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Abstract

In this thesis we study the heat kernel, a useful tool to analyze various properties of
different quantum field theories. In particular, we focus on the study of the one-loop
effective action and the application of worldline path integrals to derive perturbatively
the heat kernel coefficients for the Proca theory of massive vector fields. It turns out
that the worldline path integral method encounters some difficulties if the differential
operator of the heat kernel is of non-minimal kind. More precisely, a direct recasting of
the differential operator in terms of worldline path integrals, produces in the classical
action a non-perturbative vertex and the path integral cannot be solved. In this work
we wish to find ways to circumvent this issue and to give a suggestion to solve similar
problems in other contexts.
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Introduction

The heat kernel has been a useful method to investigate different properties of quantum
field theories, among which there is the study of one-loop effective actions. The most
familiar method to compute its expansion coefficients is the DeWitt iterative procedure
contained in [1]. An alternative method was proposed by Gilkey [2], which happens to
be particularly convenient when dealing with manifolds without boundaries. They both
show a direct application only for simple second order partial differential operators of
“minimal” type, namely the ones where the covariant derivatives appear only in the
usual Laplacian form. The present work focuses instead on the study of a particular case
of “non-minimal” operator, which comes from the quantum field theory of the massive
vector field. The latter represents a relevant example useful to understand how the
heat kernel for such operators can be computed. Historically DeWitt’s technique has
been generalized to cover the more general cases of higher order non-minimal operators
by Barvinsky and Vilkovisky [3]. In their work, they provided a useful trace operator
identity for the Proca theory, which reduces the Proca non-minimal operator to two
simple and minimal ones. By starting from this identity we compute the heat kernel
coefficients for the Proca theory, which also identify the one-loop divergences of the
effective action.

An alternative method to evaluate the one-loop effective action concerns first quan-
tization approaches together with the computation of path integrals. The one discussed
and applied in this thesis is based on the construction of a worldline representation of the
operator of interest. It consists in the study of a first quantized particle whose Hamil-
tonian correctly reproduces the operator for which we want to identify the heat kernel
coefficients. The latter are indeed computed by evaluating the one-loop effective action
in terms of a worldline path integral. This method presents a problem with non-minimal
operators when the perturbative approach is used to evaluate the path integral. A solu-
tions consists in reformulating the QFT Proca action by reinstating the gauge symmetry
broken by the mass term.

We structure the thesis as follows. In chapter 1 we introduce the heat kernel as a
topic with a wide range of applications, we focus on its applications to quantum field
theory and its relation to the one-loop effective action. The heat kernel expansion is thus
illustrated for manifolds without boundaries and the related Seeley-DeWitt coefficients
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are defined. The general formulae for the first three coefficients are written in terms
of geometric invariants of the background metric, the gauge connection and the scalar
potential.

In the second chapter we describe the action for the Proca massive vector field and
identify the associated kinetic operator. Since the latter belongs to the class of the so-
called “non-minimal” operators, some manipulations are in order. For this purpose we
present the reduction method suggested by Barvinsky and Vilkovisky in [3] and apply it
to the case at hand. Finally, we compute the first three heat kernel coefficients: a0, a1,
a2.

Chapter 3 is devoted to the study of an alternative method to compute the Seeley-
DeWitt coefficients for the Proca theory. This new procedure is based on the connection
between the heat kernel and path integrals, which is explained with a simple example
at the beginning of the chapter. We then proceed with the construction of a worldline
model, whose Hamiltonian is able to reproduce the kinetic operator found in chapter 2.
Nevertheless, we encounter a problem in the computation of the path integral, charac-
terized by a non-perturbative vertex which is rather difficult to treat.

In chapter 4 we reformulate the Proca action in QFT with the introduction of a
gauge symmetry via a Stückelberg scalar field, whose usefulness emerged also in the
worldline treatment of [4] with the study of an N = 2 spinning particle for the worldline
path integral representation of massive antisymmetric tensor fields. The gauge fixing is
achieved by means of two scalar ghosts, so that the total action is given by the sum of
three actions, i.e. the ones for the vector field, the Stückelberg field and the ghost fields,
which only contain minimal operators. In this way, the application of the path integral
method, together with a corresponding worldline model, is possible for each operator.
The perturbative approach is employed to compute the path integrals and the correct
coefficients are rederived.
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Chapter 1

Heat kernel

In this chapter, we present the heat kernel approach in quantum field theory. After
some historical background, the heat kernel is introduced as the solution of the heat
equation. We then describe our conventions on covariant derivatives and define the
geometric invariants needed for the computation of the heat kernel coefficients. Later
in the chapter, the relation between the heat kernel and the effective action is made
explicit for an Euclidean path integral. The most popular technique for the coefficients’
calculation is ascribed to B. DeWitt, but in this thesis we follow the simpler one proposed
by Gilkey [2]. Finally, the coefficients are reported for the general case of a second order
differential operator of Laplace type.

1.1 A brief introduction

The heat kernel is a powerful tool in mathematical physics, which has a large variety of
applications. Not only it is a classical subject in mathematics, but it can also be used to
study one-loop divergences, anomalies and asymptotics of the effective action. Moreover,
the heat kernel is employed to study the index theorem of Atiyah and Singer, for calcu-
lations of the vacuum polarization and the Casimir effect. One of the most important
applications in physics is Fock’s [5], who introduced the heat kernel to quantum theory.
He noted that one can write Green’s functions as integrals over an auxiliary coordinate,
the proper time, of a kernel satisfying the heat equation. A further study in that direc-
tion came from Schwinger [6], who applied this representation of Green’s functions to
the analysis of renormalization and gauge invariance. Other remarkable works using the
heat kernel are DeWitt’s [1, 7, 8, 9], on his manifestly covariant approach to quantum
field theory and quantum gravity. Some more recent applications regard string theory
and other connected areas, as for example the study of logarithmic corrections to black
holes’ entropy [10].

One can formally introduce the heat kernel as the matrix element of the evolution
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operator between position eigenstates in the following way

K(t;x, y; F̂ ) = ⟨x| exp (−tF̂ )|y⟩ , (1.1)

where F̂ is a second order partial differential operator and t is an auxiliary coordinate
called “proper time”. It can be seen as the solution of the heat conduction equation(

∂

∂t
+ F̂

)
K(t;x, y; F̂ ) = 0, (1.2)

which is related to the Schrödinger equation by means of a Wick rotation of the time
variable, with initial conditions

K(0;x, y; F̂ ) = δd(x− y). (1.3)

In the case of a simple second order partial differential operator of Laplace type with a
mass term

F̂0 = −∂2 +m2, (1.4)

the solution of the heat equation takes the form

K(t;x, y; F̂0) =
1

(4πt)d/2
exp

(
−(x− y)2

4t
− tm2

)
. (1.5)

Our interest will be directed towards a more general form of a differential operator which
contains also an arbitrary smooth potential term, i.e.

F̂ = F̂0 + V (x̂). (1.6)

In the above case it is common to expand perturbatively the heat kernel in powers of t:

K(t;x, y; F̂ ) = K(t;x, y; F̂0)(c0(x, y) + c1(x, y)t+ c2(x, y)t
2 + · · · ). (1.7)

The coefficients ck(x, y) are the so-called heat kernel or Seeley-DeWitt coefficients. In
the following chapters we will study their value at coinciding points ck(x, x). The heat
kernel coefficients are given in terms of a few geometric invariants constructed out of
the background fields of the space-time. This is the main advantage of the heat kernel
approach, since a single calculation can be suitable for different applications and/or
because calculations in some particular cases give information on the general structure of
the heat kernel, which may be used then when dealing with more complicated geometries.
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1.2 Local invariants and covariant derivatives

As we stated previously, the Seeley-DeWitt coefficients are related to geometric invari-
ants constructed out of the background fields of the space-time. In order to introduce
such invariants, some remarks about differential geometry and covariant derivatives are
needed.

First, we introduce our space-time as a smooth d-dimensional Riemannian manifold
M without boundary equipped with a space-time dependent metric gµν(x), where x

µ are
the space-time coordinates. Consider a vector bundle V overM, i.e. a vector space is
attached to each point of the manifold. The sections of the vector bundle V are called
fields, that are locally represented by a set of smooth functions, which carry a discrete
index related to internal or spin degrees of freedom.

For the aim of this thesis, we will focus on second order differential operators of
Laplace type. For this kind of operators, the heat kernel expansion is rather simple and
well known. In this respect we will follow the precise and complete report on the heat
kernel by Vassilevich [11].

Second order Laplace type operators can be expressed in the following way

F̂ = −(gµν∇µ∇ν + V ). (1.8)

Here V is a matrix valued potential and gµν the inverse of the metric tensor. Furthermore,
∇µ is the covariant derivative which contains both the Riemannian part and the “gauge”
part, related respectively to the Christoffel connection Γλ

µν and to the gauge connection
ωµ. Thus, we may write the covariant derivative in the following manner:

∇µ = ∇R
µ + ωµ. (1.9)

The action of ∇R
µ on a generic vector field is

∇R
µVν = ∂µVν − Γλ

µνVλ, (1.10)

where the Christoffel connection is defined as

Γλ
µν =

1

2
gλσ(gµσ,ν + gσν,µ − gµν,σ), (1.11)

where with the comma we denote the action of the ordinary derivative gµν,σ ≡ ∂σgµν .
The “gauge” part ωµ is a matrix valued gauge field, such that the covariant derivative

acting on tensors produces new tensors. It can be seen as a connection, similarly to the
Christoffel one, since it acts as a sort of parallel transport. This is the part of the
covariant derivative acting on the internal indices, also said “color” indices, via a gauge
field.

We can now write the action of the full covariant derivative on a generic vector Vν as

∇µVν = ∂µVν − Γλ
µνVλ + ωµVν (1.12)
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where Vν has hidden color indices on which the matrix ωµ acts.
On top of the metric, one uses very often the concept of a “vielbein”, a local orthonor-

mal frame with basis vectors e⃗i = eµi ∂µ, defined in all tangent spaces to the manifoldM.
Then, one finds that the vielbein and the metric are related by

eµi e
ν
j gµν = ηij (1.13)

and
eiµe

j
νηij = gµν . (1.14)

The components eµi and ejν are therefore used to transform “curved” indices in “flat”
ones and vice-versa. Moreover the vielbein indices i, j are raised and lowered by the
Minkowski metric ηij, while the space-time indices µ, ν are raised and lowered by means
of the space-time metric gµν . Taking advantage of the vielbein basis, we can extend the
definition of covariant derivative when applied to vectors with a flat index, by means of
a “spin” connection:

∇µv
i = ∂µv

i + σij
µ vj. (1.15)

The vielbein is required to be covariantly constant, so that the condition ∇µe
i
ν = 0 yields

the expression for the spin connection:

σij
µ = eνjΓ

ρ
µνe

i
ρ − eνj∂µeiν . (1.16)

For the construction of the local invariants that appear in the heat kernel coefficients
we need to introduce a few objects. Let the Riemann curvature tensor be defined as

Rµ
νρσ = ∂ρΓ

µ
σν − ∂σΓµ

ρν + Γµ
ρλΓ

λ
σν − Γµ

σλΓ
λ
ρν , (1.17)

the Ricci tensor as Rµν ≡ Rρ
µρν and the Ricci scalar as R ≡ Rµ

µ. We also define the field
strength tensor Ωµν of the connection ω as

Ωµν = ∂µων − ∂νωµ + ωµων − ωνωµ. (1.18)

The only invariants that we will encounter in the Seeley-DeWitt coefficients are R, R2,
∇2R, R2

µν , R
2
µνρσ and tr(ΩµνΩ

µν), on top of the potential V and its covariant derivatives.
Notice that in the last term, the trace is taken over the internal indices.

1.3 Relation with the effective action

Let us consider the generating functional of correlation functions of the field ϕ in the
Euclidean path integral representation

Z[J ] =

∫
Dϕ e−S[ϕ,J ], (1.19)
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where the action functional can be written as an expansion up to quadratic order in the
quantum fluctuations of the field ϕ, since this happens to be enough for our purposes,
in the following way

S[ϕ, J ] = Scl + ⟨ϕ, J⟩+ ⟨ϕ, F̂ϕ⟩+ · · · . (1.20)

Here with Scl we denote the classical action on a classical background, F̂ is our differential
operator and ⟨., .⟩ represents an inner product on the space of quantum fields. This inner
product is usually just an integral over the d-dimensional space-time

⟨ϕ1, ϕ2⟩ =
∫
M
ddx
√
g ϕ1(x)ϕ2(x), (1.21)

with g = | det gµν |. The integral (1.19) can be approximated perturbatively by a Gaussian
integral as follows

Z[J ] = e−Scl det −1/2(F̂ ) exp

(
1

4
JF̂−1J

)
. (1.22)

It is important to stress that in general the classical background field, which gives the
action Scl, and the quantum field fluctuations can be different. A common example is
the one of quantum scalar fields on a classical gravitational background.

At this stage we can relate the heat kernel, introduced in the previous section, to the
effective action. Let’s start from the definition of the heat kernel given in equation (1.1),
i.e.

K(t;x, y; F̂ ) = ⟨x| exp (−tF̂ )|y⟩ .
Then, the propagator F̂−1 can be defined through the heat kernel by the integral repre-
sentation

F̂−1(x, y) =

∫ ∞

0

dt K(t;x, y; F̂ ), (1.23)

if we assume that the heat kernel vanishes sufficiently fast as t→∞.
The generating functional of correlation functions in the case of null sources can be

related to the effective action Γ by

Z[0] = e−Γ, (1.24)

so that, by comparing with equation (1.22), it is easy to see that

Γ = Scl +
1

2
lnDet(F̂ ) (1.25)

and one can write the one-loop approximation of the effective action by means of the
functional determinant of the operator F̂

Γ1−loop =
1

2
lnDet(F̂ ). (1.26)
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It represents the quantum effects due to the background fields at one-loop.
Let us consider the positive definite eigenvalues λ and λ0 associated to the operators

F̂ and F̂0 respectively. A commonly used identity is the following

ln
λ

λ0
= −

∫ ∞

0

dt

t
(e−tλ − e−tλ0). (1.27)

This is known as proper time representation of the logarithm, originally introduced by
Schwinger [6], and provides the starting point for the heat kernel method.

The above identity can be extended to the operator F̂ , by removing an additional
infinite constant and using the identity lnDet(F̂ ) = Tr ln(F̂ ), in order to connect the
one-loop effective action with the heat kernel as written below:

Γ1−loop = −1

2

∫ ∞

0

dt

t
K(t, F̂ ), (1.28)

where

K(t, F̂ ) = Tr(e−tF̂ ) =

∫
ddx
√
gK(t;x, x; F̂ ). (1.29)

This means that the computation of the Seeley-DeWitt coefficients allows us to study
the one-loop effective action.

1.4 The heat kernel coefficients

The evolution operator exp(−tF̂ ), with t > 0, admits a trace on the space of square-
integrable functions L2(V ), that for an arbitrary smooth function f(x) is

K(t, f, F̂ ) = TrL2(f exp(−tF̂ )). (1.30)

The above expression represents the functional trace that we would like to expand. Here
the quantity K(t, f, F̂ ) is related to the heat kernel at coinciding points limit (y → x)
by

K(t, f, F̂ ) =

∫
M
ddx
√
g tr[K(t;x, x; F̂ )f(x)], (1.31)

where the trace is over the internal (bundle) indices.
It is possible, as showed by Gilkey [12], to identify a complete orthonormal set of

eigenvectors {ϕλ} ∈ L2(V ) of the operator F̂ , which correspond to smooth sections of
the vector bundle V, with associated eigenvalues λ. Then the heat kernel can be written
in the following fashion

K(t;x, y; F̂ ) =
∑
λ

ϕ†
λ(x)ϕλ(y)e

−tλ. (1.32)
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It is possible to write the right hand side of equation (1.30) as an asymptotic expansion
for t→ 0:

TrL2(f exp(−tF̂ )) ≈
∑
k≥0

tk−(d/2)ak(f, F̂ ). (1.33)

The coefficients ak are related to the coefficients ck of equation (1.7) in the following way

ak(f, F̂ ) =
1

(4π)d/2

∫
M
ddx
√
gck(x, x)f(x). (1.34)

This expansion that contains only integer powers of t is valid only on manifolds without
boundaries. On manifolds with boundaries also half-integer powers of t appear in the
expansion, which introduce extra coefficients.

In this thesis, for the calculation of the Seeley-DeWitt coefficients, we will follow the
procedure developed by Gilkey [2] as illustrated by Vassilevich in his report [11], stressing
only the main steps that are useful for our purposes.

As we previously mentioned, the coefficients which enter the expansion (1.33) can be
computed in terms of local invariants, constructed from Rijkl, Ωij, V and their derivatives
(we use here flat indices by employing the vielbein basis described previously). Denoting
with AI

k(F̂ ) these invariants, we have

ak(f, F̂ ) = tr

∫
M
ddx
√
g[f(x)ak(x; F̂ )] =

∑
J

tr

∫
M
ddx
√
g[f(x)bJAI

k(F̂ )], (1.35)

with bJ some constants.
Below we present the explicit expressions for the first three heat kernel coefficients,

that will be a central topic of this work:

a0(f, F̂ ) = (4π)−d/2

∫
M
ddx
√
g tr[f(x)I]

a1(f, F̂ ) = (4π)−d/2

∫
M
ddx
√
g tr

[
f(x)

(
RI

6
+ V

)]
a2(f, F̂ ) = (4π)−d/2

∫
M
ddx
√
g tr

{
f(x)

[
1

6

(
RI

5
+ V

)
;kk

+
1

2

(
RI

6
+ V

)2

+
1

180

(
R2

ijkl −R2
ij

)
I +

1

12
Ω2

ij

]}
.

(1.36)

In the latter we explicitly inserted the identity matrix I, to clarify that the trace has to
be taken over the internal indices.

12



Chapter 2

The Proca theory: a particular case
of non-minimal operator

In what follows, we want to find the Seeley-DeWitt coefficients for the Proca field. We
start by introducing the Proca action and the corresponding equations of motion and
we proceed by identifying the kinetic operator for the massive vector field. The latter
operator is of non-minimal kind and the Gilkey procedure for the computation of the
heat kernel coefficients is not directly applicable. A method to reduce the calculation of
the effective action for a non-minimal operator to the ones for minimal operators was
developed by Barvinsky and Vilkovisky [3]. In the literature some papers treat the case
of a general non-minimal operator, with a focus on the Proca case as well [13, 14, 15].
We therefore apply the method introduced in [3] to the present case. The heat kernel
coefficients can be then computed by evaluating the one-loop effective action of two
simpler minimal operators.

2.1 The Proca field

Consider a massive spin one field Aµ(x) with mass m on a curved d-dimensional space-
time M endowed with a metric gµν(x). The evolution of this field is described by the
so-called Proca equations, which read

∇µFµν −m2Aν = 0, (2.1)

which imply as a consequence the constraint

∇µAµ = 0. (2.2)

Here Fµν is the field strength tensor, antisymmetric in µ↔ ν defined as

Fµν = ∇µAν −∇νAµ, (2.3)
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where ∇µ is the covariant derivative which action on an arbitrary vector field Vν is given
by

∇µVν = ∂µVν − Γλ
µνVλ (2.4)

with Γλ
µν being the Christoffel connection defined in (1.11). Notice that in equation (2.3)

the connections drop out and one could have used usual derivatives as well.
The Proca equations can be derived from an action, which takes the form

SP [Aµ] =

∫
M
ddx
√
gLP , (2.5)

where LP is the Lagrangian density for the Proca field which reads

LP = −1

4
FµνFµν − 1

2
m2AµA

µ. (2.6)

Our convention for the signature of the metric is (−+++) and g = | det gµν |.
Taking the functional derivative δSP [Aµ]/δAν = 0 one obtains equation (2.1), while

equation (2.2) comes from making use of the “Bianchi-like” identity for the field strength
tensor ∇µ∇νFµν = 0.

In d = 4 the field Aµ contains four components, but a massive spin 1 field has only
three degrees of freedom. In fact, equation (2.2), sometimes referred to as “transversality
condition”, acts as a contraint that removes the unphysical component, thus Aµ correctly
describes the three polarizations of a massive spin 1 field.

The path integral for the massive vector field, in the absence of sources, is then given
by

Z[0] =

∫
DA eiSP [Aµ] =

∫
DA e−i

∫
M ddx

√
g( 1

4
FµνFµν+ 1

2
m2AµAµ). (2.7)

Let us perform a Wick rotation on the path integral, in order to obtain the Euclidean
path integral that has been used in the definitions of the first chapter. By making an
analytic continuation of the time variable as t′ → −it, one finds that the action written
in “Minkowskian” time t′, turns into the “Euclidean” action SE in the “Euclidean” time
t. Therefore, the path integral, after the Wick rotation, takes the form

Z[0] =

∫
DA e−SP,E [Aµ]. (2.8)

The Proca action in Euclidean time is explicitly given by

SP [Aµ] =

∫
M
ddx
√
g

(
1

4
FµνFµν +

1

2
m2AµA

µ

)
(2.9)

For simplicity we renamed the new action as SP,E ≡ SP .
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The kinetic operator, whose inverse represents the propagator of the theory, can be
formally obtained from the action by taking functional derivatives

F µ
ν(∇)δ(x, y) =

1
√
g

δ2S[A]

δAµ(x)δAν(y)
. (2.10)

However, it is simpler to extract the operator from the action by casting the latter
in the following form

SP [Aµ] =

∫
M
ddx
√
g
1

2
AµF

µ
νA

ν , (2.11)

By expanding Fµν as in equation (2.3), and by using the commutation relation be-
tween covariant derivatives acting on a vector field, i.e.

[∇µ,∇ν ]A
ρ = Rµν

ρ
σA

σ, (2.12)

it is possible to rewrite the Proca action in the following manner

SP [Aµ] =

∫
M
ddx
√
g
1

2
Aµ

(
−□δµν +∇µ∇ν +Rµ

ν +m2δµν

)
Aν , (2.13)

where □ = gµν∇µ∇ν .
From the action written in this form, we can see that the operator

F µ
ν = −□δµν +∇µ∇ν +Rµ

ν +m2δµν (2.14)

is not of Laplace type (i.e. “minimal”), like the one written in equation (1.8), therefore
the Gilkey procedure for the computation of the heat kernel coefficients is not valid for
the Proca differential operator. Such operator is instead said to be “non-minimal”, which
means that its principal part has a non trivial matrix structure, i.e. is not simply given
by the Laplacian. A necessary generalization for the calculation of the Seeley-DeWitt
coefficients in the presence of non-minimal operators was suggested by Barvinsky and
Vilkovisky [3], which is what we will employ for our computations.

2.2 The reduction of the Proca non-minimal opera-

tor

In what follows we describe a method to reduce the study of a non-minimal operator
to the one of simpler minimal operators. Here we go through the main steps of this
procedure, but if the reader is interested in deepening the subject and in the technical
details we suggest the consultation of [3].
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Consider the action S[ϕ] for an arbitrary set of fields ϕA(x). The propagation of small
perturbations δϕA(x) ≡ φA(x) is described by the equation

FAB(∇)|ϕ=ϕ0φ
B(x) = 0 (2.15)

with ϕ0 a stationary configuration of the field and FAB the differential operator found
by taking left and right functional derivatives of the action as follows

FAB(∇)δ(x, y) =
δl

δϕA(x)

δr
δϕB(y)

S[ϕ]. (2.16)

We are interested in the effective action for the operator FAB(∇), defined as

Γ[ϕ] =
1

2
lnDetFAB(∇). (2.17)

Suppose to take the operator FAB(∇) to be of even order 2k and let’s split the leading
derivative term from the lower derivative terms as follows:

FAB(∇) = DAB(∇) + ΠAB(∇), (2.18)

where DAB(∇) represents the principal part, i.e. the leading derivative term, which takes
the form

DAB(∇) = Dµ1...µ2k

AB ∇µ1 . . .∇µ2k
. (2.19)

∇µ is the covariant derivative acting on the full set of fields φA(x) defined with respect
to any connection and ΠAB(∇) is a differential operator of order 2k − 1. The covariant
derivative satisfies the commutation relation

[∇µ,∇ν ]φ
A = RA

Bµνφ
B, (2.20)

which defines the quantity RA
Bµν . The latter becomes the Riemann tensor when the

commutator acts on a quantity carrying only space-time indices.
Let’s define the so-called principal symbol of the principal part of the operator

FAB(∇):
DAB(n) = Dµ1...µ2k

AB nµ1 . . . nµ2k
, (2.21)

formally obtained by replacing the covariant derivatives in (2.19) with an arbitrary vector
nµ. We shall assume that the operator DAB(∇) is non-degenerate in the sense that

detDAB(n) ̸= 0. (2.22)

We call the full operator (2.18) minimal if its principal part takes the following form:

DAB(n) = CAB(g
µνnµnν)

k

DAB(∇) = CAB□
k,

(2.23)
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where the operator □ = gµν∇µ∇ν , g
µν is the inverse of the space-time metric and CAB

is a matrix independent of nµ with nonzero determinant.
In order to generalize the Schwinger-DeWitt technique to non-minimal operators we

shall further assume that the operator (2.18) can be included in a one-parameter family

FAB(∇|λ) = DAB(∇|λ) + ΠAB(∇|λ), (2.24)

with 0 ≤ λ < λ0, such that the operator is minimal at λ = 0. Thus we have:

DAB(∇|0) = γAB□
k. (2.25)

The matrix γAB serves as configuration space metric in the sense that

γ−1ACFCB(∇|λ) = FA
B (∇|λ) ≡ F̂ (∇|λ) (2.26)

and similarly for the other operators.
The key point in obtaining the effective action for a non-minimal operator is inverting

the matrix D̂(n). Because of (2.22), the inverse can always be found as

D̂−1(n) =
K̂(n)

(n2)m
n2 ≡ gµνnµnν , (2.27)

where the matrix K̂(n) is a polynomial in nµ of power (2m − 2k). The latter equation
can be cast as

D̂(n)K̂(n) = (n2)m1̂. (2.28)

The relation found by replacing here the nµ’s with ∇µ, is valid only for the terms of
highest order derivative, whereas it doesn’t hold for the lower derivative terms, since the
covariant derivatives do not commute with each other and with the background fields
contained in K̂(n).

Let’s call K̂(∇) the quantity obtained by replacing nµ in K̂(n) with ∇µ. Equation
(2.27) will then become

D̂(∇)K̂(∇) = □m + K̂1(∇), (2.29)

where K̂1(∇) is a differential operator of order (2m−1). A similar relation can be found
for the full operator F̂ :

F̂ (∇)K̂(∇) = □m + M̂(∇), (2.30)

with M̂(∇) = K̂1(∇) + Π̂(∇)K̂(∇).
We shall now find relation (2.30) for the Proca operator in (2.14). We start by noticing

that the highest derivative term of our operator is degenerate, because the longitudinal
component of the field Aµ enters the Lagrangian algebraically. In this case one should
not only include the highest derivative terms in the definition of the principal symbol
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D̂(n) but also the lower derivative term. We therefore define the principal symbol in the
following manner

D̂(n) = −n2δµν + nµnν +m2δµν . (2.31)

By means of the matrix determinant lemma

det(A+ uvT ) = (1 + vTA−1u) detA, (2.32)

for an invertible square matrix A and u,v column vectors, one gets the determinant of
the principal symbol

det D̂(n) = −m2(n2 −m2)3. (2.33)

It is possible to compute the inverse of D̂(n), which provides the following identity

D̂(n)K̂(n) = (m2 − n2)δµν , (2.34)

where K̂(n) is given by

K̂(n) = δµν −
nµnν

m2
. (2.35)

We can finally write the relation (2.30) for the Proca operator:

F̂ (∇)K̂(∇) = (m2 −□)δµν +Rµ
ν , (2.36)

where F̂ (∇) is the Proca kinetic operator (2.14) and K̂(∇) is formally obtained by
replacing the nµ’s in K̂(n) with the covariant derivatives, i.e.

K̂(∇) = δµν −
∇µ∇ν

m2
. (2.37)

Lastly, (2.36) can be cast in the following fashion

F µ
α

(
δαν −

∇α∇ν

m2

)
= −□δµν +Rµ

ν +m2δµν . (2.38)

The latter equation represents a powerful operator identity, in that it relates the non-
minimal Proca kinetic operator F µ

ν in the left hand side, to the minimal and simpler
operator in the right hand side, whose leading derivative is simply the Laplacian. This
is indeed what we were looking for in order to compute the heat kernel coefficients for
the massive vector field, that identify the one-loop divergences of the effective action.

Before doing that we still need to manipulate this relation in order to transform the
second term in the left hand side in a minimal operator. Let us perform the functional
trace of the logarithm of relation (2.38) as follows

Tr1 lnF
µ
ν(∇) = Tr1 ln(−□δµν +Rµ

ν +m2δµν )− Tr1 ln

(
δµν −

∇µ∇ν

m2

)
. (2.39)
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Here the subscript 1 indicates that the functional trace is performed over the functional
space of vector fields.

Utilizing the cyclic property of the trace, we can transform the second term of the
right hand side such that a minimal operator appears, i.e.

Tr1(∇µ∇ν)
n = Tr1(∇µ□n−1∇ν) = Tr0(□scalar)

n, (2.40)

where the subscript 0 indicates the functional space of the scalar fields. Let us use the
following property for the logarithm of a matrix A

ln[A] =
∞∑
n=1

(−1)n+1 (A− I)n

n
(2.41)

and let us apply it to the present case as follows

ln

[
δµν −

∇µ∇ν

m2

]
=

∞∑
n=1

(−1)n+1

n

(
−∇

µ∇ν

m2

)n

. (2.42)

By inserting the functional trace in the latter relation, using equation (2.40), we get

Tr1 ln

[
δµν −

∇µ∇ν

m2

]
=

∞∑
n=1

(−1)n+1

n
Tr1

[(
−∇

µ∇ν

m2

)n]
=

∞∑
n=1

(−1)n+1

n
Tr0

[(
−□scalar

m2

)n]
= Tr0 ln

[
1− □scalar

m2

]
.

(2.43)

Equation (2.39) can be finally written in the following way

Tr1 lnF
µ
ν(∇) = Tr1 ln(−□δµν +Rµ

ν +m
2δµν )−Tr0 ln(−□scalar+m

2)+ δ(0)(. . . ).1 (2.44)

This is a rather important result, since it allows us to compute the effective action
for the Proca field, which is a massive vector field, as the effective action for the four-
component vector field minus the one for the one-component scalar field, the latter being
equivalent to the non-dynamical longitudinal mode. As we anticipated the Proca field
in d = 4 is characterized by three propagating degrees of freedom, which correspond
to the four components of the vector field where one is unphysical and gets removed
by the transversality condition (2.2). This is indeed verified by equation (2.44), where
in arbitrary dimension the number of degrees of freedom of the massive vector field is
computed by subtracting the one of the scalar field to the ones of the generic vector field,
as follows

NProca
d.o.f. = d− 1

d=4−−→ 4− 1 = 3, (2.45)

which correctly reproduce the three dynamical components of the Proca field.

1The term proportional to δ(0) corresponds to the trace of a constant in the functional space and it
is usually neglected in QFT (it can be easily eliminated via a renormalization).
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2.3 Proca heat kernel coefficients

We would now like to compute the heat kernel coefficients for the Proca operator, by
applying the methods introduced in the above sections. The problem has completely been
reduced to the study of minimal operators, therefore it is possible to straightforwardly
apply the procedure developed by Gilkey, described in the first chapter.

On manifolds without boundaries one can write the one-loop effective action as an
expansion in powers of the proper time t:

Γ1−loop = −1

2

∫ ∞

0

dt

t
t−d/2(a0 + a1t+ a2t

2 +O(t3)), (2.46)

where the coefficients a0, a1, a2 identify the heat kernel coefficients (1.36) for the case
f(x) = 1 we wish to compute.

The identity (2.44) shows how the Proca Seeley-DeWitt coefficients are given by two
contributions as follows

ak(F̂ ) = ak(F̂v)− ak(F̂s), (2.47)

where ak(F̂v) and ak(F̂s) represent the coefficients for the vector and scalar operators
respectively, which appear in the right hand side of equation (2.44).

Let us start with the vector field operator

F̂v = −□δµν +Rµ
ν +m2δµν . (2.48)

For the computation of the coefficients (1.36) we start by identifying the quantities I, V
and Ωij that appear in their formulae.

The identity I, in this context, corresponds to the Kronecker delta, δµν .
The potential term V can be simply deduced from (2.48) together with (1.8):

V = −Rµ
ν −m2δµν (2.49)

The field strength tensor Ωij can be formally defined by means of the following relation
for the commutator of covariant derivatives, when acting on a scalar field carrying color
indices:

[∇µ,∇ν ]ϕ = Ωµνϕ. (2.50)

Since in the present case we are dealing with uncharged vector fields, the field strength
tensor simply corresponds to the Riemann tensor Rµν

ρ
σ, from (2.12). This can be thought

of as a set of d× d matrices labelled by µ and ν.
After simple algebra the Seeley-DeWitt coefficients for the vector field operator F̂v
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read

a0(F̂v) = (4π)−d/2

∫
M
ddx
√
g d

a1(F̂v) = (4π)−d/2

∫
M
ddx
√
g

[
d− 6

6
R− dm2

]
a2(F̂v) = (4π)−d/2

∫
M
ddx
√
g

[
d− 15

180
RµνρσR

µνρσ − d− 90

180
RµνR

µν +
d− 12

72
R2

− d− 6

6
m2R +

d− 5

30
∇2R +

d

2
m4

]
.

(2.51)

We proceed in a similar fashion for the scalar operator

F̂s = −□scalar +m2, (2.52)

where now we identify I = 1, V = −m2 and Ωµν = 0, from [∂µ, ∂ν ]ϕ = 0 for an uncharged
scalar field ϕ. The corresponding coefficients are thus given by

a0(F̂s) = (4π)−d/2

∫
M
ddx
√
g

a1(F̂s) = (4π)−d/2

∫
M
ddx
√
g

[
1

6
R−m2

]
a2(F̂s) = (4π)−d/2

∫
M
ddx
√
g

[
1

180
(RµνρσR

µνρσ −RµνR
µν) +

1

30
∇2R

+
1

2

(
1

36
R2 +m4 − 1

3
Rm2

)]
.

(2.53)

Finally, we can write the heat kernel coefficients for the Proca operator in arbitrary
dimensions by means of equation (2.47):

a0(F̂ ) = (4π)−d/2

∫
M
ddx
√
g(d− 1)

a1(F̂ ) = (4π)−d/2

∫
M
ddx
√
g

[
d− 7

6
R− (d− 1)m2

]
a2(F̂ ) = (4π)−d/2

∫
M
ddx
√
g

[
d− 16

180
RµνρσR

µνρσ − d− 91

180
RµνR

µν +
d− 13

72
R2

− d− 7

6
m2R +

d− 6

30
∇2R +

d− 1

2
m4

]
.

(2.54)
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The one-loop effective action for the Proca field finally reads

Γ1−loop = −1

2

∫ ∞

0

dt

t

∫
M

ddx
√
g

(4πt)d/2

{
(d− 1) +

[
d− 7

6
R− (d− 1)m2

]
t

+

(
d− 16

180
RµνρσR

µνρσ − d− 91

180
RµνR

µν +
d− 13

72
R2

− d− 7

6
m2R +

d− 6

30
∇2R +

d− 1

2
m4

)
t2 +O(t3)

}
,

(2.55)

which for d = 4 reduces to the following

Γ1−loop = −1

2

∫ ∞

0

dt

t

∫
M

d4x
√
g

(4πt)2

{
3−

(
1

2
R + 3m2

)
t+

(
− 1

15
RµνρσR

µνρσ

+
29

60
RµνR

µν − 1

8
R2 +

1

2
m2R− 1

15
∇2R +

3

2
m4

)
t2 +O(t3)

}
.

(2.56)

One can notice that one-loop effective action can also be written without inserting
the mass term inside the potential V and keeping it outside of the expansion as an
exponential factor, i.e.

Γ1−loop = −1

2

∫ ∞

0

dt

t

∫
M

ddx
√
g

(4πt)d/2
e−tm2

{
(d− 1) +

(
d− 7

6
R

)
t

+

(
d− 16

180
RµνρσR

µνρσ − d− 91

180
RµνR

µν +
d− 13

72
R2

+
d− 6

30
∇2R

)
t2 +O(t3)

}
.

(2.57)

This allows to highlight the fact that the mass term acts as a cut-off for infrared diver-
gences, making the integral over the proper time convergent at the upper limit.

The result in (2.56) has some peculiar features we wish to discuss.
The logarithmic divergent part of the one-loop effective action in d = 4, identified by

the a2 coefficient in (2.56), is in agreement with [3, 13].
The coefficient a0 in (2.56) represents the propagating degrees of freedom for the

massive vector field in d = 4, which as we expected is correctly 3. Indeed, we computed
the effective action for the Proca field as the one of a four-component vector field minus
one scalar mode. One may think that by taking the limit m→ 0, the one-loop effective
action for the Abelian gauge field is recovered, reproducing the two expected degrees
of freedom. However the coefficient a0 remains unaffected. This means that it is not
possible to obtain the effective action for the massless vector field from the massive one
by simply taking the limit m → 0. As showed in [13], the Abelian gauge field, being
degenerate due to the gauge symmetry, must be gauge fixed. This introduces a complex
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anti-commuting scalar ghost operator, whose trace has to be subtracted twice because
of the presence of the anti-ghost. This reduces the number of propagating degrees of
freedom exactly to 2.

The coefficients found for generic dimension d, present in (2.55), agree with those
calculated in Bastianelli, Benincasa, Giombi’s [4]. In this paper aN = 2 massive spinning
particle model allows to study massive antisymmetric tensor fields of rank p (massive
p-forms) in first quantization, which correspond to a generalization of the Proca field.
Indeed, the Seeley-DeWitt coefficients for the 1-form in this paper, coincide with the
ones we found in (2.55).
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Chapter 3

The path integral method and
worldline formalism

In the previous chapters we have introduced the heat kernel expansion for the computa-
tion of the first three Seeley-DeWitt coefficients for the Proca (massive vector) field that
enter the one-loop effective action. The results were achieved by means of the standard
heat kernel approach and of the reduction method for non-minimal operators developed
by Barvinsky and Vilkovisky. In this chapter, we want to propose an alternative ap-
proach to address the problem, which makes use of path integrals as well as a worldline
model instead. In the first section, we present the path integral method able to compute
the heat kernel coefficients for the simple case of a particle subject to a smooth scalar
potential V (x). In this way, we show how by employing path integrals and by means of
a perturbative expansion of the interactive part of the action, one is in principle able to
rederive the heat kernel coefficients. For the case of interest to this thesis work, however,
we first need to build a worldline model. The latter is based on the study of a first
quantized particle model whose Hamiltonian acts on a Hilbert space that, with proper
constraints, contains only the vector field. The above mentioned Hamiltonian, when
quantized with a well defined ordering prescription, provides a worldline representation
of the differential kinetic operator of the Proca field. The classical action which derives
from this Hamiltonian, is then inserted in a path integral which in turn should reproduce
the transition amplitude, related to the heat kernel and its trace, when quantized on the
circle. The worldline model so described has been employed in [16] for the computation
of the one-loop divergences of the gauge fixed graviton in 4 dimensions.
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3.1 The path integral method

In the first chapter we have introduced the heat kernel as the solution of the heat equation
(1.2), which can be obtained from the Schrödinger equation

i
∂

∂t′
ψ = Ĥψ (3.1)

by analytic continuation of the time variable t′ → −it, i.e. by performing aWick rotation,
as follows

− ∂

∂t
ψ = Ĥψ. (3.2)

Indeed, we can identify the fundamental solution ψ as the heat kernel K(t;x, y; Ĥ).
Let us consider the simple case of a particle subject to a smooth scalar potential

V (x), whose Hamiltonian is given by

Ĥ = − 1

2m
∂2 + V (x) (3.3)

As anticipated, the heat kernel can be defined as the following transition amplitude
between position eigenstates

K(t;x, y; Ĥ) = ⟨x| exp (−tĤ)|y⟩ , (3.4)

which under the boundary conditions

K(0;x, y; Ĥ) = δd(x− y), (3.5)

satisfies equation (3.2). The solution in the null potential case can be explicitly found
and takes the simple form

K(t;x, y; Ĥ0) =
m

(2πt)d/2
exp

(
−m(x− y)2

2t

)
, (3.6)

where Ĥ0 = − 1
2m
∂2 is the free Hamiltonian.

At this stage, it is possible to show that the transition amplitude (3.4) can be com-
puted by means of the Euclidean path integral written below

K(t;x, y; Ĥ) =

∫ x(β)=y

x(0)=x

Dx e−S[x]. (3.7)

where the measure represents the sum over all paths xµ(t) between initial xµ(0) = xµ

and final xµ(β) = yµ points. The Euclidean action S[x] given by

S[x] =

∫ β

0

dt

(
m

2
ηµν ẋ

µẋν + V (x)

)
(3.8)
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is the one associated to the Hamiltonian introduced above. It is simple to check how the
path integral so constructed, correctly reproduces the transition amplitude for the free
particle (V (x) = 0). In the case of an arbitrary non vanishing potential, instead, the
path integral cannot be solved exactly, but it can be evaluated perturbatively for small
propagation times β. The procedure we present in what follows provides an alternative
approach to the calculation of the heat kernel in the presence of an arbitrary potential.

Let us first rescale the time variable as t = βτ , in such a way that β becomes the
parameter which will be used to control the order of the perturbative expansion for small
values of β. Therefore, the action becomes

S[x] =
1

β

∫ 1

0

dτ

(
m

2
ηµν ẋ

µẋν + β2V (x)

)
(3.9)

One can split the particle’s trajectory into a classical path xµbg(τ), representing the
background, and a quantum fluctuation qµ(τ), i.e.

xµ(τ) = xµbg(τ) + qµ(τ). (3.10)

The classical part given by
xµbg(τ) = xµ + ξµτ (3.11)

satisfies the classical equation of motion ẍµ(τ) = 0 under boundary conditions xµbg(0) =
xµ, xµbg(1) = yµ. Here ξµ = (yµ − xµ) indicates the displacement between the initial
and the final positions. The quantum fluctuations instead have vanishing boundary
conditions qµ(0) = qµ(1) = 0. Under this splitting the action can be divided into a free
part and an interaction part as

S[x] = S0[x] + Sint[x] (3.12)

where

S0[x] =
m

β

∫ 1

0

dτ
1

2
ηµν ẋ

µẋν , (3.13)

Sint[x] = β

∫ 1

0

dτV (x(τ)). (3.14)

We define the average of an arbitrary functional F [q] by means of the free path
integral, i.e.

⟨F [q]⟩ = 1

A

∫
Dq F [q] e−S0[q] (3.15)

where A is the path integral normalization given by

A =

∫
Dq e−S0[q] =

(
m

2πβ

)d/2

(3.16)
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In a similar fashion the generic N -point correlation function can be written by using
(3.15), i.e.

⟨qµ1(τ1) . . . q
µN (τN)⟩ =

1

A

∫
Dq qµ1(τ1) . . . q

µN (τN)e
−S0[q] (3.17)

where the ones below are of particular interest for our computations

⟨qµ(τ)⟩ = 1

A

∫
Dq qµ(τ)e−S0[q] = 0

⟨qµ(τ)qν(σ)⟩ = 1

A

∫
Dq qµ(τ)qν(σ)e−S0[q] =

β

m
ηµν∆(τ, σ)

(3.18)

The 1-point function is null as all the odd-point functions, while the 2-point function
represents the propagator of the free theory, written by means of the Green function
∆(τ, σ) that satisfies the equation

∂2

∂τ 2
∆(τ, σ) = δ(τ − σ) (3.19)

and its explicit expression is given by

∆(τ, σ) = (τ − 1)σΘ(τ − σ) + (σ − 1)τΘ(σ − τ). (3.20)

Here Θ(τ − σ) is the Heaviside step function which assumes the values Θ(τ − σ) = 1 for
τ > σ, Θ(τ − σ) = 1/2 for τ = σ and Θ(τ − σ) = 0 for τ < σ. The quantities ∆(τ, σ)
and Θ(τ − σ) are distributions acting on the space of functions with vanishing Dirichlet
boundary conditions in the time interval I = [0, 1].

By employing the splitting (3.12) and the translational invariance of the path integral
measure (Dx = D(xbg + q) = Dq), it is possible to cast the path integral in the following
fashion∫ x(1)=y

x(0)=x

Dxe−S[x] = e−S0[xbg ]

∫ q(1)=0

q(0)=0

Dqe−Sint[xbg+q]e−S0[q] = Ae−S0[xbg ]

〈
e−Sint[xbg+q]

〉
=

(
m

2πβ

)d/2

e−
m(x−y)2

2β

〈
1− Sint[xbg + q] +

1

2
S2
int[xbg + q] + · · ·

〉
.

(3.21)

In the latter we exploited the definition (3.15) for the average of an arbitrary functional,
we substituted the path integral normalization (3.16) and we have Taylor expanded the
exponential of the interacting part. Higher powers of Sint in the expansion will provide
terms of order β3 which become negligible for small values of β.
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Let us perform a Taylor expansion of the potential V (x) around the point xµ

V (xbg + q) = V (x) + (ξµτ + qµ(τ))∂µV (x) +
1

2
(ξµτ + qµ(τ)(ξντ + qν(τ))∂µ∂νV (x) + · · ·

(3.22)
that we can plug in Sint. The average ⟨1⟩ = 1 is trivial while the second term in the
expansion reads

⟨−Sint[xbg + q]⟩ = −βV (x)− β

2
ξµ∂µV (x)− β

6
ξµξν∂µ∂νV (x)

− β

2
∂µ∂νV (x)

∫ 1

0

dτ⟨qµ(τ)qν(τ)⟩+ · · ·
(3.23)

By using the propagator in (3.18) we solve the integral as∫ 1

0

dτ⟨qµ(τ)qν(τ)⟩ = − β
m
ηµν

∫ 1

0

dτ∆(τ, τ) = − β
m
ηµν

∫ 1

0

dττ(τ − 1) =
β

6m
ηµν (3.24)

to get

⟨−Sint[xbg + q]⟩ = −βV (x)− β

2
ξµ∂µV (x)− β

6
ξµξν∂µ∂νV (x)

− β2

12m
∂2V (x) + · · · .

(3.25)

We can operate similarly for the quadratic term in the expansion to get, at lowest order
in β, 〈

1

2
S2
int[xbg + q]

〉
=
β2

2
V 2(x) + · · · . (3.26)

By inserting everything back into (3.21), we can finally write the expression for the heat
kernel as follows

K(x, y; β) =

(
m

2πβ

)d/2

e−
m(x−y)2

2β

[
1− βV (x)− β

2
ξµ∂µV (x)

− β

6
ξµξν∂µ∂νV (x)− β2

12m
∂2V (x) +

β2

2
V 2(x)

]
,

(3.27)

from which one can identify the heat kernel coefficients c0, c1 and c2, which at coinciding
points limit (i.e. for ξµ = 0) read

c0(x, x) = 1

c1(x, x) = −V (x)

c2(x, x) =
1

2
V 2(x)− 1

12m
∂2V (x).

(3.28)

Therefore, the use of path integrals provides an alternative method to evaluate the
coefficients of the heat kernel expansion.
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3.2 The worldline vector model

In the previous chapter we were able to compute the Seeley-DeWitt coefficients for the
Proca field by employing the reduction method for non-minimal operators originally
introduced by Barvinsky and Vilkovisky. This allowed to reduce the problem of a non-
minimal operator to the study of minimal operators, for which the Gilkey procedure for
the computation of the heat kernel coefficients is straightforwardly applicable. The next
sections are devoted to the study of a worldline model for the Proca vector field that,
together with the path integral method discussed above, should be able to compute the
heat kernel coefficients without necessarily manipulating the non-minimal operator.

The basic idea of our model is to provide a worldline representation of the kinetic
operator (2.14) used in the standard heat kernel approach. For simplicity, we first reduce
ourselves to the case of a flat d-dimensional space-time, with metric ηµν . We expect that
the only terms surviving in the coefficients (2.54) are the ones which do not involve the
Riemann curvature tensor, the Ricci tensor and the Ricci scalar. The reduction to the
simpler flat space-time case is useful to verify the first coefficient a0, which provides the
number of propagating degrees of freedom of the Proca field. Under this condition, the
differential operator (2.14) becomes

F µ
ν = −∂2δµν + ∂µ∂ν +m2δµν , (3.29)

as covariant derivatives became usual derivative when using Cartesian coordinates and
flat metric ηµν . Clearly, the curvature term is null.

By using the flat metric it is possible to write the differential operator as follows

Fµν = ηµλF
λ
ν = (−∂2 +m2)ηµν + ∂µ∂ν . (3.30)

Its action on an arbitrary vector field V µ(x) reads

(F̂ V )µ = FµνV
ν = (−∂2 +m2)Vµ + ∂µ∂νV

ν . (3.31)

The coordinates and related conjugate momenta of the flat d-dimensional target
space, with metric ηµν , are the usual real phase space variables xµ(t) and pµ(t). Let us
also introduce additional fermionic variables given by the worldline complex fermions
λ̄µ(x) and their conjugate momenta λµ(x). The real bosonic and complex fermionic
variables define a graded phase space. We proceed with the canonical quantization by
promoting these variables to operators which satisfy (anti)commutation relations, i.e.

[x̂µ, p̂ν ] = iδµν (3.32)

{λ̂µ, λ̂†ν} = δνµ (3.33)

where ℏ = 1.
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We call |Ψ⟩ the generic state of the Hilbert space defined by the phase space variables.
The bosonic phase space variables xµ are the eigenvalues of the operator x̂µ when acting
on position eigenstates |x⟩ with eigenvalue equation x̂µ |x⟩ = xµ |x⟩. It acts multiplica-
tively on wave functions of the form Ψ(x) = ⟨x|Ψ⟩, while its conjugate momenta p̂µ act
by means of the derivative: p̂µ = i∂µ.

Similarly we can introduce “bra” coherent states ⟨λ̄|, eigenstates of the operator λ̂†µ,
with eigenvalue equation ⟨λ̄| λ̂†µ = ⟨λ̄| λ̄µ, where λ̄ is an anticommuting number with
Grassmann parity.1 As before, when acting on wave functions of the form Ψ(λ̄) = ⟨λ̄|Ψ⟩,
the operator λ̂†µ acts multiplicatively as λ̂†µ ∼ λ̄µ, while for its conjugate momenta we
have λ̂µ ∼ ∂

∂λ̄µ , so that their anticommutator realizes the algebra in (3.33){
∂

∂λ̄µ
, λ̄ν

}
= δνµ. (3.34)

By projecting the generic state of the Hilbert space |Ψ⟩ on the position eigenstates
together with the coherent states we obtain the wave function

|Ψ⟩ ∼ Ψ(x, λ̄) = (⟨x| ⊗ ⟨λ̄|) |Ψ⟩

= Ψ(x) + Ψµ(x)λ̄
µ +

1

2
Ψµν(x)λ̄

µλ̄ν + ...+
1

d!
Ψµ1...µd

(x)λ̄µ1 ...λ̄µd ,
(3.35)

which has been Taylor expanded by using the Grassmannian property of the λ’s. As
one can see, the real bosonic variables provide the functional dependence on the space-
time points, while the complex fermionic ones are used to introduce a discrete index
µ = 0 . . . d− 1.

The above wave function contains different antisymmetric tensor fields among which
we need to select the wanted vector field Ψµ(x). This is done by means of a constraint
acting on the wave function in the following way:

Ĉ |Ψ⟩ = 0 (3.36)

where the form of Ĉ will be discussed later on.
Let us assume that we have successfully reduced the wave function to the subsector

containing only the vector field, for which the state of the Hilbert space is given by
|V ⟩ ∼ Vµ(x)λ̄

µ. How to do so is better described later in this section.
We want to find the Hamiltonian that acting on the wave function provides the action

of the differential operator (3.30) on the vector field as showed below

Ĥ(Vµ(x)λ̄
µ) = (F̂ Vµ(x))λ̄

µ (3.37)

For this purpose we define the abstract operator ∂̂µ = ip̂µ so that when acting on wave
functions we have

∂̂µ → ∂µ, ∂̂2 → ∂2. (3.38)

1For a digression on coherent states see Appendix A.
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The action of the Laplacian operator on the wave function will be then given by

∂̂2(Vµ(x)λ̄
µ) = (∂2Vµ(x))λ̄

µ. (3.39)

For the mass term we trivially have

m2(Vµ(x)λ̄
µ) = (m2Vµ(x))λ̄

µ. (3.40)

In order to reproduce the action of the last term in equation (3.30) we need to make the
following construction:

∂̂µ∂̂νλ̄
µλν(Vσ(x)λ̄

σ) = ∂µ∂νVσλ̄
µλνλ̄σ

= ∂µ∂νVσλ̄
µδνσ = (∂µ∂νV

ν)λ̄µ .
(3.41)

By collecting all the terms, we can finally write the wanted Hamiltonian operator of the
model as follows:

Ĥ = −∂̂2 +m2 + ∂̂µ∂̂νλ̂
†µλ̂ν = p̂µp̂νη

µν +m2 − p̂µp̂νλ̂†µλ̂ν . (3.42)

This is the correct quantum Hamiltonian that reproduces the Proca differential operator
(3.29) acting on the vector wave function that satisfies the constraint (3.36).

Now, we have to write the classical particle action related to this quantum Hamil-
tonian Ĥ, which will then be inserted in the path integral. The classical action will
contain a classical Hamiltonian H, that upon quantization must give rise to the quan-
tum version Ĥ. In the procedure of canonical quantization, however, one has to deal
with ordering ambiguities when moving from the classical Hamiltonian to the quantum
one, which arise from the non vanishing (anti)commutation relations (3.32) and (3.33) of
the bosonic and fermionic operators. The latter commute in the classical theory, there-
fore a single classical Hamiltonian would give rise to many different quantum extensions
with the same classical limit. A common method to take care of such ambiguities relies
on requesting the preservation of the symmetries present in the classical theory also at
the quantum level. For this purpose a specific ordering prescription is needed. We will
focus on the path integral quantization, where the equivalent of the ordering prescription
is contained in the regularization adopted in properly defining the path integral, which
may also include a counterterm to be added to the classical action.

From (3.42), one may expect that the classical Hamiltonian is of the form

H = p2 +m2 − pµpνλ̄µλν + αp2, (3.43)

with α parametrizing a possible conterterm2. Indeed, one can choose the Weyl ordering

2The classical term pµpν λ̄
µλν can be written in many ways, e.g. pµpν λ̄

µλν = −pµpνλν λ̄µ and
equivalent classical versions lead to different quantum operators that differ by a term proportional to
p2.
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prescription in which the canonical variables appear symmetrized (bosonic) or antisym-
metrized (fermionic), i.e.

p̂µp̂νλ̂
†µλ̂ν = p̂µp̂ν

(
1

2
λ̂†µλ̂ν +

1

2
{λ̂†µ, λ̂ν} − 1

2
λ̂νλ̂†µ

)
= p̂µp̂ν

1

2
(λ̂†µλ̂ν − λ̂νλ̂†µ) + 1

2
p2.

(3.44)

This will introduce in the classical action a term of the form

pµpν
1

2
(λ̄µλν) +

1

2
p2, (3.45)

which corresponds to the choice α = 1/2 in (3.43). At this point, we can write the
classical action in phase space which in Euclidean time takes the form

S[x, p; λ̄, λ] =

∫ β

0

dt(−ipµẋµ + λ̄µλ̇µ +H), (3.46)

where the dot denotes the derivative with respect to time. However, one also needs
to implement the reduction to a subsector of the Hilbert space corresponding to the
constraint in (3.36). To achieve this, we need to add a coupling between the fermionic
fields and an auxiliary worldline gauge field a, with an extra Chern-Simons coupling fixed
in order to select the subsector of the Hilbert space that contains only the vector field.
We briefly explain this procedure below.

The kinetic term of the fermionic variables in the above action reads

S[λ̄, λ]free =

∫ β

0

dtλ̄µλ̇µ (3.47)

and enjoys a U(1) global symmetry under the transformations

λ̄µ
U(1)g−−−→ λ̄′µ = eiϕλ̄µ

λµ
U(1)g−−−→ λ′µ = e−iϕλµ

(3.48)

where ϕ is the constant angle of the transformation. However, the action is not invariant
under the local U(1) transformation

λ̄µ
U(1)l−−−→ λ̄′µ = eiϕ(t)λ̄µ

λµ
U(1)l−−−→ λ′µ = e−iϕ(t)λµ

(3.49)

in which we sent ϕ→ ϕ(t). In order to do so, we introduce an auxiliary worldline gauge
field a(t) whose transformation under the local U(1) symmetry group is given by

a(t)
U(1)l−−−→ a′(t) = a(t) + ∂tϕ(t). (3.50)
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This auxiliary gauge field enters the action via a coupling with the fermionic variables and
makes it invariant. By adding an extra Chern-Simons term−isa, with quantized coupling
constant s, the gauge field a can be seen as a Lagrange multiplier whose equations of
motion provide the constraint

C = λ̄µλµ − s. (3.51)

The latter, upon canonical quantization, gives rise to some ordering ambiguities, which
may be resolved by a graded symmetrization of the quantum constraint, i.e.

Ĉ =
1

2
(λ̂†µλ̂µ − λ̂µλ̂†µ)− s. (3.52)

In this way, the quantum constraint acting on the wave function Ψ(x, λ̄) gives

ĈΨ(x, λ̄) =

[
1

2

(
λ̄µ

∂

∂λ̄µ
− ∂

∂λ̄µ
λ̄µ

)
− s

]
Ψ(x, λ̄)

=

(
λ̄µ

∂

∂λ̄µ
− 1

2

{
λ̄µ,

∂

∂λ̄µ

}
− s

)
Ψ(x, λ̄) =

(
λ̄µ

∂

∂λ̄µ
− d

2
− s

)
Ψ(x, λ̄) = 0.

(3.53)

If we define the number operator N̂ ≡ λ̄µ ∂
∂λ̄µ , that acting on wave functions gives rise

to the occupation number n, we are able to select the subsector of the Hilbert space
containing only vector fields, i.e. the one with occupation number n = 1, by choosing
the Chern-Simons coupling constant to be s = 1 − d/2. In this way the constraint
becomes

(N̂ − 1)Ψ(x, λ̄) = 0. (3.54)

The reader can find further explanations of the origin and the use of this projection
mechanism in [16, 17, 18].

The full classical action in phase space, together with the additional gauge field, reads

S[x, p; λ̄, λ; a] =

∫ β

0

dt(−ipµẋµ+
1

2
ηµνpµpν+ λ̄

µ(∂t+ia)λµ−pµpνλ̄µλν−isa+m2) (3.55)

3.3 Computing the path integral

Let us test if the path integral quantization of the classical action (3.55) reproduces the
expected properties of the Proca model. In particular, we see that the action contains
a quartic term ∼ pµpνλ̄

µλν , which we may interpret as an interaction on the worldline.
The next step is to understand if we can treat this term perturbatively or not. For this
purpose, as anticipated in 3.1, it is rather useful to rescale the time coordinate as follows

t→ τ =
t

β
(3.56)

33



where β is interpreted as the small parameter that will control the order of the pertur-
bative expansion. In order to get a factor 1/β in front of the action, we also rescale the
momenta, the fermions and the auxiliary gauge field as

pµ →
pµ
β
, λµ →

λµ√
β
, λ̄µ →

λ̄µ√
β
, a→ a

β
. (3.57)

The classical phase space action thus becomes

S[x, p; λ̄, λ; a] =
1

β

∫ 1

0

dτ(−ipµẋµ +
1

2
ηµνpµpν + λ̄µ(∂t + ia)λµ −

1

β
pµpνλ̄

µλν)

+
1

β

∫ 1

0

dτ(β2m2 − isa)
(3.58)

In principle one could integrate out the momenta by means of their equations of motion.
However, this would lead to an expression which is not amenable for the computations,
therefore we work in phase space.

One can notice that the only gauge invariant quantity that can be constructed from
the gauge field a(τ) is the Wilson loop

ω = ei
∫ 1
0 dτa(τ). (3.59)

By means of “small” gauge transformations, continuously connected to the identity, it is
possible to bring a(τ) to a constant value θ

θ =

∫ 1

0

dτa(τ). (3.60)

Thus “large” gauge transformations with ϕ(τ) = 2πnτ lead to

θ ∼ θ + 2πn, n integer. (3.61)

Therefore θ represents a modular parameter ranging from 0 to 2π. After gauge fixing,
one is left with an integral over θ corresponding to the Wilson loop ω = eiθ. Since the
U(1) gauge group is Abelian, the Faddeev-Popov determinant is just a constant that can
be factorized out and absorbed in the overall normalization.

The one-loop effective action can be written in terms of the path integral as follows

Γ = −1

2

∫ ∞

0

dβ

β

∫
ddx

∫ 2π

0

dθ

2π
eisθe−βm2

∫
P

DxDp

∫
A

Dλ̄Dλe−S[x,p;λ̄,λ], (3.62)

where the subscripts P and A indicate periodic and antiperiodic boundary conditions
for bosons and fermions respectively, i.e.

xµ(0) = xµ(1), λ̄µ(0) = −λ̄µ(1) (3.63)
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and the action S[x, p; λ̄, λ] is the one written in (3.58) where we have factorized out the
constant values and the modular integral in θ. We also remind that s is the Chern-Simons
coupling constant given by s = 1− d/2.

We proceed by splitting the action into free part and interacting part as follows

Sfree =
1

β

∫ 1

0

dτ(−ipµẋµ +
1

2
ηµνpµpν + λ̄µ(∂τ + iθ)λµ) (3.64)

Sint =
1

β

∫ 1

0

dτ(− 1

β
pµpνλ̄

µλν). (3.65)

At this stage, one can decompose all the bosonic trajectories into a fixed path (called
classical or background) and quantum fluctuations by

xµ(τ) = xµbg(τ) + qµ(τ), (3.66)

where the background (classical) paths satisfy the classical equation of motion and are
given by

xµbg(τ) = ξµτ (3.67)

with boundary conditions xµbg(0) = 0 and xµbg(1) = ξµ. In order to compute the transition

amplitude at coinciding points ⟨x|e−βĤ |x⟩ we need to set ξµ = 0. In this way the
background parts vanish in our coordinate system, and we are left with the quantum
fluctuations qµ(τ). The latter, as usual, have vanishing boundary conditions qµ(0) =
qµ(1) = 0. Similarly we decompose the momenta

pµ(τ) = pbgµ (τ) + πµ(τ) (3.68)

where the background is given by

pbgµ (τ) = iηµνξ
ν (3.69)

so that it vanishes due to our boundary conditions and we are left with the quantum
part πµ(τ) entering the action.

The normalization of the bosonic path integral gives

A =

∫
DqDπe−Sfree[q

µ,πµ] =

(
1

2πβ

)d/2

. (3.70)

It is used to compute the correlation functions that will appear in the perturbative
expansion of the interacting term, with the procedure discussed for the simple case in
section 3.1. The exponential of the free action in the background is trivally given by

e−Sfree[x
µ
bg ,p

bg
µ ] = 1. (3.71)
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In what follows we will also need the fermionic path integral normalization, which is
directly computable from the free action by Gaussian integration as described in [19],
i.e. ∫

A

Dλ̄Dλe−Sfree[λ̄
µ,λµ] =

∫
A

Dλ̄Dλ exp

(
− 1

β

∫ 1

0

dτλ̄µ(∂τ + iθ)λµ

)
= detd(∂τ + iθ).

(3.72)

By using the operator formalism, the free fermionic path integral can be traced back
to the computation of the functional trace of the evolution operator. Hence the latter
determinant is given by

detd(∂τ + iθ) = Tr e−Ĥθ = Tr e−iθ(λ̂†µλ̂µ− d
2
) = eiθ

d
2 (1 + e−iθ)d =

(
2 cos

θ

2

)d

, (3.73)

where we exploited the fact that in one dimension the eigenvalues of the fermionic number
operator λ̂†µλ̂µ are either 0 or 1.

The one-loop effective action can be therefore written in the following fashion

Γ = −1

2

∫ ∞

0

dβ

β

∫
ddx

∫ 2π

0

dθ

2π
eisθe−βm2

∫
D

DqDπ

∫
A

Dλ̄Dλ e−Sint[πµ,λ̄µ,λµ]e−Sfree[q
µ,πµ,λ̄µ,λµ]

= −1

2

∫ ∞

0

dβ

β

∫
ddx

(2πβ)d/2

∫ 2π

0

dθ

2π
eisθe−βm2

(
2 cos

θ

2

)d

⟨e−Sint⟩,

(3.74)

where the subscript D stands for Dirichlet boundary conditions and −Sint[πµ, λ̄
µ, λµ] is

now given by

−Sint[πµ, λ̄
µ, λµ] =

1

β2

∫ 1

0

dτ(πµπνλ̄
µλν). (3.75)

In (3.74) we also used the definition of the average of a generic functional given in
(3.15) and the bosonic and fermionic path integral normalizations (3.70) and (3.73).
The perturbative expansion is generated by Taylor expanding the euclidean exponential
of the interaction part in powers of β, i.e.

⟨e−Sint⟩ = ⟨1− Sint +
1

2
S2
int + ...⟩. (3.76)

It is possible to extract the propagators of the theory from the free part of the action
with quantum fluctuations, namely

Sfree[q
µ, πµ, λ̄

µ, λµ] =
1

β

∫ 1

0

dτ(−iπµq̇µ +
1

2
ηµνπµπν + λ̄µ(∂τ + iθ)λµ). (3.77)
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Let us first focus on the bosonic part, i.e.

Sfree[q
µ, πµ, λ̄

µ, λµ] ⊃ Sfree[q
µ, πµ] =

1

β

∫ 1

0

dτ(−iπµq̇µ +
1

2
ηµνπµπν). (3.78)

The propagators are easily extracted from this action by identifying the matrix kinetic

operator K acting on ψ(τ) =

(
qµ(τ)
pµ(τ)

)
as

K(τ, σ) =
1

β

(
0 iδνµ∂τ

−iδµν ∂τ ηµν

)
δ(τ − σ) (3.79)

from which one obtains its inverse

G(τ, σ) = β

(
−ηµν∆(τ, σ) iδνµ∆

•(τ, σ)
−iδµν •∆(τ, σ) ηµν

)
δ(τ − σ). (3.80)

This gives rise to the 2-point functions

⟨qµ(τ)qν(σ)⟩ = −βηµν∆(τ, σ)

⟨qµ(τ)πν(σ)⟩ = −iβδµν∆•(τ, σ)

⟨πµ(τ)πν(σ)⟩ = βηµν

(3.81)

where ∆(τ, σ) is the same as (3.20) and the left-right dots indicate derivatives with
respect to the left-right variable:

•∆(τ, σ) = σ −Θ(σ − τ), ∆•(τ, σ) = τ −Θ(τ − σ). (3.82)

The propagator and its derivatives at equal time are

∆(τ, τ) = τ(τ − 1), •∆(τ, σ)|τ=σ = ∆•(τ, σ)|τ=σ = τ − 1

2
. (3.83)

The next step is to compute the fermionic propagator. For this purpose it is useful to
expand the fermionic variables in half-integer modes as

λ̄µ(τ) =
∑

r∈Z+ 1
2

λ̄µr e
−2πirτ , λµ(τ) =

∑
r∈Z+ 1

2

λµr e
2πirτ . (3.84)

Plugging this expansion in the free action we get

Sfree[λ̄
µ, λµ] =

1

β

∫ 1

0

dτλ̄µ(∂τ + iθ)λµ =
i

β

∑
r∈Z+ 1

2

(2πr + θ)λ̄µrλrµ. (3.85)
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The propagator is given as usual by the 2-point function, computed as follows

⟨λµ(τ)λ̄ν(σ)⟩ =
∑

r,s∈Z+ 1
2

⟨λrµλ̄νs⟩e2πirτe−2πisσ = βδνµ
∑

r∈Z+ 1
2

−i
2πr + θ

e2πir(τ−σ), (3.86)

where the last equality follows from the fact that

⟨λrµλ̄νs⟩ = −i
β

2πr + θ
δνµδ

r
s . (3.87)

Therefore one finds the propagator for the antiperiodic fermions as

⟨λµ(τ)λ̄ν(σ)⟩ = βδνµ∆F (τ − σ, θ), ∆F (τ − σ, θ) =
∑

r∈Z+ 1
2

−i
2πr + θ

e2πir(τ−σ), (3.88)

where ∆F satisfies the Green equation

(∂x + iθ)∆F (x, θ) =
∑

r∈Z+ 1
2

e2πirx = δF (x). (3.89)

In the last expression δF (x) is the Dirac delta distribution acting on functions on the
time segment I = [0, 1] with antiperiodic boundary conditions.

Under the condition (τ − σ) ∈] − 1, 1[, the propagator (3.88) can be written, after
computing the sum, as below

∆F (τ − σ, θ) =
e−iθ(τ−σ)

2 cos θ
2

[
ei

θ
2Θ(τ − σ)− e−i θ

2Θ(σ − τ)
]
. (3.90)

In the computations of the perturbative expansion we will need the following identities:

∆F (0, θ) =
i

2
tan

θ

2
, (3.91)

∆F (τ − σ, θ)∆F (σ − τ, θ) = −
1

4
cos−2 θ

2
, (3.92)

where the first one comes from summing up (3.88) using the symmetry in the modes +r
and −r.

At this stage, it is worthwhile to keep track of the small parameter β when we perform
the expansion (3.76). As one can see, every propagator carries a factor of β. Therefore
when we consider ⟨Sint⟩ as in (3.75), it turns out that all the β factors cancel out and
⟨Sint⟩ will contribute to the order β0. The same happens for all the higher orders of the
expansion. For example we can already see that when we consider the order ⟨S2

int⟩, we
will get a factor of 1/β4 in front of the integral, that gets cancelled by the factor of β4
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coming from the propagators. It seems that a perturbative treatment of the path integral
is not possible for this interaction vertex πµπνλ̄

µλν , as a matter of fact this calculation
looks rather non-perturbative. Of course it is not possible to compute an infinite amount
of terms, which is made even harder by the rapidly increasing amount of diagrams that
appear at every higher order of the expansion. However, one can try to compute the
first orders of the expansion to see if a recognizable and known series occurs. Indeed,
since we already know from (2.54) that at order β0 one should get the first heat kernel
coefficient a0, we expect from this series to eventually get the result d−1, which provides
the number of degrees of freedom of the massive vector field in d dimensions.

Let us proceed with the computation of ⟨−Sint⟩ by using the propagators (3.81) and
(3.88)

⟨−Sint⟩ =
1

β2

∫ 1

0

dτ⟨πµπνλ̄µλν⟩ =
1

β2

∫ 1

0

dτ⟨πµπν⟩⟨λ̄µλν⟩ = −d
i

2
tan

θ

2
(3.93)

where the 4-point function ⟨πµπνλ̄µλν⟩ has been divided into products of 2-point func-
tions by means of the Wick theorem, with an extra minus sign coming from the anti-
commuting character of the Grassmann numbers.

In a similar way we compute 1
2
⟨S2

int⟩ by considering only connected diagrams and
then adding the disconnected one given by 1/2 times the square of (3.93), i.e.

1

2
⟨S2

int⟩c =
1

2β4

∫ 1

0

dτ

∫ 1

0

dσ⟨πµ(τ)πν(τ)λ̄µ(τ)λν(τ)πα(σ)πβ(σ)λ̄α(σ)λβ(σ)⟩c

=
1

2β4

∫ 1

0

dτ

∫ 1

0

dσ

[(
⟨πµ(τ)πα(σ)⟩⟨πν(τ)πβ(σ)⟩+ ⟨πµ(τ)πβ(σ)⟩⟨πν(τ)πα(σ)⟩

)
(
⟨λν(τ)λ̄µ(τ)⟩⟨λβ(σ)λ̄α(σ)⟩ − ⟨λβ(σ)λ̄µ(τ)⟩⟨λν(τ)λ̄α(σ)⟩

)
−

(
⟨πµ(τ)πν(τ)⟩⟨πα(σ)πβ(σ)⟩

)(
⟨λβ(σ)λ̄µ(τ)⟩⟨λν(τ)λ̄α(σ)⟩

)]
=

1

2

∫ 1

0

dτ

∫ 1

0

dσ

(
2d∆F (0)∆F (0)− 2d∆F (σ − τ)∆F (τ − σ)

− d2∆F (σ − τ)∆F (τ − σ)
)

=
1

2

∫ 1

0

dτ

∫ 1

0

dσ

(
d

2
cos−2 θ

2
+
d2

4
cos−2 θ

2
− d

2
tan2 θ

2

)
=
d

4

(
d

2
cos−2 θ

2
+ 1

)
.

(3.94)

Here we performed as usual all the possible Wick contractions that give rise to connected
diagrams only and we used the identity tan2 θ

2
= cos−2 θ

2
−1. The expansion of the average
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of the interaction part is thus given by

⟨e−Sint⟩ = 1− d i
2
tan

θ

2
+
d

4
+
d2

8
· · · . (3.95)

The last effort regards the computation of the modular integrals present in (3.74) 3.

I1 ≡
∫ 2π

0

dθ

2π
eisθ

(
2 cos

θ

2

)d

= d,

I2 ≡
∫ 2π

0

dθ

2π
eisθ

(
2 cos

θ

2

)d

tan
θ

2
= −i(d− 2),

I3 ≡
∫ 2π

0

dθ

2π
eisθ

(
2 cos

θ

2

)d

cos−2 θ

2
= 4,

(3.96)

where I3 has been computed because it will be useful later on in the thesis.
By using these results one could write the first terms of the effective action, i.e.

Γ = −1

2

∫ ∞

0

dβ

β

∫
ddx

(2πβ)d/2
e−βm2

[
d− d(d− 2)

2
+
d2(d+ 2)

8
+ · · ·

]
= −1

2

∫ ∞

0

dβ

β

∫
ddx

(2πβ)d/2
e−βm2

[
2d− d2

4
+
d3

8
· · ·

] (3.97)

At a first glimpse it seems that there is no recursive relation that could induce to guess
a possible convergent series as a result of the expansion.

3For a complete description of the computation of the modular integrals see Appendix B.
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Chapter 4

The worldline model for a new
gauge fixed action

In the previous chapter, we faced the problem of a non-perturbative vertex (πµπνλ̄
µλν)

during the computation of the path integral that should reproduce the one-loop effective
action reported in equation (2.55) for the Proca vector field. This hindrance, which at
first glimpse seems not easy to overcome, makes the perturbative treatment non feasible.
However, a solution to the problem, or better an alternative way of computing that
bothersome vertex, that will make the path integral method, together with the worldline
formalism, directly applicable to the Proca differential operator (2.14) without relying
on alternative procedures such as the Barvinsky-Vilkovisky reduction method, is left for
future research.

Nevertheless, in the present chapter, we are going to present a different way to manip-
ulate the Proca action and to reduce the problem to the study of only minimal operators.
By following a procedure suggested in [4], we introduce a scalar field, commonly known
as Stückelberg field, to reinstate the gauge symmetry enjoyed by the Maxwell Lagrangian
−1/4 FµνFµν , broken by the mass term. This procedure, with the introduction of anti-
commuting scalar ghosts necessary for the gauge-fixing, will reduce the analysis of the
Proca operator to the study of minimal operators acting on vectors and scalars.

By generalizing the scheme described in 3.2 to these operators in a curved tar-
get space-time, we construct the action whose path integral is able to reproduce the
wanted one-loop effective action. The mentioned path integral is completely free of
non-perturbative vertices, therefore the perturbative approach is now doable.

The quantization of a particle moving in a curved space-time requires the analysis of
ordering ambiguities, arising from the process of canonical quantization, with the choice
of a particular ordering prescription for the Hamiltonian operator that must reproduce
the operator of interest. This also translates into the choice of a specific regulariza-
tion scheme for the evaluation of the path integral, with extra finite local counterterms
associated to the above mentioned ordering.
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4.1 Introducing a Stückelberg field to restore gauge

invariance

The Proca action in Minkowskian time

SP [Aµ] =

∫
M
ddx
√
g

(
−1

4
FµνFµν − 1

2
m2AµA

µ

)
, (4.1)

does not enjoy the same gauge symmetry associated to its massless counterpart, i.e. the
Maxwell action describing massless photons, identified by the following gauge transfor-
mation rule

Aµ(x)→ A′
µ(x) = Aµ(x) +∇µΛ(x), (4.2)

where Λ(x) indicates an arbitrary function. This is a consequence of the non vanishing
mass term ∝ m2AµA

µ which is not invariant under the inhomogeneous transformation
(4.2) of the field Aµ(x).

However, there exists a way, originally introduced by Stückelberg in 1938, that allows
to restore gauge invariance in the Proca action by introducing an extra scalar field ϕ(x),
in addition to the four components vector field Aµ(x), in such a way that the new
action for the now five fields not only presents a manifest Lorentz covariance, but also
a manifest gauge invariance. Therefore, the Stückelberg field ϕ(x) restores the gauge
symmetry present in the Maxwell theory, which had been broken by the mass term. The
Stückelberg field ϕ(x) can thus be introduced in the action (4.1) in the following way

S[Aµ, ϕ] =

∫
M
ddx
√
g

[
−1

4
FµνFµν − m2

2

(
Aµ −

1

m
∇µϕ

)2]
. (4.3)

We can clearly see that this new action presents a gauge symmetry under the transfor-
mations rules

Aµ(x)→ A′
µ(x) = Aµ(x) +∇µΛ(x)

ϕ(x)→ ϕ′(x) = ϕ(x) +mΛ(x).
(4.4)

Of course the new scalar field ϕ(x) could be completely gauged away from the action by
means of this symmetry, but we shall keep it in order to study the action with a different
gauge fixing, performed with the so-called BRST gauge fixing procedure, which is more
useful for our purposes. The latter is an algebraic method that allows one to find the
complete gauge-fixed action entering the path integral. The BRST quantization method
is widely used and can be employed to get the gauge-fixed action even for more general
non-abelian gauge theories. For example, it is commonly applied to Yang-Mills theories
or to quantize gravity starting from the Einstein-Hilbert action. It consists in a rather
universal approach that is applicable to all the cases where the gauge algebra, related to
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the gauge symmetry, has constant structure functions and closes “off-shell”, i.e. without
using the equations of motion.

In this thesis we will use it to remove the two unphysical degrees of freedom, now
represented by the longitudinal component of Aµ(x) and the Stückelberg field ϕ(x), via
the introduction of two scalar ghost fields. Let us start by introducing a complex scalar
anticommuting ghost c(x), the corresponding complex conjugate, namely the antighost
c̄(x) and a scalar auxiliary bosonic field B(x). The BRST transformation laws read

δBAµ(x) = η ∇µc(x)

δBϕ(x) = η m c(x)

δBc(x) = 0

δB c̄(x) = η B(x)

δBB(x) = 0

(4.5)

where η is the anticommuting parameter of the transformation. The BRST variations
of Aµ(x) and ϕ(x) are easily obtained by replacing the arbitrary function Λ(x) in (4.4)
with ηc(x). The transformation laws (4.5) can be used to introduce in the action a gauge
fermion Ψ of the form

Ψ = c̄ (∇µA
µ −mϕ+

B

2
), (4.6)

where ∇µA
µ −mϕ+ B

2
plays the role of a gauge-fixing function.

In fact, the most important property of the BRST symmetry is that it is nilpotent,
i.e. it satisfies

[δB(η1), δB(η2)] = 0. (4.7)

Equivalently, by defining the Slavnov variation as the BRST variation with the anticom-
muting parameter η removed from the left, that is

δB(η) = ηs, (4.8)

the nilpotency of the BRST symmetry means that

s2 = 0. (4.9)

One can then take advantage of this property to modify the action (4.3) by adding to it
the Slavnov variation of the gauge fermion, which is manifestly BRST invariant thanks
precisely to the nilpotency, i.e.

Stot[Aµ, ϕ] = S[Aµ, ϕ]+sΨ =

∫
M
ddx
√
g

[
−1

4
FµνFµν−m

2

2

(
Aµ−

1

m
∇µϕ

)2

+sΨ

]
(4.10)

The new gauge-fixed action is then manifestly BRST invariant by construction. The
crucial observation here is that the nilpontecy of the BRST symmetry introduces the
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concept of cohomology, which allows to work with equivalence classes. Indeed, physical
observables are identified as cohomology classes: two BRST invariant quantities differing
by the BRST variation of something are equivalent and therefore belong to the same class,
identifying the same physical observable.

By using the (4.5) one can compute sΨ that, replaced in the gauge-fixed action, gives

Stot[Aµ, ϕ, c̄, c, B] =

∫
M
ddx
√
g

[
− 1

2
∇µAν∇µAν +

1

2
∇µAν∇νAµ − m2

2

(
Aµ −

1

m
∇µϕ

)2

+B

(
∇µA

µ −mϕ+
B

2

)
− c̄ (∇2 −m2)c

]
.

(4.11)

At this stage we can integrate out the auxiliary field B(x) by means of its equation of
motion, i.e.

δStot

δB
= 0→ B = mϕ−∇µA

µ. (4.12)

The last equation, together with the commutator between covariant derivatives (2.12),
can be used in (4.11) to write the total action in a rather useful form

Stot[Aµ, ϕ, c̄, c] = Svector[Aµ] + Sscalar[ϕ]− Sghost[c̄, c], (4.13)

where the vector, scalar and ghost actions are respectively given by

Svector[Aµ] =

∫
M
ddx
√
g
1

2
Aµ(∇2δµν −m2δµν −Rµ

ν)A
ν ,

Sscalar[ϕ] =

∫
M
ddx
√
g
1

2
ϕ(∇2 −m2)ϕ,

Sghost[c̄, c] =

∫
M
ddx
√
g c̄(∇2 −m2)c.

(4.14)

The gauge-fixed action for the Proca field in curved space-time is thus described by
the sum of three actions, that is the ones for the vector field Aµ(x), the scalar bosonic
field ϕ(x) and the two anticommuting scalar ghosts c̄(x) and c(x). The latter carry two
unphysical degrees of freedom that cancel the ones coming from the Stuckelberg field
and the longitudinal mode of the vector Aµ(x).

We observe that this method represents an alternative approach to the reduction
formula (2.44) of Barvinsky and Vilkovisky used to compute the one-loop effective action
of the non-minimal Proca operator (2.14). One may also infer that the two methods are
formally equivalent. In fact, the Proca field is described by vector and scalar fields whose
actions, properly summed, provide the correct number of physical degrees of freedom.
This means that one could equally start from the action (4.13) and apply the heat kernel
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approach separately to the vector and scalars operators, summing the results of the
one-loop effective actions at the end.

Moreover, the introduction of the Stückelberg field and the application of the BRST
quantization method, allowed to remove the problematic term in the path integral ap-
proach discussed in the previous chapter. Indeed the kinetic operator for the vector
field Aµ, which can be read off from the action, is of minimal type, i.e. without terms
∼ ∇µ∇νA

µ. This is exactly the term that in the worldline construction gave rise to a
non-perturbative vertex in the path integral computation. In this sense, we will start
from this gauge-fixed action to apply the path integral method for the calculation of
the heat kernel coefficients, after the construction of a proper model for the worldline
representation of the kinetic operators present in the action, that is the ones for the
vector field Aµ(x), the scalar field ϕ(x) and the ghost fields c(x) and c̄(x).

Before we proceed with the formulation of this new model, let us rewrite the action
(4.13) in Euclidean time by performing the usual Wick rotation. The Euclidean action
is then given by

Stot
E [Aµ, ϕ, c̄, c] =

∫
M
ddx
√
g

[
1

2
Aµ(−∇2δµν +m2δµν +Rµ

ν)A
ν

+
1

2
ϕ(−∇2 +m2)ϕ− c̄(−∇2 +m2)c

]
.

(4.15)

4.2 The worldline model for the vector field

In the following we want to construct a worldline representation of the operator acting on
the space of vector fields Aµ(x). To do so we proceed similarly to what we did in section
3.2 by performing a straightforward generalization to a curved d-dimensional space-
time with metric tensor gµν . There are however some subtleties in this particular case
represented by ordering ambiguities in the quantum Hamiltonian which must reproduce
the wanted vector operator. The choice of a precise ordering prescription must be taken
care of in the path integral construction as well, via a proper regularization scheme, that
we will discuss later on with much more details.

Let us start from the Euclidean action for the vector field Aµ(x), which is given by

SE
vector[Aµ] =

∫
M
ddx
√
g
1

2
Aµ(−∇2δµν +m2δµν +Rµ

ν)A
ν . (4.16)

From the latter we can easily extract the differential operator

Fµν = −gµν∇2 + gµνm
2 +Rµν (4.17)

whose action on a generic vector field Vµ(x) reads

FµνV
ν = −∇2Vµ +m2Vµ +RµνV

ν . (4.18)
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We now proceed with the construction of the Hilbert space. The coordinates and
related conjugate momenta are again given by the phase space variables xµ(t) and pµ(t).
As usual they provide the functional dependence on the space-time points of the wave
function representing the generic state of the Hilbert space. The latter needs also discrete
indices, introduced by means of worldline complex fermions that are represented by the
fermionic variables λ̄a with associated conjugate momenta λa. These indices are indeed
needed to identify the vector field among the other fields contained in the Hilbert space.
One could use curved indices as well, i.e. λ̄µ and λµ, but this would lead to various
issues related to the ordering of fermionic bilinears ∼ λ̄λ. Flat indices are employed to
overcome such problems and can be easily implemented by means of the vielbein basis
introduced in section 1.2. The bosonic and fermionic variables altogether define a graded
phase space.

We promote these variables to operators with the usual canonical quantization via
the following (anti)commutation relations

[x̂µ, p̂ν ] = iδµν (4.19)

{λ̂a, λ̂†b} = δba (4.20)

where we set ℏ = 1. As before the above mentioned bosonic variables correspond to the
eigeinvalues of the position operator x̂µ when acting on position eigenstates |x⟩, while
the anticommuting numbers λ̄a are the eigenvalues of the operator λ̂†a when acting on
the fermionic coherent states ⟨λ̄|.

Since we are considering a curved target space-time with metric gµν(x), we have to
keep track of the possible factors arising in the definition of the momentum due to the
form of the covariant measure, i.e. ddx

√
g, entering the scalar product between two

generic wave functions Ψ1(x) and Ψ2(x)

⟨Ψ1|Ψ2⟩ =
∫
M
ddx
√
gΨ∗

1(x)Ψ2(x), (4.21)

with g = | det gµν |. The Hermitian momentum operator is therefore given by

p̂µ = −ig−1/4∂µg
1/4, (4.22)

where the derivative acts through. Integration by parts allow to verify its hermiticity
property and the precise powers of g arising in its definition.

By proceeding like in section 3.2, it is now possible to write the generic wave func-
tion by projecting the generic state of the Hilbert space on the position eigenstates ⟨x|
together with the coherent states ⟨λ̄|, to get

|Ψ⟩ ∼ Ψ(x, λ̄) = (⟨x| ⊗ ⟨λ̄|) |Ψ⟩

= Ψ(x) + Ψa(x)λ̄
a +

1

2
Ψa1a2(x)λ̄

a1λ̄a2 + ...+
1

d!
Ψa1...ad(x)λ̄

a1 ...λ̄ad .
(4.23)
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Once more, we want to project the full Hilbert space onto the subsector containing
only vector fields. This can be done by following the same procedure discussed above, by
means of the constraint (3.54), which relies on the introduction of the auxiliary worldline
gauge field a(t), taking the role of a Lagrange multiplier, and the addition of an extra
Chern-Simons coupling −isa, with s = 1− d/2.

Since we want to find the Hamiltonian that acting on the wave function provides
the action of the differential operator (4.17) on the vector field, we need a worldline
representation of the covariant derivative. In order to do so, we introduce the generators
of the Lorentz group SO(d), namely

Mab = −M ba ≡ λ̄aλb − λ̄bλa, (4.24)

which obey the so(d) algebra

[Mab,M cd] = ηbcMad + ηadM bc − ηacM bd − ηbdMac. (4.25)

We can now define the covariant derivative operator acting on wave functions in the
following way

∇̂µ ≡ ∂µ +
1

2
σµabM

ab = ∂µ + σµabλ̄
aλb, (4.26)

where σµab is the spin connection defined in (1.16). However we need the action of the
covariant derivative on vector fields, that can be extracted by acting with the latter
operator on wave functions of the type V (x, λ) ∼ Va(x)λ̄

a, i.e.

∇̂µV (x, λ) = ∇̂µ(Vaλ̄
a) = (∂µVa + σµa

bVb)λ̄
a = (∇µVa)λ̄

a. (4.27)

In order to write the Laplacian operator ∇̂2 it is useful to define the covariant momentum
πµ in terms of the momentum pµ and the spin connection σµab as follows

πµ ≡ pµ − iσµabλ̄aλb. (4.28)

In this way, the covariant derivative operator can be rewritten as

∇̂µ = ig1/4πµg
−1/4 = ig1/4(pµ − iσµabλ̄aλb)g−1/4. (4.29)

Prior to writing the expression of the Laplacian operator that will be used for the
correct worldline representation of the differential operator (4.17), we have to face the
ordering issues brought up earlier. A few words are now in order. As we know, the
process of canonical quantization gives rise to ordering ambiguities due to the non van-
ishing commutator (4.19), with the consequence that many different Hamiltonians at the
quantum level correspond to the same classical counterpart. As we stated previously,
the preservation of the classical symmetries at the quantum level, is what is used to
build the correct quantum Hamiltonian. For example, we could impose covariance under
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general change of coordinates at the quantum level by choosing the following ordering
of the Laplacian operator

∇̂2 ≡ 1
√
g
∇̂µg

µν√g∇̂ν = −g−1/4πµg
µν√gπνg−1/4. (4.30)

Nonetheless, it occurs that the above requirement fixes the quantum Hamiltonian only
up to an arbitrary term proportional to the Ricci scalar R, i.e. it contains a term of
the type ξR. This is because the Ricci scalar represents the only covariant scalar object
that can be constructed out of the metric up to its second order partial derivatives. All
the ambiguities that are left after the imposition of invariance under general change of
coordinates are then parametrized by the coupling constant ξ. The simplest and most
common choice is to set ξ = 0 in the quantum Hamiltonian, because other values of this
coupling can always be introduced later with the addition of a proper scalar potential of
the form V (x) ∼ ξR.

We can finally write the Hamiltonian operator for the vector field as follows

Ĥ = g−1/4πµg
µν√gπνg−1/4 +m2 +Rabλ̄

aλb. (4.31)

We can verify that this is indeed the correct Hamiltonian that reproduces the operator
(4.17) acting on the vector wave function that satisfies the constraint (3.54). In fact,
the last term in this expression, acting on the constrained wave function, provides a
worldline representation of the term proportional to the Ricci tensor in the differential
operator (4.17), i.e.

Rabλ̄
aλb(Vcλ̄

c) = RabVcλ̄
aηbc = (RabV

b)λ̄a. (4.32)

The classical action in phase space can be written by means of the classical version
of the Hamiltonian operator (4.31) as below

S[x, p, λ̄, λ, a] =

∫ β

0

dt[−ipµẋµ + λ̄a(∂t + ia)λa + gµνπ
µπν +Rabλ̄

aλb +m2− isa]. (4.33)

The momentum pµ can be integrated out via its equations of motion, which give

δS

δpµ
= 0→ pµ =

i

2
ẋµ + iσµ

abλ̄
aλb (4.34)

to get the classical action in configuration space

S[x, λ̄, λ, a] =

∫ β

0

dt

[
1

4
gµν ẋ

µẋν + λ̄a(Dt + ia)λa +Rabλ̄
aλb +m2 − isa

]
, (4.35)

where the covariant derivative Dt has been defined as

Dtλa = ∂tλa + ẋµσµabλ
b. (4.36)
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4.3 Path integral regularization and counterterms

The classical action written in equation (4.35) can be used to construct the path integral
in a similar fashion as described in section 3.1, that provides the transition amplitude at
coinciding points ⟨x| e−tĤ |x⟩ representing the heat kernel. The foregoing discussion on
ordering ambiguities affecting the canonical quantization of the Hamiltonian returns in
the path integral definition. Such issues, in this instance, are treated by introducing a
proper regularization scheme.

In particular, the model we are treating, as represented by the action (4.35), belongs
to the class of “non-linear sigma models” for which the construction of path integrals
and their computation in a perturbative approach can be very problematic because of
ultraviolet divergences and ill-defined products of distributions like the Dirac delta or the
Heaviside step function. As described in [20], with a power counting procedure, double
derivatives interactions in non-linear sigma models, read off from the term ∼ gµν ẋ

µẋν ,
give rise to Feynman diagrams that are linearly divergent. However, the covariant mea-
sure of the path integral contains a factor proportional to

√
g(x(t)), i.e.

Dx =
∏

0<t<β

√
g(x(t)) ddx(t), (4.37)

that can be exponentiated by making use of auxiliary commuting (aµ(t)) and anticom-
muting (bµ(t), cµ(t)) ghosts as discussed below. The metric dependent factor can be first
written as follows √

g(x(t)) =
√

det gµν(x(t)) =
det gµν(x(t))√
det gµν(x(t))

, (4.38)

where at fixed time the numerator and the denominator can be exponentiated taking
advantage of the fermionic ghosts bµ(t), cµ(t) and the bosonic ghosts aµ(t) respectively,
i.e.

Dx =
∏

0<t<β

√
g(x(t)) ddx(t) =

∏
0<t<β

ddx(t)

∫
DaDbDc e−Sgh , (4.39)

with

Sgh =

∫ β

0

dt
1

2
gµν(x)(a

µaν + bµcν). (4.40)

It is easy to check how the path integral over these auxiliary ghosts produces the men-
tioned

√
g factor by means of fermionic and bosonic Gaussian integrations. The intro-

duction of this type of ghosts in the classical action constitutes a rather simple way to
underline the contribution of the metric factor to the path integral, whose treatment is
not clear in its initial form. Indeed, the metric dependence of the covariant path inte-
gral measure written in terms of these auxiliary ghosts, provides extra linear divergent
Feynman graphs that cancel exactly with the ones mentioned above.
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However, this particular and rather convenient cancellation can be achieved carefully
only after a proper regularization of individual diagrams that involve the previously
mentioned products of distributions. The latter appear when double derivatives of 2-
point functions are multiplied together or with 2-point functions themselves and derive
from the double derivative term ∼ gµν ẋ

µẋν present in the action, which is typical of this
kind of models. The regularization schemes precisely concern the way in which these type
of products coming from correlation functions are treated and computed. A finite local
counterterm, to be added to the classical action in configuration space, is associated
to each regularization procedure in such a way that the final result is regularization
independent. These counterterms are actually related to the so-called renormalization
conditions of the path integral that regard the ordering prescription of the quantum
Hamiltonian, that in our case was dictated by preserving general coordinate invariance.

Different regularization schemes can be employed for this purpose. To be specific,
three different regularization schemes have been refined and applied to path integrals
of non-linear sigma models: mode regularization (MR), time slicing (TS) and worldline
dimensional regularization (DR)1.

Mode regularization is based on the Taylor expansion of the paths in Fourier sine
series, regularized thanks to a fixed cut-off M that dictates which modes are allowed
to enter the path integral. The latter, being finite, makes the computation no longer
ambiguous or problematic and one could in principle perform all the integrals. At the
end the continuum limit M →∞ can be taken without any troubles, obtaining a finite
and well defined result. However, this is not the simplest way to use this regularization
scheme. An alternative approach can be instead to introduce the regulator (cut-off)
M , recast the ambiguous integrals in a form that is no longer problematic and take the
M →∞ limit to compute the integrals by using now simpler forms of propagators. The
required counterterm in this case must reinstate general coordinate invariance which is
broken by the regularization procedure. This finite local counterterm is proportional
to the Ricci curvature scalar plus a term proportional to the product of Christoffel
connections ΓΓ, the latter not being covariant.

Time slicing regularization scheme starts by constructing the path integral from the
operatorial expression of the transition amplitude ⟨x| e−Ĥ(tf−ti) |y⟩. Then one can dis-
cretize the time interval tf − ti in N equally spaced points and insert N−1 completeness
relations of position and momentum eigenstates in the transition element, using the
“mid-point rule” which corresponds to the Weyl ordering of the Hamiltonian operator
Ĥ. The resulting path integral is so discretized in momentum space and taking the
continuum limit N → ∞ (i.e. removing the regulator N) one gets the Feynman rules
to compute the ambiguous diagrams. As mentioned this regularization procedure corre-
sponds to the choice of a Weyl ordered Hamiltonian, that breaks the general coordinate
invariance. Therefore, also in the present case, a local counterterm is needed and it must

1Not to be confused with its homonym used in QFT.
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contain a ΓΓ term to restore the symmetry.
In the present thesis we will only use the third regularization scheme, namely di-

mensional regularization. This procedure is valid only in the regime of the perturbative
approach, exactly the one used for our purposes. It is based on the analytic continua-
tion of the compact time interval I = [0, β] of our one-dimensional worldline model to
a non-compact space Ω = I × Rd by introducing d extra non-compact dimensions. As
a consequence, the measure of the classical action in configuration space is now (d+ 1)-
dimensional, i.e. dd+1t. As usual, one can take the way of calculating the regularized
integrals in the non-compact space and, after removing the singularities by proper coun-
terterms, remove the regulator at the end (namely taking the d→ 0 limit). Similarly to
what we stated for the mode regularization, the most practical way to take advantage
of DR is actually to introduce the regulator only to cast the ill-defined integrals in a no
longer troublesome form. This is done by taking advantage of manipulations valid in
the non-compact space, like partial integrations and/or exploiting the Green equations
satisfied by the propagators. The regulator is then removed to compute the integrals
directly in the d → 0 limit in a simpler and safe way. This procedure may seem com-
plicated at first sight, but it is actually simpler than it looks and it will be described
more in detail with practical examples in the following computations. The advantage of
DR resides in its property of preserving the general coordinate invariance, which means
that the only counterterm required is proportional to the Ricci curvature scalar R, while
the non-covariant ∼ ΓΓ counterterm, present in the other two regularization schemes, is
absent.

The counterterm we just mentioned is the one associated to the Laplacian term, ∇2,
present in the Hamiltonian, but it is not the only one needed for the construction of
a well defined path integral. In fact, we still need to consider ordering issues of the
fermions. The construction of the path integral usually produces Weyl ordered fermionic
polynomials. This doesn’t affect the term of the type σλ̄λ present in the action (4.35),
whereas for the term of the type Rabλ̄

aλb there is again an extra contribution proportional
to the Ricci scalar curvature.

We decide to implement the overall counterterm to be added in the classical action
(4.35) by using an arbitrary coefficient α in front of R. Its value is defined by requesting
the coefficient a1 to agree with (2.51) and later verified by the correctness of a2. The
classical action in configuration space is thus given by

S =

∫ β

0

dt

[
1

2
gµν

(
1

2
ẋµẋν+aµaν+bµcν

)
+λ̄a(Dt+ia)λa+Rabλ̄

aλb+αR+m2−isa
]

(4.41)
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4.4 The one-loop effective action for the vector op-

erator

Once we have found the classical action by constructing the Hamiltonian operator that
provides the correct worldline representation of the differential operator (4.17), we can
proceed with the path integral quantization and therefore recover the heat kernel coeffi-
cients (2.51).

We begin by rescaling the time variable t as we previously did:

t→ τ =
t

β
. (4.42)

Consequently also the fermions and the auxiliary gauge field must be rescaled in order
to get the usual factor of 1/β in front of the action, which will serve to control the order
of the perturbative expansion, i.e.

λµ →
λµ√
β
, λ̄µ →

λ̄µ√
β
, a→ a

β
. (4.43)

As before, we bring the gauge field a(τ) to the constant value θ, like in equation (3.60).
Hence, the classical action becomes

S =
1

β

∫ 1

0

dτ

[
1

2
gµν

(
1

2
ẋµẋν +aµaν + bµcν

)
+ λ̄a(Dt+ iθ)λa+βRabλ̄

aλb+β2αR

]
, (4.44)

where the terms proportional to m2 and to the Chern-Simons coupling have been fac-
torized out.

We go ahead by performing the familiar background-quantum splitting of the bosonic
paths as follows

xµ(τ) = xµbg(τ) + qµ(τ), (4.45)

with periodic boundary conditions

xµ(1) = xµ(0). (4.46)

By fixing the origin of our coordinate system to be given by xµ(0) = 0, the background
part vanishes and we are left only with the quantum fluctuations qµ(τ), which satisfy
vanishing Dirichlet boundary conditions. The fermionic variables enjoy the usual an-
tiperiodic boundary conditions

λ̄µ(0) = −λ̄µ(1), (4.47)

while the ghosts aµ, bµ and cµ do not need any boundary conditions, being auxiliary
fields.
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By employing the background-quantum splitting (4.45) in the action (4.44) we get

S =
1

β

∫ 1

0

dτ

[
1

2
gµν(xbg + q)

(
1

2
q̇µq̇ν + aµaν + bµcν

)
+ λ̄a(∂t + iθ)λa

+ σµab(xbg + q)q̇µλ̄aλb + βRab(xbg + q)λ̄aλb + β2αR(xbg + q)

]
,

(4.48)

which can be in turn splitted into a free part and an interacting part as below

Sfree =
1

β

∫ 1

0

dτ

[
1

2
gµν(xbg)

(
1

2
q̇µq̇ν + aµaν + bµcν

)
+ λ̄a(∂t + iθ)λa

]
, (4.49)

Sint =
1

β

∫ 1

0

dτ

[
1

2
[gµν(xbg + q)− gµν(xbg)]

(
1

2
q̇µq̇ν + aµaν + bµcν

)
+ λ̄a(∂t + iθ)λa

+ σµab(xbg + q)q̇µλ̄aλb + βRab(xbg + q)λ̄aλb + β2αR(xbg + q)

]
.

(4.50)

The free action is thus used to recover the propagators of the free theory. We start by
expanding the quantum fluctuations qµ(τ) and the auxiliary ghosts in Fourier sine series
as described below

qµ(τ) =
∞∑

m=1

qµm sin(πmτ), aµ(τ) =
∞∑

m=1

aµm sin(πmτ),

bµ(τ) =
∞∑

m=1

bµm sin(πmτ), cµ(τ) =
∞∑

m=1

cµm sin(πmτ).

(4.51)

The Fourier sine series is the correct one to preserve the boundary conditions mentioned
above since sin(πm) = sin(0) = 0, being m a positive integer. Thus the path integral is
defined as an integration over the Fourier coefficients qµm, a

µ
m, b

µ
m and cµm. The free action

part containing these fields gets modified as

Sfree[q
µ, aµ, bµ, cµ] =

1

2β

∫ 1

0

dτgµν(xbg)

(
1

2
q̇µq̇ν + aµaν + bµcν

)
=

1

4β
gµν(xbg)

∞∑
m=1

(
(πm)2

2
q̇µmq̇

ν
m + aµma

ν
m + bµmc

ν
m

)
,

(4.52)

where we have performed the integrals in dτ .
The correlation function ⟨qµmqνn⟩ can be easily found by casting the exponential e−Sfree[q

µ]

in the form e−
1
2
ϕKϕ and by inverting the kinetic operator K, i.e.

⟨qµmqνn⟩ = βgµνδmn
4

π2m2
. (4.53)
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In a similar way we can find the correlator for the bosonic ghosts

⟨aµmaνn⟩ = 2βgµνδmn. (4.54)

For the fermionic ghosts, we cast the above mentioned exponential in the form e−η̄Kη,
where η̄ is the antighost and η is the ghost, obtaining

⟨bµmcνn⟩ = −4βgµνδmn. (4.55)

The full propagator for the bosonic fluctuations is then given by

⟨qµ(τ)qν(σ)⟩ =
∞∑

m=1

∞∑
n=1

⟨qµmqνn⟩ sin(πmτ) sin(πnτ)

= −2βgµν
∞∑

m=1

− 2

(πm)2
sin(πmτ) sin(πnτ)

= −2βgµν∆(τ, σ),

(4.56)

where
∆(τ, σ) = (τ − 1)σΘ(τ − σ) + (σ − 1)τΘ(σ − τ). (4.57)

The full propagator for the bosonic ghosts is

⟨aµ(τ)aν(σ)⟩ = βgµν∆gh(τ, σ), (4.58)

while for the fermionic ghosts we have

⟨bµ(τ)cν(σ)⟩ = −2βgµν∆gh(τ, σ), (4.59)

where ∆gh(τ, σ) is given by

∆gh(τ, σ) =
∞∑

m=1

2 sin(πmτ) sin(πmσ) = ∂2τ∆(τ, σ) = δ(τ, σ). (4.60)

We now report some identities, useful for the calculations that will follow, for derivatives
and equal time expressions:

•∆(τ, σ) = σ −Θ(σ − τ) , ∆•(τ, σ) = τ −Θ(τ − σ) ,
•∆•(τ, σ) = 1− δ(τ, σ) , ∆gh(τ, σ) =

••∆(τ, σ) = δ(τ, σ)

∆(τ, τ) = τ(τ − 1) , •∆(τ, σ)|τ=σ = ∆•(τ, σ)|τ=σ = τ − 1

2
,

(4.61)

To find the propagator for the fermionic variables we follow the same procedure of
section 3.3 and here we just recall the result

⟨λa(τ)λ̄b(σ)⟩ = βδba∆F (τ − σ, θ), (4.62)
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where

∆F (τ−σ, θ) =
∑

r∈Z+ 1
2

−i
2πr + θ

e2πir(τ−σ) =
e−iθ(τ−σ)

2 cos θ
2

[
ei

θ
2Θ(τ−σ)−e−i θ

2Θ(σ−τ)
]
. (4.63)

Once the propagators have been found we can proceed with the perturbative calcu-
lation of the path integral. The one-loop effective action for the so constructed vector
model is indeed given by

Γ = −1

2

∫ ∞

0

dβ

β

∫
ddx
√
g

(4πβ)d/2

∫ 2π

0

dθ

2π
eisθe−βm2

(
2 cos

θ

2

)d

⟨e−Sint⟩, (4.64)

where we made explicit the correct normalization for the bosonic and fermionic path
integrals.

As already explored in the previous section, the computation of the path integral,
or more precisely of the average of the interacting action ⟨e−Sint⟩, involves products of
distributions that have to be treated by means of a proper regularization scheme. As we
said, in this thesis we use worldline dimensional regularization.

Let us introduce d extra non-compact time dimensions via the variables ti, where the
index i = 0, . . . , d and let t0 = τ coincide with the time taking values in the compact
interval I = [0, 1], i.e. in a compact notation ti ≡ (τ, t). The action in the extendend
non compact space Ω = I ×Rd is accordingly given by

S =
1

β

∫
Ω

dd+1t

[
1

2
gµν(x)

(
1

2
∂iq

µ∂iq
ν + aµaν + bµcν

)
+ λ̄a(γi∂i + iθ)λa

+ λ̄aγi∂iq
µσµabλ

b + βRabλ̄
aλb + αβ2R

]
,

(4.65)

where we made use of the Dirac gamma matrices γi in d + 1 dimensions and of the
shorthand notation ∂i =

∂
∂ti

. The free action becomes

Sfree =
1

β

∫
Ω

dd+1t

[
1

2
gµν(xbg)

(
1

2
∂iq

µ∂iq
ν + aµaν + bµcν

)
+ λ̄a(γi∂i + iθ)λa

]
. (4.66)

The latter provides the propagators in the extended non-compact space Ω which are
much more complicated than those written in equations (4.57), (4.60) and (4.63), i.e.

∆(t, s) =

∫
ddk

(2π)d

∞∑
m=1

−2
(πm)2 + k2 sin(πmτ) sin(πmσ)e

ik·(t−s) ,

∆gh(t, s) =

∫
ddk

(2π)d

∞∑
m=1

2 sin(πmτ) sin(πmσ)eik·(t−s) = δ(τ, σ)δd(t− s) ,

∆F (t− s, θ) =− i
∫

ddk

(2π)d

∑
r∈Z+1/2

2πrγ0 + k · γ − θ
(2πr)2 + k2 − θ2

e2πir(τ−σ)eik·(t−s).

(4.67)
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Nonetheless, the latter will not be used since the advantage of DR is to use the following
useful identities to manipulate ambiguous integrals

∂i∂i∆(t, s) = ∆gh(t, s) = δ(τ, σ)δd(t− s), (4.68)(
γi
∂

∂ti
+ iθ

)
∆F (t− s, θ) = δA(τ − σ)δd(t− s), (4.69)[(

∂2

∂ti∂si
+

∂2

∂ti∂ti

)
∆(t, s)

]∣∣∣∣
t=s

=
∂

∂τ

[(
∂

∂τ
∆(t, s)

)∣∣∣∣
t=s

]
. (4.70)

The notation t = (t1, . . . , td) has been employed in the last few equations. It is fairly
immediate to understand how the last propagators reduce to (4.57), (4.60) and (4.63) in
the d→ 0 limit.

We can now go ahead with the perturbative path integral computation by expanding
the average of the exponential of the interacting action as follows

⟨e−Sint⟩ = 1− ⟨Sint⟩+
1

2
⟨S2

int⟩+ · · · . (4.71)

Since the path integral can be computed in any coordinate system, we prefer to work
with the so-called Riemann normal coordinates. The latter are the closest analogue to
Cartesian coordinates in curved space. As described in [21], in gauge theory the Fock-
Schwinger gauge is commonly used for the calculation of effective actions and anomalies.
There is a counterpart in gravity, which is represented by the choice of the Riemann
normal coordinates. Geometrically they are defined in the neighbourhood of a chosen
point called the origin, that in our case is xµbg. The metric tensor, the spin connection
and the curvatures can be expanded in the following manner

gµν(xbg + q) =gµν +
1

3
qλqσRλµνσ +O(q3) + qλqσqαqβ

[
1

20
∇λ∇σRαµνβ +

2

45
RτλσµR

τ
αβν

]
,

ωµab(xbg + q) =
1

2
qνRνµab +O(q2) + qνqλqσ

[
1

8
∇λ∇σRνµab +

1

24
Rτ

νλµRστab

]
,

Rabcd(xbg + q) =Rabcd +O(q) +
1

2
qµqν∇µ∇νRabcd ,

Rab(xbg + q) =Rab +O(q) +
1

2
qµqν∇µ∇νRab ,

R(xbg + q) =R +O(q) + 1

2
qµqν∇µ∇νR ,

(4.72)

where we considered only the terms that will give rise to contributions in the correlation
functions only up to order β2 and we neglected terms that give rise to odd-point functions,
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since those give a null result. The latter expressions can be replaced in the interacting
action (4.50). It is useful to rewrite (4.50) as the sum of two contributions of different
order in β, i.e.

Sint = S4 + S6 +O(β3), (4.73)

where S4 contributes to the order β and is given by

S4 =
1

6β
Rλµνσ

∫ 1

0

dτqλqσ
(
1

2
q̇µq̇ν + aµaν + bµcν

)
+

1

2β
Rνµab

∫ 1

0

dτ q̇µqνλ̄aλb

+Rab

∫ 1

0

dτλ̄aλb + αβR,

(4.74)

while S6 contributes to the order β2 and reads

S6 =
1

β

(
1

40
∇λ∇σRαµνβ +

1

45
RτλσµR

τ
αβν

)∫ 1

0

dτqλqσqαqβ
(
1

2
q̇µq̇ν + aµaν + bµcν

)
+
1

β

[
1

8
∇λ∇σRνµab +

1

24
Rτ

νλµRστab

] ∫ 1

0

dτ q̇µqνqλqσλ̄aλb

+
1

2
∇µ∇νRab

∫ 1

0

dτqµqνλ̄aλb +
1

2
βα∇µ∇νR

∫ 1

0

dτqµqν .

(4.75)

where the subscripts 4 and 6 represent the number of quantum fields present in each
term with a factor 1/β in front of the integral. The average (4.71) therefore becomes

⟨e−Sint⟩ = 1− ⟨S4⟩ − ⟨S6⟩+
1

2
⟨S2

4⟩+O(β3). (4.76)

In what follows we present directly the result of (4.76), which computations will be
discussed with all the subtleties and the details in Appendix C. Therefore, by means of
the Wick theorem for the evaluation of all the non-vanishing correlation functions and
by exploiting the propagator identities previously mentioned, we get

⟨e−Sint⟩ =1− βR
(
1

3
− i

2
tan

θ

2

)
−β2∇2R

(
1

20
− i

12
tan

θ

2

)
+ β2R2

(
13

72
− 1

8
cos−2 θ

2
− i

6
tan

θ

2

)
−β2RµνR

µν

(
1

180
− 1

8
cos−2 θ

2

)
+ β2RµνρσR

µνρσ

(
1

180
− 1

48
cos−2 θ

2

)
+O(β3).

(4.77)
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Here we fixed α = 1
4
in such a way that the coefficient a1 is in agreement with (2.51).

This value has been checked by verifying the consistency of a2, as written below2.
Finally, by performing all the modular integrals, reported in (3.96), we can write the

one-loop effective action for the vector field operator (4.17) to be

Γvector
1−loop = −1

2

∫ ∞

0

dβ

β

∫
M

ddx
√
g

(4πβ)d/2
e−βm2

(
d+ β

d− 6

6
R + β2d− 5

30
∇2R + β2d− 12

72
R2

− β2d− 90

180
RµνR

µν + β2d− 15

180
RµνρσR

µνρσ +O(β3)

)
.

(4.78)

By expanding the exponential e−βm2
we obtain the final result

Γvector
1−loop = −1

2

∫ ∞

0

dβ

β

∫
M

ddx
√
g

(4πβ)d/2

[
d+ β

(
d− 6

6
R− dm2

)
+ β2

(
d− 5

30
∇2R +

d− 12

72
R2 − d− 6

6
m2R

− d− 90

180
RµνR

µν +
d− 15

180
RµνρσR

µνρσ +
d

2
m4

)
+O(β3)

]
.

(4.79)

The above result is in agreement with the heat kernel coefficients (2.51) for the vector
operator obtained by following the standard heat kernel approach in chapter 2. It must
be so, since the vector operators (2.48) and (4.17), the former obtained by means of
the Barvinsky and Vilkovisky reduction method and the latter by reinstating the gauge
invariance via a Stückelberg scalar field, are indeed the same. We can already see from
this result how the path integral approach discussed in this thesis, starting from a well
constructed worldline representation of the operator, provides an alternative method to
evaluate the heat kernel.

2The value α = 1
4 was somewhat expected. In fact, one has a counterterm amounting to − 1

8R in
dimensional regularization of non-linear sigma models when the action has a term of the type 1

2gµν ẋ
µẋν ,

coming from the term − 1
2∇

2 in the Hamiltonian. For this reason, we expect a counterterm of the value
− 1

4R in the present case, since our action contains a term of the form 1
4gµν ẋ

µẋν , again from the term
−∇2 present in the Hamiltonian. The second counterterm we need, as previously mentioned, is the one
related to the ordering of fermions in the term Rabλ̄

aλb. The counterterm used for actions that contain
a term given by − 1

2Rabλ̄
aλb is equal to − 1

4R. By a comparison with the present case we expect a term
of the type 1

2R to be added instead. Therefore the total counterterm to be added to the action amounts
to − 1

4R + 1
2R = 1

4R, which is exactly the value we used. The reader can find the above mentioned
counterterms and more detailed discussions in [16, 22].
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The following section is dedicated to the construction of a similar but simpler world-
line model for the scalar operator −∇2 +m2 associated to the Stückelberg field ϕ and
to the ghosts c and c̄. Altogether they carry the unphysical degree of freedom that
represents the scalar longitudinal mode of the Proca field.

4.5 The worldline model for the scalar field

Let us consider the action in Euclidean time, after the usual Wick rotation, for the
Stückelberg field ϕ. Its discussion and the corresponding worldline model construction
will work also for the case of the scalar ghosts c and c̄.

The Stückelberg action reads

SE
scalar[ϕ] =

∫
M
ddx
√
g
1

2
ϕ(∇2 −m2)ϕ. (4.80)

The associated differential kinetic operator is given by

F̂s = −∇2 +m2, (4.81)

whose action on the scalar field ϕ is

F̂sϕ = (−∇2 +m2)ϕ. (4.82)

The Hilbert space can be constructed as usual by means of the phase space variables
xµ and pµ that upon canonical quantization satisfy the commutation relation (4.19).
In the present case the generic state of the Hilbert space is simply given by the wave
function Ψ(x) without the necessity of introducing the worldline fermionic variables for
the description of the discrete index. Thus, the Hilbert space contains only the scalar
function and the procedure of projection into a specific subsector via the introduction
of the auxiliary gauge field a(t) and a Chern-Simons coupling is no longer required. For
simplicity, let us further notice that the Laplacian ∇2, when acting on scalars, reduces
to ∂2. Hence, the correct Hamiltonian operator now is

Ĥ = − 1
√
g
∂µg

µν√g ∂ν +m2 = g−1/4pµg
µν√g pνg−1/4 +m2. (4.83)

The classical action in phase space is written exploiting the classical Hamiltonian in the
following manner

S[x, p] =

∫ β

0

dt(−ipµẋµ + gµνpµpν +m2), (4.84)

which can be in turn written in configuration space by integrating out the momentum
pµ as

S[x] =

∫ β

0

dt

(
1

4
gµν ẋ

µẋν +m2 + ρR

)
, (4.85)
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where we introduced a the generic counterterm ρR.
By rescaling the time as usual and introducing auxiliary ghosts for the metric depen-

dent factor in the path integral measure we get

S =
1

β

∫ 1

0

dτ

[
1

2
gµν

(
1

2
ẋµẋν + aµaν + bµcν

)
+ ρβ2R

]
, (4.86)

where the term ∝ m2 has been factorized out. We can now perform the familiar
background-quantum splitting as in (4.45) for the bosonic paths, to write the action
as follows

S =
1

β

∫ 1

0

dτ

[
1

2
gµν(xbg + q)

(
1

2
q̇µq̇ν + aµaν + bµcν

)
+ ρβ2R(xbg + q)

]
. (4.87)

We can once more split the action into a free part and an interacting part, obtaining

Sfree =
1

β

∫ 1

0

dτ

[
1

2
gµν(xbg)

(
1

2
q̇µq̇ν + aµaν + bµcν

)]
, (4.88)

Sint =
1

β

∫ 1

0

dτ

[
1

2
[gµν(xbg+q)−gµν(xbg)]

(
1

2
q̇µq̇ν+aµaν+bµcν

)
+ρβ2R(xbg+q)

]
. (4.89)

Once again we can extract the propagators of the theory from the free action, which are
the same as the ones reported in equations (4.56) - (4.60). By taking advantage of the
usual propagator identities (4.61) and by expanding the interacting action in Riemann
normal coordinates as before, we get

Sint = S4 + S6 +O(β3), (4.90)

where the contribution to the order β is given by S4 which reads

S4 =
1

6β
Rλµνσ

∫ 1

0

dτqλqσ
(
1

2
q̇µq̇ν + aµaν + bµcν

)
+ αβR, (4.91)

while at the order β2 we have S6 which is given by

S6 =
1

β

(
1

40
∇λ∇σRαµνβ +

1

45
RτλσµR

τ
αβν

)∫ 1

0

dτqλqσqαqβ
(
1

2
q̇µq̇ν + aµaν + bµcν

)
+
1

2
βα∇µ∇νR

∫ 1

0

dτqµqν .

(4.92)
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Therefore, the expansion (4.76) becomes

⟨e−Sint⟩ =1 +
1

6
βR +

1

30
β2∇2R +

1

72
β2R2 − 1

180
β2RµνR

µν

+
1

180
β2RµνρσR

µνρσ +O(β3),
(4.93)

where the counterterm has been fixed to the value ρ = −1
4
with the same argument as

before. The one-loop effective action for the bosonic Stückelberg field operator (4.81)
takes the form

Γscalar
1−loop = −1

2

∫ ∞

0

dβ

β

∫
M

ddx
√
g

(4πβ)d/2

[
1 + β

(
1

6
R−m2

)
+ β2

(
1

30
∇2R +

1

72
R2 − 1

6
m2R

− 1

180
RµνR

µν +
1

180
RµνρσR

µνρσ +
1

2
m4

)
+O(β3)

]
.

(4.94)

The result we just obtained is in agreement with the heat kernel coefficients for the scalar
field obtained in (2.53). The procedure we just followed is valid also to obtain the heat
kernel coefficients associated to the scalar operator (4.81) acting on the ghosts c and c̄.

4.6 The final result

We recall here the Euclidean action that describes the Proca field (4.15), i.e.

Stot
E [Aµ, ϕ, c̄, c] =

∫
M
ddx
√
g

[
1

2
Aµ(−∇2δµν +m2δµν +Rµ

ν)A
ν

+
1

2
ϕ(−∇2 +m2)ϕ− c̄(−∇2 +m2)c

]
.

(4.95)

The full one-loop effective action is given by the contributions coming from the vector
operator for the vector field Aµ, the scalar operator for the scalar field ϕ and the one for
the ghost fields c and c̄. By noticing the factor −1 present in front of the ghost term in
the above action, we can write the expression for the total one-loop effective action as

Γtot
1−loop = Γvector

1−loop + Γscalar
1−loop − 2Γscalar

1−loop = Γvector
1−loop − Γscalar

1−loop. (4.96)
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Therefore, the final result is

Γtot
1−loop = −1

2

∫ ∞

0

dβ

β

∫
M

ddx
√
g

(4πβ)d/2

[
(d− 1) + β

(
d− 7

6
R− (d− 1)m2

)
+ β2

(
d− 6

30
∇2R +

d− 13

72
R2 − d− 7

6
m2R

− d− 91

180
RµνR

µν +
d− 16

180
RµνρσR

µνρσ +
d− 1

2
m4

)
+O(β3)

]
.

(4.97)

The above results represents the one-loop effective action for the Proca field operator
from which one can read off the associated first three Seeley-DeWitt coefficients a0, a1
and a2. The coefficient a0 correctly provides the number N of degrees of freedom of
the massive vector field in a curved d-dimensional space-time, namely N = d− 1. This
value precisely reduces to N = 3 in a 4-dimensional space-time, as expected. As one can
immediately check, these coefficients agree with those in equation (2.54) computed with
the standard heat kernel approach and clearly agree also with the results found in [4].

The introduction of a Stückelberg scalar field to restore the gauge symmetry, broken
by the mass term, and the addition of auxiliary ghosts for the gauge fixing made the
application of the path integral method, discussed in chapter 3, possible without having
to face the problem of a non-perturbative vertex. Moreover, the procedure discussed in
section 4.1 can be generalized to antisymmetric tensor fields of higher rank, as suggested
in [4].

This could hint the fact that this perspective might be useful to treat similar problems
in QFT or in the evaluation of worldline path integrals with analogous non-perturbative
vertices. In the present work, the latter has been removed by introducing a gauge
symmetry that has been properly fixed for our pourposes. The introduction of such
gauge symmetries with a related gauge fixing procedure could solve similar problems in
other contexts. For instance, a case traceable to the above description is contained in
[23], which examines a worldline model able to reproduce the gauge-fixed graviton action
of perturbative quantum gravity. Similarly to the situation studied in 3.3, the worldline
phase space action for the above mentioned model presents a non-perturbative vertex of
the type

1

2
gµνπµπν

(
1− 1

4
ψψ̄

)
, (4.98)

where ψ = ηabψ
ab and ψ̄ = ηabψ̄

ab, with ψab and ψ̄ab rank-2 symmetric tensors with non-
vanishing trace taking the role of the complex fermionic variables of the graded phase
space.

62



Conclusions

The aim of this thesis was to compute the first three heat kernel coefficients a0, a1 and
a2 for the Proca theory of massive vector fields.

The first part of the thesis is dedicated to the introduction to the topic, i.e. the
heat kernel, and to the derivation of the above mentioned coefficients with the standard
approach. In particular we followed the procedure proposed by Gilkey in [2]. However,
this method is not directly applicable to the case of interest, since it can be employed
only in those theories where the kinetic operator coming from the action is of minimal
kind. Therefore we first needed to manipulate the Proca differential operator so that
we could reduce ourselves to the study of a sum of minimal operators. For this purpose
we considered the reduction method for non-minimal operators originally introduced by
Barvinsky and Vilkovisky in [3]. In this way we were able to compute the first three
Seeley-DeWitt coefficients in arbitrary dimensions d, which turned out to be in agreement
with those present in the literature. Specifically, the logarithmic divergent part of the
one-loop effective action, identified by the coefficient a2, in d = 4 is in agreement with the
one found in [3, 13]. The first coefficient, namely a0, correctly reproduces the degrees of
freedom of the theory, as one would expect. Moreover, the coefficients found in arbitrary
dimensions coincide with the ones present in [4], which studied a N = 2 spinning particle
model to reproduce the heat kernel coefficients for massive antisymmetric tensor fields
of generic rank p, via a worldline path integral representation of the one-loop effective
action.

The second part of the thesis is devoted to the derivation of the first three heat kernel
coefficients for the Proca theory by means of an analogous first quantization procedure,
based on the use of path integrals as well as a worldline model. Our first idea was to
rederive the wanted coefficients without manipulating the Proca differential operator.
For this goal we built a first quantized particle model, whose Hamiltonian acting on
the Hilbert space correclty reproduced the action of the Proca differential operator on
vector fields. However, we came across a non-perturbative vertex in the path integral
expansion, which made the calculations unachievable.

For this reason, we thought that maybe the problem could have been solved by
recasting the Proca operator in such a way that the cumbersome interaction vertex
would disappear. Since the origin of this vertex is precisely the non-minimal nature of
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the initial operator, we decided to implement a Stückelberg field with additional ghost
scalars to eliminate the non-perturbative vertex and work only with minimal operators.
In this way, we were able to build a worldline model in curved space-time and to compute
the wanted heat kernel coefficients with the path integral method. We think that this
trick of introducing one or more gauge symmetries via additional fields, might be useful
to solve similar problems that arose in the application of the worldline model to other
theories. The latter are indeed characterized by operators which are non-minimal or in
which the Laplacian doesn’t take the standard form. The case reported in [23], where
the worldline model of the graviton in perturbative quantum gravity presents a similar
non-perturbative vertex, could be such an example.
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Appendix A

Fermionic coherent states

Let us review the fermionic coherent states by first recalling the oscillator algebra satisfied
by the operators λ̂†µ and λ̂ν (3.33), i.e.

{λ̂µ, λ̂†ν} = δνµ, (A.1)

where µ = 0 . . . d − 1. This is exactly the algebra for fermionic creation (λ̂†µ) and
annihilation (λ̂ν) operators, whose action on the Fock vacuum state is defined as follows

|λ⟩ ≡ eλ̂
†µλµ |0⟩ , ⟨λ̄| ≡ ⟨0| eλ̄µλ̂µ . (A.2)

These states are called coherent states and they obey the following eigenvalue equations

λ̂µ |λ⟩ = λµ |λ⟩ , ⟨λ̄| λ̂†µ = ⟨λ̄| λ̄µ. (A.3)

They are normalized as
⟨λ̄|λ⟩ = eλ̄

µλµ . (A.4)

Moreover, they satisfy the following properties, i.e. the resolution of the identity and the
trace for an operator respectively:

1 =

∫
ddλ̄ddλ e−λ̄µλµ |λ⟩ ⟨λ̄| (A.5)

Tr Â =

∫
ddλ̄ddλe−λ̄µλµ ⟨λ̄| Â |λ⟩ , (A.6)

where we employed the following shorthand for the measure

ddλ̄ddλ = dλ̄0dλ0 . . . dλ̄
d−1dλd−1. (A.7)
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Appendix B

Computation of modular integrals

Here we follow step by step the computation of the modular integrals whose results are
written in (3.96).

Let us start with the simplest one, namely I1, which gives the example of the pro-
cedure followed for the calculation of the others as well. By restoring the value of the
quantized Chern-Simons coupling constant s = 1− d

2
and by using the complex definition

of the cosine we have

I1 ≡
∫ 2π

0

dθ

2π
eisθ

(
2 cos

θ

2

)d

=

∫ 2π

0

dθ

2π
ei(1−d/2)θ

(
2 cos

θ

2

)d

=

∫ 2π

0

dθ

2π
(1 + e−iθ)d eiθ.

(B.1)

Let us now perform the change of variable z = e−iθ so that dθ = idz
z
to get the contour

integral, easily solved by employing the Cauchy’s residue theorem

I1 = i

∫
C

dz

2π

(1 + z)d

z2
= −2πi Resz=0f(z) = d, (B.2)

where f(z) = i
2π

(1+z)d

z2
and the minus comes from the −1 winding number due to the

clockwise contour integration.
Let’s now compute the second modular integral I2 by performing the same change of

variable as before

I2 ≡
∫ 2π

0

dθ

2π
eisθ

(
2 cos

θ

2

)d

tan
θ

2
=

∫ 2π

0

dθ

2π
ei(1−d/2)θ

(
2 cos

θ

2

)d

tan
θ

2

= i

∫ 2π

0

dθ

2π
(1 + e−iθ)d−1(1− eiθ) = −

∫
C

dz

2π

(1 + z)d−1(z − 1)

z2

= −2πi Resz=0f(z) = −i(d− 2),

(B.3)
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where f(z) = −(1+z)d−1(z−1)
2πz2

.
Finally we proceed with the computation of the third modular integral in a similar

fashion, i.e.

I3 ≡
∫ 2π

0

dθ

2π
eisθ

(
2 cos

θ

2

)d

cos−2 θ

2
=

∫ 2π

0

dθ

2π
ei(1−d/2)θ

(
2 cos

θ

2

)d

cos−2 θ

2

= 4i

∫ 2π

0

dθ

2π
(1 + e−iθ)d−2 = 4i

∫
C

dz

2π

(1 + z)d−2

z

= −2πi Resz=0f(z) = 4,

(B.4)

where f(z) = 4i(1+z)d−2

2πz
.
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Appendix C

Averages computations and
dimensional regularization

In what follows we will explain the main steps for the evaluation of the averages ⟨S4⟩, ⟨S6⟩
and ⟨S2

4⟩ needed for the calculation of ⟨e−Sint⟩ whose result is reported in (4.77). We will
also show how to concretely apply dimensional regularization to evaluate problematic
integrals when products of distributions are present.

Let us start with the simplest one, i.e. the evaluation of ⟨S4⟩. By taking the average
of (4.74) we obtain

⟨S4⟩ =
1

6β
Rλµνσ

∫ 1

0

dτ⟨qλqσ
(
1

2
q̇µq̇ν + aµaν + bµcν

)
⟩+ 1

2β
Rνµab

∫ 1

0

dτ⟨q̇µqνλ̄aλb⟩

+Rab

∫ 1

0

dτ⟨λ̄aλb⟩+ αβR

=
1

6β
Rλµνσ

∫ 1

0

dτ

[
1

2

(
⟨qλqσ⟩⟨q̇µq̇ν⟩+ ⟨qλq̇µ⟩⟨qσ q̇ν⟩+ ⟨qλq̇ν⟩⟨qσ q̇µ⟩

)
+ ⟨qλqσ⟩⟨aµaν⟩

+ ⟨qλqσ⟩⟨bµcν⟩
]
− 1

2β
Rνµab

∫ 1

0

dτ⟨q̇µqν⟩⟨λbλ̄a⟩ −Rab

∫ 1

0

dτ⟨λbλ̄a⟩+ αβR

=
1

6β
Rλµνσ

∫ 1

0

dτ

[
1

2

(
⟨qλqσ⟩⟨q̇µq̇ν⟩+ ⟨qλq̇ν⟩⟨qσ q̇µ⟩

)
+ ⟨qλqσ⟩⟨aµaν⟩

+ ⟨qλqσ⟩⟨bµcν⟩
]
−Rab

∫ 1

0

dτ⟨λbλ̄a⟩+ αβR.

(C.1)

In the latter we used the Wick theorem to perform all the possible Wick contractions
and removed the propagators that give a null contribution when multiplied with the
Riemann tensor.
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By means of the propagators formulae (4.56), (4.58), (4.59) and (4.62) we can write

⟨S4⟩ =
β

3
R

∫ 1

0

dτ [−∆|τ •∆•|τ +∆•|τ∆•|τ −∆|τ ••∆|τ ]− i
β

2
R tan

θ

2
+ αβR, (C.2)

where we also exploited the identity ∆gh(τ, σ) =
••∆(τ, σ) in (4.61) and used (3.91) for the

propagator between fermionic variables at equal times. In equation (C.2) one can identify
two terms that constitute ambiguous integrals because of the double derivative of the
propagator that multiplied with the propagator itself give rise to ill-defined products of
Dirac delta distributions and Heaviside theta distributions, as we can see from (4.57) and
(4.61). Hence, the manipulations permitted by dimensional regularization, anticipated
in Chapter 4, are needed. First we isolate the problematic term and then we perform
useful manipulations as follows∫ 1

0

dτ∆|τ (•∆•|τ + ••∆|τ )
d+1−−→

∫
dd+1t∆|t(i∆i + ii∆)|t

=

∫
dd+1t∆|t[0(0∆|t)] = −

∫
dd+1t ∂0(∆|t)0∆|t

d→0−−→ −
∫ 1

0

dτ∂τ (∆|τ )•∆|τ

=− 1

2

∫ 1

0

dτ(2τ − 1)2 = −1

6
,

(C.3)

where in the first line we extended the compact space I = [0, 1] to the non-compact one
Ω = I ×Rd In the second line we employed the identity (4.70) and, after an integration
by parts, we used the expressions for the bosonic propagator and its derivative reported
in equations (4.61). The remaining integral is trivial and non troublesome∫ 1

0

dτ∆•|τ∆•|τ =

∫ 1

0

dτ

(
τ − 1

2

)2

=
1

12
. (C.4)

Replacing the above results in (C.2) we get

⟨S4⟩ =
1

12
βR− i

2
βR tan

θ

2
+ βαR. (C.5)

Let us go ahead with the evaluation of the average ⟨S6⟩, from (4.75):

⟨S6⟩ =
1

β

(
1

40
∇λ∇σRαµνβ +

1

45
RτλσµR

τ
αβν

)∫ 1

0

dτ

(
1

2
⟨qλqσqαqβ q̇µq̇ν⟩

+ ⟨qλqσqαqβaµaν⟩+ ⟨qλqσqαqβbµcν⟩
)

− 1

β

[
1

8
∇λ∇σRνµab +

1

24
Rτ

νλµRστab

] ∫ 1

0

dτ⟨q̇µqνqλqσ⟩⟨λbλ̄a⟩

−1

2
∇µ∇νRab

∫ 1

0

dτ⟨qµqν⟩⟨λbλ̄a⟩+ 1

2
βα∇µ∇νR

∫ 1

0

dτ⟨qµqν⟩.

(C.6)
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Let us write all the possible (and useful) Wick contractions below:

⟨qλqσqαqβ q̇µq̇ν⟩ =⟨qλqσ⟩[⟨qαqβ⟩⟨q̇µq̇ν⟩+ ⟨qαq̇µ⟩⟨qβ q̇ν⟩+ ⟨qαq̇ν⟩⟨qβ q̇µ⟩]
+ ⟨qλqα⟩[⟨qσqβ⟩⟨q̇µq̇ν⟩+ ⟨qσ q̇µ⟩⟨qβ q̇ν⟩+ ⟨qσ q̇ν⟩⟨qβ q̇µ⟩]
+ ⟨qλqβ⟩[⟨qσqα⟩⟨q̇µq̇ν⟩+ ⟨qσ q̇µ⟩⟨qαq̇ν⟩+ ⟨qσ q̇ν⟩⟨qαq̇µ⟩]
+ ⟨qλq̇µ⟩[⟨qσqα⟩⟨qβ q̇ν⟩+ ⟨qσqβ⟩⟨qαq̇ν⟩+ ⟨qσ q̇ν⟩⟨qαqβ⟩]
+ ⟨qλq̇ν⟩[⟨qσqα⟩⟨qβ q̇µ⟩+ ⟨qσqβ⟩⟨qαq̇µ⟩+ ⟨qσ q̇µ⟩⟨qαqβ⟩] ;

(C.7)

⟨qλqσqαqβaµaν⟩ =(⟨qλqσ⟩⟨qαqβ⟩+ ⟨qλqα⟩⟨qσqβ⟩+ ⟨qλqβ⟩⟨qσqα⟩)⟨aµaν⟩ ; (C.8)

⟨qλqσqαqβbµcν⟩ =(⟨qλqσ⟩⟨qαqβ⟩+ ⟨qλqα⟩⟨qσqβ⟩+ ⟨qλqβ⟩⟨qσqα⟩)⟨bµcν⟩ . (C.9)

Let’s now compute all the integrals, working backwards.

• 1

2
βα∇µ∇νR

∫ 1

0

dτ⟨qµqν⟩ = −β2α∇2R

∫ 1

0

dτ∆|τ

= −β2α∇2R

∫ 1

0

dττ(τ − 1) =
β2α

6
∇2R;

(C.10)

• −1

2
∇µ∇νRab

∫ 1

0

dτ⟨qµqν⟩⟨λbλ̄a⟩ = i

2
β2∇2R tan

θ

2

∫ 1

0

dτ∆|τ

=
i

2
β2∇2R tan

θ

2

∫ 1

0

dττ(τ − 1) = −iβ
2

12
∇2R tan

θ

2
;

(C.11)

• − 1

β

[
1

8
∇λ∇σRνµab +

1

24
Rτ

νλµRστab

] ∫ 1

0

dτ⟨q̇µqνqλqσ⟩⟨λbλ̄a⟩ = 0. (C.12)

To compute the first two integrals we used the identities (4.56), (4.61), (4.62) and (3.91).
The third integral gives a zero result from contracting ηba coming from the fermionic
propagator with the last two indices of the Riemann tensor.
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Proceeding with the calculation of the integral for the first term in ⟨S6⟩ we obtain:

• 1

β

(
1

40
∇λ∇σRαµνβ +

1

45
RτλσµR

τ
αβν

)∫ 1

0

dτ⟨qλqσqαqβbµcν⟩

=
1

β
(. . . )

∫ 1

0

dτ(⟨qλqσ⟩⟨qαqβ⟩+ ⟨qλqα⟩⟨qσqβ⟩+ ⟨qλqβ⟩⟨qσqα⟩)⟨bµcν⟩

= β2

(
1

5
∇2R− 8

45
RµνR

µν +
2

5
∇µ∇νR

µν − 4

15
RµνρσR

µνρσ

)∫ 1

0

dτ∆|τ∆|τ∆gh|τ

= β2(. . . ) I1;
(C.13)

• 1

β

(
1

40
∇λ∇σRαµνβ +

1

45
RτλσµR

τ
αβν

)∫ 1

0

dτ⟨qλqσqαqβaµaν⟩

=
1

β
(. . . )

∫ 1

0

dτ(⟨qλqσ⟩⟨qαqβ⟩+ ⟨qλqα⟩⟨qσqβ⟩+ ⟨qλqβ⟩⟨qσqα⟩)⟨aµaν⟩

= β2

(
− 1

10
∇2R +

4

45
RµνR

µν − 1

5
∇µ∇νR

µν +
2

15
RµνρσR

µνρσ

)∫ 1

0

dτ∆|τ∆|τ∆gh|τ

= β2(. . . ) I1;
(C.14)

• 1

β

(
1

40
∇λ∇σRαµνβ +

1

45
RτλσµR

τ
αβν

)∫ 1

0

dτ⟨qλqσqαqβ q̇µq̇ν⟩

= β2

(
1

10
∇2R− 4

45
RµνR

µν +
1

5
∇µ∇νR

µν − 2

15
RµνρσR

µνρσ

)
∫ 1

0

dτ(∆|τ∆|τ •∆•|τ −∆|τ∆•|τ∆•|τ )

= β2(. . . ) (I2 − I3).

(C.15)

Summing together the results of these last three integrals we get

β2

(
1

10
∇2R− 4

45
RµνR

µν +
1

5
∇µ∇νR

µν − 2

15
RµνρσR

µνρσ

)
(I1 + I2 − I3). (C.16)

I3 is the simplest one to compute and, using (4.61), it gives

I3 =
∫ 1

0

dτ∆|τ∆•|τ∆•|τ = − 1

120
. (C.17)

For the computation of I1 and I2 we need once again to apply dimensional regularization
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to cast the integrals in a nicer form, i.e.

I2 =
∫ 1

0

dτ∆|τ∆|τ •∆•|τ
d+1−−→

∫
dd+1t∆|t ∆|t i∆i|t

= −
∫
dd+1t(i∆|t ∆|t ∆i|t +∆|t i∆|t ∆i|t)

d→0−−→ −2
∫ 1

0

dτ •∆|τ∆|τ∆•|τ =
1

60
;

(C.18)

I1 =
∫ 1

0

dτ∆|τ∆|τ ••∆|τ
d+1−−→

∫
dd+1t∆|t ∆|t ii∆|t

= −
∫
dd+1t(i∆|t ∆|t i∆|t + i∆|t ∆|t i∆|t)

d→0−−→ −2
∫ 1

0

dτ∆•|τ∆|τ∆•|τ =
1

60
.

(C.19)

Putting together all the above results we finally obtain

⟨S6⟩ = β2

[(
1

120
+
α

6
− i

12
tan

θ

2

)
∇2R− 1

270
RµνR

µν − 1

180
RµνρσR

µνρσ

]
(C.20)

Lastly we need to compute ⟨S2
4⟩. For this purpose it is very convenient to write S4

as the sum of four pieces, i.e.

S4 = A+ B + C +D, (C.21)

where

A =
1

6β
Rλµνσ

∫ 1

0

dτqλqσ
(
1

2
q̇µq̇ν + aµaν + bµcν

)
; (C.22)

B =
1

2β
Rνµab

∫ 1

0

dτ q̇µqνλ̄aλb; (C.23)

C = Rab

∫ 1

0

dτλ̄aλb; (C.24)

D = αβR. (C.25)

In this way it is possible to write the square as

S2
4 = A2 + B2 + C2 +D2 + 2AB + 2AC + 2AD + 2BC + 2BD + 2CD. (C.26)
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We now proceed with the computation of all the terms.

•⟨D2⟩ = β2α2R2 (C.27)

•⟨2CD⟩ = −2βαRRab

∫ 1

0

dτ⟨λbλ̄a⟩ = −β2αR2i tan
θ

2
(C.28)

•⟨2BD⟩ = 0 (C.29)

•⟨2AD⟩ = 2D⟨A⟩ = 2βαR
1

12
βR =

β2

6
αR2 (C.30)

•⟨C2⟩ = RabR
cd

∫ 1

0

dτ

∫ 1

0

dσ(⟨λb(τ)λ̄a(τ)⟩⟨λd(σ)λ̄c(σ)⟩ − ⟨λd(σ)λ̄a(τ)⟩⟨λb(τ)λ̄c(σ)⟩)

= β2RabR
cd

∫ 1

0

dτ

∫ 1

0

dσ[ηbaηdc∆
2
F (0)− δadδbc∆F (σ − τ)∆F (τ − σ)]

= β2R2(
i

2
tan

θ

2
)2 − β2RabR

ab(−1

4
cos−2 θ

2
)

= −β
2

4
R2(cos−2 θ

2
− 1) +

β2

4
RabR

ab cos−2 θ

2

=
β2

4
[(RabR

ab −R2) cos−2 θ

2
+R2]

(C.31)

•⟨2BD⟩ = 0 (C.32)

•⟨2AC⟩ = −2⟨A⟩Rab

∫ 1

0

dσ⟨λbλ̄a⟩ = −iβ
2

12
R2 tan

θ

2
(C.33)

•⟨2AB⟩ = 0 (C.34)

In the latter we applied the usual propagator identities and the zeros are due to vanishing
contractions of the Riemann tensor.

We now consider the computation of ⟨B2⟩ which requires a bit more algebra. Taking
into account only the Wick contractions that give a non vanishing contribution when
multiplied with the Riemann tensors, we get

⟨B2⟩ = 1

4β2
RµνabR

ρσcd

∫ 1

0

dτ

∫ 1

0

dσ⟨q̇µ(τ)qν(τ)λ̄a(τ)λb(τ)q̇ρ(σ)qσ(σ)λ̄c(σ)λd(σ)⟩

=(. . . )⟨q̇µ(τ)qν(τ)q̇ρ(σ)qσ(σ)⟩⟨λ̄a(τ)λb(τ)λ̄c(σ)λd(σ)⟩
=(. . . )(⟨q̇µ(τ)q̇ρ(σ)⟩⟨qν(τ)qσ(σ)⟩+ ⟨q̇µ(τ)qσ(σ)⟩⟨qν(τ)q̇ρ(σ)⟩)

(⟨λb(τ)λ̄a(τ)⟩⟨λd(σ)λ̄c(σ)⟩ − ⟨λd(σ)λ̄a(τ)⟩⟨λb(τ)λ̄c(σ)⟩).

(C.35)

By means of the familiar propagator identities (4.61) and (4.62) we can write

⟨B2⟩ = β2RµνabR
µνab

∫ 1

0

dτ

∫ 1

0

dσ(∆•∆• − •∆∆•)∆F (τ − σ)∆F (σ − τ). (C.36)
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Dimensional regularization is again used to regulate ill-defined products of distributions,
i.e. the ones coming from the Dirac delta contained in •∆• times the Heaviside step
function contained in the ∆F ’s. In the analytic extension of the interval I = [0, 1] to the
non-compact space with d + 1 dimensions also some traces and Dirac gamma matrices
will appear, necessary for the contraction of the extended indices of the derivatives.∫ 1

0

∫ 1

0

dτdσ(∆•∆• − •∆∆•)∆F (τ − σ)∆F (σ − τ)

d+1−−→
∫
dd+1t

∫
dd+1s[α∆β(t, s)∆(t, s)− α∆(t, s)∆β(t, s)] tr[γ

α∆F (t− s)γβ∆F (s− t)]

= −2
∫
dd+1t

∫
dd+1s[α∆(t, s)∆β(t, s)] tr[γ

α∆F (t− s)γβ∆F (s− t)]

+

∫
dd+1t

∫
dd+1s∆β(t, s)∆(t, s) tr

[(
γα

∂

∂tα
∆F (t− s)

)
γβ∆F (s− t)

+ ∆F (t− s)γβ
(
∆F (s− t)

←−−
∂

∂tα
γα

)]
.

(C.37)

Now, a “mass term” iθ can be added freely, in order to obtain the Dirac equations:(
γα

∂

∂tα
+ iθ

)
∆F (t− s) = δF (τ − σ)δd(t− s),

∆F (s− t)
(
γβ
←−−
∂

∂sβ
− iθ

)
= δF (σ − τ)δd(s− t).

(C.38)

so that we have∫
dd+1t

∫
dd+1s∆β(t, s)∆(t, s) tr

[(
γα

∂

∂tα
∆F (t− s)

)
γβ∆F (s− t)

+ ∆F (t− s)γβ
(
∆F (s− t)

←−−
∂

∂tα
γα

)]
= 2

∫
dd+1t∆β|t ∆|t tr[γβ∆F |t=s]

d→0−−→ 2

∫
dτ∆•|τ∆|τ

(
i

2
tan

θ

2

)
= 0.

(C.39)

Hence we only need to compute the following term

− 2

∫
dd+1t

∫
dd+1s[α∆(t, s)∆β(t, s)] tr[γ

α∆F (t− s)γβ∆F (s− t)]

d→0−−→ −2
∫ 1

0

dτ

∫ 1

0

dσ•∆∆•∆F (τ − σ)∆F (σ − τ) = −
1

24
cos−2 θ

2
.

(C.40)
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The final result is

⟨B2⟩ = −β
2

24
RµνabR

µνab cos−2 θ

2
. (C.41)

The last step is the computation of ⟨A2⟩, which involves rather substantial and long
algebra.

⟨A2⟩ = 1

36β2
RλµνσRαβγδ

∫ 1

0

dτ

∫ 1

0

dσ
1

4
⟨qλ(τ)qσ(τ)q̇µ(τ)q̇ν(τ)qα(σ)qδ(σ)q̇β(σ)q̇γ(σ)⟩

+
1

2
⟨qλ(τ)qσ(τ)q̇µ(τ)q̇ν(τ)qα(σ)qδ(σ)aβ(σ)aγ(σ)⟩

+
1

2
⟨qλ(τ)qσ(τ)q̇µ(τ)q̇ν(τ)qα(σ)qδ(σ)bβ(σ)cγ(σ)⟩

+
1

2
⟨qλ(τ)qσ(τ)aµ(τ)aν(τ)qα(σ)qδ(σ)q̇β(σ)q̇γ(σ)⟩

+⟨qλ(τ)qσ(τ)aµ(τ)aν(τ)qα(σ)qδ(σ)aβ(σ)aγ(σ)⟩
+⟨qλ(τ)qσ(τ)aµ(τ)aν(τ)qα(σ)qδ(σ)bβ(σ)cγ(σ)⟩

+
1

2
⟨qλ(τ)qσ(τ)bµ(τ)cν(τ)qα(σ)qδ(σ)q̇β(σ)q̇γ(σ)⟩

+⟨qλ(τ)qσ(τ)bµ(τ)cν(τ)qα(σ)qδ(σ)aβ(σ)aγ(σ)⟩
+⟨qλ(τ)qσ(τ)bµ(τ)cν(τ)qα(σ)qδ(σ)bβ(σ)cγ(σ)⟩.

(C.42)

As we can see the first term is an 8-point correlation function, which means that all the
possible Wick contractions give rise to 7!! = 105 terms. For this reason, the computation
of this term is quite tricky and laborious. Once the evaluation of these 105 terms is done,
the computation of the other 8 correlation functions results much simpler. After really
careful algebra we obtain

⟨A2⟩ = β2

9

∫ 1

0

∫ 1

0

dτdσ{R2[(•∆• +∆gh)|τ∆|τ∆|σ(•∆• +∆gh)|σ +∆•|2τ∆•|2σ

− 2(∆•|2τ∆|σ∆gh|σ +∆•|2σ∆|τ •∆•|τ )]
+RµνR

µν [2∆|τ ((•∆•)2 −∆2
gh)∆|σ + 2(•∆• +∆gh)|τ∆2(•∆• +∆gh)|σ

+ 2∆|τ •∆2(•∆• +∆gh)|σ + 2(•∆• +∆gh)|τ (∆•)2∆|σ
− 4∆•|τ∆(•∆)(•∆• +∆gh)|σ − 4(•∆• +∆gh)|τ∆(∆•)∆•|σ
− 4∆|τ (•∆)(•∆•)∆•|σ − 4∆•|τ∆•(•∆•)∆|σ
+ 4∆•|τ∆(•∆•)∆•|σ + 4∆•|τ∆•(•∆)∆•|σ]

+R2
µναβ[−3∆2∆2

gh + 3∆2(•∆•)2 − 6(∆•)∆(•∆•)•∆+ 3(∆•)2(•∆)2]}.
(C.43)
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The solution is found by applying all the techniques we already mentioned, like di-
mensional regularization and integration by parts, and by exploiting all the necessary
propagator identities. The final result is then given by

⟨A2⟩ = β2

9

(
1

16
R2 − 1

6
RµνR

µν

)
. (C.44)

We can now sum up all the results obtained above to write ⟨S2
4⟩ in the following form

⟨S2
4⟩ = β2

[(
37

144
+ α2 +

α

6
− i tan θ

2

(
1

12
+ α

)
− 1

4
cos−2 θ

2

)
R2

+

(
− 1

54
+

1

4
cos−2 θ

2

)
RµνR

µν

− 1

24
cos−2 θ

2
RµνρσR

µνρσ

]
.

(C.45)

The last step is to add all the results together to get ⟨e−Sint⟩ as the sum 1−⟨S4⟩−⟨S6⟩+
1
2
⟨S2

4⟩, which can be checked to be the one reported in equation (4.93).
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