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ABSTRACT 

Given the decline of shallow-water red coral populations resulting from over-exploitation 

and mass mortality events, deeper populations below 50 metres depth (mesophotic 

populations) are currently the most harvested; unfortunately, very little is known about their 

biology and ecology. The persistence of these populations is tightly linked to their adult 

density, reproductive success, larval dispersal and recruitment. Moreover, for their 

conservation, it is paramount understand processes such as connectivity within and among 

populations. Here, for the first time, genetic variability and structuring of Corallium rubrum 

populations collected in the Tyrrhenian Sea ranging from 58 to 118 metres were analyzed 

using ten microsatellite loci and two mitochondrial markers (mtMSH and MtC). The aims of 

the work were 1) to examine patterns of genetic diversity within each geographic area (Elba, 

Ischia and Praiano) and 2) to define population structuring at different spatial scales (from 

tens of metres to hundreds of kilometres). Based on microsatellite data set, significant 

deviations from Hardy-Weinberg equilibrium due to elevated heterozygote deficiencies 

were detected in all samples, probably related to the presence of null alleles and/or 

inbreeding, as was previously observed in shallow-water populations. Moreover, significant 

levels of genetic differentiation were observed at all spatial scale, suggesting a recent 

isolation of populations. Biological factors which act at small spatial scale and/or abiotic 

factors at larger scale (e.g. summer gyres or absence of suitable substrata for settlement) 

could determine this genetic isolation. Using mitochondrial markers, significant differences 

were found only at wider scale (between Tuscany and Campania regions). These results 

could be related to the different mutation rate of the molecular makers or to the occurrence 

of some historical links within regions. A significant isolation by distance pattern was then 

observed using both data sets, confirming the restricted larval dispersal capability of the 

species. Therefore, the hypothesis that deeper populations may act as a source of larvae 

helping recovery of threatened shallow-water populations is not proved. Conservation 

strategies have to take into account these results, and management plans of deep and 

currently harvested populations have to be defined at a regional or sub regional level, 

similarly to shallow-water populations. Nevertheless, further investigations should be 

needed to understand better the genetic structuring of this species in the mesophotic zone, 

e.g. extending studies to other Mediterranean deep-water populations. 
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INTRODUCTION 

Mesophotic coral ecosystems (MCEs) have been recently defined as reefs characterized by 

the presence of light-dependent corals and associated communities that are typically found 

at depths ranging from about 30 m to over 150 m in tropical and subtropical regions (Lesser 

et al. 2009; Hinderstein et al. 2010). The dominant communities, providing structural 

habitat in the mesophotic zone, can be comprised of coral, sponge, and algal species 

(Hinderstein et al. 2010); moreover, both shallow-water and depth-restricted species can be 

found (Brokovich et al. 2007). In recent years, they have been receiving raising attention 

from both scientists and managers due to an increasing awareness of their distinctive 

ecological character and biodiversity (Hinderstein et al. 2010; Khang et al. 2010; Rooney et 

al. 2010). Species inhabiting mesophotic zone are, in fact, susceptible to threats that display 

nearly identical signs to those found in shallow reefs (Smith et al. 2010; Bongaerts et al. 

2010). Deeper fishing and harvesting practices, pollution, habitat loss and fragmentation and 

climate change (Bongaerts et al. 2010) can act directly or indirectly on their distribution, 

population dynamics, growth and genetic structure. Moreover, MCEs are currently under 

study to evaluate their potential to act as refugia and/or larval supply for shallow-water 

assemblages (Bongaerts et al. 2010; Miller et al. 2011; Van Oppen et al. 2011; Slattery et al. 

2011). To act as refugia, MCEs have to be less affected by natural and human disturbances 

compared to shallow water reefs (Bak et al. 2005; Randall 2007; Bongaerts et al. 2010). 

Being more resistant, MCEs could provide a source of propaguls (larvae and recruits) to the 

shallow water habitats after disturbances, favouring they recovery and resilience against 

human impacts (Slattery et al. 2011). Connectivity between shallow and deep-water 

populations is a prerequisite for MCE to be considered refugia for shallow-water species. To 

date, genetic studies provide conflicting results on estimates of larval flow between shallow 

and deep-water coral reefs. Connectivity is depending primarily on the analyzed coral 

species and on the geographic areas considered (Van Oppen et al. 2011). In some cases 

shallow and deep populations result isolated (Costantini et al. 2010; Costantini et al. 2011; 

Miller et al. 2011). Conversely, in other cases, it was demonstrated the occurrence of gene 

(larval) flow between mesophotic ecosystem and shallow-water assemblages (Armstrong et 

al. 2006). 

To understand the capability of deep populations to act as refugia, it is also necessary to 

investigate what are the horizontal scales of dispersal and the level of connectivity among 
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populations within the mesophotic zones. Occurrence of small and isolated populations, that 

are more susceptible to inbreeding depression and genetic drift, could reduce genetic 

diversity and the evolutionary potential, increasing their risk of extinction (Saccheri et al. 

1998; Palumbi 2004). For mesophotic coral species, we might predict that open sea would 

act as barrier to dispersal and that coral populations in different geographic areas would be 

effectively isolated. However, within regions levels of population connectivity has to be 

investigated (Miller et al. 2011). Up to now, population genetic studies on mesophotic 

species involved only tropical corals (Bongaerts et al. 2010; Slattery et al. 2011). 

Occurrence in the Mediterranean Sea of temperate biogenic reefs (coralligenous habitats) 

dwelling in the mesophotic zone was reported since the first deep sea explorations (Marsilli 

1725). However, the exploration of these habitats and quantitative and experimental studies 

on their structure (Balata et al. 2005; Linares et al. 2005) and dynamics (Airoldi 1998; 

Virgilio et al. 2006) were developed only when SCUBA diving techniques became 

available for the scientific diving. The development of the technologies for the exploration 

of the deep sea, such as multibeam sonar and autonomous Remotely Operated Vehicles 

(ROVs) to be used on small research vessels, allowed the exploration of MCEs in the 

coastal zone of the Mediterranean Sea (Bo et al. 2009; Freiwald et al. 2009; Costantini et al. 

2010; Cerrano et al. 2010; Bo et al. 2011a, b, c; Gori et al. 2011; this study). These studies 

provided new and valuable data on the reefs occurring in the Mediterranean twilight habitats, 

which are characterised by high species diversity and a great abundance of cnidarians‟ 

species. During some of these surveys, Corallium rubrum colonies have been identified and 

collected for further biological and ecological analyses.  

Corallium rubrum (L.1758) is and endemic Mediterranean and Eastern Atlantic gorgonian 

coral inhabiting subtidal rocky habitats (Zibrowius et al. 1984; Chintiroglou et al. 1989; 

Rossi et al. 2008) ranging from shallow waters (10 m), through the mesophotic (80-150 m) 

zone, down to the deep-water (more than 800 m) (Freiwald et al. 2009; Costantini et al. 

2010). Red coral is a gonochoric slow-growing gorgonian (Octocorallia: Alcyonacea) with 

internal fertilisation. The planula larvae are brooded in the polyps of the female colonies; 

after release the larvae have a negative photo and geo taxis and aquaria experiment showed 

that can have up to 14 days of free live before settling and metamorphose in polyp (Vighi 

1972; Weinberg 1979). Corallium rubrum is the precious coral par excellence and it was 

harvested since ancient time (Tescione 1973; Santangelo & Abbiati 2001; Tsounis et al. 
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2010; Bussoletti et al. 2010). In fact, data on red coral harvesting in the Mediterranean Sea 

showed a trend of heavy reduction in total harvest until 2000 with irregular fluctuations 

suggesting a „boom and burst‟ harvesting strategy. By the end of the nineties the harvest 

remained constant around the 25-35 tons per years (Santangelo & Abbiati 2001, GFCM 

2010). More recently mass mortality events linked with thermal anomalies have been 

affecting shallow-water red coral populations (Cerrano et al. 2000; Bramanti et al. 2005; 

Cerrano & Bavestrello 2008; Garrabou et al. 2009). To protect these endangered 

populations GFCM-FAO (2010) imposed a ban of red coral harvesting down to 50 metres 

depth. Nowadays all around the Mediterranean Sea harvesting is focused on populations 

dwelling between 60 and 150 metres depth. Their colonies reach larger commercial sizes 

and are extremely valuable on the market. Our knowledge on the biological and ecological 

features of these populations are very limited (Rossi et al. 2008; Bussoletti et al. 2010; 

Costantini et al. 2011), therefore these populations became a priority focus for current 

research, with the aim to collect data allowing appropriate management of the harvesting. 

Genetic studies on red coral shallow-water populations revealed strong structuring at both 

global (Mediterranean) and micro (less than one metre) scales (Costantini et al. 2007a, b; 

Ledoux et al. 2010a, b), with some isolation by distance patterns (Ledoux et al. 2010a, b). 

High genetic structuring in shallow-water populations could be related to the limited 

effective larval dispersal and to the geo-morphologic characteristic of the habitat where the 

species lives. A more recent study by Costantini et al. (2011) showed a reduction of genetic 

variability along a depth gradient in a range between 20 and 70 metres, suggesting that 

depth has an important role in determining the patterns of genetic structure of the species. In 

particular, a barrier to the connectivity was observed among the samples collected across 

40–50 metres depth, supporting the hypothesis that discrete shallow-water and intermediate-

water red coral populations occur. These results were already observed by a preliminary 

study on deep-water C. rubrum colonies (up to 800 m depth, Costantini et al. 2010).  

A research project aimed to fill the gap in the knowledge on the biology and ecology of red 

coral mesophotic populations was supported by the Italian Ministry of Environment. A 

research cruise was done to sample red coral colonies in a depth range from 58 to 118 

metres, to investigate the level of reproductive isolation of currently harvested populations. 

Three sampling locations have been identified along the Tyrrhenian coast of Italy. The aims 

of the work were 1) to examine patterns of genetic diversity within each geographic location 
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and 2) to define population structuring at different spatial scales (from tens of metres to 

hundreds of kilometres). Moreover, patterns of genetic structuring observed in this study 

were compared with those found between shallow-water populations. Molecular markers 

with different levels of polymorphism were used: allele frequencies of microsatellite loci 

and sequence polymorphism of portions of the mitochondrial DNA (mutS homolog gene, 

mtMSH, Pont-Kingdon et al. 1995; putative control region, MtC, Uda et al. 2011). 

Although mitochondrial DNA is often considered to evolve very slowly in Anthozoa 

(Shearer et al. 2002; Hellberg 2006), these two regions are enough variable to be 

informative for intra-specific comparisons (Thoma et al. 2009; Miller et al. 2011; Van 

Oppen et al. 2011).  

 

MATERIALS AND METHODS 

Samples collections 

The oceanographic cruise by the R/ V Astrea done in July 2010 was specifically dedicated 

to the survey and sampling of mesophotic red coral populations. Using both commercial 

SCUBA divers and a Remotely Operated underwater Vehicle (ROV) 145 red coral colonies 

were collected in three different areas along the coast of the Tyrrhenian Sea at depth ranging 

between 58 and 118 metres. The investigated areas were Elba (LI), Ischia (NA), and Praiano 

(SA). Areas were located following previous records of deep-water red corals colonies made 

by local fishermen. In each area two dive sites were selected and the occurrence of 

Corallium rubrum was detected by a multibeam echosounder and ROV (Fig. 1).  

The Elba area (Tuscany region) is geographically separated from the others by hundreds of 

kilometres, whereas Ischia and Praiano (Campania region) areas are separated by few tens 

of kilometres. The two sampling sites defined within each area were separated by tens to 

hundreds of metres. In Elba area colonies dwelt on scattered rocky boulders spread on a 

sedimentary bottom, in Ischia and Praiano colonies were found on both vertical rocky cliffs 

and overhangs, with high sediment/mud depositions. In each site C. rubrum was observed in 

association with colonies of Eunicella cavolinii and Paramuricea clavata. 

For each site, a branch fragment from 15 to 33 live colonies of red coral was collected 

within an area ranging from 50 to 100 m
2
. Samples were preserved in 80% ethanol at 4°C.  

 

http://en.wikipedia.org/wiki/Remotely_operated_underwater_vehicle
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Fig. 1. Geographic positions of the sampling locations: maps, identification codes, sites, regions, geographical 

coordinates, depths and sample sizes. 

 

Molecular analysis 

Total genomic DNA was extracted from two to four polyps per fragment using 

cetyltrimethyl ammonium bromide (CTAB) following the procedure described in Costantini 

et al. (2007a, b). 
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Ten microsatellite loci specifically developed for C. rubrum (COR9, COR15, COR46, 

COR48, COR58 by Costantini & Abbiati 2006; MIC20, MIC22, MIC23, MIC24, MIC26 by 

Ledoux et al. 2010a) were analysed. Microsatellite loci were amplified either locus by locus 

or in multiplex using a QIAGEN
®
 Multiplex PCR Kit (see Table 1 for PCR multiplex set) 

using polymerase chain reaction (PCR) conditions described in Costantini et al. (2011).  

 

Table 1. Summary of genetic diversity at eight microsatellite loci within Corallium rubrum samples: n, number of 

sampled individuals; N, number of genotypes per locus; Ar, allelic richness based on 12 individuals; Ho, observed 

heterozygosity; Hs, gene diversity (Nei 1987); FIS, Weir and Cockerham's (1984) estimate of Wright's (1951) fixation 

index. Bold types indicate significant deviations from HWE after FDR correction. 
a
, loci amplified in multiplex PCR 1; 

b
, loci amplified in multiplex PCR 2; 

c
, loci amplified in multiplex PCR 3. 

LOCUS 

SAMPLE (n) 

MEANS Elb1 (23) Elb2 (23) Isc1 (22) Isc2 (32) Pra1 (22) Pra2 (13) 

COR9a 
       

N 21 19 22 31 22 13 21.33 

Ar 7.22 7.31 3.00 3.87 5.65 5.84 5.48 

HO 0.10 0.58 0.14 0.16 0.09 0.08 0.19 

HS 0.77 0.81 0.58 0.70 0.68 0.50 0.67 

FIS 0.88 0.31 0.77 0.78 0.87 0.86 0.74 

COR15b 
       

N 22 23 22 31 21 13 22.00 

Ar 2.80 2.00 2.71 2.02 2.57 1.92 2.34 

HO 0.00 0.00 0.09 0.10 0.05 0.08 0.05 

HS 0.42 0.39 0.21 0.09 0.32 0.07 0.25 

FIS 1.00 1.00 0.58 -0.02 0.86 0.00 0.57 

COR46a 
       

N 19 23 20 31 22 13 21.33 

Ar 6.81 6.52 4.60 7.45 6.98 9.69 7.01 

HO 0.58 0.43 0.55 0.61 0.95 0.85 0.66 

HS 0.82 0.78 0.74 0.79 0.80 0.87 0.80 

FIS 0.32 0.46 0.28 0.24 -0.16 0.06 0.20 

COR48b 
       

N 21 23 22 23 21 12 20.33 

Ar 9.38 5.90 5.26 8.58 9.63 9.00 7.96 

HO 0.71 0.43 0.32 0.30 0.57 0.58 0.49 

HS 0.88 0.81 0.74 0.86 0.87 0.85 0.84 

FIS 0.21 0.48 0.59 0.66 0.37 0.36 0.44 

COR58a 
       

N 21 20 20 32 22 13 21.33 

Ar 5.39 2.94 9.73 9.79 7.99 6.84 7.11 

HO 0.52 0.40 0.60 0.50 0.59 0.62 0.54 

HS 0.75 0.45 0.88 0.85 0.82 0.74 0.75 

FIS 0.32 0.14 0.34 0.42 0.30 0.21 0.29 
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Table 1 continued             

LOCUS 

SAMPLE (n) 

MEANS Elb1 (23) Elb2 (23) Isc1 (22) Isc2 (32) Pra1 (22) Pra2 (13) 

MIC20c 
       

N 23 23 22 32 22 13 22.50 

Ar 6.45 5.76 4.92 7.12 8.74 5.92 6.48 

HO 0.43 0.39 0.55 0.59 0.86 0.77 0.60 

HS 0.64 0.65 0.57 0.77 0.80 0.76 0.70 

FIS 0.34 0.42 0.07 0.25 -0.05 0.03 0.18 

MIC24c 
       

N 23 23 22 32 22 13 22.50 

Ar 5.03 4.82 7.64 6.35 4.27 3.77 5.31 

HO 0.30 0.48 0.64 0.47 0.27 0.23 0.40 

HS 0.66 0.68 0.75 0.69 0.25 0.21 0.54 

FIS 0.56 0.32 0.17 0.34 -0.06 -0.04 0.21 

MIC26c 
       

N 22 23 22 32 22 13 22.33 

Ar 10.49 8.37 9.02 10.42 10.14 7.84 9.38 

HO 0.95 0.87 0.77 0.72 0.91 0.77 0.83 

HS 0.86 0.84 0.88 0.89 0.88 0.83 0.86 

FIS -0.08 -0.02 0.14 0.21 -0.01 0.11 0.06 

Multilocus 
      

Ar 6.70 5.45 5.86 6.95 7.00 6.35 6.38 

HO 0.45 0.45 0.46 0.43 0.54 0.50 0.47 

HS 0.73 0.68 0.67 0.71 0.68 0.60 0.68 

FIS 0.40 0.36 0.34 0.40 0.23 0.22 0.32 

 

Genotyping of individuals was carried out on an ABI 310 Genetic Analyser (Applied 

Biosystems), using forward primers labelled with FAM, HEX/VIC, TAMRA/NED, 

ROX/PET (Sigma) and LIZ HD500 (Applied Biosystems) as internal size standard. Allele 

sizing was conducted using GENESCAN Analysis Software version 2.02 (Applied 

Biosystems).  

MtMSH sequences were amplified using the primers MUT4759f and MSH5376r and 

following France & Hoover (2001) and Lepard (2003) protocols. PCR amplifications of 

MtC were obtained using the primers ND618510CkonojF 5‟-

CCATAAAACTAGCTCCAACTATTCC-3‟ and COI16CkonojR 5‟-

GGTTAGTAGAAAATAGCCAACGTG-3‟ (Sigma). These primers were specifically 

designed using the online PRIMER3 version 4.0 software (Rozen & Skaletsky 2000) on the 

nad6 and cox1 genes flanking the putative control region, which seems located in the 

intergenic spacer 12 (IGS12) of the mitochondrial genome of Paracorallium japonicum and 
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Corallium konojoi (Uda et al. 2011). Each 12.5 μL MtC PCR reaction contained 

approximately 20 ng DNA, 1X PCR buffer (Invitrogen), 2 mM MgCl2, 0.5 µM of each 

primer, 0.8 mM dNTPs and 1 U Taq polymerase (Invitrogen). Amplifications were 

performed on a GeneAMP PCR System 2700 (Applied Biosystems) as follows: an initial 

denaturation at 95 °C for 3 min, 30 cycles including 95 °C for 30 s, 59 °C for 30 s and 72 °C 

for 60 s. A final extension at 72 °C for 5 min was added.  

PCR products were sent to Macrogen (South Korea) for purification and sequencing with 

the same primers and the obtained sequences were edited and aligned manually using MEGA 

version 5.0 (Tamura et al. 2011).  

 

Genetic variability 

Sampling using the ROVs may cause a fragmentation of the colonies; therefore, fragments 

sharing the same multilocus genotype (MLG) were checked using GENALEX version 6.1 

(Peakall & Smouse 2006). Moreover, the unbiased probability of identity (PID Kendall & 

Stewart 1977) that two individuals share the same MLG by chance and not by descent was 

computed. The software MICRO-CHECKER version 2.2.3 (Van Oosterhout et al. 2004) was 

used to test the reliability of the data set and to investigate the presence of null alleles. All 

loci were tested for linkage disequilibrium using GENEPOP version 4.1 (Rousset 2008) as 

implemented for online uses (http://genepop.curtin.edu.au/).  

Microsatellite diversity within samples for each locus and over all loci was estimated as 

observed heterozygosity (HO) and unbiased gene diversity (HS, Nei 1987) using the 

GENETIX software package version 4.05 (Belkhir et al. 2004). As the number of alleles 

found in a sample is dependent on sample size, allelic richness (Ar) was estimated using the 

El Mousadik & Petit (1996) rarefaction index in FSTAT version 2.9.3.2 (Goudet 2001) with a 

sample size of 12 specimens. 

Single and multilocus FIS were estimated using Weir and Cockerham‟s f (Weir & 

Cockerham 1984) and significant departures from the Hardy–Weinberg equilibrium (HWE) 

were tested using the exact test implemented in GENEPOP, with the level of significance 

determinate by a Markov-chain randomization (1000 dememorizations, 100 batches and 

1000 iterations per batch). 

Moreover, the samples were grouped according to their geographical origin (A: three groups: 

Elba, Ischia and Praiano; and B: two groups: Tuscany and Campania) and their depth (C: 

http://genepop.curtin.edu.au/
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two groups: 58-65 m and 85-118 m). Significant differences in genetic diversity (HO, HS and 

Ar) among groups of samples were tested using a permutation procedure (1000 iterations) in 

FSTAT. 

Sequence genetic diversity within samples was estimated using haplotype diversity (h, Nei 

1987) and nucleotide diversity (π, Nei 1987) implemented in the software ARLEQUIN version 

3.5 (Excoffier & Lischer 2010). 

 

Population structure analysis 

Owing to deviation from the Hardy–Weinberg equilibrium, genotypic differentiation 

between samples was tested with an exact test (Markov chain parameters: 1000 

dememorizations, followed by 100 batches of 1000 iterations per batch) using GENEPOP. As 

null alleles can induce overestimation of genetic distance (Chapuis & Estoup 2007), 

pairwise FST estimates were computed following the excluding null alleles (ENA) method in 

FREENA (Chapuis & Estoup 2007). The significance of pairwise genotyping differentiation 

between samples was tested with an exact test as implemented in GENEPOP. Recent analyses 

suggest that FST may be poorly suited as an estimator of population divergence for data sets 

in which allelic diversity is high (Hedrick 2005; Jost 2008). Given the high variability of the 

markers used here, differentiation among samples was estimates using Jost‟s actual measure 

of differentiation Dest calculated with the package DEMEtics version 0.8.3 (Gerlach et al. 

2010) within the statistical package R v2.13.1 (R Development Core Team 2009). Overall 

estimates of Dest were calculated from individual loci using a harmonic mean approximation. 

P-values (indicating the strength of evidence against the null hypothesis of no genetic 

differentiation) are obtained from bootstrap methods with 1000 pseudoreplications. 

For the mtMSH and MtC sequences data sets, genetic differentiation between samples was 

estimated using pairwise FST estimator and its significance determined using a permutation 

test (10000 permutations) in ARLEQUIN. 

For both microsatellite and sequences data sets, isolation by distance model between 

samples was tested through a Mantel test (Mantel 1967) computed using the Isolde program 

implemented in GENEPOP. A significant correlation between genetic differentiation estimates 

(FST and Dest) and the geographical distances (Log transformed) among samples was tested 

using 1000 permutations. 

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-294X.2010.04811.x/full#b16
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-294X.2010.04811.x/full#b27
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-294X.2010.04811.x/full#b28
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-294X.2010.04811.x/full#b28
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The partition of the genetic variance among samples based on the three data set was 

conducted through an analysis of molecular variance (AMOVA) implemented in the 

software ARLEQUIN. For this purpose, the same groups of samples used for the analysis of 

genetic diversity were adopted. 

Significance levels were corrected using a false discovery rate (FDR) correction for multiple 

tests (Benjamini and Hochberg 1995) when necessary. 

 

RESULTS 

Microsatellite loci variability 

Six multilocus genotypes (MLGs) were found twice and one was found triple. One MLG 

was encountered twice in sample Elb2, two MLGs in Pra2 and one MLG in Isc2. Within 

Pra1 two MLGs were encountered twice and one triple. The probability that each of these 

genotypes was produced through sexual reproduction resulted small (1.16 x 10
-11

), 

indicating that shared genotypes derive from a single individual, and, therefore, were 

included only once, obtaining a final data set of 135 different multilocus genotypes. This 

choice was supported also by the fact that the eight excluded samples showed identical 

mtMSH and MtC sequences. 

Loci MIC22 and MIC23 were excluded from subsequent analysis, because they correctly 

amplified in Elba samples, but did not give any amplification in the Ischia and Praiano 

samples, even though repeated attempts were made. 

According to MICRO-CHECKER, null alleles may be present in some loci, but no evidence of 

scoring errors due to stuttering or large allele dropout was found in the whole data set. The 

eight microsatellite loci analysed were polymorphic in all samples. One locus (COR46) was 

in linkage disequilibrium with all the other (P = 0.00036) after false discovery rate 

correction. Eliminating this locus from the following analysis did not change the results.  

Over all samples, the number alleles per locus ranged from 6 (in COR15) to 22 (in COR48), 

and allelic richness from 2.34 (in COR15) to 9.38 (in MIC26). Within samples, the allelic 

richness based on a minimum sample size of 12 diploid individuals, ranged between 5.45 (in 

Elb2) and 7 (in Pra1). Mean observed heterozygosity ranged between 0.43 ± 0.08 (in Isc2) 

to 0.54 ± 0.13 (in Pra1), and gene diversity from 0.60 ± 0.11 (in Pra2) to 0.73 ± 0.05 (in 

Elb1). Highly significant deviations from HWE (P < 0,001) were observed in all samples. 
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Multilocus estimates of FIS ranged from 0.22 (in Pra2) to 0.4 (in Elb1 and Isc2), showing 

heterozygote deficiencies in all analyzed samples (Table 1). 

Values of all the considered indexes of genetic variability were comparable among groups 

of samples; indeed, observed heterozygosity, gene diversity, allelic richness and FIS were 

not significantly different among groups (P > 0.05, see materials and methods for group 

definition). 

 

Mitochondrial sequence variation 

Across all 135 individuals the mtMSH fragment was 567 bp in length. The sequence 

alignment showed the presence of both the two haplotypes (GenBank accession number 

GQ304902, GQ304903) previously recorded by Costantini et al. (2010). Haplotype 

GQ304903 was present in all samples and was the most abundant (94%), whereas haplotype 

GQ304902 was detected only in Praiano area, with six individuals in Pra1 and two 

individuals in Pra2. These two samples showed a haplotype diversity of 0.42 and 0.28, 

respectively (Table 2).  

 

Table 2. Sequence differences, distribution and genetic diversity of the two mtMSH and three MtC haplotypes found in 

Corallium rubrum samples: dots indicate identical bases; H, total number of haplotypes; h, haplotype diversity (h, Nei 

1987); π, nucleotide diversity (π, Nei 1987). 

    Nucleotide position     mtMSH   

    156         Elb1 Elb2 Isc1 Isc2 Pra1 Pra2 

GQ304903 
 

G 
    

23 23 22 32 16 11 

GQ304902 
 

A 
        

6 2 

H 
      

1 1 1 1 2 2 

h 
      

0 0 0 0 0.42 0.28 

π 
      

0 0 0 0 0.0007 0.0005 

                          

  
Nucleotide position 

 
  MtC   

    28 82 274 275   Elb1 Elb2 Isc1 Isc2 Pra1 Pra2 

Hap_1 
 

C A A G 
 

19 14 
    

Hap_2 
 

T G . . 
 

4 9 12 16 6 4 

Hap_3 
 

. . C T 
   

10 16 16 9 

H 
      

2 2 2 2 2 2 

h 
      

0.3 0.5 0.52 0.52 0.42 0.46 

π             0.0021 0.0035 0.0036 0.0036 0.0029 0.0032 
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The putative control region (MtC) in Corallium rubrum was 290 bp in length, 

corresponding to positions 18541-18913 of the mitochondrial genome sequence of 

Paracorallium japonicum (GenBank accession number AB595189, Uda et al. 2011) and to 

positions 18538-18702 and 18815-18969 of the mitochondrial genome sequence of 

Corallium konojoi (GenBank accession number AB595190, Uda et al. 2011). The sequence 

of the MtC in C. rubrum had a percentage of identity of 99% and 92% with those of P. 

japonicum and C. konojoi, respectively. The alignment of all individual sequences showed 

the presence of four nucleotide substitution (1.4% variation) which defined three different 

haplotypes (Table 2). Hap_2 was present in all samples and was the most abundant, together 

with Hap_3 (37.8% each). However, Hap_3 was detected only in Ischia and Praiano areas, 

whereas Hap_1 was found only in Elba area with a high abundance (72%) compare to 

Hap_2 (28%). Low and comparable values of haplotype and nucleotide diversity of MtC 

were found among samples, with mean values of 0.45 (± 0.03) and 0.0031 (± 0.0002), 

respectively.  

 

Genetic differentiation between samples 

The three molecular markers used in this study provided slight different level of genetic 

differentiation among samples. Variability between markers is due to variability in the level 

of polymorphism. For the microsatellite data set, FST estimates and FST estimates based on 

the ENA method to correct for the presence of null alleles (Chapuis & Estoup 2007) gave 

similar results. The pairwise FST estimated ranged from 0.05 (Elb1 vs. Elb2) to 0.24 (Pra2 vs. 

Elb2 and Isc1) and all pairwise comparisons were significant (P < 0.01) after FDR 

correction. Dest values were substantially higher, ranging from 0.05 (Isc1 vs. Isc2) to 0.59 

(Elb2 vs. Pra2) and all pairwise comparisons were significant (P < 0.01) after FDR 

correction (Table 3). Overall, higher values of genetic differentiation were observed using 

Dest rather than FST (Dest = 0.37; FST = 0.13). The sample Pra2 appeared to be the most 

differentiated from all of the other samples, both based on pairwise FST estimates and on 

actual measure of differentiation Dest. Moreover, the lowest values of FST and Dest were 

observed between samples belonging to the same area (Table 3). No correlation between FST 

and the natural logarithm of the geographical distances (P = 0.08) was observed, whereas a 

significant isolation by distance pattern was detected using Dest (P < 0.01) (Fig. 2).  
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Table 3. Pairwise multilocus estimates of FST (Weir & Cockerham 1984) below the diagonal, and Dest (Jost 2008) above 

the diagonal between all Corallium rubrum samples; all are statistically significant (P < 0.01) after FDR correction. 

  Elb1 Elb2 Isc1 Isc2 Pra1 Pra2 

Elb1 
 

0.10 0.21 0.30 0.34 0.54 

Elb2 0.05 
 

0.30 0.30 0.36 0.59 

Isc1 0.10 0.14 
 

0.05 0.18 0.49 

Isc2 0.15 0.16 0.14 
 

0.20 0.28 

Pra1 0.12 0.15 0.08 0.15 
 

0.17 

Pra2 0.22 0.24 0.24 0.10 0.14   

 

 

 

Fig. 2. Relationship between genetic differentiation estimates (FST and Dest) and the logarithm of geographical distance 

among Corallium rubrum samples for microsatellites markers. 

 

The mtMSH marker provided the lowest values of genetic differentiation between samples. 

Pairwise FST estimated ranged from -0.02 (Pra1 vs. Pra2) to 0.29 (Pra1 vs. Isc2) and all the 

comparisons were not significant after FDR correction (Table 4). The MtC marker revealed 

intermediate values of genetic differentiation, compared to microsatellites and mtMSH. 

Pairwise FST estimated ranged from -0.06 (Pra1 vs. Pra2) to 0.77 (Pra1 vs. Elb1). Global 

estimates of FST were not significant both within Tuscany (FST = 0.07, P > 0.01) and within 

Campania (FST = 0.02, P > 0.01). Pairwise multilocus estimates of FST between Tuscany and 

Campania samples were generally high (range: 0.52 to 0.77) and significantly different from 

zero after FDR correction (Table 4). Significant isolation by distance pattern was observed 

using FST based on MtC data set (P = 0.01) (Fig. 3), whereas correlation between FST based 
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on mtMSH data set and the natural logarithm of the geographical distances (P = 0.12) was 

not significant. 

 

Table 4. Pairwise multilocus estimates of both MtC FST (below the diagonal) and mtMSH FST (above the diagonal) 

between all Corallium rubrum samples; bold types indicate statistically significant values (P < 0.01) after FDR 

corrections. 

  Elb1 Elb2 Isc1 Isc2 Pra1 Pra2 

Elb1 
 

0.00 0.00 0.00 0.24 0.15 

Elb2 0.07 
 

0.00 0.00 0.24 0.15 

Isc1 0.68 0.52 
 

0.00 0.24 0.14 

Isc2 0.68 0.54 -0.04 
 

0.29 0.20 

Pra1 0.77 0.66 0.10 0.07 
 

-0.02 

Pra2 0.76 0.63 0.05 0.02 -0.06   

 

 

 

Fig. 3. Relationship between genetic differentiation estimates and the logarithm of geographical distance among 

Corallium rubrum samples for both mtMSH and MtC markers. 

 

The AMOVA test conducted among samples showed different results, depending on which 

data set was adopted and which grouping were considered. Microsatellites showed major 

genetic variation within samples (from 83.99 to 85.17%; P < 0.001), and among samples 

within all considered groups (from 10.49 to 12.68%; P < 0.001). Using mtMSH data set, 

variation within samples was also high (from 65.49 to 81.69%; P < 0.001) together with the 

genetic variation among groups within samples, where grouped based on their depth, 
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(35.62%; P > 0.05). By contrast, using MtC data set no significant genetic variation was 

observed among groups (from 56.78 to 63.6%; P > 0.05). When samples were grouped 

according to their depth the genetic variation within samples and among samples within 

groups (45.31 and 39.97% respectively; P < 0.001) assumed a primary role (Table 5). 

 

Table 5. Analysis of molecular variance (AMOVA) among Corallium rubrum samples using microsatellites, mtMSH 

and MtC data sets. Red coral samples were grouped according to (A) their area (three groups: Elba, Ischia and Praiano), 

(B) their region (two groups: Tuscany and Campania), and (C) their depth (two groups: 58-65 m and 85-118 m). 
*
P < 

0.05, 
**

P < 0.001. 

      Microsatellites   mtMSH   MtC 

Source of variation 
 

d.f. 
Variance 

components 
% 

 
d.f. 

Variance 

components 
% 

 
d.f. 

Variance 

components 
% 

(A) Three groups                         

 
Among groups 

 
2 0.132 4.34 

 
2 0.014 23.65 

 
2 0.594 56.78 

 Among samples 

within groups 
 

3 0.320 10.49
**

 
 

3 0.000 -0.64 
 

3 -0.003 -0.30 

    

 
Within samples 

 
264 2.597 85.17

**
 

 
129 0.047 76.99

**
 

 
129 0.455 43.52

**
 

(B) Two groups 
            

 
Among groups 

 
1 0.153 4.96 

 
1 -0.001 -2.27 

 
1 0.828 63.60 

 Among samples 

within groups 
 

4 0.342 11.05
**

 
 

4 0.012 20.58
*
 

 
4 0.019 1.44 

    

 
Within samples 

 
264 2.597 83.99

**
 

 
129 0.050 81.69

**
 

 
129 0.455 34.96

**
 

(C) Two groups 
            

 
Among groups 

 
1 0.079 2.57 

 
1 0.026 35.62 

 
1 0.148 14.72 

 Among samples 

within groups 
 

4 0.389 12.68
**

 
 

4 -0.001 -1.11 
 

4 0.402 39.97
**

 

    

  Within samples   264 2.597 84.75
**

   129 0.047 65.49
**

   129 0.455 45.31
**

 

 

 

DISCUSSION 

This study provides the first data on the genetic variability and structuring of harvested red 

coral populations dwelling in the depth range of c. 60-120 m (the mesophotic zone). For this 

purpose markers with different evolutionary rates were used. The results show evidence that 

1) mesophotic red coral populations are isolated at scales of tens of metres following 

isolation by distance pattern; 2) migration events within both Tuscany and Campania 

regions occurred in past time.  
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Genetic variability 

The multilocus polymorphism found in Corallium rubrum using microsatellites (HS ranging 

from 0.60 ± 0.11 to 0.73 ± 0.05, with a mean value of 0.68 ± 0.02) resulted comparable with 

that observed in samples collected from 50 metres depth down by Costantini et al. (2011) 

(Student‟s t-test: P > 0.05) and lower compared to shallow-water populations, confirming a 

reduction of genetic variability respect to these latter (Costantini et al. 2011).  

Strong deviations from Hardy-Weinberg equilibrium (showed by high positive FIS estimates) 

were detected for all samples and at all microsatellite loci. Deficit of heterozygotes was 

already found in previous studies on C. rubrum (Costantini et al. 2007a, b; Ledoux et al. 

2010a, b; Costantini et al. 2011), and confirms the occurrence in this species of processes 

affecting intra-population gene flow (e.g. inbreeding and Wahlund effect), as well as the 

possible occurrence of technical problems, such as the presence of non-amplifying or null 

alleles (aspects discussed in Costantini et al. 2007a). It is important to notice that the 

microsatellite loci MIC22 and MIC23 amplified exclusively in the samples Elb1 and Elb2. 

This suggested that some mutations could have affected the flanking regions of these loci in 

the samples Isc1, Isc2, Pra1 and Pra2, leading to different sequences which could not be 

matched by the primers. Similar results were found by Aurelle et al. (2011): these authors 

did not get any amplification of the loci MIC22 and MIC23 in the Adriatic and North 

African samples, whereas they normally amplified in all samples from the north-western 

Mediterranean Sea. These results suggest the occurrence of major divergence between the 

northern and southern areas of the Tyrrhenian Sea (see also below). Despite differences in 

the habitat features between Tuscany (characterized by scattered rocky boulders on a 

sedimentary bottom) and Campania (vertical rocky cliffs and overhangs; Canese pers. 

comm.), no differences in genetic variability were observed between the two regions.  

Mitochondrial markers showed low genetic variability among samples, compare to 

microsatellite markers, probably due to the fact that in Anthozoa mitochondrial DNA has 

extremely low mutation rate and it is much conserved (Shearer et al. 2002; Costantini et al. 

2003; Calderon et al. 2006; Hellberg 2006). The newly developed mitochondrial marker, 

the MtC, showed a higher variability compared to other mitochondrial genes (Calderon et al. 

2006; Costantini et al. 2003). MtC have been successfully used to investigate levels of 

genetic structuring between populations of two scleractinian corals: Desmophyllum dianthus 
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and Seriatopora hystrix (Miller et al. 2011; Van Oppen et al. 2011). MtC red coral shows a 

lower number of haplotypes, compared to those of scleractinian corals, with low levels of 

differences between them; in fact, only four substitutions were found. Moreover, the very 

low nucleotide diversity observed was comparable to those found by Miller et al. (2011) in 

Desmophyllum dianthus (Student‟s t-test: P > 0.1). However, this level of variation is much 

higher compared to mtMHS and it allows quantifying differences between samples. In fact, 

whereas one haplotype was widespread along all samples, the other two were observed one 

in Tuscany samples and one in Campania samples.  

Previous study on genetic structure of red coral populations sampled at a depth ranging 

between 600 and 800 metres (Costantini et al. 2010) showed the occurrence of a private 

mtMSH “deep-water” haplotype GQ304902, which was never found in shallow-water 

populations. Indeed, they found the “deep-water” mtMHS haplotype only in deep-water 

colonies from Linosa and Malta. In our study, the mtMSH “deep-water” haplotype was 

found only in samples Pra1 and Pra2, suggesting a lack of connectivity along a geographical 

and/or a depth gradient. This founding, together with the fact that MIC22 and MIC23 did 

not amplify in the southern part of the Mediterranean Sea, support evidences of the 

occurrence of a geographical barrier to gene flow between Tuscany and Campania. 

Moreover, Praiano samples were the shallowest among those investigated in the present 

study, so a more detailed research of red coral populations around 50 metres deep is needed 

to confirm the lack of connectivity along a depth gradient and the particularity of this 

bathymetry close to the thermocline, as already observed by Costantini et al. (2011). The 

high genetic differentiation (using both data sets) detected among Praiano samples respect 

the others suggest that this area has some peculiarities which have to be taken in account in 

the future.  

 

Genetic structuring 

Using microsatellite loci, a significant genetic differentiation among C. rubrum samples at 

all the spatial scales analyzed was detected, suggesting that mesophotic red coral 

populations are genetically structured at scale of less than ten of metres with a highly 

restricted larval dispersal, as was already observed in shallow-water populations (Costantini 

et al. 2007a, b; Ledoux et al. 2010a, b; Costantini et al. 2011). Both the two estimators of 

population divergence used in this study (FST and Dest) and AMOVA give similar results on 
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genetic structuring. Nevertheless, in this species, characterized by high levels of within 

population variation (as evidenced by high values of heterozygosity and allelic richness), 

Dest is expected to illustrate more accurately the actual magnitude of differentiation between 

populations. Indeed, microsatellites based FST estimates appeared much smaller compare to 

Dest estimates, probably due to the fact that F-statistics tend to underestimate differentiation 

between populations as variation increases (Jost 2008).  

Biological and ecological factors which act at small spatial scale and/or abiotic factors at 

larger scale could determine the isolation observed among populations. Red coral larvae 

have a negative photo and geo-taxis (Weinberg 1979) and a low dispersal capability (Vighi 

1972), that could influence the larval retention at local scale. Larval retention processes 

could be caused by small-scale habitat heterogeneity. In Tuscany scattered rocky boulders 

were separated by flat sedimentary bottom, where red coral was not able to settle. In 

Campania overhangs and fissures could enhance a larval retention and protect colonies from 

smothering due to the abundant sedimentation rates in these areas.  

The great genetic differentiation observed between Campania and Tuscany compared to 

those within regions could be related to the occurrence of barrier to gene flow, such as 

geomorphologic and hydrodynamic characteristic of the studied areas or the geographic 

distance, as suggested by the isolation by distance pattern observed (see also Ledoux et al. 

2010a, b). Tuscany and Campania are at both side of the putative biogeographical barrier 

which divides the Ligurian Sea and the Tyrrhenian Sea (Bianchi & Morri 2000; Bianchi 

2007) and between the two regions red coral is patchily distributed with colonies living on 

sparse rocks arising from the detritical bottom (Marchetti 1965; see also Bramanti 2011). In 

addition, it should be considered that in winter a northward current along the Italian coast 

connects southern and northern Tyrrhenian, whereas in summer, when the larvae are 

released (Santangelo et al. 2003), the Tyrrhenian circulation has a more fragmented pattern 

with some local gyres (Astraldi & Gasparini 1994) that could act as a barrier to gene flow. 

Analyzing mitochondrial sequences a genetic structuring within regions was not observed. It 

was probably due to the low polymorphism of mtMSH and MtC found in our samples, 

demonstrating that they could be not informative markers for corals at these geographical 

spatial scales (e.g. Tuscany samples were very close). In fact, Miller et al. (2011) did not 

evidence a genetic structuring in Desmophyllum dianthus populations at similar spatial 

scales, whereas they evidence differences in mitochondrial sequences distribution along a 
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depth gradient, as observed also in Costantini et al. (2010). Further studies have to be 

carried out to understand the ability of these mitochondrial markers to detect genetic 

structuring at these scales. 

Based on mtMSH data set, high FST values were observed only among the two Praiano sites 

and all the others, but all values were not significant after FDR correction (P > 0.01). By 

contrast, using MtC data set, a high genetic structuring between Tuscany and Campania was 

obtained, whereas low and not significant FST values were observed within the two regions. 

The low level of genetic differentiation observed with shared haplotypes among samples 

and low level of differences between haplotypes could suggest historical links within 

regions and no recent dispersal events. As suggested by Aurelle et al. (2010), a scenario of 

long-term divergence does not seem probable for red coral at this spatial scale and so, 

although populations within regions have to be considered as separated management units 

(see microsatellites results) they should be viewed as unique evolutionary units (sensu 

Moritz 2002). 

 

CONCLUSION 

The results of this study contribute to the knowledge on the actively harvested red coral 

populations, as well as being useful to develop future effective management strategies, 

which may allow the exploitation of this resource and, at the same time, its preservation. 

The high genetic structuring observed in mesophotic C. rubrum populations, together with 

previous results which indicate lack of connectivity among these and the shallow ones 

(Costantini et al. 2011), suggest that the hypothesis that deeper populations may act as 

refugia and/or larval supply for some shallow-water populations is unlikely to be true. 

Raising harvesting pressure and anthropogenic and natural disturbances could increase the 

fragmentation of these populations in smaller and isolated patches, reducing their genetic 

diversity and, consequently, their evolutionary potential and increasing the risk of extinction. 

Therefore, in the mesophotic habitat the management units should be defined at a regional 

or sub regional level, similarly to shallow-water populations (Costantini et al. 2007a; 

Ledoux et al. 2010a). Nevertheless, further investigations should be carried out to 

understand better the genetic structuring of this species in the mesophotic zone, e.g.  

extending studies to other deep-water populations.  
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