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Abstract

In the upcoming years, various upgrades and improvements are planned for

the CERN Large Hadron Collider (LHC) and represent the mandate of the High-

Luminosity project. The upgrade will allow for a total stored beam energy of about

700 MJ, which will need, among others, an extremely efficient collimation system.

This will be achieved with the addition of a hollow electron lens (HEL) system to help

control the beam-halo depletion and mitigate the effects of fast beam losses. In this

master thesis, we present a diffusion model of the HEL for HL-LHC. In particular,

we explore several scenarios to use such a device, focusing on the halo depletion

efficiency given by different noise regimes.





Introduction

In the upcoming years, various upgrades and improvements are planned for

the CERN Large Hadron Collider (LHC) and represent the mandate of the High-

Luminosity project [1]. The upgrade, that will be implemented during the long

shutdown in 2026-2028, will allow for an unprecedented total stored beam energy

of about 700 MJ, which will need, among others, an extremely efficient collimation

system, to avoid damage to ring components. Indeed, among the various improve-

ments, an Hollow Electron Lens (HEL) system will be installed to help to control

the beam-halo depletion and mitigate the effects of fast beam losses. The hollow

beam of electrons generated by HEL is supposed to act on the beam by cleaning

the tails while, ideally, leaving the beam core unperturbed. This kind of device

has already been tested at the Fermilab Tevatron [2], where it turned out to be an

effective tool to mitigate effects related to transient beam losses.

Various studies have been carried out recently [3, 4], simulating the effects

of HEL on the beam-halo, and probing various working regimes of the electron

beam. Among these, few random regimes are considered, thus, adding an element of

stochasticity to the phenomenon. This opens the possibility to provide a description

of the time evolution of the system, based on a diffusive framework, whose result is

a Fokker-Planck approximation of the beam shape evolution [5].

In the work presented here, we introduce a simplified model of the HEL that

represents its effect on the dynamics of the proton beam, and we prove the viability

of a diffusive approach to describe the time evolution of the beam-halo. More in

detail, we model the halo-depletion phenomenon as a diffusive process, starting

from a stochastic symplectic map, and we make use of this model to probe various
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working conditions, with the goal of finding the most efficient one in terms of fast

beam-halo cleaning. We make use of 2D tracking simulations for the HEL system

to make comparisons with the solutions of a Fokker-Planck equation, computed by

means of a 2D Crank-Nicolson integrator [6]. In particular, we focus our study on

the effects of different types of noise, represented by the electron beam working

regimes, simulating many scenarios, and we show that the simulations results are

expected and well explained by the diffusion model introduced.
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Chapter 1

Review of Transverse Beam

Dynamics

In this chapter we review the transverse beam dynamics in a synchrotron,

introducing the basic concepts of the theory that describes betatron motion, which

is a fundamental aspect of the study of accelerators physics.

1.1 Hamiltonian in Frenet-Serret coordinate sys-

tem

The motion of charged particles in a circular accelerator is controlled by electric

and magnetic fields that generate forces expressed by the general form of the

Lorentz force [7]

dp

dt
= F = e(E+ v ×B), (1.1)

and the Hamiltonian for particle motion is

H = c
√

m2c2 + (P− eA)2 + eΦ, (1.2)

where A and Φ are the vector and scalar potential, respectively, which are related

to the electric and magnetic fields by

1



2 1. Review of Transverse Beam Dynamics

E = −∇Φ− ∂A

∂t
B = ∇×A. (1.3)

P = p+ eA is the canonical and p is the mechanical momentum, and Hamilton’s

equations of motion read

ẋ =
∂H

∂Px

Ṗx = −∂H

∂x
etc., (1.4)

where the dot represents the derivative with respect to time t and (x, Px) are pairs

of conjugate phase-space coordinates.

Reference Orbit

s

x

y

v

r

r0

Figure 1.1: Curvilinear coordinate system for particle motion in a synchrotron.

r0(s) is the reference orbit, x̂, ŷ and ŝ are the unit vectors describing the curvilinear

coordinate system.

It is convenient to choose an appropriate new set of coordinates to describe the

two components of the particle’s motion in a circular accelerator, i.e. transverse

and longitudinal motion.

Let r0(s) be the reference orbit (see Fig. 1.1), where s is the arc length of the

closed orbit measured from an initial point. The unit vector tangent to the closed

orbit is

ŝ(s) =
dr0
ds

, (1.5)



1.1 Hamiltonian in Frenet-Serret coordinate system 3

the unit vector on the tangential plane and perpendicular to the tangent vector is

x̂(s) = −ρ(s)
dŝ(s)

ds
, (1.6)

where ρ(s) is the curvature radius. The unit vector orthogonal to the tangential

plane is given by

ŷ(s) = x̂(s)× ŝ(s). (1.7)

The vectors x̂, ŝ and ŷ form the orthonormal basis for the the right-handed Frenet-

Serret curvilinear coordinate system with

x̂′(s) =
1

ρ(s)
ŝ(s) + τ(s)ŷ(s), ŷ′(s) = −τ(s)x̂(s), (1.8)

where the prime denotes the differentiation with respect to s and τ(s) is the torsion

of the curve which, discussing only the plane geometry, can be neglected. The

particle trajectory around the reference orbit can be expressed as

r(s) = r0(s) + xx̂(s) + yŷ(s). (1.9)

In order to express the equations of motion in terms of the reference orbit

coordinate system (x, s, y) we have to perform a canonical transformation by using

the generating function

F3(P;x, s, z) = −P · [r0(s) + xx̂(s) + yŷ(s)], (1.10)

where P is the particle’s momentum in the Cartesian coordinate system, and the

conjugate momenta for the coordinate (x, s, y) are given by

ps = −∂F3

∂s
= (1 + x/ρ)P · ŝ,

px = −∂F3

∂x
= P · x̂, (1.11)

py = −∂F3

∂y
= P · ŷ.

Thus the new Hamiltonian becomes
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H = eϕ+ c

{
m2c2 +

(pc − eAs)
2

(1 + x/ρ)2
+ (px − eAs)

2 + (py − eAy)
2

}1/2

, (1.12)

where As, Ax and Ay are obtained by substitution of the vector A in Eq.(1.11)

As = (1 + x/ρ)A · ŝ, Ax = A · x̂, Ay = A · ŷ. (1.13)

We now want to use s as independent variable instead of time t. Using the relation

dH = (∂H/∂px)dpx + (∂H/∂ps)dps = 0 or

x′ =
dx

ds
=

ẋ

ṡ
=

(
∂H

∂px

)(
∂H

∂pc

)−1

, etc., (1.14)

we find

t′ =
∂ps
∂H

, H ′ = −∂ps
∂t

x′ = −∂ps
∂px

, p′x =
∂ps
∂x

(1.15)

y′ = −∂ps
∂py

, p′y =
∂ps
∂y

where the prime denotes the differentiation with respect to s. The new Hamil-

ton’s equations are expressed with s as the independent variable, −ps as the new

Hamiltonian, thus the conjugate phase-space coordinates are

(x, px) (y, py) (t,−H) . (1.16)

When the scalar and vector potentials ϕ and A are time independent, the new

Hamiltonian −ps is also time independent and we are left with only two degrees of

freedom. However, the new Hamiltonian depends on the variable s and, thanks to

the nature of the circular accelerator, such dependence is periodic. The periodic

nature of the new Hamiltonian can be exploited in the analysis of linear and

non-linear betatron motion. The new Hamiltonian H̃ = −ps is then given by

H̃ = −
(
1 +

x

ρ

)[
(H − eϕ)2

c2
−m2c2 − (px − eAx)

2 − (py − eA2
y))

]1/2
− eAs.

(1.17)
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The total energy and momentum of the particle are E = H − eϕ and p =√
E2/c2 −m2c2, respectively. We can expand the Hamiltonian up to second

order in px and py since those are much smaller than the total momentum

H̃ ≈ −p

(
1 +

x

ρ

)
+

1 + x/ρ

2p

[
(px − eAx)

2 + (py − eAy)
2
]
− eAs. (1.18)

1.2 Magnetic field in Frenet-Serret coordinate

system

In Frenet-Serret coordinate system, we have

∇Φ =
∂Φ

∂x
x̂+

1

hs

∂Φ

∂s
ŝ+

∂Φ

∂y
ŷ

∇ ·A =
1

hs

[
∂(hsA1)

∂x
+

∂A2

∂s
+

∂(hsA3)

∂y

]
(1.19)

∇×A =
1

hs

[
∂A3

∂s
− ∂(hsA2)

∂y

]
x̂+

[
∂A1

∂y
− ∂A3

∂x

]
ŝ+

1

hs

[
∂(hsA2)

x
− ∂A1

∂s

]
ŷ

∇2Φ =
1

hs

[
∂

∂x
hs

∂Φ

∂x
+

∂

∂s

1

hs

∂Φ

∂s
+

∂

∂y
hs

∂Φ

∂y

]
,

where hs = 1+ x/ρ, A1 = A · x̂, A2 = A · ŝ = As/hs and A3 = A · ŷ. In accelerator

physics, we consider only the case with zero electric potential Φ = 0, furthermore,

for an accelerator with transverse magnetic fields, we assume Ax = Ay = 0. Thus,

the two-dimensional magnetic field can be expressed as

B = Bx(x, y)x̂+By(x, y)ŷ, (1.20)

where

Bx = − 1

hs

∂(hsA2)

∂y
= − 1

hs

∂As

∂y
, By =

1

hs

∂(hsA2)

∂x
=

1

hs

∂As

∂x
. (1.21)

Using Maxwell’s equation ∇×B = 0, we get

∂

∂y

1

hs

∂As

∂y
+

∂

∂x

1

hs

∂As

∂x
= 0. (1.22)
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For straight geometry with hs = 1 we have ∇2
⊥As = 0 and we can expand As in

power series as

As = B0Re

[
∞∑
n=0

bn + ian
n+ 1

(x+ iy)n+1

]
, (1.23)

where Bx = −∂As

∂y
and By =

∂As

∂x
. B0 denotes the constant magnetic field provided

by dipoles to keep a particle with momentum p0 on an orbit with radius ρ0,

according to the relation
p0
e

= B0ρ0, (1.24)

where the r.h.s is the magnetic rigidity. The resulting magnetic flux density is

given by the Beth representation

By + iBx = B0

∞∑
n=0

(bn + ian)(x+ iy)n, (1.25)

where

bn =
1

B0n!

∂nBy

∂xn

∣∣∣∣
x=y=0

an =
1

B0n!

∂nBx

∂xn

∣∣∣∣
x=y=0

; (1.26)

here bn and an are the 2(n + 1)th multiple coefficients with dipole b0 (b0 = 1),

dipole roll a0, quadrupole b1, skew quadrupole a1, sextupole b2, skew sextupole a2

etc. The effective multipole field acting on the beam becomes

1

Bρ
(By + iBx) = ∓1

ρ

∞∑
n=0

(bn + ian)(x+ iy)n, (1.27)

where − and + signs are for particles with positive and negative charges, respec-

tively.

1.3 Betatron motion

If we ignore the effect of synchrotron motion, Hamilton’s equations of motion

are

x′ =
∂H̃

∂px
, p′x = −∂H̃

∂x
, y′ =

∂H̃

∂py
, p′y = −∂H̃

∂y
. (1.28)
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Considering the transverse magnetic field of Eq.(1.21), the equations describing

the betatron motion are given by
x′′ − ρ+ x

ρ2
= ±By

Bρ

p0
p

(
1 +

x

ρ

)2

y′′ = ∓Bx

Bρ

p0
p

(
1 +

x

ρ

)2 (1.29)

where higher-order terms are neglected, the upper and lower signs correspond to

the positive and negative charges, respectively, p is the momentum of the particle,

p0 is the momentum of a reference particle.

Considering an on-momentum particle (p = p0) and expanding the magnetic

field up to the first order, we get

By = −B0 +
∂By

∂x
x = ∓B0 +B1x, Bx =

∂By

∂x
y = B1y, (1.30)

where the quadrupole gradient function B1 = ∂By/∂x is evaluated at the closed

orbit defined by the dipole field. The equations of the betatron motion then becomex′′ +Kx(s)x = 0 Kx = 1/ρ2 ∓K1(s)

y′′ +Ky(s)y = 0 Ky = ±K1(s)
(1.31)

where K1(s) = B1(s)/Bρ is the effective focusing function. Eqs.(1.31) are called

Hill’s equations and have the structure of a linear oscillator with s-dependent

frequency.

1.4 Linear transfer maps

1.4.1 Element maps

Since the gradients are constant throughout a single magnet, we can introduce

the transfer map M(l) of the magnetic element M(l) (see Fig.1.2). We define M(l)

as the function that transforms the phase-space coordinates x(sl−1) to x(sl) [8]

x(sl) = M(l)(x(sl−1)) M(l) : R4 −→ R4, (1.32)
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M(L) M(1)

M(2)sL−1

s0 = sL

s1

s2

Figure 1.2: Sketch of the magnetic elements along a circular accelerator

where in its component M(l) is given by

x(sl) = x1(sl) = M
(l)
1 (x(sl−1))

px(sl) = x2(sl) = M
(l)
2 (x(sl−1)) M

(l)
j : R4 −→ R j = 1, 2, 3, 4; (1.33)

y(sl) = x3(sl) = M
(l)
3 (x(sl−1))

py(sl) = x4(sl) = M
(l)
4 (x(sl−1))

here we are introducing this new coordinates notation for the sake of simplicity. We

denote s0 = 0, thus sL represents the total length of the accelerator. The transfer

map M(l) can be seen as the Hamiltonian flow that propagates the initial condition

x(sl−1) to x(sl).

A map M : R4 −→ R4 is symplectic if its Jacobian MJ is a symplectic matrix

for every x, which means that it satisfies

MJ(x)JM
T
J (x) = J, (1.34)

where MT
J denotes the transposed matrix and J is defined as

J =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 . (1.35)
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An equivalent definition of symplectic map can be given in terms of Poisson brackets.

Given two function f, g : R4 −→ R defined on the phase space, the Poisson bracket

of f, g is defined by

{f, g} =
∑
i=x,y

∂f

∂xi

∂g

∂pi
− ∂f

∂pi

∂g

∂xi

. (1.36)

Therefore M is symplectic if

{Mi,Mj} = Ji,j i, j = 1, ..., 4. (1.37)

Furthermore, we define a map M : R2 −→ R2 area-preserving, if its Jacobian has a

determinant equal to one:

Det(MJ) ≡
∂M1

∂x

∂M2

∂p
− ∂M1

∂p

∂M2

∂x
= 1, (1.38)

which is actually equivalent to the symplectic condition in R2, thus the symplectic

condition can be seen as the generalization of the area-preserving condition to

higher dimensionality.

1.4.2 The one-turn map

The one-turn map is a Poincaré map at section s = s0 given by the composition

of the maps of the single elements of the accelerator:

M = M(L) ◦M(L−1) ◦ ... ◦M(2) ◦M(1). (1.39)

M transforms the phase space coordinate x(s0) in to x(sL) after one full turn

around the accelerator

x(sL) = M(x(s0)). (1.40)

Separating the linear from the non linear contribution, we can express M as

M(x) = L(x) +O(|x|2), (1.41)

where L is the linearized map whose action on the coordinate is

xj(sL) =
4∑

k=1

Lj,kxk(s0). (1.42)
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We can classify the one-turn linear transfer map L, or a generic symplectic 2× 2

matrix, according to the nature of its eigenvalues λ1, λ2. The area preserving

condition imposes that λ1 · λ2 = 1. Since the matrix is real, we have the following

cases:

|Tr(L)|


< 2 λ1 = λ∗

2 = eiω ω ∈ R elliptic

= 2 λ1 = λ2 = ±1 parabolic

> 2 λ2 = 1/λ1 = ±eτ τ ∈ R hyperbolic

(1.43)

where λ∗ denotes the complex conjugate of λ. Therefore, a necessary condition for

the orbit stability is

|Tr(L)| ≤ 2. (1.44)

1.4.3 Linear transfer maps of magnetic elements

We can now express the map of the main three elements of an accelerator: drift

space, dipole magnet, and quadrupole magnet. A drift space is a field free region,

where the particle drifts without any change of momentum. The corresponding

linear map is given by

Ldrift =


1 ℓ 0 0

0 1 0 0

0 0 1 ℓ

0 0 0 1

 , (1.45)

where ℓ is the length of the element.

The dipole magnet is an element whose purpose is to bend the beam around

the accelerator lattice. It is a straight section of length ℓ with constant dipolar

filed B0, K1 = 0 and its map is given by

Ldipole =


1 ρ sin ℓ

ρ
0 0

0 1 0 0

0 0 cos ℓ
ρ

ρ sin ℓ
ρ

0 0 −ρ−1 sin ℓ
ρ

cos ℓ
ρ

 , (1.46)

which correspond to a rectangular magnet and takes in consideration the edge

focusing effect.



1.4 Linear transfer maps 11

F
F

F
F

F

Figure 1.3: Ideal dipole (left), and ideal focusing quadrupole (right). The black

arrows represent the magnetic field, the current in the coils are indicated in colour

and the particles are directed toward the page [9].

The quadrupole is a section that has the function to focusing or defocusing the

beam; when focusing in one plane, it defocuses in the other one. Usually, we refer

to a focusing quadrupole when it focuses in the horizontal plane as seen in Fig.1.3,

and to a defocusing quadrupole when it focuses in the vertical plane.

A quadrupole is characterised by ρ = ∞, K1 > 0, and the linear map is given

by

Lquad =


cos
(√

K1ℓ
)

1√
K1

sin
(√

K1ℓ
)

0 0

−√
K1 sin

(√
K1ℓ

)
cos
(√

K1ℓ
)

0 0

0 0 cosh
(√

K1ℓ
)

1√
K1

sinh
(√

K1ℓ
)

0 0
√
K1 sinh

(√
K1ℓ

)
cosh

(√
K1ℓ

)

,

(1.47)

where we are representing the map for the horizontal focusing quadrupole, while

the one for the defocusing quadrupole is given by the same expression where the

two diagonal blocks are interchanged.
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1.5 Solution of Hill’s equations

It is possible to write down the solution to the Hill’s equation (Eqs.(1.31)) using

the ansatz x(s) =
√

2Jxβx(s) sin(ϕx(s) + δx)

y(s) =
√

2Jyβy(s) sin(ϕy(s) + δy)
(1.48)

where βx and βy are function of s defining the amplitudes of the oscillations, ϕx

and ϕy are phase advances while δx, δy, Jx and Jy are constants related to the

initial conditions.

Substituting the ansatz in the Hill’s equations we find

ϕ′
xβ

′
x + ϕ′′

xβx = 0

ϕ′
yβ

′
y + ϕ′′

yβy = 0

β′′
x

1

2
− β′2

x

1

4βx

− βxϕ
′2
x + βxKx = 0 (1.49)

β′′
y

1

2
− β′2

y

1

4βy

− βyϕ
′2
y + βyKy = 0,

where from the first two equations we find the relation between the amplitude and

phase advance

ϕx(s) = cx

∫ s

0

dσ

βx(σ)
ϕy(s) = cy

∫ s

0

dσ

βy(σ)
(1.50)

where cx and cy are constant and the calculation is set so that ϕx(0) = ϕy(0) = 0.

βx and βy are called betatron functions, and setting cx = cy = 1 we determine

them uniquely.

The linear tunes of the machine are defined as

νx =
ϕx(sL)

2π
νy =

ϕy(sL)

2π
(1.51)

often denoted as Qx and Qy, such definition holds for every order in the multipole

expansion. Tunes have a central role in the design and control of the beam

due to resonances. A resonance emerges when the tune and the frequency of a

periodic perturbation have the same value. The resonant condition leads to beam
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Figure 1.6: Resonance lines defined in (Qx, Qy) tune space by Eq.(1.42).

Figure 1.4: Working point diagram, representing resonances in tune space, for

k ≤ 5 [9].

deterioration, therefore one usually wants to maintain the system at a working

point far from resonances, i.e. far from lines of a working diagram (see Fig. 1.4).

The equation for resonant condition is given by

mQx + nQy = p m, n, p ∈ Z, (1.52)

and the order of resonance is given by

k = |n|+ |m|. (1.53)

1.6 Courant-Snyder parametrisation

We now write down the expression for the one-turn linear map according to the

above formalism, considering Eqs.(1.48) we write

x(sL) = LTwissx(s0); (1.54)
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here L is the Twiss matrix

LTwiss =

(
Lx 0

0 Ly

)
, (1.55)

where

Lx =

(
cos(2πνx) + αx sin(2πνx) βx sin(2πνx)

−γx sin(2πνx) cos(2πνx)− αx sin(2πνx)

)
, (1.56)

and a similar expression holds for the matrix Ly. Here α and γ are given by

α = −β′

2
, γ =

1 + α2

β
. (1.57)

α, β, γ are all functions of s, they are known as Twiss parameters and, in Eq.(1.56),

they are evaluated at s = 0. Setting z as either the horizontal or vertical coordinate,

z

z′

√
ε/γ

√
ε/β

√
εγ

√
εβ

Slope= −α/β

Slope= −γ/α−α
√
ε/γ

−α
√

ε/β

Figure 1.5: The Courant-Snyder invariant ellipse. α, β and γ are the Twiss

parameters, while ε is the Courant-Snyder invariant, which gives the area of the

ellipse.

the first integral of motion, or Courant-Snyder invariant, is given by

C(z, z′) = γzz
2 + 2αzzz

′ + βzz
′ = 2Jz ≡ εz. (1.58)
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The Twiss parameters define the Courant-Snyder ellipse in the (z, z′) plane, and ε

gives the area of such ellipse (see Fig. 1.5). Thus during the motion of the particle,

the shape and slope of the ellipse may vary, but its area remains constant. It is

however possible to deal with circles in the phase space instead of ellipses passing

to the Courant-Snyder coordinates [10]. Indeed we can express LTwiss as

LTwiss = TRT−1 (1.59)

where

R =


cosϕx sinϕx 0 0

− sinϕx cosϕx 0 0

0 0 cosϕy sinϕy

0 0 − sinϕy cosϕy

 , (1.60)

is a simple rotation matrix, and

T =


√
βx 0 0 0

−αx√
βx

1√
βx

0 0

0 0
√

βy 0

0 0 −αy√
βy

1√
βy

 , (1.61)

is the map that conjugates the coordinates x to the Courant-Snyder coordinates x̂.

In these new coordinates, the motion is represented only by a simple rotation in

the phase space, we have

x̂ = T−1x x̂(sL) = Rx̂(s0). (1.62)

Such parametrization transforms the ellipse, in the phase space, into a circle, as

seen in Fig. 1.6.

The invariant of the map is now expressed as

εz = ẑ2 + p̂z
2 = 2Jz, (1.63)

being J the action of the particle, we see that the invariant is two times the

action variable. It is to be noted that when the particles accelerate they undergo

the so-called adiabatic damping, which decreases the area of the ellipse with the
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z

z′

ẑ

ẑ′

Figure 1.6: Representation of the phase space in the physical coordinates (left), and

in the Courant-Snyder coordinates (right). The change of coordinates transforms

the ellipse into a circle.

increasing of the energy of the beam. We then define the normalised emittance,

that is constant regardless of the energy of the particles, as

ε∗z ≡ βrelγrelεz, (1.64)

where βrel and γrel are the relativistic functions.

The Courant-Snyder invariant is a property of the single particle, while usually,

inside a beam, we have a distributions of many particles. Such distribution, usually

Gaussian, can be described by a covariance matrix, namely the beam matrix, given

by

Σ =

(
σ2
z σz,z′

σz,z′ σ2
x′

)
(1.65)

where, for a normalised distribution ρ(z, z′),

⟨z⟩ =
∫

zρ(z, z′)dz dz′ ⟨z′⟩ =
∫

z′ρ(z, z′)dz dz′

σ2
z =

∫
(z − ⟨z⟩)2ρ(z, z′)dz dz′ σ2

z′ =

∫
(z′ − ⟨z′⟩)2ρ(z, z′)dz dz′ (1.66)

σzz′ =

∫
(z − ⟨z⟩)(z′ − ⟨z′⟩)dz dz′.

From the determinant of the beam matrix, we define the geometric emittance, or

rms emittance

εrms =
√

Det(Σ) =
√
σ2
zσ

2
z′ − σ2

zz′ = A/π (1.67)
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where A is the area of the distribution in the phase space.

1.7 Non-linear transfer maps

Up until now, we only considered the motion of particles in the linear case. In

the general case, the transfer map of a non linear element M(l), like a sextupole or

an higher order multipole, cannot be computed exactly. The Hill’s equations in the

non-linear case, neglecting the linear coupling, are given by

x′′ +Kx(s)x = Re

[
∞∑
n=0

(bn + ian)

n!
(x+ iy)n

]

y′′ +Ky(s)y = −Im

[
∞∑
n=0

(bn + ian)

n!
(x+ iy)n

]
,

(1.68)

which can be rewritten as a first order differential equation for x = (x, px, y, py)

dx

ds
= A(s)x+ f(x, y; s), (1.69)

where A and f are the linear and non-linear contributions respectively.

We now define L(s, sl−1) as the fundamental matrix for the linear system

satisfying the equation

dL(s, sl−1)

ds
= A(s)L(s, sl−1) L(sl−1, sl−1) = I, (1.70)

with the semigroup property

L(s′′, s′)L(s′, s) = L(s′′, s). (1.71)

The non-linear equation 1.69 can now be written in the integral form

x(s) = L(s, sl−1)x(sl−1) +

∫ s

sl−1

L(s, s′)f(x, y; s′)ds′

= L(s, sl−1)

(
x(sl−1) +

∫ s

sl−1

L(sl−1, s′)f(x, y; s′)ds′

)
, (1.72)

where x(sl−1) is the initial condition.
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1.7.1 Thin lens approximation

The thin lens approximation allow us to approximate the element map M(l) to

a polynomial form, by making the assumption that non linearity is concentrated in

one or more points of the interval [sl−1, sl]. Such approach has the advantage to

provide a map that is symplectic and easy to implement on a tracking code.

sl−1 + 0 sl

Figure 1.7: Sketch of the one-kick approximation.

The one-kick approximation consists in solving Eq. (1.72) by considering the

non-linear contribution f acting only in the initial part of the element (see Fig.1.7).

Thus we make the substitution

f(x, y; s) −→ f(x, y; s)ℓδ(s− (sl−1 + 0)) (1.73)

where δ is the delta function defined according to∫ 0+ϵ

0−ϵ

δ(s)ds = 1

∫ 0+ϵ

0−ϵ

δ(s)f(x, y; s)ds = f(x, y; 0) ∀ϵ ∈ R+. (1.74)

In Eq. (1.73), we write plus zero because the nonlinearity acts only at the beginning

of the element. From sl−1 + ϵ to sl the nonlinearity is absent, thus, making the

computation of the transfer map we have

x(sl) = L(sl, sl−1 + ϵ)x(sl−1 + ϵ). (1.75)

The non-linear kick has no effect on the coordinate x∫ sl−1+ϵ

sl−1

dx

ds
ds = x(sl−1 + ϵ)− x(sl−1) = O(ϵ), (1.76)

while in the coordinate px there is a discontinuity∫ sl−1+ϵ

sl−1

dpx
ds

ds = px(sl−1 + ϵ)− px(sl−1) = ℓfx(x, y; sl−1) +O(ϵ), (1.77)
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and the same can be written for y and py. In the limit ϵ −→ 0 we find the kick

map 
x

px

y

py


s=sl−1+0

=


x

px + ℓfx(x, y; s)

y

py + ℓfy(x, y; s)


s=sl−1

. (1.78)

The one-kick approximation is then given by the composition of the linear and kick

maps

xone−kick(sl) = L(sl, sl−1)(x(sl−1) + ℓf(x, y; sl−1)). (1.79)

This approach can be taken forward if we split the element in m portions and

apply to each of them the one-kick approximation. By increasing the number of

portions of the element, we decrease the error of the symplectic map, which can be

estimated to be O(ℓ2/m).

1.8 Dynamic Aperture

Beam stability is an important task in accelerators physics, which is made

possible using various multipolar magnetic elements. It is not just a matter of

keeping the beam inside the mechanical aperture of the machine, because the

nonlinearities largely reduce the area of the phase space in which stable orbits are

possible.

The dynamic aperture (DA) [11] is the amplitude of the phase space region in

which stable motion occurs. Such quantity, is a key one for the design of modern

colliders that rely on superconducting magnets having unavoidable non-linear field

errors. Thus, defining and controlling the DA is crucial.

In theory, the motion stability definition requires a large time scale, however,

in practice, we can consider a maximum number of turns Nmax that is determined

on the basis of the specific case. Let (x, y) be the transverse spatial coordinates

describing the betatronic motion, if an ensemble of initial conditions defined on a

polar grid

x = r cos θ, y = r sin θ, 0 ≤ θ ≤ π/2, (1.80)
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where x, y are expressed in units σx, σy of the beam dimension is tracked for up to

Nmax turns, then a measure of the DA can be defined as

D(N) =
2

π

∫ π/2

0

r(θ;N)dθ, (1.81)

where r(θ;N) is the last stable amplitude for up to N turns in the direction θ.

Thus, DA can be considered a function of N , with an asymptotic value representing

the DA for an arbitrary large time.



Chapter 2

Stochastic Hamiltonians and

Diffusive Approach

Stochastic differential equations describe the evolution of systems subjected to

deterministic interaction, in presence of fluctuating terms with known statistical

properties. Such fluctuations are due to external factors which can undergo rapid

and unpredictable variations, or due to the presence of other random interactions.

The integrartion of stochastic differential equations is an essential tools to approach

formulation of non-equilibrium Statistical Mechanics in complex systems physics,

and requires new mathematical concepts (i.e. the Wiener process and the Ito

integral [12, 13]). To use the evolution laws that could be applicable to real

system, to describe and make a prediction about macroscopic observables, one

need two hypotheses to be verified: the microscopic dynamics should have a strong

dependence on the initial conditions, and the system should be decomposable into

elementary almost-independent components. Once both of these hypotheses are

verified, we can use stochastic differential equations as mathematical model for

Statistical Mechanics of physical systems.

21
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2.1 Stochastic Hamiltonian systems

We now consider a system whose dynamics can be described by a stochastically

perturbed Hamitonian system. In the 1DoF case the Hamiltonian reads

H = H0(I) + ξ(t)H1(I, θ), (2.1)

where (I, θ) are action-angle variables, H1 is a perturbation and ξ(t) represents a

random noise, with a correlation function given by

⟨ξ(t)ξ(t+ T )⟩ = σ2ϕ(γT ) ϕ(γT ) ≃ e−γT , (2.2)

where γ−1 is the correlation time scale, that defines the noise evolution with respect

to the characteristic time scale of the unperturbed dynamics H0. In the white noise

limit we have that

σ2ϕ(γT ) −→ δ(T ), (2.3)

and without loss of generality, we can assume ⟨ξ⟩ = 0.

Each orbit is a superposition of a regular dynamics, given by H0, and the

effects of fluctuations due to the stochastic perturbation. H1(I, θ) describes the

amplitude of the perturbation and we assume that ∥H1∥ ≪ ∥H0∥. We introduce

a small parameter ϵ = ∥H1∥ ≪ 1 to denote the L2-norm of H1, and we define

Ĥ1 = H1/∥H1∥. In the limit of small perturbations, under suitable assumptions, it

is possible to study the dynamics of the integral of motion as a diffusion process in

a slow evolution time τ = ϵ2t, for which the white noise approximation is justified.

The slow time defines the time scale for the diffusion of the action variable; while

the angle variables can be considered as fast variables, which decorrelate in a time

much shorter than the diffusion time scale.

Indeed we can establish a relation between the various time scales of the system:

• γ−1 is the noise decorrelation time scale and it is the shortest time scale. We

require that, in a time γ−1 the action I can be considered constant;

• the phase relaxation time scale is given by [15]

Tθ ≃ ϵ−2/3

∥∥∥∥∥∂Ĥ1

∂θ

∥∥∥∥∥
−2/3 ∥∥∥∥∂Ω∂I

∥∥∥∥−1

, (2.4)
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where Ω = ∂H0/∂I ̸= 0 is the phase advance;

• the action-diffusion time scale is the larger time scale and it is given by

TI ≃ ϵ−2

∥∥∥∥∥∂Ĥ1

∂θ

∥∥∥∥∥
−2

, (2.5)

i.e. the scale at which the perturbation may change the average dynamics of

the action variable by a quantity O(1).

Then if ϵ ≪ 1 we have that γ−1 ≪ Tθ ≪ TI .

To resume, we expect the angle variable to make a great number of turns with

angular velocity Ω along an unperturbed orbit before the diffusion of the action

variable becomes relevant. This fact means that we are justified to use an averaging

principle that allow us to make an average on the angle variable, to describe the

evolution of the system only by means of the action variable.

Under the previous assumptions, having the angle distribution relaxed to

a uniform one, the action distribution ρ(I, τ) satisfies the Fokker-Planck (FP)

equation, as we will derive in the next section, of the form

∂ρ

∂τ
=

1

2

∂

∂Ii
Dij(I)

∂ρ

∂Ij
, (2.6)

with an action-dependent diffusion coefficient given by

Dij(I) =
1

(2π)d

∫
Td

(
∂Ĥ1

∂θi

∂Ĥ1

∂θj

)
dθ 1 ≤ i, j ≤ d. (2.7)

2.2 Derivation of the diffusion equation

We are now going to derive the Fokker-Planck equation considering all assump-

tions made up to now. Starting from the one-dimensional Hamiltonian [16]

H = H0(I) + ϵξ(t)H1(I, θ) (2.8)

where ϵ −→ 0 and ξ(t) is a stationary random process satisfying the white noise

condition of Eq. (2.3), and with average ⟨ξ⟩ = 0. We consider the evolution of
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particle density ρ(I, θ, t) in phase space, described by a stochastic Liouville equation

that reads
∂ρ

∂t
+ Ω

∂ρ

∂θ
+ ϵξ(t)

(
∂H1

∂I

∂ρ

∂θ
− ∂H1

∂θ

∂ρ

∂I

)
= 0. (2.9)

We separate the density average from its fluctuating part

ρ = ρ0 + ϵρ1, ρ0 = ⟨ρ⟩, ⟨ρ1⟩ = 0. (2.10)

Then, the equation reads

∂ρ0
∂t

+ Ω
∂ρ0
∂θ

+ ϵ

(
∂ρ1
∂t

+ Ω
∂ρ1
∂θ

)
+ ϵξ(t)

(
∂H1

∂I

∂ρ0
∂θ

− ∂H1

∂θ

∂ρ0
∂I

)
+ ϵ2ξ(t)

(
∂H1

∂I

∂ρ1
∂θ

− ∂H1

∂θ

∂ρ1
∂I

)
= 0. (2.11)

Making the average, we obtain

∂ρ0
∂t

+ Ω
∂ρ0
∂θ

+ ϵ2
〈
ξ(t)

(
∂H1

∂I

∂ρ1
∂θ

− ∂H1

∂θ

∂ρ1
∂I

)〉
= 0. (2.12)

Subtracting Eq. (2.12) from Eq. (2.11) we have

∂ρ1
∂t

+ Ω
∂ρ1
∂θ

= ξ(t)g(I, θ, t) +O(ϵ), (2.13)

where we have lightened the notation by setting

g(I, θ, t) = −
(
∂H1

∂I

∂ρ0
∂θ

− ∂H1

∂θ

∂ρ0
∂I

)
. (2.14)

We now look for a solution for Eq. (2.13) with the initial condition ρ1(I, θ, 0) = 0.

Eq. (2.13) can be written in the form

d

dT
ρ1(I, θ + ΩT, t+ T ) = ξ(t+ T )g(I, θ + ΩT, t+ T ) +O(ϵ), (2.15)

thus ρ1 has a solution given by

ρ1(I, θ, t) =

∫ 0

−t

ξ(t+ T )g(I, θ + ΩT, t+ T )dT +O(ϵ). (2.16)

Substituting this solution into 2.12, we obtain

∂ρ0
∂t

+ Ω
∂ρ0
∂θ

+ ϵ2
(
∂H1

∂I

∂

∂θ
⟨ξ(t)ρ1⟩ −

∂H1

∂θ

∂

∂I
⟨ξ(t)ρ1⟩

)
= 0, (2.17)



2.2 Derivation of the diffusion equation 25

where

⟨ξ(t)ρ1(I, θ, t)⟩ =
∫ 0

−t

g(I, θ + ΩT, t+ T )⟨ξ(t)ξ(t+ T )⟩dT +O(ϵ)

= σ2

∫ 0

−t

g(I, θ + ΩT, t+ T )δ(T )dT +O(ϵ)

= −1

2
σ2

(
∂H1

∂I

∂ρ0
∂θ

− ∂H1

∂θ

∂ρ0
∂I

)
. (2.18)

Thus, the equation for ρ0 is finally given by

∂ρ0
∂t

+ Ω
∂ρ0
∂θ

=
1

2
ϵ2σ2∂H1

∂I

∂

∂θ

(
∂H1

∂I

∂ρ0
∂θ

− ∂H1

∂θ

∂ρ0
∂I

)
− 1

2
ϵ2σ2∂H1

∂θ

∂

∂I

(
∂H1

∂I

∂ρ0
∂θ

− ∂H1

∂θ

∂ρ0
∂I

)
+O(ϵ3), (2.19)

which, neglecting the terms of order ϵ3, is a Fokker-Planck equation. We remark that

the terms O(ϵ3) can be neglected when the condition (2.3) is satisfied. Recalling

the considerations made in the previous section, being θ the fast variable and I the

slow variable, we assume that, in a time t > 1/ϵ, the leading term is the average of

ρ with respect to θ, so that we can write ρ(I, θ, t) ≈ ρ(I, t), and the contribution of

the derivative ∂ρ/∂θ can be neglected. The Fokker-Planck equation then becomes

∂ρ

∂t
=

ϵ2σ2

2

{
−
[
∂H1

∂I

∂2H1

∂θ2
+

∂H1

∂θ

∂2H1

∂θ∂I

]
∂ρ

∂I
+

∂

∂I

[(
∂H1

∂θ

)2
∂ρ

∂I

]}
+O(ϵ3).

(2.20)

Taking now the average over θ we have that〈
∂H1

∂I

∂2H1

∂θ2
+

∂H1

∂θ

∂2H1

∂θ∂I

〉
θ

= 0. (2.21)

Thus, the final equation for the action distribution reads

∂ρ

∂t
=

ϵ2

2

∂

∂I
D(I)

∂ρ

∂I
+O(ϵ3), (2.22)

where the diffusion coefficient is given by

D(I) = σ2

〈(
∂H1

∂θ

)2
〉

θ

. (2.23)
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To properly use Eq. (2.22), boundary conditions have to be set. A natural boundary

condition at I = 0 exists, since in the considered model we have that

lim
I−→0

D(I) = 0, (2.24)

while we need to introduce an absorbing boundary condition at I = Ia, which

represents the presence of a collimator or, in general, the starting position of a fast

escape to infinity of the particles.

2.3 Stochastic symplectic map

The stochastic symplectic maps provide models to study the effects of stochastic

perturbation in particle accelerators and can be easily implemented and iterated in

computer codes. Such maps simulate the effect of external fluctuating perturbations

of an integrable systems using the thoery of stochastic processes. We consider the

following symplectic stochastically perturbed map(
xn+1

pn+1

)
=

(
cosΩ(In) sinΩ(In)

− sinΩ(In) cosΩ(In)

)(
xn

pn + ϵξn+1f(xn)

)
, (2.25)

where ξn are random independent variables with zero mean and unit variance, ϵ is

a perturbation parameter, and we define the action and angle variables as

x =
√
2I sin θ, p =

√
2I cos θ. (2.26)

The function f(x) = O(x2) represents the presence of non-linear terms, so that

the origin is a fixed point. We assume that the integrable part is defined by the

frequency

Ω(I) = ω0 + ω1I + ω2
I2

2
, (2.27)

with ω0 non-resonant. Following the approach discussed in [5], we can observe that

the action dynamics can be approximated by

In+1 = In + ϵξn+1

√
2In cos(θn + Ω(In))f(

√
2In sin(θn + Ω(In)))

+
ϵ2

2
ξ2n+1f

2(
√

2In sin(θn + Ω(In))) . (2.28)
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The term O(ϵ), due to the symplectic nature of the map, has the form

√
2I cos(θ)f(

√
2I sin(θ)) =

∂F

∂θ
(
√
2I sin(θ)) , (2.29)

where F is the primitive of f , so its angular mean value is zero. Here, we want to

describe the action dynamics of this map by means of a Fokker-Planck equation.

Thus, we interpret ϵξn(t)F (x) as the interpolating Hamiltonian for the following

map (
xn+1

pn+1

)
=

(
xn

pn + ϵξn+1f(xn)

)
, (2.30)

i.e. the perturbation Hamiltonian. We can now apply the procedure explained in

the previous section and describe the action dynamics with a FP equation. To

properly use the averaging theorem, we consider the fast relaxation of the angle

variable, which requires the condition ω2 = O(1). This allows two orbits of the

system, with different initial conditions in the angle variable, to behave as two

different realisations of a stochastic process, even if we consider a single realisation

of the noise ξ. This fact is relevant in the application to accelerator physics since

the particles in the beam are perturbed by the same realisation of noise, but have

a different initial condition in the phase space. The diffusion coefficient is then

given by

D(I) =

〈(
∂F

∂θ
(I, θ)

)2
〉

θ

. (2.31)





Chapter 3

Hollow Electron Lens for HL-LHC

Future upgrades and improvements for the CERN Large Hadron Collider (LHC)

are planned and represent the mandate of the High-Luminosity project, which

aims to increase the luminosity capabilities of the LHC. The upgrade, installed

during the long shutdown in 2026-2028, will allow for an unprecedented total stored

beam energy of about 700 MJ. Such amount of stored beam energy will need an

extremely efficient collimation system, which will see the addition of the Hollow

Electron Lens (HEL), to help control the beam-halo diffusion and mitigate the

effects of fast beam losses. The hollow beam of electrons generated by HEL is

supposed to act on the beam tails while ideally leaving the beam core unperturbed.

This brief review of the HEL system describes the framework and reasons for its

installation, its design, and its initial expected diffusion performances.

3.1 The need for an HEL system at the HL-LHC

The Large Hadron Collider (LHC) at the European Laboratory for Particle

Physics (CERN) is a circular accelerator, installed in a 27 km long underground

tunnel. It is designed to collide two 7 TeV proton beams with stored beam energies

of about 362 MJ. In 2026, it is planned to start the implementation of the upgrade

of the LHC according to the High-Luminosity (HL-LHC) project [1]. The aim

of the upgrade is to nearly double the beam current, while reducing the beam

29



30 3. Hollow Electron Lens for HL-LHC

emittance by more than 30% with respect to the LHC design value.

The halo collimation of proton and ion beams in LHC is a key element for the

machine operation. Indeed, the cryogenic nature of the LHC demands a tight control

of beam losses, to minimise the energy deposited in superconducting magnets due to

hadronic showers, and avoid magnet quenches. Thus, a highly-efficient collimation

system is needed to minimise beam losses in the superconducting magnets and

avoid damage to ring components. Although the current LHC collimation system

can reach very good performance, extrapolations to HL-LHC beam conditions pose

serious concerns. Sudden beam losses generated by fast transients such as orbit

jitters can be naturally observed in the beam dynamics, or can have other causes,

e.g. power converter ripple [17]. Even though such phenomena were under good

control in Run 2, various hints of presence of overpopulated tails with respect to the

typical Gaussian beam distribution, have been observed, and by simply assuming

a linear scaling of the beam-halo population with the total beam current, we can

estimate that, for HL-LHC, up to 36 MJ might be stored in the beam tails [18].

In addition to this, damage can also be caused in case of fast-failure scenarios,

which might occur at the HL-LHC, like the operation of crab-cavities, or the risk

of dumping asynchronously the two HL-LHC beams, that might trigger unwanted

excitation and beam loss spikes that cannot be handled by the current collimation

system alone [19].

The use of an Hollow Electron Lens (HEL) can boost the performance of the

collimation system, by actively controlling the diffusion speed of the halo particles.

HEL produces a low-energy hollow beam of electrons with a cylindrical symmetry

that acts only on the beam halo, leaving the core nearly free of tails, thus greatly

suppressing loss spikes. The electron beam runs co-axially with the hadron beam

for a few meters acting at a transverse amplitude below the one of the primary

collimators, so that the halo particles that are driven unstable are then safely

disposed at a controllable rate.

HEL collimation system has been used already at the Fermilab Tevatron [2],

where it turned out to be an effective tool to mitigate effects related to transient

beam losses, while remaining compatible with the operation of the collider, and
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more recently also tests at the BNL RHIC have been carried out [20].

3.2 HEL design and integration in the HL-LHC

collimation system

Figure 1: Schematic representation of the LHC ring. Beams are brought in collision in 4 straight
sections in Pt1, Pt2, Pt5, and Pt8. The other straight sections house the collimation systems
(Pt3, Pt7), the radio-frequency (RF) system and some instrumentation devices (Pt4), and the dump
systems for both beams (Pt6). The counter-rotating Beam 1 (blue) and Beam 2 (red) are injected in
Pt2 and Pt8, respectively. Pt4 will also house the HL-LHC hollow electron lenses.

2 HEL collimation scheme and integration in the HL-LHC collimation system

The layout of the LHC ring is shown in Fig. 1. The LHC is installed in a 27 km-long underground
tunnel and it has an eight-fold symmetry with 8, 3.3 km-long arcs and 8 straight sections. The 4
main LHC experiments are housed in Pt1 (ATLAS), Pt2 (ALICE), Pt5 (CMS), and Pt8 (LHCb).
Two straight sections with normal-conducting magnets are dedicated to beam collimation: Pt3 for
momentum cleaning and Pt7 for betatron cleaning. Pt6 houses the beam dumping system. Finally,
Pt4 is a straight section that houses the Radio-Frequency (RF) system and some instrumentation
devices. The two counter-rotating LHC beams are injected in Pt2 (Beam 1, clockwise) and Pt8
(Beam 2, counter-clockwise). This layout will be preserved for the HL-LHC, with major upgrades
taking place in Pt1 and Pt5 in order to enable improved luminosity performance for the two general-
purpose experiments, ATLAS and CMS. Other important upgrades take also place in di�erent parts
of the ring, as described in detail in [2].

HELs provide a mechanism to control the di�usion speed of halo particles and therefore control
how particles are driven towards the jaws of the collimators. The disposal of beam halos remains the
responsibility of the existing collimation system. HELs are integrated in the transverse hierarchy
of the betatron collimation system as illustrated in Fig. 2: they act on particles with transverse
amplitudes just below those of the primary collimators (dark-gray box in the scheme). After the
interaction with the primary collimators, the halo particles are disposed of through the standard
multi-stage cleaning mechanisms [1]. We will see that the kick experienced by a halo particle
at each passage through the HEL is of the order of a fraction of a microradian. This induces a
moderate change in the halo particle’s motion so that single-turn e�ects can be considered negligible.
Therefore, HELs do not need to be located close to the collimation system and might be installed

– 3 –

Figure 3.1: Simple representation of the LHC. The stars indicate the collision points

in Pt1, Pt2, Pt5 and Pt8, where the experiments are housed. The collimation

systems are in Pt3 and Pt7, while the dumping system is in Pt6. In Pt4 there is

the RF system, beam instrumentation, and it is where HELs will be installed [3].

The LHC has a circumference of 27 kilometres and it has an eight-fold symmetry,

with 8 arcs and 8 straight sections. As shown in Fig. 3.1, the four main experiments

are installed in Pt1 (ATLAS), Pt2 (ALICE), Pt5 (CMS), and Pt8 (LHCb). The

two counter-rotating beams, Beam 1 and Beam 2, are injected in Pt2 and Pt8,

respectively, while the collimation systems are housed in Pt3, for momentum

cleaning, and in Pt7, for betatron cleaning. In Pt6 there is the beam dumping

system and, finally, in Pt4 there is a straight section housing the Radio-Frequency

(RF) system and some instrumentation devices. This layout will remain unchanged

for the HL-LHC. The current collimation system is organised in a precise hierarchy
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based on primary collimators, secondary collimators, and absorbers, for a total of

44 movable ring collimators per beam.

Figure 2: Scheme illustrating the conceptual integration of a HEL in the current collimation system
hierarchy. The transverse amplitude range covered by the HEL (yellow) spans amplitudes between
the tails of the circulating beam and those of the primary collimators (dark-grey) of the multi-stage
collimation system. Their e�ect is to enhance the di�usion of halo particles that are sent in a
controlled way on the betatron collimation system.

at any location around the ring. They do not produce local losses and they are designed to have a
negligible e�ect on fast losses. Suitable locations were found in Pt4 close to the main RF system:
this point features already a cryogenics system and also has other advantages like the increased
inter-beam distance, required by the RF system [1], that leaves more space for the integration of the
lenses.

More details on the planned integration in Pt4 are discussed in Section 4.6. Table 1 reports
the main optical functions at the corresponding locations for both beams. An e�ort was made in
matching the nominal optics to have round proton beams at the HEL location and to increase the
V-functions while keeping a small dispersion. The layouts are symmetric for Beam 1 and Beam 2,
and optimum conditions were achieved in the latest version of the HL-LHC optics, i.e. V1.5 [21].
The V-functions for both beams and planes in the Pt4 region are shown in Fig. 3, together with some
layout elements in this region. Blue boxes indicate the “dogleg” dipoles that are used to increase
the inter-beam distance in the straight region over a length of ⇡ 100 m around Pt4 (B=9997.1 m).

3 HEL specifications for enhanced beam collimation

3.1 Motivations and required performance

The presence of highly populated beam tails risks to make the operation very sensitive to small
orbit jitters, naturally observed in the beam dynamics or triggered by di�erent sources like earth
quakes [REF?] and power converter ripple [22]. Damage might also be caused in case of fast failure
scenarios as potentially expected at the HL-LHC. Particular concerns arise for the operation of
crab-cavities [23] that have the potential to excite failures with the rise time of a few LHC turns
[24], as well as from the risk of dumping asynchronously the two HL-LHC beams, which triggers
a transverse kick on the beam that circulates for longer times (see [25] for an overview of various
possible e�ects for HL-LHC). There is a solid experimental basis from measurements at the LHC

– 4 –

Figure 3.2: Simple scheme of the integration of the HEL in the collimation system

hierarchy [3].

HELs are integrated in the transverse hierarchy of the betatron collimation

system as shown in Fig. 3.2, acting on particles below the amplitude of the primary

collimator jaws. HELs allow to control the diffusion speed of halo particles towards

the jaws of the collimators, thus the disposal of particles remains a duty of the

collimation system.

The HEL will certainly be beneficial for any type of failure scenario, however,

the narrowed particle distribution after the halo depletion, may make it harder to

detect critical beam losses that would require a beam dump, affecting the time

margins for the Beam Loss Monitor (BLM) system. Thus, one requirement would

be to leave untouched few witness bunches which can give rise to an early warning

of a fast failure, such that the time between detection of a failure event and the

beam dump remains sufficiently long [19].

The kick induced on the halo particles by means of the electromagnetic field

generated by the electron beam is of the order of a fraction of a microradian. Thus,

the single-turn effect is negligible and, for this reason, HELs do not need to be

placed close to the collimation system [3]. The design is optimised for operation

at 7 TeV, where the fast losses are a critical issue, however, it is required to start
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using the HELs also during the energy ramp, so that, when the top-energy plateau

is reached, the halo is already under control.

Table 1: Main parameters at the locations of the HELs for Beam 1 and Beam 2. In the nominal
optics, the relevant parameters are matched to the same values for the two beams, and for the
horizontal and vertical planes.

Parameter Value/range
Proton kinetic energy, ⇢beam [TeV] 7
Proton emittance (rms, normalized), n [`m] 2.5
V-function at electron lens, VG,H [m] 280
Dispersion at electron lens, ⇡G,H [m] 0.0
Proton beam size at electron lens, f [`m] 306
Typical beam divergence (rms), f0 [`rad] 1.3-1.5
Diameter of the (warm) beam aperture, [mm] 60
Beam 1 longitudinal position from IP1, [m] 9957.0
Beam 2 longitudinal position from IP1, [m] 10037.2
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Figure 3: Evolution of the V-functions for both beams and planes in the Pt4 region [21]. Key layout
elements are shown by the coloured boxed: dipole (blue) and quadrupoles (white) in the line. For
both beams, the HELs are placed at the locations with round optics (see Table 1).

that indicates consistently the presence of large tail populations [16, 17]: reducing the steady-state
population of tails is important to mitigate known and unknown loss e�ects and might even become
mandatory if some fast failure scenarios cannot be excluded.

In the end of Run 1 (2010-2013), the LHC operation at 4 TeV was severely a�ected by
issues related to beam losses. The configuration of the collimation system was based on primary
collimators at gap values close to ± 1 mm, which intentionally equalled the nominal settings at
7 TeV. The situation significantly improved in the Run 2 at 6.5 TeV, also thanks to smaller beam

– 5 –

Figure 3.3: β-function evolution for both beams and both planes. The blue boxes

represent dipoles and the white ones represent quadrupoles [3]

The ideal locations for the HELs were found in Pt4, near the RF system. The

main reasons for this choice are the fact that Pt4 already features an independent

cryogenic system (for the RF cavities) and also an increased inter-beam distance

needed by the RF system, allowing for more transverse space for the HELs. More

in detail, the installation points are chosen trying to generate round proton beams

and increasing the β-functions, while keeping a small value of the dispersion

function. The β-function for both beams around Pt4 are shown in Fig. 3.3, and

HEL parameters are shown in Table 3.1. Thus, the HELs will be installed close to

the ”dogleg” dipoles in Pt4, where the inter-beam distance is at its maximum value

of 420 mm, and the orientation of the HELs will be mirror-symmetric on the left

and right side of Pt4 accounting for the opposite directions of Beam 1 and Beam 2.

The need for a cryogenic system is due to the HEL’s complex design, featuring
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Table 3.1: Main parameters and requirements for HEL at HL-LHC [3].

Parameter Value/range

Proton kinetic energy, Ebeam [TeV] 7

Proton emittance (rms, normalized), ε∗ [µm] 2.5

β-function at electron lens, βx,y [m] 280

Dispersion at electron lens, Dx,y [m] 0.0

Proton beam size at electron lens, σ [µm] 306

Typical beam divergence (rms), σ′ [µrad] 1.3-1.5

Diameter of the (warm) beam aperture, [mm] 60

Beam 1 longitudinal position from IP1, [m] 9957.0

Beam 2 longitudinal position from IP1, [m] 10037.2

Transverse scraping range at 7 TeV [σ] >3.6

Energy range for halo scraping, Emin [TeV] 5

Desired 90% tail scraping time [min] 5

Tolerated proton beam core emittance blow-up [µm/h] 0.05

superconducting magnets operating at 4.5 K. The 5 T magnetic field present in

the straight section is generated by 2 identical solenoid magnets. Those magnets

are built around a vacuum chamber with a 60 mm inner diameter, in which a 5 A,

15 keV electron beam is driven, to interact with the proton beam over a distance of

3 m. The strong magnetic field in the straight section assures the stability and the

small size of the electron beam thanks to fast Larmor oscillations around the field

lines. The current design of the HEL is shown in Fig. 3.4. The design also features

an electron gun and a collector to dispose of the electrons. Two tilted solenoids are

placed at both sides of the main ones to steer the electron beam in and out of the

proton beam. The S-design is adopted to self-compensate the edge effects of the

incoming and outgoing electron beam on the core of the proton beam. However,

with this design, the transverse components of the magnetic field, generated by

the two steering solenoids, add up and result in a net vertical kick experienced

by the proton beam. To correct this effect, a dipole corrector magnet is placed
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Fig. 2: Design of the HEL for HL-LHC [37].

beam injection/dump protection are also present at specific locations of the ring. All collimators consist of two movable
blocks (except the single-sided dump protection block), called jaws. The jaws are centred around the circulating beam,
with a well-established commissioning technique [5] that ensures optimum system performance. A detailed description
of these functionalities goes beyond the scope of this paper and can be found in [1].

The main upgrades of the LHC collimation system that are part of the present HL-LHC baseline [9] involve
the replacement of one Nb-Ti, 8.3 T dipole in the IR7 Dispersion Suppressor with two Nb3Sn, 11 T dipoles with a
collimator in between them, together with the replacement of some present collimators with new devices with jaws
made of low-impedance material. Their aim is to improve the cleaning performance of the overall system, while reducing
its contribution to the resistive-wall impedance budget of the ring. However, these upgrades do not allow for an active
control on overpopulated beam tails and their safe disposal, for which the introduction of a HEL is deemed necessary.

2.1 HEL for HL-LHC

The HEL is a quite complex device, featuring a high-current electron source, up to 5 T superconducting solenoid
magnets to guide and confine the electron beam, and a collector to dispose of the electron beam after its interaction
with the proton beam. Tilted solenoids located at both sides of the main ones are used to steer the electron beam
on, and out, of the proton beam. The present design of the HEL for the HL-LHC is given in Fig. 2. Integration
studies were performed, and candidate locations for the installation of HELs were identified at both sides of the long
straight section (LSS4), based on technical considerations including the availability of a cryogenic system [37] and
the increased separation between the two counter-rotating beams in this section. Beam-instrumentation concepts are
based on the experience gathered at FNAL and BNL. In addition, a special gas jet curtain monitor will be added, to
measure simultaneously the profile of the overlapping proton and electron beams [38,39]. The main solenoid is split in
two segments to enable the integration of this monitor in the centre of the HEL. The angular alignment between the
two beams will be achieved with dedicated electron beam correctors, tuned using strip-line Beam Position Monitor
(BPMs) placed at the extremities of the main solenoid. A complete description of the magnetic design and beam
instrumentation is out of the scope of this work and can be found in [37].

Note that several operational aspects were taken into account in the HEL design. A round pipe of 60 mm radius is
foreseen, in order to avoid issues in terms of available aperture for the circulating beam. The linear coupling stemming
from the solenoidal fields was studied and showed to have a negligible e↵ect on the circulating beam dynamics [40].
Impedance calculations of the full structure were performed, showing a negligible impact on the total ring-impedance
budget [40], whereas e↵ects of the electron beam on the dynamics of the circulating protons are the main focus of our
studies.

The HEL is s-shaped in order to self-compensate edge e↵ects generated by the in-coming and out-going electron
beam on the proton beam core. However, the in-coming and out-going electron beam might not be identical leading
to only a partial compensation, thus inducing a dipolar kick on the beam core. A disadvantage of this design is that
the transverse components of the magnetic fields in the two steering solenoids add up and result in a net vertical
kick experienced by the proton beam. This requires a dipole compensator (visible on the left side of Fig. 2) that
compensates this net kick.

Figure 3.4: Design of the HEL for HL-LHC [4].

right before (left side in Fig.3.4). The gap between the two main solenoids contains

the beam gas curtain (BGC) monitor, which can measure the transverse profile of

both the proton and electron beams at the same time, relying on the fluorescence

induced by the beams interacting with the gas [3].

3.3 HEL operational conditions and expected per-

formances

HEL produces a hollow beam of electrons with an annular shape, as shown

in Fig. 3.5. The cylindrical symmetry of the electron distribution is crucial to

minimise residual fields in the proton beam core. The inner radius of the electron

beam, r1, determines the smallest amplitude of effect on the halo particles. The

smallest inner radius for a 7 TeV beam energy is 3.6 σ, where σ =
√
εβ is the

RMS beam size, and the normalised emittance is assumed to be ε∗ = 2.5 µm.

Considering a nominal opening of the primary collimators of 6.7 σ, the HEL allow

a clearance of about 3 σ. The outer radius of the electron beam, given by magnetic

compression, is r2 = 2r1. The kick experienced by a proton of the beam when

interacting with the electrons depends on its radial coordinate, and the maximum
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Figure 4: Left: Transverse cross section with the beam distributions at the HEL: annular distribution
of the electron beam (green) and Gaussian proton beam distribution (blue) with the 1 sigma envelope
indicated in red. The black lines indicate the nominal 6.7 f opening of the primary collimators,
converted in mm at the HEL location. The reference optics of Table 1 is used. Right: HEL kick
experienced by a 7 TeV proton as a function of the radial coordinate.

injection kickers; within each LHC train, gaps up to 200 ns are present corresponding to successive
injections into the SPS. This implies that for the HEL a rise and decay time of 200 ns is specified,
in order to enable acting on sub-trains within a given LHC train. The duration of the electron beam
pulses between 1.2 `s and 86 `s allows an ample flexibility in acting on di�erent types of bunches
and trains.

The main requirement for the HEL is to provide adequate halo scraping at top energy, both for
proton and ion beams, when beam losses are more critical for the machine. One requires to be able
to switch the HEL on during the energy ramp above 5 TeV (see Table 2) such that the top energy can
be reached with tails already depleted. Halo removal at much lower energies might be ine�cient
because tail-population mechanisms in the ramp might induce a strong generation of beam halo.
Hence, in normal conditions, tail scraping should not start earlier than strictly needed.

No specific loss problems are expected at injection energy, and the possibility to use HELs at
450 GeV is considered as a key asset for an e�cient commissioning of these complex devices, e.g.
with smaller-than-nominal emittance beams or with specially tuned optics, designed for smaller
values of the V-functions at the HELs locations. Note initial beam commissioning and HELs setup
can be performed more e�ciently at injection energy, avoiding the long full LHC operational cycle.
Typically, a 2 h turnaround time is expected to be needed to recover the top-energy conditions after
a beam dump at 7 TeV, if one operates at top energy only, while at 450 GeV, subsequent beam
injections can be obtained within minutes.

Recently raised concerns with the flux jumps in the new HL-LHC magnets [27] required
assessing the use of HELs below 5 TeV. This is done by computing the achievable betatron cut with
the largest allowed electron-beam size that can be provided by the HEL. Figure 5 shows the betatron
cut at di�erent beam energies if one assumes this maximum electron-beam size at all energy. The
design allows, for example, cutting the tails at 4.5 f at beam energies of about 1 TeV.
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Figure 3.5: Transverse cross section of the two beams in the HEL: in blue, the

Gaussian proton beam distribution, with the 1 σ envelope in red; in green, the

annular distribution of electrons. The black lines indicate the nominal opening of

the primary collimators [3].

transverse kick is given by

θmax =
1

4πϵ0

2L Ie (1± βeβp)

(Bρ)p βeβpc2
1

R2

, (3.1)

where where L is the length of the HEL, Ie is the electron current in Amperes, βe

and βp are the relativistic factors for the electron and proton beams, respectively,

(Bρ)p = 10/2.9979 p GeV/c is the magnetic rigidity of the proton beam (p being

the proton’s momentum), ϵ0 is the vacuum permittivity, and R2 is the outer radius

of the HEL (in mm). The + sign applies when the magnetic force is directed like

the electrostatic attraction, i.e. when the electron beam moves in the opposite

direction to the proton beam, whereas the − sign applies when the two beams

move in the same direction. Fig. 3.6 shows the behaviour of the transverse kick as a

function of the radius. In the HL-LHC configuration, for 7-TeV protons antiparallel

to the electrons, with Ie = 5 A, L = 3 m, βe = 0.237 (corresponding to 15 keV

electrons), βp ∼ 1, R2 = 2.2 mm, the maximum kick is θmax ≈ 0.3 µrad.
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Figure 4: Left: Transverse cross section with the beam distributions at the HEL: annular distribution
of the electron beam (green) and Gaussian proton beam distribution (blue) with the 1 sigma envelope
indicated in red. The black lines indicate the nominal 6.7 f opening of the primary collimators,
converted in mm at the HEL location. The reference optics of Table 1 is used. Right: HEL kick
experienced by a 7 TeV proton as a function of the radial coordinate.

injection kickers; within each LHC train, gaps up to 200 ns are present corresponding to successive
injections into the SPS. This implies that for the HEL a rise and decay time of 200 ns is specified,
in order to enable acting on sub-trains within a given LHC train. The duration of the electron beam
pulses between 1.2 `s and 86 `s allows an ample flexibility in acting on di�erent types of bunches
and trains.

The main requirement for the HEL is to provide adequate halo scraping at top energy, both for
proton and ion beams, when beam losses are more critical for the machine. One requires to be able
to switch the HEL on during the energy ramp above 5 TeV (see Table 2) such that the top energy can
be reached with tails already depleted. Halo removal at much lower energies might be ine�cient
because tail-population mechanisms in the ramp might induce a strong generation of beam halo.
Hence, in normal conditions, tail scraping should not start earlier than strictly needed.

No specific loss problems are expected at injection energy, and the possibility to use HELs at
450 GeV is considered as a key asset for an e�cient commissioning of these complex devices, e.g.
with smaller-than-nominal emittance beams or with specially tuned optics, designed for smaller
values of the V-functions at the HELs locations. Note initial beam commissioning and HELs setup
can be performed more e�ciently at injection energy, avoiding the long full LHC operational cycle.
Typically, a 2 h turnaround time is expected to be needed to recover the top-energy conditions after
a beam dump at 7 TeV, if one operates at top energy only, while at 450 GeV, subsequent beam
injections can be obtained within minutes.

Recently raised concerns with the flux jumps in the new HL-LHC magnets [27] required
assessing the use of HELs below 5 TeV. This is done by computing the achievable betatron cut with
the largest allowed electron-beam size that can be provided by the HEL. Figure 5 shows the betatron
cut at di�erent beam energies if one assumes this maximum electron-beam size at all energy. The
design allows, for example, cutting the tails at 4.5 f at beam energies of about 1 TeV.
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Figure 3.6: HEL transverse kick experienced by a 7 TeV proton as a function of its

radial coordinate [3].

If we define the beam halo as the fraction of proton beam above r1, and the

beam core as the fraction of proton beam circulating below r1, it is possible to

determine the HEL performance by the combination of removed halo and side

effects on the beam core. The larger the halo removal without inducing beam-core

blow-up, the better the HEL performance. The initial estimate of the residual kick

on the core is about 5 nrad for the vertical plane, and 0.1 nrad for the horizontal one.

Various simulations of the HEL performance have been carried with SixTrack [21],

that allow a detailed 6D tracking of the beam along the magnetic lattice of the

machine [3, 4]. In particular Dynamic Aperture simulations and Frequency Map

Analysis (FMA) have been performed to explore subsets of HEL configurations.

It is possible to switch on and off the electron beam with different patterns, on

a turn-by-turn basis. Possible modulation structures that have been considered in

the simulations are:

• Continuous (DC): the HEL is switched on at every turn, always with the

same electron beam current.

• Random (Rp): the HEL is randomly switched on or off at every turn with a

probability p ∈ [0, 1], always with the same electron beam current.
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• Pulsed (P i
j ): the HEL is switched off for j turns and on for i turns, always

with the same electron beam current.

• Random current (RI): the HEL is switched on at every turn with a current

randomly chosen on a turn-by-turn basis, according to a uniform distribution

of values between 0 to 5 A.
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Figure 16: Examples of HEL pulsing pattern: (a) DC, (b) '0.5, (c) %14
9 , (d) '�

A generalised approach in the definition of a deterministic pulsing pattern allowed to identify the
innovative and promising pattern %14

9 , which could significantly enhance halo removal performance
with respect to the DC excitation, as shown in Fig. 17a.

The halo depletion with the pulse '� is equivalent to the one obtained with '0.5 and �e = 3 A,
indicating that from the halo removal point of view there is no need to search for complex hardware
solutions to make the pulse type '� feasible [40].

5.3 Impact on beam core

The initially estimated residual kick in the centre of the hollow electron beam is about 5 nrad and
below 0.1 nrad in the vertical and horizontal planes, respectively [55], with the current HL-LHC
HEL design. This is prior to a final optimization of the magnetic system design [39]. Hence, only
the vertical residual kick was simulated, being the dominant contribution. Note that the acceptable
continuous emittance blow-up in HL-LHC is below 0.05 `m/h [28].

A negligible emittance growth is found for the pulses DC and %14
9 , as shown in Fig. 17b, within

the error estimated for a simulation time of 1000 s. On the other hand, an emittance blow-up of a
factor about 100 larger than the tolerated one is observed for the pulse '0.5, even if the strength of
the residual kick is reduced to 1 nrad. The growth is visible only in the vertical plane, as expected
because in these simulations the linear coupling is perfectly corrected. E�ects of a realistic linear
coupling correction are discussed in detail in [40].

It is important to find possible mitigation strategies to enable the use of '?, as it provides the
best halo removal performance. Thus, parametric studies were carried out, also with the aim to
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Figure 3.7: Examples of possible HEL pulsing pattern: (a) DC, (b) R0.5, (c) P
14
9 ,

(d) RI [3].

Fig. 3.7 shows some examples of electron-pulse pattern. Studies on the Dynamic

Aperture (DA) showed that, qualitatively, the closer the DA is to r1, the more

efficient is the excitation mode, while, the larger is r1, the smaller is the difference

of DA for the various pulse patterns. This can be explained considering that the

nonlinear beam dynamics, at larger amplitudes, is dominated by field errors, rather

than the HEL.

Overall, the most challenging pulse pattern to produce, from the hardware point
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of view, is the RI pattern. According to the SixTrack 6D simulations, the most

efficient pattern for the halo removal is Rp, due to its spectral content (white noise).

As we can see in Fig. 3.8, an almost complete halo removal is expected after about

100 s, using the pulse R0.5, with an electron beam current of 5 A and r1 = 5 σ.

However, an emittance blow-up, much larger than the tolerated one, is observed
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Figure 17: (a) Estimate of the expected beam halo removal after 100 s for various HEL pulsing
pattern. (b) Emittance evolution for di�erent HEL pulse patterns. Solid and dashed lines represent
the expected trend in the vertical and horizontal planes, respectively.

provide input on required magnetic design quality and the maximum acceptable residual kick on
the beam core.

Margins on electron beam current and on probability to be switched on have been exploited and
combined with the e�ect of the transverse active damper (ADT) that is present in the LHC [56]. An
optimised HEL magnetic design with a residual kick below 3 nrad would make even a continuous
use of '? possible when the beams are not colliding [40], according to our simulations. On
the other hand, when beams are colliding the tune spread is dominated by head-on beam-beam,
which reduces significantly the emittance-growth suppression achievable using the ADT, essentially
making it impossible to use the '? pulse. The use of the DC pulsing is demonstrated in all cases to
have negligible e�ects on the core over long times and is being considered for continuous operation
during collisions in case of unexpected e�ects when using other excitation modes. Note that the
DC powering was also the operational mode adopted successfully in hollow electron beam tests at
the Tevatron [29].

5.4 Next steps on HEL performance studies

Some additional factors must be taken into account to refine the possible operational scenarios that
have been defined for the use of HEL in HL-LHC, such as pulse-to-pulse stability of the electron
beam, linear coupling, and dependence on the betatron tune, which goes beyond the scope of this
paper and can be found in [40].

Of course, the HL-LHC operational cycle, lattice and optics configurations are still evolving
[21]. On the other hand, no significant changes are expected for non-colliding beams in the overall
results presented here, because strong non-linearities are present in the lattice used, which are the
main driving term of HEL performance. The tune footprint is significantly a�ected by head-on
beam-beam and certainly one imminent follow up is to demonstrate the e�ectiveness of the DC and
%8

9 pulsing schemes taking beam-beam e�ects into account.

6 Conclusions

Hollow electron lenses will be installed in the LHC in the long shutdown 2025–2027 as part of
the HL-LHC project. Together with other upgrades of the collimation system, they are designed
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Figure 3.8: Estimated halo removal after 100 s for various HEL pulsing schemes

for such a pattern. Thus, a strategy to mitigate effects on the beam core need to

be studied. For example using the random excitation with a smaller probability p,

or choosing a currents 2-3 times lower than the 5 A design value, might be likely

scenarios, considering that such a pulsing pattern remains effective also at lower

electron beam currents.

Excitation pulses tuned to the frequency content of the beam halo were also

studied, although they would be hard to implement operationally, and such an

excitation window would induce an initial fast diffusion, which vanishes as soon

as the particles drift outside the excitation window. Thus, the HEL frequency

interval should cover all the frequencies of particles ranging from r1 to the primary

collimator.

Also the deterministic pulse P 14
9 has been identified as a promising pattern,

while the DC seems to be the least efficient, although such excitation is expected
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to be more efficient when beam-beam effects are taken into account [4].

Further factors need to be considered to refine possible HEL operational sce-

narios, such as pulse-to-pulse stability of the electron beam, linear coupling, and

dependence on the betatron tune. The tune footprint is affected by the head-on

beam-beam effect, and further studies will follow to demonstrate the performance

of the DC and P i
j pulsing patterns when beam-beam effects are involved.

Obviously, the HL-LHC operational cycle and lattice are still subjected to

modifications, however, no major changes are expected for the non-colliding beams

in the results already carried out.



Chapter 4

An HEL Simple Model

The simple model presented here is a useful tool to study the behaviour of the

beam dynamics when an hollow electron lens, discussed in the previous section, is

used to control the tails population. We modelled the phenomenon as a diffusion

process, described by a diffusion equation, and we made use of this model to explore

various operational scenarios, and possibly, search for the most efficient way to

have a fast beam cleaning. Several tracking simulations were performed and the

results were compared to the solutions of a Fokker-Planck equation, computed by

a Crank-Nicolson integrator. Although the model was derived for the 4D scenario,

most of the simulations were performed for the 2D case, in order to have a simplified

model to make comparisons with the FP solutions. Various kinds of noise were

studied and applied to perturbe the system, in order to probe the model in different

scenarios, and to show the validity of the diffusion approximation.

41
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4.1 HEL transfer map

The 4D one-turn transfer map of a circular accelerator including localised

sources of nonlinearities can be written as:
X

X ′

Y

Y ′


n+1

= M


X

X ′ + fx(X, Y )

Y

Y ′ + fy(X, Y )


n

, (4.1)

where (X,X ′, Y, Y ′) is a vector in the 4D phase space representing the particle’s

coordinates at the entrance of the element generating the non-linear force. M is a

4× 4 matrix in block-diagonal form, namely

M =

(
Mx 0

0 My

)
(4.2)

Mx,y being 2× 2 matrices and the functions fx, fy are related to the nonlinearities

in the machine.

It is customary to change coordinates from physical to Courant-Snyder ones.

As said in [10], this is obtained by means of the linear, symplectic transformation:
z

z′

 = T−1
z


Z

Z ′

 , Tz =


√

βz 0

− αz√
βz

1√
βz

 , (4.3)

where z stands for x or y and the quantities αz, βz are the Twiss parameters at the

location of the nonlinear element. The general 4D normalisation matrix T is in

block diagonal form,

T =

(
Tx 0

0 Ty

)
. (4.4)

By taking into account that

R(ωx, ωy) = T−1MT, R(ωx, ωy) =

(
R(ωx) 0

0 R(ωy)

)
, (4.5)
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with R(ωz) a 2× 2 rotation matrix

R(ωz) =

(
cosωz sinωz

− sinωz cosωz

)
, ωz = 2πνz , (4.6)

the mapping (4.1) reads in the new coordinates:


x

x′

y

y′


n+1

= R(ωx, ωy)


x

x′ +
√

βxfx

(√
βxx,

√
βyy
)

y

y′ +
√

βyfy

(√
βxx,

√
βyy
)


n

. (4.7)

The optical conditions at the planned location of the HEL are such that

βx = βy = 280 m, hence, Eq. (4.7) can be simplified as


x

x′

y

y′


n+1

= R(ωx, ωy)


x

x′ +
√

βfx

(√
βx,

√
βy
)

y

y′ +
√

βfy

(√
βx,

√
βy
)


n

, (4.8)

and it is easy to show that the physical radial coordinate is R =
√
β r, where

r =
√

x2 + y2 is the normalised radius.

It is worth noting that after the transformation of the physical co-ordinates

to normalised ones, the units are
√
m. It is useful to transform the physical

coordinates to dimensionless normalised coordinates. This can be obtained by

using the following form for the normalising transformation Tz, where ε is the

physical beam emittance

Tz =


√

βz ε 0

−αz

√
ε

βz

√
ε

βz

 , (4.9)

which corresponds to using coordinates expressed in units of beam size. Finally,
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Eq. (4.8) can be rewritten as


x

x′

y

y′


n+1

= R(ωx, ωy)



x

x′ +

√
β

ε
fx

(√
βε x,

√
βε y

)
y

y′ +

√
β

ε
fy

(√
βε x,

√
βε y

)


n

. (4.10)

The model to describe the beam dynamics under the effect of the nonlinearities

of the ring and of the HEL is based on the following 4D map (see appendix A for

the derivation of the expression of the kick):
x

px

y

py


n+1

=

(
R(Ωx(Ix,n, Iy,n)) 0

0 R(Ωy(Ix,n, Iy,n))

)
x

px + ξn+1 θ̂(r)
x

r
y

py + ξn+1 θ̂(r)
y

r


n

(4.11)

where ξn is a randomly distributed variable with finite variance σ2, representing a

noise that justifies the diffusive approach, and

θ̂(r) =

√
β

ε
θ̂max

f(r)

(r/r2)
, (4.12)

with the maximum kick θ̂max given by [22]

θ̂max =
1

4πϵ0

2L Ie (1± βeβp)

(Bρ)p βeβpc2
1

R2

, (4.13)

which is the same as Eq. (3.1), while the function f(r), in this model, is expressed

as

f(r) =


0 , r < r1
r2 − r21
r22 − r21

, r1 ≤ r < r2

1 , r ≥ r2

(4.14)

where r1 < r2 represent the inner and outer radius of the electron beam, respectively,

expressed in units of beam size, and usually r2 = 2r1. All kick parameters are

shown in Tab. 4.1.
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Table 4.1: Kick parameters for the HEL transfer map.

Parameter Value

Proton kinetic energy, Ebeam [TeV] 7

Proton emittance (rms, normalized), ε∗ref [µm] 2.5

β-function at electron lens, βx,y [m] 28

Inner HEL radius, r1 [σbeam] >3.6

Electron beam current, Ie [A] 5

Length of HEL, L [m] 3

Electrons relativistic factor, βe 0.237

In the rotation matrices, the linear actions have been introduced, which are

defined as

Iz =
z2 + p2z

2
(4.15)

and the functions Ωz(Ix, Iy) represent the amplitude detuning, namely

Ωx(Ix, Iy) = ωx,0 +
∂Ωx

∂Ix
Ix +

∂Ωx

∂Iy
Iy +

1

2

(
∂2Ωx

∂I2x
I2x +

∂2Ωx

∂Ix∂Iy
2IxIy +

∂2Ωx

∂I2y
I2y

)
+ · · ·

Ωy(Ix, Iy) = ωy,0 +
∂Ωy

∂Ix
Ix +

∂Ωy

∂Iy
Iy +

1

2

(
∂2Ωy

∂I2x
I2x +

∂2Ωy

∂Ix∂Iy
2IxIy +

∂2Ωy

∂I2y
I2y

)
+ · · · .

(4.16)

The coefficients can be computed by means of a tracking code, but in this case,

the coefficients representing the derivatives of the tunes with respect to the beam

emittances are provided. Typical values corresponding to HL–LHC operational
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conditions are [23]

ωx,0

2π
= 0.31

ωy,0

2π
= 0.32

1

2π

∂Ωx

∂εx
≈ −1.73× 105

1

2π

∂Ωx

∂εy
≈ 0.92× 105

1

2π

∂Ωy

∂εy
≈ −0.77× 105

(4.17)

1

2π

∂2Ωx

∂ε2x
≈ −1.87× 1012

1

2π

∂2Ωx

∂εx∂εy
≈ 0.66× 1012

1

2π

∂2Ωx

∂ε2y
≈ −1.49× 1012

1

2π

∂2Ωy

∂ε2y
≈ −3.36× 1012 ,

where the following identities were used to determine the missing coefficients

∂Ωy

∂εx
=

∂Ωx

∂εy

∂2Ωy

∂ε2x
=

∂2Ωx

∂εx∂εy

∂2Ωy

∂εx∂εy
=

∂2Ωx

∂ε2y
. (4.18)

The numerical coefficients given in Eqs. (4.18) need to be converted into action

values to be used in Eq. (4.16). The standard relationship is given by

εz = 2Iz , (4.19)

however, in our case the action used is defined in special dimensionless coordinates,

which means that Eq. (4.19) should be replaced by

εz = 2
ε∗ref
βpγp

Iz , (4.20)

and the derivatives needed in Eq. (4.16) should be evaluated by means of the chain

rule
∂n

∂εnz
=

(
∂Iz
∂εz

)n
∂n

∂Inz
and

∂Iz
∂εz

=
βpγp
2ε∗ref

(4.21)

to use the coefficients given in Eqs. (4.18).

4.2 Diffusion model for HEL

We consider the stochastically perturbed symplectic map of Eq. (4.11), and we

define the action angle variable as
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z =
√

2Iz sinϕz pz =
√

2Iz cosϕz . (4.22)

By applying the approach discussed in chapter 2, one obtains the following

equations

Ix,n+1 = Ix,n + ξn+1
θ̂(rn)

rn
2Ix,n cos (ϕx,n + Ωx(Ix,n, Iy,n))×

× sin (ϕx,n + Ωx(Ix,n, Iy,n)) +
1

2
ξ2n+1

θ̂2(rn)

r2n
×

× 2Ix,n sin
2 (ϕx,n + Ωx(Ix,n, Iy,n))

Iy,n+1 = Iy,n + ξn+1
θ̂(rn)

rn
2Iy,n cos (ϕy,n + Ωy(Ix,n, Iy,n))×

× sin (ϕy,n + Ωy(Ix,n, Iy,n)) +
1

2
ξ2n+1

θ̂2(rn)

r2n
×

× 2Iy,n sin
2 (ϕy,n + Ωy(Ix,n, Iy,n))

(4.23)

where rn =
√

2Ix,n sin
2 (ϕx,n + Ωx(Ix,n, Iy,n)) + 2Iy,n sin

2 (ϕy,n + Ωy(Ix,n, Iy,n)).

We now simplify the system by considering only the motion in one plane. Then,

limiting the analysis to the motion in the horizontal plane, i.e. imposing Iy = 0,

reduces Eq (4.23) to

In+1 = In + ξn+1θ̂(
√

2In sin (ϕn + Ω(In)))
√
2In cos (ϕn + Ω(In))+

+
1

2
ξ2n+1θ̂

2(
√

2In sin (ϕn + Ω(In))) .
(4.24)

Then, we consider that

θ̂(
√
2I sinϕ)

√
2I cosϕ =

∂F

∂ϕ
(
√
2I sinϕ), (4.25)

and we interpret ξ(t)F (x) as the interpolating perturbation Hamiltonian.

Then, the dynamics generated by the map (4.11) can be represented by a

Fokker-Plank equation in which the diffusion coefficient is given by

D(I) = σ2

(
θ̂maxR2

ε

)2 〈√2I cosϕ
f
(√

2I sinϕ
)

√
2I sinϕ

2〉
ϕ

. (4.26)
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Figure 4.1: Example of diffusion coefficient as a function of I, computed for

r1 = 5 σbeam and σ2 = 0.25. Here the action is in units of σ2
beam/2.

Since the only angular terms are sin2 ϕ and cos2 ϕ, we can consider only the positive

quadrant of the phase space, therefore we obtain

D(I) = σ2

(
θ̂max R2

ε

)2
2

π

∫ π/2

0

(
f(
√
2I sinϕ)

tanϕ

)2

dϕ . (4.27)

An example of the behaviour of the diffusion coefficient is shown in Fig. 4.1

4.3 Beyond the white noise

One of the aims of this work was to study the diffusion process of the electron

lens in order to find specific conditions that could enhance the diffusion, and allow

for a faster and more efficient halo depletion. Obviously acting on the noise by

varying its variance, has a large impact on the diffusion. Indeed, we expect to

observe the largest diffusion when the noise with the largest variance is chosen.

However, it is possible to further enhance the diffusion by considering a noise that

is not white but rather correlated, i.e. with specific Fourier components in its
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spectrum. Indeed, it is possible to induce resonances between the spectral density

of the noise and the proper frequencies of the system, considering the resonance

condition

ω = kΩ(I)− 2πl , k, l ∈ Z (4.28)

where Ω and ω are respectively the frequency of the system and the main spectral

components of the correlated noise, multiplied by 2π. Note that, for a given k, this

holds true for every l, because, for the discrete HEL transfer map, the sampling

frequency of the noise is fs = 1, and every frequency exceeding fs/2 is subjected

to the aliasing effect. For different values of k it is possible to find specific values

ω∗ that excite a resonance in the system. This has a large impact on the diffusion

coefficient. As shown in [25, 26], if one expresses the perturbation Hamiltonian as

a Fourier expansion

H1(I, θ) =
∑
k

hk(I)e
ikθ , (4.29)

it is then possible to write the diffusion coefficient as (see [25] for the derivation)

D(I) =
∑
k

k2|hk(I)|2ϕ̃(kΩ(I)) (4.30)

where ϕ̃(ω) is the spectral density of the noise. As discussed in [26], the amplitudes

ϕ̃(ω) contributes to D(I) when the frequencies ω∗ = kΩ(I) are present in the

Fourier expansion of the perturbation (4.29). In the case of white noise, ϕ̃(ω) is

constant, and the diffusion coefficient reduces to

D(I) =
∑
k

k2|hk(I)|2 . (4.31)

Then, if a noise, with the same power, is peaked on ω∗, more power will be given

to the frequencies that contribute to D(I) and, as a result, the diffusion coefficient

will be larger.





Chapter 5

Simulation Details

In this chapter, we express various details of the simulations of the HEL system.

In particular the distribution of the initial conditions of halo particles is explicated.

We express the various choices of white noise, and we dwell on the generation of

the colored noises. In the end, we show few preliminary studies of the system.

5.1 Initial conditions

The hollow electron lens is planned to be implemented in the HL-LHC colli-

mation system to mitigate the fast beam loss due to overpopulated tails. Indeed,

the tails show a particles population higher than expected from an usual Gaussian

distribution. For this reason, here we consider a particle distribution given by two

overlapping Gaussians:

ρ(x) =
A1√
2πσ2

1

exp

{
−1

2

(
x− µ1

σ1

)2
}

+
A2√
2πσ2

2

exp

{
−1

2

(
x− µ2

σ2

)2
}
, (5.1)

with equal mean µ1 = µ2 = 0, standard deviations σ1 = 1 σbeam, σ2 = 2 σbeam and

with contributions A1 = 0.65 and A2 = 0.35.

The same distribution is considered for the momentum coordinate px. This

translates into an uniform distribution in the angle variable, and an initial action

distribution of the form

ρ(I) =
1

Γ

(
A1

σ2
1

exp

{
− I

σ2
1

}
+

A2

σ2
2

exp

{
− I

σ2
2

})
, (5.2)
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Figure 5.1: Example of initial conditions for r1 = 5 σbeam and ra = 6.7 σbeam. (top

left) Phase space of initial conditions of the halo particles; (top right) corresponding

angle variable distribution. (bottom) Initial action distribution: in blue, the actual

histogram distribution, while the yellow line represents the analytic function of

the distribution (Eq. (5.2)), with a logistic damping towards the the boundary

condition. Here the action is in units of σ2
beam/2.

where Γ is a normalization factor. Thus, the initial conditions start with the angle

variable already relaxed, so that we can describe the evolution of the system only
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by means of the action variable using a FP equation.

We define the beam core as all the particles whose action is I < r21/2, and halo

all the particle whose action is r21/2 ≤ I < r2a/2, where r1 is the HEL inner radius,

and ra is the absorbing barrier radius of the primary collimator, that defines the

boundary condition for the action distribution Ia = r2a/2. Then all particles located

beyond the absorbing barrier are removed from the initial conditions.

Furthermore, given the large number of calculations needed to perform a

complete simulation of large amounts of particles, and the fact that we consider

a zero HEL field on the beam core, we also perform a further cut on the initial

conditions by considering only the halo particles in the simulations.

An example of typical initial conditions for a 2D (only the horizontal plane is

considered) simulation, starting from a total number of beam particles of 106, is

given in Figs. 5.1

5.2 Choice of white noises

To simulate a diffusive process, various types of white noise were generated. To

be physical, and compatible with the HEL case, the noise always need to have a

value between 0 and 1. Thus, for example, we could not use a normal distribution,

and only limited distributions have been considered. The white noise distributions

studied are the following:

• Rp[a, b]: the noise has a Bernoulli distribution in the domain [a, b], where

a < b ∈ [0, 1], p is the probability to assume the value b and (1 − p) is the

probability assume the value a.

• RI : the noise has a uniform distribution in [0,1]

• Mλ: the noise has a distribution created by means of a Markov chain and

represents a middle ground between the previous two noise distributions.

More in detail, a Metropolis-Hastings algorithm was used to generate a

distribution of the form

ρ(ξ) =
e−λξ + eλ(ξ−1)

2
λ
(1− e−λ)

ξ ∈ [0, 1] (5.3)
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Figure 5.2: Example of noise generated following the distribution of Eq. (5.3),

where λ = 8.

where λ is a parameter of choice. Then, a shuffle of the noise was performed

to remove the correlation, and make it white. An example of such distribution

is shown on Fig. 5.2. With this particular noise, it is possible to change the

variance by varying the parameter λ.

5.3 Generation of correlated noise

Besides the white noises, we also looked for a way to generate a noise that

allowed for the maximum diffusion. The noise had to satisfy many conditions,

namely:

• it had to be physical, which means that it could contain only values in the

[0, 1] interval;
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• it had to have the maximum allowed variance in such interval, which is equal

to 0.25, achievable using the noise R0.5[0, 1] (Bernoulli distribution);

• it had to be colored, which means that its frequency spectrum had to show a

peak covering specific interval of frequencies, in order to induce resonances

that could enhance the diffusion.

Thus, a noise with a distribution R0.5[0, 1] with the right Fourier components

seemed ideal. However, all these specific conditions did not allow us to use the

standard tools to generate a correlated noise, like noise filters or band limited

noises. Hence, I came up with a simple algorithm to generate an ad hoc noise that

satisfy all the previous conditions. The trade off of this noise is its limited viability

interval of frequencies, and its low consistency along such interval, that caused

differences in the profiles of the frequency spectrum for different noises.

We remark that, every time we talk about frequencies, we are not referring to

s−1, but rather to n−1
t , where nt are the machine turns. Thus, here the frequency

is a dimensionless quantity.

We will now give few details of the generation of the ad hoc noise. Given a

desired frequency ω, the algorithm searches for the two square waves with the

nearest frequencies. Then, it combines such square waves, appending one after

the other. The choice of the subsequent wave to append is made with a specific

probability, calculated with a weighted mean of the two frequencies, in order to

obtain a final signal with a specific frequency lying between the two. This allows us

to generate a signal that is still a noise, giving the random choice of the waves, but

that is peaked on the desired frequency. To maintain the right variance, every time

a wave with an odd period is chosen, the algorithm also makes another random

choice on the number of 1s and 0s of the wave. For example, for the noise shown in

Fig 5.3, we aimed for ω/2π = 0.24, thus we mixed the square wave with period 4,

[1,1,0,0], and one with period 5, which was randomly selected every time between

[1,1,0,0,0] and [1,1,1,0,0]. In this way we can generate a correlated noise with the

maximum possible variance.

The viable range of frequency of this noise is between 0.11 and 0.34. Outside

these values, the noise becomes too much or not enough correlated. While here,
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Figure 5.3: FFT (top) and autocorrelation (bottom) of the ad hoc noise with a

frequency peak at 0.24, generated using square waves with period 4 and 5.

we were just searching for the noise that could enhance the most the diffusion,

an optimised and complete study on the HEL diffusion with, more consistent,

correlated noises, has to be performed in the future.
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5.4 Preliminary studies

We tested various simulations without noise to probe the tune of the map. We

also searched for resonances induced by the presence of noise with a mean larger

than 0. We performed few tracking simulations of the map, applying only a mean

value of the noise, to see the effect on the tunes and phase space. An example of a

study of the 2D map tune is shown in Fig. 5.4, where we can see that the system is

basically linear. Indeed, in the simplified model we built, the nonlinearities of the

machine are considered integrable. Then, the only effect of the nonlinearities is a

tuneshift expressed in Eq. (4.16), without causing any instability in the motion.

Such simplification translates into a system which results to be extremely linear.

Indeed no relevant inherent resonance was found, neither in the 2D system nor

the 4D one. Such system linearity is also responsible for large fluctuations in the

particle loss current, which disappear when a different set of machine tune values

is chosen, or a personal noise, different for every particle, is selected.

The possibility to enhance the diffusion by inducing resonances in the system

using a time-correlated noise was also considered. We performed few 2D tracking

simulations of the map where, instead of noise, we applied a sinusoidal signal with

the frequency necessary to satisfy the resonant condition of Eq. (4.28), and mean

0.5. An example of that can be seen in Fig. 5.5 , in which

ω = 4Ω(Ih)− 2π , (5.4)

where Ih refers to the action in the halo region. Fig. 5.5 clearly shows a phase locking

in the halo region, which is a sign of the presence of the resonance induced by the

sinusoidal signal. We performed this study for k up to 6, and we found resonances of

order 2, 4 and 6. This is explained by the presence of only those specific components

in the Fourier expansion of the perturbation Hamiltonian (4.29).
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Figure 5.4: Preliminary study of a 2D HEL map, where only the mean of the noise

is considered. In this simulation of 4096 iterations, the noise mean applied is 0.5

and r1 = 5 σbeam. On top, tune Qx as a function of the x coordinate. In yellow the

coordinate of r1, in green the unperturbed tune, in blue the actual tune perturbed

by the noise mean. On the bottom, phase-space tracking of the map.
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Figure 5.5: Preliminary study of a 2D HEL map, where a pure frequency ω/2π =

0.23 was applied in order to induce resonance of order 4. In yellow the coordinate

of r1 = 5 σbeam, in green the unperturbed tune, in blue the actual tune with the

modulation applied.





Chapter 6

Numerical Results

6.1 Map and Fokker-Planck comparison

In the following, we present the results for the 2D map simulations, and we

compare them with the solutions of the Fokker-Planck equation. We performed the

simulation of the map 4.11, where y and py were fixed at 0, so we only considered the

dynamic in (x, px). The initial conditions of the beam are expressed in Section 5.1,

where also the initial action distribution ρ(I) is given. The simulation’s parameters

are given in Tab. 6.1 and the considered noise was R0.5[0, 1]. We performed 106

iteration and observed the system evolution. The Fokker-Planck equation was

Table 6.1: Details of the parameters of the simulations. These have been used for

every simulation performed, either in 2D or 4D case

Parameter Value

Inner HEL radius, r1 [σbeam] 5

Outer HEL radius, r2 [σbeam] 10

Absorbing barrier, ra [σbeam] 6.7

n° of initial beam particles 106

integrated by means of a Crank-Nicolson integrator also used in [5], with a time

step ∆τ = 10−4, for up to 106 steps, and for a grid of 104 points in the action
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interval [r21/2, r
2
a/2]. Fig. 6.1 shows the comparison of action distribution between

the map and the FP, at various steps of the simulation. We can see that the

diffusive approach holds for the HEL case, and the FP equation is able to well

approximate the time evolution of the action distribution.

(a) t = 103 (b) t = 104

(c) t = 105 (d) t = 106

Figure 6.1: The figures show the comparison of the action distribution, between

the map simulation, in blue, and the FP equation, in yellow, for different steps t of

the simulation. Here the action is in units of σ2
beam/2.
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6.2 White noises comparisons

For this part of the study, we took into consideration various types of noise’s

distribution. We performed the simulation of the 2D map, as the previously

discussed one, this time for 11 · 105 iterations, that could be interpreted as around

100 s of actual HL-LHC operation, knowing its frequency rotation is around

11 · 103 Hz. Here we were interested into the effects of different kinds of noises on

the halo depletion efficiency. In Fig. 6.2, the simulations for the noise R0.5[0, 1]

is displayed, while the simulation results for all the other noises are shown in

the Appendix B. The results comparisons of the halo depletion, between the map

simulations and the FP equation, are shown in Tab. 6.2. It is possible to see that,

also here, there is agreement between the map and the FP results.

Table 6.2: Comparison between Crank-Nicolson and map simulation results, for

various types of noise.

Removed halo after 100 s [%]

Noise Fokker-Planck Map

RI 53.6 54.2

M12 67.2 67.6

R0.5[0, 1] 72.4 72.5

R0.25[0, 1] 68.0 68.4

R0.5[0, 0.5] 48.3 48.5

R0.5[0.75, 1] 25.1 26.2

As expected, we observe differences in the halo cleaning performance among

the various noise distributions. This is due to the different variances of the noises.

Indeed, Eq. (4.27) gives the expression for the diffusion coefficient, and we have

D(I) ∝ σ2 , (6.1)

where σ2 is the variance of the noise. Thus, for higher variance noises, we observe

a higher diffusion speed. To underline the link between diffusion speed and noise

variance, we performed various map simulations with noises Rp[a, b] of increasing
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Figure 6.2: Top, noise distribution of R0.5[0, 1]. Bottom, Removed halo as a function

of machine turns, for the noise R0.5[0, 1], given by the map simulation (blue) and

the FP (yellow). During the time evolution of the system, we observed a maximum

absolute discrepancy between map simulation and FP of 1.3% of removed halo.
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variance, by increasing the difference b− a for every simulation. Moreover, to show

that the discriminant between the diffusion speeds is not the noise distribution

but rather its variance, we also plotted in the graph of Fig. 6.3 the results of the

previous simulations, performed using the noises M12 and RI .
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Figure 6.3: The image shows the results of the 2D map simulations for noises with

different variances. As expected the variance of the noise plays the main role in

the halo depletion speed, and even noises with different distributions follow the

same trend.

6.3 Diffusion with correlated noises

In the last part of the thesis work, we searched for conditions that could allow

to increase, as much as possible, the halo depletion, in order to have a faster and

more efficient beam cleaning. All the parameters that characterised the previous

simulations was kept fixed, and we acted only on the noise pattern. As shown in

the previous section, we observed the diffusion effect of the white noise ceiling for
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the noise having the largest variance, which in the interval [0,1] is 0.25. However,

as discussed in Section 4.3, we expected to increase the diffusion by choosing a

correlated noise, with the same variance, whose spectrum peaks at the frequency

that satisfies the resonant condition (4.28). Thus we generated various correlated

noises, using the algorithm discussed in Section 5.3, with frequency peaked within

the frequency interval [0.11, 0.34]. For every noise we performed the 2D map

simulation for around 100 s of actual HL-LHC operation. The results are shown

in Fig. 6.4, where it is possible to observe the presence of two peaks of enhanced

diffusion, with respect to the white noise ceiling of 72.5%, around frequencies 0.15

and 0.23. Indeed, these are the frequencies that, respectively, satisfy the resonant

Figure 6.4: Results of 2D map simulations for different frequency peaked noises.

The white noise ceiling of 72.5%, in green, is the removed halo after 100 s for the

noise R0.5[0, 1]. The two peaks that exceed the white noise ceiling are obtained

using frequencies that induce resonances of order 4 and 6 in the system.

equations

6Ω(Ih) + ω = 4π , 4Ω(Ih)− ω = 2π , (6.2)
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that give the resonances of order 6 and 4. Here, Ih refers to the action in the halo

region. Thus, for resonance-inducing noises, we observed a relative increase of up to

17% of the halo removal after 100 s, with respect to the white noise ceiling. While

the odd resonances were absent in the system, the resonance of order 2 was, indeed,

present; however, the frequency to induce that would be around 0.38, which was

outside the interval of the noise generation.

To prove that this phenomenon is not a peculiarity of the 2D simplified model,

this time we also iterated the same kind of simulations for the 4D map, considering

always the same simulation’s parameter values used up to this moment. We

performed these simulations for 387822 iterations which correspond to around 35 s

of real time operation. The results are displayed in Fig. 6.5.
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Figure 6.5: Results of 4D map simulations for different frequency peaked noises.

The white noise ceiling of 47.5%, in cyan, is the removed halo for the noise R0.5[0, 1]

after 35 s. As one can see, the peaks of diffusion are present also in the 4D case.

Also in the 4D case, we observed an enhance of the diffusion for certain values

of the frequency peak of the noise, and a relative increase of up to 26% of the halo
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removal after 35 s, with respect to the white noise ceiling. This time, the locations

of the peaks are different due to the addition of the dynamic in (y, py), which

possesses a different tune. Making further tests, varying the machine nominal tunes,

we observed that the big peak in Fig. 6.5 is possibly the result of the superposition

of multiple peaks. Indeed the added layer of complexity of the 4D case made harder

to recognise the identity of the resonances; however, here we were only interested

into showing that the possibility to enhance the diffusion with correlated noises

was not a peculiarity of the 2D case.



Chapter 7

Conclusions

In this master thesis, we showed the possibility to describe the behaviour of the

beam-halo depletion, under the effect of a simplified HEL system, using a diffusive

framework. We showed that the evolution of the action distribution of the beam

ρ(I) is well approximated by a Fokker-Planck equation. We focused on the study

of various types of white noise distribution and we observed their effects on the

diffusion speed of the halo.

All the results were well predicted by the the diffusion model, in particular

the role of the variance of noise distribution in the phenomenon. Moreover we

explored the possibility to exceed the maximum diffusion speed, guaranteed by the

white noise, by inducing resonances in the system with correlated noises. Indeed,

we found a way to generate a peculiar colored noise that allowed us to obtain a

non-negligible increment of up to 17% of removed halo after 100 s, with respect to

the white noise case.

7.1 Future developments

Further developments will aim to bring this approach to more complex and real-

istic models of the HEL system, namely the 6D scenarios, in which all the dynamics

and elements of HL-LHC are considered. A more consistent and quantitative study

on the effects of correlated noises in the HEL diffusion has to be performed in the
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future. In particular, the explicit computation of the diffusion coefficient D(I),

for this scenario, is necessary to make numerical comparisons between the model

and the simulations. Furthermore, the opportunity to perform deeper and more

realistic beam simulations for the HEL, with the ad hoc noise we have created to

enhance the halo depletion, should be pursued, in light of the possibility to apply

it to the real case of the HL-LHC.



Appendix A

HEL kick derivation

Let us consider an infinitely long beam of relativistic electrons travelling with

speed v⃗e antiparallel to axis ŝ. Having a cylindrical symmetry with respect to

ŝ axis, all the longitudinal components of the electromagnetic field compensate

each other and only the radial ones survive. Thus, the equations for electric and

magnetic fields in the laboratory frame are [24]Elab = γeEr

Blab = γe
ve
c2
Er

, (A.1)

where Er is the radial component of the electric field. If we now consider a proton

traveling with speed v⃗ in the direction ŝ (thus opposite to the electrons), it will

experience a Lorentz force directed radially given by

Fr = q[E⃗lab + vB⃗lab] = qγe[1 + βeβp]Er, (A.2)

where q is the charge of the proton, βp and βe are the relativistic factors of the

proton and electron beams, respectively. If the proton travels in the same direction

as the electron, a − sign appears instead of the +, thus we write

Fr = qγe[1∓ βeβp]Er. (A.3)

It is possible to express the variation of transverse momenta of the proton

imparted by the electron beam as

∆pz =

∫ t2
t1

Fz(t)dt

p
(A.4)
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where z stands for x or y, Fz is the Lorentz force, and p is the proton momentum.

Assuming that the proton travels parallel to the electron and that Fz is constant

along the lens, we have the following.

∆pz =
Fz(s)

vp

∫ s2

s1

ds =
FzL

vp
(A.5)

where we moved to longitudinal coordinates by the relation t = s/v. Expressing

the electric field along z as

Ez = Er
z

r
(A.6)

we rewrite the kick as

∆pz =
q

p
γe[1∓ βpβe]

L

βpc
Er(r)

z

r
. (A.7)

The flux of the electric field generated by the electron beam is

ϕ(E⃗) = 2πrLEr(r), (A.8)

while the charge inside the cylindrical surface of radius r is

Q = I∆tf(r) = I
L

βec
f(r), (A.9)

where I is the total current of the electrons, ∆t is the flight time through the lens,

and f(r) is the geometrical function depending on the electron distribution. Taking

into account a hollow electron beam, f(r) is given by

f(r) =


0 r ≤ R1

f̃(r) = 2π
∫ r

R1
ρ(r′)r′dr′ R1 < r < R2

1 r ≥ R2

, (A.10)

where R1 and R2 are the inner and outer radius of the lens respectively, and ρ(r′)

is the radial charge distribution of the electrons. Applying the Gauss theorem and

solving for Er we find

Er =


0 r ≤ R1

I
2πϵ0βec

f̃(r)
r

R1 < r < R2

I
2πϵ0βec

1
r

r ≥ R2

, (A.11)
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which replaced in Eq. (A.7) gives

∆pz =
qLI

2πϵ0c2p
γe
1∓ βpβe

βpβe

f(r)

r

z

r
= θ̂max

f(r)

r/R2

z

r
, (A.12)

where

θ̂max =
LIγe(1∓ βpβe)

2πϵ0c2(Bρ)pβpβeR2

, (A.13)

where we used the definition of magnetic rigidity Bρ = p/q.

The function f(r) is normalised if

2π

∫ R2

R1

ρ(r′)r′dr′ = 1, (A.14)

and for a constant radial profile we have that

ρ(r) = A, (A.15)

where A is the normalisation constant. Then solving Eq. (A.14) for A we get

A =
1

2π
∫ R2

R1
r′dr′

=
1

π[R2
2 −R2

1]
= ρ(r). (A.16)

The cumulative distribution f̃(r) can be rewritten as

f̃(r) =
2π
∫ r

R1
r′dr′

π[R2
2 −R2

1]
=

r2 −R2
2

R2
2 −R2

1

, (A.17)

and the final form of f(r) is

f(r) =


0 r ≤ R1

r2−R2
2

R2
2−R2

1
R1 < r < R2

1 r ≥ R2

. (A.18)
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Appendix B

Supplementary simulations results

In the following, we present the graphs referring to the results discussed in

Section 6.2.
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Figure B.1: Top, noise distribution of RI . Bottom, Removed halo as a function of

machine turns, for the noise RI , given by the map simulation (blue) and the FP

(yellow).
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Figure B.2: Top, noise distribution of M12. Bottom, Removed halo as a function of

machine turns, for the noise M12, given by the map simulation (blue) and the FP

(yellow).
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Figure B.3: Top, noise distribution of R0.25[0, 1]. Bottom, Removed halo as a

function of machine turns, for the noise R0.25[0, 1], given by the map simulation

(blue) and the FP (yellow).
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Figure B.4: Top, noise distribution of R0.5[0, 0.5]. Bottom, Removed halo as a

function of machine turns, for the noise R0.5[0, 0.5], given by the map simulation

(blue) and the FP (yellow).
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Figure B.5: Top, noise distribution of R0.5[0.75, 1]. Bottom, Removed halo as a

function of machine turns, for the noise R0.5[0.75, 1], given by the map simulation

(blue) and the FP (yellow).
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