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Abstract

The study of ultra-cold atomic gases is one of the most active field in con-

temporary physics. The main motivation for the interest in this field con-

sists in the possibility to use ultracold gases to simulate in a controlled way

quantum many-body systems of relevance to other fields of physics, or to

create novel quantum systems with unusual physical properties. An exam-

ple of the latter are Bose-Fermi mixtures with a tunable pairing interaction

between bosons and fermions. In this work, we study with many-body di-

agrammatic methods the properties of this kind of mixture in two spatial

dimensions, extending previous work for three dimensional Bose-Fermi mix-

tures. At zero temperature, we focus specifically on the competition between

boson condensation and the pairing of bosons and fermions into molecules.

By a numerical solution of the main equations resulting by our many-body

diagrammatic formalism, we calculate and present results for several ther-

modynamic quantities of interest. Differences and similarities between the

two-dimensional and three-dimensional cases are pointed out. Finally, our

new results are applied to discuss a recent proposal for creating a p-wave

superfluid in Bose-Fermi mixtures with the fermionic molecules which form

for sufficiently strong Bose-Fermi attraction.
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Introduction

When a gas of particles is cooled to extremely low temperatures, quantum

effects become dominant and the different behaviours between fermionic and

bosonic particles become evident.

A gas of identical bosons (particles with integer spin) undergoes Bose-

Einstein condensation, a phase transition to a state of matter which was pre-

dicted in 1925 but experimentally observed only in 1995. A Bose-Einstein

condensate (BEC) also exhibits superfluidity, the property of a fluid to flow

without any friction. On the contrary, identical non-interacting fermions

(particles with half-integer spin) have to occupy different quantum mechan-

ical single-particle states, not allowing for a Bose-Einstein condensate. How-

ever, in the presence of an attractive interaction, fermions can also pair up

into composite bosons and undergo in this way a condensation. This is the

phenomenon at the heart of superconductivity. All these physical phenom-

ena find an excellent testing platform in ultracold gases. In fact, thanks to

the recent development of experimental techniques, such as laser cooling, it

has been possible to cool down to near absolute zero atomic and molecular

gases and explore in this way the quantum regime where these interesting

phenomena occur. In addition, ultracold gases allow one to test theories and

to address fundamental issues of quantum mechanics as well as to reproduce

physical systems relevant to other areas in physics, with a exibility and a

degree of tunability of parameters unimaginable in the original system of

interest. Furthermore ultracold gases offer the possibility to construct novel

many-body systems, which are not commonly found in nature . For these

reasons, ultracold gases provide a fundamental platform for the quantum
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simulation of complex many-body Hamiltonians with more flexibility than

normally available in conventional condensed matter systems (see for exam-

ple [1] and [2]).

Recently, Bose-Fermi mixtures have drawn increasing attention. The

case of of Bose-Fermi mixtures with a tunable attraction between bosons

and fermions is particularly interesting. In the so-called strong-coupling

regime, pair correlations become so intense that bosons and fermions will

pair and form composite fermions. The formation of bound molecules enters

in competition with the tendency of bosons to condense. For sufficiently

intense attractions and for a mixture with a number of bosons that does not

exceed the number of fermions, condensation can be completely suppressed

(even at zero temperature), since all bosons will participate to the molecular

phase. The final result is a Fermi-Fermi mixture, composed of molecules and

the unpaired fermions.

This evolution has been studied in 3D, in the works [3], [4] (at finite tem-

perature) and [5] (at zero temperature). In all these papers, 3D Bose-Fermi

mixtures were studied with a many-body T-matrix diagrammatic approach,

based on the inclusion of the so-called ladder diagrams. This selection of

diagrams is able to describe correctly both the weak-coupling limit and

the opposite limit of strong BF-attraction, with the formation of composite

fermions. In particular the depletion of the condensate fraction evaluated

in [5] with the T-matrix formalism fully agrees with the results obtained in

a very recent experimental work [6]. This represents a strong support for

the use of the many-body T-matrix approach. At the same time, progress

with experimental techniques has made possible experiments with ultracold

gas in dimensions lower than 3D. The 1D and 2D regimes open the possi-

bility to explore a different kind of physics, with different behaviours with

respect to 3D. One of the main features is that the tendency of matter to

order at temperatures near T = 0 is hampered in lower dimensions. This

is due to the presence of more intense fluctuations with respect to the 3D

systems. Also for this reason, in the last decade, there has been an increas-

ing attention on experiments involving 2D ultracold gases (as for example

2D ultracold systems of 6Li atoms). In addition, 2D systems, may represent
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an interesting platform to simulate non-trivial topological phases of matter

and to understand the origin of high-Tc superconductivity, which represent

one of the main unsolved problems in condensed matter physics ([7], [8] and

[9]).

Two-dimensional Bose-Fermi mixtures are still marginally explored, even

from a theoretical point of view. Recently a paper by Bazak and Petrov [10]

has considered the scattering properties of 2D BF mixtures. In particular

their work considers a mixture with a BF attraction and a BB repulsion.

The main result of [10] is quite promising: with realistic values of Bose-

Bose repulsion, it is possible to create a mixture of a BF molecules without

any more complicated bound states (for example trimer states BFF, BBF;

tetramer states and so on). The BF molecules are identical fermions, for

which the s-wave interaction is suppressed by the Pauli principle. In addi-

tion, a strong p-wave attraction between the BF molecules can be obtained

in this regime. One can thus think to use this system as a controllable setup

to quantum simulate the px + ipy superfluid, and explore its peculiar prop-

erties. In particular, px + ipy superfluids are interesting for the quantum

simulation of Majorana fermions.

For these reasons, it appears both timely and important to study at-

tractive Bose-Fermi mixtures in 2D with the same T-matrix approach that

has been validated by recent experiments in 3D. The extension of such an

approach to the 2D regime, and the numerical solutions of the resulting

equations that determine the main thermodynamic quantities of the 2D BF

mixture constitute the main object of the present thesis. We mention, in

this respect, that some preliminary results in two-dimensions were obtained,

within the same formalism, also in [11]. The results obtained in the present

work agree with those of [11] when comparison is possible, and, at the same

time provide a much more complete analysis with respect to that presented

in [11].

The thesis is organized as follows. In Chapter 1, we introduce the quan-

tum theory of scattering, which is relevant to describe interactions in ul-

tracold gases. Firstly, we analyze the 3D case, which is commonly treated

also in textbooks. Then, we will discuss the scattering theory in two di-
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mensions, which is instead marginally addressed in textbooks. In particular

we compare the 2D and 3D regimes, underlying the differences. We then

analyze the so-called quasi-2D regime, that represents the experimental way

to explore 2D physics with ultracold gases. Finally we will give an example

of the use of ultracold gases as effective quantum simulators of 2D systems.

Chapter 2 is entirely devoted to a general description of Bose-Fermi

mixtures with a pairing interaction between bosons and fermions. We sum-

marize previous theoretical works in 3D, underlining the main results of [3],

[4] and [5]. Then we give a brief description of the recent experiment of

Ref. [6]. The Chapter is concluded by reporting the main results of the

work [10] for a Bose-Fermi mixture in 2D.

Chapter 3 presents the T-matrix formalism and the fundamental equa-

tions to describe the properties of a 2D Bose-Fermi mixture at zero tem-

perature. The resulting equations need to be solved numerically: Chapter

4 then describes the general structure of the algorithm and of the numer-

ical program which we have written to this end. In particular, we explain

how to deal with divergent integrals (which need a convergent factor) in the

numerical program, and the main tricks used to accelerate their convergence.

Chapter 5 finally presents the main results of our work. We first analyze

the weak-coupling regime, and compare the solutions of our numerical sim-

ulations with the perturbative calculations provided by [12] and [13]. We

then show the results for the chemical potentials, the condensate fraction

and the momentum distributions, in the full BF-coupling range. By com-

bining our calculations of the condensate fraction with the estimate of the

p-wave interaction between BF molecules of Ref. [10], we present predictions

for the p-wave superfluid gap, and determine the optimal coupling regime

to achieve experimentally a p-wave superfluid in 2D Bose-Fermi mixtures.
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Chapter 1

Ultracold gases and

scattering theory

In this Chapter, we will introduce the quantum theory of scattering, which is

relevant to describe interactions in ultracold gases. The 3D case is commonly

treated also in textbooks, while the scattering theory in two dimensions is

only marginally addressed in textbooks. We will discuss both the 2D and 3D

regimes, underlying the differences. We will then analyze the so-called quasi-

2D regime, which represents the experimental way to explore 2D physics with

ultracold gases. The Chapter is concluded with some examples of use of

ultracold gases as effective quantum simulators of 2D systems.

1.1 General considerations on ultracold gases

An important feature of cold atomic vapours is that particle separations,

which are typically of order 102 nm, are usually an order of magnitude

larger than the length scales associated with the atom–atom interaction.

Consequently, two-body scattering processes dominate, in general, over pro-

cesses involving simultaneously more than two particles. Moreover, since

the atoms have low velocities, many properties of these systems may be

calculated in terms of a single parameter, the scattering length. In a scat-

tering process, the internal states of the particles in the initial or final states

7



are described by a set of quantum numbers, such as those for the spin, the

atomic species, and their state of excitation. We shall refer to a possible

choice of these quantum numbers as a channel. Because of the existence of

several hyperfine states for a single atom, the scattering of cold alkali atoms

is a multi-channel problem. Besides inelastic processes that lead to losses

of atoms from the trapping potential, coupling between channels also gives

rise to Feshbach resonances, in which a low-energy bound state in one chan-

nel strongly modifies scattering in another channel. Feshbach resonances

make it possible to tune both the magnitude and the sign of the effective

atom–atom interaction, and they have become a powerful tool for investi-

gating cold atoms. For all but the very lightest atoms, it is impossible from

theory alone to make reliable calculations of the scattering properties of cold

atoms because the atom–atom interaction potentials cannot be calculated

with sufficient accuracy. In addition, many properties relevant for cold-atom

studies are not directly accessible to experiment. Consequently, in deriving

information about two-body scattering it is usually necessary to extract in-

formation about the interaction from one class of measurements, and then

to use theory to predict properties of interest. Following the development

of laser cooling, understanding of low-energy atomic collisions has increased

enormously. In particular the use of photoassociation spectroscopy and the

study of Feshbach resonances have made it possible to deduce detailed in-

formation on scattering lengths.

In the next Section we will introduce the basic notions of 3D scattering

theory, following [14].

1.2 Scattering wave function and scattering am-

plitude in 3D

From basic Quantum Mechanics we know that the wave-function for two

particles can be expressed as product between a part that describes the

motion of the center of mass like a free particle of mass M = m1 + m2

and a part that describes the relative motion with reduced mass mr =
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m1m2/(m1 +m2):[
− ℏ2∇2

2mr
+ V (r)

]
ψ(r) =

[
Ĥ0 + V (r)

]
ψ(r) = Eψ(r) (1.1)

Let us assume a short-range potential, so there exist a characteristic length

r∗ above which the potential can be neglected (V (r) ≈ 0 for every |r| > r∗).

So for r > r∗ the equation (1.1) becomes the free Schroedinger equation,

whose general solution is given by a superposition of plane waves. Our

intent is to write down a solution given by the sum between a plane wave

with momentum p and a scattering state with momentum p′. Since we

are interested in elastic processes, we can fix E = ϵp = ℏ2p2/2mr. From

the above considerations, we have that the time-independent Schroedinger

equation in a basis-independent notation becomes:[
ϵp − Ĥ0

]
|ψp⟩ = V̂ |ψp⟩ (1.2)

The solution of the homogeneous equation (V̂ = 0) is given simply by |p⟩,
which can be added to any solution of equation (1.2). The particular solution

of equation (1.2), which incorporates the appropriate boundary conditions

relevant for the scattering problem is thus given by:

|ψ(+)
p ⟩ = |p⟩+ 1

ϵp − Ĥ0 + iϵ
V̂ |ψ(+)

p ⟩ (1.3)

where ϵ −→ 0+ to deal with the singularity in the denominator. The reason

for choosing iϵ and not −iϵ will become clear shortly below. This equation

is know in the literature as the Lippmann-Schwinger equation. In order to

find the scattering wavefunction ψ
(+)
p , we multiply both sides of equation

(1.3) with |r⟩. In this way we obtain:

⟨r|ψ(+)
p ⟩ = ⟨r|p⟩+

∫
dr′ ⟨r| 1

ϵp − Ĥ0 + iϵ
|r′⟩ ⟨r′| V̂ |ψ(+)

p ⟩ (1.4)

where the first term term on the right-hand side corresponds to the incoming

plane wave:

⟨r|p⟩ = eip·r/ℏ
(2πℏ)3/2

(1.5)
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while the calculation of the second term is more laborious, and gives:∫
dr′ ⟨r| 1

ϵp − Ĥ0 + iϵ
|r′⟩ ⟨r′| V̂ |ψ(+)

p ⟩ =

=

∫
dr′
∫

dp

(2πℏ)3
eip

′·(r−r′)/ℏ

ϵp − ϵp′ + iϵ
⟨r′| V̂ |ψ(+)

p ⟩ =

= −mr

ℏ

∫
dr′

eip|r−r′|/ℏ

2π|r− r′|
⟨r′| V̂ |ψ(+)

p ⟩

(1.6)

Since we assumed a priori that the potential V (r) is short ranged, we are

interested on the behaviour of the scattering wavefunction at distances that

are large with respect to this range. Therefore we can write the interatomic

distance for r ≫ r′ as:

|r− r′| =
√
r2 − 2r · r′ + r′2 = r

√
1− 2

r · r′
r2

+
r′2

r2
≈ r − r

r
· r′ (1.7)

so thanks to the condition (1.7), we get a much simpler equation than (1.6):∫
dr′ ⟨r| 1

ϵp − Ĥ0 + iϵ
|r′⟩ ⟨r′| V̂ |ψ(+)

p ⟩ ≈

−mr

ℏ2
eipr/ℏ

2πr

∫
dr′e−ip r

r
·r′/ℏ ⟨r′| V̂ |ψ(+)

p ⟩
(1.8)

then, we define the vector p′ = pr/r, which has the same length as the

vector p, but points in the direction r/r. In this context we can define a

fundamental quantity called scattering amplitude:

f(p′,p) = − 1

2π
(2πℏ)3

mr

ℏ2
⟨p′| V̂ |ψ(+)

p ⟩ (1.9)

We have obtained the important result that, at distances much larger than

the range of the interaction, the total wavefunction can be written as the

sum of an incoming plane wave and an outgoing spherical wave:

ψ
(+)
p (r) =

1

(2πℏ)3/2

[
eip·r/ℏ + f(p′,p)

eipr/ℏ

r

]
(1.10)

Now we understand the presence of iϵ factor in the (1.3). As said above,

the second term of the wavefunction ψ
(+)
p in (1.10) is an outgoing spherical

wave. A small negative imaginary factor −iϵ would have led to an incoming

spherical wave. i.e. a description of the time-reversed scattering process.
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1.3 Two body transition-matrix

In the previous section we have recovered the Lippmann-Schwinger equation,

where it was used to determine the general form of the scattering wavefunc-

tion, which was seen to consist of an incoming plane wave and an outgoing

spherical wave at large separations between the colliding particles. Now,

instead to treat the problem with the scattering states |ψ(+)
p ⟩, we analyze

the problem in a more convenient way. We define an operator T̂ 2B called

Two body transition-matrix, defined by the following relation:

V̂ |ψ(+)
p ⟩ = T̂ 2B |p⟩ (1.11)

The matrix elements of the two body T-matrix are directly related to the

scattering amplitudes f(p′,p) of equation (1.9). Indeed we get:

f(p′,p) = −mr(2πℏ)3

2πℏ2
⟨p′| V̂ |ψ(+)

p ⟩ = −mr(2πℏ)3

2πℏ2
⟨p′| T̂ 2B |p⟩ (1.12)

It is convenient to rescale momenta with the relation k = p/ℏ and to use

the normalization condition ⟨r|k⟩ = eik·r:

f(k′,k) = − mr

2πℏ2
⟨k′| T̂ 2B |k⟩ = − mr

2πℏ2
t(k′,k) (1.13)

Consequently, the Lippmann-Schwinger equation (1.3) assumes the form:

T̂ 2B |k⟩ = V̂ |k⟩+ V̂
1

E − Ĥ0 + iϵ
T̂ 2B |k⟩ (1.14)

which has to be satisfied for any state |k⟩. This leads us to another equivalent
way to define the T-matrix. It can been written as the solution of the off-

shell Lippmann-Schwinger equation for any (complex) energy z:

T̂ 2B(z) = V̂ + V̂
1

z − Ĥ0 + iϵ
T̂ 2B(z) (1.15)

By writing Ĥ = Ĥ0 + V̂ , with some manipulations, one obtains the alterna-

tive equation for the two-body T-matrix:

T̂ 2B(z) = V̂ + V̂
1

z − Ĥ + iϵ
V̂ (1.16)
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The equation (1.16) can be expanded in power of V̂ :

T̂ 2B(z) = V̂

∞∑
n=0

[
1

z − Ĥ0 + iϵ
V̂

]n
(1.17)

which is known as the Born series of the T-matrix. The operator (z −
Ĥ0)

−1 has the physical meaning of the non-interacting propagator of the

colliding atoms at a (complex) energy z. A common approximation for the

T-matrix is to take only the terms n = 0 and n = 1 into in account (Born

approximation). From equation (1.17) we see that the T matrix physically

describes the outcome of a collision process, in which the particles interact

quantum mechanically an arbitrary number of times. In this way the T-

matrix is given by the resulting sum over all elementary interaction processes

that take place during a collision. Now let us consider again equation (1.16).

Let it be {|ψα⟩} a complete set of eigenstates for Ĥ = Ĥ0 + V̂ . Inserting

this set, we find:

T̂ 2B(z) = V̂ +
∑
α

V̂
|ψα⟩ ⟨ψα|
z − ϵα

V̂ (1.18)

where the summation over α is discrete for possible bound sates of the

interaction potential with energies ϵα < 0, while the summation becomes

an integration for the continuum of scattering stets with energy ϵα > 0.

Explicitly, we have:

T̂ 2B(z) = V̂ +
∑
ν

V̂
|ψν⟩ ⟨ψν |
z − ϵν

V̂ +

∫
dk

(2π)3
V̂
|ψ(+)

k ⟩ ⟨ψ(+)
k |

z − ϵk
V̂ (1.19)

which shows that the two-body T-matrix has poles in the complex plane

that corresponding to the bound state of the interaction potential, while it

has also a branch cut on the positive real axis due to the continuum of the

scattering states.

1.4 Partial-wave expansion

In Section 1.2, by treating the two-body problem, we have shown the gen-

eral expression for the scattering wave function at large-distances (equation
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(1.10)).

ψ
(+)
k (r) = eik·r + f(k′,k)

eikr

r
(1.20)

To further evaluate the scattering wave function in (1.10), we consider the

usual case of a spherical potential V (r) = V (r), which depends only on the

distance between atoms. As a consequence, the elastic scattering amplitude

is determined by the magnitude k of the incoming momentum k and a single

angle θ with the outgoing momentum k′, i.e f(k′,k) = f(k, θ).

Thus we can expand its scattering amplitude f(k, θ) with the method of

partial waves:

f(k, θ) =
∞∑
l=0

(2l + 1)fl(k)Pl(cosθ) (1.21)

where Pl(x) are the Legendre polynomials. To see the meaning of the partial-

wave amplitudes fl(k) , we can take advantage of the following identity:

eik·r =
∑
l

(2l + 1)iljl(kr)Pl(cosθ) (1.22)

where , for r −→ ∞ , we can use the asymptotic behaviour of the spherical

Bessel wave function jl(kr):

eik·r ≈
∑
l

(2l + 1)Pl(cosθ)

(
eikr − e−i(kr−lπ)

2ikr

)
. (1.23)

In other words, we have written the plane-wave part eikr of the scattering

wave-function (1.20) as sum (or better speaking as a superposition) of incom-

ing and outgoing spherical waves. So by comparing equations (1.20),(1.21),

and (1.23), we have just shown that the presence of an interaction potential

changes the coefficient of the outgoing spherical waves according to:

eikr

r
−→ (1 + 2ikfl(k))

eikr

r
. (1.24)

Moreover, due to the conservation of probability flux, the square-modulus

of the term (1 + 2ikfl(k)) has to be equal to one. This implies that:

1 + 2ikfl(k) = e2iδl(k), (1.25)
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defining in this way the phase shift δl(k). So, summarizing, at large dis-

tances, the change in the wave-function, due to the scattering process, is

simply reflected by a shift in the phase of every outgoing partial wave. The

key point is that ultracold gases can be cooled to the point where only one

partial wave is dominant and all the others can be neglected. This is be-

cause, one can show that fl(k) ∼ k2l for small k. Typical momenta of the

atoms scale with the thermal de Broglie wavelength λT , if they are bosons,

or the least between λT and the Fermi momentum kF , if they are fermions.

Momenta will thus be very small for dilute ultracold gases, and only the

partial wave with zero angular momentum (l = 0) will contribute.

It is useful now to introduce the s-wave scattering length:

a = − lim
k−→0

δ0(k)

k
(1.26)

By using equation (1.25), we can estimate the scattering amplitude f(k,k′)

in the limit kR∗ ≪ 1:

f(k,k′) ≈ f0(k) =
1

k cot δ0(k)− ik
(1.27)

where we note that this expression is independent of the angle θ. We can

expand in Taylor series the term:

k cot δ0(k) = −1

a
+

1

2
reffk

2 + ... (1.28)

where the coefficient reff is the so-called effective range. Using equations

(1.13) and (1.28), we can obtain the expression of the on-shell T-matrix for

the ultracold gases:

⟨k′| T̂ 2B |k⟩ = T 2B(k) = −2πℏ2

mr

1

k cot δ0(k)− ik
≈ 2πℏ2

mr

a

1− areffk2 + iak
(1.29)

In terms of the small energy E we have the following expression:

T 2B(E + iϵ) ≈ 2πaℏ2

mr

1

1 + ia
√
2mrE/ℏ2 − areffmrE/ℏ2

(1.30)

and by analytic continuation, we get its off-shell expression:

T 2B(z) ≈ 2πaℏ2

m

1

1− a
√
−2mrz/ℏ2 − areffmrz/ℏ2

(1.31)
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For |k| = |k′| = k, k −→ 0, we can neglect the second term in the equation

(1.28). In this way we have the following expression for the T-matrix:

T 2B(z) ≈ 2πaℏ2

mr

1

1− a
√
−2mrz/ℏ2

(1.32)

and in particular the equation (1.32) has a pole at the negative energy:

E = −ϵ0 = − ℏ2

2mra2
(1.33)

Recalling equation (1.32), we have that this pole indicates the presence of a

two-body bound state with a small binding energy ϵ0. One can demonstrate

that this relation turns out to be general, such that it does not depend on

the specific details of the interaction potentials.

It is interesting to consider the model of the contact potential. By defin-

ing T (k′,k; z) = ⟨k′|T (z) |k⟩, the expression (1.16) assumes the form:

T (k′,k; z) = V (k′ − k) +

∫
d3k′′

(2π)3
V (k′ − k′′)

z − ϵk′′
T (k′′,k; z) (1.34)

where ϵk = ℏ2k2/(2mr). For a separable potential V (k′ − k) = v0wkw
′
k,

where wk = Θ(k0 − k):

T (k′,k; z) = v0wkwk′ + v0wk′

∫
d3k′′

(2π)3
w2
k′′

z − ϵk′′
T (k′′,k; z) (1.35)

which, by setting T (k′,k; z) = wkwk′T (z), we have the solution:

T (z) =

[
1

v0
−
∫

d3k′′

(2π)3
w2
k′′

x− ϵk′′

]−1

(1.36)

by setting T (z)−1 = 0, we get the following form for the contact potential:

1

v0
=

mr

2πℏ2a
−
∫

d3k′′

(2π)3
w2
k

ϵk
(1.37)

this expression (that diverges for k0 −→ ∞) is typically used to cure the UV

behaviors.
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1.5 Feshbach Resonances

The main reason of the great impact of ultracold atomic and molecular

quantum gases in modern physics lies, from an experimental point of view,

in their extraordinary degree of control. This allows physicists to investigate

the behaviour of quantum matter under very different conditions. Their

interest goes beyond atomic and molecular physics, reaching far into other

fields, like condensed matter, few- and many-body physics (Ref. [15] presents

a detailed analysis of Feshbach resonances).

The key technique that make ultracold gases so manageable experimen-

tally is the control of the Feshbach resonances. The Feshbach mechanism for

cold alkali atoms can be easily modelled in terms of a multi-channel scatter-

ing processes (see Ref. [16]). Indeed, the internal atomic structure is given

by the usual electronic energy levels which are split because of the hyperfine

coupling and thus it is basically determined by the properties of the valence

electrons and in particular their spin. As a consequence, the interaction

between two atoms induces transitions between the hyperfine energy levels

and thus changes the spin of such electrons. It is therefore evident that such

a mechanism is conveniently described by a multi-channel Hamiltonian. In

this context for a given value of the spin, one speaks of an open channel,

when for that value of the spin a scattering process is allowed. The channel

is called closed, if no scattering is possible and the system is described by a

bound state.

The physical origin and the elementary properties of a Feshbach reso-

nance can be understood from a simple picture. We consider two molecular

potential curves Vbg(R) and Vc(R), as illustrated in Figure 1.1. For large

internuclear distances R, the background potential Vbg(R) asymptotically

connects to two free atoms in the ultracold gas. For a collision process,

with very small energy E, this potential represents the energetically open

channel. The other potential, Vc(R), representing the closed channel, is im-

portant as it can support bound molecular states near the threshold of the

open channel. In this physical context, a Feshbach resonance occurs when

the bound molecular state in the closed channel energetically approaches the
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Figure 1.1: Basic two-channel model for a Feshbach resonance. The phenomenon

occurs when two atoms colliding at energy E resonantly couple to a molecular bound

state with energy Ec supported by the closed channel potential. In the ultracold

domain, collisions take place near zero-energy, E −→ 0. Resonant coupling is then

conveniently realized by magnetically tuning Ec near 0, if the magnetic moments of

the closed and open channel differ. Figure reproduced from Ref. [15].
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scattering state in the open channel. Then even weak couplings can lead

to strong mixing between the two channels. The energy differences can be

controlled via a magnetic field when the corresponding magnetic moments

are different. This leads to a magnetically tuned Feshbach resonance. The

magnetic tuning method is the common way to achieve resonant coupling.

Alternatively, resonant coupling can be achieved by optical methods, leading

to optical Feshbach resonances. In general a magnetically tuned Feshbach

resonance can be described by a simple expression for the s-wave scattering

length a as a function of the magnetic field B:

a(B) = abg

(
1− ∆

B −B0

)
(1.38)

The background scattering length abg, which is the scattering length asso-

ciated with Vbg(R), represents the off-resonant value. It is directly related

to the energy of the last-bound vibrational level of Vbg(R). The parame-

ter B0 denotes the resonance position, where the scattering length diverges

(a −→ ±∞) , and the parameter ∆ is the resonance width. Note that both

abg and ∆ can be positive or negative.

1.6 Notions on the scattering problem in 2D

Now we want generalize the scattering problem to the two-dimensional

space. The first problem is represented by the scattering length. When

we pass from 3D to 2D, the integral in equation (1.34) diverges logarithmi-

cally for z = 0+ iϵ. Consequently it would imply that the scattering length

vanishes for every potential in 2D. However, a typical length associated

with the scattering at low energy can still be defined by looking at how the

phase shift (or the T-matrix) vanishes at low-energy. We will show that

under very general assumptions on the behaviour of the potential V (r), we

have a characteristic phase shift δ0 that behaves as:

δ0(k) ≈
π

2 log(ka)
(k −→ 0). (1.39)

We will follow mostly the treatment of Ref. [17]. The interesting reader can

also take a look at Refs. [18], [19].
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1.6.1 Scattering wave-function and scattering amplitude in

the 2D regime

We now wish to derive the expressions for the scattering wave-function

ψ(+)(r) and scattering amplitude f(k,k′) in the 2D case. The wave function

for a two-body system, in its center of mass reference frame, is the solution

of the Schrodinger equation:

(∇2 + k2)ψ(r) = v(r)ψ(r) (1.40)

where v(r) = 2mrV (r)/ℏ2, with mr the reduced mass and r = (x, y). The

equation (1.40) may be solved through the Green’s function. As usual, we

write down the general solution as the sum of a particular and of a solution

of the associated homogeneous equation:

(∇2 + k2)ψhomo(r) = 0 (1.41)

The homogeneous solution is a plane wave:

ψhomo(r) = Aeik·r (1.42)

For large distances, the scattering center must assume the form of an outgo-

ing spherical wave, and so we need to keep the solution (1.42) with the plus

sign. The particular solution is expressed in terms of the non-interacting

Green’s function:

ψpart(r) =

∫
dr′G0(r, r′)v(r′)ψ(r′), (1.43)

which satisfies the differential equation

(∇2 + k2)G0(r, r′) = δ(2)(r− r′) (1.44)

In particular we can take the Fourier transform of (1.44) and get:

(k2 − p2)G0(p) = 1 =⇒ G(p) =
1

k2 − p2
(1.45)

By applying the Fourier transform to G(p), one has:

G0(r− r′) =

∫
d2p

(2π)2
eip·(r−r′)

k2 − p2
(1.46)
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The Green’s function has two poles on the real axis, for p = ±k. We thus add

in the denominator of (1.46) a small positive imaginary shift +iη, in order

to shift the the poles just off the real axis. In this way we obtain the relevant

Green’s function G(+)(r − r′) for the scattering problem, corresponding to

an outgoing wave. One has (look for example Ref. [17]):

G(+)(r− r′) =

∫
d2p

(2π)2
eip·(r−r′)

k2 − p2 + iη
= − i

4
H1

0 (k|r− r′|) (1.47)

where H1
0 (x) is the Hankel function of the first type.

It is fundamental in our treatment to consider the asymptotic behaviour

of Gk(|r− r′|) for large distances (low energies),:

G(+)(|r− r′|) ≈ − i

4

√
2

πk|r− r′|
ei(k|r−r′|−π

4
) |r− r′| −→ ∞ (1.48)

So we have the following expression for the scattering wave-function ψ
(+)
k (r):

ψ
(+)
k (r) = eik·r +

∫
d2r′

∫
d2p

(2π)2
eip·(r−r′)

k2 − p2 + iη
v(r′)ψ

(+)
k (r′) (1.49)

= eik·r − i

4

∫
d2r′H1

0 (k|r− r′|)v(r′)ψ(+)
k (r′) (1.50)

By using the asymptotic expression (1.48), one has the following form for

ψ
(+)
k (r) for large spatial distances:

ψ
(+)
k (r) ≈ eikz − i

4

∫
d2r′

(
2

πk|r− r′|

)1/2

ei(k|r−r′|−π/4)v(r′)ψ
(+)
k (r′) (1.51)

Similar to the 3D case we consider k′ as the vector of modulus k parallel to

r. The equation (1.51) assumes the form:

ψ
(+)
k (r) ≈ eik·r − i√

r
e−iπ

4 eikr
1

2
√
2πk

∫
d2r′e−ik′·r′v(r′)ψ

(+)
k (r′) (1.52)

We can now generalize the scattering amplitude f(k′,k) in 2D through the

expression:

f(k′,k) = f(k, θ) = − 1

2
√
2πk

∫
d2r′e−ik′r′v(r′)ψ

(+)
k (r′) (1.53)
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such that one obtains an equation for the scattering wave-function ψ
(+)
k (r)

very similar to (1.20):

ψ
(+)
k (r) = eik·r + f(k′,k)

ei(kr+π/4)

√
r

, r −→ ∞ (1.54)

In the next subsection we will use (1.54) to study the 2D phase-shift problem.

Once we will get the expressions for the phase δλ at k −→ 0, we will able to

define the scattering length in 2D.

1.6.2 Definition of scattering length in 2D

In the previous subsection we have derived an integral equation for the

scattering wave-function. It is useful to consider now the corresponding

differential equation. We thus start from the 2D Schroedinger equation:

− ℏ2

2m

(
∂2ψ(r)

∂x2
+
∂2ψ(r)

∂y2

)
+ V (r)ψ(r) = Eψ(r) (1.55)

We assume that the potential is radially symmetric V (r) = V (r) and thus

work with polar coordinates r, θ. In 3D, ψ was expressed in terms of spherical

harmonics. In 2D, we simply expand the wave-function as a simple Fourier

series:

ψ(r) = ψ(r, θ) =

∞∑
λ=−∞

CλRλ(r)e
iλθ, (1.56)

where λ in an integer number. By inserting equation (1.56) into equation

(1.55), we get the following form for the Schrodinger equation:

− ℏ2

2m

(
d2

dr2
+

1

r

d

dr
− λ2

r2

)
Rλ(r) + V (r)Rλ(r) = ERλ(r) (1.57)

We can rewrite the equation (1.57) in term of the reduced units (v(r) =

(2m/ℏ2)V (r), k2 = (2m/ℏ2)E), and obtain:

d2Rλ(r)

dr2
+

1

r

dRλ(r)

dr
+

(
k2 − v(r)− λ2

r2

)
Rλ(r) = 0 (1.58)

If one now makes the transformation:

Rλ(r) =
χλ(r)√

r
(1.59)
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one gets an interesting form of the Schroedinger equation for the radial

function χλ(r):

d2χλ(r)

dr2
+

(
k2 − v(r)−

(λ− 1
2)(λ+ 1

2)

r2

)
χλ(r) = 0 (1.60)

Here one can notice that the centrifugal term is exactly as in three dimension

under the substitution (λ− 1
2) −→ l. If the potential is of circular symmetry,

ψ(r) can be expressed as:

ψ(r, θ) =

∞∑
λ=−∞

iλRλ(r)e
iλθ (1.61)

where each Rλ(r) satisfies the equation (1.58). When r is very large, V (r)

(and so v(r)) becomes negligible, and the Schrodinger equation (1.58) as-

sumes the form of the standard Bessel equation:

x2
d2Rλ(x)

dx2
+ x

dR(x)

dx
+

(
x2 − λ2

)
Rλ(x) = 0 (1.62)

where we have set x = kr. Thus, the general solution of (1.62) can be

expressed in terms of the Bessel Jλ(kr) and Neumann Nλ(kr) functions:

Rλ(kr) = C1Jλ(kr) + C2Nλ(kr) (1.63)

For reasons that will become clear later, we write the general solution Rλ(kr)

in the form:

Rλ(kr) = Aλ(cos δλJλ(kr)− sin δλNλ(kr)) (1.64)

where Aλ and δλ are some constants to be determined.

In the limit r −→ ∞, we can consider the following expansions for the

Bessel and Neumann functions (see for example Ref. [17]):

Jλ(kr) ≈
√

2

πkr
cos

(
kr − 1

2
πλ− 1

4
π

)
(1.65)

Nλ(kr) ≈
√

2

πkr
sin

(
kr − 1

2
πλ− 1

4
π

)
(1.66)
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By inserting equations (1.65) and (1.66) into equation (1.64), we get the

asymptotic behaviour

Rλ(kr) ≈ Aλ

√
2

πkr

[
cos δλ cos

(
kr − 1

2
πλ− 1

4
π

)
− sin δλ sin

(
kr − 1

2
πλ− 1

4
π

)]
=Aλ

√
2

πkr
cos

(
kr − 1

2
πλ− 1

4
π + δλ

)
(1.67)

Now it is clear the choice done for the form of the equation (1.64). In

this way we have obtained a compact form of the asymptotic expression for

Rλ(kr). With a similar procedure, we can expand also the plane wave term

eik·x as:

eik·x = eikr cos θ =
∑
λ

iλJλ(kr)e
iλθ ≈

√
2

πkr

∑
λ

iλ cos

(
kr − 1

2
πλ− 1

4
π

)
eiλθ

(1.68)

The equations (1.67) and (1.68) in the (1.54) give us the following identity:

f(k, θ)
1√
r
ei

π
4 eikr =

∑
λ

iλeiλθ
√

2

πkr

[
Aλ cos

(
kr − 1

2
πλ− 1

4
π + δλ

)
− cos

(
kr − 1

2
πλ− 1

4
π

)]
(1.69)

Let us rewrite the term in the square brackets of equation (1.69). By setting

α(λ) = −1
2πλ− 1

4π, we have:

Aλ cos(kr + α+ δλ)− cos(kr + α) =

1

2
eiα
(
Aλe

iδλ − 1

)
eikr +

1

2
e−iα

(
Aλe

−iδλ − 1

)
e−ikr

(1.70)

where we have used the identity cosx = (eix + e−ix)/2 in the (1.70) to

write it as sum of two terms, respectively proportional to eikr and e−ikr. By

looking at l.h.s of (1.69), we notice that there is only a term proportional

to eikr. As a consequence, the second term on the r.h.s of equation (1.70)

must vanish. In this way we get the following constraint:

Aλ = eiδλ (1.71)
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Taking into account (1.71), the equation (1.70) assumes the following form:

Aλ cos(kr + α+ δλ)− cos(kr + α) =
1

2
eiα
(
e2iδλ − 1

)
eikr

= iei(δλ+α) sin δλe
ikr = (i−λei

π
4 eiδλ sin δλ)e

ikr

(1.72)

where we have written the term ieiα = i−λei
π
4 . Finally, by inserting (1.72)

in equation (1.69), we get the partial wave-expansion for the scattering am-

plitude (analogous to the equation (1.21) in 3D) :

f(k′,k) = f(k, θ) =

√
2

πk

+∞∑
λ=−∞

eiδλ sin δλe
iλθ (1.73)

Now we want to evaluate the explicit expression for the phase shifts δλ

and study their variation with energy at low k. One assumes that from

r > r0, where r0 is some distance, v(r) is negligible, so the solution of (1.58)

is given by (1.64). On the other hand, for r < r0 there is one and only one

solution of (1.58) which behaves regularly at r = 0, as long v(r) does not

have too singular behaviour. Let us denote by Riλ(r) this regular solution.

The equation for the phase shift δλ is obtained simply from the requirement

of regularity of the internal and external solutions at r = r0. So we have to

impose the equality between the two logarithmic derivatives:

R′
iλ(r0)

Riλ(r0)
= k

cos δλJ
′
λ(kr0)− sin δλN

′
λ(kr0)

cos δλJλ(kr0)− sin δλNλ(kr0)
(1.74)

where the symbol ′ indicates the derivative respect to the radial coordinate

r. In particular we obtain the following expression for the phase shift δλ:

tan δλ(k) =
kRiλ(r0)J

′
λ(kr0)−R′

iλ(r0)Nλ(kr0)

kRiλ(r0)N
′
λ(kr0)−R′

iλ(r0)Nλ(kr0)
(1.75)

Let us study the last expression in the small energy limit. For ka ≪ 1

one may replace the Bessel and Neumann functions, as well their derivatives,

by the first term of their expansion:

Jλ(x) =
1

λ!

(
x

2

)λ

+ ...

Nλ(x) = −(λ− 1)!

π

(
2

λ

)λ

+ ...

(1.76)
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For λ ̸= 0, meanwhile for the λ = 0 case we have:

J0(x) = 1 J ′
0(x) = −1

2
x

N0(x) =
2

π
log

(
C1x

2

) (1.77)

where C1 = eγ , with γ ≃ 0, 57721 indicates the Euler-Mascheroni constant.

For the case λ ̸= 0, the equation (1.76) in (1.75) gives us the following

relations for δλ(k):

tan δλ(k) = − π

λ!(λ− 1)!

λRiλ(r0)− r0R
′
iλ(r0)

λRiλ(r0) + r0R′
iλ(r0)

(
kr0
2

)2λ

(1.78)

and one sees that for small k, the phase shift δλ(k) ∝ k2λ for λ ̸= 0. This is

analogue to the standard result for the three-dimensional case where δl(k) ∝
k2l+1, provided the previous substitution l = λ− 1

2 .

However, for our purposes, it is fundamental to recover the behaviour of

δ0(k). By using equations (1.77) into (1.75), we get:

tan δ0(k) =
π

2

R′
i0(r0)

R′
i0(r0) log(C1kr0/2)−Ri0(r0)/r0

=
π

2

{
log

[
kr0

C1

2
exp

(
− Ri0(r0)

r0R
′
i0(r0)

)]}−1 (1.79)

By setting:

a =
C1

2
r0 exp

(
− Ri0(r0)

r0R
′
i0(r0)

)
(1.80)

and by using the Taylor expansion tan(x) ≃ x in the l.h.s. of equation

(1.79), we get the behaviour of δ0(k) at low k.

δ0(k) ≈
π

2 log(ka)
k −→ 0 (1.81)

As said above, the equation (1.81) is quite general (the only reasonable

assumption that we have done is that the potential is independent from the

polar angle θ, i.e. V (r) = V (r)) and can be used to define the scattering

length in 2D, given by the positive constant a > 0.

We have generalized the phase-shift formalism for a two-dimensional

scattering process. At low energies we have shown that δλ(k) ∝ k2λ for λ ̸=

25



0. On the contrary (1.81) tells us that δ0(k) vanishes only logarithmically.

So, also in 2D, we get the result that the s-wave scattering (described by

δ0(k)) dominates at low energies.

Although for the δλ the behaviour is similar to the 3D case, the form

of δ0 at low k represents a significant feature of the 2D regime. To better

understand the consequences of this fact, let us consider the scattering am-

plitude f(k′,k) = f(k, θ) for k −→ 0. Thanks to the equation (1.73), we can

write:

f(k,k′) ≃
√

2

πk
eiδ0 sin δ0 ≃

√
2

πk

π

2 log(ka)− iπ
+o(

1√
k log2(ka)

) k −→ 0

(1.82)

where in the last equation we have used:

eiδ0 sin δ0 =
e2iδ0 − 1

2i
≃ [δ0 + iδ20 + o(δ30)]

≃ δ0(1 + iδ0) ≃ δ0
1

1− iδ0
=

π

2 log(ka)− iπ
(1.83)

Equation (1.82) shows that the scattering amplitude f(k′,k) goes to zero

at low collision energy; this is manifestly different from the 3D behaviour,

where the scattering amplitude equals minus the scattering length (equation

(1.27)). The low-energy behaviour has important consequences in both few-

and many-body physics of the 2D gas with the short-range interactions.

Equations (1.81) and (1.82) suggest that the term log(ka) can be used

to define a dimensionless scale free interaction parameter for the 2D case.

For fermionic systems it is natural to characterize the system by the Fermi

momentum kF . Thus, log(kFa2D) is used in many two-dimensional experi-

ments in order to characterize the interaction (as an example one can look

at the Refs. [7], [8] and [9]).

1.6.3 T-matrix in 2D and contact potential

In the previous section we have found the expressions for the scattering wave

function ψ
(+)
k (r) and for the scattering amplitude f(k′,k):
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ψ
(+)
k (r) = eik·r + f(k′,k)

ei(kr+π/4)

√
r

, r −→ ∞ (1.84)

f(k′,k) = − 1

2
√
2πk

∫
d2r′e−ik′·r′v(r′)ψ

(+)
k (r′) (1.85)

where we recall that k′ is the outgoing momentum and k is the incoming

one.

It is convenient to discuss the scattering in the momentum space also for

a 2D regime. For this purpose, we apply the Fourier transform both to the

potential and to the scattering wave function:

ψk(p) =

∫
d2re−ip·rψ

(+)
k (r) (1.86)

v(p) =

∫
d2re−ip·rv(r) (1.87)

By inserting equation (1.86) into (1.49) one gets:

ψk(p) = (2π)2δ(2)(p− k)− 1

p2 − k2 − iη

∫
d2q

(2π)2
v(q)ψk(p− q) (1.88)

and the scattering amplitude f(k′,k) assume the form:

f(k′,k) = − 1

2
√
2πk

∫
d2q

(2π)2
v(q)ψk(k

′ − q) (1.89)

For convenience, we introduce the modified scattering amplitude f̃(k′,k) =

−2
√
2πkf(k′,k):

f̃(k′,k) =

∫
d2q

(2π)2
v(q)ψk(k

′ − q) =

∫
d2r′e−ik′·r′v(r′)ψ

(+)
k (r′) (1.90)

By inserting eq. (1.88) into (1.90), one gets:

f̃(k′,k) = v(k′ − k) +

∫
d2q

(2π)2
v(k′ − q)

k2 − q2 + iη
f̃(q,k) (1.91)

Now let us consider the Lippmann-Schwinger equation for the two-body

T-matrix, generalized to the two-dimensional space

T̂ (z) = V̂ + V̂
1

z − Ĥ0

T̂ (z) =⇒

T (k′,k, z) = V (k′ − k) +

∫
d2q

(2π)2
V (k′ − q)

z − ϵq
T (q,k, z)

(1.92)
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where T (q,k, z) = ⟨k′|T (z) |k⟩ and ϵq = ℏ2q2/2mr. In particular it is useful

to consider the on-shell form of the T-matrix t(k′,k) ≡ T (k′,k, z = ϵk+ iη):

t(k′,k) = V (k′ − k) +

∫
d2q

(2π)2
V (k′ − q)

ϵk + iη − ϵq
t(q,k) (1.93)

A direct comparison between equations (1.91) and (1.93), gives us the rela-

tion between the on-shell T-matrix and the scattering amplitude in 2D:

f̃(k′,k) = −2
√
2πkf(k′,k) =

2mr

ℏ2
t(k′,k) (1.94)

which in turn yields So by inserting the equation (1.82) in the (1.94)

t(k′,k) = − ℏ2

mr

√
2πkf(k′,k) ≈ 2πℏ2

mr

1

−2 log(ka) + iπ
+o(

1

log2(ka)
) (k −→ 0)

(1.95)

The above equation is general; it is valid for both attractive and repulsive

potentials and it allows one to define the scattering length directly in terms

of the asymptotic behaviour of t(k′,k) for small k. Note that in Eq. (1.95),

the knowledge that the corrections to the leading order behaviour are of

order strictly higher than 1
log2(ka)

is crucial to fix the value of the scattering

length.

The idea is now to exploit Eq. (1.95) to deal with the limiting case

of a contact potential. As in 3D, a contact potential can be defined as

the limit of a short-range attractive potential, when its range r0 → 0 and

the strength of the attraction is changed simultaneously in order to keep

the scattering length fixed at some constant value a. Since in 2D every

attractive potential is sufficient to produce a bound state, the scattering

length of a contact potential can, in turn, be related to the binding energy

of the unique bound state supported by the contact potential. In order to see

it, it is convenient to consider the contact potential as the appropriate limit

of a separable potential. Let us consider the expression for the T-matrix

T (k′,k; z) = ⟨k′|T (z) |k⟩ :

T (k′,k; z) = V (k′ − k) +

∫
d2k′′

(2π)2
V (k′ − k′′)

z − ϵk′′
T (k′′,k; z) (1.96)
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For a separable potential of the form V (k′ − k) = v0wkwk′ where wk =

θ(k0 − k), it becomes:

T (k′,k; z) = v0wkwk′ + v0wk′

∫
d2k′′

(2π)2
w2
k′′

z − ϵk′′
T (k′′,k; z), (1.97)

which, by setting T (k′,k; z) = wkw
′
kT (z) leads to:

T (z)

(
1− v0

∫
d2k′′

(2π)2
w2
k′′

z − ϵk′′

)
= v0 (1.98)

and we find the solution T (z):

T (z) =

(
1

v0
−
∫

d2k′′

(2π)2
w2
k′′

z − ϵk′′

)−1

(1.99)

One can check that for every value of v0 < 0 there is one and only one

solution of the equation T (z)−1 = 0, with z real and negative. It is known

that the poles of the T-matrix along the negative real axis correspond to

the energies of bound states. Let then z = −ϵ0, with ϵ0 > 0 be such a single

pole. One thus has the equation:

1

v0
= −

∫
d2k

(2π)2
w2
k

ϵ0 + ϵk
(1.100)

So we have just found a way to express the bare potential v0 in terms of the

binding energy ϵ0 for a given value of the cutoff k0. By letting then k0 −→ ∞,

we have obtained the T-matrix for a contact potential in 2D:

T (z) = −
[ ∫

d2k

(2π)2
z + ϵ0

(z − ϵk)(ϵ0 + ϵk)

]−1

(1.101)

By performing the integration in the above equation, we obtain:

T (z) = −2πℏ2

mr

1

log

(
−z
ϵ0

) (1.102)

We can now evaluate the on-shell t-matrix t(k,k′) = T (z = ℏ2k2/(2mr)+iϵ)

from the expression of T (z) that we have just recovered:

t(k,k′) = − 2πℏ2/mr

log[−ℏ2k2/(2mrϵ0)− iϵ]

= − 2πℏ2/mr

log[ℏ2k2/(2mrϵ0)]− iπ

(1.103)
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By comparing equation (1.103) with the behaviour of the on-shell t-matrix

at low energy given by (1.95), we find the important result:

ϵ0 =
ℏ2

2mra2
(1.104)

i.e. the relation between the binding energy ϵ0 and the scattering length

defined by (1.39) is the same as in the 3D case.

1.7 Experimental tools to achieve a quasi-2d gas

with cold atoms

The experimental realization of a 2D ultracold gas is based on a strongly

anisotropic trap with one tightly confined direction, for example z, and two

other directions, x and y, where the system is much less confined. The

z-degree of freedom can be neglected if the energy gap ∆z between the

ground state and the first excited state of the z motion is much larger than

all relevant energy scales, such as thermal energies, interaction energies etc.

. Since the confinement along z is usually generated by a harmonic potential,

with a frequency ωz, the gap is given by ∆z = ℏωz.

Then when the z degree of freedom is thermodynamically frozen, the

atoms perform zero point motion in the harmonic oscillator ground state

in the vertical direction, and the extent of their wavefunction equals the

harmonic oscillator length lz =
√
ℏ/mωz. However, the typical length scale

r0 of the van der Waals interaction potential is much smaller than lz and

therefore the microscopic scattering processes has to be described in three

dimensions, by a 3D contact potential on the scale of the problem.

As a result, the interactions are quasi -2D rather than 2D because at

distances ≪ lz the wavefunction of colliding atoms is determined by 3D

scattering length a3D.

Scattering process, however, are altered by the 2D confinement and it

becomes possible to describe the scattering physics in terms of a quasi-2D

scattering length aq2D as a function of the usual three-dimensional scattering

length a3D. The scattering problem in the confined geometry was treated in
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Ref. [20]. Here, we are only interested in reporting the main results, without

going into too much detail about this complicated problem.

In [20] it is shown that the general expression (1.54) for the wavefunction

of the scattering state remains valid, and can be used for both pure 2D and

quasi-2D collisions. The only difference between these two regimes is given

by the expressions for the scattering amplitudes. In Section 1.6.2, we have

recovered that for a “pure” 2D geometry, the scattering amplitude f2D is

given by (1.82):

f2D(k, a2D) = − 1√
8πk

4π

−2 log(ka2D) + iπ
(1.105)

The scattering amplitude for a quasi-2D gas confined to the harmonic oscil-

lator ground state along the z-direction is [20]:

f
(q)
2D(k, a3D, lz) = − 1√

8πk

4π√
2πlz/a3D + w(k2l2z/2)

(1.106)

where the function w(ξ) is defined by the following limit:

w(ξ) = lim
J−→∞

[√
4J

π
log

(
J

e2

)
−

J∑
j=0

(2j − 1)!!

(2j)!!
log(j − ξ − i0)

]
(1.107)

The equation (1.105) is obtained in the limit k −→ 0. So we have to consider

the same low-energy limit also for the equation (1.106) or, equivalently for

k2l2z ≪ 1 (which is equivalent to consider relative energies ϵ < ℏωz, which

precisely defines the so-called quasi-2D regime). The behaviour of the func-

tion w(ξ), for ξ ≪ 1 is the following:

w(ξ) = − log(2πξ/A) + iπ (1.108)

where A = 0.905. Inserting equation (1.108) in equation (1.106), we get the

following expression:

f
(q)
2D(k, a3D, lz) = − 1√

8πk

4π√
2πlz/a3D − log(πk2l2z/A) + iπ

(1.109)

Equations (1.105) and (1.109), valid in the limit k −→ 0, have now similar

expressions. This allows one to write the two-dimensional scattering length
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a2D in terms of the harmonic oscillator length lz and the three-dimensional

scattering length a3D. This parametrization of the quasi-2D scattering in

terms of a2D is fundamental to relate quasi-2D ultracold-atom experiments

to theoretical models formulated for purely 2D systems. By comparing equa-

tions (1.105) and (1.109), we get the following expression for a2D:

a2D = lz

√
π

A
exp

(
−
√
π

2

lz
a3D

)
. (1.110)

The scattering in the quasi-2D geometry can thus be descibed in terms of

a purely 2D model when the relevant momentum scale k of the colliding

atoms is such that k2l2z ≪ 1.

Equation (1.110) is particularly interesting: it shows that the effective

2D scattering length a2D may be controlled by changing either a3D or lz.

This fact opens up the possibility of varying the 2D scattering length a2D

in two different ways: by controlling a3D through for example a Feshbach

resonance or alternatively by varying ωz (but keeping ℏωz much larger than

any energy scale, in order to remain in a quasi-2D regime).

1.8 Example of quantum simulations with ultra-

cold gases in 2D: the BKT transition in bosonic

and fermionic gases

As an example how dimensionality plays a main role in the properties of a

quantum phase transition, let us consider the two-dimensional Bose gas.

It is common knowledge that is impossible to reach Bose-Einstein con-

densation in a uniform 2D system. In particular the answer is negative, both

for the ideal and the interacting gas. Indeed in the reduced dimensional-

ity, the long-range order does not appear at any finite temperature due to

thermal fluctuations of the order parameter.

This fact can be understood by studying the behaviour of the first-order

correlation function g1(r) = ⟨Ψ̂†(r)Ψ̂(0)⟩, where Ψ̂(r) is the annihilation op-

erator for a bosonic particle at position r. As shown in Ref. [21], the function

g1(r) always tend to zero for r −→ ∞ and it is true for any temperature.
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Figure 1.2: The microscopic BKT mechanism at the origin of the 2D superfluid

transition. Below the BKT critical temperature (left figure), vortices of opposite

circulation are bound into dipole pairs. As the transition point is approached, the

density of the pairs grows and the average pair size diverges. Just above the tran-

sition temperature (right figure), a plasma of free vortices forms and suppresses

superfluidity.

However, one can also show that the destruction of the long-range order is

only marginal in 2D, in the sense that at low temperatures, g1(r) decays only

algebraically with distance (meanwhile at high T it follows an exponential

shape). So, in this way an interacting Bose gas at low T exhibits the so-called

”quasi-long-range order” and in particular show a superfluid state.

This fact led to an unusual phase transition which (in an infinite Bose

system) results in superfluidity without condensation, that is described by

the Berezinskii-Kosterlitz-Thouless (BKT theory in brief). It represents a

phase transition, described by the two-dimensional (2D) XY model in statis-

tical mechanics, from bound vortex-antivortex pairs at low temperature to

unpaired vortices and anti-vortices at some critical temperature, indicated

in literature with TBKT . In other words, the superfluid phase is destroyed

via proliferation of vortices, where in the 2D XY-model, vortices represent

stable configurations. In Figure 1.2 is represented schematically the BKT-

process.

It provides a specific phenomena for two dimensional system and can

experimentally observed in trapped two dimensional gas.

The BKT mechanism is very different from the usual finite-temperature

phase transition. It does not involve any spontaneous symmetry breaking
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and emergence of a spatially uniform order parameter.

Instead, the low temperature phase is associated with a quasi-long-range

order, with the correlations of the order parameter (for example the macro-

scopic wave function of a Bose fluid). The BKT transitions, for these rea-

sons, becomes the first known phase transition with nontrivial topology. The

References [21] and [22] describes in a more accurate way the BKT process.

In particular in [21] is stressed that the BKT process takes place of

condensation only for infinite Bose gas. In practice for real systems the

distinction between BKT and (conventional) BEC transitions can be quite

subtle, because no experimental systems are infinite in size. As addressed

in Ref. [21], the BKT superfluid the phase of the wavefunction is not uni-

form in space, but the phase correlations decay extremely slowly and in

practice span the whole experimental system. Ironically, this means that

BKT superfludity inevitably also leads to a finite condensate fraction, and

the emergence of a BEC can in fact be used as a signature of the BKT

transition. The key distinction however is that in contrast to the “conven-

tional” BEC, which is a purely statistical phenomenon and does not rely on

interactions, this BKT-induced condensation is fundamentally interaction

driven (the Ref. [21] provides a more detailed analysis of the competion be-

tween BEC and BKT). However BKT-theory and general topological phase

transitions do not represent the only aims to quantum simulate 2D physics

through ultracold gases.

In a parallel way, the search of theoretical explanation of high-Tc su-

perconductivity in cuprate materials is one of the main open questions in

modern condensed matter physics. Although scientists can explain the pro-

cess behind more conventional lower-temperature superconductivity, they

are still trying to work out how the phenomenon can take place at high

temperatures in what are essentially 2D materials (cuprates being made up

of layers of copper oxide). Such low-dimensional materials are prone to fluc-

tuations that prevent the long-range coherence thought to be essential for

superconductivity.

This has led to an increasing focus on 2D Fermi gases, because they can

serve as model systems to try and help clear up this mystery, having strong

34



and tuneable correlations between their constituent fermions that can mimic

interactions in superconductors. In particular these 2D fermionic systems

(in general composed by 6Li atoms) shows a Fermi-to-Bose crossover, i.e. at

enough strong interaction fermions pair into 2D Bose dimers (analogue to

the formation of the Cooper pairs in conventional superconductivity). This

process can be seen as the generalization of the BCS-BEC crossover (already

treated in 3D) in a 2D regime (see [23] for a general review).

Even in 3D, the crossover region is difficult to describe theoretically and

in 2D the presence of quantum fluctuations complicates the problem (in

particular the BKT process comes into play). So, a full consistent theory of

2D Fermi-to-Bose crossover must be able to describe the physical behaviour

including also the fluctuations due to the intrinsic disorder of 2D regime.

Once this goal is achieved, 2D Fermi gas could be a promising platform to

quantum simulate high-Tc superconductivity.

As said above in the past decade, several experiments involving 6Li atoms

are been performed in quasi-2D regime, in order to understand how strongly

correlated 2D systems can give rise to unconventional superconductivity

with high critical temperatures. Let us discuss some results of experimental

works.

A signature of Cooper-pair condensation has been observed in [7]. An

equally populated mixture of 6Li atoms in two spin states has been studied

near the 3D Feshbach resonance, with a population N = 4− 5 x 104 atoms

per spin state. The kinematics is restricted by confining in a disc-shaped

trap with the anisotropy ratio ωz/ωr ≃ 310 and an axial oscillator length

lz =
√

ℏ/mωz ≃ 551 nm.

In the lower panel (A) of Figure 1.3 are shown the measurements of

the 2D density distribution n(r) in the trap, meanwhile in the panel (B)

is shown the evolution in the radial potential, after that the z-confinement

is turned off. All the measurements are performed at the lowest attainable

temperatures.

The in-trap images show the reduction of the gas as the interaction

between the 6Li atoms is increased. Anyway the most interesting result is

in the lower panel (B) of Figure 1.3: it shows the obtained pair momentum
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distributions for the coldest attainable temperature at different interaction

strengths. One observes a dramatic enhancement at low momenta which

manifests itself in a sharp central peak. The evolution in the panel (B) can

be interpreted as Bose condensation of atomic pairs. However it is possible

that the experiments proves signatures of superfluidity. In such expansion,

nearly all momentum is released along the tightly confined direction, with

almost no momentum released radially. Superfluid expansion, therefore,

may also produce sharp peaks similar to those of the panel (B) of Figure

1.3. Therefore, the experiment [7] may be observing onset of superfluidity

or quasicondensation rather than condensation.

The same group also points out that the temperature, at which the peak

appear, coincides with the temperature of the BKT transition, measured

in the Ref. [8]. The paper [8] reports also the measurement of the first-

order correlation g1(r) in the Fermi-to-Bose crossover, as function of the

temperature. The experimental setup and techniques are essentially the

same of [7]. The first order correlation function g1(r) is derived from the

measured momentum distribution n(k):

g1(r) =

∫
d2kn(k)eik·r (1.111)

The result of such measurement of the correlation function is shown in the

upper panel of Figure 1.3, at log(kFa2D) ≃ −0.5 and log(kFa2D) ≃ 0.5

respectively (the crossover-region is in the range −1 ≤ log(kFa2D) ≤ 1).

The only parameter which is varied in the experiment is the dimensionless

temperature t = T/T 0
BEC , where T 0

BEC =
√
6N ℏωr

πkB
is the condensation

temperature of an ideal 2D Bose gas (in the harmonic potential).

One can appreciate that at lower temperatures the decay of g1(r) is

algebraic, i.e. g1 ∝ r−η(T ) with a temperature-dependent exponent η(T ),

while at high T the correlation function decays exponentially. The transition

from exponential to power low decay signals the onset of superfluidity.

The results obtained in [7] and [8] (pair condensations and algebraically

decaying correlations at low temperatures) support the presence of a su-

perfluid behaviour of 6Li atoms, although a direct observation of superfluid

flow has not yet been made. At this purpose, we finally mention a very
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Figure 1.3: Upper Figure: First-order correlation functions g1(r) for different tem-

peratures at log(kFa2D) ≃ −0.5 and log(kFa2D) ≃ 0.5. The temperature scale used

here is t = T/T 0
BEC . At high temperatures correlations decay exponentially as ex-

pected for a gas in the normal phase. At low temperatures. algebraic correlations

(g1(r) ∝ r−η(T )) with a temperature-dependent scaling exponent η(T ). Figure re-

produced from [8]. Lower Figure: (A) In situ density distribution obtained from

absorption along the z-axis. (B) Pair momentum distribution obtained from the τ/4

(for more details look at Ref. [7]) with a pair projection ramp to lz/a3D = 7.11,

corresponding to a magnetic field of B= 692 G. The strong enhancement at low

momenta in the momentum distribution function for log(kFa2D) < 3.24 is a clear

signature of pair condensation. Figure reproduced from [7]

.
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recent experimental work that may prove in a more direct way the presence

of superfluidity in a 2D Fermi gas. In Ref. [9], superfluidity is demonstrated

(always through a mixture of a 2D 6Li atoms) by moving a periodic potential

through the system and observing no dissipation below a critical velocity vc.

The critical velocity is measured as function of the interaction parameter

log(kFa2D), finding a maximum in the crossover regime between fermionic

and bosonic regime. The three papers [7], [8] and [9] underline the growing

attention of the physics on ultracold atoms on 2D quantum systems. The

2D Fermi gases potentially may be represent an ideal platform to get a full

consistent comprehension of the influence of the BKT mechanism and the

origin of high-Tc superconductivity in the 2D regime.
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Chapter 2

Previous studies of

Bose-Fermi mixtures with

BF pairing interaction

Bose-Fermi mixtures with a tunable boson-fermion attraction have been ob-

ject of active theoretical and experimental investigation over the last few

years. The main behaviour of this quantum system is represented by the

formation of molecules between bosons and fermions. As a consequence, the

condensation of bosons is completely suppressed (even at T = 0), for mix-

tures where the boson density nB is lower that the fermion density nF . In

this chapter we will see how this physical picture emerges within a many-

body diagrammatic formalism based on the sum of the so-called “ladder di-

agrams”. We start our discussion by presenting some theoretical works at

finite temperature.

2.1 Bose-Fermi mixtures in 3D at finite tempera-

ture

The first theoretical studies of ultracold Bose-Fermi mixtures focused on

non-resonant system, where boson-fermion pairing is irrelevant. These sys-

tems have been studied through mean-field like treatments, in particular
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their tendency towards collapse or phase separation.

Ref. [3] represents our starting point to discuss resonant Bose-Fermi

mixture. Such work considers a homogeneous mixture composed by single-

component fermions and bosons. The attraction between bosons and fermions

is assumed to be tuned by a broad Fano-Feshbach resonance, as in most of

experiments with ultracold gases, and thus be accurately described by an

attractive point-contact potential. The ultraviolet divergences associated

with the use of a contact potential are eliminated by expressing the bare in-

teraction v0 in terms of the boson-fermion scattering length aBF through the

divergent expression 1/v0 = mr/(2πa)−
∫
dk/(2π)32mr/k

2, which compen-

sates analogous divergences arising in perturbation theory. No interactions

between bosons is taken into account (even though it becomes relevant in the

treatment of stability of the system), while a Fermi-Fermi s-wave scattering

length is excluded by Pauli principle. In this physical context, the system

is described by a minimal Hamiltonian (see equation (1) in the reference [3]

and similar to equation (3.1) in Chapter 3 , with integrations performed over

3D momenta). The parameter in these theoretical approach that regulates

the pairing attraction between bosons and fermions is the s-wave scattering

length aBF . In addition, one can consider another natural length scale of this

system, the Fermi momentum kF = (6π2nF )
1/3 or alternatively a fictitious

Fermi momentum kF = (3π2n)1/3, where n = nB + nF . It is useful in this

framework to define the dimensionless coupling parameter g = (kFaBF )
−1,

to describe the strength of the interaction.

The expected behavior of the system is trivial in the opposite regimes of

the boson-fermion couplings. In the weak-coupling limit, where the scatter-

ing length aBF is small and negative (such that ((kFaBF )
−1 ≪ 1)), the two

components behave essentially as ideal Bose and Fermi gases. More inter-

estingly, in the strong coupling limit, with aBF small and positive (such that

(kFaBF )
−1 ≫ 1), bosons and fermions will form bound states of molecular

composite fermions, with a binding energy of ϵ0 = 1/(2mra
2
BF ) . This effect

results particularly strong in mixtures prepareted with nF > nB. In fact, by

increasing the interaction, the number of bosons bounded in the molecular

states with fermions increases, until all bosons will pair with fermions into
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Figure 2.1: T-matrix diagrams for the fermionic and bosonic self-energies in the

normal phase. Full lines represent bare bosonic and fermionic Green’s function.

Broken lines represent the bare boson-fermion interaction v0. Figure reproduced

from [3].

molecules. This Bose-Fermi pairing affects also the boson condensate. For

sufficiently strong couplings, even at T = 0, the condensate fraction can be

suppressed completely.

In this context the ladder-diagrams approach proves very effective to de-

scribe the evolution between these two regimes. The physical quantity that

collects all these diagrams is called T-matrix. By knowing the T-matrix one

can in principle evaluate the self energies, to build up the dressed Green’s

function to get the observables. In the T-matrix formalism for Bose-Fermi

mixtures these observables are the bosonic and fermionic momentum distri-

bution functions and densities. In the Ref. [3] are considered the following

diagrams, reported in Figure 2.1.

The choice of the self-energy diagrams is motivated by recovering the two

correct physical behaviours in the two above limits, in completely analogy

with previous work on the BCS-BEC crossover (see Ref. [24]). This is be-

cause in the weak-coupling limit the T-matrix self-energy yields the leading

order correction to the non-interacting system in powers of the small pa-
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rameter na3BF . At the same time, in the strong-coupling limit, the T-matrix

becomes proportional to the bare Green’s function of the molecule of the

composite fermion (see for example Eq.(7) in [3]). As a consequence, by in-

creasing the interaction to reach the molecular limit, the chemical potential

µB becomes more and more negative and tends to minus the binding energy

ϵ0, as expected when all bosons pair with fermions. On the contrary the

fermionic potential µF remains almost constant.

In general, for intermediate couplings, the problem needs to be solved

numerically. In the work [3], particularly interesting is the study of how the

critical temperature Tc for condensation varies as function of the coupling

strength. The critical temperature is very close to the non-interacting value

in the weak-coupling regime. By increasing the interaction, the critical

temperature becomes lower and lower. At a certain critical values gc, Tc

vanishes, corresponding to a quantum phase transition, which separates a

phase with a condensate and a phase with molecular correlations sufficiently

strong to deplete completely the condensate density. The authors find that

the critical coupling depends weakly on the value of the density imbalance

nB/nF . Figure 2.2 reports the behaviour of µF , µB and of the critical

temperature Tc discussed above.

Subsequent theoretical works on Bose-Fermi mixtures in 3D have further

explored the very peculiar properties of this quantum system. The next step

taken in [4] was the study of mass-imbalanced Bose-Fermi mixtures. The

general behaviour of the critical temperature as function of the coupling

is similar to what found in the equal-mass case. The critical temperature

Tc decreases and vanishes at a certain coupling gc. Above this value, the

BEC is completely suppressed in favor to the formation of molecules. In

particular the weak dependence of gc with respect to density imbalance is

also confirmes. A minor difference is the global behaviour of Tc: contrary

to the mass-balanced case, a weak maximum in the critical temperature

is found at intermediate coupling, with a value of the maximum slightly

above the non-interacting value T0. This feature is more pronounced for

intermediate values of the density imbalance.

Regarding the behaviour of the two chemical potentials µB and µF at the

42



Figure 2.2: Upper panel: the temperature Tc as function of (kFaBF )
−1 Lower panel:

the chemical potentials µB and µF (inset) as function of (kFaBF )
−1. Figures re-

produced from Ref. [3].
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critical temperature Tc, they present a trend similar to the mass-balanced

case. The bosonic chemical potential decreases rapidly with increasing

attraction, and changes from µB ≈ 2πnFaBF /mr for weak couplings to

µB ≈ −ϵ0 for strong couplings, with a small dependence on nB/nF . The

fermionic chemical potential changes little and remains almost constant.

This is because the decrease of the chemical potential µF due to the attrac-

tive interaction within bosons is partially compensated by the decreasing

of the temperature when moving along the critical line (which increases

µF ) and by the Pauli repulsion between unpaired fermions and Bose-Fermi

molecules.

So in general for any mass ratio, the behaviour of the critical temperature

as a function of the boson-fermion dimensionless coupling evidences the

presence of a quantum phase transition at zero temperature. This transition

is between a superfluid associated with the presence of a boson condensate

and a normal phase where the condensate is completely depleted.

We now pass to discuss a very interesting behaviour of the bosonic mo-

mentum distribution function nB(k), which occurs for values of the imbal-

ance sufficiently large. One can see in Fig. 2.3 that the bosonic momentum

distribution function vanishes identically at low momenta. This empty re-

gion extends from q = 0 until a certain value, that depends only by the

density imbalance.

The physical reason for this peculiar behaviour can be understood as

follows. For a large imbalance so (that is, for nF ≫ nB) most fermions

remain unpaired and fill a Fermi sphere of radius kUF ≃ [(nF −nB)/6π2]1/3.
At couplings g > gc the bosons are instead bound into molecules, which

fill a Fermi sphere with a radius PCF ≃ (nB/6π
2)1/3. Now, the region in

momentum space |k| < kUF is already occupied by the unpaired fermions.

As a consequence only fermions with k > kUF are bounded in molecules.

Since the momentum of the molecules is given by the sum P = q + k, the

two previous conditions |P| < PCF and |k| > kUF imply that only bosons

with |q| > q0 = kUF − PCF belongs to the pairs, leaving empty the region

|q| < q0. It has been verified that the values of q0 obtained numerically

are compatible with the equation q0 = kUF − PCF . This very peculiar
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Figure 2.3: bosonic distribution functions at the critical coupling gc, for the density

imbalance (nB − nF )/(nB + nF ) = 0.75. Figure reproduced from Ref. [3]

.

phenomena which occurs for Bose-Fermi mixtures was called indirect Pauli

exclusion effect (introduced in Ref. [4]).

Ref. [25] provides a more precise study of this effect from an analyt-

ical point of view. In the same work the indirect Pauli exclusion effect

was confirmed also by quantum Monte-Carlo simulations. A more detailed

comparison between the two methods is shown in the reference [26], for

mixtures with different values of x = nB/nF . This comparison shows how

the T-Matrix formalism represents an efficient approach to describe the pair

correlation appearing in the Bose-Fermi mixture.

2.2 Generalization of the T-matrix self-energy to

the condensed phase at T = 0

In general the works that we have discussed so far represent a detailed

description of the molecular limit of the Bose-Fermi mixture. The method

of the T-matrix formalism is able to describe the mixture for temperatures

T > Tc, where Tc is the condensed temperature. In particular it predicts the

total depletion of the condensate, because Tc vanishes at a certain critical

value gc.
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Figure 2.4: Feynman diagrams extended to include the condense phase: Full lines

indicate the B and F propagators, while wavy-lines indicate condensed lines. Figure

reproduced from Ref. [5].

Subsequent works [25],[26] studied Bose-Fermi mixtures in the molecular

limit exactly at T = 0, confirming that a sufficiently strong BF attraction

suppresses completely the boson condensate (a result which could only be

extrapolated in the previous works formulated at finite temperature).

Ref. [5] finally extended the T-matrix approach to the condensed phase.

This approach introduces a new T-matrix (indicated with T ) which

corresponds to an infinite series of the ladder series of diagrams (Γ) (see

Fig. 2.4). In this way, the theory takes into account all possible ladder

diagrams where the boson line are either condensed or normal.

The diagrams for the two self-energies ΣB and ΣF are similar to those of

the reference [3]. The main difference is that the usual term is now build up

with the T-matrix T . In addition, the bosonic normal self-energy includes

also the term 8πaBBn0/mB, given by the Bogoliubov theory at T = 0 for a

dilute interacting Bose gas (see [27] for major details).

The fermionic self-energy is due only to the coupling with bosons. In this

case, the T-matrix can be closed in the diagram either with a boson propaga-

tor or with two condensate insertions. The second choice, however, produces

in general improper self-energy diagrams, except for the first diagram of T

(i.e., the diagram for which T = Γ). So, in order to avoid double-counting in

the Dyson’s equation, it is necessary to replace the T-matrix T with Γ, when
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Figure 2.5: (a) Bosonic chemical potential µB vs (kFaBF )
−1 for mB = mF , η =

3x10−3 and different values of x = nB/nF . Dashed-dotted line: −ϵ0 (b) Fermionic

chemical potential µF for same parameters. Insets: comparison at aBB = 0 with

first (dashed) and second order (dashed-dotted) perturbative results in weak coupling

for (a) µB at x = 0.175 (b) µF at x = 1.. Figures reproduced from the reference

[5].

T is closed by two condensate insertions. This explains the first diagram in

the Figure 2.4 in the panel(b).

Similarly to [3], the self-energies build up the dressed Green’s function,

which is used in tirn to evaluate the two momentum distributions and the

two densities for Bosons and Fermions. Besides the two equations for the

densities, there is now an additional one, that is the Hugenholtz-Pines rela-

tion µB = Σ11(0) − Σ12(0) . In this way this improved T-Matrix approach

is able to describe also the weak coupling regime, and above all the inter-

mediate regime |kFaBF | ≥ 1 where perturbation theory fails.

Figure 2.5 reports the two chemical potential µB and µF (normalized to

the Fermi energy EF = k2F /2mF ) as a function of g = (kFaBF )
−1. The data

are obtained by solving the T-matrix equations for mB = mF , η = 3x10−3

and three different values of x = nB/nF . The chemical potential µB tends to

the mean field value 4πaBBn0/mB in the weak-coupling limit (kFaBF )
−1 ≪

−1, while it approaches minus the value of the binding energy, −ϵ0, in the

molecular limit in completely analogy with the previous works [3]. More-
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over, by taking a look on the inset, one can see that µB approaches also the

second order perturbative expression µB = 2πaBFnF /mr(1+3kFaBF /(2π))

(dashed-dotted line). The fermionic chemical potential µF , as the attrac-

tion is increased, first decreases, following the second order perturbative

expression µF = EF + 2πaBFnB/mr(1 + 2kFaBF /π) in the weak coupling

limit (as shown in the inset) and then increases when the critical coupling

gc is approached. In complete analogy with [4], this behaviour for moder-

ate couplings suggests a repulsion between unpaired fermions and the BF

molecules, similar to that occurring in the molecular limit. But the central

finding of this generalized T-matrix approach is given by the results for the

population of the condensate n0. Figure 2.6 reports n0/nB vs. (kFaBF )
−1

for different x and constant η = nBa
3
BB. The main result is that the curves

evaluated for different concentrations nB/nF overlap each other, showing a

sort of universal behaviour. Deviations occur only for values n0/nB ≤ 0.2

very close to gc (where, in addition, the condensed phase could be replaced

by a phase-separated state according to the phase diagram of Ref. [28]).

This occurs not only for the balanced-mass case, but also for mass ratios

mB/mF ̸= 1. Specifically, the insets of Figure 2.6 report examples for

mB/mF = 5 and mB/mF = 23/40 (this latter value corresponds to the

mass ratio of a 23Na-40K mixture, that represents the mixture considered in

the experiment of Ref. [6]).

Quantum Monte-Carlo simulations reported in the same work [5] confirm

this universal behaviour for x ≤ 0.5, with results very close to those obtained

by the T-matrix approach. Finally, the results for the whole momentum

distribution nB(k) obtained by the two different methods were compared in

[5]. The corresponding results are reported in Figure 2.7 and confirm, once

again, the validity of the T-matrix formalism. This very good agreement will

motivate us to extend the same formalism to the study Bose-Fermi mixtures

in 2D.
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Figure 2.6: (a) Bosonic chemical potential µB vs (kFaBF )
−1 for mB = mF , η =

3x10−3 and different values of x = nB/nF . Dashed-dotted line: −ϵ0 (b) Fermionic

chemical potential µF for same parameters. Insets: comparison at aBB = 0 with

first (dashed) and second order (dashed-dotted) perturbative results in weak coupling

for (a) µB at x = 0.175 (b) µF at x = 1. . Figure reproduced from Ref. [5]
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Figure 2.7: Bosonic momentum distribution function divided by x vs. k for mB =

mF , η = 3x10−3,(kFaBF )
−1 = 0, 0.75 and different values of x. Curves: TMA

results. Symbols: QMC data x = 0.175 (crosses),0.5 (circles), 1 (triangles). Figure

reproduced from Ref. [5].

2.3 Recent experimental results for a BF-mixture

in 3D

In the previous sections we have discussed how the T-matrix formalism

is able to capture rather well the quantum phase transition between the

condensed phase and the normal phase with molecules. In spite of the

intrinsic approximation of selecting just a class of Feynman diagrams, the

T-matrix approach compared extremely well with Quantum Monte Carlo ab

initio simulations.

We will now discuss very recent experimental results [6] that further

confirm the validity of the T-matrix diagrammatic approach.

A double-degenerate Bose-Fermi mixture of 23Na and 40K, has been stud-

ied in [6] by using a novel density-decompression technique, which mitigates

atomic loss1.

The experiment starts with 2.3×105 40K atoms at a temperature T = 80

nK (≃ 0.2 TF , where TF is the Fermi temperature) and a BEC of 0.8 × 105

1The regime of equal density is hard to control experimentally: the excess density of

the Bose-Einstein condensate causes fast interspecies loss.
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23Na atoms with a condensate fraction of 60% at a magnetic field of 81 G.

A single magnetic field ramp with a speed of 3.5 G/ms is terminated at

the final value of magnetic field around 78.3 G, close to a Feshbach resonance,

tuning in this way different values of the interaction strength g = (kFaBF )
−1.

It is found that the depletion of the BEC is independent of the ramp speed for

sufficiently slow ramps (see the Supplemental Material of [6]). The magnetic

field is then quenched at the value 72.3 G.

This process is used to measure the intensity of pairing BF-correlations,

forcing the formation of molecules already before the phase transition. The

higher the number of molecules generated, the more intense the pairing-

correlations before the quench. After this procedure the system results com-

posed of free Na atoms and bound NaK molecules, which are then imaged

in time of flight after Stern-Gerlach separation. The results are shown in

Figure 2.8 in the panels (a) and (b).

Thus, the signatures of the phase transition a from a polaronic conden-

sate to a molecular Fermi gas are described quantitatively by defining the

normalized order parameter ϕ = NBEC/(Nm +NBEC), where NBEC is the

number of condensed Na atoms and Nm is the number of the molecules.

Clearly ϕ has the role of order parameter and describes the condensate frac-

tion, which can be depleted due to the quantum excitation of bosons to

finite-momentum states. The majority of these finite-momentum states are

due to the formation of pairing correlations, which are measured, as said

above, by the projection into molecules 2.

The measurements of ϕ were thus directly compared with the predic-

tions of the condensate fraction obtained with the T-matrix approach of

Ref. [5]. Figure 2.9 shows the measured order parameter ϕ as a func-

tion of g = (kFaBF )
−1 for nB/nF = 0.9 and 1.3. One can appreciate

from the Figure 2.8 that ϕ slowly decreases by increasing the coupling un-

til (kFaBF )
−1 < 0. On the contrary, once the scattering length becomes

positive, the order parameter decreases rapidly and vanishes in the regime

beyond (kFaBF )
−1 = 1.43 where the residual condensate fraction is compa-

2In Ref. [6] the definition of ϕ does not take into account the number of thermal Na

atoms, whose number remains mostly unchanged across the full interaction range

51



Figure 2.8: (a) Absorption images of Na atoms (Na) and induced molecules (NaK*)

after 18 ms time of fight during the association ramp from the BEC to the molecular

phase. (b) Production of induced molecules. Number of condensed Na atoms (dark

orange points), thermal Na atoms (bright orange diamonds) and induced molecules

(gray points) is shown as function of (kFaBF )
−1 for nB/nF = 1.3. The grey

line indicates the BEC-to-molecule transition at (kFaBF )
−1 = 1.16 in the Fermi

polaron problem (C) Absorption images during the dissociation ramp with 18 ms

time of flight. (d) Dissociation of the induced molecules (reversal of the phase

transition). Condensed Na atoms(dark orange points), thermal Na atoms (bright

orange diamonds) and induced molecules (gray points) are shown as a function of

(kFaBF )
−1 for nB/nF = 1.3). Figure reproduced from [6].
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rable to the uncertainty of the measurement. One can see in figure 2.9 that,

throughout the full interaction regime, there is indeed a very good agree-

ment between the experimental measurements and the predicted condensate

fraction of Ref. [5], corresponding to the black line.

It is important to stress that both data sets (for nB/nF = 0.9 and

nB/nF = 1.3) overlap within error bars, confirming the universality of the

condensate depletion with respect to the values of nB/nF that was first

predicted in [5].

In order to estimate the transition point independently from the order

parameter, the number of projected molecules was also used as an indi-

cator for BF-pairing correlations. When the parameter g = (kFaBF )
−1

increases, as is shown in Figure 2.8, the number of projected molecules in-

creases until a saturation value is reached. It is the signal that all bosons

are bounded into molecules. The resulting transition point is estimated to

be (kFaBF )
−1 = 1.29(13), which is consistent with the transition point ob-

tained by the vanishing of the order parameter. The data collected show a

conversion rate around 80% of the Na atoms in the BEC into molecules.

The reversal of the phase transition was also studied. Once the ramp

has reached the value of (kFaBF )
−1 = 1.3, the magnetic field is decreased

to dissociate the molecules. Then the dissociation ramp is again followed by

a magnetic-field-quench at 72.3 G for the detection. As can be seen from

the time-of-flight images in Figure 2.8, the number of projected molecules

decreases, and at the same time a finite BEC fraction is recovered. Quan-

titatively, the number of the Na atoms in the BEC can be increased from

3(2)× 103 to 8(1)× 103.

In the dissociation processes an increase of thermal Na atoms is reg-

istered, which is attributed to the non-adiabatic effects generated by the

magnetic field ramps near the transition point. As a consequence, the rever-

sal phase transition cannot be characterized by the same order parameter

ϕ, due to the change of the number of thermal Na atoms.

However, the partial restoration of the BEC is a signal of the dissociation

of the molecules due to the decreasing of the coupling, in line with the

expected phase transition. So these measurements provide an experimental
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Figure 2.9: Upper Figure: Order parameter ϕ measured in [6] as function of

the coupling parameter (kFaBF )
−1 for the boson-fermion ratio nB/nF = 0.9 (or-

ange points) and nB/nF = 1.3 (blue points). The black solid line shows the or-

der parameter from the T = 0 theory in Ref. [5] predicting the QPT to occur

at (kFaBF )
−1
c = 2.02 (black triangle) with nB/nF = 1. Lower Figure: Energy

spectrum of the zero-momentum Fermi polaron (red line) and the zero-momentum

molecule (gray line) for a single bosonic impurity obtained from the fRG. The

energies cross at the polaron-to-molecule transition (red-dashed line). For values

aBF > 0, the binding energy Eb = ℏ2/2mra
2
BF is subtracted where mr is the re-

duced mass. Figures reproduced from Ref. [6].
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support for the previous theoretical works for BF mixtures, in particular

with that carried out in Ref. [5]. In particular, the competition between

condensation and pairing-correlations that leads to the formation of the BF

molecules is evident from both the measured order parameter in Figure 2.9

and the induced-molecular process in Fig. 2.8.

Although the experiment has been realized at the finite temperature

T = 0.2 TF , it shows signatures of a quantum phase transition from the

condensate to the molecular phase that may occur strictly at T = 0, as

shown in the previous works [3], [4], [5].

2.3.1 Comparison between T-matrix and fRG calculations in

the polaronic limit

The T-matrix approach of [5], in the polaronic limit (nB/nF −→ 0, i.e. a sin-

gle impurity immersed in a Fermi sea), predicts the polaron-to-molecule

transition to occur at (kFaBF )
−1 = 1.60. For finite bosonic densities,

this value increases, and in general the phase transition occur for values

(kFaBF )
−1 > 1.60. Specifically for the case of balanced densities and mass-

ratio mB/mF = 23/40 (corresponding to the Na-K mixture considered in

[6]), it predicts a gc = (kFaBF )
−1 = 2.02. The T-matrix approach, however,

only takes into account single particle-hole excitations of the Fermi sea and

underestimates the modification of the binding energy of molecules inside

the many-body environment. Indeed, by applying the T-matrix approach to

the Fermi-polaron problem andmB = mF , one finds the polaron-to-molecule

transition to occur at (kFaBF )
−1 = 1.27. More accurate techniques for

the polaron problem, such as the functional renormalization group (fRG)

and the Quantum Monte Carlo (QMC) predict, in the same case, the value

(kFaBF )
−1 = 0.90. For this reason, in order to obtain a more precise value of

the critical gc for the heteronuclear case of the mixture 23Na-40K in the pola-

ronic limit, a fRG scheme was used in [6]). With this procedure, it is possible

to obtain the polaron and molecule energies, that are shown in the lower

panel of Figure 2.9. The two graphs cross each other at (kFaBF )
−1 = 1.16.

However, as can be seen from Figure 2.9, the polaron and molecule ener-

gies cross at rather shallow angle (see upper panel of Figure 2.9), implying
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that the critical value in the polaronic limit can be affected by a sizable

uncertainty. According to [6], the value of (kFaBF )
−1 = 1.16 obtained in

the polaronic impurity limit represents a lower bound on the true value of

the critical coupling of the quantum phase transition at gc = (kFaBF )
−1
c .

Consistently with the universality of the condensate fraction predicted in [5],

and its connection with the polaron quasiparticle weight, which was also first

understood in [5], one sees in Figure 2.9(a) that the polaron quasi-particle

weight (red curve) obtained with the fRG approach in the impurity limit,

describes already rather well the condensate fraction (except for the dis-

continuity of the polaron-to-molecule transition). The main reason for the

different predictions for the polaron-molecule transition between the fRG

and T-matrix approaches in the single-impurity limit is the overestimation

of the repulsion between the molecule and the surrounding fermions in the

Fermi sea. On the contrary, the quasiparticle weight is less affected, and

the two methods (fRG and T-matrix) give a similar result in the single im-

purity case. This is important, because it supports the expectation that

the T-matrix formalism should give accurate predictions for the condensate

fraction also at finite bosonic densities.

2.4 2D Bose-Fermi mixtures and p-wave superflu-

idity

One of the most fascinating and difficult challenges of modern condensed

matter physics is the full understanding of topological quantum systems.

Among these topological quantum systems, the px + ipy superfluid rep-

resents a particularly interesting system, realized in 3He and possibly in

superconducting Sr2RuO4. The increasing interest in topological quantum

behaviour (and also in high-Tc superconductivity) has led physicists to look-

ing for more robust and controllable setups. The main reason lies in the

possibility of having a full experimental control of the interesting topologi-

cal properties of this paradigmatic phase, such as Majorana modes or non-

Abelian vortices.

As usual ultracold gases represent the ideal environment to perform this
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search, in particular for their success in the verification of the BEC-BCS

crossover in two-component Fermi gases.

The expected similar crossover between spinless fermions with a p-wave

attraction is expected to be fundamentally different and more interesting

from an experimental point of view. Theoretically speaking, it has been

shown that by increasing the attraction a transition from the weakly coupled

topological px+ ipy phase to the topologically trivial strongly-coupled phase

of dimers may arise (see Ref. [29] for review).

The main experimental problem is represented by the recombination in

three-body clusters, or possibly higher-order correlations that can signifi-

cantly modify the physical behaviour of the system. In particular these

systems suffers three-body losses. So, from the experimental point of view,

the target is to create p-wave superfluidity with inelastic loss-processes under

control.

This problem was studied by Bazak and Petrov in Ref. [10]. The inelastic

recombination can be suppressed, if the p-wave attraction extends much

beyond the recombination region. In it is in this context that the study of the

Bose-Fermi mixture plays a very important role to realize the experimental

background to reach p-wave superfluidity. In particular there are several

reasons that make the study of the two-dimensional case more interesting

than the three-dimensional one. Following Ref. [10], consider a Bose-Fermi

mixture with a Bose-Fermi attraction which supports a weakly bound Bose-

Fermi (BF) molecular state.

Consider now two identical fermions in the mixture: the exchange of a

boson leads to an effective attraction between the fermions, inversely pro-

portional to the bosonic mass mB. On the other hand, the Fermi-Dirac

statics gives rise to an effective centifugal repulsion ∝ l(l + 1)/mFR
2 in

three dimensions and ∝ l2/mFR
2 in two dimensions, with l odd integer

and R represents is the distance between the fermionic atoms. As a result

of this competition, if one consider the mass ratio mF /mB, there exist a

critical value (mF /mB)c such that one effect dominates with respect to the

other one. In fact, above the value (mF /mB)c, the attraction between two

fermions due to the exchange of a boson becomes more intense with respect
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to the centrifugal barrier and there appears a trimer state with angular mo-

mentum l. In 3D, the l = 1 trimer appears above (mF /mB)c = 8.2, while in

2D one can show that this number decreases (mF /mB)c = 3.3. Below this

critical value, the system is characterized by an atom-molecule attraction in

the p-wave channel.

Consider now two BF molecules. Then, the presence of the second bo-

son approximately doubles the exchange attraction and one expects a p-wave

molecule-molecule resonance to appear at roughly half the mass ratio dis-

cussed above for two fermions and a boson. The main reason that makes

the 2D case more interesting with respect to the 3D case is that the last

one is subject to inelastic losses. This problem is studied in detail, again by

Petrov, in [30] and is due to the fact that, in the three-dimensional space,

the FBB is an Efimovian system.

On the contrary in 2D, the p-wave interaction becomes resonant for

1 ≤ mF /mB ≤ 2. This is fundamental because it makes it possible to study

effects of strong p-wave interactions in accessible isotopic mixtures. A low-

energy collision between two BF molecules can lead to the creation of FFB

or FBB trimers. As mentioned above, the FFB trimer state is absent for

(mF /mB) < 3.3. The FBB trimer is instead possible, and is also stable

because its energy is always below the molecule-molecule threshold 2EBF .

However, a weak BB repulsion (specifically aBB/aFB > 7.65 × 10−9 for

mF /mB = 1 and aBB/aFB > 3.2 × 10−22 for mF /mB = 2) is sufficient to

make this state energetically forbidden.

By considering even clusters of higher orders Bazak and Petrov show in

their work [10] that, for a sufficiently strong Boson-Boson repulsion, two-

and three-molecule collisions are elastic. This result is fundamental, because

it makes it possible in principle, to obtain a stable gas of BF molecules,

without any more complicated cluster-states.

Since the BF bound state is a fermionic particle, this means that the

s-wave interaction is suppressed by Pauli principle, so the p-wave interac-

tion between molecules is dominant. In addition, the reduced dimensional-

ity provides the possibility to tune independently the the boson-boson and

boson-fermion scattering lengths aBB and aBF . In the same experiment
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one can think to control one scattering length with a Fano-Feshbach reso-

nance and the other one with a confinement-induced resonance (described

in Section 1.7).

An independent tuning of the BB interaction and the BF interactions

could be the key point to have a mechanically stable Bose-Fermi mixture

for a wide range of BF couplings, that represents an important issue for the

experiments.

59



Chapter 3

T-matrix approach for a

Bose-Fermi mixture in 2D

The main scope of the thesis is to extend the T-matrix approach also in the

2D regime. In particular we will consider the same set of Feynman dia-

grams of Ref. [5] previously developed in 3D. Contrary to the more standard

theories at T = 0 which work with Green’s functions defined on the real fre-

quency axis (see, e.g., Chapters 3-4 and 6 of Ref. [31]), the theory that we

will consider is formulated at zero temperature by taking the T −→ 0 limit

in all relevant equations obtained within the finite temperature (Matsubara)

formalism (Chapter 7 in [31]), keeping in this way imaginary frequencies.

Working also at T = 0 with imaginary frequencies is useful to avoid the sin-

gularities (or nearly singularities) of the Green’s functions calculated along

the real frequency axis.

3.1 The system

The system of interest is represented by a mixture of single-component

fermions (F) with density nF and bosons (B) with density nB. In the pres-

ence of a broad Fano-Feshbach resonance, the effective range of the potential

r0 is much smaller than the average interparticle distance and the boson-

fermion (BF) scattering length aBF . Under this condition, the system is de-
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scribed by a minimal Hamiltonian, where the boson-fermion interaction can

be described by an attractive point-contact potential. The grand-canonical

Hamiltonian is then:

H =
∑

s=B,F

∫
drψ†

s(r)

(
− ∇2

2ms
− µs

)
ψs(r)

+vBF
0

∫
drψ†

B(r)ψ
†
F (r)ψF (r)ψB(r)

+
1

2
vBB
0

∫
dr

∫
dr′ψ†

B(r)ψ
†
B(r

′)ψB(r
′)ψB(r)

(3.1)

where ψ†
s creates a particle of mass ms and chemical potential µs, where

s = B,F indicates the bosonic and fermionic species respectively. The terms

vBF
0 and vBB

0 are the bare contact strengths. From this moment on we set

ℏ = kB = 1 in all equations. The use of a contact interaction introduces

ultraviolet divergences in perturbation theory that can be eliminated by

expressing the bare coupling strength vBF
0 in terms of the boson-fermion

binding energy ϵ0 = 1/(2mra
2
BF ) through the Eq. (1.100):

1

vBF
0

= −
∫

d2k

(2π)2
1

k2

2mr
+ ϵ0

(3.2)

where mr = mBmF /(mB +mF ) is the reduced mass of the boson-fermion

system and k is the 2D momentum. The BF interaction is attractive and

tunable from weak to strong couplings, while the BB interaction is assumed

to be weakly repulsive. As a consequence, the BB interaction will be treated

at the level of the Bogoliubov approximation, which is not plagued by the

UV divergences arising at higher order in perturbation theory. In analogy

to experiments for 2D fermionic systems, we then describe the BF-coupling

regimes by defining the dimensionless parameter g = − log(kFaBF ) where

kF =
√
4πnF is the 2D-Fermi momentum. In terms of g, we have weak BF-

attraction for g ≲ −2, while strong BF-attraction for g ≳ 1. The molecular

limit is obtained in the regime g ≫ 1, such that aBF −→ 0.

3.2 T-matrices for the normal and condensed phase

in 2D
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Figure 3.1: Diagrams of the T-matrix Γ(P,Ω) in the normal phase (a) and of the

T-matrix T (P,Ω). Figure reproduced from Ref. [5].

In our treatment we work with two different T-matrices. The first one, in-

dicated by Γ(P,Ω) describes the propagation of a fermion-boson pair where

all boson lines are out of the condensate. The second one, i.e., T (P,Ω),

describes the propagation of a fermion-boson pair where at least one nor-

mal boson line is replaced by condensate insertions. The ladder series of

diagrams for Γ(P,Ω), represented in Fig. 3.1a, corresponds to the following

algebraic equation:

Γ(P,Ω) = vBF
0 − vBF

0 Γ(P,Ω)

∫
d2q

(2π)2

∫ +∞

−∞

dω

2π
G0

F (P− q,Ω− ω)G0
B(q, ω)

(3.3)

where G0
B(q, ω) and G0

F (q, ω) are respectively the bosonic and fermionic

bare (or non-interacting) Green’s functions:

G0
B(q, ω) =

1

µB − q2

2mB
+ iω

; G0
F (q, ω) =

1

µF − q2

2mF
+ iω

(3.4)

The integral over ω yields:∫ +∞

−∞

dω

2π
G0

F (P− q,Ω− ω)G0
B(q, ω) =

=

∫ +∞

−∞

dω

2π

1

i(Ω− ω)− ξFP−q

1

iω − ξBq
=

1−Θ(−ξFP−q)

ξFP−q + ξBq − iΩ

(3.5)
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where ξsk = k2

2ms
− µs (s = B,F ), Ω is a frequency, while p and P are

momenta. The equation (3.5) can be evaluated by a contour integration in

the complex plane. One can easily see that the integrand has two poles:

one for ω = −iξBq and one for ω = Ω + iξFP−q. The first pole is always in

the lower complex plane (corresponding to the condition ξBq > 0) since the

bosonic chemical potential µB in our calculations will be always ≤ 0. The

second pole can instead be situated in the upper-half or in the lower-half

depending on the sign of ξFP−q

By closing the contour in the upper complex plane, only this second pole

contributes, provided ξFP−q > 0. We thus get the result Θ(ξFP−q)(ξ
F
P−q +

ξBq − iΩ)−1 (in the last line of equation (3.5) we have used the identity

Θ(x) = 1−Θ(−x)).
Equation (3.3) yields then

1

Γ(P,Ω)
=

1

vBF
0

+

∫
d2q

(2π)2
1−Θ(−ξFP−q)

ξFP−q + ξBq − iΩ
. (3.6)

The ultraviolet divergence of the integral Eq. (3.6) is compensated by

Eq. (3.2) expressing the bare interaction vBF
0 in terms of the binding energy

ε0. In this way one obtains

Γ(P,Ω) =
1

ΓSC(P,Ω)−1 − IF (P,Ω)
(3.7)

where ΓSC(P,Ω), which corresponds to the strong-coupling limit of Γ(P,Ω)

is given by

1

ΓSC(P,Ω)
=

1

vBF
0

+

∫
d2q

(2π)2
1

ξFP−q + ξBq − iΩ
=

= −mr

2π
log

( P 2

2M − 2µ− iΩ

ϵ0

)
.

(3.8)

Note that Eq. (3.8) can be obtained from Eq. (1.102) by replacing z =

− P 2

2M + 2µ+ iΩ.

The contribution IF (P,Ω) is defined by the following integral:

IF (P,Ω) =

∫
d2q

(2π)2
Θ(−ξFP−q)

ξFP−p + ξBq − iΩ
(3.9)
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This integral can be solved exactly with rather laborious calculation, by

using the following useful relation for the integration performed over the

polar angle θ in 2D: ∫ 2π

0

dθ

z ± cos θ
= 2π

sgn(ℜe(z))√
z2 − 1

(3.10)

Here, we just report the final result for IF (P,Ω). First of all we notice that

the Θ(−ξFP−p) in the numerator of the integrand in Eq. (3.9) implies that

IF (P,Ω) = 0 for µF ≤ 0. For µF > 0 we have the following solution:

IF (P,Ω) =
1

4π
√
α

[
log

(
β + 2αk2µF

+ 2
√
α
√
γ + βk2µF

+ αk4µF

)
− log(β + 2

√
αγ)

] (
for µ ≤ P 2

4mB

)
;

=− 1

4π
√
α

[
log

(
β + 2αk2+ + 2i

√
αsgn(Ω)

√
P 2

mB
k2+ +Ω2

)
− log

P 2

m2
B

− iπsgn(Ω)

]
+

1

4π
√
α

[
log

(
β + 2αk2µF

+ 2
√
α
√
γ + βk2µf

+ αk4µF

)
− log

(
β + 2αk2+ + 2i

√
αsgn(Ω)

√
P 2

mB
k2+ +Ω2

)]
(

for µ >
P 2

4mB

)
(3.11)

where we have defined the momenta kµF =
√
2mFµF and k+ =

√
2mr

√
2µ− P 2

mB

and the coefficients :

α =
1

4m2
r

β =
P 2

mB

(
1

2mr
− 1

mB

)
− 1

mr
(2µ+ iΩ)

γ =

(
P 2

2mB
− 2µ− iΩ

)2

.

(3.12)
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It is also useful to report the solution of IF for P = 0 :

IF (0,Ω) =
mr

2π
log

(
1

2
k2µF

− 2mrµ− imrΩ

)
− mr

2π
log

(
− 2mrµ− imrΩ

)
.

(3.13)

In particular from this latter equation we can recover the behaviour of

IF (P,Ω) for Ω −→ ±∞:

IF (P,Ω) =
mr

2π
log

[
1 +

1
2k

2
µF

− 2mrµ

−imrΩ

]
− mr

2π
log

[
1 +

−2mrµ

−imrΩ

]
≃− mr

2π

k2µF

2imrΩ
= −

k2µF

4π

1

iΩ
= −nµF

iΩ

(3.14)

where we have used log(1 + x) ≃ x for x −→ 0. This equation will turn

out particularly useful for the numerical program, when we will have to

approximate the high-frequency tails of the integrals over Ω.

The algebraic equation for the T-matrix T (P,Ω) in the condensed phase,

corresponding to the diagrams in Fig. 2.4b is:

T (P,Ω) = Γ(P,Ω) + Γ(P,Ω)n0G
0
F (P,Ω)T (P,Ω), (3.15)

with solution:

T (P,Ω) =
1

Γ(P,Ω)−1 − n0G0
F (P,Ω)

(3.16)

where n0 is the condensate density.

Fermi momenta of the T-matrices T (P,Ω) and Γ(P,Ω)

The T-matrix T (P,Ω) represents the basic building block to evaluate the

self-energies and then the Green’s functions in the condensed phase. So it

is important to deal with its analytic properties. More precisely, it presents

a Fermi jump placed at a certain momentum PT1 .

It is obtained by considering the analytic continuation of T (P,Ω) to the

retarded TR(P, Ω̃) via the replacement iΩ −→ Ω̃ + iϵ, with ϵ infinitesimally

small and positive and Ω̃ real. The Fermi step momentum is defined by the

equation:
˜Ω(PT1) = 0 (3.17)
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with ˜Ω(P ) obtained by the solution of the equation of

ℜe TR(P,Ω(P ))−1 = 0 (3.18)

when, simultaneously:

ℑm TR(P,Ω(P ))−1 = 0 (3.19)

Note that since zero frequency is at the intersection between the imagi-

nary and real axis, the determination of of momentum PT1 does not require

to perform the analytic continuation. The momentum PT1 can thus be ob-

tained by solving the equation:

ℜe T (PT1 , 0)
−1 = 0, (3.20)

since ℑm TR(P, 0)−1 = 0 for all P. The momentum PT1 , is fundamental in

the numerical program to evaluate accurately the momentum integrals for

the two self-energies and the quantity ∆2
∞ (defined shortly below). This is

because the corresponding integrands vanish sharply at PT1 .

For completeness, we define an analogue momenta also for the T-matrix

in the normal phase Γ(P,Ω), as solution of the equation:

ℜe Γ(PΓ, 0)
−1 = 0. (3.21)

The momenta PΓ has no role of the optimization of the numerical program.

However it is found only in the BF mixture for boson concentrations x =

nB/nF near the unitarity.

Tan’s constant and ∆2
∞

Let us now introduce a very important quantity in the theory as well as in its

numerical implementation. This physical quantity is defined by considering

the trace of the T-matrix T (P,Ω):

∆2
∞ =

∫
d2P

(2π)2

∫
dΩ

2π
T (P,Ω)eiΩη η −→ 0+ (3.22)

where we have introduced the factor eiΩη which makes the integral over

the frequencies convergent (since T (P,Ω) ∝ 1/ log Ω for large frequencies).
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The evaluation of ∆2
∞ is fundamental to set the asymptotic behaviour of

the high-frequency limit of the two self-energies ΣF (k, ω) and ΣB(k, ω) and

for the limit k −→ ∞ of the two distribution functions nF (k) and nB(k).

In particular, ∆2
∞ is related to the so-called Tan constant C which rules

the large momentum behaviour of the momentum distributions of quantum

many-body systems interacting via a contact interaction. S. Tan has proven

in [32] that in these systems the large momentum behaviour is given by

C/k4, where C is the so-called contact constant C. We will see that in our

case C = 4m2
r∆

2
∞ for fermions, while for bosons C gets a contribution also

from the Bogoliubov depletion of the condensate due to the boson-boson

interaction, such that C = 4m2
r [∆

2
∞ +Σ2

12].

In the strong-coupling (molecular) limit the quantity ∆2
∞ can be also

connected to the density of molecules (composite fermions) nCF . Focusing

on the specific case nB ≤ nF , we expect that in the molecular limit the

bosonic chemical potential µB will tend to the value −ϵ0. In addition, the

condensate density n0 will tend to zero since essentially all bosons will be

paired up into molecules. We can then write:

T (P,Ω)−1 ≈ Γ(P,Ω)−1 ≈ ΓSC(P,Ω)−1 = −mr

2π
log

( P 2

2M − 2µ− iΩ

ϵ0

)
(3.23)

In the strong coupling limit the quantity 2µ =≃ −ϵ0, with ϵ0 large, such

that the quantity µCF ≡ ϵ0 + 2µ≪ |2µ|. We thus have

ΓSC(P,Ω)−1 =− mr

2π
log

(
1 +

P 2/2M − iΩ

2|µ|

)
+
mr

2π
log

(
1 +

µCF

2|µ|

)
≃mr

2π

iΩ− P 2/2M + µCF

2|µ|
≃ mr

2π

iΩ− P 2/2M + µCF

ϵ0
(3.24)

where we have expanded the logarithms by using log(1 + x) ≈ x for x ≃ 0.

So, we have just recovered that in the strong coupling limit the the T-matrix

T (P,Ω) reduces to ΓSC(P,Ω), which in turn becomes proportional to the

bare Green’s function GCF (P,Ω) for the molecules

ΓSC(P,Ω) ≃ 2π

mr
ϵ0

1

iΩ− P 2/2M + µCF
=

π

m2
ra

2
BF

G0
CF (P,Ω). (3.25)
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Figure 3.2: Diagrams for the self-energy ΣBF : full lines correspond to the bare

fermionic (F) and to the bare boson (B) Green’s functions. Figure reproduced from

Ref. [5].

The quantity µCF ≡ ϵ0 + 2µ thus acquires the meaning of the chemical

potential of the composite fermions.

When equation (3.25) is plugged into equation (3.22) for ∆2
∞, one ob-

tains:

∆2
∞ =

∫
d2P

(2π)2

∫
dΩ

2π
T (P,Ω)eiΩη

≃ π

m2
ra

2
BF

∫
d2P

(2π)2

∫
dΩ

2π
G0

CF (P,Ω)e
iΩη =

π

m2
ra

2
BF

nCF

(3.26)

We see from this equation that, also in the 2D case, the quantity ∆2
∞ is

related to the density of composite fermions nCF in the strong coupling

limit. For mixtures with nB < nF one can show that nCF tends to nB in

the strong-coupling limit.

3.3 Self-energies

3.3.1 Bosonic self-energy

We write down now the expression for the contribution to the bosonic normal

self-energy that describes the coupling of a boson with a fermionic particle.

The diagrams that we are going to consider are drawn in Figure 3.2: Full

lines correspond to the bare fermionic (F) and to the bare boson (B) Green’s

functions.
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ΣBF (k, ω) =

∫
d2P

(2π)2

∫
dΩ

2π
T (P,Ω)G0

F (P− k,Ω− ω)eiΩη, η −→ 0+

(3.27)

where the Feynman’s rules normally should give us an minus sign in front of

equation (3.27), due to the presence of the fermionic loop. But this cancels

off because we have included for convenience an overall minus sign in the

definition of T (P,Ω) and Γ(P,Ω).

In addition to the term ΣBF that describes the interaction between a

boson particle and a fermionic particle we want to take in account also the

interactions between bosons with momentum k ̸= 0 and the condensate.

A weakly interacting Bose system is described diagrammatically by a

different theory respect to the fermionic particles. We remind that in bosonic

systems in the presence of a condensate, there are in general three distinct

self-energies. The first one (indicated usually with Σ11) has one particle line

going in and one coming out, similar to the fermionic case.

The other two self-energies have two particle lines either coming out

(Σ12) or going in (Σ21) and this underlines the difference with respect to

fermions, due to the macroscopic occupancy of the zero-momentum state.

In the literature Σ11 is called the ”normal” self-energy, while Σ12 and Σ21

are known as the ”anomalous” self-energies (it can be shown that in general

Σ12 = Σ21. (see for example [27] and [31]). A weakly interacting (nBa
3
BB ≪

1) Bose system at T = 0 can be described by the standard Bogoliubov theory

in 3D. In this theory one has:

Σ11 = 2Σ12 =
8πaBBn0
mB

. (3.28)

In the 2D case one can show, instead, that the normal (Σ11) and anomalous

self-energies (Σ12) (see [12] and [33])

Σ11 = 2Σ12 = − 8πn0
mB log(nBa2BB)

(3.29)

So in our framework the bosonic normal and anomalous self-energies take
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Figure 3.3: Diagrams for the self-energy ΣF :Diagrams for the self-energy ΣBF :

full lines correspond to the bare fermionic (F) and to the bare boson (B) Green’s

functions; the wavy lines are the condensate fraction
√
n0. Figure reproduced from

Ref. [5].

the form:

Σ11(k, ω) ≡ ΣB(k, ω) = − 8πn0
mB log(nBa2BB)

+

∫
d2P

(2π)2

∫
dΩ

2π
T (P,Ω)G0

F (P− k,Ω− ω)eiΩη η −→ 0+

Σ12(k, ω) = Σ12 = − 4πn0
mB log(nBa2BB)

(3.30)

3.3.2 Fermionic self-energy

The diagrams that we are going to consider for the fermionic self-energy

ΣF (k, ω) in our framework are drawn in Figure 3.3. The T-matrix can be

closed in the diagram either with a boson propagator or with two condensate

lines. The second choice, however, produces in general improper self-energy

diagrams. For this reason the diagram closed with two condensate lines is

constructed with just the Γ-matrix. The fermionic self-energy is then given

by:

ΣF (k, ω) = n0Γ(k, ω)−
∫

d2P

(2π)2

∫
dΩ

2π
T (P,Ω)G0

F (P−k,Ω−ω)eiΩη (3.31)

where again the integral performed in Ω needs the convergence factor eiΩη ,

with η −→ 0+.
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3.4 Equations for the fermionic and bosonic den-

sities

In general, from the self-energy, one can construct the corresponding inter-

acting Green’s function, from which one can derive several physical quan-

tities. Here, we will be interested in the momentum distributions. The

(interacting) fermionic Green’s function is obtained from the Dyson’s equa-

tion:

GF (k, ω) =
1

G0
F (k, ω)

−1 − ΣF (k, ω)
. (3.32)

The fermionic momentum distribution function nF (k) is in turn given by:

nF (k) =

∫ +∞

−∞

dω

2π
GF (k, ω)e

iωη η −→ 0+, (3.33)

from which the fermion density nF is obtained by an integration over mo-

menta:

nF =

∫
d2k

(2π)2
nF (k) (3.34)

Due to the presence of the condensate, the expression of the expression of

the Dyson’s equation is more complicated respect to the fermionic case. For

the bosons, the presence of the anomalous self-energy Σ12 makes the Dyson’s

equation to acquire a matrix form. The solution of the Dysons’s equation

for the normal bosonic Green’s function is then given by:

GB(k, ω) =
iω + ξBk +ΣB(−k,−ω)

[iω + ξBk +ΣB(−k,−ω)][iω − ξBk − ΣB(k, ω)] + Σ2
12

(3.35)

The normal bosonic Green’s function GB(k, ω),when integrated over the

frequency ω, yields the momentum distribution of non-condensed bosons

(k ̸= 0):

nB(k) = −
∫ +∞

−∞

dω

2π
GB(k, ω)e

iωη η −→ 0+. (3.36)

By integrating over the two-dimensional momentum k, we then get the

density n′B of bosons out of the condensate:

n′B =

∫
d2k

(2π)2
nB(k). (3.37)
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The total density of bosons is thus given by the sum between n′B and the

condensate density n0:

nB = n0 +

∫
d2k

(2π)2
nB(k) (3.38)

The above equations for the boson and fermion densities are complemented

by the Hugenholtz-Pines equation which, in the condensed phase, connects

the chemical potential to the normal and anomalous self-energies at vanish-

ing momentum and frequency (see Ref. [34]):

µB = ΣB(k = 0, ω = 0)− Σ12(k = 0, ω = 0). (3.39)

The three equations (3.34),(3.38), and (3.39) allow one to determine the

values of µF , µB, and n0 for given densities and coupling strengths.

Pole of the fermionic dressed Green’s function and Fermi momen-

tum kF1

It is useful to introduce the equation for the pole of the retarded fermionic

Green’s function GR
F (k, ω), which is obtained by analytic continuation of G

to the real frequency axis. The pole is defined by the equation

ℜe GR
F (k, ω(k))

−1 = 0 (3.40)

when:

ℑm GR
F (k, ω(k))

−1 = 0 (3.41)

As we did for the Fermi step momentum of TR, we define kF1 the values of k

for which the dispersions of such poles cross zero. At the momenta kF1, the

fermionic momentum distribution function nF (k) will have a jump. For this

reason finding the momentum kF1 is essential to optimize the integration of

nF (k) over momenta to calculate the density. Note that since zero frequency

is at the intersection between the imaginary and real axis, the determination

of of momentum kF1 does not require to perform the analytic continuation.

The momentum kF1 can thus be obtained by solving the equation:

ℜe GF (kF1, 0)
−1 = 0. (3.42)
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Chapter 4

Numerical implementation of

the theoretical formalism

The main purpose of the program is to solve the three fundamental equations:

nB = n′B + n0 = n0 +

∫
d2k

(2π)2
nB(k) (4.1)

nF =

∫
d2k

(2π)2
nF (k) (4.2)

µB = ΣB(k = 0, ω = 0)− Σ12 (4.3)

From equations (4.1),(4.2) and (4.3), the program finds the values of the

chemical potentials µB, µF and the density population of the condensate n0,

for given boson concentration x = nB/nF , fermion density nF , BF-pairing

coupling g = − log(kFaBF ), BB repulsion aBB and mass ratio mB/mF . We

addressed the solution of these three fundamental equations by implementing

a numerical code written in Fortran 90 language.

4.1 General structure of the program

Units

All the equations presented above are inserted in the numerical program in

a dimensionless form. To this end, a natural momentum scale is provided
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by the Fermi momentum kF of the non-interacting system, which in 2D is

defined by inverting the equation

nF =

∫ kF

0

d2k

(2π)2
=
k2F
4π
, (4.4)

yielding kF = (4πnF )
1/2. All momenta are then measured in units of of the

Fermi momentum kF , all lengths in units of (kF )
−1 and all densities in units

of the value k2F /4π = nF . In this way the convergence for the equations of

the densities are reached when ñF = nF 4π/k
2
F = 1 and ñB = nB4π/k

2
F = x,

where x = nB/nF is the concentration of bosons with respect to the fermion

density. Masses are measured in terms of the fermionic mass mF , while

energies and frequencies are measured in terms of the Fermi energy EF =

k2F /2mF . The T-matrices Γ, ΓSC , and T are measured in units of (mF )
−1.

How to perform integrations in the program

All integrals are evaluated with the Gauss-Legendre method, with theGauleg

subroutine, provided by Ref. [35]. Given an interval of integration, the

subroutine takes as input the two extremes and two arrays of the same

number N of elements. The subroutine divides the full interval into N sub-

intervals, and evaluates the vectors of points and weights, according to the

Gaussian quadrature procedure (for more information about this algorithm

one can see Chapter 4 of Ref. [36]).

Root-finding subroutine: the SR1 algorithm

The program starts with initial trial values for µB, µF and n0. At each step

for the values of the chemical potentials and the condensate population,

the program evaluates the self-energies, the dressed Green’s functions and

finally the equations (4.1),(4.2) and (4.3).

To find the solutions of the three fundamental equations we combine

the bisection method with a two dimensional SR1 algorithm. The SR1

algorithm represents a generalization of the secant method for a multidi-

mensional problem (see for example [37]).
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Specifically, for given values of (µF , n0), Eq. (4.3) is solved for µB with

the bisection method (using the function rtbis from references [36] and [35]).

In this way, equations (4.1) and (4.2) become functions of (µF and n0)

only, and are solved using the SR1 algorithm. The reason for the different

treatment of Eq. (4.3) with respect to the remaining two equations is that

Eq. (4.3) is much faster to be evaluated. Computationally, it is thus much

more convenient to treat it separately.

When the SR1-subroutine starts, the trial values µF and n0 determine

µB through equation (4.3). Then iterations start and the program uses

µB, µF and n0 to evaluate the trial densities nB and nF . Such trial den-

sities, after multiplication by the Hessian matrix, update the values of µF

and n0. The procedure restarts as above: (µF , n0) −→ µB −→ nB, nF . At

each step, the differences between the new values of the calculated densities

(nnewB , nnewF ) and the old ones (noldB , noldF ), as well as the differences between

the new values of the condensate fraction and fermionic chemical potentials

(nnew0 , µnewF ) and the old ones (nold0 , µoldF ), are used to determine the updat-

ing of the (approximate) Hessian matrix. Whenever the values of µF ,n0 and

the Hessian matrix are updated, a new iteration of the SR1 method begins.

When the two density equations (4.1) and (4.2) are satisfied within a

chosen precision, the cycle terminates.

4.2 How to deal with ill-convergent quantities

Some of the integrals over frequency involved in the calculation are par-

ticularly delicate to be evaluated numerically because they converge only

because of the convergence factor which appear in their definition. The idea

to deal numerically with these integrals is to rewrite them by adding and

subtracting a contribution with the same high-frequency behavior. In this

way, the difference between the original integral and the new contribution

is now absolutely convergent, and can be integrated numerically, while the

integral of the added contribution with the convergence factor is calculated

analytically (provided of course the added contribution is chosen carefully).
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4.2.1 Calculation of ∆2
∞

By looking at the equation (3.16) , we notice that T ∝ (log Ω)−1 at large Ω,

and so the quantity ∆2
∞ :

∆2
∞ =

∫
d2P

(2π)2

∫
dΩ

2π
T (P,Ω)eiΩη η −→ 0+ (4.5)

converges only because of the convergence factor eiΩη. It is thus convenient

to add and subtract the strong-coupling limit of the Γ-matrix ΓSC(P,Ω)

and write∫ +∞

−∞

dΩ

2π
T (P,Ω)eiΩη

=

∫ +∞

−∞

dΩ

2π
(T (P,Ω)− ΓSC(P,Ω)) +

∫ +∞

−∞

dΩ

2π
ΓSC(P,Ω)eiΩ.η (4.6)

The term T (P,Ω)−ΓSC(P,Ω) ∝ 1/(Ω log2Ω) at large frequency: for this

reason the convergence factor is no longer necessary and the first integral

of (4.6) can now be evaluated numerically. By looking at the definition of

T (P,Ω) and ΓSC(P,Ω) (equations (3.8) and (3.16)), we can take advantage

of the fact that T (P,Ω)∗ = T (P,−Ω), ΓSC(P,Ω)∗ = ΓSC(P,−Ω). In this

way we can integrate only over positive frequencies and take two times the

real part of the integral:∫ +∞

−∞

dΩ

2π
(T (P,Ω)− ΓSC(P,Ω)) = 2ℜe

[ ∫ +∞

0

dΩ

2π
(T (P,Ω)− ΓSC(P,Ω))

]
(4.7)

Finally we divide the range of integration of Ω into two ranges: [0,Ωc] and

[Ωc,+∞]: ∫ +∞

0

dΩ

2π
[T (P,Ω)− ΓSC(P,Ω)] =∫ Ωc

0

dΩ

2π
[T (P,Ω)− ΓSC(P,Ω)] +

∫ +∞

Ωc

dΩ

2π
[T (P,Ω)− ΓSC(P,Ω)]

(4.8)

The first integral on the r.h.s of equation (4.8) can now be integrated nu-

merically.

By choosing the cutoff Ωc sufficiently large (in our numerical program

is fixed at the value Ωc = 107 ), we can use the asymptotic expressions for
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the integrand of the second term on the r.h.s. of equation (4.8). In fact for

Ω −→ ∞, we can consider n0G
0
F ≈ n0/(iΩ) and:

ΓSC(P,Ω −→ ∞) ≈ − 2π

mr

1

log(−iΩ
ϵ0

)
(4.9)

Moreover, for Ω −→ ∞, we can express IF (P,Ω) through the asymptotic

expression (3.14). In this way, for large Ω we can write the integrand of the

second term in equation (4.8) as:

T (P,Ω −→ ∞)− ΓSC(P,Ω −→ ∞) =

=
1

Γ(P,Ω −→ ∞)−1 − n0G0
F (P,Ω −→ ∞)

− ΓSC(P,Ω −→ ∞)

≈ ΓSC

1 + 1
iΩ(nµF − n0)ΓSC

− ΓSC ≈ ΓSC

(
1− 1

iΩ
(nµF − n0)Γ

SC

)
− ΓSC

(4.10)

=⇒ T − ΓSC ≈ (n0 − nµF )

iΩ
(ΓSC)2 Ω −→ ∞ (4.11)

Then, the behaviour of the integrand at large Ω is approximated as:

T (P,Ω)− ΓSC(P,Ω) ≈
(
2π

mr

)2 n0 − nuF

iΩ log2 −iΩ
ϵ0

Ω −→ ∞ (4.12)

The integral of the above asymptotic expression from the large cut-off Ωc to

infinity gives:∫ +∞

Ωc

dΩ

2π
(T (P,Ω)− ΓSC(P,Ω)) = (n0 − nµF )

(
2π

mr

)2 1

2π

π
2 − i log Ωc

ϵ0

(π2 )
2 + log2 Ωc

ϵ0
(4.13)

The second integral in equation (4.6) can instead be solved analytically by a

contour integration in the complex plane after the analytic extension iΩ −→ z.

By looking at the definition (3.8), one can see that ΓSC(P, z) has a pole for

ℜez = ξCF
P = P 2

2M − µCF and a branch cut for ℜez > zc = P 2

2M − 2µ, such

that ∫ +∞

−∞

dΩ

2π
ΓSC(P,Ω)eiΩη

=
2π

mr

[
ϵ0Θ(−ξCF

P ) + Θ(−zc)
∫ 0

zc

dx

log2(x−zc
ϵ0

) + π2

]
,

(4.14)
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where the integral over x can be performed numerically through the Gauleg

subroutine. In this way we have evaluated all pieces of the full integral (4.6).

The subsequent integration over P of equations (4.7) and (4.14) is performed

in polar coordinates. The integration over the angle is trivial and gives a

factor 2π (there is no dependence on the angle), while the integration over

P is performed numerically with a Gauleg-integration in the range [0, PT1],

sampled with 10 points.

4.2.2 Calculation of the self-energies

Let us consider first the bosonic self energy:

ΣBF (k, ω) =

∫
d2P

(2π)2

∫
dΩ

2π
T (P,Ω)G0

F (P−k,Ω−ω)eiΩη η −→ 0+ (4.15)

We sum and subtract function with the same asymptotic behaviour that can

be analytically integrated in the complex plane. An ideal term is represented

by ΓSC(P,Ω)G00
F (P − k,Ω − ω), where G00

F is a bare fermionic Green’s

function with µ0F = 0−, in order to avoid introducing additional poles.

ΣBF (k, ω) =

∫
d2P

(2π)2

∫ +∞

−∞

dΩ

2π
[T (P,Ω)G0

F (P− k,Ω− ω)

−ΓSC(P,Ω)G00
F (P− k,Ω− ω)]

+

∫
d2P

(2π)2

∫ +∞

−∞

dΩ

2π
ΓSC(P,Ω)G00

F (P− k,Ω− ω)eiΩη

(4.16)

where now the first integral converges because the large-frequency behaviour

of the integrand is ∝ 1/Ω2 log Ω. The second integral of equation (4.16) is

evaluated again by a contour integration in the complex plane. The function

ΓSC(P, z) has a pole for ℜez = ξCF
P = P 2

2M − µCF and a branch cut for

ℜez > zc =
P 2

2M − 2µ, while G00
F has no singularities in the region enclosed

by the contour, since µ0F < 0,. We obtain from this integration:∫ +∞

−∞

dΩ

2π
ΓSC(P,Ω)G00

F (P− k,Ω− ω)eiΩη =

− 2π

mr

{
−ϵ0Θ(−ξCF

P )

ξCF
P − iω − ξF0

P−k

−Θ(−zc)
∫ 0

zc

dx
1

log x−zc
ϵ0

+ π2
1

x− iω − ξF0
P−k

}
(4.17)
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where we have defined ξF0
k = k2

2mF
− µ0F .

When performing the subsequent integral over P in polar coordinates,

we now have terms that depend on the polar angle θ, specifically on cos θ.

The integral over θ can be performed by using the identity (3.10), yielding:∫ 2π

0

dθ

2π

∫ +∞

−∞

dΩ

2π
ΓSC(P,Ω)G00

F (P− k,Ω− ω)eiΩη =

=
2π

mr

[ ϵ0Θ(−ξCF
P )sgn

(
ξCF
P − P 2+k2

2mF
+ µ0F

)
√
(ξCF

P − iω − P 2+k2

2mF
+ µ0F )

2 − ( Pk
mF

)2

+Θ(−zc)
∫ 0

zc

dx
1

log2(x−zc
ϵ0

) + π2

sgn

(
x− P 2+k2

2mF
+ µ0F

)
√
(x− iω − P 2+k2

2mF
+ µ0F )

2 − ( Pk
mF

)2

]
,

(4.18)

where again the integral over x can be solved numerically with no difficulties.

Let us consider now the first integral in (4.16). We divide the integral

over Ω in three ranges, i.e. [−∞,−Ωc],[−Ωc,Ωc] and [Ωc,∞], where Ωc is a

large cutoff fixed at the value Ωc = 50000 in the numerical program.

We start by considering the interval [−Ωc,Ωc]. We have:∫ 2π

0

dθ

2π

∫ +Ωc

−Ωc

dΩ

2π
[T (P,Ω)G0

F (P− k,Ω− ω)− ΓSC(P,Ω)G00
F (P− k,Ω− ω)] =

∫ Ωc

−Ωc

dΩ

2π
T (P,Ω)

sgn

(
− P 2+k2

2mF
+ µF

)
√
(i(Ω− ω)− P 2+k2

2mF
+ µF )2 − ( Pk

mF
)2

−
∫ Ωc

−Ωc

dΩ

2π
ΓSC(P,Ω)

sgn

(
− P 2+k2

2mF
+ µ0F

)
√
(i(Ω− ω)− P 2+k2

2mF
+ µ0F )

2 − ( Pk
mF

)2

(4.19)

We now need to evaluate the integrals in the large Ω ranges [−∞,−Ωc]

and [Ωc,∞] where we can use a large-Ω expansion of the integrand. In
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addition, we note that for large Ω:(∫ −Ωc

−∞
+

∫ ∞

Ωc

)
dΩ

2π
[...] = 2ℜe

∫ ∞

Ωc

dΩ

2π
[...]. (4.20)

In order to estimate the asymptotic expression for the integrand of the

first term on the r.h.s of equation (4.16), we add and subtract the term

ΓSC(P,Ω)G0
F (P− k,Ω− ω):

T (P,Ω)G0
F (P− k,Ω− ω)− ΓSC(P,Ω)G00

F (P− k,Ω− ω)

= (T (P,Ω)− ΓSC(P,Ω))G0
F (P− k,Ω− ω)

+ΓSC(P,Ω)(G0
F (P− k,Ω− ω)−G00

F (P− k,Ω− ω))

≈
(
2π

mr

)2 n0 − nuF

iΩ log2 −iΩ
ϵ0

1

iΩ
− 2π

mr

1

log(−iΩ
ϵ0

)

µ0F − µF
(iΩ)2

(4.21)

for large Ω.

In addition:

G0
F (P− k,Ω− ω)−G00

F (P− k,Ω− ω) ≃
µ0F − µF
(iΩ)2

Ω −→ ∞ (4.22)

We thus have:

2ℜe
∫ 2π

0

dθ

2π

∫ ∞

Ωc

dΩ

2π
(T (P,Ω)G0

F (P− k,Ω− ω)− Γsc(P,Ω)G00
F (P− k,Ω− ω))

= 2ℜe
∫ ∞

Ωc

dΩ

2π

[(
2π

mr

)2 n0 − nuF

iΩ log2 −iΩ
ϵ0

1

iΩ
− 2π

mr

1

log(−iΩ
ϵ0

)

µ0F − µF
(iΩ)2

]
(4.23)

Finally, after the change of variable Ω −→ 1/x, this integral is evaluated

numerically in the range [0, xc] with Gauleg, with xc = 1/Ωc.

The sum of the r.h.s. of equations (4.18),(4.19) and (4.23) has finally to

be integrated over P .

Before discussing the final integral over P let us discuss the calculation

of the fermionic self-energy (3.31). The procedure is similar to that for

the bosonic self-energy ΣBF . However, the bare bosonic Green’s functions

G0
B which appears in Eq. (3.31) does not contribute with a pole to the
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corresponding contour integral, since µB ≤ 0 within G0
B (we recall that

when µB > 0 it is set = 0 in the G0
B which appears in the definition of ΣF .

This makes the calculation easier, because it is sufficient to add and

subtract ΓSC(P,Ω)G0
B(P−k,Ω−ω) to the equation (3.31), with no need to

introduce an auxiliary function G00
B , as it was necessary for the calculation

of ΣBF ). To evaluate the fermionic self-energy ΣF we thus follow the same

steps as for ΣBF , with the substitutions G0
F −→ G0

B, G
00
F −→ G0

B, ξ
F0 −→ ξB

in (4.16) and (4.17). In particular the second term of (4.23) is not present.

The final integration over P is performed in a slightly different way for

the two self-energies. As for ∆2
∞, the integrands of both ΣF and ΣBF vanish

for P > PT1. For ΣF , the bare Green’s function G0
B does not introduce any

further step. We thus use in this case a single Gauleg-integration in the

range [0, PT1] (sampled with 10 points, typically).

The bosonic self-energy ΣB(k, ω) for µF > 0 has instead two steps at

P = |kµF − k| and at P = kµF + k, due to the pole of G0
F (P − k,Ω−ω). We

then order |kµF −k|,kµF +k and PT1 and depending on this ordering we split

the interval [0, PT1] in two or three further sub-intervals (or not split it at

all, when |kµF −k| > PT1). The sub-intervals are chosen to have the steps at

their boundaries, in such a way that the integrals within each sub-interval

can be calculated with Gauleg-integrations (with 10 points, typically).

Finally, when ω gets sufficiently large, it can be shown that, similarly to

the 3D case [11], the two self-energies can be approximated by the following

asymptotic expressions:

ΣB(k, ω) ≈ 2Σ12 + nµF T (k, ω)−∆2
∞G

0
F (k,−ω) (4.24)

ΣF (k, ω) ≈ n0Γ(k, ω) + ∆2
∞G

0
B(k,−ω). (4.25)

In our numerical code, the asymptotic expressions (4.24) and (4.25) are used

when ω/EF ≥ 100.

4.3 Calculation of the densities

The momentum distribution functions nB(k) and nF (k) are obtained by

integrating the dressed Green’s functions over the frequency ω. Also in this
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case the two integrands (which are proportional to 1/ω at large frequencies)

converge only thanks to the convergence factor. The numerical procedure to

deal with these ill-convergent integrals is simpler than the cases considered

previously. For the boson distribution, it is sufficient to add and subtract

to the integrand of nB(k) the bare Bogoliubov Green’s function G0′
B(k, ω),

defined by dropping altogether the BF self-energy in the equation (3.35) for

the interacting bosonic Green function GB(k, ω):

G0′
B(k, ω) =

iω + ξBk +Σ12

(iω + ξBk + 2Σ12)(iω − ξBk − 2Σ12) + Σ2
12

(4.26)

For the fermionic momentum distribution, instead, we simply add and sub-

tract the bare fermionic Green’s function G0
F (k, ω) to the corresponding

integrand. We thus write:

nB(k) = −
∫ +∞

−∞

dω

2π
GB(k, ω)e

iωη

= −
∫ +∞

−∞

dω

2π
[GB(k, ω)−G0′

B(k, ω)]−
∫ +∞

−∞

dω

2π
G0′

B(k, ω)e
iωη

(4.27)

nF (k) =

∫ +∞

−∞

dω

2π
GF (k, ω)e

iωη

=

∫ +∞

−∞

dω

2π
[GF (k, ω)−G0

F (k, ω)] +

∫ +∞

−∞

dω

2π
G0

F (k, ω)e
iωη

(4.28)

where the convergence factors have been dropped in the first terms on the

right hand side because they are absolutely convergent.

The second terms on the r.h.s of equations (4.27) and (4.28) are easily

evaluated by a contour integration. Due to the presence of the convergence

factor eiωη, η −→ 0+, the contour of these two integrals have to be closed in

the upper complex plane. The function G0′
B(k, ω) has two poles for ω± =

±i
√

(ξBk )
2 + 3Σ2

12 + 4Σ12ξBk and so only ω+ contributes. For the fermionic

case, the pole occurs at ω = −iξFk , and naturally it is in the upper complex
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plane iff ξFk < 0. We thus obtain:∫ +∞

−∞

dω

2π
G0′

B(k, ω)e
iωη =

1

2

ξBk + 2Σ12√
(ξBk )

2 + 3Σ2
12 + 4Σ12ξBk

− 1

2∫ +∞

−∞

dω

2π
G0

F (k, ω)e
iωη = Θ(−ξFk )

(4.29)

The integrations over the frequency for the first terms on the r.h.s. of

(4.27) and (4.28) are instead performed numerically. We use the property

GB/F (k,−ω) = G∗
B/F (k, ω)to restrict the range of integration to positive

frequencies and write∫ +∞

−∞

dω

2π
[GF (k, ω)−G0

F (k, ω)] = 2ℜe
∫ +∞

0

dω

2π
[GF (k, ω)−G0

F (k, ω)]

(4.30)

In practice, in the numerical calculations the integral over ω is evaluated

in the range [0, 50000EF ], with a negligible contributions from larger fre-

quencies. This range is divided into five sub-ranges in order to take more

points where needed: [0, 0.002],[0.002, 0.01],[0.01, 0.3],[0.3, 3],[3, 1000], sam-

pled with 100, 70, 50, 40 and 1000 points respectively.

We recall that for values of ω > 100EF we use the asymptotic expres-

sions (4.24) and (4.25) for the self-energies in the expression for the dressed

Green’s functions GF (k, ω) and GB(k, ω). The use of these equations in the

large ω range is crucial to decrease the computational time, since in this

case the internal integrations over P and Ω are performed analytically.

The final integration over the momentum k of nB(k) and nF (k) gives a

factor 2π for the angular part, while the integral over k is separated in two

ranges: [0, kc] and [kc,∞]. The cutoff kc is chosen in such a way that in the

large-momenta range [kc,∞], one can use the asymptotic expressions:

nB(k ≫ kF ) =
∆2

∞

4

(
k2

4mr
− µ

)2 +
Σ2
12

4

(
k2

2mB
− µB

)2 (4.31)

nF (k ≫ kF ) =
∆2

∞

4

(
k2

4mr
− µ

)2 . (4.32)
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These asymptotic expressions were obtained in [11] for the 3D case, but

they hold also in 2D. The corresponding integrals can thus be evaluated

analytically. We have verified that the value kc = 4kF for the cut-off is

adequate for all couplings we have considered.

The numerical integration in the range [0, kc] requires a different treat-

ment between the fermionic and bosonic cases. For fermions, the interval

[0, kc] is split in the two sub-intervals [0, kF1 ] and [kF1 , kc] to account for the

Fermi step at kF1.

For the function nB(k) the integration is more complicated. The be-

haviour of the bosonic momentum function changes significantly in the full

range of the BF coupling g = − log(kFaBF ), as it will be discussed in the

next chapter. As a consequence, the sub-ranges of the interval [0, kc] are

not kept fixed for all couplings, but they are modified in order to have more

points around the peaks and main features of nB(k).

84



Chapter 5

Results for mixtures with

majority of fermions

In this chapter we present the results obtained through a numerical solution

of the T-matrix formalism in the case of mixtures with fermion density larger

than or equal to the boson density, i.e. nF ≥ nB. We focus on mass-balanced

2D BF mixtures and mostly with zero BB repulsion. All the fundamental

quantities such as chemical potentials, condensate fraction and the momenta

distribution functions are expressed as a function of the dimensionless BF

coupling parameter g = − log(kFaBF ). Chemical potentials and the conden-

sate fraction are compared in the weak-coupling limit to perturbative results

found in [12],[13]. Finally, by using our numerical results, we estimate the

size of the gap of the p-wave superfluid which should form according to the

mechanism proposed in [10].

Relevance of BF mixtures with nB ≤ nF

The results of the present work are restricted to BF mixtures for which

the fermion density does not exceed the boson density. Even though our

formalism can be applied also to mixtures with a majority of bosons, we

have chosen to focus on the case nB ≤ nF for two reasons.

• We have seen that, very generally, pairing of bosons with fermions into
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BF molecules competes with boson condensation. However, only when

nB ≤ nF , all bosons can pair with fermions to form BF molecules for

sufficiently strong attraction. A complete suppression of the condensa-

tion fraction at T = 0 can thus be achieved only when nB ≤ nF . Only

in these mixtures it thus possible to have a quantum phase transition

from a phase with a condensate to a Fermi-Fermi mixture phase, com-

posed only by BF molecules and unpaired fermions, in the absence of

a condensate.

• Mixtures with a majority of bosons are expected to be more severely

affected by three-atom losses, since the dominant recombination pro-

cess involves two bosons and a fermion, with a loss rate which thus

scales with n2BnF . Recombination involving two fermions and a bosons

are in fact hindered by the Pauli exclusion principle.

5.1 Condensate fraction

Here, we present the results for the condensate fraction n0/nB. We start

our discussion by considering the weak coupling regime. In this regime, the

condensate fraction should approach the perturbative result

n0
nB

= 1− 1

4g2

(
w + 1

w

)2

log(w + 1) +
1

log(nBa2BB)
(5.1)

where w = mB/mF (in our case w = 1).

Eq. (5.1) represents a combination of the results obtained by Refs. [12]

(describing the weak coupling limit for a system of interacting bosons in 2D)

and [13] (describing the weak coupling limit of BF attraction in 2D).

Figure 5.1 thus reports our numerical results for the condensate fraction

in the weak regime of the BF attraction, for the case of a mass-balanced

mixture with a BB repulsion η = −[log(nBa
2
BB)]

−1 ≈ 5× 10−3.

One can appreciate how the numerical results (red continuous line), for

the two different concentrations x = 0.175 (panel (a)) and x = 1.0 (panel

(b)), follow mostly equation (5.1) (dashed line) and tend to approach the
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Figure 5.1: Condensate fraction in the weak BF coupling regime for two concen-

trations x = 0.175 (panel (a)) and x = 1.0 (panel (b)) and with a BB repulsion

η = −[log(nBa
2
BB)] = 5 x 10−3. Dashed line: weak coupling limit of n0/nB given

by equation (5.1). Dash-dotted line: asymptotic limit 1 + [log(nBa
2
BB)]

−1 of the

condensate fraction for g → −∞.

asymptotic limit 1 + [log(nBa
2
BB)]

−1 (dash-dotted line) for g → −∞. This

limit is determined only by the boson repulsion.

Figure 5.2 reports instead our numerical results for the condensate frac-

tion in the whole BF coupling range (in the case of mass-balanced mixture

with zero BB repulsion) for three different concentrations x = 0.175, 0.5 and

1.0. Also in this case, all curves for n0/nB approach the weak coupling limit

given by equation (5.1).

In particular the universal behaviour (described in Section for the 3D

case) of the condensate fraction n0/nB is found also in the 2D case: the

curves corresponding to different values of the concentration x = nB/nF

overlap each other, except for the ending part of the curves, when n0/nB is

already quite small.

On the other hand, no critical coupling above which n0 = 0 identically

is found in the 2D case. This finding is different with respect to the 3D

case. We believe however that this finding is due to a shortcoming of the

T-matrix approximation in 2D. Specifically, in the polaronic limit x → 0,

the T-matrix is known to overestimate the repulsion between the molelcular

state and the surrounding fermions (yielding a molecule-fermion repulsion
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Figure 5.2: Condensate fraction n0/nB as function of the dimensionless BF cou-

pling parameter g = − log(kFaBF ), for three different concentrations x = nB/nF =

0.175, 0.5, 1.0 (with mB = mF and zero BB repulsion). Dashed line: weak coupling

limit of n0/nB given by equation (5.1).

which is not vanishing in the molecular regime, see for example [38], [39]).

This suppresses the polaron-molecule transition. The same overestimate

of the molecule-fermion repulsion (as well as of the molecule-molecule re-

pulsion) suppresses the transition at finite x. Improving the approxima-

tion would require the inclusion of three-body correlations, as discussed in

Ref. [40], a task which is however extremely difficult to implement outside

the polaronic limit x→ 0.

Note however that the condensate fraction becomes negligible for g =

− log(kFaBF ) ≳ 2 for all concentrations; for larger couplings the system can

thus be considered in the molecular phase for all practical purposes.

5.2 Momentum distribution functions

In this Section we present the behaviour of the bosonic and fermionic dis-

tribution functions nB(k) and nF (k). We show their evolution in the full

coupling regime that we have explored in our numerical simulations.

The behaviour of the bosonic momentum distribution function is partic-
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ularly rich. The full evolution of the function nB(k) is shown in the panels

from (a) to (e) of Figures 5.3, 5.4 and 5.5.

At weak coupling, nB(k) starts from a non-zero value at k = 0 and

shows a peak at low momenta. By increasing the coupling, the height of

the peak grows, until the coupling value g ≈ −1.80 is reached. Starting

from this regime of BF pairing, the peak at finite momentum disappears,

and the whole function flattens by increasing the coupling parameter (with

a redistribution of the occupancy from low momenta to high momenta).

Beyond the a coupling g ≈ 0, one observes a different behaviour of nB(k)

for the concentrations x = nB/nF = 0.175, 0.5 with respect to the balanced-

density case x = 1. Indeed, one can appreciate the appearance of a cusp in

the curves of nB(k) corresponding to the two concentrations x = 0.175, 0.5.

The cusp becomes more pronounced by increasing the coupling, suggesting

a bi-modal distribution. We explain this behaviour as the superposition of

two different contributions.

We attribute the shape of nB(k) at low momenta to condensed bosons.

The second shape, at larger momenta, is instead attributed to the indirect

Pauli exclusion effect, that we discussed previously for 3D BF mixtures.

From Section 2.1, we know in particular that this peculiar effect occurs

in 3D for Bose-Fermi mixtures with x = nB/nF < 0.5 in the molecular

limit, yielding a range [0, k0] where nB(k) is identically zero, while k0 = 0

for x ≥ 0.5 (even though a peak might still occurs, except for x = 1).

Consistently with this interpretation, we see that for x = 1 the curve for

nB(k) follows a regular evolution with coupling, without showing any cusp.

In 2D, we see that the indirect Pauli exclusion effect is not limited to the

molecular limit, but is anticipated to coupling values where the condensate

fraction is still sizable, thus filling the region [0, k0] with the contribution

from the condensed bosons. We believe that this finding is a clear indi-

cation of the presence of molecules even away from the extreme molecular

limit, and of their coexistence with condensed bosons, reflecting the general

expectation that in 2D pairing effects should be larger than in 3D.

The panels (f) of Figures 5.3, 5.4 and 5.5, show the evolution with cou-

pling of the fermionic momentum distribution function nF (k) for the three
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concentrations x = 0.175, 0.5 and 1.0. The expected behavior for a Fermi

liquid, with a step pinned at kF , holds up to g ≈ 0 (see also the next Sec-

tion). As expected, the occupation number for k < kF1 is progressively

reduced for increasing coupling, signalling that increasing BF-correlations

push fermions into states above kF , as necessary for the formation of BF

molecules.

In order to emphasise the behaviour of nF (k) at large momenta, in the

insets of Figures 5.3f, 5.4f and 5.5f, we report the ratio between nF (k) and

the asymptotic result (4.32):

ϕ(k) =
∆2

∞

4

(
k2

4mr
− µ

)2 (5.2)

which holds for k ≫ kF . One can notice how the ratio nF (k)/ϕ(k) tends

quite rapidly to unity for all coupling and concentrations when k increases.

This validates our choice to use the asymptotic expressions (4.31) and (4.32)

for k ≥ kF when integrating the momentum distribution functions.

As a final technical remark for this Section, we stress that the cusp fea-

ture in the curve of nB(k) complicates the optimal choice of the numerical

grid for the integration of nB(k) over the momenta k (required to get the

bosonic density). The optimal choice was the result of several trials, and

needed a patient tuning when varying the interaction or concentration pa-

rameters.
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Figure 5.3: Panels from (a) to (e): Evolution of the bosonic momentum distribution

function nB(k) as function of the BF coupling parameter g = − log(kFaBF ), for

a concentration of x = nB/nF = 0.175. Panel (f) :Evolution of the fermionic

momentum distribution function nB(k) as function of the BF coupling parameter

g = − log(kFaBF ). All figures are for equal fermion and boson masses and zero BB

repulsion.
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Figure 5.4: Panels from (a) to (e): Evolution of the bosonic momentum distribu-

tion function nB(k) as function of the BF coupling parameter g = − log(kFaBF ),

for a concentration of x = nB/nF = 0.5. Panel (f) :Evolution of the fermionic

momentum distribution function nF (k) as function of the BF coupling parameter

g = − log(kFaBF ), for a concentration of x = nB/nF = 0.5. All figures are for

equal fermion and boson masses and zero BB repulsion.
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Figure 5.5: Panels from (a) to (e): Evolution of the bosonic momentum distribution

function nB(k) as function of the BF coupling parameter g = − log(kFaBF ), for

the balanced density case x = nB/nF = 1.0. Panel (f) :Evolution of the fermionic

momentum distribution function nF (k) as function of the BF coupling parameter

g = − log(kFaBF ), for the balanced density case x = nB/nF = 1.0. All figures are

for equal fermion and boson masses and zero BB repulsion.
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5.3 Results for the Fermi step momenta of GF , T ,

and Γ
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Figure 5.6: Momenta kF1 (a) and PT1 (b) vs. the BF coupling parameter g =

− log(kFaBF ) for different bosonic concentrations x.

In Sections 3.2 and 3.4 we introduced the momenta kF1 and PT1 at which∫
GF (k, ω)e

iω0+dω and
∫
T (P,Ω)eiΩ0+dΩ present a Fermi step. Figure 5.7

presents the numerical results for kF1 and PT1 as functions of the dimen-

sionless coupling g = − log(kFaBF ) and for four different concentrations

x = nB/nF = 0.175, 0.5, 0.95 and 1.0.

Let us first consider the results for the momenta kF1 , reported in panel

(a) of Figure 5.7. From weak coupling to a value around g ≈ 0, kF1 remains

about equal to kF (with some small deviations for the two cases x = 0.175

and x = 0.5). In this regime of values of g, where BF correlations are not

too strong, the jump of nF (k) is pinned at kF , according to the Luttinger

theorem. As a consequence, fermions behave as a Fermi liquid.

For positive values of g = − log(kFaBF ), kF1 deviates significantly from

kF , signalling that BF correlations are now strong enough to create molecules

and consequently produce some breakdown of Fermi liquid properties. Quite

naturally, the deviations of kF1 from the Fermi liquid value kF are smaller

at the lowest boson concentrations, since these deviations are produced by

interaction with bosons.

At the highest concentrations x = 0.95 and x = 1.0, kF1 displays a non-
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Figure 5.7: Momenta PT1
and PΓ vs. the BF coupling parameter g = − log(kFaBF )

for the bosonic concentrations x = 1.0 (a) and x = 0.95 (b)

monotonic behavior, with a minimum for g slightly above one. We still do

not have an explanation for this overall behavior of kF1. We can just notice

that the presence of such a minimum in the curve of kF1 seems somehow

correlated with the presence of a maximum in the curve for the momentum

PT1 (see Figure 5.7 (b)), even though the position of the these two features

do not exactly coincide.

Interestingly, for these two cases of higher concentrations and for strong

coupling, a Fermi step appears also in the function
∫
Γ(P,Ω)eiΩ0+dΩ. The

corresponding momentum PΓ is reported in panels (c) and (d) of Fig. 5.7,

together with the momentum PT1, for comparison. We see that for these

two concentrations PΓ appears above a critical coupling (g ≈ 1.55, for x = 1,

and g ≈ 1.80, for x = 0.95), and progressively increases with the coupling.

For the perfectly balanced case x = 1, both PΓ and PT1 reach the asymp-

totic value PΓ = PT1 = 1, while for x = 0.95, PΓ and PT1 reach different

asymptotic limits.

5.4 Results for the chemical potentials and ∆2
∞

We pass now to discuss the results for the chemical potentials µB and µF .

We focus first on the weak-coupling regime, where the bosonic and fermionic

chemical potentials are expected to recover the perturbative results [13],
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Figure 5.8: Bosonic and fermionic chemical potentials minus the leading terms

(∝ g0 and ∝ g−1) as function of the BF coupling g. In the case of fermions we

also divide by the concentration x. Dash curve: second order correction (∝ g−2) in

Equations (5.3) and (5.4).

.

referred to 2D BF mixtures in the mass-balanced case (m = mF = mB):

µB =
2πnF
mg

{
1 +

1

2g

[
1− log 4

]}
(5.3)

µF = EF +
2πnB
mg

{
1 +

1

2g

[
2− log 4

]}
. (5.4)

The comparisons between the numerical results for µB and µF and equa-

tions (5.3) and (5.4) (for zero BB repulsion) are shown in Figure 5.8. In order

to make such a comparison more stringent, we subtract the leading contri-

butions: πnF
mrg

and EF + πnB
mrg

, for µB and µF , respectively. In the fermionic

case we further divide the results by the concentration x = nB/nF . We

see that both the bosonic and the fermionic chemical potentials approach

the second order perturbative result, even though quite slowly. Interest-

ingly, when divided by the boson concentration the curves for the fermionic

chemical potentials collapse on top of each other even before reaching the

perturbative expression (where this property holds, due to the analytic form

of Eq. (5.4)).

The behaviour of the two chemical potentials away from the weak cou-

96



-16

-14

-12

-10

-8

-6

-4

-2

 0  0.2  0.4  0.6  0.8  1

µ
B
/E

F

g=-log(kF aBF)

x=1.0
x=0.5

x=0.175
- ε0

(a)

-1.5

-1

-0.5

 0

 0.5

 1

-4 -3 -2 -1  0  1  2

µ
F
/E

F

g=-log(kF aBF)

x=1.0
x=0.95

x=0.5
x=0.175

(b)

Figure 5.9: Panel (a): Bosonic chemical potential as a function of g for different

concentrations. All curves approach minus the binding energy −ϵ0 (dashed lines).

Panel (b): Fermionic chemical potential as a function of g for different concentra-

tions.

pling limit is reported in Figure 5.9. Specifically, panel (a) reports the

bosonic chemical potential µB for intermediate couplings (0 < g < 1), in or-

der to show how µB progressively approaches the expected asymptotic value

−ϵ0, where ϵ0 = 1/(2mra
2
BF ) is the binding energy of the two-body bound

state in vacuum. This is because, for strong coupling, if an extra boson is

added to the mixture, it will immediately bound to a fermion (as long as

nB ≤ nF ).

Figure 5.9b reports the fermionic chemical potential for different bosonic

concentrations. The behaviour of µF differs substantially from what is found

in the 3D case. As we have already discussed in Section 2.2, in 3D, µF does

not show a monotonic behaviour: it first decreases because of the increasing

attraction with bosons, it reaches a minimum, and then increases due to the

Pauli repulsion between BF molecules. In 2D, we find that the fermionic

chemical potential decreases monotonically. In particular for higher concen-

trations (so, for mixtures with comparable fermion and boson densities), µF

can reach even negative values when the BF attraction is sufficiently strong.

For all concentrations, µF seems to flatten to an asymptotic value when

g ≫ 1.

We expect such asymptotic value of µF to be determined by a balance
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Figure 5.10: Bosonic chemical potential plus the binding energy for concentrations

x = 0.175, 0.5, 0.95, 1.0 as a function of the BF coupling g = − log(kFaBF ).

between the Pauli repulsion among the unpaired fermions and the fermions

bounded in the BF molecules, and the attraction with the bosons bounded

in the molecules. In future work, it would be interesting to perform an

expansion in the strong-coupling limit to obtain analytic expressions for

this (and other) asymptotic values.

Figure 5.10 shows the function µB+ϵ0 as a function of g for different bo-

son concentrations. We have seen indeed that when g is large µB approaches

−ϵ0. In terms of the dimensionless coupling g, one has ϵ0/EF = 2e2g, so

that this scale becomes rapidly quite large. By plotting µB + ϵ0, we are

thus able to emphasize the sub-leading correction to the leading behavior

in the strong-coupling limit. Similarly to the case of the fermionic chemical

potential, also the function µB + ϵ0 shows a saturation value for sufficient

strong values of the BF coupling g = − log(kFaBF ). Like for the chemical

potential µF , it would be interesting to derive analytic expressions also for

µB + ϵ0 in the molecular limit.

We conclude this Section by presenting our numerical results for the

quantity ∆2
∞. We recall that this quantity, apart from trivial constants,

coincides with the so-called Tan’s constant C, which rules the large mo-
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Figure 5.11: ∆2
∞ as function of g = − log(kFaBF ) for different concentrations. In

panel (b) we divide also for the concentration x = nB/nF . Dashed line: strong

coupling limit given by (5.5).

mentum behavior of the bosonic and fermionic momentum distributions.

Specifically, for mixtures without BB repulsion one has at large momenta

nB(k) = nF (k) = C/k4, with C = 4m2
r∆

2
∞.

One can see in Figure 5.11 that ∆2
∞ increases monotonically with the

dimensionless BF coupling g. This is expected: we recall, indeed, that in

the strong-coupling limit ∆2
∞ is proportional to the density of composite

fermions nCF

∆2
∞ =

π

m2
ra

2
BF

nCF =
2πϵ0
mr

nCF (g → ∞) (5.5)

where, for BF mixtures with majority of fermions, nCF = nB. Figure 5.11

(a) suggests that the curves of ∆2
∞ vs coupling for different concentrations

may differ by just an overall scale factor. By dividing ∆2
∞ by the con-

centration x, we see indeed in panel(b) of Figure (5.11) that the curves

corresponding to different concentrations overlap each other in almost the

entire BF coupling range, indicating a universal behavior with respect to

the concentration also for ∆2
∞, besides the universal behavior of condensate

fraction discussed above.

The dashed line in Figure 5.11b corresponds to the strong-coupling limit
2πϵ0
mr

(which is obtained from (5.5) divided by nB). A further check of the

asymptotic limit of ∆2
∞ is shown in Figure 5.12, for concentrations x =
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Figure 5.12: ∆2
∞ divided by the convergence value given by equation (5.5) for posi-

tive values of BF coupling g. Figures are referred to concentration x = 0.5 (a) and

x = 1.0 (b).

0.5, 1.0, where the numerical results for ∆2
∞ are divided by the asymptotic

limit. For both concentrations, this ratio approaches one for strong BF

coupling, as expected.
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5.5 Estimation of the p-wave superfluid gap in the

presence of a boson condensate

In Section 2.4, we described a proposal for creating a px+ipy superfluid with

2D Bose-Fermi mixtures (with equal masses and densities). By combining

BCS mean field for a p-wave superfluid, with few-body calculations, the

p-wave superfluid gap ∆gap should be given by [10]

∆gap ≈
kmF

ξ(mF +mB)
exp(2/km2

F S) (5.6)

where kmF is the Fermi momentum associated to the BF molecules, ξ repre-

sents the effective range of the induced p-wave attraction and S is the p-wave

scattering surface. By evaluating the energy spectrum of the FFBB system,

Bazak and Petrov found the values aFB/2 < ξ < aFB and S ≈ −3a2FB.

However, the treatment of Ref. [10], ignored completely the presence of

boson condensation. With our numerical simulations, we are able to take the

boson condensation into due account. The presence of a condensate fraction

will in fact compete with the formation of the molecules, thus reducing their

number, and consequently the molecule Fermi momentum kmF .

In order to estimate kmF , we assume that all bosons with momentum

k ̸= 0 are bounded in BF molecules. As a consequence, (kmF )2 ≈ 4π(nB−n0).
In this way, by using our numerical results for the condensate fraction (for

nF = nB, mB = mF , in the absence of boson repulsion), we can calculate

the p-wave superfluid gap ∆gap as a function of the boson-fermion coupling

g, by taking into account also the BEC. The resulting behaviour of the gap

is shown in Figure 5.13 (a).

From this figure we see that the p-wave superfluid gap reaches a maxi-

mum value of ∆gap ≈ 0.27 EF at the value g ≈ −0.2. This large value of

the p-wave gap is quite promising for the experimental observability of the

p-wave superfluid. We notice however that at this value of g the condensate

fraction is still quite high (with a value of about 0.44, see also panel (b)).

The presence of such large condensate fraction could in principle affect also

the value of the induced p-wave interaction between the molecules.

In this respect, it could thus be more convenient to work at stronger
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Figure 5.13: Panel (a): Width of the p-wave superfluid gap as function of the

BF coupling g, for concentration x = 1 and with zero BB repulsion. Panel (b):

Condensate fraction as function of g = − log(kFaBF ) for for concentration x = 1

and with zero BB repulsion (the range of g is fixed to choose the optimal value of

interaction to measure the p-wave superfluid gap ∆gap).

coupling values, in order to deal with a smaller condensate fraction. A

reasonable compromise between a not too small p-wave superfluid gap and

a not too large condensate fraction is reached when 0.5 < g < 0.7: in

this regime the p-wave superfluid gap varies between ∆gap ≈ 0.14 EF (at

g = 0.5) and ∆gap ≈ 0.07 EF (at g = 0.7), with a condensate fraction that

varies from about 23 % to about 17%. We thus propose this range of BF

couplings as the optimal one for the experimental observation of a p-wave

superfluid of BF molecules in 2D.
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Conclusions and future

perspectives

In this master degree thesis we have studied a two-dimensional Bose-Fermi

mixture, with a BF-attraction, using a T-matrix approach. Most of our

simulations were performed for BF mixtures with equal masses for differ-

ent boson concentrations x = nB/nF (with x ≤ 1) and exploring different

regimes of the BF attraction.

By implementing the formalism defined in Chapters 3 and 4 in a numer-

ical code written in Fortran 90, we have been able to study the behaviour of

several thermodynamic quantities, such as the momenta distribution func-

tions nF (k) and nB(k), the chemical potentials, the condensate fraction, and

the Tan’s constant.

The main results of the present work can be summarized as follows.

(i) We have found a universal behavior for both the condensate fraction and

the Tan’s constant with respect to the boson concentration. Specifically, we

have found that the condensate fraction depends only on the boson-fermion

interaction and is nearly independent from the boson concentration. A sim-

ilar universality is found for the Tan’s constant when divided by the con-

centration x. The universality of the condensate fraction is in line with

what previously found in 3D [5] and recently experimentally confirmed in

[6]. Here, we have confirmed such (a priori unexpected) behavior in two

dimension, and extended it to the Tan’s constant. This universality is ex-

citing, because it allows one to connect the above universal quantities for a

Bose-Fermi mixture to related quantities (namely, the quasi-particle residue
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and the dimensionless Tan’s constant) for the highly studied polaronic limit

(x→ 0) of a single impurity in a Fermi gas.

(ii) We have discovered a peculiar behavior of the bosonic momentum dis-

tribution, with a cusp feature which is present in an extended range of

couplings and concentrations. We have attributed such a feature to the so-

called indirect Pauli exclusion effect, an interesting effect previously found

in 3D in the molecular limit of Bose-Fermi mixtures. It is particularly in-

teresting that in 2D this effect occurs well before the molecular limit, and

coexists with the presence of a significant boson condensate.

(iii) While the main behavior of the boson and fermion chemical potentials

vs. the BF coupling is similar to what found in 3D, we have found some

significant qualitative differences for certain features. The origin of these

differences between the 3D and 2D cases deserves further investigation. In

particular, an analytic study of the molecular limit of 2D Bose-Fermi mix-

tures could shed some light in this respect.

(iv) We have found that in 2D, contrary to the 3D case, the condensate

fraction never vanishes completely. We have argued that this is probably

due to a shortcoming of the T-matrix approximation in 2D. This does not

represent a too severe problem, to the extent that the condensate fraction

becomes in any case exponentially small, and thus indistinguishable from

zero for all practical purposes, above a certain BF coupling strength.

(v) Finally, we have estimated the size of the gap for the p-wave superfluid

of BF molecules that should form in a Bose-Fermi mixture according to a

recent theoretical proposal [10]. With our numerical simulations, we were

able to take into account the condensate fraction, which is in competition

with the formation of molecules. In this way, we have identified the optimal

coupling range for the experimental realization of this new example of a

p-wave superfluid.

Several future extensions of the present work are foreseen. First of all,

BF mixtures with a majority of bosons should be explored, by studying the

momenta distribution functions, condensate fraction and chemical potentials

in an analogue way to what we have done in the present work.

Moreover, one should also consider the case of different boson and fermion
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masses, to obtain more stringent comparisons in the weak coupling regime,

and to explore if the universality and other effects that we have found for

isotopic mixtures will persist also for mixtures of different atomic species.

The problem of the mechanical stability of 2D Bose-Fermi mixtures

should also be thoroughly analyzed. Within the present formalism, this

would entail calculating the compressibility matrix, and determining the

minimum value of the boson-boson repulsion required to guarantee the pos-

itivity of the compressibility matrix. This kind of analysis would be of

particular relevance for future experiments with 2D Bose-Fermi mixtures,

for which, as mentioned above, the scattering lengths aBF and aBB can be

tuned almost independently by using a Feshbach resonance to control one

scattering length, and a confinement-induced resonance to control the other

length.

Finally, dynamical quantities such as the spectral weight functionsA(k, ω)

for the two species should be calculated. On the one hand, this would allow

one to better interpret the above peculiar behavior of the bosonic momen-

tum distributions (possibly, by evidencing different quasi-particle intensities

which contribute simultaneously to construct nB(k) from the corresponding

A(k, ω)). On the other hand, this would also allow one to derive quanti-

ties, like the radio-frequency spectroscopy intensity, of direct access with

experiments with ultracold gases.

The work done in this master degree thesis thus represents a first step in

the theoretical analysis of 2D Bose-Fermi mixtures with a strong Bose-Fermi

pairing attraction, which we hope will motivate several further theoretical

and experimental works in the near future.
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