provide the
required hadronic shower containment and statistics (1 × 108 νµ events per year), with
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a fiducial mass of 67 t in a 5 (along beam) ×7 ( transverse to beam) ×3 (height) m3

volume. In Fig. 2.14, an illustration of ND-LAr shows the array of ArgonCube TPCs.

Fig. 2.14: Schematic of the ND-LAr detector, showing a row of the 5 × 7 array of optically
isolated ArgonCube modules [51].

As shown in Fig. 2.13 ND-LAr will move to take data from off-axis spectra, a
capability referred to as DUNE Precision Reaction-Independent Spectrum Measurement
(DUNE-PRISM) [50].

2.2.3.2 ND-GAr

The ND-GAr detector will be a magnetized system consisting of a high-pressure gaseous
argon TPC (HPgTPC) surrounded by an electromagnetic calorimeter (ECAL), both in a
0.5 T magnetic field, and a muon detection system. As ND-LAr begins to lose acceptance
for muons above ∼ 0.7 GeV/c due to lack of containment, ND-GAr is needed to measure
the momenta and charges of muons downstream of first detector. A schematic of ND-GAr
is shown in Fig. 2.15.

The high pressure TPC, run at 10 atm, will provide a lower-density medium with
excellent tracking resolution to analyse the momenta of ND-LAr muons. This technology
will additionally contribute a large independent sample of νAr interactions from the
neutrinos interacting with argon in the TPC. These events can be studied with a very
low momentum threshold for charged particle tracking, excellent tracking resolution,
nearly uniform angular coverage and with systematic uncertainties that differ from those
of the liquid detectors. ND-GAr will be able to collect around 1.6 × 106 νµ charged
current events per year of on-axis running with a 1.0 t fiducial volume.
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Fig. 2.15: Schematic of ND-GAr which shows the HPgTPC, its pressure vessel, the ECAL,
the magnet and return iron yoke. The muon-tagging system detectors are omitted [50].

Since ND-GAr can access lower-momentum protons and has superior charged π ca-
pabilities than ND-LAr, it will be valuable for studying the charged particle activity
near the interaction vertex. The misidentification of pions as knocked-out protons can
cause significant misreconstructions of neutrino energies and event types, mostly in the
LArTPCs: ND-GAr will thus play a key role in understanding how often such mistakes
occur in ND-LAr and in the FD modules.

The relatively low level of secondary interactions in the gas will help at identifying
particles produced in the primary interaction and at modelling secondary interactions in
denser detectors. Like ND-LAr, ND-GAr will move to perform PRISM measurements of
off-axis spectra [50].

2.2.3.3 SAND

The ND component permanently on the beam axis is the System for on-Axis Neutrino
Detection (SAND). This multi-purpose detector will monitor the flux of neutrinos going
to the FD from an on-axis position, which guarantees a higher sensitivity to variations in
the neutrino beam. SAND will serve as a dedicated neutrino spectrum monitor, allowing
to potentially adjust the beam model should any changes be detected. The design
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of SAND is mostly based on the reuse of the magnet and electromagnetic calorimeter
(ECAL) of the KLOE experiment, a view of which is shown in Fig. 2.16, with the inner
volume of the ECAL being instrumented with a target/tracking system [50].

Fig. 2.16: 3D View of the KLOE magnet and ECAL. The neutrino beam direction at DUNE
is indicated by the blue arrow.

SAND magnet and ECAL The magnet, with its return yoke, and ECAL will be
repurposed from the KLOE detector at the INFN LNF laboratories, previously used to
study φ meson production. A scheme of KLOE systems is shown in Fig. 2.17. KLOE’s
solenoidal superconducting coil will provide a ∼ 0.6 T magnetic field over a 4.3 m long,
4.8 m diameter volume.

The KLOE electromagnetic calorimeter is a lead/scintillating-fiber sampling calorime-
ter offering good light transmission over several meters, sub-ns timing accuracy and a
very good hermeticity. The barrel calorimeter is cylindrical and located inside the KLOE
magnet, close to the cryostat. It is divided into 24 modules, each 4.3 m long and 23 cm
thick, with a trapezoidal cross section having 0.7-3.9 m bases. The two calorimeter end-
cap modules consist each of 32 rectangular cross section modules. 0.7− 3.9 m long and
23 cm thick.

All ECAL modules are constructed as a stack of 200 grooved, 0.5 mm thick, lead foils
alternating with 200 layers of cladded 1 mm scintillating fibers. KLOE took data until
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Fig. 2.17: Front (top) and side (bottom) views of the calorimeters, showing the trapezoidal
barrel and vertical endcap modules and their location inside the magnet. Units are in mm [50].

march 2018: up to the end, the ECAL and time and energy resolution were found to be:

Energy resolution: σ/E =
5%√

E (GeV)
,

Time resolution: σ =
54√

E (GeV)
ps.

(2.2.1)

The inner tracker. The option that has been chosen for the inner tracker has most
of the volume inside the ECAL filled with Straw Tube Tracker (STT) modules, with the
exception of a small upstream region instrumented with a LAr active target.

STTs are designed to offer a control of the configuration, chemical composition and
mass of neutrino targets similar to that achieved in electron scattering experiments. The
base tracker technology of STTs is provided by low-mass tungsten straws (5 mm diam-
eter, 12 µm walls with 20 µm gold plating) operated with a 70%/30% Xe/CO2 mixture
at 1.9 atm, a similar design to the ones used in many precision physics experiments. The
single hit space resolution is designed to be < 200 µm.

The STT design features hydrocarbon targets, which, having a different mass number
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relative to argon, can provide information for developing nuclear effects models and
improving the confidence in the interaction model and the size of several systematic
uncertainties. Specifically, thin target layers (∼ 1− 2 X0) of passive material with high
chemical purity are placed between the straw layers, distributing, in such a way, the
target mass throughout the volume. The current design will make use of ∼ 4.7 t of
polypropylene (CH2) foils in 78 modules and of 504 kg of graphite.The average density
is 0.18 g/cm3, corresponding to a total thickness of the system of 1.33X0. The choice
of passive target materials, together with their vertex, angular, momentum and timing
resolutions are key factors for the correct association of neutrino interactions to each
target element. The total number of straws in the STT is over 2 × 105, for the same
number of channels. Fig. 2.18-right illustrates the inner volume of SAND, with an STT
module shown on the right.

The GRAIN active target. The design of SAND envisages the GRAIN (GRanular
Argon for Interactions of Neutrinos) active liquid argon target in the upstream part of
the magnetized volume, with the main roles of constraining nuclear effects and providing
a complementary Ar target permanently located on-axis for cross-calibration, as the Ar-
based ND-LAr and ND-GAr detectors will be positioned off-axis for ∼ 50% of the time
[50, 52]. Fig. 2.18 shows two views of the GRAIN active target inside the SAND inner
volume.

The LAr target mass will be of O(1t) with a small enough thickness along the beam
direction (∼ 1X0) for energy loss, showering and multiple scattering to be reduced, as
the outgoing particles will have to be analysed by the downstream STT. The cryostat
walls will be made of C-composite material reinforced by internal thin aluminium foil.
The exact positioning, size and shape of the active target are still in the process of opti-
mization. GRAIN is a novel LAr detector, designed to reconstruct neutrino interactions
using only the scintillation light. It will be instrumented with an optical detection system
to collect Vacuum UV scintillation light on fine segmented focal planes.

Two VUV imaging systems are being developed at the time of this work: one based
on biconcave lenses and one using Coded Aperture Masks. As the two technologies
feature several complementary capabilities, the final design of the detection system will
likely feature a combination of both lenses and masks [50].

The main objective of this thesis is the development of track reconstruction algorithms
for the Hadamard-Mask-based design of the LAr active target, the details and theoretical
basis of which will be discussed in Section 3.
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Fig. 2.18: (Left) Cutaway view of the inner volume of SAND, showing the position and vessel
structure of GRAIN. (Right) View of the inner volume detectors of SAND: inside the KLOE
calorimeter an STT module is shown on the right, with the GRAIN cryostat being on the left.
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Chapter 3

Coded Aperture imaging in GRAIN

In Section 2.2.3.3, the rationale behind the development of a LAr active target volume
for the SAND detector was outlined. A LAr target at the near detector complex would
enable a study of the neutrino interaction topologies and cross sections which would
be complementary to the measurements at the far detector, thus allowing to better
constrain the systematics. The LAr target volume for the SAND detector could therefore
supplement the ND-LAr TPCs, by permanently providing on-axis data [50, 52]. The
two significant shortcomings of a traditional LArTPC in the SAND environment are the
electron drift time of the order of ms, too slow to cope with the high event rate at the
ND, and the required placement of the target inside the magnetized volume.

The scintillation properties of liquid argon allow, instead, to perform both calori-
metric and spatial measurements by means of an optical detection system capable of
collecting the VUV scintillation emission. For minimally ionizing particles liquid argon
has a light yield of ∼ 4×104 photons per MeV of deposited energy [53], with an intensity
peaking at 128 nm and a fast component decay time of 7 ns. Moreover, its Rayleigh
scattering length at 128 nm is of ∼ 99 cm [54], while the attenuation length is of the
order of 66 cm [54].

LAr is fairly transparent to its own scintillation emission, which can be therefore
used for imaging purposes, allowing to potentially cut the response time down to a
few nanoseconds while maintaining high spatial resolution. Leveraging these properties
requires an optical system capable of collecting enough light and a fast and segmented
photodetector capable of providing an adequate resolution [55].

The development of such an imaging system presents serious challenges due to the
unusual environment of the LAr target and to the needed high level of performance:

• Traditional lenses and mirrors have a highly inefficient transmission for Vacuum
Ultra-Violet light, so that novel solutions are required.

• The readout electronics must be able to operate in cryogenic conditions and with
single-photon detection capabilities.
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• The distance of event tracks can be up to several meters, requiring a large field of
view and depth of field to focus as many tracks as possible.

A possible approach to this problem is one already well known in X-ray and gamma-
ray astronomy, but never used so far in particle physics experiments: the Coded Aperture
Mask technique.

In such an optical detection system, the scintillation light signal would be filtered
by Coded Aperture masks, placed on the sides of the cryostat, and read by matrices
of Silicon Photomultipliers (SiPMs). These will provide the necessary performances,
as they offer the advantage of robustness, a strong reduction of the dark noise at low
temperatures and a high definition thanks to the large number of closely packed pixels.
Coded Aperture masks will, concurrently, provide a sufficiently high photon detection
efficiency without the need for special materials or complex designs. The signals, namely
2D images, detected by multiple mask-SiPM systems could then be combined in a stereo
view, obtaining a 3D reconstruction of an event from its scintillation light [55, 56].

This chapter will first outline the principles behind and optical properties of Coded
Aperture masks, presenting a number of their potential designs. The current mask-
based design of the LAr active target, on which the rest of the work is based on will
then be discussed. Lastly, the 3D reconstruction techniques, which are currently still in
development, will be briefly touched upon.

3.1 Principles of Coded Aperture imaging

Coded Aperture Imaging techniques were being applied by the ’70 in the field of X-ray
imaging, and have since become a staple in X-ray and gamma-ray astronomy [57, 58].
In the original formulation, the single opening of a pinhole camera is replaced by many
pinholes (collectively forming an aperture) arranged according to some pattern. Each
point of a light-source will deposit a shadow of the aperture on the detector surface and
the overall pattern of light and shadows can be processed, generating a reconstructed
image of the original object [59].

As the pattern projected by the aperture is a combination of single pinhole images,
it is appropriate to start by discussing the principles of pinhole cameras.

3.1.1 Pinhole cameras

The so-called pinhole camera could be rightly considered the simplest imaging device:
it consists of just a slab of material opaque to radiation through which an infinitely
small (ideally dimensionless) hole is poked. As every photon that passed through the
hole must have travelled from the source, assumed at infinity, in a straight line, every
point in the detection plane represents a point on the source. The detected photon
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distribution recorded by detector is, moreover, an inverted picture of the source, with a
1-1 correspondence between the two, as the scheme in Fig. 3.1 shows.

Formally, the photon distribution R(xi, yi) on the detector plane must be due only to
the (x0, y0) point at the source, itself a point source with irradianceO(x0, y0). Specifically,
R(xi, yi) and O(x0, y0) must be proportional:

R(xi, yi) ∝ O(x0, y0). (3.1.1)
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Fig. 3.1: Geometry of a pinhole camera.

Referring to the notation of Fig. 3.1, by defining the vectors

~ri = (xi, yi) and ~r0 = (x0, y0), (3.1.2)

and being a and b respectively the distances from the pinhole to the object and detector
planes, eqn. (3.1.1) becomes:

R(xi, yi) ∝ O
(
−a
b
~ri

)
, (3.1.3)

thus showing that the projection through the pinhole is a copy of the object, inverted
(because of the − sign) and rescaled by a factor a/b, where a and b can be any positive
number. If a > b, i.e. the pinhole is closer to the detector than to the object, the latter
appears minified, while if a < b, the object appears magnified. Indeed, the ratio of the
projected size of the object to the original, called magnification coefficient mp of the
pinhole can be verified to be mp = b/a.
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The magnification determines the Field of View (FoV) of the camera, i.e. the set of
points in the plane of the object that can be measured; being dd the size of the detector,
it holds:

FoV =
dd
mp

(3.1.4)

The discussion above assumed an ideal dimensionless pinhole: to understand the
necessity of Coded Aperture masks for physics applications it is necessary to move to
the realistic case instead, illustrated in Fig. 3.2. If the pinhole had a finite width wm,
each point would cast an image of size

wd =
a+ b

a
wm = (1 +mp)wm. (3.1.5)

Defining the resolution ` as the minimum distance between two points in the object plane
such that their projections are separate in the detector image, one has:

` >
a

b
wd =

(
1 +

1

mp

)
wm, (3.1.6)

where low ` values indicate a good resolution. This equation shows how resolution is
limited by the size of the pinhole wm. Moreover, while ` improves with increasing wm,
the FoV shrinks as per eqn. (3.1.4). The ratio of the two,

FoV

`
=

dd
(1 +mp)wm

(3.1.7)

can be taken as a figure of merit for an imager, which, ideally, should have both the
widest possible FoV and the highest possible resolution. Assuming mp = 0 gives the
highest and thus best ratio of dd/wm.

While the ideal pinhole has a perfect resolution, it cannot work in practice as a
null aperture area would imply a null photon flux through the hole as well. Thus the
dimension of the pinhole must be a compromise between the need for a high resolution
and a high detection efficiency. The Coded Aperture mask technique has been developed
to bypass this exact issue [60].

3.1.2 Coded Aperture masks

The rationale behind Coded Apertures is to achieve the resolution of small pinholes while
maintaining a high throughput. The basic concept is to overcome the low passing photon
flux by opening many small pinholes instead of a single large one. The pinholes can be
arranged in specifically designed patterns, of which a mask is the physical realization. A
mask coupled to the detector forms a Coded Aperture Camera.
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Fig. 3.2: Illustration of the resolution loss occurring when an ideal pinhole is enlarged to
increase throughput. The dotted lines and corresponding circles indicate the projections in the
ideal pinhole case.

The advantages of Coded Apertures over simple pinhole cameras can be quantified
in terms of their respective signal-to-noise ratio (SNR). In fact, in the case of a point
source, a single pinhole counting s photons would have a SNR=

√
s, according to Poisson

statistics. If the same source were counted independently N times, as is the case of a
Coded Aperture with N holes, the total average count and variance would be Ns, giving
a SNR=

√
Ns. Thus the SNR advantage of Coded Apertures over single pinholes is

√
N .

3.1.2.1 Detector response in Coded aperture cameras

The response of the detector at the position ~ri due to the point source ~r0 must be
proportional to the irradiance O(~r0), modulated by the transmission of the mask A
evaluated at the intersection point of the ray ~ri − ~r0. A is generally considered a two-
value function, with 1s for holes and 0s for opaque elements. The response is thus:

R(~ri) ∝ O(~r0)A

(
~r0 +

~ri − ~r0

z
a

)
, (3.1.8)

where a and z have the same meaning as in Fig. 3.1. The total recorded photon
distribution is obtained by repeating this argument over all point sources, i.e. integrating
over the object plane:

R(~ri) ∝
∫
~r0

∫
O(~r0)A

(
~r0 +

~ri − ~r0

z
a

)
d2~r0. (3.1.9)

It is helpful to recast the previous equation using the following definitions:

O′(~r) ≡ O
(
−a
b
~r
)

and A′(~r) ≡ A
(a
z
~r
)
, (3.1.10)
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where O′ is the scaled and inverted version of O by the magnification coefficient mp, so
that O′ is the pinhole image of the object. Similarly, A′ is a scaled version of A: as
a/z < 1, A′ is larger than A. The magnification of A′ is due to the projection of the
mask pattern on the detector, with the ratio of the size of the projection (hd) to that of
the mask (hm) being

hd
hm

=
z

a
(3.1.11)

Substituting eqn. (3.1.10) in eqn. (3.1.9) gives, recalling the definition of the convolution
operation:

R(~ri) ∝
∫
~r0i

∫
O′(~r0

i)A′
(
~ri − ~r0

i
)
d2~r0

i = O′ ∗ A′, (3.1.12)

where ~r0
i ≡ −(b/a) · ~r0 is the point associated to ~r0 in a pinhole imager. The previous

equation shows that the projection is described by the convolution of the pinhole image
O′ with the projection of the mask pattern A′. A physical interpretation of this result is
that the projection is the sum of all the magnified mask patterns, each shifted according
to the position ~r0 of the point source casting the shadow and weighted according to its
irradiance [60].

3.1.2.2 Decodification formalism

The reconstructed image can be obtained from the detector response R(~ri) through the
correlation method, where the reconstructed object Ô is defined as:

Ô ≡ R⊗G = (O′ ∗ A′)⊗G = O′ ∗ (A′ ⊗G), (3.1.13)

where G is a decoding array, called kernel, and ⊗ and ∗ indicate the correlation and
convolution operations respectively. Choosing a G such that

A′ ⊗G = δ, (3.1.14)

leads to:
Ô = O′ ∗ δ = O′, (3.1.15)

which is the simple pinhole image, so that the system can reconstruct the exact initial
image. The addition of a noise term N to the detector response R ∝ O′∗A′+N does not
change significantly the derivation, leading, for the same choice of G as in eqn. (3.1.15),
to:

Ô = O′ ∗ δ = O′ +N ⊗G. (3.1.16)

In conclusion, the process of reconstruction entails the identification of a known pattern
in a signal. This requires finding pairs (A,G) for which eqn. (3.1.14) holds. Fortunately,
many families of aperture patterns A exist for which the G decoding matrices have known
analytical expressions [60].
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It is critical to note that the reconstruction procedure outlined so far allows to obtain
a 2D image from a single camera, and as such is well suited for applications where
information on the depth is irrelevant, e.g. X and gamma ray astronomy and medical or
industrial imaging. In order to apply the Coded Aperture approach to a particle physics
detector, as is being proposed for GRAIN, the information on all three coordinates of a
source must be obtained for the event to be reconstructed.

The most obvious extension of the single camera technique to 3D imaging consists
of combining the images captured by multiple cameras in different positions to obtain
a stereo view of the event. As Section 3.2 shall outline, the difficulty in developing
a combined reconstruction algorithm capable of working with the low efficiency of the
available detectors is the limiting factor for this technique, which is not yet mature.

3.1.2.3 Geometric arrangements

The imaging characteristics of a Coded Aperture camera depend on the geometric ar-
rangement between mask and detector. The projection of the mask on the detector
distinguishes two regions in the Field of View: the Fully-Coded Field of View (FCFV),
in which sources can project a complete mask pattern on the detector, and the Partially-
Coded Field of View (PCFV), in which the projection on the detector is not complete.
It is clear that perfect imaging according to the decoding procedure in Section 3.1.2.2 is
only possible if complete mask patterns are detected.

Under the assumption of a point source located at infinity, so that the projection of
the mask on the detector has the same size as the mask itself, the most straightforward
arrangement, with mask and detector having the same size, has a FCFV consisting of a
single point along the instrument axis, as Fig. 3.3a shows. All other point sources are
part of the PCFV, as they only project part of the pattern on the detector, and cannot
be reconstructed perfectly.

The most direct solution for increasing the FCFV, increasing the detector size as
in Fig. 3.3b, is seldom the most practical, as fabrication issues or cost set a limit on
the detector size. In GRAIN, larger detectors would also take up a larger fraction of
the volume and increase the heat load of the LAr chamber. In such cases it is more
convenient to enlarge the mask by replicating its pattern in a periodic tiling, or mosaic,
arrangement, shown in Fig. 3.3c. With this arrangement all sources within the FCFV
still project an entire mask pattern on the detector, as the pattern is periodic, but the
pattern shifts are different depending on the source position, as Fig. 3.3d shows. Fig.
3.4 illustrates the FCFV and PCFV regions for a non-cyclic and mosaicked geometry.

A complication introduced by mosaic patterns is the so-called aliasing : as all the
points at the the boundary of the FCFV project the same pattern, they are reconstructed
as the same point despite being in different positions. Due to aliasing, mosaics cannot
go beyond a 2 × 2 repetition of the mosaic pattern, but should rather leave out a row
and a column [60].
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Fig. 3.3: Comparison of three different Coded Aperture camera arrangements, with a point
source at infinity. (a) Mask and detector have the same size: only the sources on the optical axis
project the full mask shadow on the sensor. (b) The sensor is larger than the mask, extending
the FCFV region. (c) Mask composed of a 2× 2 mosaic of the mask in (a) and (b), while the
sensor has the same dimensions as in (a). Only part of the mask is projected in the sensor. (d)
The combination of projected parts of the mosaic in (c) is the full shadow of one of the base
mask patterns.

3.1.2.4 Field of View and resolution

The two main parameters for Coded Aperture cameras are the FoV and the geometric
resolution, i.e. the resolution intrinsic to its geometric arrangement, assuming the detec-
tor to be ideal. As for simple pinholes, these two quantities are strictly related to each
other and to the parameters of the detector.

For a single period mask camera, a source at a finite distance, the so-called near field
configuration, will be projected according to the magnification coefficient

m = 1 +
b

a
= 1 +mp, (3.1.17)

where the notation in Fig. 3.1 is used. If the side of the mask is dm and dd > dm is the
side of the detector, the projection will have a size mdm, which leaves a space (dd−dm)/2
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Fig. 3.4: Scheme of the FCFV and PCFV for a camera with a single mask (a) and for one
with a 2× 2 mosaic mask (b). The detector is assumed to be larger than a mask tile.

on both sides of the detector to shift the mask. This corresponds to a field of view

FoV =
dd −mdm
m− 1

=
dd

m− 1
· mdm
m− 1

. (3.1.18)

In the case of a periodic 2 × 2 mosaic, only one of the four copies of the basic pattern
covers the detector completely, leading to a field of view

FoV = dd ·
a

b
=

dd
m− 1

, (3.1.19)

which can be readily seen to be larger than the FoV of a non-periodic arrangement for
a given dd. Mosaics are therefore preferable over single patterns for a given dimension.

In Section 3.1.1 the resolution of an imager was defined as the minimum distance
between two point sources so that their image is still perceived as two separate points.
For a Coded Aperture system this definition translates to the distance that two sources
must have for their projections to be a projection of a mask hole apart. This spacing λg
is found to be:

λg =
mpm
b
· a =

m

m− 1
· pm, (3.1.20)

where pm is the size of a mask hole. A relation between FoV and resolution equivalent
to eqn. (3.1.7) can thus be derived for periodic mosaic configurations:

FoV

λg
=

dd
mpm

=
dm
pm
≡ n, (3.1.21)

67



as the projection of the mask takes the whole detector, so that for all shifts dd = mdm.
The ratio dm/pm = n is the number of mask elements (holes and opaque cells) on the
side of the mask, if connection elements are neglected, so that the relation between
FoV and resolution, FoV = λgn is independent of magnification. A good geometrical
resolution requires masks with the highest possible number of elements. Conversely, for
a given resolution, a large FoV is only possible for large patterns. A third implication is
that in a given mask, FoV can be traded for resolution and vice versa by acting on the
magnification, which depends on the a and b distances.

Finally, the effect of the detector dimension on the geometric resolution is found to
be determined by

λg = pm ·
(

1 +
FoV

dd

)
, (3.1.22)

which implies that a large detector allows better resolution for a given FoV [60].

3.1.2.5 Depth of field

For lenses, the distance range at which objects can be focused sharply, or Depth of Field
(DoF), is defined by the focal length. Coded Aperture optical systems, on the other hand,
do not focus light and in theory should produce collimated images at infinity. This would
enable the focusing of tracks at any distance, greatly simplifying the reconstruction. In
reality, the sharpness of Coded Aperture images is constrained by the sampling artefacts
emerging when the shadow of a mask element is projected over a non-integer number of
pixels, which act as a limiting factor for the collimation. This allows to define a concept
of focusing in analogy to lenses. The aforementioned number of pixels α is given by

α =
mpm
pd

=

(
1 + b

a

)
pm

pd
, (3.1.23)

so that the camera configurations for which focusing is possible are those close to α = 1,
with successive αs identifying increasing in-focus magnifications. The size of the DoF is
thus defined by the derivative

dα

da
= − pmb

pda2
, (3.1.24)

so that, as typically pm ' pd, cameras that focus (α = 1) at large distances have very
small variations of α with a, i.e. a nearly infinite DoF, while configurations with a small
focusing distance will have a really small DoF [55].

From these results it follows that the optimal camera configurations for event recon-
struction are those with large focusing distances a. This characteristic will be crucial for
determining the design of the optical system for GRAIN [60].
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3.1.2.6 Mask patterns

In the previous section the validity of the Coded Aperture approach to imaging over
single pinhole cameras was illustrated, deriving the figures of merit of such systems and
outlining the analytical decoding procedure which is typically used in imaging appli-
cations. In particular, the advantages in FoV and resolution granted by masks with
large dimensions and using periodic mosaic patterns were outlined. With a view to
the potential use of analytical 3D reconstruction such masks should also have specific
mathematical properties that make decoding possible.

The mask designs that are currently being considered for the GRAIN optical readout
system are based on the Modified Uniformly Redundant Array (MURA) family of coded
aperture patterns, introduced in [57] as a modification of the previous URA masks [59].
Square MURA masks can be generated in any length p of pixels, called rank, that is prime.
The binary array of the aperture A = {Aij}p−1

i,j=0 is constructed with the prescription

Aij =


0 if i = 0,

1 if i = 0, j 6= 0,

1 if CiCj = +1,

0 otherwise

(3.1.25)

where

Ci =

{
+1 if i is a quadratic residue modulo p,

−1 otherwise
(3.1.26)

As mentioned before, in this notation holes have Aij = +1 while for opaque pixels
Aij = 0. Fig. 3.5 shows the MURA patterns for p up to 17.

The decoding kernel G for MURA apertures Aij can be constructed as follows:

Gij =


+1 if i+ j = 0,

+1 if Aij = 1, (i+ j 6= 0)

−1 if Aij = 0, (i+ j 6= 0)

(3.1.27)

The relation in eqn. (3.1.14) between a MURA and its decoding matrix is illustrated
in Fig. 3.6 for a 17 × 17 aperture: the A ⊗ G correlation product yields a point-like
image-matrix, which is the discrete equivalent of a δ.

A property which makes MURA patterns optimal for analytical reconstruction tech-
niques is that the Periodic Autocorrelation Function (PACF) of the aperture has constant
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Fig. 3.5: Squared MURA aperture patterns for prime p up to 17. Black pixels indicate the
holes (Aij = +1) while the white ones indicate the opaque elements (Aij = 0).

sidelobes, i.e.

φ(l, k) =

p−1∑
i=0

p−1∑
j=0

A(i, j)A(i+ l mod p, j + k mod p)

=

{
K (l, k) = (0, 0)

λ otherwise
,

(3.1.28)

where the peak K and the sidelobe parameter λ are numbers to be determined. Such a
property gives the optimal compromise between the reduction of coding noise (artefacts)
and the amplification of coherent effects [56]. Fig. 3.7 shows the constant sidelobe PACF
of a 17× 17 MURA matrix, together with the corresponding histogram of occurrences.

Another important property of MURAs is the throughput of the aperture, i.e. the
fraction of open elements with respect to the total number, is always around 50%. For a
squared mask with sides of p pixels, the number of open elements is indeed found to be:

Nopen =
p2 − 1

2
=
Ntotal − 1

2
(3.1.29)
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⨂ =

Fig. 3.6: Illustration of the A ⊗ G = δ correlation product property. The grey-scale pixel
colours white, grey and black correspond to −1, 0,+1 respectively.
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Fig. 3.7: Periodic Autocorrelation function of a 17× 17 MURA matrix. In (a) the greyscale
matrix plot is shown: only a pixel has the peak value, while the sidelobe being two-valued is
an artefact due the discretization of the pattern. The corresponding histogram of occurrences
for the PACF values is shown in (b), where a logarithmic scale in y has been chosen to improve
the readability.

As discussed in Section 3.1.2.3, periodic mosaic patterns are the optimal solution for
increasing the FCFV for a given detector size. Two different mosaic types are being
considered, at the time of writing, for application in the GRAIN detector, having side
dimensions 2p− 1 and 2p respectively, where p is as usual the rank of the base MURA.
For a given p and a certain size of the pixels, the two designs will have slightly different
dimensions, which will impact the FoV and geometric resolution.

The 2p − 1 odd-dimension mosaic patterns are straightforwardly obtained by tiling
four p-rank MURAs in a 2p× 2p pattern and then cutting the 0th row and 0th column.
As the tiling of MURAs is periodic, the resulting pattern can be permutated in any
direction. Such a pattern does not preserve the autocorrelation properties of the base
MURAs: the PACF, computed for the mosaic according to eqn. (3.1.28), does not have
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constant sidelobes.The mosaic pattern for a rank 17 base MURA is shown in Fig. 3.8
together with ithe PACF and its related histogram.
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Fig. 3.8: (a) Odd-dimension mosaic pattern for a 17× 17 base MURA. The greyscale matrix
plot of the PACF is shown in (b): the values of the autocorrelation have a visible dispersion,
as the corresponding histogram of occurrences in (c) shows. A logarithmic scale for y in (c)
has been chosen to improve the readability.

The second type of mosaics, with 2p even dimensions has been shown in [56] to
maintain the autocorrelation properties of the base MURAs. The patterns are obtained
by cyclic permutations of rows and columns of a tiling of four MURAs, or by equivalent
operations. Being periodic, this pattern too can be permutated in any direction. The
mosaic pattern for a rank 17 base MURA is shown in Fig. 3.9 together with ithe PACF
and its related histogram.
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Fig. 3.9: (a) Even-dimension mosaic pattern for a 17× 17 base MURA. The greyscale matrix
plot of the PACF is shown in (b): the autocorrelation has constant sidelobes as the correspond-
ing histogram of occurrences in (c) shows. The sidelobe being two-valued is an artefact due
the discretization of the pattern. The four peak values of the PACF are due to the periodicity
of the mosaic. A logarithmic scale for y in (c) has been chosen to improve the readability.

3.2 3D reconstruction techniques

The choice of MURA mosaics for the Coded Aperture cameras of the GRAIN optical
system has been made on the grounds of their optimal characteristics for the analytic
decoding of the detected images: the relatively high throughput, a constant sidelobe
autocorrelation and a known expression for the decoding kernel G of matrices of any
rank p in the family. The decoding of the 2D images of each mask in the detector would
be, with this rationale, the first step of a analytic 3D reconstruction algorithm, which
would combine the decoded images from each camera to obtain a three-dimensional view
of the event.

As anticipated in Section 3.1.2.2, the main obstacle for this technique is the low
Photon Detection Efficiency (PDE), just 20-25%, to the VUV scintillation emission of the
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current SiPMs capable of working in LAr. Such a low PDE makes it difficult to perform
the reconstruction as the projection of a complete mask pattern by each point-source
constituting the event cannot be taken for granted. The 3D analytical reconstruction
technique is still being developed at the time of writing of this dissertation.

The alternative solution to the problem of 3D reconstruction of images from Coded
Apertures in GRAIN uses a combinatorial approach to perform a direct 3D reconstruction
of the image: for each detected photon, a probability is projected in the reconstruction
volume, segmented in voxels, through all possible mask holes. The true light sources of
the event should correspond to the highest probability voxels.

The direct 3D reconstruction technique can work with masks of any design, not just
MURAs, as it does not use the decoding properties of the aperture patterns. Additionally
it is well-suited to operate with low light-yields, as the probability propagation is done
for each photon individually. Its only main drawback is that it is computationally heavy,
requiring GPU acceleration for the computation of the amplitude projection weights.

This technique too is still being actively developed at the time of writing and, despite
having a less developed mathematical background, it is in a more mature stage code-wise
than the analytical method. As such the events used in this thesis work will be obtained
using the 3D direct reconstruction technique, and the main result of the dissertation will
be the assessment of the quality of the reconstruction by comparing it with the Monte
Carlo truth.

3.3 The GRAIN design

Before moving to the main results of this dissertation it is necessary to detail the relevant
dimensions and parameters of the GRAIN LAr active target and of its Coded Aperture
imaging system that have been used for the simulations in the remainder of the thesis
work. It is important to note that the details of the GRAIN design are far from fixed,
as the detector is still in the early phases of its development, and so are those of the
imaging system, both in its mask-based and in its lens-based version.

The inner volume of the cryostat, the relevant region for this thesis work, has a
width (along the x axis) of 130 cm, with elliptical sides (along the y-z plane) of 147.6
cm in height and 47.5 in length, respectively along the y and z axes. The neutrino beam
direction in the simulations is along the positive z axis, consistently with Fig. ??. A
scheme of the GRAIN inner volume is shown in Fig. 3.10.

The imaging system is composed of 76 Coded Aperture cameras, 8 on each elliptical
side, 25 on each of the curved faces and 10 on the top and bottom of the inner volume
along the x-axis, five on each side. Such a number of cameras is the highest that is
possible to fit given their dimensions. The mask patterns are 33 × 33 odd-dimension
mosaics of the rank-17 base MURA. The sides of the mask pixels are 2.33 mm long, with
a 0.2 mm edge between each pixel, for a total mask length of 94 mm. Masks are cut out
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Fig. 3.10: Frontal (a) and side (b) views of the GRAIN geometry that has been considered in
this dissertation. The disposition of the cameras maximises their possible number. In (a) the
front-facing side is cut to allow a better view of the inner volume. The neutrino beam direction
is along the positive z-axis. The front facing side has been cut for better viewing.

of a 0.1 mm thick steel sheet.
The geometric configuration of the cameras is designed so that the cameras can

provide complementary depths of field, with α ' 1 at 50 cm from each mask plane. This
requires a distance b between mask and detector plane of 20 mm.

The detector is a 32 × 32 pixel SiPM array with a pixel size of 3 mm and pixels
separated by a 0.2 mm spacing, for a total detector side length dd = 51.2 mm. The
SiPM detector model is still being developed, so the parameters and response assumed
for the simulations are reasonable estimates. The thickness of the detector assembly is
1 mm. The sides of the camera are enclosed by a 1 mm thick layer of a yet to be chosen
opaque material. A view of a GRAIN camera is shown in Fig. 3.11.

The total LAr-filled volume is ∼ 9.1 × 105 cm3, which the reconstruction algorithm
divides in 1 cm3 voxels. As the 3D direct reconstruction technique is prone to producing
artefacts close to the camera, a fiducial region at a distance of 5 cm from the chamber
sides is chosen, with the outer voxels being set to a 0 probability amplitude. This gives
a fiducial volume of ∼ 4.9× 105 cm3.

Tab. 3.1 summarizes the main parameters of the GRAIN design used in the remainder
of this dissertation.
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Fig. 3.11: Schematic view of a GRAIN camera, with the mask on the foreground and the
SiPM array detector highlighted in the background in green.

GRAIN design parameters

Cryostat dimensions Detector parameters

Width 130 cm Pixels per side 32

Height 147.6 cm Pixel edge 0.2 mm

Length 47.5 cm Pixel size 3 mm

Total volume 0.91 m3 Detector thick. 1 mm

Fiducial vol. 0.49 m3 Detector side (dd) 51.2 mm

Mask parameters Camera assembly parameters

Number of masks 76 b 20 mm

Elements per side 33 Camera body thick. 1 mm

Element size (pm) 2.33 mm

Element spacing 0.2 mm

Mask size (dm) 94 mm

Mask thickness 0.1 mm

Table 3.1: Summary of the relevant dimensions and parameters in the design of GRAIN
that has been used for the analyses of this dissertation.
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Chapter 4

Neutrino event reconstruction

The basic output of the 3D direct reconstruction technique, introduced in Section 3.2, is
the prediction of the spatial distribution of the energy deposited by particles in the inner
volume, which is then converted in scintillation light. In particular, for each voxel a score
(or probability amplitude) is defined. This score represents the Bayesian probability of
the voxel to be a source of the detected photons. Integrating subsequently over each
detector and finally summing the amplitudes of all the cameras, one obtains the final
amplitude-field for the event.

The basis of the algorithm is that a real light-source voxel would be reconstructed to
have a high probability amplitude by cameras in different positions, resulting in a high
value of the amplitude-field. This assumption must be verified by comparison with the
spatial distribution of the true energy deposits from the simulation.

Once the correspondence between the 3D reconstruction and the Monte Carlo truth
has been established, it will be possible to reconstruct the event, identifying vertices and
particle tracks through Track Finding techniques. Doing so will require to discriminate
the event signal from the significant combinatorial background produced by the 3D
reconstruction algorithm.

This chapter will first analyse the amplitude distributions of the simulated neutrino
events in GRAIN, determining their common features and issues. The need for perform-
ing amplitude cuts on the distributions will be argued consequently from the approximate
point of view of image quality by using the Structural Similarity index to compare the
reconstructions to the Monte Carlo distributions.

The analyses in the following have been performed using the Python programming
language and its available libraries, which will be indicated when relevant.
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4.1 The simulation chain

Before moving to the main subject of discussion, it is useful to outline the elements of
the simulation chain that has been used to generate the events:

1. The neutrino events are generated by the GENIE neutrino Monte Carlo event
generator [61] and subsequently passed through the edep-sim energy deposition
simulation, which generates the corresponding distribution of the energy deposition
in the GRAIN volume, not including the optical system cameras. The edep-sim
simulation is a wrapper around Geant4 dedicated to the simulation of particle
propagation and geometry [62].

2. In Geant4 [63], the optical readout cameras are added to the geometry. The scin-
tillation emission is generated from the edep-sim output and its propagation is
simulated in the final GRAIN geometry up to the hits on the SiPM cells.

3. The response of the SiPMs to the detected photons can be simulated thanks to a
dedicated Detector Response program. This includes a modelling of the SiPM and
electronics properties and of the DAQ system.

4. The 3D reconstruction algorithm is then applied to the output of the detector
response. In the context of the SAND simulation chain, the reconstruction response
is integrated with the simulation of the KLOE calorimeter.

The dataset that will be used in the following contains νµ events with all the typologies
that will be possible for the future DUNE beam: nc events, Quasi Elastic cc events,
Resonance production events and Deep Inelastic scatterings. The proportions of the
different types are consistent with the prospects for DUNE.

4.2 Amplitude distributions of the simulated events

The final output of the 3D reconstruction algorithm was the probability amplitude for
each of the 130×146×48 voxels which compose the reconstruction volume. As mentioned
in Section 3.3, a fiducial volume is defined at 5 cm from each side of the chamber to
eliminate the reconstruction artefacts close to the cameras and to accomodate the overall
parallelepipedal volume to the elliptical shape of the inner volume. The fiducial volume
is thus of 4.9× 105 cm3.

As the values of the probability amplitudes coming from the reconstruction algorithm
are in arbitrary units, they were, when not specified otherwise, normalized between 0
and 1. This was done to transform the data in a range that is easier to manipulate and
visualize. The resulting probability amplitude distribution for a generic event is shown
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Fig. 4.1: (a) Probability amplitude distribution of an event with with voxels having A > 0.The
origin of the axes is at the center of the image, consistently with the GRAIN simulation. (b)
True spatial distribution of the energy deposits (in MeV) for the same event.
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Fig. 4.2: Normalized spectrum of the amplitudes for three events. The significant variation
in the peak position and the sharpness of the drop-off can be noticed.

in Fig. 4.7a for amplitudes A(x, y, z) > 0. The true spatial distribution of the energy
deposits is show in Fig. 4.7b instead.

It is clear, from Fig. 4.7a, that the output of the 3D reconstruction algorithm features
a significant background, as most of the voxels have a nonzero amplitude. It will be
necessary, therefore, to devise a criterion for the discrimination of the reconstructed event
from the combinatorial background. The need for such a criterion will be expanded upon
in Section 4.3, in which a metric to validate it will be provided as well.

It has proved useful, for analysing the reconstructed events, to plot the distribution of
occurrences of the probability amplitudes (or amplitude-spectrum): as the following will
detail, such plots have been used to determine several important features of the event
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reconstruction. Fig. 4.2 shows the amplitude-spectrum for a set of generic events.
The most significant hurdle to overcome for event reconstruction to be possible is due

to the distribution of the combinatorial background: this corresponds to the large part
of the amplitude spectrum, with the few signal voxels being close to the upper-end and
without a corresponding distinguishing feature in the distribution. This situation is, in
a sense, opposite to the typical one of a high signal peak with a lower background, and it
is due to the reconstruction algorithm, which yields a fairly high probability amplitude
for most of the voxels.

An additional complication that may occur is the presence of so-called blind cameras,
cameras in which energy deposition, and thus light emission, has occurred in the space
between the Coded Aperture mask and the detector. In such cases, the light emission,
occurring inside the camera, does not project the usual mask pattern on the detector
and it is wrongly reconstructed by the algorithm. This results in substantial artefacts
with very high probability amplitudes distributed over a wide range of values.

The frequency of events having one or more blind cameras depends on the arrange-
ment of the cameras along the sides of the detector: as the GRAIN design that is being
considered in this work features the maximum number of cameras, most events will have
at least a blind one. Blind cameras are, at the time of writing, identified from on the
Monte Carlo truth of the energy deposit positions. Events where light emission occurs
close to the cameras can also feature less significant reconstruction artefacts.

Having been identified, blind cameras can be excluded when summing to obtain the
total amplitude distribution. Fig. 4.3 shows the amplitude spectra of two generic events
with and without the contributions from the blind cameras: the reconstruction arte-
facts produced by blind cameras can significantly alter the distribution of the amplitude
distributions.

To quantify the effect of blind cameras, two relevant features of the event spectra,
with and without the blind cameras being cut, for a set of 369 events have been com-
puted. These characteristics are the amplitude of the distribution maximum (the mode
Mo(A)) and the Full Width at Half Maximum (FWHM) of the distribution peak. The
distributions of the features for the dataset are shown in Fig. 4.4 with the blind camera
excluded and included cases juxtaposed. It can be noticed how the inclusion of the blind
cameras tends to shift the modes towards low amplitudes and increase the FWHM of
the events.

The previous remarks on the characteristics of the reconstruction background allow to
understand the effects of blind cameras on the modes of the amplitude spectra in Fig.4.4a.
Blind cameras introduce artefacts with high reconstructed probabilities compared to the
those resulting from correct reconstructions. This shifts the peak and thus the mode
to lower fractions in the normalized amplitude range with respect to those of the valid
spectra. Additionally, the very large width of the blind camera distributions increases the
FWHM of the regular peak when the incorrect probabilities are added to the distribution,
leading to the increase in Fig. 4.4b.
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Fig. 4.3: Each row shows the amplitude spectrum of an event with the inclusion of blind
cameras (left column) and without it (right column). A logarithmic scale on the occurrences
axis has been chosen. The exclusion of the blind cameras modifies substantially the distribution.

The good consistency of the modes and FWHMs among the events in the dataset
justifies their use as feature points in the analyses which follow. Indeed, since the single-
camera distributions and subsequent total spectrum result from a combination of geomet-
ric and combinatorial factors, they cannot be easily modelled with standard distributions,
and as a result, the mode and FWHM are the most robust features available to describe
the position and width of the amplitude peak.
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Fig. 4.4: The distribution of the amplitude spectrum modes (a) and of the FWHM (b) for a
dataset of 369 events with (without) the inclusion of blind cameras is shown in red (green).

4.3 Structural Similarity index comparison

Having discussed the features of the spatial and amplitude distributions of the event
reconstructions, it is necessary to determine whether they represent a reasonably accurate
estimate of the spatial distribution of the energy deposits of the true events and to
quantify the degree to which they are so.

The 3D reconstruction technique outputs a spatial distribution of probabilities start-
ing from a certain amount of detected photons, so that a reconstructed event can be
compared to the Monte Carlo truth by way of their image-wise similarity. This quality
metric does not require track reconstruction and fitting, which are not applicable to this
phase of event reconstruction

As a measure of the similarity of the reconstruction to the Monte Carlo truth, the
Structural Similarity Index (SSIM) [64] of the two distributions can be used: this metric
is adapted from the field of Image processing, where it is used to quantify the discrepancy
between processed images and their originals in a way that takes into account the struc-
tural information. The application of the SSIM in the context of the event reconstruction
in GRAIN has been suggested by the need for a measure of the similarity independent
of any assumption on the physics of the event. The measure should also take into con-
sideration both the amplitude values of single voxels and their positions relative to the
others.
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This section shall outline the principles and characteristics of the SSI metric before
discussing its application to the reconstruction in GRAIN, discussing the results and
limits of this method of comparison.

4.3.1 Introduction to the Structural Similarity index

The Structural Similarity index (SSIM) is one of the many objective image quality met-
rics that have been introduced over the years and that play a variety of roles in image
processing applications by providing quantitative measures that can predict the per-
ceived image quality. Natural image signals are highly structured, with pixels exhibiting
strong dependencies, especially when they are spatially close, with said dependencies
carrying important information about the structure of the objects in the scene [64]. The
structural information in an image is independent from its luminance, i.e. the mean in-
tensity. As such, the SSIM index aims at separating the two features through a similarity
measurement divided in three comparisons: luminance, contrast and structure.

Assuming x and y to be the original and distorted image signals respectively, the
first step in the index computation is the comparison of the luminance of each signal,
estimated as their mean intensity. A luminance comparison function l(x,y) can be
defined, as a function of µx and µy. For the second comparison, the standard deviation
is used as an estimate of the signal contrast,defining the comparison function c(x,y) of
σx and σy. Finally, the signals are normalized by their own standard deviations, so that
the structure comparison s(x,y) is conducted on the normalized signals.

The three aforementioned components are combined to yield an overall similarity
measure

S(x,y) = f(l(x,y)), c(x,y)), s(x,y))), (4.3.1)

where, importantly, the three components are relatively independent. For the definition
of the similarity measure to be complete, the three functions and their combination f
must now be defined under the following conditions:

1. Symmetry: S(x,y) = S(y,x);

2. Boundedness: S 6 1;

3. Unique maximum: S(x,y) = 1 if and only if x = y.

A general expression of the index which satisfies the three conditions above is:

SSIM(x,y) = [l(x,y)]α · [c(x,y)]β · [s(x,y)]γ], (4.3.2)

where α, β, γ > 0 are parameters that define the relative importance of the three com-
ponents. Since image statistical features are typically highly non-stationary and image
distortions, whether they depend on the local image statistics or not, may also be space-
variant, it is useful to apply the SSIM index locally within a square window of a certain
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width that is moved pixel-by-pixel over the entire image. At each step the local statistics
and similarity index are computed, so that the overall quality measure of the image is
given by the average over the M local windows:

MSSIM(X,Y) ≡ 1

M

M∑
j=1

SSIM(xj,yj), (4.3.3)

where X and Y are the reference and processed images respectively, while xj and yj are
the contents of the j-th local window. Depending on the application, different weights
can be applied to each local window [64].

It is instructive to show with 2D images how the SSIM index changes for transfor-
mations that may replicate the effects of the 3D direct reconstruction in GRAIN. In Fig.
4.5, four different transformations are applied to a reference track-like image and the
resulting similarity indices are computed, assuming a 7× 7 pixels local window:

1. A shift transformation in Fig. 4.5b, meant to replicate the effects of a coordinate
bias of the reconstruction, which, as will be discussed in Section 5.1, is indeed
present. The relatively high SSIM index of 0.92 is due to the preservation of the
track structure and the high inertia of the background, which remains the same in
both images.

2. A gaussian smoothing filter applied in Fig. 4.5c aiming to reproduce the finite
resolution of the imaging system. This transformation too results in a relatively
high similarity index.

3. The addition of a normally-distributed background noise to the image in Fig. 4.5d
and to its smoothed version in Fig. 4.5e, corresponding to the high combinatorial
background of the reconstructions. The SSIM index falls to low values as the back-
ground, which makes up the majority of the pixels, has different values compared
to the reference image.

The SSIM computation is performed with the pre-defined function in the Scikit-Image
Python library [65], which, most importantly, offers the generalization to n-dimensional
images which will be used in the following.

Fig. 4.5 illustrates the main hurdle in using of the SSIM index in physics detectors:
the absence of a distinction between background and signal, which, while unnecessary
for regular imaging applications, is crucial for event reconstruction. Since the relevant
signal pixels are a small fraction of the total, the SSIM index mostly depends on the
similarity of the background.

4.3.2 Application in GRAIN

From the previous discussion on the effects of a change of background on the SSIM in-
dex, and referring to Fig. 4.1 it becomes clear how the SSIM index cannot be applied
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Fig. 4.5: (a) shows the track-like reference image. The shifted image in (b) results in a SSIM
index of 0.92. The smoothed image in (c) gives a similarity index of 0.87. In (d) and (e), the
addition of a high value (mean = 0.7) normally-distributed background reduces significantly
the SSIM index.

directly to the output of the 3D reconstruction technique: its background voxels have
amplitudes A > 0 with a peak at high amplitudes close to the signal values, while the
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true energy deposition distribution has a nonzero value only at the voxels where light
has been emitted. Since the SSIM does not implement a distinction between the signal
and background of the image, the index for the aforementioned comparisons between
reconstruction and Monte Carlo truths would be dominated by the non-similar back-
grounds, as such voxels take up most of the volume. The resulting comparisons would
be equivalent to those in Fig. 4.5d and 4.5e, having a very low similarity index.

For the SSIM to give meaningful results it is therefore necessary to perform amplitude
cuts on the reconstructed events, defining a threshold amplitude above which the voxels
can be assumed to be light sources. Such a procedure intuitively increases the similarity
between the images and the SSIM index should improve accordingly. Defining such a
criterion is not trivial, as the amplitude distributions do not present specific features
that distinguish the signal voxels from the background.

In the absence of an analytical model for the amplitude distributions the two robust
features that can be utilised to analyse the tail-end of the spectrum are the mode and
FWHM of the peak: in Section 4.2 it was shown how, upon exclusion of the blind
cameras, the values of these two features are consistent between the events, justifying
their use as scales for the tail of the amplitude peak.

In order to quantify the optimal amplitude cut, or interval thereof, in terms of the
structural similarity, the tail-end of the distribution can be scanned by multiples of the
FWHM, at which the SSIM index between the reconstructions and the Monte Carlo
truths can be evaluated. A preliminary check of the validity of the SSIM comparisons
must be performed by computing, for each reconstruction, the similarity index with all
the true energy distributions: this should have the highest value for the corresponding
Monte Carlo truth. If the index can reliably match the corresponding distributions for a
value of the cut, this might provide a valid threshold between the signal and background
voxels.

For the sake of performing this preliminary assessment of the validity of the recon-
struction, it has proved useful to reduce the spatial resolution of the reconstruction and
Monte Carlo truth distributions by summing the amplitudes of adjacent voxels. This
rebinning procedure increases the ratio of signal to background voxels since the signal is
concentrated in a limited volume, enabling to reduce the impact of the background on
the SSIM index. A number of potential combinations of reduced dimensions have been
considered, finally choosing a 21×24×12 voxels volume, as it led to the best comparison
results. Fig. 4.6 shows the resulting spatial distribution heatmaps of the reconstruction
and Monte Carlo truth: it can be noticed in Fig. 4.7a how the rebinning algorithm
may discard some of the boundary voxels, since the original dimensions are not exact
multiples of the final ones. The effect of the resulting asymmetries was deemed to be
negligible for the computation of the SSIM index.

After the rebinning of both spatial distributions, the amplitude cuts were applied
to the reconstruction. Fifteen cut thresholds were considered, starting from the mode
of the event amplitude distribution and reaching Mo(A) + 1.4 · FWHM with 0.1 wide
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Fig. 4.6: Spatial amplitude distribution of a reconstruction in (a), and of the true Monte Carlo
energy deposits in (b), after the rebinning procedure. In (a) an asymmetry of the distribution
due to the rebinning is noticeable at the positive-y boundary.

intervals. The SSIM indices of all available pairs of reconstructed and true distributions
in a subset of 97 events were computed using the Scikit-Image function and plotted as a
2D image: if the structural similarity measure were to be valid, the highest values of the
index would be on the diagonal, corresponding to the correct matching of reconstruction
and true distributions.

The similarity indices were found to vary significantly between reconstructed events,
making the diagonal pattern difficult to discern. The closeness of the SSIM indices for all
comparisons of a given reconstruction can be explained referring to the previous section:
as the majority of voxels, once the cut has been applied, have a shared value of A = 0
for both the reconstruction and all Monte Carlo distributions, the similarity indices will
have a minimum nonzero value that depends on the reconstructed event. An equivalent
behaviour for the Monte Carlo distributions was also observed, featuring, although, less
pronounced variations.

To obviate to the issue above, the mean SSIM index for each reconstruction was
subtracted to the corresponding row and was subsequently used to normalize the resulting
residues: this has allowed to cancel the similarity index baselines and highlight the higher
indices along the diagonal. In Fig. 4.7 the residual indices for the lowest (Mo(A)) and
highest (Mo(A)+1.4·FWHM) amplitude thresholds are plotted: for both cuts, a diagonal
structure with higher indices with respect to the surrounding can be noticed, due to the
higher SSIM index that is correctly assigned to matching pairs of reconstruction and true
distribution. The diagonal is more sharply visible in the highest cut plot, which, after
the normalization, appears more uniform row-wise. This enables, conversely, to notice
the difference in the similarity baselines for each Monte Carlo distribution.
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Fig. 4.7: Normalized SSIM index residues for 97× 97 pairs of events in the dataset assuming
an amplitude cut at Mo(A) in (a) and at Mo(A) + 1.4 ·FWHM. An exponential colorscale has
been chosen to highlight the differences between the higher indices. At the higher cut the index
distributions for each reconstructions are more uniform, with the diagonal indices standing out
more sharply.

In order to quantify the separation of the similarity indices of matching pairs over
those of non-corresponding combinations, the ratio between the mean of the indices along
the diagonal and the mean of the non diagonal indices was computed for all the considered
amplitude cuts. In Fig. 4.8a the plot of such ratios is shown: a clear maximum in the
ratio is reached for a threshold value of Mo(A) + 0.8 · FWHM, although the variation is
not particularly pronounced over the cut range. It can be noted, furthermore, how the
ratios have values ∼ 1, consistently with the fact that all pairs have a nonzero baseline
SSIM index, with the correct matches having only slightly higher values.

As a final measure of the validity of the amplitude cuts, the fractions of correct
matches between reconstructions and true Monte Carlo distributions were computed for
the chosen thresholds and are plotted in Fig. 4.8b: the percentages initially grow with
the amplitude cuts, reaching ∼ 65% at Mo(A)+FWHM. The subsequent slight decrease
may be explained as due to a sufficiently high amount of voxels having been cut for the
structural similarity to worsen. Such a behaviour may also be linked to the lowering of
the diagonal to off-diagonal means ratios for cuts past Mo(A)+0.8·FWHM shown in Fig.
4.8a. The increase of both the similarity measures above with the amplitude cuts shows,
from the point of view of image similarity, the need for applying such thresholds, as the
elimination of the background leaves out the voxels corresponding to a true emission
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Fig. 4.8: (a) Ratios of the diagonal over the off diagonal means M for the considered amplitude
cuts. (b) Fractions of correctly matched reconstructions for the chosen amplitude thresholds.
The percentages grow, initially, with the amplitude cuts, reaching ∼ 65% at Mo(A) + FWHM.
The scale for the x-axes is given by the fractions f of FWHM of a given Mo(A) + f · FWHM
cut.

The limited accuracy in the matching of corresponding reconstructions and Monte
Carlo truths can be ascribed to the presence, in the dataset, of events with similar true
distributions, as the interaction topologies in the simulation are limited and the rebinning
reduces the distinguishing features of the distributions. This is indeed shown in Fig. 4.9,
where the Monte Carlo distributions are compared against each other: the off-diagonal
indices have relatively high values, with a ratio of the diagonal to off-diagonal means
Mdiag/Moff = 1.04, just slightly higher than the maximum one in Fig. 4.8a.

4.4 Preliminary observations

The first analyses described in this chapter were aimed at gaining and understanding
of the 3D direct reconstructions, determining their features and the issues that may be
present:

• The presence of a dominant combinatorial background close to the signal -voxel
amplitudes produced by the algorithm was assessed, justifying qualitatively the
need for applying amplitude cuts when performing track reconstruction.

• The effects of blind-cameras on the reconstructions were determined: the emission

89



0 20 40 60 80

MC events
0

20

40

60

80

M
C 

ev
en

ts

MC SSIM indices

0.88

0.90

0.92

0.94

0.96

0.98

1.00

SS
IM

 in
de

x

Fig. 4.9: SSIM comparisons of the Monte Carlo distributions against each other: the ratio
Mdiag/Moff = 1.04 corresponds to a mean background index of 0.96, significantly close to the
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of scintillation light inside the cameras led to the reconstruction of voxels with
unnaturally high probability amplitudes distributed over a much wider range of
values with respect to the standard behaviour.

• The features of the probability amplitude distributions were analysed, determining
that the amplitude mode Mo(A) and FWHM are consistent between all recon-
structions, once blind cameras have been excluded, and can therefore be used to
set a scale with which to define the amplitude cuts. It proved impossible to exactly
model the amplitude spectrum as a known distribution, justifying the choice of
Mo(A) and FWHM as features.

The Structural Similarity Index was used, in the second phase, to evaluate the image-wise
similarity between the reconstructions and the Monte Carlo truth distributions. The ap-
plication of amplitude cuts was justified, in this case, by the need for similar backgrounds
for the distributions to be compared. This is in accordance with the higher perceived
similarity of the reconstruction to the true energy deposition once the combinatorial
background has been cut.

The computation of the SSIM index of all pairs of events for a range of amplitude cut
values showed that despite the presence of structures in the similarity plots due to the
features of both reconstructed and Monte Carlo distributions, the indices of true match-
ing pairs were generally higher than those of the false matches. The mean amplitude
ratio between the two subsets furthermore grew with the cut, reaching a maximum at
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Mo(A) + 0.8·FWHM before decreasing again. The percentage of correctly matched re-
constructions was correspondingly found to increase with the cuts, reaching a maximum
of ∼ 65% for a Mo(A)+FWHM threshold before decreasing slightly.

Overall, the comparison of the spatial distributions has not proved decisive, as the
relatively low Mdiag/Moff and correct matches fractions have shown. Thus, despite the
algorithm still being in an early of a phase for track fitting, it was decided to extract
some basic event features from the reconstructions. Such features could be compared to
the true distribution to provide a quality measure of the reconstruction. The results of
this analysis is discussed in the next chapter.
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Chapter 5

Feature extraction of neutrino
events

The analysis in the previous chapter focused on the characteristics of the GRAIN imag-
ing technique that did not depend on the physical observables of the events: the common
features of the reconstruction distributions and the issue of the combinatorial background
and blind cameras could be investigated without any assumption or assessment on the
event type and physics. In the same way, the Structural Similarity index allowed a
quantification of the correspondence between reconstructions and true energy deposi-
tion distributions that did not depend on physical observables such as particle momenta,
vertex positions and track lengths. These preliminary procedures have, nonetheless, con-
firmed what was assumed to be a key necessity for the eventual extraction of observables
from the event reconstructions: the application of amplitude cuts.

As a final step in this thesis work, the basic features of the events will be estimated
from the 3D reconstructions. The validity of the estimators will first be argued consid-
ering the possible event topologies and the known limitations with the reconstruction
technique. The extracted features will then be compared to the true physical observ-
ables for a range of amplitude cuts in order to evaluate the discriminating aspects for the
quality of the reconstruction technique. Specifically, it will be determined whether the
amplitude cuts have a positive effect on the estimate of features from the reconstruction,
which is the extent of such effect and, finally, if an amplitude threshold value or an inter-
val of them can be found that guarantees a high accuracy of the estimates of the event
observables from the reconstruction features. The features that will be extracted from
the reconstructions are aimed at estimating the vertex position, the length and direction
of tracks ad the cumulative energy deposition in the detector volume.
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5.1 Vertex position

The measurement of the position of the event vertices is crucial for the GRAIN physics
program. This hinges on the possibility of discriminating interactions occurring inside
its fiducial volume to study the νAr interaction cross-section. It is therefore necessary
to determine an estimator of such a structure which has sufficiently high accuracy and
efficiency.

An first choice for the estimator of the event vertex position is the centroid of the
reconstructed distribution, given by the mean of the voxel positions ~xi weighted by their
amplitude A(~xi):

Cen(~x) =

∑Nvox
i=0 A(~xi) · ~xi∑Nvox
i=0 A(~xi)

(5.1.1)

Indeed, for a significant fraction of the events, which will be assessed in the following
subsection, the highest energy deposition will occur at the vertex, so that the recon-
structed probabilities can be expected to have the highest values at the corresponding
position. In light of the high amplitude of the combinatorial background, the accuracy of
the centroid estimate of the vertex should increase with the amplitude threshold which
is set for the distribution: in order to confirm this, the quality of the estimate will need
to be evaluated for a range of cuts.

5.1.1 Validity of the centroid estimator

Before evaluating the quality of the estimate of the vertex position from the centroid
of the amplitude distribution, it is necessary to determine the degree to which such
a quantity is actually meaningful. In fact, the true quantity that the centroid of the
amplitude distribution estimates is the centroid of the Monte Carlo energy deposition
(Edep) distribution, since the 3D reconstruction algorithm depends on the light emission.
It is necessary, therefore, to compare the centroid of the Edep distribution to the true
position of the event vertex, verifying whether the two positions match and determine
the origin of potential outliers.

The distances between the Monte Carlo Edep centroids and the corresponding true
event vertices have been computed for the events in the dataset having true vertices
within the fiducial volume: as shown in Fig. 5.1, the distribution is peaked at the
minimum distance of 0.38 cm and drops off sharply at distances above ∼ 25 cm. A check
of the Monte Carlo information on the events showed how events with distances below
∼ 10 cm mostly featured emission concentrated at the vertex or short tracks, with larger
deviations corresponding to progressively longer charged particle tracks or to the diffuse
emission due to the interactions of γs. For the latter event types, significant distances
of the centroid from the vertex are to be expected, since:

93



• the centroid of the Edep for tracks will be roughly at at the middle point between
the extremities, one of which will be close to the vertex;

• the pair production from γs gives rise to events with a sparse Edep distribution,
with most voxels not being connected to any clear vertex.

MC centroid distance from vertex (cm)

Fig. 5.1: Distances of the centroids of the Monte Carlo Edep distributions from the true vertex
position. Only events having vertices inside the fiducial volume are included. The bin width is
of 2.5 cm.

The distribution of the distances between the Edep centroid and the true vertex reach-
ing its peak at the minimum of the interval (with 66% percent of the events having dis-
tance . 10 cm). The higher deviations are instead ascribable to charged particle tracks
and sparse emission. This assessment justifies the use of the Monte Carlo Edep centroid
as an estimate for the vertex, as it is consistent with the latter once event topology is
taken into consideration.

5.1.2 Comparison between reconstructed and true position

Having verified the validity of the Monte Carlo Edep centroid as an estimator of the vertex
position, the former can be compared to the centroid of the reconstructed amplitude
distributions to test the capabilities of the 3D reconstruction algorithm. As the emission
of scintillation light corresponds to energy deposition of charged particles, the positions
of the two centroids can be expected to be consistent. The application of progressively
higher amplitude cuts should furthermore lead to a decrease of the mean value of the
deviations, as a larger fraction of the combinatorial background is eliminated.
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The histogram of the distances between reconstruction and Monte Carlo centroids
for amplitude cuts between Mo(A) and Mo(A) + 4 · FWHM is shown in Fig. 5.2: for
the largest fraction of the events, the deviation from the centroid position decreases with
the amplitude threshold, while the smaller subset with slightly increasing distances was
determined to be composed of remaining badly reconstructed events, the centroid of
which, as more voxels are cut, might be computed as further away from the true one,
depending on the structure of the artefacts.
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Fig. 5.2: Distribution of the distances between the reconstruction and Monte Carlo Edep
centroids for cut values between Mo(A) and Mo(A) + 4 · FWHM. The maximum number of
events in the minimum distance bin is for the Mo(A) + 2.3 · FWHM cut. The sparse events
with high deviations were assessed to contain artefacts. At cuts above Mo(A) + 1.7 · FWHM
progressively more events are excluded as the cuts eliminate all voxels.

The mean of the distances decreases sharply, reaching a minimum of 16 cm for a cut
threshold of Mo(A) + 2.4 · FWHM before returning to a slight rise as Fig. 5.4a shows.
The histogram of the distances at the Mo(A) + 2.4 · FWHM cut, corresponding to the
minimum mean, is shown in Fig. 5.4b: for the largest part of the events (72%) the
distances remain below ∼ 15 cm, with the outliers with larger deviations being badly
reconstructed events that still feature significant reconstruction artefacts. Fig. 5.3 shows
an example of the distribution of a badly reconstructed event and of a low deviation one
at the Mo(A) + 2.4 · FWHM cut.
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In order to understand the behaviour of the reconstruction centroid estimate it also
proved useful to plot, for each cut, the number of events in two subsets defined by their
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Fig. 5.3: (a) Amplitude cut of Mo(A) + 2.4 ·FWHM for a badly reconstructed event, showing
significant artefacts. (b) Amplitude cut of Mo(A) + 2.4 · FWHM for a low deviation event.
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Fig. 5.4: (a) Mean of the centroid distances for the range of cuts that has been considered.
The slight rise in the mean values at higher cuts is due to the reduction of events with distances
. 30 cm, as not all survive the selection cut. The uncertainty associated to the mean distance
has been estimated as 1/

√
12 ' 0.3 cm. (b) Histogram of the centroid distances for the cut at

Mo(A) + 2.4 · FWHM, with the minimum mean distance. Events with deviations above 15 cm
are found to contain artefacts.
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deviations:

1. Events with deviations dcen < 15 cm, which when checked, were determined to be
almost free of artefacts at the given cut.

2. Events with dcen ≥ 15 cm, which, upon inspection were found to contain residual
background and artefacts of varying size and amplitude for the given cut.

The effects of the progressive amplitude cuts, as shown in Fig. 5.6a, were the initial
rise of the events with dcen < 15 cm, which overcomes the other subset at a cut of
∼ Mo(A)+0.9 ·FWHM. To decouple the effects of the cuts from the total event number,
the fractions of the remaining events at a given amplitude cut are plotted in Fig. 5.5b.
The percentage of events having dcen < 15 cm stabilizes after the ∼ Mo(A) + 2 ·FWHM
cut, reaching a maximum of 76% at Mo(A) + 2.7 ·FWHM. The plot in Fig. 5.5b defines,
furthermore, a minimum viable amplitude cut of ∼ Mo(A)+0.9 ·FWHM, at which point
the fraction of dcen < 15 cm events overcomes that of the other subset.
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Fig. 5.5: Total number (a) and fraction (b) of events with reconstructed centroid position
distance dcen < 15 cm (blue) or dcen > 15 cm (orange) from the true centroid position as a
function of the cut.

In order to define the optimal range of amplitude cuts, the accuracy of the estimates
had to be determined for the subset of correctly reconstructed events. The mean centroid
distances for the dcen < 15 are plotted in Fig. 5.6: after ∼ Mo(A)+2 ·FWHM, the means
reach a stable value of ∼ 4.5 cm. The optimal interval of amplitude cuts, from the point
of view of the centroids deviations, is determined to be between Mo(A) + 2 · FWHM
and 2.4 · FWHM as it corresponds to the maximum fractions of events with minimum
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deviations, and therefore to the lowest mean distance, while maintaining a sufficiently
high reconstruction efficiency (& 95%) as shown in Fig. 5.6b. Furthermore, the mean
distances of the correctly reconstructed events reach a stable minimum value of ∼ 4.5
cm.

Overall, the use of the reconstruction centroid as an estimator of Monte Carlo centroid
is deemed to be substantiated, as the majority of events is found within 15 cm of the
true position for a consistent range of amplitude cuts and the origin of the outliers has
been determined.
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Fig. 5.6: (a) Mean centroid distances for the dcen < 15 cm event subset: after ∼ Mo(A) + 2 ·
FWHM, the means reach a stable value of ∼ 4.5 cm. The uncertainty associated to the mean
distance has been estimated as 1/

√
12 ' 0.3 cm. (b) Efficiency of the amplitude cuts for the

centroid analysis, computed as the fraction of remaining events compared to the initial number
of 258.

5.1.3 Comparison between the reconstructed centroid and the
true vertex position

Having shown its consistency with the Monte Carlo Edep centroid, the centroid of the
3D reconstruction can be tested against the true vertex position of the event. A worse
performance can be expected, since, as discussed above, the reconstruction will depend
directly on the Edep spatial distribution, which was shown in Section 5.1.1 to feature
non-negligible deviations from the vertex position.
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The 2D histogram of the distances dvert between the reconstruction centroid and the
true vertex for the amplitude cuts between Mo(A) and Mo(A) + 4 · FWHM is shown in
Fig. 5.7: as with the Edep centroid, the deviation decreases with the amplitude cut for
the majority of events, with the smaller subset having increasing large distances being
determined to consist of badly reconstructed events. For these, the most intense voxels
are indeed unrelated to the true vertex position.
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Fig. 5.7: Distribution of the distances between the reconstruction centroids and Monte Carlo
vertices for cut values between Mo(A) and Mo(A) + 4 · FWHM. The maximum number of
events in the minimum distance bin is for the Mo(A) + 3.6 · FWHM cut. The sparse events
with high deviations were assessed to contain artefacts. At cuts above Mo(A) + 1.7 · FWHM
progressively more events are excluded as the cuts eliminate all voxels.

The mean of the distances was computed for all amplitude cuts and is shown in Fig.
5.8a. The minimum value of ∼ 19 cm is is reached for a threshold of Mo(A)+2.6·FWHM.

The number of events and the relative fractions of the two distance subsets used
in the comparison of the centroids were computed to understand the behaviour of the
reconstruction estimate. The number of events at dvert < 15 cm and dvert > 15 cm
is shown in Fig. 5.9a: the smallest-deviation subset overtakes the other at a cut of
∼ Mo(A) + 1.2 · FWHM, higher than the corresponding cut for the centroid comparison
(∼ Mo(A) + 0.9 · FWHM), and reaches a maximum for the cut at Mo(A) + 2 · FWHM
before decreasing, as the number of available events is reduced. The relative fraction
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Fig. 5.8: (a) Mean of the vertex distances for the range of cuts that has been considered. The
slight rise in the mean values at higher cuts is due to the reduction of events with distances
. 30 cm, as not all survive the selection cut. The uncertainty associated to the mean distance
has been estimated as 1/

√
12 ' 0.3 cm. (b) Histogram of the centroid distances for the cut at

Mo(A) + 2.6 · FWHM, with the minimum mean distance. Events with deviations above 15 cm
are found to contain artefacts.

of events having dcen < 15 cm, shown in Fig. 5.9b reaches a maximum of 70% at
Mo(A) + 4 · FWHM.

The lower performance of the reconstruction centroid as an estimator of the true
vertex compared to the Edep centroid was anticipated. This is because the latter, to which
the imaging algorithm is directly correlated, shows clear deviations from the position
of the vertices due to the event topology and energy deposition processes. It can be
nonetheless noted that the distances of the reconstructed centroids follow a behaviour
consistent to the one discussed in Section 5.1.3: a minimum for the mean is reached at
a cut of ∼ Mo(A) + 2.6 ·FWHM and the fraction of low-distance dvert < 15 cm increases
initially with the thresholds before stabilizing.

The higher values, compared to the Edep distribution analysis, of the cuts featuring
the minimum mean and the maximum fraction of dvert < 15 cm events (respectively
Mo(A) + 2.7 · FWHM and 4 · FWHM) may be explained as due to the true vertices
corresponding to the highest Edep density for most of the events: higher amplitude cuts
are therefore needed to eliminate a larger fraction of the voxels, leaving out only the
higher intensity core of the reconstruction, which corresponds to the vertex.

In order to assess the optimal interval of amplitude cuts from the point of view
of the vertex distances, the accuracy of the estimates for the reconstructed dataset was
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determined as their mean deviations. The mean vertex distances, as shown in Fig. 5.10a,
decrease over the entire cut range, with a minimum of 4.5 cm at the Mo + 3.7 · FWHM.

Despite the percentage of dvert < 15 cm events still showing a slight growth at the
upper end of the cut interval taken in consideration, with the maximum fraction of 70%
reached for 4 ·FWHM, the reduction of the dataset size (as shown in the efficiency plot of
Fig. 5.10b) justifies an optimal range of amplitude cuts from the vertex analysis that is
consistent to the one determined from the Edep centroid comparison, of Mo(A)+2·FWHM
and 2.4 · FWHM.
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Fig. 5.9: Total number (a) and fraction (b) of events with reconstructed centroid position
distance dcen < 15 cm (blue) or dcen > 15 cm (orange) from the true vertex position as a
function of the cut.

5.1.4 Results on the centroid analysis

While the previous analyses have been able to prove the effectiveness of amplitude cuts
for the purpose of improving the estimates of the Edep centroid and of the true vertex, the
minimum mean deviations over the complete dataset were determined to be above 15 cm
and with high standard deviations in both cases. Since the mean distances correspond
to significant portions of the fiducial volume1, the reconstruction capabilities of the al-
gorithm would be insufficient to reach the physics requirements if badly reconstructed
events were to be taken into consideration. The exclusion of this subset of reconstruc-
tions has instead improved significantly the mean deviations, reaching for both the Edep
centroid and vertex comparisons a minimum of ∼ 5 cm in the Mo(A) + 2.4 · FWHM-
2.8 · FWHM optimal cut range that has been defined. Such a distance is comparable

1As a reference the fiducial semi-axis along z is of 19 cm.
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Fig. 5.10: (a) Mean vertex distances for the dcen < 15 cm event subset. The uncertainty
associated to the mean distance has been estimated as 1/

√
12 ' 0.3 cm. (b) Efficiency of the

amplitude cuts for the vertex analysis, computed as the fraction of remaining events compared
to the initial number of 266.

to the edge of the fiducial volume, allowing to place the events inside the GRAIN vol-
ume only at one standard deviation. The capabilities of the reconstruction technique
are therefore assessed to be not yet fully mature, as further improvements of the algo-
rithm are needed, aiming both at reducing the reconstruction artefacts and improving
the accuracy.

5.2 Principal Component Analysis

The comparison between the reconstruction centroids and the true vertex positions per-
formed in the previous section gave satisfactory results once badly reconstructed events
were excluded. As remarked in Section 5.1.1, however, the Edep centroid, to which the
one of the reconstruction is related, does not correspond necessarily to the true vertex
position. This is, most importantly, the case for long charged particle tracks.

In order to provide a better estimate for the vertex of tracks the alternative that was
considered is the Principal Components Analysis (PCA) of the reconstructions. After
the computation of the three principal axes of the reconstructed distribution, performed
with the pre-defined function of the Scikit-learn Python library [66], the voxels were
projected onto the major axis. The extreme projections of the distribution thus defined
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the estimated endpoints of a candidate track. Once the background had been cut, the
deviations of the endpoints from the true vertex could be expected to be lower than
those of the centroid for track-like reconstructions or of the same order of the latter in
the case of the symmetrical distributions that correspond to point-like emission.

As the PCA determined two endpoints, it was necessary to define a criterion with
which to choose the best vertex estimator between the two. Since in the simulations
the neutrino beam direction is towards the positive z coordinates, the reconstruction
endpoints with the minimum z coordinate were selected for all events. The 2D histogram
of the distances dvert between the minimum z endpoint zmin and the true vertex for the
amplitude cuts between Mo(A) and Mo(A)+4 ·FWHM is shown in Fig. 5.11: the vertex
distances still feature the decreasing behaviour with progressive amplitude cuts of the
centroid estimate.

As a further test of the validity of the of the PCA estimate, the projection of the
vertex on the segment connecting the endpoints, zmin andzmax, was computed: if the
vertices were actually estimated by the minimum endpoint zmin, their projections on the
segment, which lies on the major axis should be uniformly distributed. As shown in the
2D histogram in Fig 5.12, though, there is a significant asymmetry between the positive
projections on the (~zmax − ~zmin) segment and the negative ones. This is consistent with
a vertex position inside the distribution, making the PCA endpoint estimate irrelevant
compared to the centroid measure.

5.3 Linearity of energy reconstruction

An additional evaluation of the reconstruction quality of events in GRAIN can be given
by the correlation between its estimated deposited energy and the true Monte Carlo value.
As, to a first degree, the number of emitted scintillation photons is proportional to the
energy deposited in the LAr volume, the same should hold for the number of photons
that are detected. It follows that, for the reconstruction to be valid, the quantities that
are proportional to the number of detected photons should display a linear dependence
on the Monte Carlo energy deposition as well.

The sum of the reconstructed probability amplitudes for all voxels has been plotted
in Fig. 5.13 against the cumulative energy deposition of the Monte Carlo truth (in a
range of < 300 MeV), for the complete of 369 events. The linear fit to the scatter-plot
shows how the dependence of the cumulative reconstruction amplitude on the true energy
deposition can be indeed modelled as linear at least for Edep . 300 MeV. Therefore it
is possible to conclude that the 3D reconstruction technique maintains the information
on the number of detected photons and the linear proportionality of their number to the
true cumulative energy deposition in the volume.
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Fig. 5.11: Distribution of the distances between the zmin PCA endpoint and Monte Carlo
vertices for cut values between Mo(A) and Mo(A) + 3.8 · FWHM. The larger dispersion of the
deviation compared to the centroid estimates can be noticed.
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Fig. 5.12: Distribution of the projection of the vertex on the (~zmax − ~zmin) segment along
the major axis. The distribution is asymmetrical, and indicates that the vertex is inside the
distribution rather than close to the endpoints.
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Conclusions and outlook

As part of the SAND detector of the DUNE ND complex, GRAIN will serve an important
role in the characterization of the neutrino beam and in the improvement LAr interaction
models. For GRAIN to leverage its granularity and fast response and contribute to the
SAND physics case, a well-performing optical reconstruction technique is needed.

In this thesis a first quantitative assessment of neutrino event 3D reconstruction per-
formance for the Coded Aperture mask system in GRAIN was performed. The properties
of the output of the reconstruction algorithm were first studied, determining that they
contain a significant combinatorial background and artefacts, which were finally reduced
by an accurate tuning of thresholds applied to the events. The similarity between the
reconstructed and the true Monte Carlo energy distribution was subsequently quantified
through the Structural Similarity Index. Threshold cuts were also optimized to improve
the similarity.

The basic features of the events were then extracted and compared to the Monte
Carlo truth. The validity of the reconstructed energy deposit centroid as an estimator of
the neutrino vertex position was tested and found to be satisfactory. An optimal interval
of thresholds was established, taking into consideration both accuracy and efficiency: the
deviation from the expected Monte Carlo centroid for correctly reconstructed events is
of ∼ 4.5 cm, with an overall efficiency & 95%. Such a deviation is small compared to the
resolution of typical LAr scintillation light detection systems. This makes the technique
a very promising solution for the event reconstruction in GRAIN.

The endpoints of the reconstruction distributions were determined through a Princi-
pal Component Analysis and tested as estimators of the true vertex position, finding a
worse performance compared to the centroid estimator. Finally, the correlation between
the cumulative reconstructed probability amplitude and the true total energy deposition
was determined to be linear up to 300 MeV, consistently with the expectations.

This work has provided a first quantitative assessment of the quality of the neutrino
event reconstruction by optical imaging and a benchmark with which to evaluate the per-
formances of future versions of the algorithm, thereby helping to guide its development.
In particular, the analysis of the reconstruction and Monte Carlo centroids, together with
the comparison of the PCA endpoints, have shown that the estimates of the vertex po-
sitions depend significantly on the true topology of the events. For this reason, the next
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step will be the development of a robust criterion for the event topology discrimination
and an accurate track reconstruction technique. An approach based on Local Principal
Curves is being currently pursued, starting from one applied to the analysis of LArTPC
data. The aim is to adapt the algorithm to the specific case of the 3D reconstruction in
GRAIN.
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