
Alma Mater Studiorum · University of Bologna

School of Science
Department of Physics and Astronomy

Master Degree in Physics

Failure detection for transport processes on
networks

Supervisor:

Prof. Armando Bazzani

Submitted by:

Edoardo Rolando

Academic Year 2020/2021

Abstract

Diffusion on networks is a convenient framework to describe transport systems of dif-
ferent nature (from biological transport systems to urban mobility). The mathematical
models are based on master equations that describe the diffusion processes by means
of the weighted Laplacian matrix that connects the nodes. The link weight represent
the coupling strength between the nodes. In this thesis we cope with the problem of
localizing a single-edge failure that occurs in the network. An edge failure is meant to
be as a sudden decrease of its transport capacities. An incomplete observation of the dy-
namical state of the network is available. An optimal clustering procedure based on the
correlation properties among the node states is proposed. The network dimensionality
is then reduced introducing representative nodes for each cluster, whose dynamical state
is observed. We check the efficiency of the failure localization for our clustering method
in comparison with more traditional techniques, using different graph configurations.

2

Contents

Introduction 5

1 Network theory 8
1.1 Basic definitions . 8
1.2 Laplacian matrix . 11
1.3 Graph Fourier Transform . 14
1.4 Laplacian matrix applications . 15
1.5 Diffusion model . 15
1.6 Graphs as spring networks . 18
1.7 Spectral embedding . 20

2 Network partitioning 22
2.1 Graph cuts . 23
2.2 Spectral clustering . 25

2.2.1 Ratiocut and Ncut approximations 26
2.3 Modularity . 27

3 Dynamic based clustering 29
3.1 Spectral clustering and diffusion processes 30
3.2 Coarse-grained network . 31
3.3 Diffusion model with forcing . 36
3.4 External forcing perturbation . 40
3.5 Laplacian perturbation . 44
3.6 Higher order terms . 48

3.6.1 Contraction condition . 50
3.6.2 Relative fluctuations . 53

3.7 Rescaled process . 54
3.8 Observability . 56

4 Simulations results 58
4.1 Problem definition . 58

3

CONTENTS 4

4.2 Failure identification . 62
4.3 Clustering methods comparison . 65

5 Conclusions 73

A Rescaled process moments 75

B Simulation plots 78
B.1 Problem introduction . 78
B.2 Erdős–Rényi networks . 81

B.2.1 Comparison . 81
B.3 Grid networks . 87
B.4 Barabasi-Albert networks . 91

References 93

Introduction

A graph (also called network) is a collection of entities (nodes) whose interaction struc-
ture is described by the edges (or links) connecting them. Therefore a network is a
simplified and abstract representation of a system topology. This simple yet powerful
definition allow the description of a rich variety of structures. In fact, nowadays network
science has became ubiquitous, finding applications in a broaden range of fields ranging
from physical, biological, social and transport systems. For instance, networks can be
suited for the study of the interaction among biological entities, like genes or species. In
social sciences, the nodes might represent agents that interact and influence each other
[26]. Concerning transport systems, network theory has found fruitful applications for
traffic models and water distribution systems (WDS) [12]. Therefore, the study of net-
works is highly interdisciplinary, borrowing tools and ideas stemming from various area
of knowledge, like mathematics, physics and engineering. The success of network science
has also prompted results in mathematical fields, like Spectral Graph Theory [10], that
studies the characteristics of a graph in relation to the spectral properties of matrices
associated to it, like the Adjacency matrix and the Laplacian matrix. The former en-
compass the topological relations of the network, whereas the latter can be seen as a
difference operator on the network nodes. The Laplacian matrix has found countless
applications in the study of networks. For instance, the spectral decomposition of the
Laplacian matrix is used to define a graph analogue of the Fourier transform. The over-
lap between traditional signal processing and graph theory has lead to a new emerging
field called Graph Signal Processing (GSP), that has gained a lot of attention recently
[49].

Networks are a suitable mathematical framework also for the study of dynamical
processes occurring on discrete domains, such as traffic flow, the spreading of a disease
or an opinion in a social network, or the diffusion of a physical quantity, like heat,
electric current or water [4]. According to the particular system under study, one might
focus solely on the topology, on the dynamics taking place on the network, or both.
Nevertheless, as intuitive, there is an interplay between the network topology and the
eventual dynamics occurring on the graph. The Laplacian matrix establishes a relation
between the continuous world processes and the discrete analogue on a network. Indeed,
it naturally describes diffusion process and consensus dynamics occurring on networks.

5

6

This thesis work focuses on transport networks that can be modeled by means of a
diffusion equation, with the adding on an external input driving the system. A typical
problem of a transport system is the study of its resilience and stability under the failure
of one or more of its components. Even a single-edge failure can lead to a cascade effect,
putting at risk the transport capabilities of the whole structure. This kind of problem is
particularly important for power grid networks, for which a maximum voltage capacity is
defined for each transmission line. In the literature, several studies focus on the creation
and planning of optimal transport networks, such that the resilience and stability under
one or multiples failures of the network is maximized.

However, in other situations the topology of the network is considered to be given and
fixed, because pre-existing or independent from human will. Therefore, one is concerned
with a different but related problem, that is the installation of an efficient sensor system,
to monitor and eventually control the state of the network. In fact, monitoring all
the nodes of the transport system may be unfeasible and expensive. Consequently,
the aim becomes to find a sensor placement criterion, such that the observability and
localization of the failure is optimal. Several algorithms has been devised with this scope,
ranging from engineering tools to ideas stemming from network science. The traditional
clustering algorithms used to partition a graph might be exploited in order to group nodes
according to some characteristics [16]. Among these methods, a prominent importance
is given to the spectral clustering technique, which is based on the Laplacian matrix
spectral properties. In fact, the eigenvectors of the Laplacian matrix, provide a natural
way to embed the network nodes in an euclidean space. This procedure helps revealing
the structural features of the network. The idea of spectral clustering can be justified
with the physical analogy of a network with a spring-mass system, in which the nodes
weights are the elastic constants of the springs [35].

The set of equations governing the whole system and its reduced (or coarse-grained)
version find an analogue counterpart in linear time-invariant system, for which the con-
cept of observability and controllability has long been studied. In particular, a system is
observable if the observability matrix has full rank [9]. Concerning the problem we are
dealing with, observing the state of the network only through a subset of nodes (sensors),
the system does not satisfy the observability condition. However, once a partition of the
network is established, the idea is to set a single sensor node for each cluster, such that
the failure localization is possible with good accuracy.

Outline of the thesis

The first chapter of this thesis work is a brief introduction to network science, giving
a special focus on the Laplacian matrix and its properties. In particular, it is shown
how the evolution of diffusion processes taking place on a network is governed by the
Laplacian matrix. The equation describing such processes turn out to be the discrete
analogue of the heat equation for continuous bodies. The Laplacian matrix is also used to

7

describe a spring-mass system, in which the nodes are the masses and the edge weights
correspond to the stiffness of the springs. Generally, it is assumed an heterogeneous
distribution of the spring constants. This analogy will be particularly fruitful for the
subsequent chapters.

In Chapter 2, the main graph community detection and clustering techniques are
described. Traditionally, they are based solely the network topology. Particular attention
is given to the spectral clustering technique, since it exploits the Laplacian matrix to
partition the network in such a way that densely connected nodes belongs to the same
cluster. The analogy with a mass-spring system allow a physical interpretation of the
spectral clustering results. A successful definition of community is a group of nodes
whose internal connections are denser than the expected structure of a random graph.
This definition lead to the concept of modularity function, which has the unique privilege
of being at the same time a clustering technique and a benchmark function to test the
performance of other algorithms.

Chapter 3 contains the original part of this thesis work. In the first place, it is
explained the importance of clustering techniques based not solely on the structure of
the network but also on the dynamical processes occurring on top of it. The idea is to
find a coarse-grained description of the dynamics, such that nodes belonging to the same
cluster behave in a similar fashion. In particular, the spectral clustering admits also an
interpretation based on the timescales of a diffusion process. Secondly, we propose an
original network reduction scheme based on the correlation properties of the nodes under
a perturbation of their states. We considered two kind of perturbations. First, we add
a white noise to the external forcing of the system. The correlation properties found
depend on the spectrum of the Laplacian matrix governing th dynamics, but not on the
forcing itself. Secondly, we study a perturbation of the network weights, leading to a
direct perturbation of the Laplacian matrix. The found correlation properties depend
on the spectrum of the Laplacian matrix and on the fluxes of the transport system. In
particular, more importance is given to those eigenvectors that are able to distinguish
edges with higher flux.

In Chapter 4 we have exploited to correlation matrix obtained in order to generate
a clustering procedure for the network nodes. Afterwards, we compare the efficiency
under a single-edge failure event of the proposed clustering algorithm with the traditional
structure-based ones described in Chapter 2. The used failure identification function is
based on a Bayesian approach. The network architectures used for the comparison are
the Erods-Renyii random model, lattice network and Barabasi-Albert graph. It is shown
how the proposed clustering algorithm is more sensitive to failure of edges with higher
fluxes, that are the most important ones in a transport system.

Chapter 1

Network theory

In this Chapter, we provide the basic definitions and mathematical tools necessary for
the study of network systems. Particular emphasis is put on the representation of a
graph given by the so called Laplacian matrix, whose properties and applications are
fundamental for the development of this thesis work.

1.1 Basic definitions

A network or graph, as usually denoted in the mathematical literature (the two terms
will be used interchangeably) is an abstraction of a system defined by entities and the
relations (or couplings, depending on the context) between them. More formally,

Definition 1 (Network) A network is defined by a pair of sets G = {V , E}, in which
the elements of V(G) = {v1, . . . , vn} are called nodes or vertices and the set E(G) = {eij}
consists in all the edges or links between them. The size of the vertex set is usually
denoted by the letter N = |V|, whereas the size of the edges set by M = |E|.

Moreover, two nodes i and j are said to be neighbors (or adjacent) if there is and edge
(ij) connecting them.

Its is possible to defined several networks categories according to the kind of edges
allowed in its structure. For instance, multiedges networks features nodes with more
than one edge between two nodes. Otherwise, one might want to consider graphs with
edges connecting a single node to itself: these kind of connections are called self-edges.
Several network models feature directed connections. These kind of graphs are called
directed networks. A simple network is defined as a graph with neither self-edges nor
multiedges [40]. Throughout the rest of this thesis work we will consider only undirected
simple networks, for which wij = wji.

To describe faithfully some networks, it is useful to define edges as having a strength
or weight. These kind of networks are called weighted graphs, and they are characterized

8

1.1. BASIC DEFINITIONS 9

by a real-valued function 1 associated to their connections

w : V(G)× V(G)→ R+

Edges weights might have several interpretations, according to the kind of system the
network represents. For instance, they might measure the strength of connection or
similarity between the nodes. In transport systems, the edge weight might represent its
carrying capacity. In power grid networks, the edge weights are usually the conductance
of the wires. Finally, in spatial graphs (for instance road or airplane networks), the edge
weights might be regarded as a distance between the nodes 2.

The fundamental topological information of a network is encoded by the so called
Adjacency matrix, defined as a N × N matrix whose entries in the case of a weighted
undirected graph are defined as

Aij :=

{
wij if (i, j) ∈ E(G)
0 otherwise

(1.1)

It is worth noting that a network with no self-edges has diagonal matrix elements equal
to zero. Secondly, if the network is undirected, the adjacency matrix is symmetric, hence
Aij = Aji.

The first quantity that is used to describe a node is its degree. For an undirected
graph, the degree of a node is defined as the number of edges connected to it, and can
be computed through the unweighted adjacency matrix

ki =
N∑
j=1

Aij. (1.2)

Since every edge is connected to two nodes, we have the following relation between the
total number of edges M and the degree distribution of the nodes

2M =
N∑
i=1

ki =
∑
ij

Aij. (1.3)

The mean degree of a node in an undirected network is given by

〈k〉 =
1

N

N∑
i=1

ki (1.4)

1Recently, networks with both positive and negative weights, called signed graphs, have gained at-
tention, especially in social sciences [34].

2Considering the edge weight as a distance can be misleading. In fact, since the weights usually
describe the strength of interactions between the nodes, one should in principle consider the edge weight
to be the reciprocal of a distance. This is analogue to using the conductance instead of the resistance
for power grid networks.

1.1. BASIC DEFINITIONS 10

and combining the two equations above we get to

〈k〉 =
2M

N
(1.5)

that relates the average degree of the network with its total number of nodes and edges.
For weighted networks, it is natural to define another useful quantity called node

strength, that measures the sum of all weights connected to a given node. therefore, the
node strength is still given by the equation 1.2, using the weighted adjacency matrix.

The following definitions will be useful throughout the text.

Definition 2 (Walk) A walk in a network is defined as a sequence of nodes such that
every consecutive pair of nodes in the sequence is connected by and edge.

A shortest path (or geodesic path) is the shortest walk between a pair of nodes.

Definition 3 (Component) A component of a network is a subset of nodes such that
there exists at least one path connecting each member of that subset to any other member.

A network in which all nodes belongs to the same component is said to be connected. It
is straightforward that the adjacency matrix of a disconnected network can be written
in block diagonal form.

To capture the relative importance of nodes and edges in a network, several measures
have been devised in the scientific literature [40]. A lot of them are centrality based,
meaning that the importance of a node or edge is related to its centrality measure. There
are many possible definitions. For instance, the simplest one is the degree centrality that
is just the degree of a node.

Definition 4 (Betweenness centrality) Betweenness centrality measures the extent
to which a node lies on paths between other nodes and it is given by

xi =
∑
st

nist
gst

(1.6)

where nist is the number of shortest paths from node s to node t that pass through node
i, and the normalization factor gst is the total number of shortest paths between s and t.

Nodes with high betweenness centrality have a influence within the network, since they
have a role of control of the information passing through them. Several generalization of
definition 4 are possible [17].

Finally, we mention that it might be useful to define real-valued functions on the
nodes, that is

f : ν → <, f ∈ <N

1.2. LAPLACIAN MATRIX 11

assigning a real number to each node of the network. This real-valued functions might
encode information about a spatial-temporal processes taking place on the network, in
which case we might define a time series on each node. Alternatively, it may represent
nodes physical positions, or eigenfunctions of suitable operators defined on the network.
We will encounter all these situations in the following sections.

1.2 Laplacian matrix

Another useful representation of a network is given by the so called graph Laplacian (also
called discrete Laplacian, or Kirchoff matrix). For an undirected and weighted network,
the Laplacian matrix is a N ×N matrix defined as follows

Lij =

−wij if i 6= j and i is adjacent to j,

di if i = j,

0 otherwise

(1.7)

where wij is the weight from node i to node j and di =
∑

j wij is the degree of node i.
More compactly it can be written as

Lij = δijdj − wij (1.8)

or in matrix-vector notation L = D − A, where D is the diagonal degree matrix, whose
ith entry is the degree of node i. For undirected networks, the Laplacian matrix is
symmetric Lij = Lji. The Laplacian matrix has a lot of application in graph theory, due
to its particular properties. First of all, it can be seen as a difference operator on the
graph. In fact, applying L to a generic real-valued function f defined on the nodes we
get

(Lf)(i) =
∑
j

Lijfj =

= difi −
∑
j

wijfj

=
∑
j

wij(fi − fj)

(1.9)

where the sum is implicitly performed over the neighbors of node i, since for all other
nodes wij = 0. Being a symmetric operator, there is a natural quadratic form associated

1.2. LAPLACIAN MATRIX 12

with it
~fTL~f =

∑
ij

Lijfifj

=
1

2

∑
i

dif
2
i − 2

∑
ij

wijfifj +
∑
j

djf
2
j =

=
1

2

∑
ij

wij
(
f 2
i − 2fifj + f 2

j

)
=

1

2

∑
ij

wij (fi − fj)2

(1.10)

where the factor 1/2 is due to the double counting of the nodes in the sum. In Graph
Signal Processing [49], the Laplacian quadratic form is related to the smoothness of the
function (signal) on the manifold (network). In fact, the quadratic form is null if and

only if the signal is constant over all vertices. In general, ~fTL~f takes low values when
the signal has similar components on nodes connected by edges with high weights, i.e
the smoother the signal on the graph, the lower is the value of 1.10. Being related to the
discrete analogue of the spatial derivative, the Laplacian matrix allows a natural connec-
tion between discrete representations, such as networks, and continuous representations,
such as vector spaces and manifolds [38] [10].

Since the Laplacian matrix is symmetric, it has a complete set of orthonormal eigen-
vectors, which we denote by {~vk}k=0,1,...,N−1

L~vk = λk~vk k = 0, 1, ..., N − 1. (1.11)

with the orthogonality condition
~vk~vh = δkh. (1.12)

It is easy to note that every row and column sum of the Laplacian matrix vanishes∑
j

Lij =
∑
j

(kiδij − Aij) = ki − ki = 0

and therefore L is a singular matrix, i.e there is at least one eigenvalue equal to 0
corresponding to the uniform eigenvector ~v0 = 1√

N
(1, ..., 1). Being a singular matrix, L

has no inverse 3.
From the condition 1.12 and the knowledge of the kernel eigenvector ~v0 = 1√

N
(1, ..., 1),

we get that for any eigenvector with λ 6= 0

N∑
i=1

vλi = 0 (1.13)

3However, it is possible to defined a pseudoinverse of the Laplacian matrix, for example the Moore-
Penrose one [6]. The Laplacian pseudoinverse finds several application in network theory [22].

1.2. LAPLACIAN MATRIX 13

and, since we are taking them to be normalized, each component is bounded by −1 <
vλi < 1.

Interpreting the Laplacian eigenvectors as eigenfunctions on the vertices, we can use
them as in 1.10, getting to

~vTλL~vλ =
1

2

∑
ij

wij
(
vλi − vλj

)2
.

Making use of equation 1.11 and the orthogonality condition 1.12 we also get

~vTλL~vλ = λ~vTλ~vλ = λ

that combined with the equation above give

λ =
1

2

∑
ij

wij
(
vλi − vλj

)2 ≥ 0 (1.14)

and therefore, since the weights are defined to be greater than zero, all the Laplacian
eigenvalues are non-negative (thus L is a positive semi-definite matrix).

The multiplicity of the null eigenvalue of the Laplacian matrix provides important in-
formation about the network connectivity. In fact, the number of connected components
in the graph equals the dimension of the nullspace of the Laplacian. In this case L can
be written in a block diagonal form, and each individual block is the Laplacian matrix of
the corresponding connected component. Hence, if there are k connected components,
each of dimension Nk, the k eigenvectors corresponding to λ = 0 will be of the form

~vi =
1√
N i

(1, . . . , 1︸ ︷︷ ︸
Ni

, 0, . . . , 0︸ ︷︷ ︸
N−Ni

) for i = 0, . . . , k − 1

with non-vanishing components only on the nodes belonging to a component. Therefore,
those eigenvectors are indicators of the connected components.

Since for a connected network there is only one zero eigenvalue, we can order the
spectrum in increasing order as follows:

0 = λ0 < λ1 ≤ λ2 . . . ≤ λN−1 := λmax (1.15)

From now on we will refer only to connected networks.
The second smallest eigenvalue of L deserves a special mention: λ1 is called Fiedler

value of the network and, as seen above, if it equals to zero the graph is not connected.
λ1 is also called algebraic connectivity, since the further it is from zero, the more the
network is connected. Its associated eigenvector ~v1 is called Fiedler vector, and it find
applications in graph spectral partitioning. The Fiedler value and vector are associated
with several network topological information [10].

1.3. GRAPH FOURIER TRANSFORM 14

1.3 Graph Fourier Transform

The network Laplacian matrix allows a generalization of the classical (continuous) Fourier
decomposition of a signal on the discrete domain of a graph. In fact, in the classical
case, the Fourier transform consists of the expansion of a signal in terms of complex
exponentials, which are the eigenfunctions of the one-dimensional Laplace operator

f̂(ξ) :=
〈
f, e2πiξt

〉
=

∫
R
f(t)e−2πiξtdt

−∆
(
e2πiξt

)
= − ∂2

∂t2
e2πiξt = (2πξ)2e2πiξt

Analogously to the continuous case, writing a signal in the graph spectral domain
means projecting it onto the Laplacian eigenfunctions, hence its name. Thus the graph
Fourier transform of a signal fi on the vertices of a network is defined as [49]

f̂ (λl) :=
〈
~f, ~ul

〉
=

N∑
i=1

f(i)u∗l (i). (1.16)

Since L is symmetric, its eigenvectors are orthogonal and therefore we can define the
inverse graph Fourier transform as

f(i) =
N−1∑
l=0

f̂ (λl)ul(i) (1.17)

Given the correspondence of the two transformation, we can interpret the Laplacian
eigenvalues as the frequencies of the continuous case

λl ↔
{

(2πξ)2
}
ξ∈R

Thus Laplacian eigenvectors corresponding to high eigenvalues oscillates more rapidly
on the graph domain, that is they are likely to take different signs on vertices that are
connected by high weights. The higher the eigenvalue the more its correspondent eigen-
vector is discontinuous on the graph domain. However, we should pay more attention
in making this analogy. As the graph grows in complexity, we cannot see anymore the
eigenvalues as a simple monotonic function like the frequency. In particular, it becomes
difficult to order and organize the eigenmodes like for the continuous case [46].

Nevertheless, the analogy between the spectral properties of L and the normal eigen-
modes in the Fourier sense can be better formalized through the Courant-Fisher Theo-
rem, that provides a characterization of the eigenvalues and eigenvectors of a symmetric
matrix through a constrained optimization problem [50]. The Laplacian eigenvalues and
eigenvector are therefore defined through

1.4. LAPLACIAN MATRIX APPLICATIONS 15

λ0 = min
~f∈<N ,
‖~f‖2=1

~fTL~f

λl = min
~f∈<N ,
‖~f‖2=1

~f⊥{~v0,...,~vl−1}

~fTL~f (1.18)

that is an optimization problem having as objective function the Laplacian quadratic
form. Since, as already mentioned, ~fTL~f is related to the smoothness of a function on
the vertices, we deduce that the eigenvectors with lower eigenvalue show less variation.
In particular, from 1.18 we again see that the lowest eigenvalue is λ0 = 0 and corresponds
to the constant eigenvector ~v0 = 1√

N
(1, ..., 1).

1.4 Laplacian matrix applications

As seen in the previous section, the Laplacian matrix allows the generalization of ideas
and tools typical of the continuous domain to the discrete one. For this reason, it is not
surprising that it pops up in a great variety of applications. For instance, it can be used
to model resistor networks, random walkers, synchronization systems and lastly diffusion
processes, that will be the main focus of this thesis work.

1.5 Diffusion model

Suppose some quantity is circulating in a network system. We denote with xi(t) the
quantity present on node i at time t. The time evolution of the system is given by an
equation of the form

dxi
dt

= fi (xi) +
∑
j

wijgij (xi, xj)

where wij are the edge weights, representing some parameter of interest for the system
under consideration, fi(xi) is a function that specifies the intrinsic dynamics of each
node, and gij (xi, xj) is a generic coupling function of the system state variables. If it is
assumed that the function f is the same for each node and g is the same for each couple
of nodes, the above equation simplifies to

dxi
dt

= f (xi) +
∑
j

wijg (xi, xj) . (1.19)

This kind of equations are ubiquitous in network theory. Indeed, they have been used
to describe the spreading of a huge diversity of physical or abstract quantities, like
information, viruses, heat, fluid, over the network nodes.

1.5. DIFFUSION MODEL 16

The simplest diffusion process one can think of is obtained setting f(xi) = 0 and
taking the coupling g (xi, xj) to be equal to xi − xj, thus obtaining

dxi
dt

=
∑
j

wij(xi − xj) (1.20)

that gives the time change of the concentration on each node due to the diffusive trans-
portation process taking place. The choice g (xi, xj) = xi−xj implies that the substance
flow from node j to node i is proportional to the concentration difference (xi− xj), that
is commonly known under the name of Fick’s law. Equation 1.20 can be easily recast as
follows

dxi
dt

= −
∑
j

wij (xi − xj)

= −xi
∑
j

wij +
∑
j

wijxj

= −xidi +
∑
j

wijxj

= −
∑
j

(δijdi − wij)xj

= −
∑
j

Lijxj

(1.21)

where again we see that the Laplacian matrix plays the role of a difference operator, like
explained for the equation 1.9. We recognize the analogy of 1.21 with the heat equation
for a continuous medium

∂u(~x)

∂t
= ∇2α(~x)u(~x)

where

∇2 = ∇ · ∇ =
n∑
i=1

∂2

∂x2
i

is the Laplacian operator in Cartesian coordinates, u describe a temperature distribution
and α is called thermal diffusivity. This is again a consequence of the Laplacian matrix
being a natural link between discrete representations, such as graphs, and continuous
domains.

The particular diffusion model described by the equation 1.21 is usually called fluid
model [2]. The reason for this name is that this kind of equation might describe the
linear flowing of some fluid in a pipe network: in this case the state variable xi is the
pressure on node i (that is the junction of two of more pipes) and wij encode information
about the ease fluid flows through the pipes.

1.5. DIFFUSION MODEL 17

Equation 1.20 is also called in the literature edge-centric continuous time random
walk [36]. In fact, it can be used to describe a random walker moving on the network.
The probability to find the random walker on node i at time t is given by pi(t) and the
transition rates are given by the weights wij. Thus the higher the (generalized) degree of
a node, the lower the probability that the random walker is found on that specific node.
The reason is that the transition rates do not sum to one

∑
j wij 6= 1. Consequently, the

random walker leaves nodes with high degree quicker than nodes with small degree.
Expanding the Laplacian matrix in its eigenbasis

L =
N∑
λ 6=0

λ~vλ~v
T
λ

and recalling that all λ are greater than 0 (excluding the kernel) the full solution of 1.21
is given by

~x(t) =
∑
λ 6=0

cλe
−λt~vλ (1.22)

with initial conditions
~x(0) =

∑
λ 6=0

cλ~xλ. (1.23)

When the system reach equilibrium, we have the stationary condition

L~x = 0

that is equivalent to the detailed balance condition, that reads∑
i

wjix
s
i =

∑
j

wijx
s
j (1.24)

that can be rewritten as

xsi =

∑
j wijx

s
j

di
(1.25)

where di is the degree of node i. The last condition is called self-averaging property and
the function ~x satisfying it is called harmonic function[27]. As seen, if the network is
connected the Laplacian matrix has only one eigenvalue equal to zero and corresponding
to the uniform eigenvector ~v0 = 1√

N
(1, . . . , 1). Therefore, at equilibrium the states of

the system is uniform. If the process taking place is a heat diffusion, it means a uniform
temperature over the graph.

1.6. GRAPHS AS SPRING NETWORKS 18

1.6 Graphs as spring networks

In order to understand the properties of the Laplacian matrix, the analogy of a graph
with a mass-spring system is particualrly useful. In this case the nodes are the masses
and the edges are the ideal rubber bands between them. The adjacency matrix gives
the relation between the masses, i.e which ones are connected and the edges weights
wij indicate the springs constants kij. The real-valued function xi defined on the nodes
represents the one dimensional displacement of the masses. These displacements are
meant to be in the direction orthogonal to the embedding space of the network (see the
following section 1.7). Therefore, if the network is planar 4, the displacement is in the
axis orthogonal to the plane. From Hooke’s law

Fij = −wij(xi − xj)

denotes the force that node j exerts on node i. Analogously to 1.21, we can write the
total force on node i as

Fi =
∑
j

Fij = −
∑
j

wij(xi − xj) = −
∑
j

Lijxj (1.26)

and the Lagrangian of the system reads

L =
1

2

∑
i

miẋ
2
i −

1

4

∑
ij

wij (xi − xj)2

=
1

2

∑
i

miẋ
2
i −

1

2

∑
ij

xiLijxj.
(1.27)

where the factor 1/2 for the potential energy takes care of the double counting of nodes
pairs. Therefore the equations of motion are

mkẍk = −
∑
j

Lkjxj (1.28)

or in vector notation
~̈x = −K~x (1.29)

where K = M−1L is called stiffness matrix and M is the diagonal matrix of the nodes
masses. The solution is well known and it is given by the eigenvectors of the matrix K,
that give the displacement of the masses for each harmonic mode. The corresponding

4A planar network is a graph that can be embedded in the plane, i.e. it can be drawn on a flat
surface in such a way that its edges do not cross each other. For instance, on first approximation road
networks can be considered to be planar.

1.6. GRAPHS AS SPRING NETWORKS 19

eigenvalues are the energies required to sustain the oscillations and their square roots
are thus the frequencies of the fundamental oscillations.

Taking all masses to be equal to one mi = 1 ∀i, the stiffness matrix reduces to
the unnormalized Laplacian matrix. We might also make a different choice, taking the
masses to be equal to the degree of the node mi =

∑
j wij. In this case the stiffness matrix

reduces to the normalized Laplacian of the graph. In both cases, nodes connected by
strong springs will oscillate together for low frequencies (low eigenvalues of the Laplacian
matrix). This physical analogy reinforce the use of Laplacian eigenmodes as normal
modes of oscillations, like shown in section 1.3.

If no energy is present in the system, the solution of

~̈x = −L~x (1.30)

is the kernel of L, since in this case L~x = 0. This means that all masses collapses to
a single point, as intuitive. An interesting situation one can think of is nailing some
vertices of the system, say the first k of them, and letting the rest settle. To find the
equilibrium position, we minimize the potential energy with boundary conditions (nodes
at fixed positions)

∂

∂xv

(∑
ij

xiLijxj + 2
k∑
i=1

bixi

)
= 0

where bi with i = 1, . . . , k are Lagrange multipliers that enforce the k coinstaints. Thus
we get

2
∑
j

Lvjxj + 2
k∑
i=1

biδv,i = 0 for v = 1, . . . , N

and summing over all nodes

2
∑
j

xj
∑
v

Lvj + 2
k∑
i=1

∑
v

biδv,i = 0 for v = 1, . . . , N

since
∑

v Lvj=0, we get to the following contraint

k∑
i=1

bi = 0−

Therefore the equilibrium positions are obtained by solving the linear system

L~x = ~b with
∑
i

bi = 0. (1.31)

1.7. SPECTRAL EMBEDDING 20

Notice that for all free vertices we have the self-averaging property

xv =
1

dv

∑
i

wvixi (1.32)

already encountered in the previous section.
The physical analogy between a network and a spring-mass system happens to be

useful also for the understanding of the spectral clustering technique, to be discussed in
chapter 2. The idea is that cluster of nodes with stiff connections among them oscillates
togheter as a chunk.

1.7 Spectral embedding

Structural properties of a network might be revealed from an embedding of its nodes
in a continuous metric space, called embedded space or latent-space. For instance, we
might choose to map the nodes on a one-dimensional line, in such a way that nodes
strongly connected are close to each other. Embedding a network is also useful for
visualization purposes, if for example the embedding space is chosen to be the two-
dimensional euclidean space. Generally the dimensionality of the embedded space is
chosen lower than the one of the initial feature space (i.e. the numbers of nodes in the
network), such that a dimensionality reduction can be performed.

This problem can be formalized writing an objective function of the nodes position
and minimize it. An obvious choice is the sum of the squared distances of the nodes.
Considering the one dimensional case (i.e. the mapping of a weighted network onto a
line) the objective function reads

~xTL~x =
1

2

∑
ij

wij (xi − xj)2

that is the quadratic form associated with the graph Laplacian, with the nodes positions
as real-valued function. As already noted in the case of a spring-mass system, the
minimization of this function is achieved when all the nodes lie in the same position,
that is not very insightful. This problem might be avoided imposing constraints on the
nodes positions, such that their overall distribution remains spread out. So we fix the
overall centre of mass with ∑

i

xi = 0

and to avoid them ending up in the same position (given the constraint above, the origin),
we fix also the variances of their positions∑

i

x2
i = 1

1.7. SPECTRAL EMBEDDING 21

This constraint optimization can be performed by use of the Lagrange multipliers method,
analogously to the previous section. Alternatively, we can note that is the same opti-
mization problem 1.18. Therefore, the constraints above are nothing but conditions in
order not to choose the Kernel of L and normalize the eigenvectors.

In either way, the conclusion is that the positions of the nodes in the optimal embed-
ding are given by the eigenvectors of the Laplacian matrix. Moreover

~xTL~x = ~vTλL~vλ = λ~vTλ~vλ = λ (1.33)

since the eigenvectors are normalized to one. Therefore the overall squared displacement
is minimized by the eigenvectors with the lowest eigenvalue. The lowest eigenvalues is
λ0 = 0, but the corresponding eigenvector ~v0 = 1√

N
(1, . . . , 1) fails to satisfy the con-

straints above. Hence, the best one dimensional embedding is given by the components
of the second smallest eigenvector, the Fiedler vector.

Notice that spectral embedding using small eigenvalues is equivalent to a self-averaging
property for the positions, since

~xi =
1

di − λ
∑
j

wij~xj.

More generally, the embedding of a graph in a k-dimensional euclidean space, is given
by a N×k matrix X = [~x1, ~x2, ..., ~xk] whose i-th row are the coordinates of the i-th node.
Therefore, the quadratic norm to be minimized is

~xTL~x =
1

2

∑
ij

wij‖~xi − ~xj‖2 (1.34)

Thus, for each node, the k coordinates needed to perform the embedding are given
by the components on that node of the eigenvectors corresponding to the k smallest
non-zero eigenvalues, i.e λ1, . . . , λk, that we can organize in the following embedding
matrix

U =

 ~vλ2,1 . . . ~vλk+1,1
...

...
~vλ2,N . . . ~vλk+1,N

whose i-th row provide the embedding for the node number i.

Chapter 2

Network partitioning

Networks display a huge variety of possible configurations, and they range from totally
regular graphs, like lattices, to ones with random connections, like the Erdős–Rényi and
Barabasi-Albert models described in the previous chapter.

Real world networks are generally not random, since they show a certain level of or-
ganization and structure [21]. The distributions of edges is both globally inhomogeneous,
meaning that the degree distributions are broad, and locally inhomogeneous, with areas
displaying high density of internal edges and low concentrations between them. These
regions of densely internally connected nodes suggests that the network has certain nat-
ural divisions within it and they are called clusters1 or communities, and the problem of
identifying them has became one of the most fundamental problem in network science
since the seminal work [21]. For instance, in protein interaction networks, communities
might identify proteins with similar roles within the cell, and in citation networks papers
form communities according to the research topic [16].

The concept of community is not rigorously defined, but it depends on the algorithm
that is used to find them [45]. Thus several possible criteria might be chosen that
produce different outcomes. One usually defines communities as being set of nodes
that share more edges within their own community than with the rest of the network.
This definition is used both for non-weighted networks and weighted ones, for which the
density or sparsity of connections takes care also of the edges weights (more on this in
section 2.1). If the graph is not sparse and, for weighted networks, the edges weights
are not heterogeneously distributed, the density based definition of clusters looses sense.
In this situation, traditional data clustering techniques might come in help [25]. This
data-driven approach to communities identification is particularly useful for clustering
based on eventual dynamics running on a network, that is the topic of chapter 3. Thus
they will be mentioned in more details in chapter 4).

In most real-world networks there is no ground truth regarding the eventual com-

1Not to be confused with the clustering coefficient [55]

22

2.1. GRAPH CUTS 23

munity structure. Thus it is difficult to asses the efficiency of a particular clustering
algorithm. To address this problem, different benchmark were developed. One of this
is based on the idea modularity, a function introduced by [41] that has the particular
advantage of being at the same time a clustering method and a benchmark function.
Modularity will be discussed in sections 2.3.

Communities detection is essential not only to the understanding of systems’ struc-
tural features, but also how a networked system is generated form its basic constituents
and how the community structure influence the dynamics acting on top of the network
[47]. Furthermore, nodes belonging to the same community might have different roles
within the cluster, and they can be classified accordingly. There might be nodes with
important roles of control and stability within the group [16].

A kind of different but related problem to the one of communities detection is network
partitioning. A network partition is a division of the whole graph into a predefined
number of clusters, such that every vertex belongs to one of them and the edges between
these groups is minimal. The main difference from communities detection algorithms is
that the number of clusters, and sometimes also their sizes, is predefined, i.e. it must
be know a priori for the partitioning algorithm to work. Generally, in a community
detection problem one does not have this information, since it is exactly what we want the
algorithm to produce as its output. Consequently, it is not guaranteed that partitioning
algorithms produce good clusters in the community sense specified above.

In the following section we introduce the problem of graph partitioning, showing how
it is related to the spectral properties of L, leading to the so called spectral clustering
[35]. This method is particularly important for this thesis work, since the partitioning
method that we will propose in chapter 3 is related to the spectral embedding of section
1.7, and thus ultimately to the spectral clustering.

2.1 Graph cuts

To mathematically formalize the network partitioning problem, it is necessary to intro-
duce the following definition. Given two nodes subsets A and B in a network, the sum
of the edges weights between them is called cut size

W (A,B) =
∑

i∈A,j∈B

wij. (2.1)

In a network partitioning problem one wants to divide the graph into k clustersA1, A2, . . . , Ak
such that the cut size among all of them is minimized

cut (A1, . . . , Ak) :=
1

2

k∑
i=1

W
(
Ai, Āi

)
(2.2)

2.1. GRAPH CUTS 24

where Āi denotes the complement of cluster Ai. This kind of problem is called mincut
problem. Minimizing directly 2.2 might lead to a trivial partitioning, since it simply
separates individual vertices from the rest of the network. Thus one needs to slightly
modify the optimization problem such that the size of the clusters is automatically taken
into account. The two main optimization functions used are called RatioCut and Ncut
(where “N” stands for normalized).

The RatioCut of a partitioning A1, A2, . . . , Ak is defined as

RatioCut (A1, . . . , Ak) :=
1

2

k∑
i=1

W
(
Ai, Āi

)
|Ai|

=
k∑
i=1

cut
(
Ai, Āi

)
|Ai|

(2.3)

where |Ai| is the number of vertices in Ai. It was first used by [56] for the prob-
lem of circuit partitioning 2, in comparison with the traditional heuristic algorithm of
Kernighan–Lin [31] for iterative bisectioning.

The Ncut of a partitioning A1, A2, . . . , Ak is defined as

Ncut (A1, . . . , Ak) :=
1

2

k∑
i=1

W
(
Ai, Āi

)
vol (Ai)

=
k∑
i=1

cut
(
Ai, Āi

)
vol (Ai)

(2.4)

where vol (Ai) is the number of edges in Ai. It was first proposed by [48] for the problem
of image segmentation 3.

Both normalization choices ensure that the clusters are not too small, avoiding the
problem of cut minimization. In particular RatioCut balances the partitions with respect
to the number of nodes, and thus it looks for an equipartition of the graph, independently
of the intrinsic structure of the clusters. Ncut balances the partitions with respect to
the number of edges internal to the clusters and between them. Thus it measures not
only the dissimilarity between different clusters but also the similarity within groups
(measured precisely by the internal density of edges).

Both RatioCut and Ncut are NP hard problem. As was first noted by [24], a relaxed
version of the RatioCut minimization can be solved using spectral properties of the
unnormalized (combinatorial) Laplacian matrix. Similarly, as stated by the original
authors [48], a relaxed version of the Ncut problem can be solved by te normalized
Laplacian matrix via the so called Spectral Clustering, that is the topic of the next
section.

2The problem of circuit partitioning consists in placing electronic circuits on a board such that the
elements on different boards are connected with the lowest number of links.

3Image segmentation is the problem of partitioning a digital image into multiple segments such that
the pixels in each region share some characteristics.

2.2. SPECTRAL CLUSTERING 25

2.2 Spectral clustering

In section 1.7 we saw that the Laplacian eigenvectors provide a natural method to draw
a graph (i.e. embed the graph on a 2D manifold). Nodes that are strongly connected
between them will tend to be closer in an optimal embedding of the network. This idea
was motivated by the analogy with a spring-mass system 1.6 and by the Courant-Fisher
theorem REF O CIT. In this section the ideas of sections 1.6 will be presented from
a different perspective, showing how they can be exploited to partition a network in
densely connected communities. This partitioning method is called spectral clustering.

As shown in section 1.2, if a graph of N vertices consists of k connected components,
the first k eigenvalues are degenerate {λi}i=0,...,k−1 = 0. The Laplacian matrix can thus
be written in block-diagonal form, with each block matching one connected component.
Therefore, the k eigenvectors {~vλi}i=0,...,k−1 corresponding to the degenerate eigenvalues
{λi}i=0,...,k−1 = 0 have uniform components along their block, and vanishing component
elsewhere. {~vλi}i=0,...,k−1 are thus indicators of each component, that is

~vλi =
1√
Ni

1, 1, 1︸ ︷︷ ︸
Ni

, 0, . . . , 0

 for i = 0, . . . , k − 1

where Ni is the number of nodes in the connected component number i. Thus let’s
consider the N × k matrix with the first k eigenvectors as columns. The i-th row is a
k-dimensional vector that represent the i-th node. Given the consideration above, the
vectors representing nodes belonging to the same connected component coincide. They
are of the form (0, 0, . . . , 1, . . . , 0, 0), and so they lie on the axes of a k-dimensional system
of coordinates. The euclidean embedding performed with the Laplacian eigenvectors is
thus able to detect the k components.

From a graph clustering perspective, this is an ideal case, in which the partitioning
of the network is trivial. Nevertheless, it provides the general idea behind Laplacian
spectral clustering, that can be justified by a perturbation theory approach [35]. In fact,
if the graph is connected, but there are k subgraphs weakly linked to each other, the
Laplacian cannot be put anymore in block diagonal form. However, the off-diagonal
elements will be sparser than the diagonals blocks. Thus the lowest k non vanishing
eigenvalues are close to zero {λi}i=0,...,k−1 ≈ 0. Differently from before, the embedding
vectors (the rows of the first k eigenvectors) of nodes belonging to the same community
do not coincide. Nevertheless, they are close to each other (several possible metrics might
be used), and thus the corresponding eigenvectors should still be able to distinguish the
k communities, if used as a k-dimensional embedding. Finally, once we have a spectral
embedding, traditional data clustering methods like k-means and k-medoids [25] can be
used to retrieve the partitions of the nodes.

A drawback of this method is that the number of expected communities has to be

2.2. SPECTRAL CLUSTERING 26

provided beforehand, rather than being produced as output by the algorithm itself 4.
Thus one is forced to make assumptions that are often arbitrary. This problem might be
partially overcome observing the spectrum of the Laplacian matrix. As noted previously,
if the k communities are weakly connected to each other, one expects the first k eigen-
values {λi}i=0,...,k−1 being close to zero, while there is a bigger gap between λk and λk+1.
Thus, the number of clusters might be derived heuristically checking whether there is a
number k corresponding to a relevant step in the spectrum. On the other hand, if the
network is highly homogeneous, without a well pronounced community structure, this
kind of reasoning might be of little help. In these cases the number of eigenvalues to be
taken is highly arbitrary.

2.2.1 Ratiocut and Ncut approximations

The idea of spectral clustering might be used to solve relaxed versions of the Ratiocut
and Ncut problems of section 2.1. The general idea for the Ratiocut and k = 2 is the
following. First, it can be shown [35] that the measure to minimize 2.3 can be expressed
in a matrix form through the Laplacian matrix as

RatioCut(A, Ā) =
1

|V |
f ′Lf (2.5)

where A and Ā are generic partitions of the graph into two complementary subsets, and
f is an indicator matrix such that

fi =

(
|Ā|
|A|

) 1
2

if vi ∈ A

−
(
|A|
|Ā|

) 1
2

if vi ∈ Ā
. (2.6)

The minimization of the Ratiocut is thus expressed in an equivalent discrete optimiza-
tion problem that involves the Laplacian matrix quadratic form with partition indicator
vectors. The relaxation consists in allowing the entries of the indicators vector to take
also real values, turning the NP hard problem into a tractable optimization problem.
The solutions of 2.5 are given by the Laplacian eigenvectors. Since we are considering
the case k = 2, the solution is given by the Fiedler vector ~v1. Its components are thus
indicators of the two partitions. Analogously to the spectral clustering, from the com-
ponents of the Fiedler vector it is possible to retrieve the two partitions simply applying
the sign function or, better, employing the k-means algorithm.

More generally, spectral clustering includes all the kind of techniques that allow
to partition the network into communities by mean of the eigenvectors of matrices.

4This problem is common to the most used clustering technique, cut-based partitioning included.
Hierarchical clustering is an exception [25]

2.3. MODULARITY 27

Traditionally it is used as a data clustering technique. Given a set ofN objects, a pairwise
similarity matrix S is defined, such that sij ≥ 0. The similarity matrix can be interpreted
as the adjacency matrix of a graph over the data set. Computing the corresponding
Laplacian matrix (unormalized or normalized), the general idea is to transform the initial
objects into a set of points in a metric space, whose coordinates are the components of
the Laplacian eigenvectors. The change of representation induces by the eigenvectors
makes the cluster structure of the system more evident.

2.3 Modularity

A network with random connection, like the Erdős–Rényi model, is not expected to have
a community structure. Thus one might define network communities as groups of nodes
with a denser connectivity than the one expected from a pure random structure. This
is the idea on which the modularity function introduced by [41] is based.

First, we need the number of edges running between nodes belonging to the same
community Ci, that is given by∑

edges(i,j)

δCiCj =
1

2

∑
ij

AijδCiCj (2.7)

where the factor 1/2 is due to the double counting of nodes pairs. To find the expected
number of edges within a groups of nodes if the connections were random, we need first
to define a null model. The mostly used one consists in making the connections random
but keeping the nodes degree distribution. Thus, consider a particular edge attached to
a node i with degree ki. The probability that the other end of this edge is a node with
degree kj is

kj
2M−1

≈ kj
2M

for large networks, where M is the total number of edges in
the network. Considering all the ki connection of node i, the expected number of edges
between nodes i and j is

kikj
2M

. since the edges are places independently one from each
other. The expected number of links between nodes of the same community is

1

2

∑
ij

kikj
2m

δCiCj . (2.8)

Subtracting 2.8 from 2.7 and normalizing with the total number fo edges we get to the
definition of modularity

Q =
1

2M

∑
ij

(
Aij −

kikj
2M

)
δCiCj . (2.9)

Modularity equals to 0 if the whole graph is in a single community, since the two con-
tributions in 2.9 is equal and opposite. Conversely, if each node is in its own cluster,
Q < 0, since the first term vanishes. Otherwise, modularity is always smaller than 1.

2.3. MODULARITY 28

Since higher values of modularity imply a better clustering of the network, several
algorithms have been proposed to retrieve a network partitioning optimizing the mod-
ularity value. However, the number of possible configurations is huge, and it has been
proven than modularity optimization is a NP hard problem [8]. Several strategies have
been proposed, among which the algorithm [11], that will be used in chapter 4. Mod-
ularity maximization also admit a spectral optimization analogue [39]. Similarly to the
spectral clustering of section 2.2, the eigenvectors of the modularity matrix, defined as
Bij = Aij − kikj

2m
, are used to solve a relaxed version of the modularity optimization

problem.
Finally, it is worth mentioning that modularity is also used as a simple heuristics to

benchmark the efficiency of other clustering methods [16].

Chapter 3

Dynamic based clustering

In the previous chapter we have introduced the main traditional clustering methods
for undirected networks. As seen, they basically rely on the edges density in order to
partition a network, given the desired number of partitions. Thus, they exclusively take
into account the structure of the network, its composition as represented by the adjacency
matrix, disregarding eventual processes running on top of them. The topology of a graph
greatly influences the characteristics of the dynamical process, but alone it is not able
to describe it [47].

Instead of finding communities of nodes based on their connectivity, one might be
interested in finding a coarse-grained description of the network based on the dynamical
properties of the process occurring on top of it. The idea is that structural communities
of chapter 2 are replaced by group of nodes that evolve in a similar fashion, forming
building blocks for the dynamics description. Finding a dynamically relevant coarse-
grained description of a graph has gained a lot of interest recently in network science [16]
[45]. Of course, the particular cluster definition to be used depends on the dynamical
features of the system. For instance, nodes communities might be defined as groups of
nodes in which a random walker remains trapped for a relatively long time [44] (more
on this in the following section). Analogously, for oscillating systems (like the Kuramoto
model for neuronal activity [32]) communities might be identified as groups of nodes that
synchronize first [3]. In both cases, one quantifies nodes similarities by variables that
depends both the dynamics and the underlying graph topology.

Using the above mentioned point of view, it is implicitly assumed that the network
connections are fixed in time. Other than studying the network structure and the dynam-
ics occurring, a third situation might arise, that is a graph whose structure has its own
dynamical properties. In other words, one might in principle consider evolving networks
(also called temporal networks), in which the graph is subject to a structural dynamics
over time. For instance, these kind of networks are used to describe social interactions,
that are subject to time evolution. The evolving nature of the graph makes the study of
the dynamical processes much harder than the static counterpart [29].

29

3.1. SPECTRAL CLUSTERING AND DIFFUSION PROCESSES 30

The evolution of the graph might also reflect the dynamics taking place on it. For
instance, in neural networks model the weights of the links (synapses) change accordingly
to the activity of the nodes (neurons) connecting them. This is the mechanism used to
describe neural plasticity and learning [30]. Therefore, this situation the system is also
characterized by an influence of the dynamics over the structure, and not only the other
way round.

For the rest of this script, the focus is on time fixed networks on which a diffusion
process is taking place. Given a particular graph, we look for partitions that are aligned
with the dynamical process. The present chapter contains the original results of this
thesis work, i.e. a novel method for partitioning a network on which a diffusion dynamics
is taking place. We start by reviewing the spectral clustering method of section 2.2 from
a dynamical point of view, further explaining how it can be exploited to effectively
reduce the dimensionality of the network. Afterwards, in section 3.3, we briefly describe
a generalization of the diffusion processes on networks introduced in 1.5, that will be
used for all the subsequent sections.

3.1 Spectral clustering and diffusion processes

In section 1.5 the Laplacian matrix was used to describe diffusion processes on networks,
given its correspondence with the continuous Laplacian operator. The solution 1.22 that
we rewrite

~p(t) =
∑
λ 6=0

cλe
−λt~vλ + ~ps (3.1)

depends of the spectrum of the Laplacian matrix. From 3.1 we see that each eigenmode
of the Laplacian matrix decay with its own characteristic time scale that equals to

τk =
1

λk
for k = 1, . . . , N (3.2)

excluding the kernel component that of course it is not involved in the diffusion process
and remains constant throughout the transient. Hence, if there are big gaps between
some eigenvalues, the system will show a time scale separation between the relaxation
times of the corresponding eigenmodes.

The traditional spectral clustering technique relies on the fact that the Laplacian
matrix spectrum holds topological information about the network. As explained in sec-
tion 2.2, spectral clustering can be justified by means of a perturbation theory approach.
First, one starts with a graph with k disconnected components, for which {λi}i=0,...,k = 0
and the corresponding eigenvectors are each a indicator of one connected component.
Then the network is perturbed adding weak connections between the components. The
kernel of L is not anymore degenerate, but still the first k eigenvectors can be used

3.2. COARSE-GRAINED NETWORK 31

to retrieve k distinguishable partitions of the graph, whereas eigenvectors with higher
energies correspond to normal modes inside each of the k communities found.

Since the method itself do not provide the optimal number k of eigenvectors to be
used, one usually uses a heuristic approach and look for the presence of a gap in the
spectrum of L. In the particular case in which the Fiedler value λ1 is big, the network
can be naturally partitioned into two communities of densely connected nodes.

From equation 3.1 it is possible to justify the spectral clustering method also from
a dynamical point of view. Consider again a graph featuring a big gap in the spectrum
of L between the eigenvalues λk and λk+1. From 3.20 we see that for a diffusion process
(or a random walker) the eigenmodes greater than λk, that correspond approximately
to normal modes inside the communities, reach equilibrium first. After t = 1/λk+1

also the eigenmodes between the communities start decaying, leading the system to a
uniform solution over the whole network. The slower the relaxation of the eigenmodes
{λ1 . . . λk} is, with respect to the higher ones (i.e. the higher is the gap λk+1 − λk),
the more the k communities are well separated one from the other. In this case, the
eigenmodes {λk+1, . . . , λn} are negligible for t > 1/λk+1, and the system can be described
in a coarse-grained manner by the first k eigenmodes. Therefore, {λ1 . . . λk} form an
invariant subspace valid after the time scale 1/λk+1, i.e. after the eigenmodes internal to
the clusters have decayed. This lower dimensional dynamical description is thus strictly
associated with localized substructures of the graph.

This is an example about how the topology of the network influence the dynamics
taking place on it. In this particular case, the connections is due to the double role of L,
that holds information both about the topology of the graph and the diffusion dynamics
taking place. We mention that L plays a similar role also for synchronization processes
[37]. In the following section, the idea of an effective lower dimensional description of
the diffusion process is formalized using perturbation theory.

3.2 Coarse-grained network

As mentioned in section 1.6, the eigenvalues of the Laplacian matrix can be interpreted
as the energies of the normal modes of a spring-mass system. In this analogy, the nodes of
the network are the masses and the edges corresponds to the springs, with elastic constant
equal to the edges weights wij. If the masses are all equal, the system dynamics is
governed by the unnormalized Laplacian matrix, with equation 1.28. Lower eigenmodes
represent oscillations that spread through the whole network, like the Fiedler vector.
Higher eigenmodes corresponds to oscillations of high energy, and they are localized on
the edges with higher weights [28]. These are the only eigenmodes energetic enough
to generate a dipole change on those strongly connected nodes, i.e. they are able to
distinguish them, moving them away one from the other. Moreover, according to the
discussion of the previous section, these are the eigenmodes that relax faster in a diffusion

3.2. COARSE-GRAINED NETWORK 32

process. On the other hand, lower eigenmodes perceive those strongly connected nodes
effectively as a single entity.

Thus one can think of a procedure in which two strongly connected nodes are glued
together. This means that the weight of their connection wkh diverges and the state
of the two node, as seen by the lower eigenmodes, is exactly the same. Moreover, the
corresponding eigenvalue should tend to infinity, implying that more and more energy
is required to move those nodes apart. In this way, the dimensionality of the network is
reduced from N to N − 1 effective degrees of freedom.

Iterating this procedure, one can further reduce the dimensionality of the network.
Generally, the collapsing procedure means to perform a limit λ→∞ of the eigenvalues
that are associated to the eigenvectors that distinguish the nodes in a small spatially
confined community. The idea is that monitoring only the reduced network one could
get relevant information on the state of the whole graph, since each monitored node
should represents the other nodes that were collapsed to it, keeping the dynamics under
control. As already mentioned, this reduced version of the graph is also called coarse-
grained graph 1.

This reduction procedure is therefore a large scale map from a graph to a smaller
one, and it helps to unveil properties of the graph making its study easier, specially if
it preserves the eventual dynamics defined on the original graph. That is, one usually
looks for a coarse-grained graph that form a reduced model of the dynamics taking place
on the original network, in which blocks of nodes are aggregated to single nodes whose
dynamical function is similar.

However, it is necessary to study what happens to the other eigenvectors and eigen-
values, i.e. we need to check if (part of) the spectrum of the Laplacian matrix is preserved
under this coarse-graining procedure. The more they are dissimilar and the more the
procedure is losing information about the original network. This is what we are going to
do using a perturbation approach [5].

Consider an edge, say (kh) and increase its weight wkh

wkh −→ w′kh = wkh + γ with γ > 1. (3.3)

The corresponding Laplacian matrix change reads

L −→ L′ = L+ γδL

with

δLij =

{
1
2

for i = j = k or i = j = h

−1
2

for i = k, j = h or i = h, j = k.

1If in the reduced network there are nodes belonging to the original one, this procedure is also called
network down-sampling [49]

3.2. COARSE-GRAINED NETWORK 33

Thus, δL is a Laplacian matrix with eigenvectors

λ = 1 =⇒ ~v =

0, . . . , 0, 1/
√

2︸ ︷︷ ︸
k

, 0, . . . , 0,−1/
√

2︸ ︷︷ ︸
h

, 0, . . . , 0

T

and for the invariant subspace with λ = 0, a possible basis choice might be

λ = 0 =⇒ ~uλ =

(1, 0, . . . , 0)T

(0, 1, . . . , 0)T

...0, . . . , 0, 1/
√

2︸ ︷︷ ︸
k

, 0, . . . , 0, 1/
√

2︸ ︷︷ ︸
h

, 0, . . . , 0

T
. (3.4)

We will call ~v dipole, since it represents the above mentioned high energy eigenmode
that is able to distinguish the two strongly connected nodes. Notice that δLij ≡ Π

‖
ij is a

projector on the subspace generated by the dipole vector ~v. Defining

ε =
1

γ

the equation for the Laplacian perturbation becomes

L′ij = Lij + ε−1δLij with ε→ 0. (3.5)

As explained above, the idea is to study how the procedure γ →∞, (ε→ 0), changes the
network properties. Of course, we cannot use a perturbative approach on the Laplacian
matrix L. Thus, since ε → 0, we might perform a perturbative approach considering
δLij as the unperturbed part and Lij as the perturbation. Therefore, the eigenvalues
equation for the Laplacian perturbation δL is given by(

εLij + Π
‖
ij

)
(vj + εδvj) = (1 + εδλ) (vi + εδvi) (3.6)

where we have written explicitly the perturbation parameter ε. Recalling that Π
‖
ijvj =

δLvj = vj, and that vi = 0 for i 6= k, h we get to

Lij (vj + εδvj) + Π
‖
ijδvj = δλvi + (1 + εδλ)δvi.

Projecting the above equation to the N − 1 dimensional subspace of the eigenvectors
with λ = 0, i.e. the subspace orthogonal to the dipole, we get

Π⊥Lij (vj + εδvj) + Π⊥Π
‖
ij︸ ︷︷ ︸

=0

δvj = δλΠ⊥vi︸ ︷︷ ︸
=0

+(1 + εδλ)Π⊥δvi

3.2. COARSE-GRAINED NETWORK 34

and thus
Π⊥Lij (vj + εδvj) = (1 + εδλ)Π⊥δvi. (3.7)

Since Π
‖
ijvj = vi, projecting the same equation in the subspace parallel to the dipole and

setting Π‖δvi = 0, we obtain
δλvi = Π‖Lijvj.

Performing the scalar product with vi, since it is normalized to 1, we get to

δλ = viΠ
‖Lijvj.

From equation 3.7, one easily gets

δvi =
Π⊥Lij

1 + εδλ
(vj + εδvj) (3.8)

that defines iteratively the perturbation δvi of the dipole eigenvector. Since the subspace
with λ = 1 is one-dimensional, the perturbation to the dipole must be perpendicular to
the dipole itself. If ε is small compared to the norm of L we have that the solutions
exists and it is given by

lim
ε→0

δvi = Π⊥Lijvj (3.9)

The limit ε → 0 means that the edge weight wkh → ∞, i.e. the two nodes k and h
becomes infinitely coupled. Equation 3.9 tells us that the perturbation of the dipole
eigenvector, in the limit of an infinite elastic constant wkh is given by the projection on
the dipole space of Lijvj, i.e. the image of the dipole eigenvector through the Laplacian
matrix Lij, here considered to be a perturbation to the dipole. Equation 3.9 is therefore
a residual coupling, that has no effect on the dynamics, between the the two nodes k
and h and the rest of the network,

Considering the eigenvalues equation for the other eigenvectors of δLij (equation 3.4
with λ = 0). We can choose N − 1 independent arbitrary vectors belonging to that
subspace. We have that(

εLij + Π
‖
ij

)
(uj + εδuj) = εµ (ui + εδui)

and, since the subspace with λ = 0 is N − 1 degenerate, we take δuj = αvj, thus getting
to (

εLij + Π
‖
ij

)
(uj + αεvj) = εµ (ui + αεvi)

and recalling that Π
‖
ijuj = 0 and Π

‖
ijvj = vi we obtain

Lijuj + α (vi + εLijvj) = µui + εαµvi. (3.10)

3.2. COARSE-GRAINED NETWORK 35

Like before, we project this equation on the subspace perpendicular and parallel to the
dipole vector. In the first case we have

Π⊥Lijuj + αΠ⊥vi︸ ︷︷ ︸
=0

+εαΠ⊥Lijvj = µΠ⊥ui︸ ︷︷ ︸
=µui

+ εαµΠ⊥vi︸ ︷︷ ︸
=0

from which using (Π⊥)2 = I and Π⊥ui = ui we get to

Π⊥LijΠ
⊥uj = µui − εαΠ⊥Lijvj. (3.11)

For the component parallel to the dipole we have

Π‖Lijuj + αΠ‖vi︸ ︷︷ ︸
=αvi

+εαΠ‖Lijvj = µΠ‖ui︸ ︷︷ ︸
=0

+ εαµΠ‖vi︸ ︷︷ ︸
=εαµvi

and finally performing the scalar product, recalling that
∑

i v
2
i = 1, we get

α(1− εµ) = −viLij (uj + εαvj) (3.12)

The system of equations 3.12 and 3.11{
Π⊥LijΠ

⊥uj = µui − εαΠ⊥Lijvj

α(1− εµ) = −viLij (uj + εαvj)
(3.13)

defines how the Laplacian properties of the reduced network are related to the original
one. The second equation determines the parameter α. The first equation defines the
Laplacian matrix of the reduced graph, that is therefore given by

Lij → Π⊥LijΠ
⊥. (3.14)

We use the letter σ to defined the eigenvalues of Π⊥LijΠ
⊥ (in the subspace perpendicular

to the dipole), and they are given by

σ := µ+ εδσ

where the correction εδσ is due to the term εαΠ⊥Lijvj. The eigenvectors of Π⊥LijΠ
⊥

are uσ with uσ := u + εδuσ where the correction δuσ lies in the subspace perpendicular
to the dipole δuσ ⊥ u. Considering the case σ = 0, in the limit ε → 0 we recover the
new stationary solution, that is orthogonal to the dipole vector ~v.

If during the limit ε→ 0 (that is the weight wkh →∞) two eigenvalues of Π⊥LijΠ
⊥

are perturbed enough becoming a single degenerate eigenvalue, the perturbation ap-
proach might break down. In this case in fact, a two dimensional invariant subspace is
created, and any couple of independent vectors belonging to this subspace is an eigenvec-
tor base for the corresponding eigenvalue. Therefore the perturbation approach diverges

3.3. DIFFUSION MODEL WITH FORCING 36

(the denominator is λ− µ), signaling that it loses control about the eigenvector in that
subspace. Therefore, in the limit ε→ 0, the spectrum of Π⊥LijΠ

⊥ may encounter bifur-
cations, i.e. two eigenvalues that become degenerate and then cross each other. In this
case the spectral properties of the reduced graph Laplacian Π⊥LijΠ

⊥ may be different
from the ones of the original matrix L. Thus one need to keep the bifurcations under
control, that means taking to infinity only those weights that are high enough.

Notice that the projection operator Π⊥ can be represented by a N − 1 × N matrix
whose rows are the eigenvectors 3.4. Therefore, it acts on a vector leaving unchanged
its components different from k and h, while it mixes the sub-spaces of nodes k and h,
summing them. This corresponds to the single entity generated by taking the weight
wkh to infinity, i.e. a node that behaves effectively like the sum of the two original
nodes k and h. The analogy with a spring-mass system (explained in section 1.6), can
give further physical insights. In fact, the reduced Laplacian matrix Π⊥LijΠ

⊥, that is
N−1×N−1 dimensional, represents a network similar to the original one, with the only
difference that the nodes k and h are replaced by a single node, with double the mass
of the original nodes (that were taken to be the same, since we used the unormalized
Laplacian matrix), and whose connections (springs) with the rest of the network are the
sum of the original connections of nodes k and h.

Once this procedure has been performed, i.e. a partitioning of the network is estab-
lished, one might be interested in applying a control or observation procedure on the
graph, in which all the nodes of the reduced network have to be monitored. A local
perturbation can be identified if it changes the state of one or multiple nodes of the
reduced network.

We mention that if the reduced network is generated looking for external equitable
partition, it is also called quotient graph. In this particular case, the spectral properties
of the Laplacian matrix are preserved [42].

3.3 Diffusion model with forcing

Consider the following master equation

ṗi =
∑
j

(wijpj − wjipi) + si = −
∑
j

Lijpj + si (3.15)

that is a generalization of 1.20 with the adding a forcing term si. Like previously, we will
call wij ≥ 0 weights or transition rates for the link (i, j) and pi will be called potential (or
signal) and it quantifies the concentration of the diffusing substance on node i. According
to the system under study, the physical interpretation of ~s may vary. If equation 3.15
describes a heat diffusion process, the forcing represents the generation of internal heat.
For a spring-mass system, we already encountered this equation in section 1.6, since it
was obtained enforcing the position of some masses. For an electrical network, ~s may be

3.3. DIFFUSION MODEL WITH FORCING 37

interpreted as an imposed current. Finally, for social sciences, the above equation may
describe an opinion dynamics, and the forcing is related to stubborn agents [20].

As already noted in section 1.5, wijpj represents the transition rate from node j to
node i. Thus

Qij = wijpj − wjipi = wij(pj − pi) (3.16)

is the net flux on the edge (i, j). If Qij > 0 we have a flux from j to i, if less than zero
the flux direction is the opposite.

Qi :=
∑
j

Qij = −
∑
j

Lijpj

is the net flux on node i due to the diffusion exchange with adjacent nodes. Qi is
greater than zero if there is a net incoming flux to node i, whereas is less than zero
if it outgoing. The forcing si thus represents the presence of local sources and sinks
that define the boundary conditions and the constraints of the transport system. si > 0
means that the node acts as if it is a source, i.e. it produces the quantity that flows in
the network, si < 0 as a sink of the system, i.e. it consumes. We will call the si demands
or loads of the network.

Therefore, equation 3.15 says that the time variation of pi is given by the net flux on
node i, due both to network exchanges and the external load: if the net flux is positive,
the pressure will increase, conversely it will decrease if it is negative.

In order for the system 3.15 to relax to a stationary condition, we require that the
forcing belongs to the invariant subspace of the matrix L, given by Span{~v1, . . . , ~vN}.
As seen in 1.2, for a connected graph (λ2 > 0) the image of L consists of all vectors that
are orthogonal to the vector ~1), i.e. we require that∑

i

si = 0. (3.17)

The physical meaning of 3.17 is that we do not want a total net incoming or outgoing
flux in our system, i.e. we are considering a micro-canonical ensemble If

∑
i si > 0 we

would indefinitely load our system, leading to an infinite solution. If
∑

i si < 0 we would
eventually completely unload our system, leading to a zero solution. Thus s must not
have components in the kernel of L. According to the physical interpretation that we
give to the forcing si, we can either intend the condition 3.17 as a property of the forcing
or as if the system is closed. It is possible a decomposition of the forcing into dipole
couples s~eij where the vectors ~eij are the canonical base of the subspace (3.17

~eij = (0, .., 1i, ..,−1j, ...0). (3.18)

From linear systems theory, we know that the complete solution of 3.15 is given by
the exponential decay (since all the eigenvalues of L are positive). Therefore using the

3.3. DIFFUSION MODEL WITH FORCING 38

spectral decomposition of the Laplacian matrix

L =
n∑
λ 6=0

λ~vλ~v
>
λ (3.19)

the solution reads
~p(t) =

∑
λ 6=0

cλe
−λt~vλ + ~ps (3.20)

where ~vλ are the Laplacian eigenvector ~ps is the average stationary solution and the
coefficients cλ are determined by the initial conditions

~p(0) =
∑
λ 6=0

cλ~vλ + ~ps. (3.21)

For t → ∞ the first term decay to zero ∀λ, and for any initial condition the system
relaxes to the stationary solution ~ps, that is given by

L~ps = ~s (3.22)

from which we recover the condition 3.17∑
i

si =
∑
i

∑
j

Lijp
s
j =

∑
j

psj
∑
i

Lij = 0 (3.23)

The stationary condition 3.25 is solved by the pseudoinverse (or generalized inverse)
L+[6] of the Laplacian matrix 2

~ps = L+~s (3.24)

or more explicitly, from the knowledge of the spectral properties of the matrix L, we
write the solution in the form

psi =
∑
λ 6=0

sλi
λ

+ p0
i (3.25)

where sλi are the components of the forcing on the eigenvector vλ and v0 = 1
N

(1, . . . , 1) is
the normalized null eigenvector of L. From 3.25 we note that without the forcing term
we recover the standard diffusion solution of section 1.5, given by the kernel of L.Thus,
taking s satisfying 3.17 the problem is well posed, but the solution is not unique. We can
add an arbitrary kernel component (i.e. uniform vector) to ~ps and 3.25 is still satisfied.
This situation is analogue to the ground choice for the voltages of an electrical system.

2The pseudoinverse of the Laplacian matrix has found applications in theoretical chemistry and in
resistor networks to define the effective resistance between two nodes, when each edge is a resistor of
unit resistance [22]. It can be shown that the effective resistance is a distance metric on the graph and
a robustness metric for diffusion processes [54]

3.3. DIFFUSION MODEL WITH FORCING 39

Thus one might add a further constraint, like
∑

i(p
s
i)

2 = 1 or
∑

i p
s
i = 0, to get a unique

solution. With the latter choice, the stationary solution lies in the same subspace of the
forcing si and thus can be decomposed with the same basis 3.18.

Equation 3.25 shows as the stationary solution is insensitive to the changes of the
forcing si along the eigenvectors with λ� 1. Indeed, as explained for 3.2, the eigenvalue
λ−1 defines the reaction time scales of the system to the external changes. Therefore
when λ � 1 the system is insensitive to small changes in the forcing component along
the corresponding eigenvalue.

From 3.15, we see that when the system reaches the stationary state

L~ps = ~s

the following condition is satisfied∑
j

(wijpj − wjipi) + si = 0

that can be rewritten as

psi =
si +

∑
j wijp

s
j

di
(3.26)

which is similar to the equation 1.25, but with the adding of the forcing term si. Never-
theless, 3.26 generalizes the harmonic condition 1.25 to the case of an external forcing.
Equation 3.26 can also be interpreted as a measure of the influence of the state j on
the state i, and it depends on the fluxes between the nodes. Then one expects that psi
increases when si increases, according to the sum of the incoming flows. The connectiv-
ity di at denominator plays the role of an inertial term. Therefore the state of highly
connected nodes is more robust.

From 3.26, we observe that when one of the flux is dominant with respect to the
others, say wikpk, we have a causality relation between the nodes i and k. Therefore, a
change in node i implies that a change occurred in the node k. The idea of the proposed
clustering method is to point out these causality relations and exploit them to monitor
the network state only through a subset of nodes. Therefore, we want to achieve a
coarse-grained graph, like the one explained in section 3.2, but taking into consideration
also the dynamics of the network, that in this case is governed not only by the Laplacian
matrix but also by the forcing si.

To find these causality relation, our approach is to define a stochastic process that
influence the network state ~p, making it fluctuate δ~p, and then computing a similarity
function between the nodes fluctuation. Since the system is linear, we expect these rela-
tions to be linear as well. Therefore, the similarity function used will be the correlation
coefficient, that as known captures the linear relation between the variables.

The correlation matrix is then used to define the communities among the node. Since
the nodes in a single cluster are correlated, the knowledge of a single node state gives

3.4. EXTERNAL FORCING PERTURBATION 40

information on the state of the others. Therefore, we propos the following procedure to
observe the state of the network through a subset of nodes. First, we locate the most
correlated nodes (in particular couples of correlated nodes). Secondly, we perform a
clustering procedure where we join together correlated nodes and put a single sensor for
each cluster (according to some criterion) and on the isolated node (not belonging to
any cluster). There are several ways to extract a network partitioning starting from a
similarity matrix, like the correlation matrix. They will be discuss in the next chapter.
Nevertheless, the clustering procedure can also be performed simply by using a ranking
in the correlation matrix, therefore ordering the nodes from the most correlated ones.

Once the network is partitioned and the sensors are placed, we want to study if
a single-edge failure occurring wherever in the network can be localized by the sensor
signals. Assuming that edge-failures have mainly local effect, the state change of a
single sensor (whereas the others are not affected) would suggest that the perturbation
is localized in the cluster that sensor node represents. Conversely a change that involves
more clusters would suggest the the perturbation is located at the border area, called
edge boundary, that is the set of edges that cross two clusters.

To apply this procedure, we first need to find the mentioned correlation matrix of
nodes fluctuations. In order to do so, one can think of different stochastic processes.
In particular, we consider two kind of processes. Firstly, we obtain a correlation ma-
trix perturbing the system with an external noise, i.e. a noise applied to the forcing
si. Secondly, we will consider a noise intrinsic to the structure of the network, i.e. a
perturbation directly applied to the Laplacian matrix L + δL. In the following section
we start describing the results of the first method.

3.4 External forcing perturbation

First of all, we compute how the system react if to the time-constant forcing ~s of the
system we add a fluctuation term ~ξ(t), which represents the effects of environmental
fluctuations. Equation 3.15 thus becomes

ṗi =
∑
j

Lijpj + si + ξi(t). (3.27)

According to the idea explained in the previous section, our aim is now to compute
the correlation matrix for the fluctuations of the system variable pi with respect to
its stationary solution 3.25. This correlation function will not properly depend on the
dynamics of the system, but nevertheless its encompass the general idea underlying the
proposed method of section 3.5).

In order to satisfy the solvability condition 3.17, we need to add the following con-
straint ∑

i

ξi(t) = 0 ∀ t.

3.4. EXTERNAL FORCING PERTURBATION 41

This kind of noise can be simulated considering N normalized independent variables ηi(t)
and subtracting from each of them their arithmetic average for each time

ξi(t) =
ηi(t)√

∆t
− 1

N

∑
k

ηk(t)√
∆t

where ∆t ≡ t′ − t is the evolution time step. Further, we require each ηi(t) to have zero
average and be statistically independent form the others

E[ηk(t)] = 0 E[ηk(t
′)ηh(t)] = δkhδt′t

thus the mean and covariance of the noise ξi follow in a straightforward manner

E[ξi(t)ξj(t
′)] =

1

∆t

(
E[ηi(t)ηj(t

′)]− 1

n

∑
k

E[ηi(t)ηk(t
′)]

− 1

n

∑
k

E[ηj(t
′)ηk(t)] +

1

n2

∑
kh

E[ηk(t)ηh(t
′)]
)

and computing ∑
k

E[ηi(t)ηk(t
′)] =δtt′

∑
k

δik = δtt′∑
kh

E[ηk(t)ηh(t
′)] =δtt′

∑
kh

δkh = Nδtt′

we get to the following statistical properties for the noise variables ξi(t) (for ∆t→ 0)

E[ξi(t)] = 0 Cij := E[ξi(t
′)ξj(t)] =

(
δij −

1ij
N

)
δ(t′ − t). (3.28)

We remark that the covariance matrix 3.28 satisfies∑
j

Cij = 0

and thus it has the same invariant subspace 3.17 of the Laplacian matrix L. Cij is in
fact a projector to that subspace, as can be simply verified by

∑
i

(∑
j

Cijvj

)
=
∑
i

(
vi −

1

n

∑
j

vj

)
= 0.

Restricted to the subspace 3.17, the covariance matrix 3.28 reduces to the identity matrix
Cij = δij. This is a consequence of having choose the fluctuations ξi to have vanishing

3.4. EXTERNAL FORCING PERTURBATION 42

kernel component. Since the fluctuations of the forcing due to the external noise produce
corresponding fluctuations of the system state, we also expect the fluctuations δpi to have
no components in the kernel of L. Thus expanding perturbatively around the stationary
state

pi(t) = psi + δpi(t) (3.29)

the master equation (3.27) reduces to

δṗi = −
∑
j

Lijδpj + ξi(t). (3.30)

Being ξi(t) a white noise, the equation above describes a multidimensional Ornstein-
Uhlenbeck process [53]. Writing 3.30 in the eigenbasis of L

δ~p =
∑
λ

δpλ~vλ and ~ξ =
∑
λ

ξλ~vλ

we get
δṗλ = −λδpλ + ξλ for λ 6= 0

δṗ0 = ξ0 = 0 for λ = λ0 = 0

hence, since the noise ξ has no component in the kernel of the matrix L, also the fluctu-
ations δpi belong to the invariant subspace 3.17, like stated previously. If we had ξ0 6= 0,
the time evolution of δp0 would be given by a Wiener process [19]: thus we would not
have a bounded stationary state.

The formal solution of 3.30 can be written in the form

δpi(t) =

∫ t

0

e−Lij(t−u)ξj(u)du (3.31)

where we want to perform the limit t→∞. To study the causality relations among the
nodes we need to compute the stationary covariance matrix restricted to the subspace
(3.17), where L is invertible (fixing t < s)

E[δpi(t)δpj(s)] =

∫ t

0

du

∫ s

0

du′e−Lik(t−u)e−Ljh(s−u′)Ckhδ(u− u′)

=

∫ t

0

dte−Lik(t−u)e−L
T
kj(t−u) (3.32)

and taking the limit t→∞ we get

E[δpiδpj] := lim
t→∞

E[δpi(t)δpj(t)] =

∫ ∞
0

dte−Likte−L
T
kjt. (3.33)

3.4. EXTERNAL FORCING PERTURBATION 43

Using Dirac notation, we decompose L is its eigenbasis

L̂ =
∑
λ 6=0

|vλ〉λ 〈vλ|

and correspondingly

L̂T =
∑
λ 6=0

|v̄λ〉λ 〈v̄λ|

where v̄λ denotes the dual base with respect the eigenvector base vλ. Thus we have that

eL̂ =
∑
λ 6=0

|vλ〉 eλ 〈vλ|

and equation 3.33 becomes

E[δp2] =
∑
λ,µ 6=0

|vλ〉 〈vλ|v̄µ〉 〈v̄µ|
∫ ∞

0

e−(λ+µ)t

=
∑
λ,µ 6=0

1

λ+ µ
|vλ〉 〈vλ|v̄µ〉 〈v̄µ| .

In the general case 〈vλ|v̄µ〉 = Gλµ is the inverse of the metric matrix of the eigenvector
base, whereas in the case of a symmetric matrix (undirected network) we have that
〈vλ|v̄µ〉 = δλµ and the expression reduces to

E[δpiδpj] =
∑
λ 6=0

1

2λ
|vλ〉i j〈v

λ|. (3.34)

Hence, in the symmetric case, the covariance between two nodes i and j increases if
the eigenvector vλ do not distinguish between the two nodes (i.e. it has the same sign
and similar values on both of them), whereas we have a negative contribution if the two
eigenvectors distinguish the nodes. This result is similar to the idea of spectral clustering
explained in section 2.2, with the physical intuition of a spring-mass system of section
1.6. Lower eigenvalues, corresponding to less energetic oscillations of the network, have
components with the same sign on large sections graphs, corresponding to the large
scale structure of the network. Higher eigenvalues corresponds to energetic oscillations,
that are able to move in opposite directions (creating a ”dipole”) also nodes connected
by strong edges. Because of the factor λ−1, higher eigenvectors contribute less to the
covariance matrix, i.e. it is largely determined by small eigenvalues, emphasizing the
mesoscopic scale of the network. The correlation matrix reads

C[δpiδpj] =
E[δpiδpj]√
E[δp2

i]E[δp2
j]

3.5. LAPLACIAN PERTURBATION 44

and it thus defines the linear dependence among the nodes, i.e. how much the knowl-
edge of one node allows to forecast the behavior of another. We remark that whatever
multiplicative constant in ~ξ would have canceled out in the correlation matrix, playing
no role in finding the dependencies among nodes.

Before explaining of we perform a partition of a network using 3.33 (as explained in
more details in chapter 4), we turn to a different process through which we can compute
correlations among the nodes states.

3.5 Laplacian perturbation

The perturbation to the system studied in the previous section was an external noise,
meaning that it was not intrinsic to structure of the network. More importantly, the
resulting correlation function depends only on the spectral properties of the Laplacian
matrix, and it has no information about the forcing si, that influence greatly the dy-
namics.

The Laplacian matrix represents the links weights that define the fluxes among the
nodes. A change in the weights may represent a corresponding change in the graph
structure, but also mimics the effect of different dynamical conditions that alter the
transportation efficiency (i.e. congestion formation in traffic).

In order to obtain a result that carries more information about the dynamics taking
place on the network, a different kind of noise is needed. For this purpose, we now
introduce a perturbation to the Laplacian, as follows

~̇p = −(L+ δL)~p+ ~s (3.35)

in which we require that the perturbation preserves the Laplacian properties∑
i

δLij = 0 and δLij = δLji

consequently in δLij there are n(n− 1)/2 independent random variables. Recalling that
the Laplacian is defined as Lij = δijdj − wij, the perturbation translates directly in
fluctuations of the single weights, that we call δwij. Thus we can write

δLij(t) =

{
wijδwij(t) i 6= j
−
∑

k 6=iwkiδwki(t) i = j
(3.36)

or more compactly

δLij(t) =

[
wijδwij(t)− δij

∑
k

wkiδwki(t)

]
.

3.5. LAPLACIAN PERTURBATION 45

Notice that each noise variable δLij is proportional to the weights δwij, so that there are
no fluctuations to the entries of Lij that do not correspond to any edge in the original
network. We further require that the average and covariance of the variable weights δwij
satisfy

E[δwij(t)] = 0 ∀t
E[δwij(t)δwkl(t

′)] = (δikδjl + δilδjk)δ(t− t′)

where δ(t− t′) is a Dirac delta. These properties make the Laplacian fluctuations δL a
white noise

E[δLkl(t)δLhm(t′)] = Cklhmδ(t− t′) (3.37)

where Cklhm is the correlation tensor among the entries of δLkl: it takes care of its
Laplacian structure and contains the weights wij.

Perturbing directly the Laplacian, we see from the equation 3.35 that we get a noise
that is coupled with the system state ~p. Thus it is a multiplicative noise which is more
difficult to treat analytically. In order to solve the equation above, it would be necessary
to use results from random matrix theory [52]. These tools are necessary, for instance, in
case one wants to obtain the properties of the spectrum of L + δL. Since we are just
interested in 3.37 to compute E[δpiδpj], we can proceed in a more straightforward way
as follows.

Expanding perturbatively the state variable ~p, the equation above can be linearized,
turning the multiplicative noise into an additive noise, that is easier to deal with. Thus,
analogously to the previous section, we perform a perturbation expansion near the sta-
tionary state ~ps

~p = ~ps + δ~p

and recalling that L~ps = ~s we get

δṗi = −Lijδpj − δLij(psj + δpj). (3.38)

that is a master equation for the perturbations. Neglecting the higher order term
O(δLδ~p) we get

δṗi ≈ −Lijδpj − δLijpsj . (3.39)

that, since δL is a white noise, is again a multidimensional Ornstein-Uhlenbeck process.
The justification of the approximation 3.39 will be gievn in the following sections. Since
now the perturbation of the Laplacian acts on the system variable as an additive noise,
similarly to the external noise of the previous section

ξi → −δLijpsj . (3.40)

analogously to 3.31, equation 3.39 solution is

δpi(t) = −
∫ t

0

e−Lik(t−u)δLkl(u)psl du. (3.41)

3.5. LAPLACIAN PERTURBATION 46

To compute the covariance, we proceed as follows. Fixing t < s and making use of 3.37
we get

E[δpi(t)δpj(s)] =

∫ t

0

du

∫ s

0

du′e−Lik(t−u)e−Ljh(t−u′)E [δLkl(u)δLhm(u′)] psl p
s
m

=

∫ t

0

du

∫ s

0

du′e−Lik(t−u)e−Ljh(t−u′)Cklhmδ(u− u′)psl psm

=

∫ t

0

due−Lik(t−u)e−Ljh(t−u)Cklhmp
s
l p
s
m

and taking the limit for t→∞ we write

E[δpiδpj] := lim
t→∞

E[δpi(t)δpj(t)] =

∫ ∞
0

e−Likte−LjhtCklhmp
s
l p
s
mdt. (3.42)

To compute 3.42, we need the contraction of the tensor Cklhm with the stationary solution

Ckh := Cklhmp
s
l p
s
m = E[δLkl(t)δLhm(t)]psl p

s
m (3.43)

that is computed explicitly considering each entry of the Laplacian perturbation 3.36 as
follows. If k 6= h, we have that

Ckh =

−w2

khp
2
k for l = m = k,

−w2
khp

2
h for l = m = h,

w2
khpkph for (l = h and m = k) or (l = k and m = h),

0 otherwise

and summing we get to w2
kh(2pkph−p2

k−p2
h) = −[wkh(pk−ph)]2. Considering the diagonal

elements k = h of 3.36, we have

Ckk =

∑

i 6=k(wkipi)
2 for l = m 6= k,

p2
k

∑
i 6=k w

2
ki for l = m = k,

−pk
∑

i 6=k w
2
kipi (l = k and m 6= k) or (m = k and l 6= k),

0 otherwise

summing we get to
∑

i 6=k w
2
ki(p

2
k−2pkpi+p2

i) =
∑

i[wki(pk−pi)]2. Thus the whole tensor
is given by the following expression

Ckh =

{
−[wkh(pk − ph)]2 for i 6= j∑

i[wki(pk − pi)]2 for i = j
(3.44)

that has the Laplacian structure∑
k

Chk = 0 and Chk = Chk (3.45)

3.5. LAPLACIAN PERTURBATION 47

as it could be noted directly from its definition 3.43, being the contraction of a tensor
with the Laplacian properties and a symmetric tensors. We remark that the terms in
3.44 are the fluxes 3.16 through the edges. Containing terms that are the differences
between the stationary solution on adjacent nodes, the tensor Ckh holds information
about the smoothness variations of the signal throughout the network.

To compute the covariance of the fluctuations

E[δpiδpj] =

∫ ∞
0

e−Likte−LjhtCkhdt.

like in section 3.4, it is useful to expand the Laplacian in its eigenbasis

L̂ =
∑
λ 6=0

|vλ〉λ 〈vλ| L̂T =
∑
λ 6=0

|v̄λ〉λ 〈v̄λ|

and therefore we get

E[δpiδpj] =

∫ ∞
0

∑
λ,µ 6=0

|vλ〉i e
−λt

k〈v
λ|Ckh|v̄µ〉he

−µt
j〈v̄

µ| (3.46)

where we can solve directly the time-dependent part with∫ ∞
0

e−(λ+µ)t =
1

λ+ µ

getting to the final expression

E[δpiδpj] =
∑
λ,µ6=0

1

λ+ µ
|vλ〉i

[∑
k,h

k〈v
λ|Ckh|vµ〉h

]
j〈v

µ| (3.47)

where now we have written explicitly the sum over the vector indices k, h and we have
exploited the symmetry of the Laplacian. The term in the squared brackets

Sλµ :=
∑
k,h

k〈v
λ|Ckh|vµ〉h

is the scalar product between the eigenvector vλ and vµ, with a metric matrix given by
Ckh. Note that if the fluxes are all equal

wij(pi − pj) =
1√
N
∀(i, j) (3.48)

and the network is complete (there is an edge between all couples of nodes (i, j)) we have
that

Ckh =

{∑
i[wki(pk − pi)]2 = 1− 1

N
if k = h

−[wkh(pk − ph)]2 = − 1
N

if k 6= h
(3.49)

3.6. HIGHER ORDER TERMS 48

thus we recover the metric matrix

Ckh =

(
δkh −

1kh
N

)
(3.50)

and consequently

Sλµ :=
∑
k,h

k〈v
λ|Ckh|vµ〉h

=
∑
k,h

k〈v
λ|δkh|vµ〉h −

1

n

∑
k,h

k〈v
λ|1kh|vµ〉h

= δλµ

(3.51)

since the eigenvectors are orthogonal and their components sum to 1 (we are not consid-
ering the kernel here). Thus from 3.47 we recover the result of the previous section

E(δpiδpj) =
∑
λ6=0

1

2λ
|vλ〉i j〈v

λ|.

This is reasonable, since, as already noted, having linearized the multiplicative Laplacian
noise, we get an additive white noise like in the first method. The main difference is that
using the entries of L as white noise (i.e. the edges) and not the nodes like before, we are
now taking care of both the topology of the network and its dynamics. In the previous
method the structure of the network was present only implicitly through the spectrum
of L, not explicitly like now, and the dynamics (even if stationary) was totally absent.

3.6 Higher order terms

In the previous section, we have studied the correlations of the state variable ~p induced
by the Laplacian perturbation δL, taken to be a white noise. Neglecting higher order
terms δLδp in the master equation 3.38, we have obtained 3.39, that corresponds to a
Ornstein-Uhlenbeck process. This way, we were able to compute the covariance matrix
of the fluctuations 3.47.

However, we must justify the approximation 3.39. The whole expression 3.38, that
we rewrite for reference, is

δ̇pi = −Lijδpj − δLij(psj + δpj). (3.52)

and does not describe anymore an Ornstein-Uhlenbeck process. Thus we do not know
a priori if the variance of the fluctuations δp is finite. The formal solution is obtained

3.6. HIGHER ORDER TERMS 49

treating the term −δLij(psj + δpj) like a forcing to an homogeneous equation, getting to
the following

δpi(t) = −
∫ t

0

e−Lij(t−u)δLjk(u)δpk(u)du

−
∫ t

0

e−Lij(t−u)δLjk(u)pskdu (3.53)

that defines the perturbations δpi around the stationary solution iteratively through
the first integral, whereas the second part represents the stationary part of the process,
already studied in the previous section (equation 3.41).

Since δL is a white noise, its variance diverges, like in 3.37. Being unbounded,
it makes the terms in Lij (i.e. the weights wij) to become negative. This nonphysical
situation induces severe problems for the diffusion process studied. In fact, the Laplacian
eigenvalues might become negative, corresponding to unstable directions and turning
the exponential decay 3.20 that leads to the stationary solution 3.25 into an exponential
increase. Consequently, in this scenario the fluctuations δpi grow with time, higher order
term in 3.52 cannot be neglected, and the perturbation expansion would break down.

Thus, it is necessary to consider a process that describes limited perturbations δLij.
However, if the chosen stochastic process underneath δLij is limited, it cannot be delta-
correlated, i.e. we cannot choose δLij such that

E[δLij(t)δLkh(t
′)] = δtt′ (3.54)

otherwise the effect on the dynamics would be null and we wouldn’t be able to measure
any correlation of δpi. Thus we consider δLij to follow the already-mentioned Ornstein-
Uhlenbeck process

d

dt
δLij =

1

ε
δLij +

σijkh
ε1/2

ηkh(t) (3.55)

where ηkh contains n(n−1)/2 independent white noise variables (ηkh = ηhk and ηkk = 0),
and σijkh contains information about the weights of the network (that give the variance
of the process). Their product is given by

σijkhηkh = σijkhηhk =

[
wijηij − δij

∑
k

wkiηki

]

and has a Laplacian structure. The perturbation has the following form

δLij(t) = δwij(t)− δij
∑
k

δwki(t) (3.56)

3.6. HIGHER ORDER TERMS 50

where δwij(t) are stochastic variables whose statistical properties are now (for i 6= j and
k 6= h)

E[δwij(t)] = 0 ∀t
E[δwij(t)δwkh(t

′)] = (δikδjh + δihδjk)e
−(t−t′)/ε.

We remark that now δwij have bounded values to satisfy the constraint wij+δwij(t) ≥ 0.
Consequently, the Laplacian fluctuations δL have zero average

E[δLij(t)] = 0 ∀t

and, given the covariance of a Ornstein-Uhlenbeck process [53], it correlates like (for
sufficiently large t)

E[δLij(t)δLkh(t
′)] =

Cijkh
2

e−(t−t′)/ε (3.57)

where now Cijkh := σijlmσ
T
mlkh is the correlation tensor among the entries of δLkl: it

takes care of its Laplacian structure and the weights and, as we will see in section 3.7,
it corresponds to the same tensor 3.37.

3.6.1 Contraction condition

The existence of a stationary solution to 3.53 depends on the statistical properties of the
stochastic process δL. The stationary solution to 3.53 exists if the integral operator I in
the first part

fi(t) = (Ifk)(t) :=

∫ t

0

e−Lij(t−u)δLjk(u)fk(u)du (3.58)

satisfies a contraction principle, i.e. if we define

‖I‖op(t) = sup

{
‖(If)(t)‖
‖f(t)‖

, f 6= 0

}
‖f‖(t) = sup

u≤t
{|f(u)|}

the contraction condition reads

‖I‖op(t) < 1 ∀t.

Since the used norm for real-valued functions is the sup norm (i.e f belongs to L∞), the
contraction condition implies that the sup of the image through I of the function in the
interval [0, t] (that given the definition of the operator, is the value of the function in t)
is less than the sup of the function in the same interval [0, t]. Thus we need to evaluate

|fi(t)| =
∣∣∣∣∫ t

0

e−Lij(t−u)δLjk(u)fk(u)du

∣∣∣∣
≤
∫ t

0

∣∣e−Lij(t−u)δLjk(u)fk(u)
∣∣ du ∀i = 1, . . . , n− 1

(3.59)

3.6. HIGHER ORDER TERMS 51

where f(t) is a regular test function. It is convenient use the eigenvector base {vλ}λ=1,...,n−1

of the Laplacian matrix L

Λλµ := UT
λiLijUjµ

δLλµ := UT
λiδLijUjµ

fλ := UT
λifi

where U is the matrix having as columns the eigenvectors of L. Hence we have

|fλ(t)| ≤
∫ t

0

e−λ(t−u) |δLλµ(u)fµ(u)| du

≤
∫ t

0

e−λ(t−u))‖δL(u)‖λ‖f(u)‖ ∀λ = 1, . . . , n− 1

with

‖f(u)‖=
√∑

µ

f 2
µ(u)

‖δL(u)‖λ=
√∑

µ

δL2
λµ(u).

where we have used the Cauchy-Schwarz inequality and the euclidean norm, both for
the function f and the λth row of δL. Noting that δL is symmetric and that we are in
the eigenbasis of L (thus the eigenvectors are of the form vλ = (0, . . . , 1, . . . , 0)), we have
that

‖δL(u)‖λ=
√∑

µ

δL2
λµ(u) = ‖δL(u)vλ‖ ∀λ. (3.60)

To take the norms outside of the integral, we maximize with respect to the time variable,
defining

‖f‖(t) = sup
u≤t
‖f(u)‖= sup

u≤t

√∑
µ

f 2
µ(u)

and correspondingly

‖δL‖λ(t) = sup
u≤t
‖δL(u)‖λ= sup

u≤t
‖δL(u)vλ‖ (3.61)

i.e. ‖δL‖λ(t) measures the maximum deformation that δL causes on the eigenvector vλ of
L in the time interval [0, t]. Then we can evaluate the time integral in a straightforward
manner

|fλ(t)| ≤ ‖δL‖λ(t)‖f‖(t)
∫ t

0

e−λ(t−u)du

=
‖δL‖λ(t)

λ
‖f‖(t)

3.6. HIGHER ORDER TERMS 52

for sufficiently large t. Defining the norm of the Laplacian perturbation as

‖δL‖(t) := sup
λ
‖δL‖λ(t)

that of course implies
‖δL‖λ(t) ≤ ‖δL‖(t) ∀λ

we can take the euclidean norm of both sides and write the inequality above as

‖f(t)‖≤
√∑

λ

‖δL‖2
λ(t)

λ2
‖f‖(t) ≤ R‖δL‖(t)‖f‖(t) (3.62)

with R defined as

R :=

√∑
λ

1

λ2
. (3.63)

Finally,the contraction conditions reads

R‖δL‖(t) < 1. (3.64)

If this condition is satisfied, the operator 3.58 behaves like a contraction, namely the
norm ‖f(t)‖ of the function f evaluated at time t is less than ‖f‖(t), the sup norm of
f in the interval [0, t]. Note that 3.62 can be extended ∀t, so that we can study the
asymptotic solution of (3.52).

The contraction condition 3.64 depends on the spectral properties of the network
through the average value R and the perturbation strength ‖δL‖. We remark that the
condition ‖δL‖(t) < R−1 is meant in the basis where L is diagonal: thus, as already
noted, it translates directly in a condition on the deformation that the perturbation can
make to the L eigenvectors to have contraction in 3.58. This condition in fact could not
be imposed if δL was a white noise, like in the previous section, since in that case its
elements have infinite variance.

How much strict the condition 3.64 is on δL, it depends on the factor R. Since
R is related to the sum of the Laplacian eigenvalues, we are interested in the limit
N → ∞, in which the number of elements in the sum grows, and also λmax grows
accordingly. Depending on how fast λmax grows with N , we have that R might be given
by a convergent or divergent series. In the former case the condition on ‖δL‖ does not
depend on the network dimension. In the latter case it will, and in particular with N
larger it will get stricter (i.e. the less ‖δL‖(t) will need to be to have a contraction in
3.53).

From [13], under general conditions on the probability distribution the Laplacian
elements are drawn from, among which it is required to have finite variance, we know
that

lim
N→∞

inf
λmax

(
L(N)

)
√
N logN

=
√

2 and lim
N→∞

sup
λmax

(
L(N)

)
√
N logN

= 2 (3.65)

3.6. HIGHER ORDER TERMS 53

thus as the network gets bigger

λmax
N→∞∼

√
N logN.

Given the definition of R, we thus need to study the convergence of the series
∑

N
1

N logN
.

With the integral test, it is easy to see that

R ∼
√∑

N

1

N logN
∼
√

log(logN)

hence the series diverges for large networks, even if very weakly. Consequently, the
greater is the network we are considering and the smaller have to be the fluctuations of
the Laplacian in order to have a contraction condition in 3.53.

Since the dependence on N is very weak, it would be enough just a slight bigger
dependence than 1

N logN
to have convergence, but we are not aware of any result stricter

or different than the one found in [13].
One can argue that for N → ∞ we might have that λF → 0 (i.e. the network

disconnects), leading to a divergent series from below. Thus above we have implicitly
considered ensembles of random networks that remains strongly connected as N → ∞.
For example in the case of Erdős–Rényi networks imposing that the link probability p
satisfies p > logN

N
[14], it can be shown that there is a giant component spanning the

whole network for N →∞, guaranteeing that the Fiedler value does not go to zero.
We remark that since we are overestimating ‖f(t)‖ in 3.62, actually it might not

depend on N . However, since the dependence on N found is very weak, it is of little
practical interest. Besides, lacking a different theoretical result, a computer program
would find whether there is a dependence on N or not only simulating very big networks,
out of the present scope.

Finally, we mention that there are several results in the literature connecting sum of
powers of the Laplacian eigenvalues to specific properties of the network [7]. However, we
are not aware of any known physical meaning concerning the sum of the inverse squared
eigenvalues like in 3.63.

3.6.2 Relative fluctuations

Once shown that 3.53 tends to the stationary solution, i.e. that R‖δL‖(t) < 1, we might
be interested in checking the effects of this condition on the stationary solution itself

δpλ(t) = −
∫ t

0

e−Lλµ(t−u)δLµσ(u)psσdu

written in the eigenbasis of L. Thus evaluating the norm in a similar fashion to the
inequalities above, we get

3.7. RESCALED PROCESS 54

|δpλ(t)| ≤
∫ t

0

|e−Lλµ(t−u)δLµσ(u)psσ|du

≤
∫ t

0

‖e−Lλµ(t−u)‖‖δLµσ(u)‖‖psσ‖du

≤ ‖psσ‖
∫ t

0

e−λλ(t−u)‖‖δL(u)‖µdu

≤ ‖psσ‖‖δL‖µ(t)

∫ t

0

e−λλ(t−u)du

= ‖ps‖‖δL‖(t)1− e−λλt

λλ
du

where in the last line we have the norm of the vector ps and the corresponding matrix
norm of δL. In the stationary limit t→∞ and taking the euclidean norm with respect
to the λ index we get √∑

λ

δp2
λ(t) ≤

√∑
λ

1

λ2
λ

‖ps‖‖δL‖(t)

hence
‖δ~p(t)‖
‖~ps‖

≤ R‖δL‖(t) < 1. (3.66)

Recalling that ~ps = E [~p(t)] for large t, we get that the contraction condition implies
the relative fluctuations with respect to the stationary solution are smaller than 1. Note
that the norm of p is taken at time t, whereas the norm of δL is the supremum over its
history.

3.7 Rescaled process

In the previous section we have set a condition 3.64 for the convergence of our process
3.53 to its stationary solution. We chose the Ornstein-Uhlenbeck process 3.55 to describe
the variables δLij, since if δLij is a white noise, having infinite variance, it cannot satisfy
that condition. Nevertheless, we now want to show that under certain conditions, in the
limit ε→ 0 it is possible both to recover a white noise limit from the Ornstein-Uhlenbeck
process 3.55 and to show that higher order terms in 3.38 remain negligible, justifying the
approximation 3.39 made in section 3.5, even with a white noise.

We remark that simply taking the limit ε→ 0 in the process 3.55, we get

E[δLij(t)δLkh(t
′)] =

Cijkh
2

e−(t−t′)/ε −→
ε→0

Cijkh
2

δt,t′

3.7. RESCALED PROCESS 55

and thus, being a bounded and delta-correlated stochastic variable, the process

δpi(t) =

∫ t

0

e−Lij(t−u)δLjk(u)pskdu

has zero variance, so that δ~p is equivalent to the null process. Starting from the master
equation 3.35, that we rewrite for convenience

~̇p = − (L+ δL) ~p+ ~s (3.67)

we perform the following trick

L+ ε1/2 δL(t)

ε1/2
(3.68)

and defining

δL̂ :=
δL

ε1/2
with ε→ 0.

we rewrite the master equation as

~̇p = −
(
L+ ε1/2δL̂

)
~p+ ~s. (3.69)

Correspondingly, the master equation for the fluctuations of the network state now be-
comes

~̇δp = −L~δp+ ε1/2δL̂
(
~ps + ~δp

)
. (3.70)

The idea behind the scaling is to perform a perturbative expansion and a white noise
limit at the same time, taking ε → 0. We are thus now considering a rescaled version
of the Ornstein-Uhlenbeck process 3.55. In fact, the corresponding master equation now
becomes

d

dt
δL̂ij =

1

ε
δL̂ij +

σijkh
ε

ηkh(t) (3.71)

where the parameters of the stochastic variable δL̂ij and of the white noise have now the
same strength, of 1/ε. Thus the statistical properties read

E[δL̂ij(t)] = 0 ∀t

E[δL̂ij(t)δL̂kh(t
′)] =

Cijkh
2ε

e−(t−t′)/ε −→
ε→0

Cijkhδ(t− t′)

where δ(t− t′) is a Dirac’s delta. Therefore the variables δL̂ for ε→ 0 tends to infinity,
with the statistical properties of a white noise. Thus dividing the master equation 3.70
with ε1/2 we have that

δṗi
ε1/2

= −Lij
δpi
ε1/2
− δL̂ij

(
psj + δpj

)

3.8. OBSERVABILITY 56

and defining

δp̂ := lim
ε→0

δp

ε1/2
(3.72)

we get to the following

δ ˙̂pi = −Lijδp̂j − δL̂ij
(
psj + ε1/2δp̂j

)
. (3.73)

whose formal solution is

δp̂i(t) =− ε1/2

∫ t

0

e−Lij(t−u)δL̂jk(u)δp̂k(u)du

−
∫ t

0

e−Lij(t−u)δL̂jk(u)pskdu

(3.74)

where ε → 0 stands both for a white noise limit and and a perturbation parameter for
higher order terms. Our aim is now to prove that in the limit ε → 0, in which L̂ tends
to a white noise, the rescaled process satisfies

δp̂(t)→ −
∫ t

0

e−Lij(t−u)δL̂jk(u)pskdu

in a weak sense, i.e. the distribution of δp̂(t) tends to the one of the stochastic process
3.41, treated in section 3.5. We remark that it is not possible to apply directly the
contraction principle 3.64 to the process defined by 3.74, since the elements of δL̂ becomes
infinite in the limit ε → 0. Thus the convergence cannot be pointwise but only in a
distribution sense.

In Appendix A, we find an equation for the second moment of 3.74 in which higher
order corrections (given by the first term) vanish for ε→ 0. Thus the second moments of
3.74 and of 3.41 converge. Since for Wick’s theorem [57] (also called Isserlis’ theorem),
any Gaussian process with zero average is described completely by the second moment,
we have that the considered rescaled process converges in distribution to the white noise
process 3.41. Therefore for the rescaled process we recover the covariance matrix 3.47

E[δpiδpj] =
∑
λ,µ6=0

1

λ+ µ
|vλ〉i

[∑
k,h

k〈v
λ|Ckh|vµ〉h

]
j〈v

µ|

justifying its validity despite the approximation 3.39.

3.8 Observability

The diffusion equation 3.15 can also be interpreted in terms of linear time-invariant (LTI)
systems, a general class of systems studied in system analysis and in control theory that

3.8. OBSERVABILITY 57

produces an output starting from an input in a linear manner. The governing equation
of a LTI system is given by

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(3.75)

where x is the system state variable and u is a set of exogenous inputs. The matrix
A ∈ Rn×n governs the dynamics of the system. B ∈ Rn×p is the matrix that allow the
inputs u to be applied to the state variable x. In this kind of system we might not be
able to determine the whole system state, and this is captured by the matrices C ∈ Rq×n

and D ∈ Rq×p. The output of the system y is therefore a linear transformation of the
system state x. All the matrices are time constant.

A system like 3.75 is said to be observable if for any unknown initial state x(0), there
is a finite time t1 > 0 such that the knowledge of the variables u and y over the time
interval [0, t1] is sufficient to determine uniquely the initial state x(0).

One can determine if a system is observable or not looking at the pair of matrices A
and C. If the observability matrix, defined as

O =

C

CA
...

CAn−1

has rank n, the system is observable. Equivalently, if the observability Gramian

Wo(t) =

∫ t

0

eA
T τCTCeAτdτ

is nonsingular for any t > 0, the system is observable. [9]
Reducing the network as explained above, from local measurements on sensor nodes

we cannot infer the new solution of the non observed nodes. Therefore the system is
not observable. Still, we want to be able to understand the location of the link failure
using the general idea of section 3.2. In the next chapter we will exploit 3.47 to find an
optimal clustering method. so that the network dimensionality is reduced, still keeping
a good failure localization efficiency. The proposed clustering method will be compared
with more traditional techniques.

Chapter 4

Simulations results

4.1 Problem definition

In the present chapter, we compare the efficiency of different clustering methods under
a single-edge failure occurring in the network. With a single-edge failure we mean the
sudden decrease of an edge weight, say wkh, such that

wkh −→ w′kh = αwkh with 0 < α < 1 (4.1)

and thus the corresponding change of the Laplacian matrix reads

L −→ L′ = L+ ∆L (4.2)

with

∆Lij =

{
−(1− α)wkh for i = j = k or i = j = h

(1− α)wkh for i = k, j = h or i = h, j = k.
(4.3)

Phisically, this implies that the edge failure is meant to be as a sudden decrease in
the conductance of that link, not as a proper link breaking. Since we are dealing with
transport networks, in the former case there is a decrease of the transport capacity of
a single link, whereas the latter case would eventually lead to an empty network, if
the sources do not compensate explicitly for the lost material. For instance, in urban
networks the condition 4.1 means a congestion of a road, whereas for water distribution
networks it may signal the obstruction a pipe, instead of a proper leak.

After the failure occurs, the system reaches a new stationary solution following the
same equation 3.15, that is

d~p′

dt
= −L′~p′ + ~s (4.4)

whose transient solution is given by

~p′(t) =
∑
λ′ 6=0

cλ′e
−λ′t~vλ′ + ~ps′ (4.5)

58

4.1. PROBLEM DEFINITION 59

Stationary solutions difference Edges fluxes difference

0.60

0.45

0.30

0.15

0.00

0.15

0.30

4

2

0

2

4

Figure 4.1: Stationary potentials and fluxes differences after a single-edge failure on a
15× 15 grid network. The failed edge can be easily localized since it is the edge with the
maximum flow drop, corresponding to the nodes with the maximum potential difference.
Therefore, the generation of a dipole difference makes the failure localization trivial.

where λ′ and ~vλ′ are respectively the eigenvalues and eigenvectors of the new Laplacian
matrix L′, and the coefficients cλ′ are determine by the initial condition

~ps ≡ ~p(0) =
∑
λ′ 6=0

cλ′~v
λ′ + ~ps′

assuming that before the edge failure the system was in its stationary state.

If the whole state ~p(t) of the network is observable, the failure identification problem
would be trivial. Figure 4.1 shows a colormap of the stationary solution variations

∆~p = ~ps′ − ~ps and the edge flux differences ∆Qij = Q′ij − Qij for a single-edge failure
in a 15 × 15 lattice network. After the edge-failure, the flux between the two nodes
decreases (negative variation in the plot). Thus, correspondingly the potential of the node
located upstream will increase, whereas the potential of the node placed downstream will
decrease, as shown on the left plot. Therefore, monitoring the potential for each node
of the network, the failure localization would be trivial. One would just need to find
the couple of nodes with the maximum potential variations, that should correspond to
the edge with the maximum potential or flow drop. Those two nodes, that defined
unambiguously the location of the failure, form a dipole varitation of the potential. In
Appendix B we show the equivalent situation for an Erdős–Rényi network.

Hence, as discussed in chapter 3, the network state ~p is assumed to be observable
only on a subset of nodes S ∈ N (G), that we call sensors. The problem is thus twofold.
First, we need to define a clustering method to partition the graph, as explained in
chapter 2. Secondly, a criterion has to be chosen in order to pick a single sensor node

4.1. PROBLEM DEFINITION 60

17 23 26

67 72

79 81

92 98 100

125 131 133

136 138 143

156

172 176

198

Original network

17 23 26

67 72

79 81

92 98 100

125 131 133

136 138 143

156

172 176

198

Reduced network
Grid network dimensionality reduction

Figure 4.2: Dimensionality reduction of a 15×15 grid network, from the initial 225 nodes
to 20 nodes. Each sensor node of the reduced graph represents the nodes belonging to
its cluster in the original network. A single edge is set between two sensor nodes if
there were edges between the nodes they represent. In the original network, each color
represents a cluster and bigger nodes corresponds to the sensors. The lines thickness is
proportional to the edge weights.

for each cluster, as representative of the other nodes. The state of the network is then
observed only through these sensor nodes. Our aim is to find an optimal partitioning
of the network and sensor placement such that the failure identification probability is
maximized. One might might be interested in choosing a sensor placement method in
order to have a better sensitivity for the failures involving only on a subset of edges. As
we will see, the proposed clustering criterion focuses on edges with higher fluxes.

Once a partitioning is established and a sensor nodes is chosen for each cluster,
a reduced network is constructed from the original one, following the ideas of section
3.2. Therefore, the sensor nodes (that are the nodes of the coarse-grained graph) are
considered to be connected if there were edges between the nodes they represent in the
original network. The set of edges crossing two groups of nodes, or clusters in our case,
is called edge-boundary. The reduced network edges weights are taken to be the sum of
the original edges weights belonging to the edge-boundary of the two clusters considered.
This quantity is also called cut size. Picture 4.2 shows an example of graph reduction
for a 15 × 15 grid network. Picture 4.3 shows the same procedure for a Erdős–Rényi
random network with N = 225 nodes and average degree 〈k〉 = 3.73.

Observing the signal only through the sensor nodes, the failure localization procedure
is slightly different. In particular, we might encounter two different situations. If the

4.1. PROBLEM DEFINITION 61

1

9

25

26

31

49

51

55

63

66

75

76

97

113

127

137

169
183

195

224

Original network

1

9

25

26

31

49

51

55

63

66

75

76

97

113

127

137

169
183

195

224

Reduced network
Erd s Rényi network dimensionality reduction

Figure 4.3: Reduced network creation for an Erdős–Rényi network with N = 225 and
〈k〉 = 3.73. The number of clusters is 20. The network structure is greatly simplified by
the coarse-grained modeling described in the main text.

edge failure happens inside a cluster, we expect to have a strong potential difference
corresponding to the sensor node of that cluster, and lower responses from the rest
of the network. We call the signal pattern corresponding to this situation monopole.
However, if the failed edge belongs to the edge boundary of two clusters, we expect to
see a situation analogue to figure 4.1, but restricted to the sensor nodes, i.e. we should
see a dipole like the one shown in figure 4.4 on the right. In this cases, we are able to
spot easily the group of nodes among which there is the failed one, and it is the edge
boundary between the clusters corresponding to the observed dipole.

Actually, from this situation it is possible to restrict more the set of candidate failed
edges. Knowing the direction of the stationary fluxes for all edges, we might infer which
one can lead to the observed dipole and which ones are not compatible with it. In fact, as
seen in picture 4.1, the potential difference is positive for the node upstream and negative
for the node downstream the failed edge. Therefore, the candidate group of edges must
include only those whose flux is outgoing the positive monopole and incoming to the
negative monopole. This might help to better localize the failure in some situations.
The basic assumption here is that the demand pattern ~s is known and constant over the
time needed to identify the failure, so that the flux direction cannot change.

The signal patterns depicted in figure 4.4 are ideal cases. In other situations we might
have a more spread potential difference, that involves the whole network, like shown in
appendix B, picture B.4. Nevertheless, if there is a net boundary between the regions
of sensors with a positive and negative signal difference, it should still be possible to

4.2. FAILURE IDENTIFICATION 62

1

9

25

26

31

49

51

55

63

66

75

76

97

113

127

137

169
183

195

224

Monopole

1

9

25

26

31

49

51

55

63

66

75

76

97

113

127

137

169
183

195

224

Dipole

3

2

1

0

1

2

3

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Reduced network: Stationary solutions difference

Figure 4.4: Expected behavior for an edge failing inside a single cluster (left) and between
two clusters (right). In the former case we observe a monopole, in the latter case a dipole
in the signal difference. In both cases, we are able to identify the group of edges the
failed one belongs to.

identify the spot in which the failure happened, like explained above.

4.2 Failure identification

The aim of this chapter is to compare the efficiency of different clustering and sensor
placement algorithms against the localization of a single-edge failure. Since there is no
a priori preferred method, the comparison is performed through a simulation written in
Python and available on GitHub [15].

In particular, the failure localization is performed using a function that takes as
input a network partitioning, characterized by the clusters and the corresponding sensor
choices, and the observed signal difference over the sensor nodes. The idea is to perform
the localization for each failed edge and averaging the results, finding the partitioning
able to localize the failures with more efficiency.

The candidate group of nodes for each edge failure is picked up exploiting the consid-
erations of the previous section 4.1. In particular, first of all the dipole with the highest
potential drop is chosen. Thus, there are four different possibilities. The failed edge
might be internal to the cluster with positive potential difference (positive monopole), or
to the cluster with negative potential difference (negative monopole). Alternatively, the
failed edge belongs to the edge boundary of the positive and negative monopoles. Finally,
the failed edge does not belong to the above three categories. A Bayesian [51] reasoning

4.2. FAILURE IDENTIFICATION 63

is performed to pick the most probable situation among the first three possibilities. In
our case, the Bayes rule reads

P (Ci | E) =
L (E | Ci)P (Ci)∑
j L (E | Cj)P (Cj)

with i = +,−, dipole (4.6)

where C+, C−, Cdipole denotes, respectively, the failure of an edge belonging to the
positive monopole, the negative monopole, or the dipole (edge boundary). P (Ci) are
the prior probabilities of these events. The evidence E represents the observed signal
difference ∆~p restricted to the sensor nodes. L(E | Ci) is the likelihood that a failed
edge in the group Ci caused the observed signal ∆~p. Finally, P (Ci | E) is the posterior
probability, that is the probability that the failed edge is within the group Ci given the
observed signal. The prior distribution is assumed to be uniform over the edges of each
group. Therefore it is given by

P (Ci) =
|Ei|∑
j|Ej|

with i = +,−, dipole

where Ei is the number of edges inside the group i.
The likelihood function must depend on the particular signal that is observed (the

evidence). Focusing only on the strongest dipole, as a variable we choose the ratio
between the signal on the positive monopole and the total signal of the dipole, that is

r =
∆p+

∆p+ + |∆p−|
=

∆p+

∆pdipole

(4.7)

It is also assumed that the likelihood function depends on the ratio between the
number of edges internal to the clusters and the total number of edges in the network
M . We denote this ratio with m. It corresponds also to the ratio of the expected number
of monopoles over all the single-edge failures of the network. Thus we write Lm(r) ≡
L (E | Ci). Concerning the shape of the likelihood function, we chose Lm(r) such that
the area between 0 and 1/2 equals to the expected number of negative monopoles, i.e.
m/2

m

2
≡
∫ 1

2

0

e−αxdx =
1

α

(
1− e

α
2

)
getting to the equation

α =
2

m

(
1− e

α
2

)
that is solved using the Lambert function W0 [33]. Thus the likelihood function for the
negative monopoles become

Lm(r) = e−α with α = −2

(
1

m
+W0

(
−e 1

m

m

))
. (4.8)

4.2. FAILURE IDENTIFICATION 64

0.0 0.2 0.4 0.6 0.8 1.0
p +

p + + | p |

0.0

0.2

0.4

0.6

0.8

1.0

Lik
el

ih
oo

d

Failure localization likelihood (m=0.2)

positive monopole
dipole
negative monopole

0.0 0.2 0.4 0.6 0.8 1.0
p +

p + + | p |

0.0

0.2

0.4

0.6

0.8

1.0

Lik
el

ih
oo

d

Failure localization likelihood (m=0.6)
positive monopole
dipole
negative monopole

Figure 4.5: Likelihood function used in the failure identification function. On the left the
number of expected dipole is greater than the number of expected monopoles (internal
failure), thus 0 < m < 0.5. Thus, more area is given to the dipoles likelihood curve.
Conversely, on the right the dipole curve starts decreasing, since the expected number
of internal failures outcomes the expected number of inter-cluster failures.

that is plotted in figure 4.5 for two different values of the monopoles ratio m. The
curve for the positive monopole and for the dipole are obtained simply translating and
reflecting equation 4.8, getting to

Lm,−(r) =

{
Lm(r) for 0 ≤ r ≤ 1

2

0 for 1
2
< r ≤ 1

Lm,+(r) =

{
0 for 0 ≤ r ≤ 1

2

Lm(1− r) for 1
2
< r ≤ 1

Lm,dipole(r) =

{
1− Lm(r) for 0 ≤ r ≤ 1

2

1− Lm(1− r) for 1
2
< r ≤ 1

.

Finally, the prior is updated according to the Bayes rule 4.6, that gives the probability
that the failure occurred in each of the three parts of the strongest dipole, given the
number of edges for each possibility (in Pprior,k), the total number of expected monopoles
m and the observed signal r, defined as in 4.7. The candidate cluster in which the
failure occurred is chosen to be the one with the highest posterior probability. If the
candidate group of nodes is the correct one, its posterior probability is divided by the
total number of possible edges it contains, according to the considerations about the
edges fluxes above. This means that since we have no information about which of the

4.3. CLUSTERING METHODS COMPARISON 65

0 25 50 75 100 125 150 175 200

0

25

50

75

100

125

150

175

200

Correlation matrix colormap

0 25 50 75 100 125 150 175 200

0

25

50

75

100

125

150

175

200

Sorted correlation matrix colormap

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.6: On the left, the raw correlation matrix as obtained from 4.10. The diagonal
structures are due to the periodicity of the grid network used. On the right, the same
correlation is displayed with nodes ordering matching the clusters as produced by the
ranking algorithm.

edges might be the failed one, we associate a uniform probability inside each cluster.
Therefore, we get the probability associated with a single edge, that we call confidence.
On the other hand, if the candidate cluster is wrong, the confidence value is set to be
zero. Averaging over all the possible failure, we get to average confidence value, that is
the one we use as a benchmark for the various clustering methods.

4.3 Clustering methods comparison

As discussed in chapter 3, a dynamics-based clustering method should group together
nodes that behave in a similar fashion under the equations that govern the dynamics
taking place. Concerning the failure identification problem we are dealing with, it means
that the sensor nodes should follow the behavior of the nodes they represent, when one
of their edges fails. The correlation 3.47 we have obtained in the previous chapter,
contain information about how each node linearly correlates with its neighbors under
a perturbation of the network weights. This situation should mimic the edge failure
described. Thus we now need to partition the network according to 3.47.

The starting point of the proposed clustering method is the covariance matrix 3.47,
that we rewrite for convenience

E[δpiδpj] =
∑
λ,µ6=0

1

λ+ µ
|vλ〉i

[∑
k,h

k〈v
λ|Ckh|vµ〉h

]
j〈v

µ|. (4.9)

4.3. CLUSTERING METHODS COMPARISON 66

We choose to normalize it, getting to the correlation matrix

C[δpiδpj] =
E[δpiδpj]√
E[δp2

i]E[δp2
j]
. (4.10)

Therefore, we need define an algorithm that takes as input 4.3 and produces clusters
of nodes as its output. The idea is that the network is partitioned in such a way that
maximally similar nodes are placed within the same cluster. To compute the clusters
starting from the correlation matrix above, we propose a clustering algorithm, whose
Python code is available on GitHub [15]. The algorithm consists in a simple ranking
of the correlation values, such that nodes with strong correlations are grouped together
first. The sensor in each cluster is therefore a node with the highest average correlation
with the other nodes in the cluster. We will also call this node medoid of the cluster.
Performing the clustering this way, the network dimension cannot be decreased much
mor than a factor of two. Therefore, at each iteration if another node is found that is
able to increase the cluster size, while keeping a good average correlation with the other
nodes of the cluster, a medoid change is allowed.

It is important to note that equation 4.9 depends on the matrix Ckh, that is a Lapla-
cian matrix containing all the fluxes of the system. This is a consequence of the procedure
followed to obtain the above result. All the edges of the networks were made to fluctu-
ate, in order to compute the correlation of the nodes states fluctuations δ~p. However,
we might be interested in computing the correlation of each node with just its first or
second neighbors and under a different stochastic processes fro each couple of nodes. For
example, given node pair, we might be interested in computing their correlation under
the fluctuations solely of their adjacent edges. This way we neglect the influence of the
rest of the network. Different possibilities were explored (described in Appendix B.2.1),
leading to different failure localization efficiencies.

Picture 4.6 shows the absolute value of the correlation matrix 4.10, with the complete
matrix Ckh, for a grid network 15× 15, with edges weights taken to be integers following
a uniform distribution. On the left the correlation matrix is displayed with the original
nodes order. The diagonal structures are due to the periodicity of the particular lattice
network used. It simply signals that neighbors nodes are more correlated than nodes far
apart. On the right, the same correlation matrix is shown ordering the nodes in such a
way that nearby nodes belong to the same cluster, as produced by the proposed ranking
algorithm. Therefore, each block diagonal structure represents a cluster.

We wrote a second clustering method, that we call affinity clustering, different from
the ranking medoid clustering mentioned above. In particular, it was thought to create
more “spherical” clusters, that for some networks structures (like the grid network, as
we will see) leads to better results. Moreover, generally it generates bigger clusters than
the ranking medoid clustering, therefore allowing a more pronounced dimensionality
reduction of the network. This function is described and available on [15]. It is loosely

4.3. CLUSTERING METHODS COMPARISON 67

40 60 80 100 120 140 160 180
Number of clusters

10

20

30

40

50

60

70

80

90

Co
nf

id
en

ce
 %

External noise correlation
Correlation complete
Correlation local (1,0)
Correlation local (2,1)
Correlation single 1
Correlation single 2
Correlation local-neighbors 1
Correlation local-neighbors 2
Correlation single-neighbors 1
Correlation single-neighbors 2

Erd s Rényi (average degree 3.73) (5 sources) - Medoid clustering

(a) Medoid based clustering

40 60 80 100 120 140 160 180
Number of clusters

20

40

60

80

Co
nf

id
en

ce
 %

External noise correlation
Correlation complete
Correlation local (1,0)
Correlation local (2,1)
Correlation single 1
Correlation single 2
Correlation local-neighbors 1
Correlation local-neighbors 2
Correlation single-neighbors 1
Correlation single-neighbors 2

Erd s Rényi (average degree 3.73) (5 sources) - Hierarchical clustering

(b) Hierarchical clustering

Figure 4.7: Comparison between the custom medoid-based clustering and the traditional
hierarchical clustering. They were both used for all the correlation functions described
in the main text. The best results (higher values of the confidence value) are obtain for
the medoid clustering algorithm.

inspired by the Affinity Propagation clustering used in data analysis [18].
Furthermore, we notice that the proposed correlation matrix can be interpreted like

an effective similarity measure between the nodes. Thus one can also make use of all the
traditional techniques employed in data clustering [25]. Those methods usually require
as inputs a set of data points embedded in a metric space, and the definition of a distance
between these data points, to be used as a dissimilarity measure. Alternatively, some
methods can take as input a precomputed similarity matrix, without the need of an
embedding. These are the methods of interest for our application, since our similarity
function is computed from a simulated dynamics, and not from nodes similarities that
emerge from an embedding of the network. For instance, one might exploit the spectral
clustering of section 2.2. In this case, the similarities between nodes are interpreted as
the edges weights of an effective graph. Computing its Laplacian, one can easily retrieve
the clusters. Another popular method that can take a precomputed similarity matrix
as its input is called hierarchical clustering, which seeks to build a hierarchy of cluster,
hence its name [25]. Both of these similarity-based methods are used for the comparison.

In section B.2.1 of Appendix B, we compare two proposed clustering algorithms with
the hierarchical clustering (with linkage choice “single”, as implemented by the Python
scientific package Scikit-Learn [43] and the unnormalized spectral clustering, all applied
to the different correlation matrices, as explained in the Appendix main text. Since
spectral and hierarchical clustering are not expected to provide a default representative
node choice for each cluster, the node with the highest betweenness centrality (equation
4 of chapter 1) is chosen. For instance, figure 4.7 shown the comparison between the
custom medoid clustering and the hierarchical clustering using an Erdős–Rényi network

4.3. CLUSTERING METHODS COMPARISON 68

Sinks and sources

0

100

200

300

400

Stationary solution Edges fluxes

16

8

0

8

16

24

32

40

48

20

40

60

80

100

Figure 4.8: On the left, forcing distribution over a grid network. The number of sources
defined is five (shown in red). The sinks values (negative, shown in blue) are here chosen
to follow a uniform distribution. On the right, the correspondent stationary distribution
of the signal over the nodes and stationary fluxes over the edges. For the edge fluxes
plot, the arrow point to the same direction to the flux. Notice that signal and fluxes
values are higher nearby the sources nodes.

model, with average degree 〈k〉 = 3.73, five sources and a uniform distribution of edges
weights and sinks values. We see that the confidence parameter for the custom ranking
clustering is on average higher than the hierarchical clustering. This applies for all the
variations of the correlation used, showing an overall better performance. Concerning
the comparison of the different correlations among themselves, we see that generally the
ones that takes into account also the second neighbors of each node perform generally
worse than the corresponding ones that stop at first neighbors. Therefore, those are
the ones that will be kept for the successive comparisons with the traditional network
partitioning techniques.

Comparison with traditional clustering methods

The first traditional structure-based clustering method used for the comparison is mod-
ularity maximization, explained in section 2.3, with the greedy algorithm by Clauset-
Newman-Moore [11], one of the most used. The second one is the divisive algorithm
by Girvan and Newman [21], that detects communities by removing edges at each itera-
tion from the original graph. The chosen edge traditionally is the one with the highest
betweenness centrality (equation 4) in the network . Step by step the underlying com-
munity structure of the network emerges. For both algorithm, we used the versions
implemented in Networkx [23], a Python package for the creation and study, both struc-
tural and dynamical, of complex networks.

As shown in figure 4.8, the presence of a forcing in the network influences the dis-
tribution of the potential and therefore also of the fluxes. Since our clustering method

4.3. CLUSTERING METHODS COMPARISON 69

20 40 60 80 100 120
Number of clusters

10

20

30

40

50

60

70

Co
nf

id
en

ce
 %

Medoid: external noise correlation
Medoid: correlation (local)
Medoid: correlation (single)
Medoid: correlation (single-neighbors 1)
Medoid: correlation (single-neighbors 2)
Medoid: correlation (complete)
Modularity
Girvan Newman
Ratiocut

Erd s Rényi (average degree 3.73) (5 sources) - uniform distribution

20 40 60 80 100 120
Number of clusters

0

10

20

30

40

50

60

70

80

Co
nf

id
en

ce
 %

Medoid: external noise correlation
Medoid: correlation (local)
Medoid: correlation (single)
Medoid: correlation (single-neighbors 1)
Medoid: correlation (single-neighbors 2)
Medoid: correlation (complete)
Modularity
Girvan Newman
Ratiocut

Erd s Rényi (average degree 3.73) (5 sources) - uniform distribution - high fluxes

Figure 4.9: Simulations results for 10 Erdős–Rényi networks with average degree of
〈k〉 = 3.73, five sources and uniform distribution of the edge weights and sinks values.
On the left, the results are averaged over the all possible single-edge failure in the network.
On the right, only the failure of half of the edges with higher flux is considered. In both
cases, the proposed clustering performs better on average.

gives more importance to edges with higher fluxes, we expect its performance to increase
when considering only the failure of those edges.

First, the comparison is performed using the same Erdős–Rényi network model as
the one considered above, i.e. average degree of 〈k〉 = 3.73, five sources and uniform
distribution of the edge weights and sinks values. Figure 4.9 shows the failure localization
efficiency of the compared methods as a function of the number of clusters. On the left,
the results are averaged over all possible edge failures. On the right, only half of the
edges with higher fluxes are considered. In both cases, our clustering method, based
on different versions of the correlation matrix 4.3 performs marginally better than the
Girvan Newman algorithm and considerably better than the modularity maximization
and the (relaxed version of) the Ratiocut. In particular, the difference becomes more
prominent when considering only the higher fluxes of the network. We notice, that
the results of three versions of the correlation matrix start only at around 80 clusters.
The reason is that those matrices are based only on the first neighbors correlations.
Therefore, using the proposed medoid clustering algorithm, we cannot increase the size
of each cluster more than its ability to exploit the information the correlation matrix
provides.

In Appendix B we show the results for the same network model, but using a homo-
geneous distributions of the weights. The same kind of comparison is then performed
changing the number of sources from 5 to 50. The results are similar to the one shown
in figure 4.9, with the only exception of the case with 50 sources, uniform distribution of
the weights and higher fluxes failures, for which le Girvan-Newman algorithm perform
slightly better.

4.3. CLUSTERING METHODS COMPARISON 70

20 40 60 80 100 120
Number of clusters

10

20

30

40

50

Co
nf

id
en

ce
 %

Affinity: external noise correlation
Affinity: correlation (local)
Affinity: correlation (single)
Affinity: correlation (single-neighbors 1)
Affinity: correlation (single-neighbors 2)
Affinity: correlation (complete)
Modularity
Girvan Newman
Ratiocut

Grid network (5 sources) - homogeneous weights

20 40 60 80 100 120
Number of clusters

0

10

20

30

40

50

60

70

80

Co
nf

id
en

ce
 %

Affinity: external noise correlation
Affinity: correlation (local)
Affinity: correlation (single)
Affinity: correlation (single-neighbors 1)
Affinity: correlation (single-neighbors 2)
Affinity: correlation (complete)
Modularity
Girvan Newman
Ratiocut

Grid network (5 sources) - homogeneous weights - high fluxes

Figure 4.10: Simulation results for ten 15× 15 grid network, with five sources, uniform
distribution of the sinks values and homogeneous distributions of the weights. Notice
that for this network model the difference between the results averaged over all edges
and those averaged over the edges with higher flux is more evident.

The second set of comparisons is performed using a 15 × 15 grid network, with five
sources, uniform distribution of the sinks values and homogeneous distributions of the
weights. For this particular network model, we used the above mentioned Affinity clus-
tering algorithm to partition the network starting from 4.3, in order not to have the
clusters size problem explained above. From the results shown in Figure 4.10 it can be
noted that the efficiency gain of our clustering method when considering only the higher
fluxes is even more prominent.

In Appendix B we show the results of the same comparison using this time a uniform
distributions of the weights. Analogously to the Erdős–Rényi networks, the same kind of
results are presented changing the number of sources from 5 to 50. The results are similar
to the one shown in figure 4.10. Concerning the configuration with 50 sources, uniform
distribution of the weights and higher fluxes failures, the spread between the proposed
method and the traditional clustering techniques decreases. This was the same configu-
ration that led to the worst results for the Erdős–Rényi model comparison. Therefore,
we might infer that the proposed clustering method performs better, in comparison to
traditional techniques, when the number of sources in the network is lower. In this situ-
ation, in fact, we have a greater heterogeneity of fluxes in the system, and the proposed
method based on 4.3 is indeed sensitive to the fluxes distribution around the network.

A third category of networks used for this comparison is k-regular random graphs, a
particular type of structure in which each node as the same degree k. We set the degree
to be equal to four k = 4. Analogously to the models analyzed previously, the number
of sources is five, the sinks values are drawn from a uniform distribution, and the edges
weights from an homogeneous distributions. As shown in figure 4.11, the qualitative
behavior for this kind of network is very different from the one encountered above.

4.3. CLUSTERING METHODS COMPARISON 71

20 40 60 80 100 120
Number of clusters

0

10

20

30

40

50

60

70

Co
nf

id
en

ce
 % Medoid: external noise correlation

Medoid: correlation (local)
Medoid: correlation (single)
Medoid: correlation (single-neighbors 1)
Medoid: correlation (single-neighbors 2)
Medoid: correlation (complete)
Affinity: external noise correlation
Affinity: correlation (local)
Affinity: correlation (single)
Affinity: correlation (single-neighbors 1)
Affinity: correlation (single-neighbors 2)
Affinity: correlation (complete)
Modularity
Girvan Newman
Ncut
Ratiocut

Regular network (degree 4) (5 sources) - homogeneous weights

20 40 60 80 100 120
Number of clusters

0

10

20

30

40

50

60

70

80

Co
nf

id
en

ce
 % Medoid: external noise correlation

Medoid: correlation (local)
Medoid: correlation (single)
Medoid: correlation (single-neighbors 1)
Medoid: correlation (single-neighbors 2)
Medoid: correlation (complete)
Affinity: external noise correlation
Affinity: correlation (local)
Affinity: correlation (single)
Affinity: correlation (single-neighbors 1)
Affinity: correlation (single-neighbors 2)
Affinity: correlation (complete)
Modularity
Girvan Newman
Ncut
Ratiocut

Regular network (degree 4) (5 sources) - homogeneous weights - high fluxes

Figure 4.11: Simulation results averaged for ten regular networks with degree k = 4, five
sources, uniform distribution of the sinks values and homogeneous distributions of the
weights. For this particular network we show all the clustering methods used.

There is a clear separation between low performance clustering methods and very high
performance algorithms. The higher failure localization confidences are obtained with
Modularity maximization (whose performance for the other types of networks was not
satisfactory), Girvan Newman algorithm, and four of our proposed clustering procedures.
In particular, we notice that using the affinity clustering with the correlations local and
single (as explained in Appendix B) leads to better result, even if for a limited range of
clusters number. Therefore, using different clustering algorithm on the same correlation
matrices might expand this range, further improving the results. We notice that the
results do not change in a considerable way when restricting the edge failures only on
edges with higher fluxes.

Finally, we compare the failures identification performances for a Barabasi-Albert net-
work model [1]. Barabasi-Albert networks feature a scale-free structure, meaning that
they have a power-law degree distribution, in particular P (k) ∼ k−3. Many real world
networks might be described by this model. For this particular type of networks, Girvan
Newman algorithm and the proposed clustering procedures perform in a similar fashion,
whereas modularity maximization and the (relaxed version of) Ratiocut perform consid-
erably worse. Differently form the Erdős–Rényi and grid network cases, and analogously
to the 4-regular graphs, there is no clear distinction between the failure identification
results of higher edges. In Appendix B we shoe the simulations results with the same
current network configuration, changing only the distribution of the edges weights, take
to be homogeneous. The results for the Girvan Newman algorithm and the Modularity
maximization change marginally, improving in the homogeneous case.

4.3. CLUSTERING METHODS COMPARISON 72

20 40 60 80 100 120
Number of clusters

10

20

30

40

50

60

70

Co
nf

id
en

ce
 %

Medoid: external noise correlation
Medoid: correlation (local)
Medoid: correlation (single)
Medoid: correlation (single-neighbors 1)
Medoid: correlation (single-neighbors 2)
Medoid: correlation (complete)
Modularity
Girvan Newman
Ncut
Ratiocut

Barabasi-Albert (average degree 4) (5 sources) - uniform distribution

20 40 60 80 100 120
Number of clusters

0

10

20

30

40

50

60

70

80

Co
nf

id
en

ce
 %

Medoid: external noise correlation
Medoid: correlation (local)
Medoid: correlation (single)
Medoid: correlation (single-neighbors 1)
Medoid: correlation (single-neighbors 2)
Medoid: correlation (complete)
Modularity
Girvan Newman
Ncut
Ratiocut

Barabasi-Albert (average degree 4) (5 sources) - uniform distribution - high fluxes

Figure 4.12: Averaged simulation results for ten Barabasi-Albert networks with average
degree k = 4, five sources, uniform distribution of the sinks values and homogeneous
distributions of the weights.

Chapter 5

Conclusions

Transport systems are ubiquitous in nature and modern society, displaying several archi-
tectures and structures. Their topology can be effectively encoded by a network struc-
ture. Diffusion process are a commonly studied linear dynamical model taking place on
top of these networks. The time evolution of a diffusion process on a network is given
by the Laplacian matrix of the graph, whose properties were studied in the first chapter
of this thesis.

Transport systems are subject to failure of one or more components. If this event
occurs, the transport capacities of the network are reduced. Observing the state of the
whole system is usually unfeasible, if not impossible. Therefore, a commonly faced prob-
lem is finding an optimal sensor placement over the network, such that the observability
of some failure events is enchanted. A typical approach is given by graph partitioning
tools developed in network science. These techniques, like modularity maximization, are
solely based on the topology of the network and they were described in the second chapter
of this thesis. In particular, spectral clustering, exploiting the information contained in
the Laplacian matrix spectrum, admits an interpretation based on a spring-mass system,
for bidirectional networks.

We proposed a clustering procedure that considers not only the network structure, but
also the dynamics taking place on it. In particular, we studied the linear dependence
among the nodes states under the fluctuations of the edge weights. The correlation
matrix obtained is used to partition the network in such a way that dynamically similar
nodes are placed inside the same cluster. Therefore, a coarse-grained network model
is generated, that captures the dynamics of the network on a lower dimensional space.
The performed simulations show that the proposed clustering method is more efficient in
localizing single-edge failures involving connections with higher flux. Future extensions
of the simulation results, could make use of different network configurations rather than
the one used, with disparate sinks and sources distributions.

Moreover, in the scientific literature, the problem of dynamics observability is usually
considered only diffusion-like dynamics. Therefore, a possible extensions of the present

73

74

work include taking into consideration also nonlinear dynamics. Finally, the link between
coarse-grained networks and the model reduction, typically considered in control theory,
might be further explored, with the aim of applying a control theory on a network
structure.

Appendix A

Rescaled process moments

Fixing t < s, the covariance of the rescaled process reads

E [δp̂i(t)δp̂j(s)] =

∫ t

0

du

∫ s

0

du′e−Lik(t−u)e−Ljh(s−u′)E
[
δL̂kl(u)δL̂hm(u′)

]
psl p

s
m (A.1)

+ε1/2

∫ t

0

du

∫ s

0

du′e−Lik(t−u)e−Ljh(s−u′)E
[
δL̂kl(u)δL̂hm(u′)δp̂l(u)

]
psm

+ε1/2

∫ t

0

du

∫ s

0

du′e−Lik(t−u)e−Ljh(s−u′)E
[
δL̂kl(u)δL̂hm(u′)δp̂m(u′)

]
psl

+ε

∫ t

0

du

∫ s

0

du′e−Lik(t−u)e−Ljh(s−u′)E
[
δL̂kl(u)δL̂hm(u′)δp̂l(u)δp̂m(u′)

]
where the first term represents the stationary process (already computed in section 3.5,
and corresponding to the equation 3.42), and the others are higher order corrections,
defined iteratively. Taking for instance the second terms and substituting

δp̂l(u) = −ε1/2

∫ u

0

du′′e−Llr(u−u
′′)δL̂rv(u

′′)δp̂v(u
′′)−

∫ u

0

du′′e−Llr(u−u
′′)δL̂rv(u

′′)psv

we get to the following expression

− ε1/2

∫ t

0

du

∫ s

0

du′
∫ u

0

du′′e−Lik(t−u)e−Ljh(s−u′)e−Llr(u−u
′′)E

[
δL̂kl(u)δL̂hm(u′)δL̂rv(u

′′)
]
psmp

s
v

− ε
∫ t

0

du

∫ s

0

du′
∫ u

0

du′′e−Lik(t−u)e−Ljh(s−u′)e−Llr(u−u
′′)E

[
δL̂kl(u)δL̂hm(u′)δL̂rv(u

′′)δp̂v(u
′′)
]
psm

in which the first term is the third moment of the rescaled noise δL̂ and the second term
defines the successive iterations. Since the Ornstein-Uhlenbeck process is a Gaussian
process, the odd moments vanish. For the higher order even moments, we can use Isserlis
theorem [57] to reduce them to products of variances. Thus we check what happens for

75

76

the first higher order moment that do not vanish, i.e. the fourth one. For instance,
iterating again the expression above with

δp̂v(u
′′) = −ε1/2

∫ u′′

0

du′′′e−Lvw(u′′−u′′′)δL̂wz(u
′′′)δp̂z(u

′′′)−
∫ u′′

0

du′′′e−Lvw(u′′−u′′′)δL̂wz(u
′′′)psz

we get to

− ε3/2

∫ t

0

du

∫ s

0

du′
∫ u

0

du′′
∫ u′′

0

du′′′e−Lik(t−u)e−Ljh(s−u′)e−Llr(u−u
′′)e−Lvw(u′′−u′′′)

E
[
δL̂kl(u)δL̂hm(u′)δL̂rv(u

′′)δL̂wz(u
′′′)δp̂z(u

′′′)
]
psm

for the generator of successive iterations term and

− ε
∫ t

0

du

∫ s

0

du′
∫ u

0

du′′
∫ u′′

0

du′′′e−Lik(t−u)e−Ljh(s−u′)e−Llr(u−u
′′)e−Lvw(u′′−u′′′)

E
[
δL̂kl(u)δL̂hm(u′)δL̂rv(u

′′)δL̂wz(u
′′′)
]
psmp

s
z (A.2)

for the fourth moment. Using Isserlis theorem, the last term can thus be written as

E
[
δL̂kl(u)δL̂hm(u′)δL̂rv(u

′′)δL̂wz(u
′′′)
]

= E
[
δL̂kl(u)δL̂hm(u′)

]
E
[
δL̂rv(u

′′)δL̂wz(u
′′′)
]

+

E
[
δL̂kl(u)δL̂rv(u

′′)
]
E
[
δL̂hm(u′)δL̂wz(u

′′′)
]

+ E
[
δL̂kl(u)δL̂wz(u

′′′)
]
E
[
δL̂hm(u′)δL̂rv(u

′′)
]

that for ε→ 0 becomes

CklhmCrvwzδ(u− u′)δ(u′′ − u′′′) + CklrvChmwzδ(u− u′′)δ(u′ − u′′′)
+ CklwzChmrvδ(u− u′′′)δ(u′ − u′′).

Substituting the last expression into A.2 we get three terms. The first one, for instance,
is

− ε
∫ t

0

du

∫ u

0

du′′e−Lik(t−u)e−Ljh(t−u′)e−Llr(u−u
′′)CklhmCrvwz1vwp

s
mp

s
z (A.3)

that integrating in the eigenbasis of L and taking the limit t→∞ leads to

∝ ε

λi + λj
.

that vanishes for ε → 0. For all the other terms the idea is analogue. For the sixth
moment, for example, we get 15 terms, each of which has an ε2 and 6 integrals with 6

77

exponentials and the product of 3 Dirac’s deltas: contracting the deltas, we are left with
3 integrals (one more than for the 4th moment) that should lead to a term like

∝ ε2

λ2
.

Similarly for all the other higher moments. Thus summing all terms that we get from
the iterative approach we get something like

lim
ε→0

∞∑
k=2

(ε
λ

)k
that since its a convergent geometric series (ε � λF) we can interchange the limit and
the summation

∞∑
k=2

lim
ε→0

(ε
λ

)k
= 0

The same procedure can be applied to the other two terms in A.1: the third one
is identical to the second one (with a changing in the indices, irrelevant in the limit of
ε→ 0) and the fourth one produces similarly higher order moments.

Thus the only term that remains is the first one in A.1 that has no ε parameter in
front of the integral, thus

E [δp̂i(t)δp̂j(s)] −−→
ε→0

∫ t

0

du

∫ s

0

du′e−Lik(t−u)e−Ljh(s−u′)E
[
δL̂kl(u)δL̂hm(u′)

]
psl p

s
m

=

∫ t

0

du

∫ s

0

du′e−Lik(t−u)e−Ljh(s−u′)Cklhmδ(u− u′)psl psm

=

∫ t

0

due−Lik(t−u)e−Ljh(t−u)Cklhmp
s
l p
s
m

that equals to 3.47, as computed in section 3.5.
The same recursion idea can be applied to the mean of the rescaled process, showing

that
E[δp̂i(t)] = 0 ∀t. (A.4)

i.e. as before, the mean of the rescaled process vanishes at all times.

Appendix B

Simulation plots

B.1 Problem introduction

Sinks and sources

0

50

100

150

200

Figure B.1: Sinks and sources si distribution for an Erdős–Rényi network. The sinks
values (displayed in blue) and the edges weights (thickness of the lines) follow a uniform
distribution. Since we are considering a micro-canonical ensemble, we have that

∑
i si =

0. To enforce this condition, the values of the sources (here displayed in red) need to
compensate the sinks values. We choose the sources values to be the same, i.e. to be
equal to the sum of the sinks, changed sign, and divided by the number of sources.

78

B.1. PROBLEM INTRODUCTION 79

Stationary solutions difference Edges fluxes difference

0.06

0.03

0.00

0.03

0.06

0.09

0.12

0.15

0.18

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

Figure B.2: Stationary potentials and fluxes differences after a single-edge failure for an
Erdős–Rényi network with 225 nodes, uniform weights and forcing distributions. If the
state of the whole network is available, the failure localization problem becomes trivial.

17 23 26

67 72

79 81

92 98 100

125 131 133

136 138 143

156

172 176

198

Monopole

17 23 26

67 72

79 81

92 98 100

125 131 133

136 138 143

156

172 176

198

Dipole

6

4

2

0

2

4

6

20

10

0

10

20

Reduced network: Stationary solutions difference

Figure B.3: Stationary potential difference (before and after the failure) for the reduced
model of a 15 × 15 lattice network. We might face two possible outcomes. On the left
the failed edge is internal to one of the clusters, leading to a net signal (monopole) on
the sensor of that cluster. On the right, the failed edge lies between two clusters (i.e. on
the edge-boundary of those clusters). An optimal clustering method should distinguish
clearly those situations, reducing the dimensionality of the network but keeping failure
localization capacities.

B.1. PROBLEM INTRODUCTION 80

Figure B.4: Single edge-failure for the reduced version of an Erdős–Rényi graph, origi-
nally with 225 nodes. This particular edge-failure causes a spread signal over the reduced
network, involving most sensor nodes and making the localization fuzzier. Nevertheless,
if the boundary between positive and negative nodes is clear (i.e. there is a unique couple
of nodes whose potential drop is maximum). Therefore the failure localization is still
possible.

B.2. ERDŐS–RÉNYI NETWORKS 81

B.2 Erdős–Rényi networks

B.2.1 Comparison

In this section we show the results relative to different ways the correlation matrix 4.3 can
be exploited to partition the network. First of all, external noise correlation refers to the
first correlation matrix 3.34 obtained in section 3.4. The stochastic process considered to
compute the correlations of the potential fluctuations was an external white noise added
to the forcing of the system. As explained in the main text, this correlation depends
solely on the Laplacian spectral properties, and not on the fluxes of the network.

All the other correlation functions refer to 4.3, with different categories of fluctuating
edges each. Recall that in order not to consider the fluctuations of an edge for the
computation of the correlation matrix, it is enough to omit the correspondent term in
the fluxes matrix Ckh.

� Correlation complete refers to the case in which all the edges of the network are
made to fluctuate, thus corresponding to the original 4.3. It worth noting that
when one computes the correlation coefficient of adjacent nodes, the fluctuation of
the edge between them gives a negative contribution, as intuitive. Moreover, one
might be interested in knowing the correlation properties of these two nodes under
a fluctuating environment. From this consideration, the following correlations were
explored.

� Correlation local is computed as follows. Consider a single node of the network,
called center node. Take the group of nodes distant kneig step from it. The edges
allowed to fluctuate are the ones further than klocal > kneig steps from the center
node. This defines the environment for the center node. Then, the correlation of
the center node is computed only for the nodes belonging to its ambient, that is the
set of nodes distant kneig step from it. One might consider different combinations
of the parameters kneig and klocal. The one presented in the plot are (klocal, kneig) =
(1, 0) and (klocal, kneig) = (2, 1). Thus the former computes the correlations only
with the first neighbors for each node, whereas the latter extends the computation
also to the second neighbors. Also the combinations (klocal, kneig) = (1, 1) and
(klocal, kneig) = (2, 2) were explored, leading to worse results.

� Starting from the considerations above, Correlation single 1 refers to the correla-
tions values computed keeping still only the edges connecting the two nodes. Cor-
relation single 2 tries to extend the above idea also to second neighbors. Therefore,
the correlations with the first neighbors of each node are the same as Correlation
single 1, whereas for the second neighbors all the edges belonging to the shortest
path between them are kept still.

B.2. ERDŐS–RÉNYI NETWORKS 82

� Correlation local-neighbors is the same idea as correlation local, but only the edges
adjacent to the ambient node are made to fluctuate. Therefore, a different stochas-
tic process is considered for each center node and each ambient node.

� Correlation single-neighbors 1 takes each couple of node that are neighbors and
computes the correlations making when only the edges that are neighbors of the
two fluctuate, keeping the edge between them still, like always. Correlation single-
neighbors 2 extend this approach also to second neighbors.

40 60 80 100 120 140 160 180
Number of clusters

20

40

60

80

Co
nf

id
en

ce
 %

External noise correlation
Correlation complete
Correlation local (1,0)
Correlation local (2,1)
Correlation single 1
Correlation single 2
Correlation local-neighbors 1
Correlation local-neighbors 2
Correlation single-neighbors 1
Correlation single-neighbors 2

Erd s Rényi (average degree 3.73) (5 sources) - Affinity clustering

Figure B.5: Failure identification results using the correlation matrices explained in the
main text and a partitioning method that we call affinity clustering.

B.2. ERDŐS–RÉNYI NETWORKS 83

40 60 80 100 120 140 160 180
Number of clusters

10

20

30

40

50

60

70

80

90

Co
nf

id
en

ce
 %

External noise correlation
Correlation complete
Correlation local (1,0)
Correlation local (2,1)
Correlation single 1
Correlation single 2
Correlation local-neighbors 1
Correlation local-neighbors 2
Correlation single-neighbors 1
Correlation single-neighbors 2

Erd s Rényi (average degree 3.73) (5 sources) - Spectral clustering

Figure B.6: In this comparison, a traditional spectral clustering was used to partition
the network starting from the correlation matrices explained in the main text.

B.2. ERDŐS–RÉNYI NETWORKS 84

20 40 60 80 100 120
Number of clusters

10

20

30

40

50

60

70

Co
nf

id
en

ce
 %

Medoid: external noise correlation
Medoid: correlation (local)
Medoid: correlation (single)
Medoid: correlation (single-neighbors 1)
Medoid: correlation (single-neighbors 2)
Medoid: correlation (complete)
Modularity
Girvan Newman
Ratiocut

Erd s Rényi (average degree 3.73) (5 sources) - homogeneous weights

20 40 60 80 100 120
Number of clusters

0

20

40

60

80

Co
nf

id
en

ce
 %

Medoid: external noise correlation
Medoid: correlation (local)
Medoid: correlation (single)
Medoid: correlation (single-neighbors 1)
Medoid: correlation (single-neighbors 2)
Medoid: correlation (complete)
Modularity
Girvan Newman
Ratiocut

Erd s Rényi (average degree 3.73) (5 sources) - homogeneous weights - high fluxes

B.2. ERDŐS–RÉNYI NETWORKS 85

20 40 60 80 100 120
Number of clusters

0

10

20

30

40

50

60

70

Co
nf

id
en

ce
 %

Medoid: external noise correlation
Medoid: correlation (local)
Medoid: correlation (single)
Medoid: correlation (single-neighbors 1)
Medoid: correlation (single-neighbors 2)
Medoid: correlation (complete)
Modularity
Girvan Newman
Ratiocut

Erd s Rényi (average degree 3.73) (50 sources) - uniform distribution

20 40 60 80 100 120
Number of clusters

10

20

30

40

50

60

70

Co
nf

id
en

ce
 %

Medoid: external noise correlation
Medoid: correlation (local)
Medoid: correlation (single)
Medoid: correlation (single-neighbors 1)
Medoid: correlation (single-neighbors 2)
Medoid: correlation (complete)
Modularity
Girvan Newman
Ratiocut

Erd s Rényi (average degree 3.73) (50 sources) - uniform distribution - high fluxes

B.2. ERDŐS–RÉNYI NETWORKS 86

20 40 60 80 100 120
Number of clusters

10

20

30

40

50

60

70

Co
nf

id
en

ce
 %

Medoid: external noise correlation
Medoid: correlation (local)
Medoid: correlation (single)
Medoid: correlation (single-neighbors 1)
Medoid: correlation (single-neighbors 2)
Medoid: correlation (complete)
Modularity
Girvan Newman
Ratiocut

Erd s Rényi (average degree 3.73) (50 sources) - homogeneous weights

20 40 60 80 100 120
Number of clusters

10

20

30

40

50

60

70

Co
nf

id
en

ce
 %

Medoid: external noise correlation
Medoid: correlation (local)
Medoid: correlation (single)
Medoid: correlation (single-neighbors 1)
Medoid: correlation (single-neighbors 2)
Medoid: correlation (complete)
Modularity
Girvan Newman
Ratiocut

Erd s Rényi (average degree 3.73) (50 sources) - homogeneous weights - high fluxes

B.3. GRID NETWORKS 87

B.3 Grid networks

In this section, we show the simulations results for a grid network model that were not
shown in chapter 4.

20 40 60 80 100 120
Number of clusters

10

20

30

40

50

60

Co
nf

id
en

ce
 %

Medoid: external noise correlation
Medoid: correlation (local)
Medoid: correlation (single)
Medoid: correlation (single-neighbors 1)
Medoid: correlation (single-neighbors 2)
Medoid: correlation (complete)
Modularity
Girvan Newman
Ratiocut

Grid network (5 sources) - uniform distribution

B.3. GRID NETWORKS 88

20 40 60 80 100 120
Number of clusters

0

10

20

30

40

50

60

70

80

Co
nf

id
en

ce
 %

Medoid: external noise correlation
Medoid: correlation (local)
Medoid: correlation (single)
Medoid: correlation (single-neighbors 1)
Medoid: correlation (single-neighbors 2)
Medoid: correlation (complete)
Modularity
Girvan Newman
Ratiocut

Grid network (5 sources) - uniform distribution - high fluxes

20 40 60 80 100 120
Number of clusters

10

20

30

40

50

60

Co
nf

id
en

ce
 %

Medoid: external noise correlation
Medoid: correlation (local)
Medoid: correlation (single)
Medoid: correlation (single-neighbors 1)
Medoid: correlation (single-neighbors 2)
Medoid: correlation (complete)
Modularity
Girvan Newman
Ratiocut

Grid network (50 sources) - uniform distribution

B.3. GRID NETWORKS 89

20 40 60 80 100 120
Number of clusters

10

20

30

40

50

60

Co
nf

id
en

ce
 %

Medoid: external noise correlation
Medoid: correlation (local)
Medoid: correlation (single)
Medoid: correlation (single-neighbors 1)
Medoid: correlation (single-neighbors 2)
Medoid: correlation (complete)
Modularity
Girvan Newman
Ratiocut

Grid network (50 sources) - uniform distribution - high fluxes

20 40 60 80 100 120
Number of clusters

10

20

30

40

50

60

Co
nf

id
en

ce
 %

Affinity: external noise correlation
Affinity: correlation (local)
Affinity: correlation (single)
Affinity: correlation (single-neighbors 1)
Affinity: correlation (single-neighbors 2)
Affinity: correlation (complete)
Modularity
Girvan Newman
Ratiocut

Grid network (50 sources) - homogeneous weights

B.3. GRID NETWORKS 90

20 40 60 80 100 120
Number of clusters

0

10

20

30

40

50

60

70

Co
nf

id
en

ce
 %

Medoid: external noise correlation
Medoid: correlation (local)
Medoid: correlation (single)
Medoid: correlation (single-neighbors 1)
Medoid: correlation (single-neighbors 2)
Medoid: correlation (complete)
Modularity
Girvan Newman
Ratiocut

Grid network (50 sources) - homogeneous weights - high fluxes

B.4. BARABASI-ALBERT NETWORKS 91

B.4 Barabasi-Albert networks

In this section, we shoe the simulation results for ten Barabasi-Albert networks with aver-
age degree equal to four, five sources, uniform distributions of the forcing and, differently
form the main text, with a homogeneous distribution of the edge weights.

20 40 60 80 100 120
Number of clusters

10

20

30

40

50

60

70

Co
nf

id
en

ce
 %

Medoid: external noise correlation
Medoid: correlation (local)
Medoid: correlation (single)
Medoid: correlation (single-neighbors 1)
Medoid: correlation (single-neighbors 2)
Medoid: correlation (complete)
Modularity
Girvan Newman
Ncut
Ratiocut

Barabasi-Albert (average degree 4) (5 sources) - homogeneous weights

B.4. BARABASI-ALBERT NETWORKS 92

20 40 60 80 100 120
Number of clusters

10

20

30

40

50

60

70

80

Co
nf

id
en

ce
 %

Medoid: external noise correlation
Medoid: correlation (local)
Medoid: correlation (single)
Medoid: correlation (single-neighbors 1)
Medoid: correlation (single-neighbors 2)
Medoid: correlation (complete)
Modularity
Girvan Newman
Ncut
Ratiocut

Barabasi-Albert (average degree 4) (5 sources) - homogeneous weights - high fluxes

Bibliography

[1] Réka Albert and Albert-lászló Barabási. “Statistical mechanics of complex net-
works”. In: Rev. Mod. Phys (), p. 2002.

[2] D. Aldous and James Fill. “Reversible Markov Chains and Random Walks on
Graphs”. In: (Jan. 2002).

[3] Alex Arenas, Albert Diaz-Guilera, and Conrad J. Perez-Vicente. “Synchronization
Reveals Topological Scales in Complex Networks”. In: Phys. Rev. Lett. 96 (11
Mar. 2006), p. 114102. doi: 10.1103/PhysRevLett.96.114102. url: https:

//link.aps.org/doi/10.1103/PhysRevLett.96.114102.

[4] Alain Barrat, Marc Barthélemy, and Alessandro Vespignani. Dynamical Processes
on Complex Networks. Cambridge University Press, 2008. doi: 10.1017/CBO9780511791383.

[5] Armando Bazzani. “Linear differential equations and physical models”.

[6] Adi Ben-Israel and Thomas NE Greville. Generalized inverses: theory and applica-
tions. Vol. 15. Springer Science & Business Media, 2003.

[7] Burcu Bozkurt and Durmus Bozkurt. “On the sum of powers of normalized Lapla-
cian eigenvalues of graphs”. In: MATCH - Communications in Mathematical and
in Computer Chemistry 68 (Jan. 2012).

[8] Ulrik Brandes et al. “On Modularity - NP-Completeness and Beyond”. In: 2006.

[9] Chi-Tsong Chen. Linear System Theory and Design. 3rd. USA: Oxford University
Press, Inc., 1998. isbn: 0195117778.

[10] F. R. K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.

[11] Aaron Clauset, M Newman, and Cristopher Moore. “Finding community structure
in very large networks”. In: Physical review. E, Statistical, nonlinear, and soft
matter physics 70 (Jan. 2005), p. 066111. doi: 10.1103/PhysRevE.70.066111.

[12] Armando Di Nardo et al. “Sensor Placement in Water Distribution Networks based
on Spectral Algorithms”. In: July 2018. doi: 10.29007/whzr.

[13] Xue Ding and Tiefeng Jiang. “Spectral distributions of adjacency and Laplacian
matrices of random graphs”. In: The Annals of Applied Probability 20.6 (Dec.
2010).

93

https://doi.org/10.1103/PhysRevLett.96.114102
https://link.aps.org/doi/10.1103/PhysRevLett.96.114102
https://link.aps.org/doi/10.1103/PhysRevLett.96.114102
https://doi.org/10.1017/CBO9780511791383
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.29007/whzr

BIBLIOGRAPHY 94

[14] Paul L. Erdos and Alfréd Rényi. “On the evolution of random graphs”. In: Trans-
actions of the American Mathematical Society 286 (1984), pp. 257–257.

[15] Failure identification for diffusion processes on networks. 2022. url: https://

github . com / EdoardoRolando / Failure - identification - for - diffusion -

processes-on-networks.

[16] Santo Fortunato. “Community detection in graphs”. In: Physics Reports 486.3-5
(Feb. 2010), pp. 75–174.

[17] Linton Freeman. “A Set of Measures of Centrality Based on Betweenness”. In:
Sociometry 40 (Mar. 1977), pp. 35–41. doi: 10.2307/3033543.

[18] Brendan J. Frey and Delbert Dueck. “Clustering by passing messages between data
points”. In: Science 315 (2007), p. 2007.

[19] C. W. Gardiner. Handbook of stochastic methods for physics, chemistry and the
natural sciences. Vol. 13. Springer Series in Synergetics. Berlin: Springer-Verlag,
2004.

[20] Javad Ghaderi and R. Srikant. “Opinion dynamics in social networks with stub-
born agents: Equilibrium and convergence rate”. In: Automatica 50.12 (2014),
pp. 3209–3215. issn: 0005-1098. doi: https://doi.org/10.1016/j.automatica.
2014.10.034. url: https://www.sciencedirect.com/science/article/pii/
S0005109814004154.

[21] M. Girvan and M. E. J. Newman. “Community structure in social and biologi-
cal networks”. In: Proceedings of the National Academy of Sciences 99.12 (2002),
pp. 7821–7826.

[22] Ivan Gutman and Wenjun Xiao. “Generalized inverse of the Laplacian matrix and
some applications”. In: Bulletin: Classe Des Sciences Mathematiques Et Natturalles
129 (2004), pp. 15–23.

[23] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. “Exploring Network Struc-
ture, Dynamics, and Function using NetworkX”. In: Proceedings of the 7th Python
in Science Conference. Ed. by Gaël Varoquaux, Travis Vaught, and Jarrod Mill-
man. Pasadena, CA USA, 2008, pp. 11–15.

[24] L. Hagen and A.B. Kahng. “New spectral methods for ratio cut partitioning and
clustering”. In: IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 11.9 (1992), pp. 1074–1085. doi: 10.1109/43.159993.

[25] David J. Hand. “Data Clustering: Theory, Algorithms, and Applications by Guojun
Gan, Chaoqun Ma, Jianhong Wu”. In: International Statistical Review 76.1 (Apr.
2008), pp. 141–141.

https://github.com/EdoardoRolando/Failure-identification-for-diffusion-processes-on-networks
https://github.com/EdoardoRolando/Failure-identification-for-diffusion-processes-on-networks
https://github.com/EdoardoRolando/Failure-identification-for-diffusion-processes-on-networks
https://doi.org/10.2307/3033543
https://doi.org/https://doi.org/10.1016/j.automatica.2014.10.034
https://doi.org/https://doi.org/10.1016/j.automatica.2014.10.034
https://www.sciencedirect.com/science/article/pii/S0005109814004154
https://www.sciencedirect.com/science/article/pii/S0005109814004154
https://doi.org/10.1109/43.159993

BIBLIOGRAPHY 95

[26] Frank Harary and Robert Z Norman. Graph theory as a mathematical model in
social science. 2. University of Michigan, Institute for Social Research Ann Arbor,
1953.

[27] Harmonic Functions on Graphs.

[28] Shigefumi Hata and Hiroya Nakao. “Erratum: Localization of Laplacian eigenvec-
tors on random networks”. In: Scientific Reports 7 (Dec. 2017). doi: 10.1038/
s41598-017-06298-6.

[29] Petter Holme and Jari Saramäki. “Temporal networks”. In: Physics Reports 519.3
(2012). Temporal Networks, pp. 97–125. issn: 0370-1573. doi: https://doi.org/
10.1016/j.physrep.2012.03.001. url: https://www.sciencedirect.com/
science/article/pii/S0370157312000841.

[30] John Hopfield. “Neural Networks and Physical Systems with Emergent Collective
Computational Abilities”. In: Proceedings of the National Academy of Sciences of
the United States of America 79 (May 1982), pp. 2554–8. doi: 10.1073/pnas.79.
8.2554.

[31] B. W. Kernighan and S. Lin. “An efficient heuristic procedure for partitioning
graphs”. In: The Bell System Technical Journal 49.2 (1970), pp. 291–307. doi:
10.1002/j.1538-7305.1970.tb01770.x.

[32] Y. Kuramoto. Chemical Oscillations, Waves, and Turbulence. Dover Books on
Chemistry Series. Dover Publications, 2003.

[33] Lambert W-Function. url: https://mathworld.wolfram.com/LambertW-Function.
html.

[34] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. “Signed Networks in Social
Media”. In: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. Atlanta, Georgia, USA: Association for Computing Machinery,
2010, pp. 1361–1370. isbn: 9781605589299. doi: 10.1145/1753326.1753532. url:
https://doi.org/10.1145/1753326.1753532.

[35] Ulrike von Luxburg. “A tutorial on spectral clustering”. In: Statistics and Com-
puting 17.4 (Dec. 2007), pp. 395–416.

[36] Naoki Masuda, Mason A. Porter, and Renaud Lambiotte. “Random walks and
diffusion on networks”. In: Physics Reports 716-717 (2017). Random walks and
diffusion on networks, pp. 1–58.

[37] Patrick N. McGraw and Michael Menzinger. “Laplacian spectra as a diagnostic
tool for network structure and dynamics”. In: Phys. Rev. E 77 (3 Mar. 2008),
p. 031102. doi: 10.1103/PhysRevE.77.031102. url: https://link.aps.org/
doi/10.1103/PhysRevE.77.031102.

https://doi.org/10.1038/s41598-017-06298-6
https://doi.org/10.1038/s41598-017-06298-6
https://doi.org/https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/https://doi.org/10.1016/j.physrep.2012.03.001
https://www.sciencedirect.com/science/article/pii/S0370157312000841
https://www.sciencedirect.com/science/article/pii/S0370157312000841
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://mathworld.wolfram.com/LambertW-Function.html
https://mathworld.wolfram.com/LambertW-Function.html
https://doi.org/10.1145/1753326.1753532
https://doi.org/10.1145/1753326.1753532
https://doi.org/10.1103/PhysRevE.77.031102
https://link.aps.org/doi/10.1103/PhysRevE.77.031102
https://link.aps.org/doi/10.1103/PhysRevE.77.031102

BIBLIOGRAPHY 96

[38] Russell Merris. “Laplacian matrices of graphs: a survey”. In: Linear Algebra and
its Applications 197-198 (1994), pp. 143–176. issn: 0024-3795. doi: https://doi.
org/10.1016/0024-3795(94)90486-3. url: https://www.sciencedirect.com/
science/article/pii/0024379594904863.

[39] M. E. J. Newman. “Modularity and community structure in networks”. In: Pro-
ceedings of the National Academy of Sciences 103.23 (2006), pp. 8577–8582. doi:
10.1073/pnas.0601602103. eprint: https://www.pnas.org/doi/pdf/10.1073/
pnas.0601602103. url: https://www.pnas.org/doi/abs/10.1073/pnas.

0601602103.

[40] Mark Newman. Networks. Oxford University Press, 2018, 2018. isbn: 0192527495.

[41] Mark Newman and Michelle Girvan. “Finding and Evaluating Community Struc-
ture in Networks”. In: Physical review. E, Statistical, nonlinear, and soft matter
physics 69 (Mar. 2004), p. 026113. doi: 10.1103/PhysRevE.69.026113.

[42] Neave O’Clery et al. “Observability and coarse graining of consensus dynamics
through the external equitable partition”. In: Phys. Rev. E 88 (4 Oct. 2013),
p. 042805. doi: 10 . 1103 / PhysRevE . 88 . 042805. url: https : / / link . aps .

org/doi/10.1103/PhysRevE.88.042805.

[43] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[44] Martin Rosvall and Carl T. Bergstrom. “Maps of random walks on complex net-
works reveal community structure”. In: Proceedings of the National Academy of
Sciences 105.4 (2008), pp. 1118–1123. doi: 10.1073/pnas.0706851105. eprint:
https://www.pnas.org/doi/pdf/10.1073/pnas.0706851105. url: https:
//www.pnas.org/doi/abs/10.1073/pnas.0706851105.

[45] Martin Rosvall et al. “Different Approaches to Community Detection”. In: (2019),
pp. 105–119.

[46] Naoki Saito. “How Can We Naturally Order and Organize Graph Laplacian Eigen-
vectors?” In: (2018), pp. 483–487. doi: 10.1109/SSP.2018.8450808.

[47] Michael Schaub et al. “Structured networks and coarse-grained descriptions: a
dynamical perspective”. In: (Apr. 2018).

[48] Jianbo Shi and J. Malik. “Normalized cuts and image segmentation”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 22.8 (2000), pp. 888–
905. doi: 10.1109/34.868688.

[49] D. I. Shuman et al. “The emerging field of signal processing on graphs: Extending
high-dimensional data analysis to networks and other irregular domains”. In: IEEE
Signal Processing Magazine 30.3 (May 2013), pp. 83–98.

[50] Daniel A. Spielman. “Spectral and Algebraic Graph Theory Incomplete Draft”.

https://doi.org/https://doi.org/10.1016/0024-3795(94)90486-3
https://doi.org/https://doi.org/10.1016/0024-3795(94)90486-3
https://www.sciencedirect.com/science/article/pii/0024379594904863
https://www.sciencedirect.com/science/article/pii/0024379594904863
https://doi.org/10.1073/pnas.0601602103
https://www.pnas.org/doi/pdf/10.1073/pnas.0601602103
https://www.pnas.org/doi/pdf/10.1073/pnas.0601602103
https://www.pnas.org/doi/abs/10.1073/pnas.0601602103
https://www.pnas.org/doi/abs/10.1073/pnas.0601602103
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.88.042805
https://link.aps.org/doi/10.1103/PhysRevE.88.042805
https://link.aps.org/doi/10.1103/PhysRevE.88.042805
https://doi.org/10.1073/pnas.0706851105
https://www.pnas.org/doi/pdf/10.1073/pnas.0706851105
https://www.pnas.org/doi/abs/10.1073/pnas.0706851105
https://www.pnas.org/doi/abs/10.1073/pnas.0706851105
https://doi.org/10.1109/SSP.2018.8450808
https://doi.org/10.1109/34.868688

BIBLIOGRAPHY 97

[51] James Stone. Information Theory: A Tutorial Introduction. Feb. 2015. isbn: 978-
0956372857. doi: 10.13140/2.1.1633.8240.

[52] T. Tao. [PDF] topics in random matrix theory: Semantic scholar. Jan. 1970. url:
https://www.semanticscholar.org/paper/Topics- in- Random- Matrix-

Theory-Tao/611503ed9d36bad843374774c59ab335ebf7eac4.

[53] Pat Vatiwutipong and Nattakorn Phewchean. “Alternative way to derive the distri-
bution of the multivariate Ornstein–Uhlenbeck process”. In: Advances in Difference
Equations 2019 (July 2019). doi: 10.1186/s13662-019-2214-1.

[54] Xiangrong Wang et al. “Improving robustness of complex networks via the effective
graph resistance”. In: The European Physical Journal B 87 (Sept. 2014), pp. 1–12.
doi: 10.1140/epjb/e2014-50276-0.

[55] Duncan Watts et al. “Collective dynamics of ’small world’ networks”. In: Jan. 2006,
pp. 301–303.

[56] Yen-Chuen Wei and Chung-Kuan Cheng. “Towards efficient hierarchical designs by
ratio cut partitioning”. In: (1989), pp. 298–301. doi: 10.1109/ICCAD.1989.76957.

[57] G. C. Wick. “The Evaluation of the Collision Matrix”. In: Phys. Rev. 80 (2 Oct.
1950), pp. 268–272. doi: 10.1103/PhysRev.80.268. url: https://link.aps.
org/doi/10.1103/PhysRev.80.268.

https://doi.org/10.13140/2.1.1633.8240
https://www.semanticscholar.org/paper/Topics-in-Random-Matrix-Theory-Tao/611503ed9d36bad843374774c59ab335ebf7eac4
https://www.semanticscholar.org/paper/Topics-in-Random-Matrix-Theory-Tao/611503ed9d36bad843374774c59ab335ebf7eac4
https://doi.org/10.1186/s13662-019-2214-1
https://doi.org/10.1140/epjb/e2014-50276-0
https://doi.org/10.1109/ICCAD.1989.76957
https://doi.org/10.1103/PhysRev.80.268
https://link.aps.org/doi/10.1103/PhysRev.80.268
https://link.aps.org/doi/10.1103/PhysRev.80.268

	Introduction
	Network theory
	Basic definitions
	Laplacian matrix
	Graph Fourier Transform
	Laplacian matrix applications
	Diffusion model
	Graphs as spring networks
	Spectral embedding

	Network partitioning
	Graph cuts
	Spectral clustering
	Ratiocut and Ncut approximations

	Modularity

	Dynamic based clustering
	Spectral clustering and diffusion processes
	Coarse-grained network
	Diffusion model with forcing
	External forcing perturbation
	Laplacian perturbation
	Higher order terms
	Contraction condition
	Relative fluctuations

	Rescaled process
	Observability

	Simulations results
	Problem definition
	Failure identification
	Clustering methods comparison

	Conclusions
	Rescaled process moments
	Simulation plots
	Problem introduction
	Erdos–Rényi networks
	Comparison

	Grid networks
	Barabasi-Albert networks

	References

