
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA
CAMPUS DI CESENA

Scuola di Ingegneria e Architettura

Corso di Laurea (Magistrale) in Ingegneria e Scienze Informatiche

Logic ecosystems meet
meta-interpretivative learning:

design and experiments on 2P-Kt

Tesi di laurea in
Autonomous Systems

Relatore
Prof. Andrea Omicini

Correlatore
Dott. Giovanni Ciatto

Candidato
Luca Nannini

Quarta Sessione di Laurea

Anno Accademico 2020-2021

ii

Abstract

This thesis is rooted in the field of Inductive Logic Programming (ILP), and,
in particular, Meta-Interpretative Learning (MIL). ILP is a branch of Machine
Learning where the Artificial Intelligence tries to induce Horn clauses from a given
background knowledge and some positive/negative examples.

The goal of this thesis is the development of a system for assisting interpretative
learning algorithms.

In order to achieve that, we extend the 2P-Kt logic ecosystem for symbolic
artificial intelligence, with meta-rules support. We then design and implement a
system of pluggable components aiming to assist the various steps of ILP algo-
rithms, such as generalization of induced rules and refinement of theories.

The results are: a 2P-Kt based library of various generalization, validation
and refinement strategies, a brand new algorithm inspired by Metagol (named
MetaPatrol) and a test suite. The system consists of a 2P-Kt module sup-
porting the definition of meta-rules; as well as the generalization, validation, and
refinement of induced theories as first class mechanisms. Overall, the system en-
ables the engineering of ILP solutions by combining multiple strategies for the
many aspects of MIL.

iii

iv

Le sfortune capitano, ma io me le procuro attivamente.

v

vi

Acknowledgements

In this section I wish to spend a few words for expressing my gratitude to the
people who supported me during my academic journey, and my special thanks to
who drove me through the development of this thesis.

Firstly, I’d wish to thank Prof. Andrea Omicini for letting me develop such a
complex thesis in such a short time window: a difficult challenge that few would
have accepted to undertake. Therefore, I wish to thank him for his confidence in
me.

A special thanks goes to Dr. Giovanni Ciatto who drove me through the design,
implementation and the writing of this thesis. I’d wish to thank him not only for
helping me rearranging my ideas, but also for his valuable advice and the time he
spent (wasted) for (because of) me.

metapatrol would not exist without(gciatto).

and that’s a fact!
I’d wish to thank all of my friends, those who accompanied me during my

studies, and also those who didn’t. Thanks for sharing and/or alleviating this
infernal time of my life. I could write down a list, but I’d never forgive myself if I
made an incomplete one.

Last but not least, I’d wish to thank my family, although most of them don’t
speak english, but I was told not to write the current section in italian for consis-
tency with the rest of the thesis.

A special thanks goes to my mother: if I cut down all the trees in the world I
wouldn’t have enough paper to thank her. That’s because trees are made of wood
and not paper. Seriously: a mother is a mother, and my mother is my mother.
This is emotional but luckily she will never read.

I’d wish to thank my father, especially for the little things like taking care of
the car and for opening the garage for me every morning, helping me not to miss
the train. Thanks for fixing my piano (thanks to my mother too) and thanks for
fixing the internet antenna. My father is a professional repairman!

Finally, I’d wish to thank my brother. Thanks for friday evenings, one of the
few certainties of life. Thanks for the complicity and the jokes that only brothers
can understand.

vii

viii

Contents

Abstract iii

1 Introduction 1

2 Background 5
2.1 Logic Programming . 5
2.2 Inductive Logic Programming . 7

2.2.1 Strategies (Search Method) 8
2.2.2 Techniques . 9
2.2.3 State of the Art . 10

2.3 2P-Kt . 14

3 Design 21
3.1 Desiderata . 21
3.2 Necessary Abstractions . 22

3.2.1 Prolog entities . 22
3.2.2 Meta-clauses . 23
3.2.3 Substitution . 26
3.2.4 Unification . 27
3.2.5 Operations on terms . 30

3.3 Inducer . 33
3.3.1 Inducer . 35
3.3.2 Generalizer . 36
3.3.3 Validator . 53
3.3.4 Refiner . 55
3.3.5 MetaPatrol . 61

4 Implementation 65
4.1 Reducing the Abstraction Gap: 2P-Kt 65
4.2 Identifying the Abstraction Gap . 65
4.3 Filling the Abstraction Gap . 66

ix

x CONTENTS

4.3.1 Occurs check . 66
4.3.2 MetaRules . 66
4.3.3 Utility operations on terms 71

5 Validation 75
5.1 Generalizer tests . 75
5.2 Validator tests . 80
5.3 Refiner tests . 81
5.4 MetaPatrol . 83

5.4.1 Learning task: grandparent/2 83
5.4.2 Learning task: tail/2 . 84
5.4.3 Learning task: append/3 . 86
5.4.4 Learning task: reverse/2 . 87
5.4.5 Learning task: map plus two/2 88
5.4.6 MetaPatrol use case . 89

6 Conclusions 93
6.1 Future works . 94

List of Figures

2.1 Overview on the Public API of 2P-Kt 16
2.2 2P-Kt – Simplified Term Hierarchy 17

3.1 Inducer – Hierarchy . 34
3.2 Generalizer – Hierarchy . 39
3.3 Generalizer – Utility Generalizers Hierarchy 40
3.4 Generalizer – Basic Generalizers Hierarchy 43
3.5 Generalizer – List Specific Generalizers Hierarchy 48
3.6 Validator – Hierarchy . 53
3.7 Refiner – Hierarchy . 57
3.8 MetaPatrol – Hierarchy . 63

4.1 2P-Kt: Initial Term Hierarchy . 67
4.2 2P-Kt: Extended Term Hierarchy 70

xi

xii LIST OF FIGURES

Listings

2.1 Simplified Metagol Implementation [9] 12
2.2 Metagol Predicate Invention Example – Background Knowledge . . 14
2.3 Metagol Predicate Invention Example – Solution without Predicate

Invention . 14
2.4 Metagol Predicate Invention Example – Solution with Predicate In-

vention . 14
3.1 Some Meta-rule Examples . 24
3.2 Map Plus 2 Induction Case – Hypothetical Meta-rule Syntax 25
3.3 Map Plus 2 Induction Case – No Hypothetical Meta-rule Syntax . . 25
3.4 Background Knowledge, Meta-rules and Expected Inductions for

append/3 – Meta-rules not Supporting Lists 26
3.5 Background knowledge, Meta-rules and Expected Inductions for ap-

pend/3 – Meta-rules Supporting Lists 27
3.6 Two Examples of Structural Equality 30
3.7 Two Examples of Strict Structural Equality 31
3.8 Two Semantically Equal Rules, the Order of the Literals in the

Body is Irrelevant . 31
3.9 Some Weight Examples . 32
3.10 Permutations of 3 Literals – the Order is Relevant 33
3.11 Combinations of 3 Literals – the Order is not Relevant 34
3.12 Simple Generalization by Mapping the Functors of a Meta-rule . . . 37
3.13 Wrong Generalization by Mapping the Functors of a too Permissive

Meta-rule . 37
3.14 A Clause can be Generalized in Multiple Ways 38
3.15 A Clause which can be either a Fact or a Rule 38
3.16 ConstantsToVariableExcept – Examples 42
3.17 ConstantsToVariables – Examples 44
3.18 ConstantsToVariablesExceptEmptyListExamples – Examples 45
3.19 ConstantsToVariablesExceptSingletons – Examples 46
3.20 ConstantsToVariablesExceptSingletonsAndEmptyList – Examples . 47
3.21 ListSpecificGeneralizerEmptyListAsVar – Examples 49

xiii

xiv LISTINGS

3.22 ListSpecificGeneralizerExceptEmptyList – Examples 50
3.23 ListSpecificGeneralizerExceptSingletons – Examples 51
3.24 ListSpecificGeneralizerExceptSingletonsAndEmptyList – Examples 52
3.25 append/3 with Redundant Clauses 55
3.26 Multiple Predicate Invention Strategies Exist 56
3.27 ListSpecificRefiner – Examples . 57
3.28 PredicateInventorGroupCommon – Examples 59
3.29 PredicateInventorGroupNonCommon – Examples 60
4.1 Extended DSL Examples – MetaRules 72
5.1 ConstantsToVariables Test . 76
5.2 ConstantsToVariablesExceptSingletons Test 76
5.3 ConstantsToVariablesExceptEmptyList Test 76
5.4 ConstantsToVariablesExceptSingletonsAndEmptyList Test . . . 77
5.5 ListSpecificGeneralizerEmptyListAsVar Test 77
5.6 ListSpecificGeneralizerExceptSingletons Test 78
5.7 ListSpecificGeneralizerExceptEmptyList Test 78
5.8 ListSpecificGeneralizerExceptSingletonsAndEmptyList Test . 79
5.9 A Fact Sensitive Generalization Test 80
5.10 A Strong List Generalization Test 80
5.11 OccamisticValidator Pruning a Redundant Clause 81
5.12 OccamisticValidator Pruning an Infinite Loop Clause 81
5.13 OccamisticValidator Identifying an Invalid Theory 81
5.14 PredicateInventorMetagolLike Test 82
5.15 PredicateInventorGroupNonCommon Test 82
5.16 PredicateInventorGroupCommon Test 83
5.17 Reuse of Already Existing Predicates Test 83
5.18 Multiple Predicate Inventions Test 84
5.19 Grandparent – BK, Positive/Negative Examples 85
5.20 Grandparent – MetaPatrol Inductions 85
5.21 Tail – BK, Positive/Negative Examples 85
5.22 Tail – MetaPatrol Inductions . 86
5.23 Append – BK, Positive/Negative Examples 86
5.24 Append – MetaPatrol Inductions 87
5.25 Append – MetaPatrol Optimal and Sub-Optimal Inductions . . . 87
5.26 Reverse – BK, Positive/Negative Examples 88
5.27 Reverse – MetaPatrol Inductions 88
5.28 Map Plus Two – BK, Positive/Negative Examples 89
5.29 Map Plus Two – MetaPatrol Inductions 89
5.30 MetaPatrol – use case . 91

Chapter 1

Introduction

The most significant trait of human intelligence is probably its ability to learn,
in particular its ability to acquire new knowledge on the basis of experiences and
through the application of study and in-depth analysis of the phenomena that
surround us. One of the most common learning mechanisms is induction: by
observing examples we define general rules which abstract from the examples.

This historical period is characterized by a strong hype for the research related
to Artificial Intelligence: the developed systems try to reproduce mechanisms of
automatic induction and the produced results are disrupting.

“The pace of progress in artificial intelligence (I’m not referring to
narrow AI) is incredibly fast. Unless you have direct exposure to groups
like Deepmind, you have no idea how fast — it is growing at a pace
close to exponential.”

Elon Musk (Entrepreneur, investor and business magnate.)

Nowadays we can identify two main approaches in the development of intelli-
gent systems: Machine Learning (ML) and Inductive Logic Programming (ILP).
Both approaches exploit sets of examples and a bias : an assumption for reducing
the hypothesis space.

ML deals with the problem of induction trying to generate rules and predictions
based on computational statistics and mathematical optimization. Currently it is
the most popular approach and consequently it is achieving quite satisfactory
results nowadays.

“We are entering a new world. The technologies of machine learning,
speech recognition, and natural language understanding are reaching a
nexus of capability. The end result is that we’ll soon have artificially
intelligent assistants to help us in every aspect of our lives.”

1

2 CHAPTER 1. INTRODUCTION

Amy Stapleton (Chatables Cofounder. Voice tech, Conversational AI,
virtual beings.)

ILP, unlike traditional ML, is a knowledge-based approach, in particular it
exploits logic programming. Being based on knowledge, ILP allows to develop
systems that generate rules more in line with the human logical rationale, with a
consequent easier verification of the produced results by users. A further advantage
of ILP is its ability to generalize starting from a small set of examples, where ML
requires a large amount of data.

This thesis is rooted in the field of Inductive Logic Programming (ILP)[17], and,
in particular, Meta-Interpretative Learning (MIL)[18]. MIL is an ILP approach
based on meta logic programming. The state of the art of ILP is full of solutions
leveraging on as many induction strategies. For instance Golem[16] is based on
the concept of least general generalization which is the construction of a unique
clause which covers a given set of examples. Metagol [8] is a MIL algorithm
based on meta-programming in Prolog, exploiting particular clauses called meta-
rules. Another example of ILP algorithm is ILASP [14], which is based on a
conflict-driven approach and exploits the definition of constraints. Unfortunately,
the implementation of such algorithms are unavailable, unmaintained or tailored
on Prolog. That is not in itself a problem but it forces users to be able to use MIL
exclusively via Prolog.

Even if these algorithms have different induction engines, they share common
characteristics regarding key aspects of the induction process such as: (i) the
exploitation of background knowledge (e.g. clauses made available to the induction
engine), (ii) the use of positive and negative examples upon which induction should
be performed, (iii) the generalization of non-ground clauses from ground ones,
(iv) the validation of the induced theories on the basis of the aforementioned
examples, and (v) the consequent refinement of such induced rules.

Notably, existing algorithms from the literature come with hard-coded choices
concerning the generalization, validation, and refinement strategies they follow
while pursuing induction. Hence, to the best of our knowledge, an ILP solution
enabling the combination of different generalization/validation/refinement strate-
gies (or the implementation of new strategies on the fly) is currently missing.

Thesis Purpose. The goal of this thesis is the development of a library for
supporting ILP (and in particular MIL) algorithms without strictly relying upon
Prolog. This, would enable the induction of knowledge bases by exploiting other
resolution strategies than Prolog’s depth-first, backtracking-based one. Further-
more, and more importantly, this would enable the exploitation of MIL outside
the realm of LP.

3

In order to achieve that, we exploit 2P-Kt[2], an ecosystem for symbolic arti-
ficial intelligence. In particular, the contributions of this thesis are:

• the design of general, strategy-agnostic API for ILP, supporting the speci-
fication of positive and negative examples, background knowledge, and lin-
guistic bias;

• the design of MIL-specific API, supporting the specification of meta-rules
as linguistic bias, and admitting the customisability of key phases, such as

– generalization of ground clauses into non-ground ones,

– validation of the induced theories against the provided examples, and

– refinement of the induced theories (e.g., via predicate invention[21]);

• the design and implementation of MetaPatrol: a brand new ILP algo-
rithm based on MIL and inspired by Metagol, adhering to the aforemen-
tioned API;

• a test suite demonstrating the effectiveness of MetaPatrol.

Thesis Structure. This thesis is structured as follows. Chapter 2 briefly sum-
marises the Logic Programming Paradigm and stands as a contextualization of the
current ILP state of art; finally it introduces the 2P-Kt framework. Chapter 3
discusses the desiderata, in particular the necessary abstractions focusing on an
in-depth analysis of the identified phases of a ILP algorithm; finally it discusses
the framework structure and the MetaPatrol algorithm logic. Chapter 4 dis-
cusses the major implementative details and the technological choices we adopt
such as using 2P-Kt. Chapter 5 discusses the results and the tests performed on
the deliverable, provided as validation of the latter. Finally, Chapter 6 poses as a
conclusion of this thesis and suggests some interesting ideas for future works.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 Logic Programming

In order to understand what is ILP about, we need to understand what is Logic
Programming (LP) first.

LP is a programming paradigm based on computational logic: a logic program
is a set of logical relations (facts or rules) [2]. Computation, in a logic program, is
a form of deduction such as searching for a proof or a refutation.

The main difference among LP and the other programming paradigms (e.g.,
imperative, functional, etc.) is that LP is declarative:

• that means it allows to state what a program should do, rather than how it
should work;

• usually making assumptions on the order of the rules in a logic program does
not matter [5].

Syntax

As briefly mentioned above a logic program is composed by facts and rules, all of
them collected within a theory.

Here a more detailed syntax definition:

• terms : symbols representing entities in the domain

– constants : denoting simple entities, a string starting with a lowercase
letter (e.g., jack, tree);

– variables : denoting placeholders for entities, a string starting with an
uppercase letter (e.g, A, Variable);

5

6 CHAPTER 2. BACKGROUND

– structures (functions): denoting composed entities, in the form func-
tor(arguments) (e.g., coordinate(1, 2));

a term is ground if it contains no variables.

• lists : representing linked lists, they are written between square brackets:

– ground list : e.g., [1, 2, 3] where all elements are separated by a comma;

– empty list : [] ;

– head and tail list : in the form [H | T] which denotes a list whose head
is H and whose tail is T.

• predicates : syntactically equal to structures but semantically different:

– since terms represent entities of the domain they just exist;

– predicates represent statements about those entities (which can be either
true or false).

the arity n of a predicate p is the number of arguments it takes and is denoted
as p/n (e.g., raining/0, even/1, son/2, append/3).

• clauses : facts and rules are expressed as Horn Form clauses such as:

H :- B1, ..., Bn.

where:

– H denotes the head of the rule;

– (B1, ..., Bn) denotes the body of the rule, each element of the body is
called literal ;

– :- is the implication symbol;

– , is the logic operator AND (while ; is the logic operator OR);

– . denotes the end of the clause.

More specifically:

– rule: a clause with head and body (e.g., son(A, B) :- male(A), parent(B,
A).);

– fact : a clause with no body (denoting a tautology) (e.g., son(jack,
albert).);

– goal : a clause with no head (denoting a contradiction) (e.g., :- son(jack,
mary).

2.2. INDUCTIVE LOGIC PROGRAMMING 7

2.2 Inductive Logic Programming

ILP is a discipline within the realm of Symbolic AI, in particular in the field of
Supervised ML [1].

Symbolic AI is a branch of AI based on high-level symbolic representations
of problems, in contrast with Subsymbolic AI which is based on computational
statistics and mathematical optimization. Exploiting high-level symbolic represen-
tations, a Symbolic AI provides more human-readable solutions and allows greater
understanding of the induction processes and induced hypotheses to human users.

Supervised ML is a branch of Symbolic AI inducing hypotheses H∗ from a set
of given evidences:

• some preliminary knowledge B about the domain of interest called back-
ground knowledge;

• some positive examples E+ which must be satisfied by the representation to
be learnt;

• some negative examples E− which must not be satisfied by the representation
to be learnt;

• a language bias C constraining the hypotheses space for more efficient learn-
ing.

In particular, ILP exploits LP as a paradigm for representing knowledge in a
declarative and expressive fashion. The hypotheses H∗, the background knowledge
B, the examples E+, E−, and eventually the bias C (or a part of it) are espressed
in Prolog or another LP language. Furthermore, some ILP algorithms are coded
in such paradigm themselves i. e. Aleph [20], Metagol [8].

Positive and negative examples, in LP, are expressed as facts, while the back-
ground knolwedge is expressed as a set of clauses (a theory).

ILP extends the traditional computational logic using induction rather than
deduction for inference, providing a powerful formalism for expressing knowledge.
Such formalism ensures a better comprehension of the induction processes and
induced hypotheses, which might be more difficult to achieve in ML approaches.
Furthermore, ILP can induce hypotheses from small numbers of examples, often
from a single example, making it efficient for real-world applications where large
numbers of examples are not always easy to obtain [5].

Bias. The general purpose of the linguistic bias is to constrain the hypothesis
space. In the particular case of ILP, bias aims to constrain the combinations of
the relations from the background knowledge, from which the hypotheses derive.

8 CHAPTER 2. BACKGROUND

This can come in different shapes and flavours, depending on the particular ILP
method in place [1].

Bias is an important feature in the field of symbolic supervised learning, and its
role is similar to the one played by hyper-parameters in sub-symbolic supervised
learning.

Some examples of common biases are mode declarations [11] and meta-rules.
For the purpose of this thesis we only delve into the meta-rule world, discussing
them in Section 2.2.2.

2.2.1 Strategies (Search Method)

As previously mentioned, ILP algorithms are based on disparate induction engines,
that consequently means that they rely on various induction strategies. Each
strategy aims to explore the hypotheses space in an efficient way, featuring different
levels of generalization or specialization. A more generalized hypothesis covers a
plethora of cases while a more specialized one covers a most particular case.

In this section we will briefly categorize and summarize the most popular ILP
search method approaches. At the current state of the art there is no evidence of
a “best” search method approach, to the best of our knowledge, and there are no
limitations regarding the use of hybrid approaches. However, the most common
approaches for ILP are:

Top-down approaches, starting from a more generalized hypothesis and proceed
trying to specialize it. An example of a top-down ILP algorithm is Foil
[19].

Bottom-up approaches, starting from a more specialized hypothesis and proceed
trying to generalize it. An example of a bottom-up ILP algorithm is Golem
[16].

Meta-level approaches, representing an ILP problem as a meta-level logic pro-
gram, i.e., a program that reasons about programs. Meta-level approaches
formulate the learning problems as declarative problems, and the meta-level
solutions are translated back to a standard solution for the ILP problem [5].
Some examples of meta-level ILP algorithms are ASPAL [4] and Metagol
[8].

Conflict-driven approaches, exploiting the definition of constraints for building
the solution incrementally. Some examples of conflict-driven ILP algorithms
are ILASP [13] and Popper [7].

2.2. INDUCTIVE LOGIC PROGRAMMING 9

2.2.2 Techniques

The state of the art of ILP features numerous algorithms exploiting a disparate
number of techniques: Structure Learning, Relative least-general generalization,
Inverse Entailment, Bottom-clause propositionalisation, Meta-interpretative learn-
ing (MIL), Parameter Learning to cite some. Each technique is characterized
by different advantages and disadvantages, but for the purpose of this thesis we
merely focalise on MIL, one of the most modern approaches.

Meta-interpretative learning

MIL algorithms are Meta-level algorithms leveraging on the meta-level program-
ming capabilities of logic solvers, and in particular Prolog ones [1].

For achieving meta-programming in Prolog, some ILP algorithms exploit the
concept of meta-rule (e.g., ILASP and Metagol).

Meta-rules. Meta-rules are a form of syntactic bias introduced by Emde in
1983 [12]. The purpose of meta-rules in ILP is to define the admissible structure
of the induced predicates, aiming to reduce the hypothesis space.

Meta-rules are higher-order clauses and, in addition to the ordinary Prolog
variables, they introduce the concept of second-order variable (a.k.a. higher-order
variable), such as:

X(A,C) :- Y(A,B),Z(B,C).

where the uppercase and bold letters X, Y, Z denote second-order variables, while
the letters A, B, C denote first-order (ordinary) variables.

A second-order variable can be bound to a functor (predicate symbol). Based
on background knowledge and/or positive examples, MIL approaches try to find a
suitable substitution for the second-order variables, in order to induce a solution
to the ILP problem.

The major difference between meta-rules and other forms of bias in ILP is that
meta-rules themselves are logical statements, allowsing us to reason about them.
Anyway, despite their widespread use, there is little work determining the best
meta-rules to apply to a learning task, making the choice of meta-rules an open
and promising research field [5].

Meta-rules play a pivotal role in MIL, in fact, as stated in [6]:

“following MIL, many ILP systems can learn recursive programs. With
recursion, ILP systems can now generalise from small numbers of ex-
amples, often a single example. The ability to learn recursive programs
has opened up ILP to new application areas, including learning string
transformations programs, robot strategies, and answer set grammars.”

10 CHAPTER 2. BACKGROUND

2.2.3 State of the Art

As previously mentioned, the state of the art of ILP features numerous valuable
algorithms. In this section we only focalize on a few of them, in particular we
provide an overview of the most famous MIL algorithms.

ILASP

Although ILASP, Inductive Learning of Answer Set Programs, was not born as a
pure MIL algorithm, its most recent versions support the concept of meta-rule, if
provided within the background knowledge [22].

ILASP has been released in multiple versions during its lifetime and its team
is still working on it, constantly improving its capabilities and optimization.

ILASP is based on the Answer Set Programming (ASP) paradigm, which
allows to describe problems in terms of its specification, rather than requiring the
user to define an algorithm to solve the problem [13]. The learning activity is
delegated to an ASP solver, called incrementally on a program which “grows”
during the learning phase.

While the versions ILASP1 and ILASP2 adopt a meta-level search mode
approach, the most recent versions of ILASP are moving towards a conflict-driven
search mode approach, defining constraints at each iteration of the algorithm, in
order to find a solution to the learning problem. By adopting a conflict-driven
approach, ILASP implements a sort of “learning by failure” technique.

Here a brief explanation of the implementation of ILASP.
For each iteration:

1. the solver generates a hypothesis which satisfies che current defined con-
straints;

2. the solver looks for a conflict, trying to refute the current hypothesis;

• if there is no conflict, the solver returns the hypothesis which results as
a valid inductive solution;

• if there is a conflict, the solver computes a new constraint, based on the
occured conflict, supporting the next iterations.

Referring to the relevant paper of ILASP [13], constraints can be extremely
large and expensive to compute, especially for larger learning problems. The main
issue is that the constraints are both sufficient and necessary for the example to be
covered, and an example is considered to be covered if and only if the constraints
are satisfied. In order to relax this issue, the ILASP team is currently developing
ILASP4 for computing constraints which are only guaranteed to be necessary (but
may not be sufficient) for the example to be covered, for overall better performance.

2.2. INDUCTIVE LOGIC PROGRAMMING 11

Metagol

Metagol[8] is a MIL algorithm based on a meta-level search method approach.
Although its developers decided to interrupt its development for moving to a new
conflict-driven algorithm (Popper), Metagol still stands as one of the most
interesting and promising examples of ILP, in particular MIL, in our opinion.

Metagol incarnates the true essence of “meta-programming” (from which
takes half of its name) and is entirely coded in Prolog, specifically in SWI-Prolog.

Metagol exploits the declaration of meta-rules as a linguistic bias for op-
timally exploring the hypothesis space, applying the so-called meta-substitutions
(a.k.a. second-order/higher-order substitutions) from positive examples and back-
ground knowledge, in order to induce a solution to the learning problem. Since
Prolog does not provide a native way to express a meta-rule, the Metagol Team
have come to the following formalism:

metarule(name, [X, Y, Z], [X,A,C], [[Y,A,B], [Z,B,C]]). (2.1)

where:

• the first argument, name, denotes the name of the meta-rule, in particular
the meta-rule in the example is commonly referred as chain;

• the second argument, [X, Y, Z], denotes the list of second-order variables of
the meta-rule;

• the third argument, [X,A,C], denotes the head of the meta-rule where X
denotes the second-order variable (acting as functor) while A,C denote first-
order (ordinary) variables;

• the fourth argument, [[Y,A,B], [Z,B,C]], denotes the body of the meta-
rule; each list denotes a literal (i. e. [Y,A,B] and [Z,B,C]); literals are
expressed following the same method adopted for the head, where the first
variable denotes the second-order variable (acting as functor) while the other
variables denote first-order (ordinary) variables.

The formalism from eq. (2.1) aims to represent the following meta-rule:

X(A,C) :- Y(A,B),Z(B,C).

Listing 2.1 provides a simplified implementation of Metagol [9], here a more
detailed explanation of how it works:

1. Metagol verifies if a goal (a positive example head) is already proved,
deductively delegating the proof to Prolog;

12 CHAPTER 2. BACKGROUND

Listing 2.1: Simplified Metagol Implementation [9]�
1 prove ([], H, H).

2 prove([Atom | Atoms], H1, H2):-

3 prove_aux(Atom, H1, H3),

4 prove(Atoms, H3, H2).

5 prove_aux(Atom, H, H) :-

6 call(Atom).

7 prove_aux(Atom, H1, H2):-

8 member(sub(Name, Subs), H1),

9 metarule(Name, Subs,(Atom :- Body)),

10 prove(Body, H1, H2),

11 prove_aux(Atom, H1, H2):-

12 metarule(Name, Subs, (Atom :- Body)),

13 new_metasub(H1, sub(Name, Subs)),

14 abduce(H1, H3, sub(Name, Subs)),

15 prove(Body, H3, H2).
� �
(a) if the prove fails, Metagol tries to unify the positive example head

with the head of a meta-rule. Metagol proceeds trying to substitute
all the literals of the partially substituted meta-rule, basing on the
background knowledge;

• if it finds a complete ground substitution, Metagol tries to prove
the body goals of such substituted meta-rule. If the body goals are
proved, Metagol applies a meta-substitution to the initial meta-
rule, substituting the ground rule functors to the initial meta-rule
second-order variables;

• if it does not prove the example, Metagol tries to prove the exam-
ple following the previous points with another meta-rule, if there
is one;

(b) if the prove succeeds, Metagol proceeds to the next example (return-
ing at point 1).

2. when all examples are proved, Metagol tests the hypothesis on the negative
examples. If the hypothesis does not entail any negative example, it stops
and returns the hypothesis; otherwise it backtracks to a choice point at (a)
and continues.

Recursion. A recursive logic program is one where the same predicate in the
head of a rule appears also in its body. Usually recursive rules feature a base case
and one or more recursive cases, a recursive rule without base case would generate
an infinite loop.

Learning recursive programs has long been considered a difficult problem for
ILP and, without recursion, it is often difficult for an ILP system to generalize

2.2. INDUCTIVE LOGIC PROGRAMMING 13

from small numbers of examples [6].
Metagol, exploiting meta-rules, is capable of inducing recursive programs

if the provided meta-rules are recursive themselves (or one of the base/inductive
cases are provided within background knowledge).

Higher-Order. Metagol supports the induction of higher-order programs.
Suppose to provide some pre-made utility rules to Metagol within the back-

ground knowledge. Since the second argument of a meta-rule, expressed in the
previously specified formalism, denotes the list of second-order variables of the
meta-rule, it is possible to specify a higher-order variable to use within a literal
(instead of as a functor), such as:

metarule(name, [X, Y,C], [X,A,B], [[Y,A,B,C]]).

where C denotes a second-order variable present in the body of the meta-rule,
specifically:

X(A,B) :- Y(A,B,C).

Metagol will then look for a substitution for C from the background knowledge
in the same way it does for functors. For a clearer explanation: suppose we provide
a higher-order predicate of arity 3 within the background knowledge, Metagol
would substitute Y with it, then Metagol would search for a higher-order sub-
stitution for C.

Predicate Invention. The goal of predicate invention is for an ILP system
to automatically invent new auxiliary predicate symbols, reducing the required
background knowledge size. Usually, on the other hand, for predicate invention
to work properly, the smaller size of the required background knowledge comes at
the cost of larger meta-rules.

The idea behind predicate invention is to reduce code duplication or to improve
readability, similar to when humans create new functions when manually writing
programs [6].

Metagol features an example of predicate invention, here we provide a prag-
matic case [5].

Supposing to provide Metagol the background knowledge at Listing 2.2 and
the chain metarule

X(A,C) :- Y(A,B),Z(B,C).

(appropriately expressed in the formalism supported by Metagol).
Supposing to provideMetagol some positive and negative examples for learn-

ing the rule grandparent/2.

14 CHAPTER 2. BACKGROUND

Listing 2.2: Metagol Predicate Invention Example – Background Knowledge�
1 mother(ann, amy).

2 mother(ann, andy).

3 mother(amy, amelia).

4 mother(amy, bob).

5 mother(linda, gavin).

6 father(steve, amy).

7 father(steve, andy).

8 father(andy, spongebob).

9 father(gavin, amelia).
� �
Listing 2.3: Metagol Predicate Invention Example – Solution without Predicate
Invention�

1 grandparent(A, B) :- mother(A, C), mother(C, B).

2 grandparent(A, B) :- father(A, C), mother(C, B).

3 grandparent(A, B) :- father(A, C), father(C, B).

4 grandparent(A, B) :- mother(A, C), father(C, B).
� �
A possible solution may be the one at Listing 2.3, in which the induced theory

is composed by four similar clauses, whose body is composed by a permutation
of the predicates mother/2 and father/2. A Prolog programmer would find the
aforementioned solution too verbose. Metagol, for dealing with that issue, would
instead apply predicate invention and produce the solution at Listing 2.4, where
grandparent 1/2 is invented and corresponds to the parent/2 relation. Overall,
this means that, with the predicate invention feature, Metagol is capable of
inducing more compact solutions.

2.3 2P-Kt

tuProlog (2p). tuProlog [10] (2p) is an open-source logic programming frame-
work supporting multi-paradigm programming. 2p features a bidirectional inte-
gration between the logic and object-oriented paradigms.

Listing 2.4: Metagol Predicate Invention Example – Solution with Predicate In-
vention�

1 grandparent(A, B) :- grandparent_1(A, C), grandparent_1(C, B).

2 grandparent_1(A, B) :- father(A, B).

3 grandparent_1(A, B) :- mother(A, B).
� �

2.3. 2P-KT 15

tuProlog-Kotlin (2P-Kt). 2P-Kt is a reboot of 2p, re-engineered as a Kotlin
multi-platform library. The main purpose of 2P-Kt is to provide a general-
purpose, extensible, interoperable, and open LP ecosystem supporting multiple
platforms and programming paradigms [2].

2P-Kt features a Kotlin DSL for Prolog, enriching the Kotlin multi-paradigm
(OOP+FP) language with LP in a straightforward and effective way.

2P-Kt aims to become an open ecosystem supporting symbolic AI. For this
reason it is composed by a set of interdependent modules with the purpose of
supporting manipulation and symbolic reasoning in an extensible and flexible way
[3]. Figure 2.1 is an overview of the 2P-Kt API and shows how 2P-Kt exposes
a Kotlin type for each main LP concept:

• logic Terms (including each particular sort of term, i.e. Variables, or Struc-
tures, etc.);

• logic Substitutions and Unification;

• Horn Clauses (including Rules, Facts, and Directives)

• knowledge bases and logic theories (Theory);

• automatic reasoning via Prolog’s resolution strategy (Solver).

Core module

Within the :core module, 2P-Kt features a hierarchy representing Prolog terms,
supporting the instantiation of Prolog terms and some useful operations over them.

Term. In 2P-Kt logic terms are represented by the Term base type. As illus-
trated in Figure 2.2 Term poses as the root of the term hierarchy.

Terms are implemented as immutable data structures, therefore each Term sub-
type has public methods and fields, favoring their implementation and an overall
finest control over them.

Substitution. Within the :core module, 2P-Kt features a representation of
substitutions, which we described in Chapter 3. The Substitution type is a base
type for all substitutions. There are two types of Substitution:

• Unifiers actually mapping a (possibly empty) set of Vars to their corre-
sponding Term

• Fail representing the failed substitution.

16 CHAPTER 2. BACKGROUND

Figure 2.1: Overview on the Public API of 2P-Kt

2.3. 2P-KT 17

Te rm

Constant Va rStruct

Numeric A tom Se t Tup leList IndicatorClause

Integer Rea l Truth

EmptySet EmptyList

Cons Ru leDirectiveEmpty

Fact

Figure 2.2: 2P-Kt – Simplified Term Hierarchy

TermVisitor. 2P-Kt provides the entity TermVisitor<T> with the following
features:

• Visitor pattern applied to Term;

• supports use cases where a particular operation must be performed depend-
ing on the actual type of a Term.

An instance of TermVisitor<T> v can be applied to a Term via the method
accept(v), this returns an object of type T.

TermVisitor<T> can be implemented by:

• overriding the method defaultValue to handle the general case;

• overriding some visit<Type>method to handle the particular case of <Type>.

Term equality. 2P-Kt provides Terms with two equality methods:

• structurallyEquals: for structural equality, which we describe in Chap-
ter 3;

• equals: a strong equality check over the effective instances of two Terms
within the same scope (Scope).

Unify module

Within the :unify module, 2P-Kt features a representation of unifications, which
we describe in Chapter 3.

18 CHAPTER 2. BACKGROUND

Unificator. The Unificator type matches two Terms by finding a suitable sub-
stitution to their variables, i.e., the most general unifier (MGU).

• mgu(Term, Term): Substitution: returns the MGU between two Terms
if a substitution is found, or a Fail object otherwise

• match(Term, Term): Boolean: checks if two Terms can be unified

• unify(Term, Term): Term?: tries to unify two Terms, possibly returning
the unified Term as a result

• merge(Substitution, Substitution): Substitution: merges two Sub-
stitutions with occurs check enabled

Note: occurs check is a feature of some implementations of unification which
causes unification of a logic variable V and a structure S to fail if S contains
V . Binding a variable to a structure containing that variable results in a cyclic
structure which may subsequently cause unification to loop forever.

Theory module

Within the :theory module, 2P-Kt features a representation of theories, which
we described in Chapter 3.

Theory. The Theory type:

• provides high-level management of Clauses;

• is meant as a façade through which client code can access a knowledge base.

2P-Kt Theory(s) can be either mutable or immutable.

Solve modules

Within the :solve* modules, 2P-Kt provides generic support to logic resolution.
These modules provide the abstractions Solver and Solution. Solvers are re-
active entities capable of answering to users’ queries by producing one or more
solutions, exploiting logic resolution.

In these modules 2P-Kt provides:

• libraries: containers of built-in functionalities exploitable by resolution;

• flags: configurable aspects of a solver;

• knowledge bases: containers of the logic knowledge used by resolution;

2.3. 2P-KT 19

• operators: set of operators used to parse queries and to present solutions;

In particular, knowledge bases are of two sorts:

• static KB: which cannot be altered during resolution

• dynamic KB: which can be altered during resultion

Parser/DSL modules

Parser. Within the parser-* modules 2P-Kt features the TermParser inter-
face, which provides methods to parse Terms from strings (throwing a ParseEx-

ception upon failure) and allows to select the operators used for parsing.

DSL. The dsl-* modules let Kotlin expoit LP with Prolog-like syntax. The
2P-Kt DSL does not rely a parser and has the followin purpose:

• integrating OOP, FP and LP;

• bringing OOP software engineering techniques to LP and FP;

• bringing declarativity from FP and LP to OOP;

• enriching the Kotlin language in a fruitful and natural way.

20 CHAPTER 2. BACKGROUND

Chapter 3

Design

3.1 Desiderata

In this section we provide a categorization of the most common phases of an ILP
algorithm. Every ILP algorithm, in addition to the actual inductive phase, may
be composed by a set of earlier or later stages, which can be extrapolated as they
may be valuable in a larger pool of ILP algorithms. In the particular case of MIL
algorithms we identify the following phases:

• an induction phase in which the induction engine generates basic hypotheses;
this can come in different shapes and flavours and, consequently, it represents
the most distinctive feature of an ILP algorithm;

• a generalization phase in which the ground rules produced after substitutions
from positive examples and/or background knowledge on a meta-rule are
transformed in more general rules, for making them cover a larger set of
examples;

• a validation phase in which the hypotheses are validated on the basis of
the provided background knowledge, positive and negative examples. Usu-
ally a hypothesis covering negative examples is discarded while a hypothesis
covering only a subset of the positive examples may be accepted;

• a refinement phase in which the validated hypotheses are subjected to a
perfecting process which makes them more similar to what a skilled human
programmer would produce while coding.

After the provided categorization we can then imagine to design and implement
a library for supporting each individual MIL common phase, specifically: gener-
alization, validation, and refinement. Furthermore, each of these phases can be

21

22 CHAPTER 3. DESIGN

performed via various techniques and various purposes, in order for a client user to
choose and plug them only if needed or, even more, to allow a client to implement
new ones on the fly.

3.2 Necessary Abstractions

In order to implement a library for supporting MIL we need to identify all the
necessary abstractions first.

Since MIL is a case of ILP and, since ILP is based on LP, we need to provide
an abstraction for each entity which can be expressed with LP’s syntax, in par-
ticular we choose Prolog’s one. Therefore, we need to provide an abstraction for
meta-rules since there is no native way to express them in Prolog syntax. Finally
we need to provide an abstraction for each operation of interest over the previously
identified entities.

3.2.1 Prolog entities

Referring to the entities we reported at section 2.1 we can identify some higher
level abstractions for representing knowledge:

• terms : for representing entities in the domain;

• predicates : for representing statements about entities;

• clauses : for representing properties of entities or relations among them.

More in detail, terms may be ordinary variables, constants, or structures composed
by a string functor and a combination of other terms. Variables may be reused
within the same scope or in different scopes, referring to the same entity. Constants
may be either string values or numbers. A structure may be nested, i.e., composed
by inner structures. Since lists follow the same behavior of structures we can
include them within the same concept.

As far as Prolog syntax is concerned, predicates are syntactically equal to struc-
tures but semantically different. Predicates represent statements about entities of
the domain (i.e., terms) and are characterized by a given arity. Suppose the arity
of a predicate p is an integer value n, we shall denote p’s arity as ‘p/n’. Arity
may be then a predicate’s attribute and we can identify a predicate by some sort
of identifier in the form p/n as above.

We use clauses to define propositions, sets, or relations concerning the entities
of the domain of the discourse. Horn clauses, in particular, are logic formulæ of
the following sorts:

3.2. NECESSARY ABSTRACTIONS 23

• facts : a clause with no body, denoting predicates which are known to hold
true;

• rules : a clause with both head and body, denoting that a predicate holds
true if a number of other predicates hold true;

• goals : a clause with no head, denoting a number of predicates to be proven
(either true or false).

We need then an entity containing a set of terms, predicates, and clauses (except
goals), which is the entity theory.

3.2.2 Meta-clauses

In the previous chapter we introduced the definition of meta-rule, which is a lin-
guistic bias which nowadays is starting to catch on in the world of ILP.

As far as we know there is no logic engine natively supporting the representation
of a meta-rule as first class abstractions—i.e., similarly to how one can express
ordinary clauses. This is not in itself a problem because we aim to develop a
library detached from Prolog, providing a higher-level view on MIL.

We must then provide an abstraction for representing meta-rules. A meta-rule
is very similar to an ordinary clause, with the difference that a meta-rule presents
some second-order (higher-order) variables in its head and/or in its body. At the
current state of the art we did not find evidence of the valuability of a meta-goal
(i.e., a goal containing second-order variables), nor we can identify it by ourselves
yet. Furthermore, since the most common meta-rules are not meta-facts (i.e., facts
containing second-order variables), we can focalize on the meta-rule entity itself,
for simplicity sake. Since a meta-fact is basically a meta-rule with true body,
we can easily express a meta-fact as an ordinary meta-rule. Anyway, for taking
under consideration the extreme cases of meta-goal and meta-fact, it would be a
good practice to design the entity representing meta-rules in such a way it could
be easily extensible for eventual future works, where the distinction of different
kinds of meta-rules might be crucial.

In light of the previous considerations, we provide some meta-rule examples at
Listing 3.1.

Second-order variables. Second-order (higher-order) variables are what dis-
tinguishes a meta-rule from an ordinary clause. That consideration means that,
in order to define an abstraction representing meta-rules, we must introduce an
abstraction representing second-order variables first.

24 CHAPTER 3. DESIGN

Listing 3.1: Some Meta-rule Examples�
1 A(X, Y) :- B(X, Z), C(Z, Y).

2 f(X, Y) :- A(Y, X).

3 A(X, Y) :- f(Y, X).

4 A(X) :- true.

5 A(X, constant) :- B(10, X, constant).

6 A(struct(X, Y)) :- B(X), C(Y).
� �
First-order (ordinary) and second-order variables share the same feature: they

are both variables! Considering the examples reported at Listing 3.1, every upper-
case letter denotes a variable. We can easily identify as second-order variables each
variable acting as functor. But how can we distinguish the kind of variables which
are not functor placeholders? We cannot. Suppose ones provides a meta-rule to
a Prolog parser: if such parser does not support a specific syntax for expressing
second-order variables, the parser would not be able to parse the meta-rule with
a unique solution. That would occur because of many possible combinations of
ordinary/second-order variables.

We then have to make a choice: since first-order and second-order variables are
very similar concepts, we may decide to either define a syntax for distinguishing
second-order variables from ordinary variables, or to express both of them through
the same abstraction. Let us consider a common case of higher-order in Prolog.
Suppose we define a syntax for second-order variables such as each second-order
variable is a string starting with the symbol $ immediately followed by an upper-
case letter i.e. $Variable. Suppose we want a MIL algorithm to learn a rule which
maps every element e of a list of integers as e + 2. We could provide the higher-
order maplist/3 predicate within background knolwedge and a special meta-rule
with a second-order variable nested in a predicate within bias, i.e listing 3.2 where
$C is the second-order variable nested in a predicate (note that the background
knolwedge rules are expressed with arity for simplicity, in a real case an imple-
mentation of such rules should be needed). Note that since in listing 3.2 we want
the inducer to learn two rules, we have to provide examples for both.

We now identify an alternative. Instead of providing, within the background
knolwedge, an higher-order maplist/3 implementation, we can provide a set of
meta-rules for binary operations on lists. Listing 3.3 depicts how we can provide
the meta-rules at lines 7 and 8, compensating the cost by reducing the background
knowledge size, avoiding to provide maplist/3.

Meta-rules with lists. Expressing meta-rules in the same way we can com-
monly express clauses in Prolog, we need to be able to support meta-rules contain-
ing lists. That means that our entity representing meta-rules could be effectively

3.2. NECESSARY ABSTRACTIONS 25

Listing 3.2: Map Plus 2 Induction Case – Hypothetical Meta-rule Syntax�
1 % background knowledge

2

3 maplist /3

4 succ/2

5

6 % meta -rules

7

8 $A(X, Y) :- $B(X, Y, $C).
9 $A(X, Y) :- $B(X, Z), $C(Z, Y).

10

11 % expected inductions

12

13 f(A, B) :- maplist(A, B, f_1).

14 f_1(A, B) :- succ(A, C), succ(C, B).
� �

Listing 3.3: Map Plus 2 Induction Case – No Hypothetical Meta-rule Syntax�
1 % background knowledge

2

3 succ/2

4

5 % meta -rules

6

7 A([], []).

8 A([X | Xs], [Y | Ys]) :- B(X, Y), C(Xs, Ys).

9 A(X, Y) :- B(X, Z), C(Z, Y).

10

11 % expected inductions

12 f([], []).

13 f([X | Xs], [Y | Ys]) :- f_1(X, Y), f(Xs, Ys).

14 f_1(X, Y) :- succ(X, Z), succ(Z, Y).
� �

26 CHAPTER 3. DESIGN

Listing 3.4: Background Knowledge, Meta-rules and Expected Inductions for ap-
pend/3 – Meta-rules not Supporting Lists�

1 % background knowledge

2

3 head([H|_],H).

4 tail([_|T],T).

5 empty ([]).

6

7 % metarules

8

9 A(X, Y, Y) :- B(X).

10 A(Xs, Ys, Zs) :- B(Xs, X), C(Zs, X), D(Xs, Xs1), E(Zs, Zs1), A(Xs1, Ys, Zs1).

11

12 % expected induction

13

14 myappend(E, L, L) :- empty(E).

15 myappend(Xs, Ys, Zs) :-

16 head(Xs, X), head(Zs, X), tail(Xs, Xs1), tail(Zs, Zs1), myappend(Xs1, Ys, Zs1)

.
� �
exploited providing to ILP algorithms more efficient and compact meta-rules for
learning tasks which deal with lists. Being able to provide a compact meta-rule
containing lists might significantly reduce the required background knowledge and
bias size, with an overall positive impact on the performances of an ILP algorithm.
Suppose a common case of induction with lists, if we cannot provide meta-rules
with lists we are forced to provide some basic list operations within the back-
ground knowledge (e.g., head/2, tail/2, etc.) and larger meta-rules. We provide
an example for a better explanation. Supposing to verify if an inducer is capa-
ble of inducing append/3 and supposing to provide some positive and negative
examples—if the meta-rule entity cannot support lists, we need to provide some
common operations with lists and larger meta-rules as depicted in Listing 3.4.
Instead, if the meta-rule entity supports lists, we can provide a less verbose set
of background knowledge and bias such as illustrated in Listing 3.5. This more
compact solution would easily outperform the one at Listing 3.4 because of less
necessary substitutions (due to smaller meta-rules) and no necessary refinements
for expressing the induced theory in a more readable way.

3.2.3 Substitution

Substitution, together with unification, is one of the two fundamental mechanisms
for manipulating knowledge.

The purpose of a substitution is to denote variables assignments. Applying a
substitution to a logic formula (i.e. a term, a predicate, or a Horn cluase) means
assigning some variables of the formula with some values, as denoted by some

3.2. NECESSARY ABSTRACTIONS 27

Listing 3.5: Background knowledge, Meta-rules and Expected Inductions for ap-
pend/3 – Meta-rules Supporting Lists�

1 % empty bk!

2

3 % metarules

4

5 X([], B, C).

6 X([A | B], C, [D | E]) :- X(B, C, E).

7

8 % expected induction

9

10 append ([], A, A).

11 append ([A | As], B, [A | Cs]) :- append(As, B, Cs).
� �
given substitution: a formula is then rewritten be replacing all its variables with
some other terms, as prescribed by a given substitution.

We now provide a formal definition for substitution. Let Φ,Ψ,Ψ′,Ψ1, . . . ,Ψn

be logic formulæ (i.e. terms, predicates, or Horn cluases) of any sort, let p be a
n-ary predication, let f be a m-ary functor, let k be a constant, let t be a term of
any sort, and let σ be a (possibly empty) substitution; then

Φ/σ =

Ψ/σ ⇐ Ψ′/σ if Φ ≡ Ψ ⇐ Ψ′

Ψ/σ ∧Ψ′/σ if Φ ≡ Ψ ∧Ψ′

p(Ψ1/σ, . . . ,Ψn/σ) if Φ ≡ p(ψ1, . . . , ψn)

f(Ψ1/σ, . . . ,Ψm/σ) if Φ ≡ f(ψ1, . . . , ψm)

k if Φ ≡ k

t if Φ ≡ X and (X 7→ t) ∈ σ

X if Φ ≡ X and (X 7→ t) ̸∈ σ

3.2.4 Unification

After discussing about substitution, we need to analyze the other fundamental
mechanism for manipuplatin knowledge: unification.

The purpose of unification is to compute which variables assignment may let
a given formula be equal to another one, hence fitting a particular context. The
operation may compute:

• an unifier among any two formulæ (i.e. a substitution making the two for-
mulæ syntactically equal);

• or figure out that it is impossible to do so.

Here a formal definition for unification.

28 CHAPTER 3. DESIGN

unify(Φ,Ψ) =

{
σ if ∃σ : Φ = Ψ/σ

2 otherwise

where:

• σ is called unifier (i.e., the unifying substitution);

• 2 denotes the failed substitution (i.e., the impossibility to unify).

It is important to remark that in the general case, several unifieriers may
exist for any 2 formulæ. We are commonly interested in the most general unifier
(MGU), usually computed via the algorithm proposed by Martelli and Montanari
in 1982 [15].

Unfortunately the basic MGU is not enough for introducing meta-rules or
meta-clauses in general. For this purpose, the table at Table 3.1 illustrates the
MGU formal definition, that we extended with meta-clauses, where:

• Φ,Ψ are arbitrary formulæ;

• f, g are either functors or predications (or logic connectives of any sort);

• t1, . . . , tn and x1, . . . , xm are terms.

3.2. NECESSARY ABSTRACTIONS 29

m
gu

(Φ
,Ψ

)
Φ
≡

c
Φ
≡

X
Φ
≡
f
(t

1
,.
..
,t

n
)

Φ
≡

X
(t

1
,.
..
,t

n
)

Ψ
≡

k

{ ∅
if
c
=

k

2
if
c
̸=

k
{X

7→
k
}

2
2

Ψ
≡

Y
{Y

7→
c
}

{X
7→

Y
}

{Y
7→

f
(t

1
,.
..
,t

n
)}

{ 2
if
X

≡
Y

{X
7→

Y
}

ot
h
er
w
is
e

Ψ
≡
g
(x

1
,.
..
,x

m
)

2
{X

7→
g
(x

1
,.
..
,x

m
)}

 ⋃ i
m
gu

(t
i,
x
i)

if
f
=
g
∧
n
=
m

∧
̸∃
j
:
m
gu

(t
j
,x

j
)
=

2

2
ot
h
er
w
is
e

 {X
7→

g
}
∧
⋃ i

m
gu

(t
i,
x
i)

if
n
=
m

∧
̸∃
j
:
m
gu

(t
j
,x

j
)
=

2

2
ot
h
er
w
is
e

Ψ
≡

Y
(x

1
,.
..
,x

m
)

2

{ 2
if
X

≡
Y

{X
7→

Y
}

ot
h
er
w
is
e

 {Y
7→

f
}
∧
⋃ i

m
gu

(t
i,
x
i)

if
n
=
m

∧
̸∃
j
:
m
gu

(t
j
,x

j
)
=

2

2
ot
h
er
w
is
e

 {X
7→

Y
}
∧
⋃ i

m
gu

(t
i,
x
i)

if
n
=
m

∧
̸∃
j
:
m
gu

(t
j
,x

j
)
=

2

2
ot
h
er
w
is
e

T
ab

le
3.
1:

M
G
U

F
or
m
al

D
efi
n
it
io
n
-
E
x
te
n
d
ed

w
it
h
M
et
a-
cl
au

se
s

30 CHAPTER 3. DESIGN

Listing 3.6: Two Examples of Structural Equality�
1 % the following two rules are structurally equal

2 % note the different variable distribution !

3

4 f(A, B) :- g(A), h(B).

5 f(A, B) :- g(B), h(A).

6

7

8 % the following two rules are structurally equal

9 % note the different variable distribution !

10

11 f(A, constant, [B]) :- g(A), h(B, 1).

12 f(A, constant, [B]) :- g(B), h(A, 1).
� �
3.2.5 Operations on terms

We know describe some useful utility operations we need for operating with the
entities described in the previous sections of this chapter.

Visiting terms. Since the recursive nature of Prolog terms (they are usually
composed in nested fashion) we need a way to classify, navigate and perform differ-
ent operations on terms at runtime. We could then apply to our Term abstraction
the Visitor pattern.

That would be useful in a plethora of cases, expecially when generalizing or
refining theories. Suppose to have to generalize a variable which is located inside
a literal of a rule, within a list of lists. In such case, being able to deeply explore
the structure of a Term would definitely come in handy.

Structural, strict structural and semantical equality. In order to be able
to induce distinct theories and distinct clauses within the same theory, we have to
design some methods to prove if two clauses are equal.

We define structural equality the relation of equality between two terms which
have the same structure, i.e., the same functors in the literals with the same arity,
with the same constants – occuring in the same order between the two terms.
Listing 3.6 depicts some examples of structural equality.

Structural equality is a weak equality relation since it is:

• not sensitive to variable distribution;

• sensitive to literals order.

We define strict structural equality the relation of equality between two struc-
turally equals terms whose variables occur following the same distribution, without
assumptions on the variable naming between the two terms (i.e., variables with

3.2. NECESSARY ABSTRACTIONS 31

Listing 3.7: Two Examples of Strict Structural Equality�
1 % the following two rules are strict structurally equal

2 % note the same variable distribution !

3

4 f(A, B) :- g(A), h(B).

5 f(C, D) :- g(C), h(D).

6

7

8 % the following two rules are strict structurally equal

9 % note the same variable distribution !

10

11 f(A, constant, [B]) :- g(A), h(B, 1).

12 f(C, constant, [D]) :- g(C), h(D, 1).

13

14

15 % the following two rules are not strict structurally equal

16

17 f(A, B, B).

18 f(C, C, D).
� �

Listing 3.8: Two Semantically Equal Rules, the Order of the Literals in the Body
is Irrelevant�

1 % the following two rules are structurally equal

2 % note the same variable distribution but different literal order

3

4 f(A, B) :- g(A, B), h(B, A).

5 f(C, D) :- h(D, C), g(C, D).
� �

the same name in the two terms). We denote strict structural equality among any

two formulæ as Φ
strict≡ Ψ. Listing 3.7 depicts some examples of strict structural

equality.

Structural equality is a non-complete equality relation since it is sensitive to
literals order.

We define semantical equality the relation of equality between two strict struc-
turally equals terms with the same body literals without assumptions on their

order. We denote semantical equality among any two formulæ as Φ
sem≡ Ψ. List-

ing 3.8 depicts some examples of semantical equality.

We can now extend the meaning of semantical equality over theories. Let two
theories T1 and T2, let Φ1, ...,Φn the clauses within T1, let Ψ, ...,Ψm the clauses

32 CHAPTER 3. DESIGN

Listing 3.9: Some Weight Examples�
1 f([1, 2, 3], a, A) :- g(a, A). % 7

2 f([A|As], a, A) :- g(a, A). % 6

3 f([A, 2 | As]) :- g(A, []). % 5

4 f([[1, 2, F], [a, 4, b], g(4)]) :- g(a, A, []). % 10
� �
within T2; then T1 and T2 are semantically equals if:

T1
sem≡ T2 =

Φ1

sem≡ Ψ1 if n = m = 1

∀Φi ∃Ψj s.t. Φi
sem≡ Ψj ∧

(T1 − {Φi})
sem≡ (T2 − {Ψj}) if n = m > 1

⊥ otherwise

Clause weight. The validation phase is the phase of an ILP algorithm in which
the hypotheses are validated on the basis of the provided background knowledge,
positive, and negative examples. Therefore, when validating a theory, the validator
has the task to prune the wrong and redundant induced rules.

Supposing we decide to design some sort of validator, we need to make a choice
on which rules are redundant and, which rules among them, actually we should
prune. Applying the law of parsimony we may decide to keep, from a pool of
redundant non-semantically equal rules, the simplest one, pruning the others, in
an occamistic fashion.

For that purpose we define weight the sum of all occurrences of the constants
and variables within a term, including single empty lists (note: we do not identify
functors as constants). We provide some examples of weight in listing 3.9.

Let t1 a term with w1 weight, let t2 a term with w2 weight: if w1 > w2 then t1
is simpler than t2.

Literal combinations. The refinement phase is the phase of an ILP algorithm
in which the validated hypotheses are subjected to a perfecting process which
makes them more similar to what a skilled human programmer would produce
while coding. One of the most common best practices in writing code is code
reuse. Code reuse aims to reduce redundancy by taking advantage of assets that
have already been created in some form within the software development process.

For identifying code which can be reused within an induced theory, we may
design an algorithm capable of finding and combining all the literals of a term.
With such algorithm it would be possible to identify the most occurring literals
and sets of literals, for applying some sort of refinement in an efficient way.

Since we already defined that two rules with the same body literals arranged
in different orders are semantically equals (Listing 3.8), we can establish that the

3.3. INDUCER 33

Listing 3.10: Permutations of 3 Literals – the Order is Relevant�
1 f(a, b) :- g(a), h(a, b), i(b).

2

3 % permutations of the body literals of f/2:

4

5 % size 1

6 g(a)

7 g(a, b)

8 i(b)

9

10 % size 2

11 g(a), h(a, b)

12 h(a, b), g(a)

13 g(a), i(b)

14 i(b), g(a)

15 h(a, b), i(b)

16 i(b), h(a, b)

17

18 % size 3

19 g(a), h(a, b), i(b)

20 g(a), i(b), h(a, b)

21 h(a, b), g(a), i(b)

22 h(a, b), i(b), g(a)

23 i(b), g(a), h(a, b)

24 i(b), h(a, b), g(a)
� �
literal combinations we need are a subset of literal permutations. Furthermore,
let n the number of literals in the body of a clause, we need to compute only the
combinations with size s such as s ≤ n since adding literals to the body of a rule
would change the rule itself.

After these considerations, we can deduce that a good algorithm for verifying
semantical equality of two clauses (i.e. based upon some sort of sorting order)
would let us significantly reduce the computational cost for computing all liter-
als combinations. Listing 3.10 depicts how many possible permutations of size
s <= 3 can be defined based on 3 literals. Limiting to computing combinations
instead of permutations would allow us to define a smaller solution, as illustrated
in Listing 3.11.

3.3 Inducer

After identifying the necessary abstractions, it is now possible to engineer a design
for our ILP library. Figure 3.1 illustrates the designed hierarchy, containing all
the induction phases we previously identified.

In the following sections we provide a deeper explanation for the more relevant
entities composing the reported hierarchy. For now we skip over Prolog entities,
which we discuss more in detail later on.

34 CHAPTER 3. DESIGN

Listing 3.11: Combinations of 3 Literals – the Order is not Relevant�
1 f(a, b) :- g(a), h(a, b), i(b).

2

3 % combinations of the body of f/2:

4

5 % size 1

6 g(a)

7 g(a, b)

8 i(b)

9

10 % size 2

11 g(a), h(a, b)

12 g(a), i(b)

13 h(a, b), i(b)

14

15 % size 3

16 g(a), h(a, b), i(b)
� �

Inducer
B : Bias, O: InducerOptions

backgroundKnowledge: Theory
bias: B
unificator: Unificator
induce(positiveExamples: List<Clause>, negativeExamples: List<Clause>, options: O): InductionResult

Bias InducerOptions

InductionResult

theory: Theory
coverage: Double?

ValidationResult

InvalidTheory

Generalizer

generalize(groundClause: Clause): Sequence<Clause>

Refi ner

refine(theory: Theory): Theory

Validator

validate(theory: Theory): ValidationResult

Use

Use

Use

Figure 3.1: Inducer – Hierarchy

3.3. INDUCER 35

3.3.1 Inducer

The purpose of an Inducer is to solve learning problems, in particular ILP learning
problems. The most important feature of an Inducer is its induction engine, which
can be called by the method induce(...).

Background Knowledge and Examples. In order to be able to successfully
solve learning tasks, an Inducer needs some prior knowledge about the problem
domain. We provide such knowledge in the form of backgroundKnowledge and
examples, in particular divided into positiveExamples and negativeExamples.
As deductible from Figure 3.1, our interpretation of backgroundKnowledge is a
some prior general-purpose knowledge, which can be useful in different learning
tasks. For that reason we decide to represent backgroundKnowledge as a field of
Inducer instead of as an argument for the induce(...) method (unlike positive
and negative examples).

Bias. As stated in the previous chapters, an Inducer may need some mecha-
nisms for reducing the hypothesis space, in order to explore only a subset of all
the possible solutions for efficiency sake i.e. bias. For that purpose we designed the
entity Bias. Since the Bias composition strictly depends on the theoric induction
mechanisms of any particular ILP algorithm, we do not provide a strict imple-
mentation of the Bias interface, instead, we allow great freedom of customization
via the use of generics. Anyway, since the main purpose of this thesis is to design
and implement a library supporting ILP, we still provide some entities which can
be plugged within a Bias, such as Generalizer, Validator and Refiner, which
we discuss more in detail in the next sections of this chapter.

Options. Similarly to what concerns Bias, an induction engine may need to
have pluggable values/components strictly related to the induction technique it
adopts, which are more “practical” than what we usually provide within Bias.
A simple example could be a maximum depth value in the case of an inducton
algorithm exploring a tree of substitutions. The depth value would avoid the
case in which some branch of the tree has an infinite path. We may want those
values/components to be pluggable. For that purpose we designed the hierarchy
so we can provide those values/components Options. As for the Bias, we do not
provide a strict implementation of the Options interface, instead, we allow great
freedom of customization via the use of generics.

Result. As depicted in Figure 3.1 the induce(...) method returns an instance
of InductionResult. We now focalize on InductionResult itself. We discuss the
interface ValidationResult it implements later on.

36 CHAPTER 3. DESIGN

An induction engine returns:

• one or more Theory(/ies), if it successfully found one or more solutions to
the learning task;

• no Theory, if it failed in trying to find a solution to the learning task.

In the first case, the designer of a particular Inducer implementation may pro-
vide an algorithm which accepts partial solutions, as well as complete solutions. A
partial solution is a solution which covers only a sub-set of the povided positive-

Examples. A complete solution, on the other hand, is a solution which covers all
the povided positiveExamples. For that purpose we provide an optional Induc-
tionResult field representing the percentage of coverage of the proposed Theory

over the positiveExamples: we call it coverage. Each InductionResult fea-
tures a single Theory with its coverage. If the Inducer is designed for returning
multiple results it will return a Sequence<InductionResult> (differently from
what reported in Figure 3.1 which is a simplified design for more overall clarity).

3.3.2 Generalizer

The generalization phase is the phase of anMIL algorithm in which the ground (or
”partially ground”) clauses, produced after substitutions from positive examples
and/or background knowledge on a meta-rule, are transformed in more general
rules, for making them cover a larger set of examples.

Generalizing a ground clause means substituting all the occurrences of a set of
its ground subterms (most of the time all of them) with variables.

Generally, MIL algorithms tend to provide a greedy and simple generalization:
after finding a ground rule substituting all the terms of a meta-rule with matching
terms from background knowledge and positive examples, the generalization step
is a simple mapping of the starting meta-rule with the ground rule functors. We
provide an example of this kind of generalization in listing 3.12.

Unfortunately, this generalization mechanism is too meta-rule dependent. Sup-
pose that the meta-rule in Listing 3.12 was a less constraining one. As reported
in Listing 3.13 the generalized rule would be wrong!

Therefore, we need to provide some generalization mechanisms which are not
meta-rule dependent. A further quality of a non meta-rule dependent generaliza-
tion is the possibility of its application over a wider set of ILP algorithms.

As previously stated, generalization means substituting a set of ground sub-
terms (of a clause) with variables. Therefore, a clause can be generalized in multi-
ple different ways, with as many generalized versions of the initial clause. Consider
the ground clause in Listing 3.14. The rule at line 8 is a simple generalization

3.3. INDUCER 37

Listing 3.12: Simple Generalization by Mapping the Functors of a Meta-rule�
1 % starting meta -rule

2

3 X(A, B) :- Y(A, C), Z(C, B).

4

5 % ground substitution

6

7 grandparent(jack, albert) :- parent(jack, ann), parent(ann, albert).

8

9 % second -order variables (functors) substitutions :

10 % X = grandparent

11 % Y = parent

12 % Z = parent

13

14 grandparent(A, B) :- parent(A, C), parent(C, B).
� �

Listing 3.13: Wrong Generalization by Mapping the Functors of a too Permissive
Meta-rule�

1 % starting meta -rule

2

3 X(A, B) :- Y(C, D), Z(D, E).

4

5 % ground substitution

6

7 grandparent(jack, albert) :- parent(jack, ann), parent(ann, albert).

8

9 % second -order variables (functors) substitutions :

10 % X = grandparent

11 % Y = parent

12 % Z = parent

13

14 grandparent(A, B) :- parent(C, D), parent(D, E).
� �

38 CHAPTER 3. DESIGN

Listing 3.14: A Clause can be Generalized in Multiple Ways�
1 % ground rule to generalize :

2

3 f([1, 2, 3], [1, 2]) :- g([2, 3], [1]).

4

5

6 % some possible generalizations :

7

8 f([A, B, C], [A, B]) :- g([B, C], [A]).

9 f([A, B | C], [A | B]) :- g([B | C], [A]).

10 f([A | B], [A | C]) :- g(B, [A]).
� �
Listing 3.15: A Clause which can be either a Fact or a Rule�

1 % ground rule to generalize :

2

3 f(1, g(1, true)) :- true.

4

5 % possible generalizations :

6

7 f(A, g(A, B)) :- B.

8 f(A, g(A, true)).
� �
mapping each constant number to a variable. The rule at line 9 provides a gener-
alization with the last element of each list as tail. The rule at 10 is a generalization
of each list in the common form [head | tail].

Since starting from the same ground rule various possible generalizations exist,
knowing which generalization to prefer in which context is an extremely difficult
issue. Imagine a grund rule containing true both in its head and as unique element
of its body. As illustrated in Listing 3.15 we could interpret the true within the
body of the clause as a variable occurring 2 times, or we could interpret the whole
clause as a fact keeping the head true as a constant!

Therefore we identify and design a set of different Generalizers, each with a
specific generalization method. All the designed Generalizers can be plugged “ad
libitum” within Bias to an Inducer, depending on which ones the user considers to
be more suitable to the learning task. Figure 3.2 illustrates the whole Generalizer
hierarchy.

Since the whole Generalizer hierarchy looks very intricate, we discuss about
smallest portions of it. We identify 3 main portions:

• utility generalizers: abstract or instantiable generalizers exploited by other
generalizers for maximizing code reuse;

• basic generalizers: operating directly on constants such as strings and num-
bers;

3.3. INDUCER 39

G
en

er
al
iz
er

ge
ne

ra
liz

e(
gr

ou
nd

Cl
au

se
: C

la
us

e)
: S

eq
ue

nc
e<

Cl
au

se
>

Fa
ct
Se
ns
it
iv
eG

en
er
al
iz
er

ge
ne

ra
liz

eA
sF

ac
t(

cl
au

se
: C

la
us

e)
: S

eq
ue

nc
e<

Cl
au

se
>

ge
ne

ra
liz

eA
sR

ul
e(

cl
au

se
: C

la
us

e)
: S

eq
ue

nc
e<

Cl
au

se
>

Li
st

Sp
ec

ifi
cG

en
er

al
iz

er

w
ra

pp
ed

G
en

er
al

iz
er

: G
en

er
al

iz
er

em
pt

yL
is

tA
sV

ar
: B

oo
le

an

Co
ns
ta
nt
sT
oV

ar
ia
bl
es
Si
gl
et
on

Se
ns
it
iv
e

fi
lt

er
Si

ng
le

to
ns

(o
cc

ur
re

nc
es

M
ap

:M
ap

<T
er

m
, I

nt
>)

: L
is

t<
Te

rm
>

Co
ns

ta
nt

sT
oV

ar
ia

bl
es

Ex
ce

pt

ex
ce

pt
: L

is
t<

Te
rm

>
fa

ct
Se

ns
it

iv
e:

 B
oo

le
an

Co
ns

ta
nt

sT
oV

ar
ia

bl
es

Co
ns

ta
nt

sT
oV

ar
ia

bl
es

Ex
ce

pt
Em

pt
yL

is
t

Co
ns

ta
nt

sT
oV

ar
ia

bl
es

Ex
ce

pt
Si

ng
le

to
ns

Co
ns

ta
nt

sT
oV

ar
ia

bl
es

Ex
ce

pt
Si

ng
le

to
ns

An
dE

m
pt

yL
is

t

Li
st

Sp
ec

ifi
cG

en
er

al
iz

er
Em

pt
yL

is
tA

sV
ar

Li
st

Sp
ec

ifi
cG

en
er

al
iz

eE
xc

ep
tE

m
pt

yL
is

t
Li

st
Sp

ec
ifi

cG
en

er
al

iz
er

Ex
ce

pt
Si

ng
le

to
ns

Li
st

Sp
ec

ifi
cG

en
er

al
iz

er
Ex

ce
pt

Si
ng

le
to

ns
An

dE
m

pt
yL

is
t

in
st

an
tia

te
in

st
an

tia
te

in
st

an
tia

te

is
ta

nt
ia

te
us

e
is

ta
nt

ia
te

us
e

is
ta

nt
ia

te

us
e

is
ta

nt
ia

te

us
e

Figure 3.2: Generalizer – Hierarchy

40 CHAPTER 3. DESIGN

Generalizer

generalize(groundClause: Clause): Sequence<Clause>

FactSensitiveGeneralizer

generalizeAsFact(clause: Clause): Sequence<Clause>
generalizeAsRule(clause: Clause): Sequence<Clause>

ConstantsToVariablesSigletonSensitive

fi lterSingletons(occurrencesMap: Map<Term, Int>): List<Term>

ConstantsToVariablesExcept

except: List<Term>
factSensitive: Boolean

instantiate

Figure 3.3: Generalizer – Utility Generalizers Hierarchy

• list specific generalizers: exploiting the previous generalizers and generating
more readable list expressions whereas possible.

Utility Generalizers

What we call utility generalizers are basic abstract or instantiable Generalizers
which can be implemented or instantiated by/within other Generalizers. These
utility generalizers collect the most common generalization methods maximing
code reuse. Figure 3.3 illustrates the utility generalizers hierarchy.

FactSensitiveGeneralizer. As previously discussed, providing an example in
Listing 3.15, certain clauses may be generalized either as rules or as facts. Since
the most appropriate generalization may vary depending on the circumstances (i.e.
different bias, different positive examples etc.) we design a FactSensitiveGen-

eralizer which generalize such ground clauses in both ways.

FactSensitiveGeneralizer is abstract, that means that it evaluates if a
clause may be generalized both as a fact or as a rule, and it forks the two possible

3.3. INDUCER 41

solutions by the two abstract methods:

• generalizeAsFact(...)

• generalizeAsRule(...)

provided by its implementation.

ConstantsToVariablesExcept. Sometimes we may want to partially gener-
alize a ground rule, leaving some constants alone. That may occur for various
reasons, for example we may want to avoid ti generalize constants which occur
only once within a clause.

Therefore we provide the class ConstantsToVariablesExcept which is an util-
ity class whose method generalize(...) generalizes a ground clause, substituting
each occurrence of each constant with an appropriate variable, except for a list of
Terms provided within the field except.

Due to the widespread use of this class among the other Generalizers via del-
egation, and due to the abstract class FactSensitiveGeneralizer only exposing
abstract methods, we design ConstantsToVariablesExcept for being able to op-
erate either as a fact sensitive generalizer or not. In order to achieve that we
provide the class with the factSensitive boolean field.

Listing 3.16 depicts some example of generalizations, reported as Prolog code,
applied by ConstantsToVariablesExcept.

ConstantsToVariablesSingletonsSensitive. One of the most common cases
in which we may want to avoid generalizing all the constants of a ground clause,
is when one or more constants within such clause occur only one time. We call
those constants singletons.

Therefore we design a Generalizer for dealing with such cases, we call it
ConstantsToVariablesSingletonsSensitive. The purpose of the abstract class
ConstantsToVariablesSingletonsSensitive is to count all the occurrences of
constants such as strings, numbers, booleans and empty lists. We then define an
abstract method filterSingletons which should be overridden for filtering the
desired singleton to avoid to generalize.

Counting the occurrences of all strings, numbers and empty lists is simple and
produces a unique result. Counting booleans may produce different results instead,
based on the position of true(s) within the clause and based on if it is chosen to
count it or not. As previously stated, if a true is the single element of the body
of a clause, we can generalize that clause either as a fact or as a rule. For that
reason ConstantsToVariablesSingletonsSensitive extends the abstract class
FactSensitiveGeneralizer, counting the occurrences in different ways in the
overridden methods generalizeAsFact(...) and generalizeAsRule(...).

42 CHAPTER 3. DESIGN

Listing 3.16: ConstantsToVariableExcept – Examples�
1 % ground clause

2

3 f(1, s) :- g(1).

4

5 % constants to variables except "s" generalization

6

7 f(A, s) :- g(A).

8

9 % --

10 % ground clause

11

12 f([1, 3], s) :- g(1, t), f([3]).

13

14 % constants to variables except "s, t" generalization

15

16 f([A, B | E], s) :- g(A, t), f([B | E]).

17

18

19 % --

20 % ground clause

21

22 f([1, 2], true) :- true.

23

24 % constants to variables except nothing, fact sensitive

25 f([A, B | E], C).

26

27 % constants to variables except nothing, not fact sensitive

28 f([A, B | E], C) :- C.
� �

3.3. INDUCER 43

Generalizer

generalize(groundClause: Clause): Sequence<Clause>

FactSensitiveGeneralizer

ConstantsToVariablesSigletonSensitive ConstantsToVariables

ConstantsToVariablesExcept

ConstantsToVariablesExceptEmptyList

ConstantsToVariablesExceptSingletons ConstantsToVariablesExceptSingletonsAndEmptyList

instantiateinstantiate

Figure 3.4: Generalizer – Basic Generalizers Hierarchy

Furthermore, since the purpose of the class is to generalize all constants to
variables except singletons, after filtering the singletons we do not want to gener-
alize via the abstract method filterSingletons, we should delegate the actual
generalization to a ConstantsToVariablesExcept instance.

Basic Generalizers

In this section we discuss about some basic Generalizers which can be plugged
by Bias to any Inducer. In particular, referring to what reported in Figure 3.4:

• ConstantsToVariables

• ConstantsToVariablesExceptEmptyList

• ConstantsToVariablesExceptSingletons

• ConstantsToVariablesExceptSingletonsAndEmptyList

ConstantsToVariables. ConstantsToVariables is a Generalizer which gen-
eralizes every constant as a variable, including empty lists. Each occurrence of the
same constant will be generalized with the same variable.

ConstantsToVariables is fact sensitive and should delegate its generalization
to an instance of the class ConstantsToVariablesExcept.

Listing 3.17 depicts some examples of generalizations, reported as Prolog code,
applied by ConstantsToVariables.

44 CHAPTER 3. DESIGN

Listing 3.17: ConstantsToVariables – Examples�
1 % ground clause

2

3 f(1, s) :- g(1).

4

5 % constants to variables generalization

6

7 f(A, B) :- g(A).

8

9 % --

10 % ground clause

11

12 f([1, 3], s) :- g(1, t), f([3]).

13

14 % constants to variables generalization

15

16 f([A, B | E], C) :- g(A, D), f([B | E]).

17

18

19 % --

20 % ground clause

21

22 f([1, 2, 5], true) :- true.

23

24 % constants to variables, as fact generalization

25 f([A, B, C | E], D).

26

27 % constants to variables, as rule generalization

28 f([A, B, C | E], D) :- D.
� �

3.3. INDUCER 45

Listing 3.18: ConstantsToVariablesExceptEmptyListExamples – Examples�
1 % ground clause

2

3 f(1, s) :- g(1).

4

5 % constants to variables except [] generalization

6

7 f(A, B) :- g(A).

8

9 % --

10 % ground clause

11

12 f([1, 3], s) :- g(1, []), f([3]).

13

14 % constants to variables except [] generalization

15

16 f([A, B], C) :- g(A, []), f([B]).

17

18

19 % --

20 % ground clause

21

22 f([1, 2, 5], [], true) :- true.

23

24 % constants to variables except [], as fact

25 f([A, B, C], [], D).

26

27 % constants to variableexcept [], as rule

28 f([A, B, C], [], D) :- D.
� �
ConstantsToVariablesExceptEmptyList. ConstantsToVariablesExceptEmptyList

is a Generalizer which generalizes every constant as a variable, excluding empty
lists. Each occurrence of the same constant will be generalized with the same
variable.

ConstantsToVariablesExceptEmptyList is fact sensitive and should delegate
its generalization to an instance of the class ConstantsToVariablesExcept.

Listing 3.18 depicts some examples of generalizations, reported as Prolog code,
applied by ConstantsToVariablesExceptEmptyList.

ConstantsToVariablesExceptSingletons. ConstantsToVariablesExceptSin-

gletons is a Generalizer which generalizes every constant as a variable, including
empty lists. Each occurrence of the same constant will be generalized with the
same variable. Constants and empty lists will not be generalized if they occur only
once within the clause.

ConstantsToVariablesExceptSingletons extends ConstantsToVariablesS-
ingletonSensitive such that the method filterSingletons(...) filters the
map of occurrences (Map<Term, Int>) retrieving only the Terms occuring one time.

Listing 3.19 depicts some examples of generalizations, reported as Prolog code,

46 CHAPTER 3. DESIGN

Listing 3.19: ConstantsToVariablesExceptSingletons – Examples�
1 % ground clause

2

3 f(1, 2) :- g(1).

4

5 % constants to variables except singletons generalization

6

7 f(A, 2) :- g(A).

8

9 % --

10 % ground clause

11

12 f([1, 3], s) :- g(1, []), f([3]).

13

14 % constants to variables except singletons generalization

15

16 f([A, B | E], s) :- g(A, E), f([B | E]).

17

18 % --

19 % ground clause

20

21 f([], s) :- g(s).

22

23 % constants to variables except singletons generalization

24

25 f([], A) :- g(A).

26

27

28 % --

29 % ground clause

30

31 f([1, 1], true) :- true.

32

33 % constants to variables except singletons , as fact

34 f([A, A | []], true).

35

36 % constants to variables except singletons , as rule

37 f([A, A | []], B) :- B.
� �
applied by ConstantsToVariablesExceptSingletons.

ConstantsToVariablesExceptSingletonsAndEmptyList. ConstantsToVari-

ablesExceptSingletonsAndEmptyList is a Generalizer which generalizes every
constant as a variable, excluding empty lists. Each occurrence of the same con-
stant will be generalized with the same variable. Constants will not be generalized
if they occur only once within the clause.

ConstantsToVariablesExceptSingletonsAndEmptyList extends ConstantsTo-
VariablesSingletonSensitive such that the method filterSingletons(...)

filters the map of occurrences (Map<Term, Int>) retrieving only the Terms (differ-
ent from empty list) occuring one time.

Listing 3.20 depicts some examples of generalizations, reported as Prolog code,

3.3. INDUCER 47

Listing 3.20: ConstantsToVariablesExceptSingletonsAndEmptyList – Examples�
1 % ground clause

2

3 f(1, 2) :- g(1).

4

5 % constants to variables except singletons and [] generalization

6

7 f(A, 2) :- g(A).

8

9 % --

10 % ground clause

11

12 f([1, 3], s) :- g(1, []), f([3]).

13

14 % constants to variables except singletons and [] generalization

15

16 f([A, B], s) :- g(A, []), f([B]).

17

18 % --

19 % ground clause

20

21 f([], s) :- g(s).

22

23 % constants to variables except singletons and [] generalization

24

25 f([], A) :- g(A).

26

27

28 % --

29 % ground clause

30

31 f([1, 1], true) :- true.

32

33 % constants to variables except singletons and [], as fact

34 f([A, A], true).

35

36 % constants to variables except singletons and [], as rule

37 f([A, A], B) :- B.
� �
applied by ConstantsToVariablesExceptSingletonsAndEmptyList.

List Specific Generalizers

In this section we discuss about some Generalizers which can be plugged by Bias

to any Inducer. Each of these Generalizers is designed for execute some specifical
generalization on lists. In particular, referring to what reported in Figure 3.5:

• ListSpecificGeneralizerEmptyListAsVar

• ListSpecificGeneralizeExceptEmptyList

• ListSpecificGeneralizerExceptSingletons

48 CHAPTER 3. DESIGN

Generalizer

generalize(groundClause: Clause): Sequence<Clause>

ListSpecificGeneralizer

wrappedGeneralizer: Generalizer
emptyListAsVar: Boolean

ListSpecificGeneralizerEmptyListAsVar

ConstantsToVariables

ListSpecificGeneralizeExceptEmptyList

ConstantsToVariablesExceptEmptyList

ListSpecificGeneralizerExceptSingletons

ConstantsToVariablesExceptSingletons

ListSpecificGeneralizerExceptSingletonsAndEmptyList

ConstantsToVariablesExceptSingletonsAndEmptyList

istantiate

use

istantiate

use

istantiate

use

istantiate

use

Figure 3.5: Generalizer – List Specific Generalizers Hierarchy

• ListSpecificGeneralizerExceptSingletonsAndEmptyList

As easily inferred from Figure 3.5, each of the previously listed Generalizers
exploits an instance of the class ListSpecificGeneralizer. A ListSpecific-

Generalizer applies a further generalization over the generalization of a wrapped
Generalizer (as the field wrappedGeneralizer). Similarly to the previously men-
tioned ConstantsToVariablesExcept, a ListSpecificGeneralizer could be in-
stantiated in different list generalizers, we then design it to detect (via the boolean
field emptyListAsvar) how it should deal with the empty lists occurrences.

The further generalization applied by the ListSpecificGeneralizer is the
following:

• for each list L in the form [A,B,C, ... | D],

– if there is already a variable X representing the whole list L, generalize
L as X (e.g., the list is the tail of another list – in order to detect those
cases we should generalize lists sorting them by descending size)

– otherwise

∗ if there is already a variable Xs representing the tail of the list L,
generalize L as [A | Xs]

∗ otherwise generalize L it in the form [A | As]

• after generalizing each list as the previous point, apply a further generaliza-
tion on the lists [A | As] whose:

– head A does not occur in any form different from [A | As]
– tail As does not occur in any form different from [A | As]

generalizing [A | As] as a single variable A.

3.3. INDUCER 49

Listing 3.21: ListSpecificGeneralizerEmptyListAsVar – Examples�
1 % ground clause

2

3 f([1, 3], s) :- g(1, t), h([3]).

4

5 % list specific generalizer

6 % [] as variable generalization

7

8 f([A | As], C) :- g(A, B), h(As).

9

10

11 % --

12 % ground clause

13

14 f([1, 2, 3], []) :- g([2, 3], [1]).

15

16 % list specific generalizer

17 % [] as variable generalization

18

19 f([A | As], B) :- g(As, [C | B]).

20

21

22 % --

23 % ground clause

24

25 f([1, 2, 5], [], true) :- true.

26

27 % list specific generalizer

28 % [] as variable, as fact generalization

29 f(A, B, C).

30

31 % list specific generalizer

32 % [] as variable, as rule generalization

33 f(A, B, C) :- C.
� �
Note: the second point of the previous generalization technique may be useful in
some cases also as a refinement technique. Therefore we provide a specific design
of it in the next sections of the current chapter.

ListSpecificGeneralizerEmptyListAsVar. ListSpecificGeneralizerEmptyLis-

tAsVar is a Generalizer which generalizes every constant as a variable, including
empty lists. Each occurrence of the same constant will be generalized with the
same variable. Each list will then generalized as illustrated for ListSpecificGen-
eralizer exploiting the latter.

ListSpecificGeneralizerEmptyListAsVar exploits the previously discussed
ConstantsToVariables, so it is fact sensitive.

Listing 3.21 depicts some examples of generalizations, reported as Prolog code,
applied by ListSpecificGeneralizerEmptyListAsVar.

50 CHAPTER 3. DESIGN

Listing 3.22: ListSpecificGeneralizerExceptEmptyList – Examples�
1 % ground clause

2

3 f([1, 3], s) :- g(1, t), h([3]).

4

5 % list specific generalizer

6 % except [] generalization

7

8 f([A | As], C) :- g(A, B), h(As).

9

10

11 % --

12 % ground clause

13

14 f([1, 2, 3], []) :- g([2, 3], [1]).

15

16 % list specific generalizer

17 % except [] generalization

18

19 f([A | As], []) :- g(As, [A]).

20

21

22 % --

23 % ground clause

24

25 f([1, 2, 5], [], true) :- true.

26

27 % list specific generalizer

28 % except [], as fact generalization

29 f(A, [], C).

30

31 % list specific generalizer

32 % except [], as rule generalization

33 f(A, [], C) :- C.
� �
ListSpecificGeneralizerExceptEmptyList. ListSpecificGeneralizerExceptEmptyList

is a Generalizer which generalizes every constant as a variable, excluding empty
lists. Each occurrence of the same constant will be generalized with the same vari-
able. Each list will then generalized as illustrated for ListSpecificGeneralizer
exploiting the latter.

ListSpecificGeneralizerEmptyListAsVar exploits the previously discussed
ConstantsToVariablesExceptEmptyList, so it is fact sensitive.

Listing 3.22 depicts some examples of generalizations, reported as Prolog code,
applied by ListSpecificGeneralizeExceptEmptyList.

ListSpecificGeneralizerExceptSingletons. ListSpecificGeneralizerExceptS-

ingletons is a Generalizer which generalizes every constant as a variable, in-
cluding empty lists. Each occurrence of the same constant will be generalized with
the same variable. Each list will then generalized as illustrated for ListSpeci-

ficGeneralizer exploiting the latter.

3.3. INDUCER 51

Listing 3.23: ListSpecificGeneralizerExceptSingletons – Examples�
1 % ground clause

2

3 f([1, 3], s) :- g(1, t), h([3]).

4

5 % list specific generalizer

6 % except singletons generalization

7

8 f([A | As], s) :- g(A, t), h(As).

9

10

11 % --

12 % ground clause

13

14 f([1, 2, 3], []) :- g([2, 3], [1]).

15

16 % list specific generalizer

17 % except singletons generalization

18

19 f([A | As], B) :- g(As, [A | B]).

20

21

22 % --

23 % ground clause

24

25 f([1, 2, 5], [], true) :- true.

26

27 % list specific generalizer

28 % except singletons , as fact generalization

29 f([1 | As], As, C).

30

31 % list specific generalizer

32 % except singletons , as rule generalization

33 f([1 | As], As, C) :- C.
� �
ListSpecificGeneralizerExceptSingletons exploits the previously discussed

ConstantsToVariablesExceptSingletons, so it is fact sensitive.
Listing 3.23 depicts some examples of generalizations, reported as Prolog code,

applied by ListSpecificGeneralizerExceptSingletons.

ListSpecificGeneralizerExceptSingletonsAndEmptyList. ListSpecific-

GeneralizerExceptSingletonsAndEmptyList is a Generalizer which general-
izes every constant as a variable, excluding empty lists. Each occurrence of the
same constant will be generalized with the same variable. Each list will then
generalized as illustrated for ListSpecificGeneralizer exploiting the latter.

ListSpecificGeneralizerExceptSingletonsAndEmptyList exploits the pre-
viously discussed ConstantsToVariablesExceptSingletonsAndEmptyList, so it
is fact sensitive.

Listing 3.24 depicts some examples of generalizations, reported as Prolog code,
applied by ListSpecificGeneralizerExceptSingletonsAndEmptyList.

52 CHAPTER 3. DESIGN

Listing 3.24: ListSpecificGeneralizerExceptSingletonsAndEmptyList – Examples�
1 % ground clause

2

3 f([1, 3], s) :- g(1, t), h([3]).

4

5 % list specific generalizer

6 % except singletons and [] generalization

7

8 f([A | As], s) :- g(A, t), h(As).

9

10

11 % --

12 % ground clause

13

14 f([1, 2, 3], []) :- g([2, 3], [1]).

15

16 % list specific generalizer

17 % except singletons and [] generalization

18

19 f([A | As], []) :- g(As, [A]).

20

21

22 % --

23 % ground clause

24

25 f([1, 2, 5], [], true) :- true.

26

27 % list specific generalizer

28 % except singletons and [], as fact generalization

29 f([1 | As], [], C).

30

31 % list specific generalizer

32 % except singletons and [], as rule generalization

33 f([1 | As], [], C) :- C.
� �

3.3. INDUCER 53

InductionResult

theory: Theory
coverage: Double?

Validator

validate(
 theory: Theory,
 backgroundKnowledge: Theory,
 positiveExamples: List<Fact>,
 negativeExamples: List<Fact>,
 solverFactory: SolverFactory,
 timeout: TimeDuration
): ValidationResult

ValidationResult

InvalidTheory

OccamisticValidator

Figure 3.6: Validator – Hierarchy

3.3.3 Validator

The validation phase is the phase of an ILP algorithm in which the hypotheses are
validated on the basis of the provided background knowledge, positive and negative
examples. Usually a hypothesis covering any negative example is discarded while
a hypothesis covering only a subset of the positive examples may be accepted.

Figure 3.6 illustrates the hierarchy of our Validator design.

Validator. The Validator interface defines the method validate(...). Such
method validates the provided theory, proving it on backgroundKnowledge, pos-
itiveExamples and negativeExamples. Since the purpose of a Validator is try-
ing to prove positive examples as goals and trying to fail negative examples (always
as goals), both with the provided theory, we design the method validate(...)

to accept a solverFactory. Being able to plug a custom solverFactory to a
Validator makes the latter more versatile.

Furthermore, since we aim to detach MIL from Prolog for having a greater
level of abstraction over LP, our Validator should be able to detect looping rules
within the induced theory. Therefore we design the method validate(...) to
accept a timeout, for recognizing and pruning looping rules on the fly.

ValidationResult. Since a theory may be proven valid or invalid, we need an
entity for representing both results. The main reason behind not designing the
method validate(...) with a boolean return type is that during the validation
phase we do not just prove if a theory is acceptable: we also prune the inadequate

54 CHAPTER 3. DESIGN

rules, as deductible from the previous discussion about looping rules. Therefore,
a Validator may edit the induced theory, making it more adequate and only
composed by correct rules.

We design ValidationResult as an interface implemented by:

• InductionResult representing a valid theory;

• InvalidTheory representing an invalid theory.

We already discussed about InductionResult in Section 3.3.1.

OccamisticValidator. OccamisticValidator is a Validator which validates
a theory and prunes all the redundant clauses trying to produce the most simple
solution, in an occamistic fashion. OccamisticValidator does not require a the-
ory to prove all the positive examples, it is based on the percentage of covered
positive examples instead (i.e., coverage). It works as follows:

1. it first checks if the theory is covering negative examples: if the theory covers
negative examples the theory is invalid;

2. it proceeds pruning all the clauses semantically equal to any previous clause,
within the theory;

3. it proceeds pruning all the clauses which cause infinite loops;

4. it filters the redundant clauses.

We provide a redundant definition for clauses within a theory. Let a theory
T1 composed by n clauses C such as c1, ...cn, let S the space of possible solutions
of T1. We define redundant a clause ci such as ci ∈ C, if a theory T ′ composed
by the n − 1 clauses C ′ such as C ′ = C − ci has a space of solutions S ′ such as
S ≡ S ′. Listing 3.25 depicts an example of theory with some redundant clauses.
In particular it is append/3. The redundant clauses are the two at lines 4 and 5
since they work only on specific cases with empty lists, while the one at line 6 is
more general.

When filtering the redundant clauses we prioritize the smaller one, pruning the
larger ones. For pruning the redundant clauses we:

1. first compute the initial positive coverage of the whole theory;

2. proceed sorting the clauses by weight, in a descending way;

3. compute the coverage of the theory without one clause at a time, basing on
the order from point 2: if the coverage of the reduced theory is equal to the
initial coverage from point 1 the removed clause can be pruned.

3.3. INDUCER 55

Listing 3.25: append/3 with Redundant Clauses�
1 % append /3 with redundant clauses

2

3 append ([], A, A).

4 append ([A | As], [], [A | As]) :- append(As, [], As).

5 append ([A | As], B, [A | B]) :- append ([], B, B).

6 append ([A | As], B, [A | Cs]) :- append(As, B, Cs).

7

8

9 % optimal append /3

10

11 append ([], A, A).

12 append ([A | As], B, [A | Cs]) :- append(As, B, Cs).
� �
The descending sorting from point 2 allows us to prune the larger redundant clauses
first, letting the OccamisticValidator producing the smallest valid theory.

Note: the redundant clauses set is larger than the semantically equal clauses
one. Therefore, pruning the semantically equals clauses before pruning the re-
dundant clauses may seem inefficient. We decide to prune the semantically equal
clauses first because pruning the clauses which cause infinite loops is extremely
costly (i.e. given n clauses it may take n ∗ validationTimeout in the worst sce-
nario).

3.3.4 Refiner

The refinement phase is the phase of an ILP algorithm in which the validated
hypotheses are subjected to a perfecting process which makes them more similar
to what a skilled human programmer would produce while coding. As for gener-
alization, given a theory multiple strategies of refinement exist, and each strategy
may be useful in different cases. For example Listing 3.26 illustrates two different
predicate invention strategies over the same initial theory, where two clauses have
the common literal h(A,B):

• the first method groups the common literal h(A,B) within a new predicate;

• the second method groups the non common literals g(A) and i(A) within a
new predicate.

We identify three examples of predicate invention (i.e., the extrapolation of
common code among multiple rules in a new specific rule) and a list refiner, al-
though other refinement strategies may, and certainly do exist:

• a predicate inventor grouping the literals in common among multiple clauses
within a new predicate;

56 CHAPTER 3. DESIGN

Listing 3.26: Multiple Predicate Invention Strategies Exist�
1 % to refine

2

3 f(A, B) :- g(A), h(A, B).

4 f(A, B) :- i(A), h(A, B).

5

6 % possible refinement , grouping common literals

7

8 f(A, B) :- g(A), invented(A, B).

9 f(A, B) :- i(A), invented(A, B).

10 invented(A, B) :- h(A, B).

11

12 % possible refinement , grouping non common literals

13

14 f(A, B) :- invented(A), h(A, B).

15 invented(A) :- g(A).

16 invented(A) :- i(A).
� �
• a predicate inventor grouping the literals not in common among multiple
clauses within a new predicate;

• a predicate inventor working as the one proposed by Metagol, discussed
in Section 2.2.3;

• a list refiner working as the second step of the list generalization we already
discussed in Section 3.3.2.

Figure 3.7 illustrates the hierarchy of our Refiner design.

ListSpecificRefiner. The ListSpecificRefiner is a Refiner with the purpose
of simplifying clauses containing lists. In order to achieve that, the ListSpeci-

ficRefiner expresses lists as single variables, if the variables and the tail of such
lists do not occur outside lists equal to the list in question. Therefore, the List-

SpecificRefiner operates on every single clause of the provided theory instead
of operating on the theory as a whole. For example, given a list in the form [A | As]
whose:

• head A does not occur in any form different from [A | As]

• tail As does not occur in any form different from [A | As]

the ListSpecificRefiner refines [A | As] as a single variable A.

We provide some examples of the just described refinement method in List-
ing 3.27.

3.3. INDUCER 57

Refi ner

refine(theory: Theory): Theory

PredicateInventorWithCodeReuse

inventPredicateFunctor(): String
inventPredicate(
 fromClause: Clause,
 commonSubTerms List<Term>,
 nonCommonSubTerms List<Term>
): RefinementResult
inventPredicateMultipleOccurrences(
 fromClause: Clause,
 commonSubTerms List<Term>,
 nonCommonSubTerms List<Term>
): RefinementResult
verifyRefinement(theory: Theory): Boolean

ListSpecificRefiner

NonCommonGroupingPredicateInventor
Refi nementResult

refinedClause: Clause
inventedClause: Clause?

PredicateInventorGroupCommon

PredicateInventorMetagolLike PredicateInventorGroupNonCommon

use

Figure 3.7: Refiner – Hierarchy

Listing 3.27: ListSpecificRefiner – Examples�
1 % to refine

2

3 append ([A | As], [B | Bs], [A | Cs]) :- append(As, [B | Bs], Cs).

4

5 % after list specific refiner

6

7 append ([A | As], B, [A | Cs]) :- append(As, B, Cs).

8

9

10 % --

11 % to refine

12

13 f([A, B, C]) :- g(C).

14

15 % after list specific refiner

16 % (C occurs outside of [A, B, C])

17

18 f([A, B, C]) :- g(C).

19

20

21 % --

22 % to refine

23

24 f([A, B, C], [B, C]) :- g(D).

25

26 % after list specific refiner

27

28 f([A | As], As) :- g(D).
� �

58 CHAPTER 3. DESIGN

PredicateInventorWithCodeReuse. The PredicateInventorWithCodeReuse
is an abstract Refiner grouping all the common mechanisms from the different
predicate inventors we identified. It works as follows:

1. for each clause, counts the occurrences of all the possible combinations of its
body literals;

2. merges all the occurrences of literals of the theory from point 1;

3. filters the combinations keeping only the combinations occurring more than
once;

4. on each clause containing the literals from point 3, applies some sort of
predicate invention, via the abstract methods inventPredicate(...) etc.

More in detail, the predicate invention phase at point 4 works as follows:

1. if all the literals within the body of the current clause are to refine do nothing,
otherwise proceed at point 2;

2. looks for an already existing predicate with the literal combination as body
(except for the current clause to refine):

(a) if any exists, edit the current clause for calling such predicate instead of
the literal combination. This is the case of code reuse without predicate
invention.

(b) otherwise, proceed at point 3

3. if a sub-set of the current clause body literals are to refine, apply predicate
invention via the abstract methods.

PredicateInventorGroupCommon. The PredicateInventorGroupCommon is
a PredicateInventorWithCodeReuse which groups all the common literals among
different clauses, within an invented predicate. Listing 3.28 depicts some examples
of refinement applied by PredicateInventorGroupCommon.

This kind of predicate invention is useful when the common literals are at least
2.

PredicateInventorGroupNonCommon. The PredicateInventorGroupNon-
Common is a PredicateInventorWithCodeReuse which groups all the non common
literals among different clauses, within an invented predicate. In particular it
creates a new predicate composed by multiple clauses with the same head (i.e.

3.3. INDUCER 59

Listing 3.28: PredicateInventorGroupCommon – Examples�
1 % to refine

2

3 f(A, B) :- g(A), h(A, B), l(B).

4 f(A, B) :- i(A), h(A, B), l(B).

5

6 % after predicate inventor group common

7

8 f(A, B) :- g(A), invented(A, B).

9 f(A, B) :- i(A), invented(A, B).

10 invented(A, B) :- h(A, B), l(B).

11

12

13 % --

14 % to refine

15

16 f(A, B) :- g(A), h(A, B), l(B).

17 f(A, B) :- i(A), h(A, B), l(B).

18 m(A) :- l(A).

19

20 % after predicate inventor group common

21 % (note the reuse of m/1)

22

23 f(A, B) :- g(A), invented(A, B).

24 f(A, B) :- i(A), invented(A, B).

25 invented(A, B) :- h(A, B), m(B).

26 m(A) :- l(A).

27

28

29 % --

30 % to refine

31

32 f(A, B) :- g(A, B), h(A).

33 i(A, B) :- g(A, B), h(A).

34

35 % after predicate inventor group common

36

37 f(A, B) :- i(A, B).

38 i(A, B) :- g(A, B), h(A).
� �

60 CHAPTER 3. DESIGN

Listing 3.29: PredicateInventorGroupNonCommon – Examples�
1 % --

2 % to refine

3

4 f(A, B) :- g(A), h(A, B), l(B).

5 f(A, B) :- i(A), h(A, B), l(B).

6

7 % after predicate inventor group non common

8

9 f(A, B) :- h(A, B), l(B), invented(A).

10 invented(A) :- g(A).

11 invented(A) :- i(A).

12

13

14 % --

15 % to refine

16

17 f(A, B) :- g(A), h(A, B), l(B).

18 f(A, B) :- i(A), h(A, B), l(B).

19 m(A) :- l(A).

20

21 % after predicate inventor group non common

22 % (note the reuse of m/1)

23

24 f(A, B) :- h(A, B), m(B), invented(A).

25 invented(A) :- g(A).

26 invented(A) :- i(A).

27 m(A) :- l(A).

28

29

30 % --

31 % to refine

32

33 f(A, B) :- g(A, B), h(A).

34 i(A, B) :- g(A, B), h(A).

35

36 % after predicate inventor group non common

37

38 f(A, B) :- i(A, B).

39 i(A, B) :- g(A, B), h(A).
� �

3.3. INDUCER 61

practically a “or” among multiple clauses). Listing 3.29 depicts some examples of
refinement applied by PredicateInventorGroupNonCommon.

This kind of predicate invention is useful when the non common literals have
the same number of distinct variables.

PredicateInventorMetagolLike. The PredicateInventorGroupNonCommon is
a PredicateInventor which groups all the common literals among different clauses,
within an invented predicate. Specifically, it covers a particular case where the
clauses literals are all in common, but with different distribution such as the pre-
viously discussed example in Listing 2.3, where both father/2 andmother/2 occur
in all clauses, in different combinations. We already provided a predicate invention
example for that case, in Listing 2.4.

3.3.5 MetaPatrol

MetaPatrol is a brand new ILP algorithm, based on MIL and inspired by
Metagol, completely designed on the framework discussed in the previous para-
graphs of this chapter.

The induction engine of MetaPatrol is similar to the one proposed by
Metagol, but we extended it for exploiting many different generalization, valida-
tion e refinement strategies. Furthermore, MetaPatrol is able to induce multiple
clauses from different positive examples (i.e., from facts with different head func-
tors) within the same learning task, eventually reusing the already induced clauses
for inducing new ones.

The main strength of MetaPatrol is its ability to generate multiple induced
theories, if possible, for the same learning task, based on different generalizations
and refinement methods. For achieving that, MetaPatrol lazily explores the
tree of the possible solutions it is able to induce for the current learning task. Fur-
thermore, different Generalizators, Validators and/or Refiners are pluggable
to MetaPatrol in a custom way.

Since our new algorithm is inspired by Metagol, and since the ability of the
new algorithm to lazily explore many different solutions to the same learning task,
we decided to name it in a similar way to Metagol, as a form of respect, changing
only a small part of the name of the latter, to make it a Patrol scouting the space
of solutions.

For being able to lazily explore a tree of solutions, the MetaPatrol algorithm
exploits a context representing the state of the algorithm in each node of the tree.
In particular we decide to explore the tree horizontally, exploring the branches at
the same depth level, before proceeding deeper in the tree.

The MetaPatrol algorithm works as follows:

62 CHAPTER 3. DESIGN

1. for each positive example, verify if its already proved

• if it is proved, proceed with the next example, point 1

• if it is not proved, proceed at point 2

• if there are no more positive examples proceed at point 5

2. for each meta-rule within bias: substitute its head with the positive example,
then try to substitute all the body literals, basing on background knowledge
and on already induced clauses. This generates multiple branches in the
solution tree.

3. for each Generalizer within bias, generalize each rule with all second-order
variables substituted, generated at point 2. This generates multiple branches
in the solution tree.

4. add the generalized rule, if it does not prove negatives and if it is new, to
the current induced theory. Proceed with the next example, point 1

5. if the theory is new, validate the induced theory with each Validator within
bias

6. if the theory is valid, refine the validated theory with each Refiner within
bias, then return the refined theory. This generates multiple branches in the
solution tree.

Since the same clauses and theories may be induced following different paths,
we provide the points 3 and 5 with some mechanism for recognizing it, in order to
avoid duplicates.

Since the points 3 and 5 generate multiple branches, the resulting theories will
be composed by different combinations of induced and generalized clauses, in order
to try to induce the most adequate theory for solving the current problem, which
the user may choose. In fact, for MetaPatrol being lazy, the user might then
decide to continue or stop the algorithm at will, if the algorithm already induced
(or did not yet) an interesting solution.

Since the Refiners may be inadequate for some theories, MetaPatrol at
point 6 (of the previously discussed algorithm) returns the non refined theories
too, together with their refined versions.

Figure 3.8 illustrates the MetaPatrol hierarchy. As reported in the figure,
MetaPatrol implements the previously described Inducer interface. For achiev-
ing that we need to design MetaPatrol for exploiting some specific Bias and In-

ducerOptions. In particular we design a Bias implementation: MetaPatrolBias
composed by the bias strategies we described above: MetaRules, Generalizers,

3.3. INDUCER 63

Inducer
B : Bias, O: InducerOptions

backgroundKnowledge: Theory
bias: B
unificator: Unificator
induce(positiveExamples: List<Clause>, negativeExamples: List<Clause>, options: O): InductionResult

Bias InducerOptions
InductionResult

theory: Theory
coverage: Double?

MetaPatrolBias

metaRules: List<MetaRule>
generalizers: List<Generalizer>
validators: List<Validator>
validationTimeout: TimeDuration
refiners: List<Refiner>

MetaPatrolOptions

depth: Int

MetaPatrol
MetaPatrolBias, MetaPatrolOptions

bias: MetaPatrolBias
solverFactory: SolverFactory
induce(..., options: MetaPatrolOptions): Sequence<InductionResult>

Figure 3.8: MetaPatrol – Hierarchy

Validators and Refiners, as well as the allowed validatorTimeout. Then we
design an InducerOptions implementation: MetaPatrolOptions, composed by
the maximum depth we allow to explore in the solution tree.

Since, in point 4 of theMetaPatrol algorithm described above, the hypoteses
are proved on negative examples, we provide MetaPatrol a pluggable solverFac-
tory. Similary to Validator, a pluggable solverFactory allows more versatility
to MetaPatrol itself.

64 CHAPTER 3. DESIGN

Chapter 4

Implementation

In the current chapter we describe the main implementative choices we adopt for
developing the library designed in the previous chapters.

4.1 Reducing the Abstraction Gap: 2P-Kt

Since ILP is based on LP, and since we aim to develop a library supporting MIL
from a higher perspective, we need various abstractions representing LP entities.
2P-Kt is a framework for LP, aiming to become an ecosystem for symbolic AI.
Being 2P-Kt a framework for LP it already features most of the entities we need
for our purpose. All we need is to identify the abstraction gap starting from what
2P-Kt already provides, then we can extend the latter for supporting the entities
and the operations we need but which 2P-Kt does not feature yet.

4.2 Identifying the Abstraction Gap

2P-Kt is composed by several modules, each providing some specific functionali-
ties. We now identify, for each 2P-Kt module we need for developing our frame-
work, the functionalities not provided by 2P-Kt which we need to implement,
extending the latter.

Core module abstraction gap. Unfortunately, as discussed in the previous
chapters of this thesis, LP does not come with a native support for expressing
meta-rules in a similar way they allow to express clauses. Neither does 2P-Kt.

Furthermore, 2P-Kt does not come with the following utility operations we
defined in Section 3.2.5:

• strict structural equality (should not depend on scope);

65

66 CHAPTER 4. IMPLEMENTATION

• semantical equality (should not depend on scope);

• clause weight;

• literal combinations.

Unify module abstraction gap. Since we have to extend the Term hierarchy
for supporting meta-rules and since we need to apply substitutions in MetaPa-
trol, we have to extend Unificator too. Furthermore, since Unificator features
the flag occurCheckEnabled we need to extend our design of Inducer for being
able to plug that flag.

Parser/DSL modules abstraction gap. Since we have to extend 2P-Kt for
supporting meta-rules, we may need to extend either parser or DSL (or both) for
being able to express meta-rules in a declarative fashion.

4.3 Filling the Abstraction Gap

After our inspection for identifying the abstraction gap from 2P-Kt, the tasks we
need to accomplish are:

• being able to plug a flag occurCheckEnabled within our Inducer hierarchy;

• extending 2P-Kt for supporting the concept of meta-rule, in particular:

– extending the :core module;

– extending the :unify module;

– extending the :dls* and/or the :parser* modules;

• implementing the utility operations not provided by 2P-Kt.

4.3.1 Occurs check

Since occurCheckEnabled can be easily identified as an option, we extend Induc-

erOptions with a boolean field occurCheckEnabled, thus making it configurable.

4.3.2 MetaRules

Core module extension

Figure 4.1 illustrates the full initial 2P-Kt Term hierarchy.

4.3. FILLING THE ABSTRACTION GAP 67

cl
au

se
s

C
la
us

e

he
ad

: S
tr

uc
t?

bo
dy

: T
er

m
is

W
el

lF
or

m
ed

: B
oo

le
an

R
u
le

he
ad

: S
tr

uc
t

bo
dy

: T
er

m

D
ir
ec
ti
ve

he
ad

: S
tr

uc
t?

=
n

u
ll

Fa
ct

bo
dy

: T
er

m
=

Tr
u

th
.o

f(
tr

u
e)

Te
rm

is
G

ro
un

d:
 B

oo
le

an
va

ri
ab

le
s:

 S
eq

ue
nc

e<
Va

r>

Co
ns
ta
nt

va
lu

e:
 A

ny

Va
r

na
m

e:
 S

tr
in

g
co

m
pl

et
e:

 N
am

e

St
ru
ct

fu
nc

to
r:

 S
tr

in
g

ar
ity

: I
nt

ar
gs

: A
rr

ay
<T

er
m

>
in

di
ca

to
r:

 In
di

ca
to

r

N
um

er
ic

in
tV

al
ue

: B
ig

In
te

ge
r

de
ci

m
al

Va
lu

e:
 B

ig
D

ec
im

al

In
te
ge

r

va
lu

e:
 B

ig
In

te
ge

r

R
ea

l

va
lu

e:
 B

ig
D

ec
im

al

A
to
m

va
lu

e:
 S

tr
in

g

Tr
ut
h

is
Tr

ue
: B

oo
le

an
is

Fa
il:

 B
oo

le
an

In
di
ca
to
r

na
m

eT
er

m
: T

er
m

in
di

ca
te

dN
am

e:
 S

tr
in

g?
ar

it
yT

er
m

: T
er

m
in

di
ca

te
dA

ri
ty

: I
nt

?
is

W
el

lF
or

m
ed

: B
oo

le
an

Em
p
ty

lis
t(

):
Em

pt
yL

is
t

se
t(

):
 E

m
pt

yS
et

Em
p
ty
Se

t
Em

pt
yL
is
t

Li
st

si
ze

: I
nt

un
fo

ld
ed

Ar
ra

y:
 A

rr
ay

<T
er

m
>

un
fo

ld
ed

Li
st

: L
is

t<
Te

rm
>

un
fo

ld
ed

Se
qu

en
ce

: S
eq

ue
nc

e<
Te

rm
>

C
on

s

he
ad

: T
er

m
ta

il:
 T

er
m

Se
t

un
fo

ld
ed

Ar
ra

y:
 A

rr
ay

<T
er

m
>

un
fo

ld
ed

Li
st

: L
is

t<
Te

rm
>

un
fo

ld
ed

Se
qu

en
ce

: S
eq

ue
nc

e<
Te

rm
>

Tu
p
le

le
ft

: T
er

m
ri

gh
t:

 T
er

m

Figure 4.1: 2P-Kt: Initial Term Hierarchy

68 CHAPTER 4. IMPLEMENTATION

Dealing with second-order variables. The main difference between a meta-
rule and an ordinary clause are second-order variables. For simplicity, since second-
order variables act in a very similar way to ordinary variables, we decide to exploit
the already existing Var implementation. That choice allows us to express second-
order variables in the same way as we express first-order variables.

Anyway, since second-order variables occur as functors of structures, we need to
extend the already existing Struct for supporting functors of type Var. We could
either edit the already existing Struct functor type, or provide a higher abstraction
between Term and Struct itself, grouping the common features between a Struct

with a string functor and a Struct with a Var type functor. Since editing the
already existing Struct would eventually generate cascading complications over
all its implementations, we choose to provide a middle abstraction between Term

and Struct, as well as a new entity representing Struct with a Var type functor,
we call it Pattern. Therefore we introduce the following entities:

• Composed: a Struct-like entity, where we group all the common features
between a Struct and a Pattern. The Composed type of the field functor is
Any, for supporting either strings or Var, depending on its implementation.
We transfer each shared Struct field and method within this new entity,
properly changing some of their types from Struct to Composed.

• Pattern: a Composed entity featuring a Var type functor.

The previously existing Struct entity is now a Composed specialization, overriding
its functor type as a String.

Introducing the new entity Composed maximizes code reuse, allowing us to
exploit the most of the already existing methods.

Meta-clauses. 2P-Kt Clauses are special Structs with functor “:-”. A Clause

has a head of type Struct? (optional in case of Directives a.k.a. goals) and
multiple Terms composing its body.

Since meta-rules are very similar to clauses and share most of their features,
we need to extend Clause for supporting second-order variables.

We already decided to represent second-order variables as Vars and we added
the Pattern entity in case of second-order variables acting as functors, adding the
Composed entity implemented by both Pattern and Struct. Since the Clause

field body is composed by Terms and, since Patterns are Terms, we just have to
focalize on the field head of Clause. Therefore, for our extension purpose, we could
either edit the already existing Clause’s field head type for supporting Composed?

heads, or provide a higher abstraction between Struct and Clause itself, grouping
the common features between an ordinary clause and a meta-clause. Since editing
the already existing Clause would eventually generate cascading complications

4.3. FILLING THE ABSTRACTION GAP 69

over all its implementations, we choose to provide a middle abstraction, as well
as a new entity representing meta-rules. That choice is similar to the one we
adopted for Composed and Pattern, therefore it is a good uniformity practice. We
call the new middle entity Clausal. Furthermore, since a meta-rule has common
features with the already existing Rule, we make a similar choice adding a further
entity between Clausal and Rule: we call such entity RuleLike. We now add the
MetaRule entity. We provide a description of the introduced entities:

• Clausal: a Clause-like entity, where we group all of the common features
among Clause, Rule, Fact, Directive and MetaRule. The Clausal type
of the field head is Composed?, for supporting either Struct? or Pattern,
depending on its implementation. We transfer each shared Clause field and
method within this new entity, properly changing some of their types from
Clause to Clausal. Note: we also transfer all methods which can edit a
Clausal implementation, changing its type to another Clausal implemen-
tation.

• RuleLike: a Clausal entity with head, where we group all of the common
features between Rule and MetaRule. The head field type is Composed (not
optional).

• MetaRule: a Clausal entity which head and/or any body term are Composed
(a partially substituted meta-rule may have a Struct type head and only a
Pattern term within its body!).

Figure 4.2 illustrates the full extended 2P-Kt Term hierarchy.
Note: because of our extension we have to provide some new cast methods to

Term, and some new methods to TermVisitor.
Note: since the legacy Clause constructor handled all Clause implementations,

we need to implement the Clausal constructor in a similar way, providing the
correct instance of its specializations upon object instantiation.

Unify module extension

After introducing the MetaRule entity, we have to extend the 2P-Kt’s :unify

module following the already discussed table reported at Table 3.1. In particular,
2P-Kt already supports all unifications within such table, except for the last row
and column.

Equation, within the :unify module, is a class representing an equation of
logic terms, to be unified. In order to extend the 2P-Kt unification for supporting
meta-rules we need to extend Equation adding equations for Patterns.

The Equation constructor Equation.of(...) compares two logic terms and
returns one of the the following Equations:

70 CHAPTER 4. IMPLEMENTATION

cl
au

se
s

Cl
au

sa
l

he
ad

: C
om

po
se

d?
bo

dy
: T

er
m

bo
dy

It
em

s:
 I

te
ra

bl
e<

Te
rm

>
bo

dy
Si

ze
: I

nt
bo

dy
As

Tu
pl

e:
 T

up
le

?

C
la
us

e

he
ad

: S
tr

uc
t?

bo
dy

: T
er

m
is

W
el

lF
or

m
ed

: B
oo

le
an

Ru
le
Li
ke

he
ad

: C
om

po
se

d
bo

dy
: T

er
m

he
ad

Ar
gs

: I
te

ra
bl

e<
Te

rm
>

he
ad

Ar
ity

: I
nt

R
u
le

he
ad

: S
tr

uc
t

bo
dy

: T
er

m

D
ir
ec
ti
ve

he
ad

: S
tr

uc
t?

=
n

u
ll

Fa
ct

bo
dy

: T
er

m
=

Tr
u

th
.o

f(
tr

u
e)

M
et
aR

ul
e

he
ad

: C
om

po
se

d
bo

dy
: T

er
m

Te
rm

is
G

ro
un

d:
 B

oo
le

an
va

ri
ab

le
s:

 S
eq

ue
nc

e<
Va

r>

Co
ns
ta
nt

va
lu

e:
 A

ny

Va
r

na
m

e:
 S

tr
in

g
co

m
pl

et
e:

 N
am

e

C
om

p
os

ed

fu
nc

to
r:

 A
ny

ar
ity

: I
nt

in
di

ca
to

r:
 In

di
ca

to
r

ar
gs

: L
is

t<
Te

rm
>

ar
gs

Se
qu

en
ce

: S
eq

ue
nc

e<
Te

rm
>

Pa
tt
er
n

fu
nc

to
r:

 V
ar

St
ru
ct

fu
nc

to
r:

 S
tr

in
g

is
Fu

nc
to

rW
el

lF
or

m
ed

: B
oo

le
an

N
um

er
ic

in
tV

al
ue

: B
ig

In
te

ge
r

de
ci

m
al

Va
lu

e:
 B

ig
D

ec
im

al

In
te
ge

r

va
lu

e:
 B

ig
In

te
ge

r

R
ea

l

va
lu

e:
 B

ig
D

ec
im

al

A
to
m

va
lu

e:
 S

tr
in

g

Tr
ut
h

is
Tr

ue
: B

oo
le

an
is

Fa
il:

 B
oo

le
an

In
di
ca
to
r

na
m

eT
er

m
: T

er
m

in
di

ca
te

dN
am

e:
 S

tr
in

g?
ar

it
yT

er
m

: T
er

m
in

di
ca

te
dA

ri
ty

: I
nt

?
is

W
el

lF
or

m
ed

: B
oo

le
an

Em
p
ty

lis
t(

):
Em

pt
yL

is
t

se
t(

):
Em

pt
yB

lo
ck

Em
pt
yB

lo
ck

Em
pt
yL
is
t

Li
st

si
ze

: I
nt

un
fo

ld
ed

Ar
ra

y:
 A

rr
ay

<T
er

m
>

un
fo

ld
ed

Li
st

: L
is

t<
Te

rm
>

un
fo

ld
ed

Se
qu

en
ce

: S
eq

ue
nc

e<
Te

rm
>

C
on

s

he
ad

: T
er

m
ta

il:
 T

er
m

B
lo
ck

un
fo

ld
ed

Ar
ra

y:
 A

rr
ay

<T
er

m
>

un
fo

ld
ed

Li
st

: L
is

t<
Te

rm
>

un
fo

ld
ed

Se
qu

en
ce

: S
eq

ue
nc

e<
Te

rm
>

Tu
p
le

le
ft

: T
er

m
ri

gh
t:

 T
er

m

Figure 4.2: 2P-Kt: Extended Term Hierarchy

4.3. FILLING THE ABSTRACTION GAP 71

• Identity: an equation of identical Terms;

• Contradiction: a contradicting equation, trying to equate non equal Terms;

• Assignment: an equation stating Var = Term;

• Comparison: an equation comparing Terms, possibly different.

We extend such constructor adding the following cases:

• if the two terms are a Var and a Pattern

– if the Var and the functor of the Pattern are incompatible returns a
Contradiction of the two terms

– returns an Assignment of the Pattern to the Var otherwise

• if one of the two terms is a Pattern and the other is either a Struct or a
Pattern

– if the two terms have different arity returns a Contradiction

– returns a Comparison of the two terms otherwise.

The other cases are already covered by the initial implementation of Equation.

DSL module extension

Since we are working with meta-rules in Kotlin, a way for expressing meta-rules
without directly using verbose constructors could come in handy, letting us produce
more readable code.

We decide to extend the 2P-Kt’s dls:core module for being able to express
meta-rules, within Kotlin, via the already existing DSL. For that purpose we
just need to edit the already existing methods returning a Clause for making
them return a Clausal, since the latter constructor already manages all Clausal
implementations.

Listing 4.1 depicts the extended DSL features.

4.3.3 Utility operations on terms

Most of the following operations on terms are implemented exploiting the Kotlin
extension functions. Kotlin extension functions allow to extend an already exist-
ing type, without editing it, and have a declaration such as the following: fun

Type.extensionMethodName(...):... where Type is the type to be extended.
An extension function can then be called like any ordinary method of Type.

72 CHAPTER 4. IMPLEMENTATION

Listing 4.1: Extended DSL Examples – MetaRules�
1 import it.unibo.tuprolog.dsl.theory.prolog

2

3 ...

4

5 prolog {

6 // impliedBy means :-

7 val metaRule = (A(X, Y)).impliedBy(B(X, Z), C(Z, Y))

8 val anotherMetaRule = "f"(X, Y) impliedBy A(Y, X)

9 }

10

11 ...
� �
Strict structural equality. We implement the concept of strict structural equal-
ity via the method Struct.strictStructurallyEquals(compared: Struct):

Boolean. The two Structs must be structurallyEquals.

It works mapping all the variables of the first Struct with the same of the
compared one occurring in the same position. In order for the Structs to be strict
structurally equals, the number of distinct mapped values must be 1.

Semantical equality. We implement the concept of semantical equality via the
method Struct.semanticallyEquals(compared: Struct): Boolean.

Since two semantically equals terms have the same literals and variable distri-
bution, but the literals have different order, we exploit the already defined strict-

StructurallyEquals method, but we first sort all the literals of both Structs by
weight and alphabetical order, as follows:

• Vars

• Atoms

• Structs

In that way we convert two potential semantically equals Structs as two potential
strict structurally equals ones.

Clause weight. We extend the concept of weight to the Term entity via the
method Term.weight(): Int.

Such method implementation exploits a TermVisitor which explores all the
Terms composing the Term in question, and counts the total occurrences of Con-
stants, Vars and EmptyLists. It does not count the Truth in Fact bodies.

4.3. FILLING THE ABSTRACTION GAP 73

Literal combinations. We implement the concept of combinations via a generic
function <T> combinations(list: List<T): Sequence<List<T>> which com-
putes all the possible combinations of the element of the provided list of T type
elements.

Such method is recursive and at each iteration yields:

• the one sized combination with the list head;

• if the list has more than one element:

– the combinations of the list tail, recursively;

– the combinations of list head with the all the tail combinations from
the previous point.

The combinations function may then be called passing the list of literals of a
clause as parameter.

74 CHAPTER 4. IMPLEMENTATION

Chapter 5

Validation

For validating the designed and implemented framework we provide a test suite.

Although we tested all the new entities and methods of our 2P-Kt extension, in
this chapter, for the purpose of this thesis, we just delve into tests over the library
components (i.e. Generalizers, Validators, Refiners). We then provide a set of
MIL learning tasks with the relating MetaPatrol inductions. Such inductions
serve both as further validation of the library components and as validation of the
performances of MetaPatrol.

For more readable tests we exploit the 2P-Kt parser for expressing clauses and
theories, while we exploit the extended DSL for expressing meta-rules. Nonethe-
less, for a clearer demonstration, in this thesis we express the starting values and
expected results of each test as Prolog clauses.

5.1 Generalizer tests

For better showcasing the differences among the developed Generalizers, we pro-
vide a test for each one, generalizing the same clause.

Furthermore, since Generalizers generate variable names like X n where n is
a natural number (or Xs n for list tails), it would be difficult to reproduce them
while testing: using the method semanticallyEquals for checking equality allows
us to choose any variable name.

ConstantsToVariables. The test in Listing 5.1 shows how each constant is
substituted by a variable, in particular each occurrence of the same constant is
substituted by the same variable.

This Generalizer also substitutes empty lists, the C variable in the example.

75

76 CHAPTER 5. VALIDATION

Listing 5.1: ConstantsToVariables Test�
1 % to generalize

2

3 f([1, 2], [s]) :- g([]), h([1, 4, 5], [1, 4, 5]).

4

5 % generalized

6

7 f([A, B | C], [D | C]) :- g(C), h([A, E, F | C], [A, E, F | C]).
� �
Listing 5.2: ConstantsToVariablesExceptSingletons Test�

1 % to generalize

2

3 f([1, 2], [s]) :- g([]), h([1, 4, 5], [1, 4, 5]).

4

5 % generalized

6

7 f([A, 2 | B], [s | B]) :- g(B), h([A, C, D | B], [A, C, D | B]).
� �
ConstantsToVariablesExceptSingletons. The test in Listing 5.2 shows how
each constant occurring more than once is substituted by a variable, in particular
each occurrence of the same constant is substituted by the same variable.

Note how the constants occurring only once are 2 and s, and they are not
generalized.

This Generalizer also substitutes empty lists (if occurring more than once),
the B variable in the example.

ConstantsToVariablesExceptEmptyList. The test in Listing 5.3 shows how
each constant is substituted by a variable, in particular each occurrence of the
same constant is substituted by the same variable.

This Generalizer does not substitute empty lists: lists do not have the final
pipe as the two Generalizers at the previous tests, the empty list within the first
body literal is not generalized.

Listing 5.3: ConstantsToVariablesExceptEmptyList Test�
1 % to generalize

2

3 f([1, 2], [s]) :- g([]), h([1, 4, 5], [1, 4, 5]).

4

5 % generalized

6

7 f([A, B], [C]) :- g([]), h([A, D, E], [A, D, E]).
� �

5.1. GENERALIZER TESTS 77

Listing 5.4: ConstantsToVariablesExceptSingletonsAndEmptyList Test�
1 % to generalize

2

3 f([1, 2], [s]) :- g([]), h([1, 4, 5], [1, 4, 5]).

4

5 % generalized

6

7 f([A, 2], [s]) :- g([]), h([A, B, C], [A, B, C]).
� �
Listing 5.5: ListSpecificGeneralizerEmptyListAsVar Test�

1 % to generalize

2

3 f([1, 2], [s]) :- g([]), h([1, 4, 5], [1, 4, 5]).

4

5 % generalized

6

7 f([A | As], [B | Bs]) :- g(Bs), h([A | Cs], [A | Cs]).
� �
ConstantsToVariablesExceptSingletonsAndEmptyList. The test in List-
ing 5.4 shows how each constant occurring more than once is substituted by a
variable, in particular each occurrence of the same constant is substituted by the
same variable.

Note how the constants occurring only once are 2 and s, and they are not
generalized.

This Generalizer does not substitute empty lists: lists do not have the final
pipe as some of the Generalizers at the previous tests, the empty list within the
first body literal is not generalized.

ListSpecificGeneralizerEmptyListAsVar. The test in Listing 5.5 shows how
each constant is substituted by a variable, in particular each occurrence of the same
constant is substituted by the same variable.

Specifically, this Generalizer applies a generalization on lists expressing them
in the form [A | As], carefully reusing the head and tail variables where necessary.
It furtherly generalizes as single variables the lists of the previous form, whose
variables of head and tail do not occur in any other disposition.

This Generalizer also substitutes empty lists, the Bs variable in the example.

In this particular example the constant 1 occurs as head of multiple lists, and
is substited by the variable A. The empty list alone and the list [4, 5] occurs as
tail of multiple lists, and they are substituted respectively by the variables [Bs]
and [Cs].

78 CHAPTER 5. VALIDATION

Listing 5.6: ListSpecificGeneralizerExceptSingletons Test�
1 % to generalize

2

3 f([1, 2], [s]) :- g([]), h([1, 4, 5], [1, 4, 5]).

4

5 % generalized

6

7 f([A | As], [s | Bs]) :- g(Bs), h([A | Cs], [A | Cs]).
� �
Listing 5.7: ListSpecificGeneralizerExceptEmptyList Test�

1 % to generalize

2

3 f([1, 2], [s]) :- g([]), h([1, 4, 5], [1, 4, 5]).

4

5 % generalized

6

7 f([A | As], B) :- g([]), h([A | Cs], [A | Cs]).
� �
ListSpecificGeneralizerExceptSingletons. The test in Listing 5.6 shows how
each constant occurring more than once is substituted by a variable, in particular
each occurrence of the same constant is substituted by the same variable.

Specifically, this Generalizer applies the same further generalizations on lists
as the one in the previous paragraph.

This Generalizer also substitutes empty lists (if occurring more than once),
the Bs variable in the example.

In this particular example the constant 1 occurs as head of multiple lists, and
is substited by the variable A. The empty list alone and the list [4, 5] occur as
tails of multiple lists, and they are substituted respectively by the variables [Bs]
and [Cs].

Note how the constants occurring only once are 2 and s. Since 2 occurs in a
tail and we apply the further generalizations on lists as the Generalizer in the
previous paragraph, the tail [2|[]] is generalized as As. The constant s, being a
head of a list (and for the head of a list not being a list itself), is not generalized.

ListSpecificGeneralizerExceptEmptyList. The test in Listing 5.7 shows how
each constant is substituted by a variable, in particular each occurrence of the same
constant is substituted by the same variable.

Specifically, this Generalizer applies the same further generalizations on lists
as the one in the previous paragraph.

This Generalizer does not substitute empty lists: the empty list within the
first body literal is not generalized.

In this particular example the constant 1 occurs as head of multiple lists, and

5.1. GENERALIZER TESTS 79

Listing 5.8: ListSpecificGeneralizerExceptSingletonsAndEmptyList Test�
1 % to generalize

2

3 f([1, 2], [s]) :- g([]), h([1, 4, 5], [1, 4, 5]).

4

5 % generalized

6

7 f([A | As], [s]) :- g([]), h([A | Cs], [A | Cs]).
� �
is substited by the variable A. The list [4, 5] occurs as tails of multiple lists, and
it is substituted by the variable [Cs].

Note how the list [s] in the head of clause for its head and tail variables do not
occur in different forms from [B | []], therefore it is generalized as a single variable
B.

ListSpecificGeneralizerExceptSingletonsAndEmptyList. The test in List-
ing 5.8 shows how each constant occurring more than once is substituted by a
variable, in particular each occurrence of the same constant is substituted by the
same variable.

Specifically, this Generalizer applies the same further generalizations on lists
as the one in the previous paragraph.

This Generalizer does not substitute empty lists: the empty list within the
first body literal is not generalized.

In this particular example the constant 1 occurs as head of multiple lists, and
is substited by the variable A. The list [4, 5] occurs as tails of multiple lists, and
it is substituted by the variable [Cs].

Note how the constants occurring only once are 2 and s. Since 2 occurs in a
tail and we apply the further generalizations on lists as the Generalizers in the
previous paragraphs, the tail [2|[]] is generalized as As. The constant s, being a
head of a list (and for the head of a list not being a list itself), is not generalized.

Fact sensitive generalization example. The test in Listing 5.9 shows the dif-
ferent possible generalization if the body of a clause is true. All the Generalizers
we implemented are fact sensitive and, in the case of a possible fact, the return
the generalization as fact first.

More on list generalization. Since the previous examples were designed for
showcasing the differences among Generalizers, we provide a best list general-
ization case in Listing 5.10.

Note how the list [4, 5], instead of being generalized as [B | Bs], is generalized
as a single variable B in both its occurrences. That generalization occurs because,

80 CHAPTER 5. VALIDATION

Listing 5.9: A Fact Sensitive Generalization Test�
1 % to generalize

2

3 f(true).

4

5 % generalized

6

7 f(A).

8 f(A) :- A.
� �
Listing 5.10: A Strong List Generalization Test�

1 % to generalize

2

3 f([1, 2, 3], [4, 5], [1, 2, 3, 4, 5]) :- f([2, 3], [4, 5], [2, 3, 4, 5]).

4

5 % generalized

6

7 f([A | As], B, [A | Cs]) :- f(As, B, Cs).
� �
after the previous generalization step where [4, 5] became [B | Bs], the variables
B and Bs do not occur outside the form [B | Bs]. Although [4, 5] is also a sub-list
of the third and last lists, such lists were already generalized at the previous step
as [C | Cs] and Cs, since [2, 3, 4, 5] is the tail of [1, 2, 3, 4, 5].

5.2 Validator tests

The following OccamisticValidator tests all are based on the predicate append/3
and are executed providing a set of positive and negative examples.

Pruning redundant clauses. The third clause within the initial theory in
Listing 5.11 is redundant since it covers a specific append/3 case where the second
list is empty. OccamisticValidator detects it and prunes it.

Pruning infinite loop clauses. The third clause within the initial theory in
Listing 5.12 causes an infinite loop. OccamisticValidator detects it and prunes
it.

Invalid theories. In Listing 5.13 we provide to the validator the same set of
positive and negative examples for the predicate myappend/3 as the previous tests,
and an empty background knowledge. However, we call it to validate a wrong

5.3. REFINER TESTS 81

Listing 5.11: OccamisticValidator Pruning a Redundant Clause�
1 % to validate

2

3 myappend ([], A, A).

4 myappend ([A | As], B, [A | Cs]) :- myappend(As, B, Cs).

5 myappend ([A | As], [], [A | As]) :- myappend(As, [], As).

6

7 % validated

8

9 myappend ([], A, A).

10 myappend ([A | As], B, [A | Cs]) :- myappend(As, B, Cs).
� �
Listing 5.12: OccamisticValidator Pruning an Infinite Loop Clause�

1 % to validate

2

3 myappend ([], A, A).

4 myappend ([A|As], B, [A|Cs]) :- myappend(As, B, Cs).

5 myappend(A, B, C) :- myappend(D, E, F).

6

7 % validated

8

9 myappend ([], A, A).

10 myappend ([A | As], B, [A | Cs]) :- myappend(As, B, Cs).
� �
theory, therefore it proves such theory to be wrong and returns a result of type
InvalidTheory.

5.3 Refiner tests

We already discussed about the multiple utility of ListSpecificRefiner: as a
Refiner, but also in list generalization. Since in this chapter we already provided
a test (in Listing 5.10) in which a generalizer exploits ListSpecificRefiner, in
this section we only provide test examples for the other Refiners, i.e., refiners for
predicate invention.

Listing 5.13: OccamisticValidator Identifying an Invalid Theory�
1 % to validate

2

3 myappend ([], [], X).

4

5 % result: invalid theory
� �

82 CHAPTER 5. VALIDATION

Listing 5.14: PredicateInventorMetagolLike Test�
1 % to refine

2

3 f(A, B) :- g(A, B), g(A, B).

4 f(A, B) :- g(A, B), h(A, B).

5 f(A, B) :- h(A, B), h(A, B).

6

7 % refined

8

9 f(A, B) :- invented_0(A, B), invented_0(A, B).

10 invented_0(A, B) :- g(A, B).

11 invented_0(A, B) :- h(A, B).
� �
Listing 5.15: PredicateInventorGroupNonCommon Test�

1 % to refine

2

3 f(A, B) :- g(A), h(A, B), l(B).

4 f(A, B) :- i(A), h(A, B), l(B).

5

6 % refined

7

8 f(A, B) :- h(A, B), l(B), invented_0(A).

9 invented_0(A) :- g(A).

10 invented_0(A) :- i(A).
� �
Metagol-like predicate invention. Listing 5.14 shows a test in which the
theory to refine is composed by multiple predicates featuring the same head and
very similar bodies. For instance, each body is composed by a combination of the
same two literals. PredicateInventorMetagolLike detects it and invents a fresh
predicate for each of the two body literals (i.e., invented 0), grouping the three
starting predicates in a unique one.

Grouping non common literals. Listing 5.15 shows a test in which the theory
to refine is composed by some clauses (two in this case) which have multiple body
literals in common. For instance: h(A,B), l(B).

PredicateInventorGroupNonCommon detects it and invents a fresh predicate
in which it groups the non common literals of such clauses: g(A) and i(A). The
initial two clauses are grouped in an unique one.

Grouping common literals. We refine the same theory from the previous
example in Listing 5.16, but with another approach. PredicateInventorGroup-

NonCommon detects the common literals and invents a fresh predicate in which it
groups the common literals of the clauses: h(A,B), l(B).

5.4. METAPATROL 83

Listing 5.16: PredicateInventorGroupCommon Test�
1 % to refine

2

3 f(A, B) :- g(A), h(A, B), l(B).

4 f(A, B) :- i(A), h(A, B), l(B).

5

6 % refined

7

8 f(A, B) :- g(A), invented_0(A, B).

9 f(A, B) :- i(A), invented_0(A, B).

10 invented_0(A, B) :- h(A, B), l(B).
� �
Listing 5.17: Reuse of Already Existing Predicates Test�

1 % to refine

2

3 f(A, B) :- g(A, B), h(A).

4 i(A, B) :- g(A, B), h(A).

5

6 % refined

7

8 f(A, B) :- i(A, B).

9 i(A, B) :- g(A, B), h(A).
� �
Already existing predicates. The clauses of the theory to refine in List-
ing 5.17 have the same body. The developed predicate inventors are able to detect
it and insert a call of one of the two predicates within the other, removing the
code duplication.

Note: for our predicate invention algorithm implementation, such feature also
works within invented predicates.

Multiple inventions. PredicateInventorGroupNonCommon and PredicateIn-
ventorGroupCommon are able to invent multiple predicates, on a suitable theory.
In Listing 5.18 the theory to refine is composed by two clauses with h(A,B) in
common and two clauses with n(A,B) in common. Our predicate inventors detect
both of them and invent two different predicates.

5.4 MetaPatrol

5.4.1 Learning task: grandparent/2

One of the very first rules everyone learn while studying LP is usually grandpar-
ent/2, where the first argument denotes the grandparent while the second denotes
the grandchild. We subject MetaPatrol to the learning task of inducing such

84 CHAPTER 5. VALIDATION

Listing 5.18: Multiple Predicate Inventions Test�
1 % to refine

2

3 f(A, B) :- g(A), h(A, B).

4 f(A, B) :- i(A), h(A, B).

5 l(A, B) :- m(A), n(A, B).

6 l(A, B) :- o(A), n(A, B).

7

8 % refined

9

10 f(A, B) :- h(A, B), invented_0(A).

11 invented_0(A) :- g(A).

12 invented_0(A) :- i(A).

13 l(A, B) :- invented_1(A), n(A, B).

14 invented_1(A) :- m(A).

15 invented_1(A) :- o(A).
� �
rule.

We provide a background knowledge, as well as some positive and negative
examples, based on such background knowledge (Listing 5.19).

As bias we choose the chain metarule, a simple generalizer not specialized on
lists (ConstantsToVariables), the OccamisticValidator, and the refiner Pred-
icateInventorMetagolLike. The chain metarule is:

X(A,B) :- Y(A,C),Z(C,B).

The induced results are reported in Listing 5.20. MetaPatrol induces two
different correct theories:

• as first the non refined theory;

• as second the refined theory by PredicateInventorMetagolLike, inventing
the predicate parent/2 (with the less specific functor invented 0, of course).

5.4.2 Learning task: tail/2

tail/2 is a simple rule on lists. The first argument denotes a whole list, the second
argument denotes the tail of such list. We subject MetaPatrol to the learning
task of inducing such rule.

We do not provide a background knowledge, we only provide some positive and
negative examples (Listing 5.21).

As bias we choose the very simple metarule

X(A,B).

two list specific generalizers:

5.4. METAPATROL 85

Listing 5.19: Grandparent – BK, Positive/Negative Examples�
1 % backgroundKnowledge

2

3 father(albert, jack).

4 father(jack, mary).

5 father(john, charlotte).

6 mother(charlotte, mark).

7 father(mark, delia).

8 mother(charlotte, april).

9 mother(april, george).

10

11 % positive examples

12

13 grandparent(albert, mary).

14 grandparent(john, mark).

15 grandparent(charlotte, delia).

16 grandparent(charlotte, george).

17

18 % negative examples

19

20 grandparent(albert, jack).

21 grandparent(albert, albert).

22 grandparent(mary, jack).

23 grandparent(mary, albert).
� �
Listing 5.20: Grandparent – MetaPatrol Inductions�

1 grandparent(X0, X1) :- mother(X0, X2), mother(X2, X1)

2 grandparent(X0, X1) :- mother(X0, X2), father(X2, X1)

3 grandparent(X0, X1) :- father(X0, X2), mother(X2, X1)

4 grandparent(X0, X1) :- father(X0, X2), father(X2, X1)

5 % coverage: 100%

6 % ---

7

8 grandparent(X0, X1) :- invented_0(X0, X2), invented_0(X2, X1)

9 invented_0(X0, X2) :- mother(X0, X2)

10 invented_0(X0, X2) :- father(X0, X2)

11 % coverage: 100%

12 % ---
� �
Listing 5.21: Tail – BK, Positive/Negative Examples�

1 % empty background knowledge

2

3 % positive examples

4

5 tail ([1, 2, 3, 4], [2, 3, 4]).

6 tail ([3, 5, 7], [5, 7]).

7

8 % negative examples

9

10 tail ([1, 2], [1]).

11 tail ([3], 3).
� �

86 CHAPTER 5. VALIDATION

Listing 5.22: Tail – MetaPatrol Inductions�
1 tail([X0 | Xs0], Xs0) :- true

2 % coverage: 100%
� �
Listing 5.23: Append – BK, Positive/Negative Examples�

1 % empty background knowledge

2

3 % positive examples

4

5 myappend ([1, 2, 3], [], [1, 2, 3]).

6 myappend ([], [1, 2, 3], [1, 2, 3]).

7 myappend ([1], [2, 3], [1, 2, 3]).

8 myappend ([1, 2], [3, 4], [1, 2, 3, 4]).

9

10 % negative examples

11

12 myappend ([], [], [1]).

13 myappend ([], [1, 2, 3], []).

14 myappend ([1, 2], [], []).

15 myappend ([1, 2], [3, 4], [1, 2]).

16 myappend ([1, 2], [3, 4], [3, 4]).
� �
• ListSpecificGeneralizerEmptyListAsVar

• ListSpecificGeneralizerExceptEmptyList

the OccamisticValidator, and no refiners.
The induced result is reported in Listing 5.22. MetaPatrol manages to

induce tail/2 without needing a background knowledge and without needing a
very constraining meta-rule.

5.4.3 Learning task: append/3

append/3 is a more complex rule on lists: it is recursive. The first two arguments
denote two lists, the third argument denotes the second list added to the end of
the first one. We subject MetaPatrol to the learning task of inducing such rule.

We do not provide a background knowledge, we only provide some positive and
negative examples (Listing 5.23).

As bias we choose the two metarules:

X([], B, C).

X([A | B], C, [D | E]) :- X(B,C,E).

two list specific generalizers:

5.4. METAPATROL 87

Listing 5.24: Append – MetaPatrol Inductions�
1 myappend ([], X0, X0) :- true

2 myappend ([X0 | Xs1], X3, [X0 | Xs0]) :- myappend(Xs1, X3, Xs0)

3 % coverage: 100%
� �
Listing 5.25: Append – MetaPatrol Optimal and Sub-Optimal Inductions�

1 myappend ([], X0, X0) :- true

2 myappend ([X0 | Xs1], X2, [X0 | Xs0]) :- myappend(Xs1, X2, Xs0)

3 % coverage: 100%

4 % ---

5 myappend ([], X0, X0) :- true

6 myappend ([X0 | Xs0], [], [X0 | Xs0]) :- myappend(Xs0, [], Xs0)

7 myappend ([X0], [X1, X2], [X0, X1, X2]) :- myappend ([], [X1, X2], [X1, X2])

8 myappend ([X0, X1], [X2, X3], [X0, X1, X2, X3]) :- myappend ([X1], [X2, X3], [X1, X2

, X3])

9 % coverage: 100%

10 % ---

11 myappend ([], X0, X0) :- true

12 myappend ([X0], Xs0, [X0 | Xs0]) :- myappend ([], Xs0, Xs0)

13 myappend ([X0 | Xs0], [], [X0 | Xs0]) :- myappend(Xs0, [], Xs0)

14 myappend ([X0, X1], [X2, X3], [X0, X1, X2, X3]) :- myappend ([X1], [X2, X3], [X1, X2

, X3])

15 % coverage: 100%

16 % ---
� �
• ListSpecificGeneralizerEmptyListAsVar

• ListSpecificGeneralizerExceptEmptyList

the OccamisticValidator, and no refiners.
The induced result is reported in Listing 5.24. MetaPatrol manages to

induce append/3 without needing a background knowledge with returning a very
readable rule.

If adding some generalizers within the bias, the algorithm explores and finds
some other sub-optimal solutions, which prove the examples. Listing 5.25 shows
the induced rules if we also plug the generalizer ConstantsToVariablesExceptEmptyList.

5.4.4 Learning task: reverse/2

reverse/2 is an even more complex rule on lists: it is recursive and it requires
append/3. The first argument of reverse/2 denotes a list, the second argument de-
notes the reversed list. We subject MetaPatrol to the learning task of inducing
such rule.

We provide append/3 within background knowledge, and we provide some pos-
itive and negative examples (Listing 5.26).

88 CHAPTER 5. VALIDATION

Listing 5.26: Reverse – BK, Positive/Negative Examples�
1 % backgroundKnowledge

2

3 myappend ([], F, F).

4 myappend ([F | Fs], G, [F | Hs]) :- myappend(Fs, G, Hs).

5

6 % positive examples

7

8 myreverse ([], []).

9 myreverse ([1, 2, 3, 4, 5], [5, 4, 3, 2, 1]).

10

11 % negative examples

12

13 myreverse ([], [1]).

14 myreverse ([1, 2], []).

15 myreverse ([1, 2], [1, 2]).

16 myreverse ([1, 2, 3], [3, 1, 2]).
� �
Listing 5.27: Reverse – MetaPatrol Inductions�

1 myreverse ([], []) :- true

2 myreverse ([X0 | Xs0], X4) :- myreverse(Xs0, D), myappend(D, [X0], X4)

3 % coverage: 100%
� �
As bias we choose the two metarules:

X([], []).

X([A | B], C) :- X(B,D),Y(D, [A], C).

the ListSpecificGeneralizerExceptEmptyList, the OccamisticValidator, and
no refiners.

The induced result is reported in Listing 5.27. MetaPatrol manages to
induce reverse/ correctly exploiting append/3 from background knowledge, and
returning a very readable rule.

5.4.5 Learning task: map plus two/2

map plus two/2 is an even more complex rule on lists: it is recursive and it re-
quires a predicate which computes the sum of an intenger plus 2, we call such
predicate plus two/2. The first argument of map plus two/2 denotes a list, the
second argument denotes the mapped list where each element e of the first list is
mapped as e+ 2. We subject MetaPatrol to the learning task of inducing such
rule, without directly providing plus two/2.

We provide succ/2 within background knowledge (which computes the succes-
sor of an integer), and we provide some positive and negative examples for both
map plus two/2 and plus two/2 (Listing 5.28).

5.4. METAPATROL 89

Listing 5.28: Map Plus Two – BK, Positive/Negative Examples�
1 % backgroundKnowledge

2

3 mysucc(A, B) :- B is A + 1.

4

5 % positive examples

6

7 plus_two (1, 3).

8 plus_two (2, 4).

9 map_plus_two ([], []).

10 map_plus_two ([1, 2, 3, 4, 5], [3, 4, 5, 6, 7]).

11

12 % negative examples

13

14 plus_two (1, 1).

15 plus_two (3, 1).

16 map_plus_two ([1, 2], [1, 2]).

17 map_plus_two ([3, 5], [1, 3]).
� �
Listing 5.29: Map Plus Two – MetaPatrol Inductions�

1 map_plus_two ([], []) :- true

2 plus_two(X0, X1) :- mysucc(X0, C), mysucc(C, X1)

3 map_plus_two ([X0 | Xs0], [X2 | Xs1]) :- plus_two(X0, X2), map_plus_two(Xs0, Xs1)

4 % coverage: 100%
� �
As bias we choose the three metarules:

X([], []).

X(A,B) :- Y(A,C),Z(C,B).

X([A | B], [C | D]) :- Y(A,C),X(B,D).

the ListSpecificGeneralizerExceptEmptyList, the OccamisticValidator, and
no refiners.

The induced result is reported in Listing 5.29. MetaPatrol manages to in-
duce plus two/2 exploiting succ/2 from background knowledge, and it also man-
ages to reuse such induced plus two/2 for correctly inducing map plus two/2, and
returning a very readable rule.

5.4.6 MetaPatrol use case

Listing 5.30 illustrates an example of how to use MetaPatrol, in particular we
consider the grandparent/2 learning task. We provide a backgroundKnowledge,
positiveExamples and negativeExamples exploiting the 2P-Kt parser. We cre-
ate an instance of MetaPatrolBias, bias containing:

90 CHAPTER 5. VALIDATION

• metaRules: expressed with the extended DSL (since it is a Clausal we need
to explicitly cast all meta-rules);

• generalizers: containing the generalizers we desire to plug;

• validators: containing the validators we desire to plug;

• refiners: containing the refiners we desire to plug.

We create an instance of MetaPatrolOptions, options with a value for max
depth.

Within the method metaPatrolInduction() we instanciate the metaPatrolIn-
ducer, providing the aforementioned backgroundKnowledge, bias, the default
Unificator provided by 2P-Kt, and a Solver.prolog provided by 2P-Kt. We
then call the method induce of such metaPatrolInducer, providing the aforemen-
tioned positiveExamples, negativeExamples, and options. In this particular
example we print each induced theory, along with their coverage.

5.4. METAPATROL 91

Listing 5.30: MetaPatrol – use case�
1 class MetaPatrolUseCase {

2
3 private val parser = ClausesParser.withDefaultOperators

4
5 private val backgroundKnowledge = parser.parseTheory(

6 """

7 father(albert , jack).

8 father(jack , mary).

9 father(john , charlotte).

10 mother(charlotte , mark).

11 father(mark , delia).

12 mother(charlotte , april).

13 mother(april , george).

14 """

15)

16
17 private val positiveExamples = parser.parseClauses(

18 """

19 grandparent(albert , mary).

20 grandparent(john , mark).

21 grandparent(charlotte , delia).

22 grandparent(charlotte , george).

23 """

24)

25
26 private val negativeExamples = parser.parseClauses(

27 """

28 grandparent(albert , jack).

29 grandparent(albert , albert).

30 grandparent(mary , jack).

31 grandparent(mary , albert).

32 """

33)

34
35 private val bias: MetaPatrolBias = prolog {

36 MetaPatrolBias(

37 metaRules = setOf(

38 X(A, B).impliedBy(Y(A, C), Z(C, B)) as MetaRule

39),

40 generalizers = ktListOf(ConstantsToVariables),

41 validators = ktListOf(OccamisticValidator),

42 refiners = ktListOf(PredicateInventorMetagolLike)

43)

44 }

45
46 private val maxDepth = 10

47
48 private val options = MetaPatrolOptions(depth = maxDepth)

49
50 fun main() {

51 val metaPatrolInducer = MetaPatrol(backgroundKnowledge , bias , Unificator.default , Solver.prolog)

52
53 metaPatrolInducer.induce(positiveExamples , negativeExamples , options).forEach {

54 for (clause in it.theory) {

55 println(clause.format(TermFormatter.prettyExpressions ()))

56 }

57 println("coverage: " + (it.coverage !! * 100).toInt() + "%")

58 println("---")

59 }

60 }

61 }
� �

92 CHAPTER 5. VALIDATION

Chapter 6

Conclusions

In the last few years, the research on ILP is experiencing a remarkable devel-
opment. From the first algorithms inducing simple rules, researchers managed to
design more complex algorithms able to produce more articulated inductions. New
frontiers have opened up: predicate invention, higher order, meta-rules, conflict-
driven approaches etc. Unfortunately, ILP has not achieved results comparable
with those achieved by ML yet, nor accessible libraries for supporting the imple-
mentation of ILP algorithms exist.

This thesis, via the multi-platform framework 2P-Kt, proposes to enrich ILP
(in particular MIL) providing a library of pluggable tools able to support the de-
sign and implementation of ILP algorithms. We designed and implemented multi-
ple tools supporting each phase of a ILP algorithm: we made available numerous
new generalization techniques, theory validators and different theory refiners, ex-
tending the field of predicate invention. Those tools, thanks to 2P-Kt, allow us
to reason at a higher level of abstraction than basic LP, opening new possibilities.
MetaPatrol itself poses as a showcase of what it is possible to achieve with the
library, fully exploiting its pluggability, therefore being highly configurable.

Since the library allows a way for clearly expressing meta-rules, now we can
provide toMIL algorithms more expressive meta-rules containing lists and, thanks
to our generalization mechanisms, MIL algorithms can induce more complex rules
which operate with lists. MetaPatrol again showcases these new possibilities,
being able to induce rules like tail/2, append/3, reverse/2, and map plus two/2
with just a bunch of examples, expressing the induced rules in human-like fashion,
even inducing multiple different rules within the same learning task.

93

94 CHAPTER 6. CONCLUSIONS

6.1 Future works

Since the library we developed is fully extendible we can imagine new general-
ization, validation and refinement mechanism to grow the library utility range.
Furthermore, there is room for improvement. Here some interesting ideas concern-
ing the library:

• extending the 2P-Kt parser for supporting meta-rules;

• a Generalizer generalizing whole structures as single variables, in a similar
way to what we can do with lists;

• a Generalizer generalizing list of lists, since by now list specific generalizers
treat any possible term within a list in the same way;

• improving the detection of infinite loop rules in OccamisticValidator, in-
stead of exploiting timeouts. That could be probably achieved by identifying
recursive rules with head semantically equals to body and/or recursive rules
not accompanied by a base case;

• a Validator which, after detecting the wrong rules of a theory, generates
some conflict-driven constraints.

MetaPatrol can be improved too, since it is still a prototype. Here some
interesting ideas for extending MetaPatrol:

• providing a user interface;

• implementing higher order mechanisms within the algorithm induction en-
gine;

• designing a way for combining different meta-rules creating larger ones, in
order to induce more complex rules with smaller biases.

Bibliography

[1] Giovanni Ciatto. On the role of computational logic in data science: represent-
ing, learning, reasoning, and explaining knowledge. http://amsdottorato.

unibo.it/id/eprint/10192, 2022.

[2] Giovanni Ciatto, Roberta Calegari, and Andrea Omicini. 2P-Kt: A logic-
based ecosystem for symbolic AI. SoftwareX, 16:100817:1–7, December 2021.

[3] Giovanni Ciatto, Roberta Calegari, and Andrea Omicini. Lazy stream ma-
nipulation in prolog via backtracking: The case of 2p-kt. In Wolfgang Faber,
Gerhard Friedrich, Martin Gebser, and Michael Morak, editors, Logics in Ar-
tificial Intelligence - 17th European Conference, JELIA 2021, Virtual Event,
May 17-20, 2021, Proceedings, volume 12678 of Lecture Notes in Computer
Science, pages 407–420. Springer, 2021.

[4] Domenico Corapi, Alessandra Russo, and Emil Lupu. Inductive logic pro-
gramming in answer set programming. In Stephen H. Muggleton, Alireza
Tamaddoni-Nezhad, and Francesca A. Lisi, editors, Inductive Logic Program-
ming - 21st International Conference, ILP 2011, Windsor Great Park, UK,
July 31 - August 3, 2011, Revised Selected Papers, volume 7207 of Lecture
Notes in Computer Science, pages 91–97. Springer, 2011.

[5] Andrew Cropper and Sebastijan Dumancic. Inductive logic programming at
30: a new introduction. CoRR, abs/2008.07912, 2020.

[6] Andrew Cropper, Sebastijan Dumancic, and Stephen H. Muggleton. Turning
30: New ideas in inductive logic programming. CoRR, abs/2002.11002, 2020.

[7] Andrew Cropper and Rolf Morel. Learning programs by learning from failures.
CoRR, abs/2005.02259, 2020.

[8] Andrew Cropper and Stephen H. Muggleton. Metagol system.
https://github.com/metagol/metagol, 2016.

95

http://amsdottorato.unibo.it/id/eprint/10192
http://amsdottorato.unibo.it/id/eprint/10192

96 BIBLIOGRAPHY

[9] Andrew Cropper, Alireza Tamaddoni-Nezhad, and Stephen Muggleton. Meta-
interpretive learning of data transformation programs, 02 2015.

[10] Enrico Denti, Andrea Omicini, and Alessandro Ricci. tu prolog: A light-
weight prolog for internet applications and infrastructures. In I. V. Ramakr-
ishnan, editor, Practical Aspects of Declarative Languages, Third Interna-
tional Symposium, PADL 2001, Las Vegas, Nevada, USA, March 11-12, 2001,
Proceedings, volume 1990 of Lecture Notes in Computer Science, pages 184–
198. Springer, 2001.

[11] Ana Lúısa Duboc, Aline Paes, and Gerson Zaverucha. Using the bottom
clause and mode declarations on FOL theory revision from examples. In
Filip Zelezný and Nada Lavrac, editors, Inductive Logic Programming, 18th
International Conference, ILP 2008, Prague, Czech Republic, September 10-
12, 2008, Proceedings, volume 5194 of Lecture Notes in Computer Science,
pages 91–106. Springer, 2008.

[12] Werner Emde, Christopher Habel, and Claus-Rainer Rollinger. The discovery
of the equator or concept driven learning. In Alan Bundy, editor, Proceedings
of the 8th International Joint Conference on Artificial Intelligence. Karlsruhe,
FRG, August 1983, pages 455–458. William Kaufmann, 1983.

[13] Mark Law. Conflict-driven inductive logic programming. CoRR,
abs/2101.00058, 2021.

[14] Mark Law, Alessandra Russo, and Krysia Broda. The ILASP system for
inductive learning of answer set programs. CoRR, abs/2005.00904, 2020.

[15] Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM
Trans. Program. Lang. Syst., 4(2):258–282, apr 1982.

[16] Stephen Muggleton and Cao Feng. Efficient induction of logic programs. In
New Generation Computing. Academic Press, 1990.

[17] Stephen H. Muggleton. Inductive logic programming. New Gener. Comput.,
8(4):295–318, 1991.

[18] Stephen H. Muggleton, Dianhuan Lin, Jianzhong Chen, and Alireza
Tamaddoni-Nezhad. Metabayes: Bayesian meta-interpretative learning us-
ing higher-order stochastic refinement. In Gerson Zaverucha, Vı́tor Santos
Costa, and Aline Paes, editors, Inductive Logic Programming - 23rd Inter-
national Conference, ILP 2013, Rio de Janeiro, Brazil, August 28-30, 2013,
Revised Selected Papers, volume 8812 of Lecture Notes in Computer Science,
pages 1–17. Springer, 2013.

BIBLIOGRAPHY 97

[19] J. Ross Quinlan. Learning logical definitions from relations. Mach. Learn.,
5:239–266, 1990.

[20] Ashwin Srinivasan. The aleph manual. https://www.cs.ox.ac.uk/

activities/programinduction/Aleph/aleph.html, 2007.

[21] Irene Stahl. Predicate invention in ILP - an overview. In Pavel Brazdil, editor,
Machine Learning: ECML-93, European Conference on Machine Learning,
Vienna, Austria, April 5-7, 1993, Proceedings, volume 667 of Lecture Notes
in Computer Science, pages 313–322. Springer, 1993.

[22] ILASP Team. Ilasp - learning logically - mtarules. https://doc.ilasp.com/
specification/metarules.html, 2022.

https://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph.html
https://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph.html
https://doc.ilasp.com/specification/metarules.html
https://doc.ilasp.com/specification/metarules.html

	Abstract
	Introduction
	Background
	Logic Programming
	Inductive Logic Programming
	Strategies (Search Method)
	Techniques
	State of the Art

	2P-Kt

	Design
	Desiderata
	Necessary Abstractions
	Prolog entities
	Meta-clauses
	Substitution
	Unification
	Operations on terms

	Inducer
	Inducer
	Generalizer
	Validator
	Refiner
	MetaPatrol

	Implementation
	Reducing the Abstraction Gap: 2P-Kt
	Identifying the Abstraction Gap
	Filling the Abstraction Gap
	Occurs check
	MetaRules
	Utility operations on terms

	Validation
	Generalizer tests
	Validator tests
	Refiner tests
	MetaPatrol
	Learning task: grandparent/2
	Learning task: tail/2
	Learning task: append/3
	Learning task: reverse/2
	Learning task: map_plus_two/2
	MetaPatrol use case

	Conclusions
	Future works

