Garotti, Arianna
(2022)
Matrici ricorsive e successioni polinomiali di tipo intero.
[Laurea], Università di Bologna, Corso di Studio in Matematica [L-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato Download (426kB) | Contatta l'autore |
Abstract
Nel seguente elaborato esponiamo la teoria delle matrici ricorsive, ovvero matrici doppiamente infinite in cui ogni riga può essere calcolata ricorsivamente dalla precedente e in particolare mostriamo come questa teoria possa essere utilizzata per ottenere una versione del calcolo umbrale, il quale è idoneo anche allo studio dei polinomi p(x) che assumono valori interi quando la variabile x è un intero. Studieremo alcuni dei risultati del calcolo umbrale come conseguenze delle due principali proprietà delle matrici ricorsive, ovvero la Regola del Prodotto e il Teorema della Doppia Ricorsione.
Abstract