
ALMA MATER STUDIORUM · UNIVERSITÀ DI
BOLOGNA

SCUOLA DI SCIENZE
Corso di Laurea in Informatica (8009)

COMPRESSION OF LABELED SPINE
TREES

Relatore
Chiar.mo Prof.
Ugo Dal Lago

Corelatore
Gabriele Vanoni

Presentata da
Oscar Barreca

Sessione Straordinaria
2020—2021





I have made this letter longer than usual
because I lack the time to make it shorter.

—Blaise Pascal





iii

Contents

Contents iii

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Historical Notes of Information Theory . . . . . . . . . . . . . 2
1.2 Overview of Information Theory . . . . . . . . . . . . . . . . . 3

1.2.1 Entropy of a Random Variable . . . . . . . . . . . . . . 3
1.2.2 Conditional Entropy . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Relative Entropy and Mutual Information . . . . . . . . 7

1.3 Overview of Data Compression . . . . . . . . . . . . . . . . . . 9
1.3.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.3 Compression Algorithms . . . . . . . . . . . . . . . . . 12

2 Introduction to Spines 17
2.1 Spine Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Basic Concepts and Notation . . . . . . . . . . . . . . . . . . . 18

2.2.1 Mathematical Notation . . . . . . . . . . . . . . . . . . 18
2.2.2 XBW Transform . . . . . . . . . . . . . . . . . . . . . . . 18

3 Spine Detection 21
3.1 XBW- Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Informal Detection Description . . . . . . . . . . . . . . . . . . 22
3.3 Properties of XBW- Transforms on Spines . . . . . . . . . . . . 23
3.4 An Algorithm for Spine Detection . . . . . . . . . . . . . . . . 30

4 Storage of Spines 35
4.1 Pruning of Spine Trees . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Context Manipulation of Spine Trees . . . . . . . . . . . . . . . 36

5 Spine Compression 39
5.1 Logarithmic Compression . . . . . . . . . . . . . . . . . . . . . 39
5.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Candidate Algorithms . . . . . . . . . . . . . . . . . . . . . . . 41

6 Conclusions 47

7 Acknowledgements 49





v

List of Figures

1.1 Entropy H(X) = −p log p − (1 − p) log(1 − p) of the random
variable X as the value of p goes from 0 to 1. . . . . . . . . . . 5

1.2 Binary tree representing the Huffman encoding of the alphabet
of Table 1.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Two spine trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 An example XBW transform. . . . . . . . . . . . . . . . . . . . 19

3.1 An example XBW− transform. . . . . . . . . . . . . . . . . . . . 22
3.2 The left spine of Figure 2.1a along with its XBW− transform. . 23
3.3 The right spine of Figure 2.1b along with its XBW− transform. 23
3.4 A tree T with a left spine of height h = 1. . . . . . . . . . . . . 24
3.5 A tree T with a left spine of height h > 1. . . . . . . . . . . . . 25
3.6 A left spine of height h = 1. . . . . . . . . . . . . . . . . . . . . 26
3.7 A left spine of height h = 1. . . . . . . . . . . . . . . . . . . . . 27
3.8 A tree T with a right spine of height h > 1. . . . . . . . . . . . 28
3.9 The left-spine automaton. . . . . . . . . . . . . . . . . . . . . . 31
3.10 The right-spine automaton. . . . . . . . . . . . . . . . . . . . . 32

4.1 Pruning of a tree T. . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 The tree of Figure 4.1, along with its XBW− transform. . . . . 36
4.3 The tree of Figure 4.1, along with its XBW transform that has

undergone a context manipulation. Here, ξ = s. . . . . . . . . 37

5.1 An example of a LCF (Logarithmically Compressible File) of
1KiB. The name for these files is a convenience, since LCFs
aren’t necessarily logarithmically compressible, and if they are,
they are with respect to one algorithm, without necessarily be-
ing with respect to another. . . . . . . . . . . . . . . . . . . . . 43

5.2 Compression of AB2i
for i ∈ {1, . . . , 16}. . . . . . . . . . . . . . 46

5.3 Compression of ABCDE2i
for i ∈ {1, . . . , 16}. . . . . . . . . . . . 46





vii

List of Tables

1.1 A four-letter alphabet, along with three possible codes. . . . . 10
1.2 Example probability distribution of a source alphabet Σ for the

Huffman algorithm. The entropy of this distribution is 1.88
bits per symbol. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Codewords for the alphabet Σ of Table 1.2. . . . . . . . . . . . 13

3.1 The S[a, a + 2] portion of the XBW− transform S. . . . . . . . . 25
3.2 The S[a, a + 2] portion of the XBW− transform S. . . . . . . . . 26
3.3 The S[a, a + 2] portion of the XBW− transform S. . . . . . . . . 27
3.4 The S[a, a + 2] portion of the XBW− transform S. . . . . . . . . 29

5.1 Maximum number N of allowable splits of x as its length n
increases. As always, m denotes the number of bits needed to
encode one single symbol of x uniformly. In this case, m =
8bits = 1byte; all other measures are likewise in bytes. d de-
notes the size of a single block out of N, and c the multiplica-
tive constant from (5.2). We expressed c in terms of d and set
c = 10d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 LZ77 performance on a series of exponentially-growing LCFs
(Logarithmically Compressible Files). Having set a logarith-
mic constant c = 10, LZ77 achieves logarithmic compression
up to a file of 32KiB, reflecting the fact that being able to do so
for infinitely growing inputs becomes harder and harder. . . . 44





ix

Sommario

Sviluppi recenti nell’implementazione di linguaggi di programmazione
funzionali [ALV21] si affidano a una forma particolare di albero etichettato al
fine di rappresentare la gerarchia di chiamate di funzioni. Tali alberi, da noi
denominati alberi spina, o più semplicemente soltanto spine, sono caratteriz-
zati da una struttura assai regolare, che li rende idonei al raggiungimento di
un alto fattore di compressione, ovvero una riduzione nello spazio di memo-
ria necessario alla loro memorizzazione. L’introduzione di un metodo di
compressione efficiente per gli alberi spina garantirebbe perciò un miglio-
ramento prestazionale nell’implementazione di linguaggi funzionali che si
affidano ad essi.

Nella presente opera, ci prefiggiamo di indagare le possibilità di compres-
sione di alberi spina. Poiché un albero spina può presentarsi all’interno di un
qualunque altro albero genitore, più esteso e possibilmente privo di strut-
tura, la loro “forma” necessita di essere riconosciuta da una procedura algo-
ritmica. Avviamo dunque lo studio esaminando il problema del rilevamento
di spine (Capitolo 3), proponendo metodi di rilevamento asintoticamente effi-
cienti, sia in tempo che in spazio. Procediamo affrontando il problema della
loro memorizzazione (Capitolo 4), vale a dire il modo in cui è possibile mem-
orizzare alberi spina all’interno, o al di fuori, dei loro alberi genitori, e ter-
miniamo dedicandoci al problema della loro compressione (Capitolo 5).

Lo studio della compressione di spine viene svolto traendo risultati già
noti da un sotto ambito della teoria dell’informazione, noto come compres-
sione del dato (data compression). Anziché focalizzarci sull’introduzione di
nuovi algoritmi di compressione, cerchiamo di capire quali, tra quelli già
esistenti, si presta meglio al compito della compressione di spine. Nello
studiare la compressione di alberi spina cerchiamo, in particolare, di de-
terminare quando una cosiddetta compressione logaritmica (Sezione 5.1), os-
sia una riduzione al logaritmo della dimensione originale di una spina, può
essere ottenuta. Introduciamo dapprima un criterio teorico (dominio di re-
strizione, Sezione 5.2) per classificare l’efficacia delle possibili soluzioni, e
progrediamo in maniera incrementale nelle proposte, fino a giungere ad una
soluzione (l’approccio BWT–RLE, Sezione 5.3) che reputiamo molto promet-
tente, sia nella capacità di ottenere una compressione logaritmica, sia nelle
risorse (tempo e spazio) necessarie a realizzare questa riduzione.





1

Chapter 1

Introduction

Recent developments in the implementation of functional programming
languages [ALV21] rely on a specific form of labeled tree to represent the call
hierarchy of functions. Such trees, that we refer to as spine trees, or simply
spines for short, possess a very regular structure that makes them suitable
for high compression, i.e. a reduction in the space needed to represent them
internally. The discovery of an efficient method of compression for spines
would directly impact to the implementation of functional programming lan-
guages that rely on them.

In this work, we set out to investigate the possibilities of compression of
labeled spine trees. Since we hypothesize spines to occur anywhere within
a larger, possibly unstructured labeled tree, their “shape” needs to be rec-
ognized by an algorithmic procedure. We start therefore by addressing the
problem of spine detection (Chapter 3), proposing asymptotically efficient meth-
ods, both in time and in space. We then progress to the problem of their stor-
age (Chapter 4), namely the way in which they can be stored within or apart
the tree they were originally embedded in, and finally turn to the problem of
their own compression (Chapter 5).

The study of spine compression is done by applying already established
results from the subfield of information theory known as data compression.
Rather than devise a new compression algorithm from scratch, we try to un-
derstand which, among the already available ones, is fit to our own interests.
In studying the compression of spine trees, we try in particular to determine
when a so-called logarithmic compression (Section 5.1), namely a reduction of
the size of the spine to the logarithm of its original size, can be achieved. We
first introduce a theoretical criterion (restriction domain, Section 5.2) for classi-
fying the adequacy of our solutions, and then progress incrementally to our
findings, until we reach a solution (the BWT–RLE approach, Section 5.3) that
is very promising both in the capacity of achieving logarithmic compression
and in the computational resources (time and space) needed to obtain this
storage reduction.

Since a relevant part of this work is centered on information theory, we
would be interested to provide an elementary overview of the area before
proceeding to the actual topics. This is what we will be doing in the next few
sections.



2 Chapter 1. Introduction

1.1 Historical Notes of Information Theory

Information theory is the study of the quantification and transmission of
information in the abstract and mathematical sense. It lies at the intersection
of several scientific disciplines, including mathematics (probability theory
and statistics), computer science (Kolmogorov complexity), electrical engi-
neering (communication theory) and physics (thermodynamics) [CT06]. Im-
portant concepts of the field include the self-information and the entropy of
a random variable, the mutual information between two random variables,
and the unit of digital information itself, the bit. Having grown in size, to-
day it encompasses a variety of subdisciplines, one of it being source coding,
in turn divided into data compression (of a certain relevance to our study),
error-correcting codes and cryptographic codes.

The advent of information theory as an acknowledged academic disci-
pline is classically attributed to Claude Elwood Shannon’s (1916–2021) foun-
dational paper A mathematical theory of communication [Sha48] (1948), where
he stated the source coding theorem, introduced the notion of entropy of a
random variable, coined the term bit (partly credited to John Tukey) and de-
vised the Shannon-Fano algorithm. Prior to that, related work had been con-
ducted by scholars like Harry Nyquist (1889–1976) in Certain Factors Affecting
Telegraph Speed [Nyq24] (1924) and Ralph Hartley’s (1888–1970) Transmission
of Information [Har28] (1928). Perhaps the earliest known contribution to in-
formation theory, classifiable as a technique of data compression, is due to
Samuel Morse’s (1792–1872) code in the 1830s. Morse code can be regarded
as a data compression technique, for more frequents letters are associated to
shorter codes, while infrequent letters are associated to longer ones.

Shannon’s cornerstone work gave rise to a surge in publications short
time after the time of its publication. In 1951, while completing his PhD,
David Huffman (1925–1999) from MIT introduced the Huffman coding (1952)
[Huf52]. Nasir Ahmed (1940–), in 1972, proposed the DCT (Discrete Cosine
Transform), that has since become one of the most widely-used lossy algo-
rithms for data compression, and the basis for modern digital compression
standards (H.261, MPEG, JPEG, MP3, AAC). In 1977, Abrahm Lempel and
Jacob Ziv jointly developed the dictionary-based compression scheme LZ77
[ZL77], soon followed by LZ78 [ZL78] one year later; in 1984, Terry Welch
made some adjustments to the LZ78 algorithm, leading to the LZW (Lempel-
Ziv-Welch) [Wel84] compression algorithm. In the course of the years, both
LZ77 and LZ78 have inspired a whole family of compression algorithms.

Information theory has been at the center of many technological innova-
tions. In 1986, the TIFF file format for high colour-depth images was intro-
duced; shortly thereafter, in 1987, the GIF (Graphics Interchange Format) by
CompuServe was created, replacing the use of run-length coding with LZW
coding. In 1989, the German company Fraunhofer–Gesellshaft received a
patent for MP3, an audio coding standard, and in the same year, Phil Kats
published the .zip file format, including the DEFLATE algorithm (consist-
ing of LZ77 followed by a run of Huffman coding). 1992 saw the birth of



1.2. Overview of Information Theory 3

the JPEG (Joint Photographic Experts Group) image format, offering a com-
promise between storage size and image quality, followed by PNG (Portable
Network Graphics) in 1996, an image file format supporting lossless com-
pression.

1.2 Overview of Information Theory

We will dedicate this section to an overview of the core concepts of infor-
mation theory, so as to set the context for the subsequent section, dedicated
to data compression, and the remainder of the thesis.

When possible, we will provide proof of our own statements. For a more
in-depth and detailed discussion of the same concepts, you are invited re-
fer to [CT06]. Please note that a basic knowledge of probability theory is
assumed throughout this section.

1.2.1 Entropy of a Random Variable

Definition 1.2.1 — Entropy of a Random Variable

Let X : Ω → SX be a discrete random variable over the support set SX,
and let p(x) = P(X = x) be the PMF (Probability Mass Function) of X.
We define the entropy of X as

H(X) = ∑
x∈SX

p(x) log2
1

p(x)
(1.1)

The entropy of a random variable is a scalar, real-valued quantity. The
base of the logarithm is usually 2, in which case one simply writes log to
mean log2. Otherwise, one writes logb to specify a logarithm in a base b
other than 2, and Hb(X) for the entropy of X in base b. We call bit the unit
of measurement of the entropy when b = 2, nat when b = e and dits when
b = 10.

As can be seen from (1.1), the entropy of X is the value of log 1
p(x) , av-

eraged over the probabilities of X. This corresponds to the definition of an
expected value, and therefore

H(X) = E

[
log

1
p(x)

]
(1.2)

It is often convenient to express the entropy in an equivalent, but simpler,
form

H(X) = −∑
x

p(x) log p(x) (1.3)



4 Chapter 1. Introduction

The quantity log 1
p(x) is termed self-information of an event. In other words,

let A ⊆ Ω be an event. Then the self-information, measured in bits, related
to the event A is

i(A) =
1

log P(A)
= − log P(A) (1.4)

where P(A) denotes the probability of A occurring.
The entropy H(X) of a random variable X denotes the average number

of bits we need to describe an outcome of X.

Example 1.2.1 — Head vs. Tail Experiment

Let X represent a head-tossing experiment, so that SX = {0, 1}. As-
sume that p(0) = p, while p(1) = 1 − p. Then

H(X) = −∑
x

p(x) log p(x) (1.5)

= − (p(0) log p(0) + p(1) log p(1)) (1.6)
= − (p log p + (1 − p) log(1 − p)) (1.7)
= −p log p − (1 − p) log(1 − p) (1.8)

Consider Figure 1.1 for a representation of the entropy of X as the value
of p ranges from 0 to 1. If we set p = 1/4 then (1.8) becomes 0.81,
meaning that we need, on average, 0.81 bits to encode the value of X.
The minimum value of this expression is 0 when p ∈ {0, 1} (in that
case, X is a constant-valued random variable, and we need convey no
information to tell the next outcome); the maximum value of it is 1
when p = 1

2 , that is when either head or tail are equiprobable.

Example 1.2.2

Consider a discrete random variable X, on a support set SX =
{0, 1, 2, 3, 4}, such that

p(x) =



1
2 if x = 0
1
4 if x = 1
1
8 if x = 2
1

16 if x = 3
1

16 if x = 4

(1.9)

The entropy of X is



1.2. Overview of Information Theory 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

p

H
(X

)

FIGURE 1.1: Entropy H(X) = −p log p − (1 − p) log(1 − p) of
the random variable X as the value of p goes from 0 to 1.

H(X) =
1
2

log 2 +
1
4

log 4 +
1
8

log 8 +
1

16
log 16 +

1
16

log 16 (1.10)

=
1
2
+

2
4
+

3
8
+

4
16

+
4

16
(1.11)

=
8 + 8 + 6 + 4 + 4

16
(1.12)

= 1.875 bits (1.13)

Observation 1.2.1

The entropy of a random variable X is maximum when it is uniformly
distributed, that is when X ∼ U (SX), for a support set SX of finite size.

Example 1.2.3

Let X ∼ U ({0, 1, . . . , 7}), so that ∀x, p(x) = 1
8 . Then



6 Chapter 1. Introduction

H(X) =
1
8

log 8 + · · ·+ 1
8

log 8︸ ︷︷ ︸
8

(1.14)

= 8 · 1
8

log 8 (1.15)

= 3 bits (1.16)

In general, the entropy of a uniform discrete random variable X on a
support set SX is log |SX| bits.

1.2.2 Conditional Entropy

Just as we have defined the entropy for the case of a single random vari-
able, it is also possible to define it for the case of a vector-valued random
variable. We will give some examples, restricting, for simplicity, to the case
of a pair of random variables (X1, X2).

Definition 1.2.2 — Join Entropy

Let X = (X1, X2) be a pair of random variables. We define its entropy
H(X) as

H(X) = ∑
x1∈SX1

∑
x2∈SX2

p(x1, x2) log
1

p(x1, x2)
(1.17)

where p(x1, x2) = P (X1 = x2, X2 = x2) is the PMF of X.

A very important concept is the conditional entropy of a random variable
X, defined with regard to another random variable Y.

Definition 1.2.3 — Conditional Entropy

Given two random variables X and Y, the conditional entropy of X given
Y is

H(X|Y) = ∑
x∈SX

pX(x)H(Y|X = x) (1.18)

= ∑
x∈SX

pX(x) ∑
y∈SY

pY(y|x) log pY(y|x) (1.19)

(1.20)

where pX and pY are the PMFs of X and Y, respectively1.

We take pY(y|x) to be a shorthand notation for P (Y = y | X = x).



1.2. Overview of Information Theory 7

The two notions of joint entropy and conditional entropy are related in an
important way, going under the name of chain rule.

Theorem 1.2.1

For any two random variables X and Y

H(X, Y) = H(X) + H(Y|X) (1.21)

Proof. Denote P (X = x, Y = y) simply by p(x, y), then

H(X, Y) = − ∑
x∈SX

∑
y∈SY

p(x, y) log p(x, y) (By definition)

= − ∑
x∈SX

∑
y∈SY

p(x, y) log (pX(x) · pY(y|x)) (1.22)

= − ∑
x∈SX

∑
y∈SY

p(x, y) log pX(x)− ∑
x∈SX

∑
y∈SY

p(x, y) log pY(y|x)

(1.23)

= − ∑
x∈SX

pX(x) log pX(x)− ∑
x∈SX

∑
y∈SY

p(x, y) log pY(y|x) (1.24)

= H(X) + H(Y|X) (1.25)

Corollary 1.2.1

For any three random variables X, Y and Z

H(X, Y|Z) = H(X|Z) + H(Y|X, Z) (1.26)

1.2.3 Relative Entropy and Mutual Information

We will briefly hint to a measure known as mutual information, defined be-
tween a pair of random variables. Informally, mutual information expresses
the amount of information that one random variables conveys about another.

Before actually defining mutual information, we have to step through an-
other quantity.

Definition 1.2.4 — Relative Entropy

Let X and Y be two random variables with PMFs pX and pY. We define
the relative entropy of X and Y as



8 Chapter 1. Introduction

D (pX || pY) = ∑
x∈SX

pX(x) log
pX(x)
pY(x)

(1.27)

Note that pY is fed values x ∈ SX, so that the denominator in (1.27)
may equal 0. However, due to analytical considerations, it is assumed
by convention that ∀p, p log p

0 = ∞, so that if ∃x ∈ SX|pX(x) > 0 ∧
pY(x) = 0, D (pX || pY) = ∞.

Proposition 1.2.1

For any two random variables X and Y

1. D (pX || pY) ≥ 0

2. D (pX || pY) = 0 if and only if pX = pY

Definition 1.2.5 — Mutual Information

The mutual information I(X; Y) between two random variables X and Y
is the relative entropy of the joint distribution p(X,Y) of X and Y and the
product distribution pX(x)pY(y)

I(X; Y) = ∑
x∈SX

∑
y∈SY

p(X,Y)(x, y) log
p(X,Y)(x, y)
pX(x)pY(y)

(1.28)

= D
(

p(X,Y)(x, y) || pX(x) · pY(y)
)

(1.29)

The mutual information of two random variables can be expressed as

I(X; Y) = H(X)− H(X|Y) (1.30)

In fact

I(X; Y) = ∑
x∈SX

∑
x∈SY

p(X,Y)(x, y) log
p(X,Y)(x, y)
pX(x)pY(y)

(1.31)

= ∑
x,y

p(X,Y)(x, y) log
pX(x|y)
pX(x)

(1.32)

= ∑
x,y

p(X,Y)(x, y) log pX(x|y)− ∑
x,y

p(X,Y) log pX(x) (1.33)

= −
(

∑
x,y

p(X,Y)(x, y) log pX(x|y)
)
− ∑

x,y
p(X,Y) log pX(x) (1.34)

= −H(X|Y) + H(X) (1.35)



1.3. Overview of Data Compression 9

In this form, I(X; Y) tells the amount of information of X we spare by
observing Y. Note that, due to symmetry, it also holds that I(X; Y) = H(Y)−
H(Y|X).

Finally, since I(X; X) = H(X) − H(X|X) = H(X), we get that the mu-
tual information of a variable with itself is the entropy. For this reason, the
entropy of a random variable is also called self-information.

1.3 Overview of Data Compression

We progress into our overview of information theory with a few words to
data compression, an applied subfield of information theory, more pertinent
to the topics of this study. Some of what we are going to introduce here will
be considered again in Chapter 5.

Data compression is concerned with the design and analysis of compres-
sion algorithms. On a macro level, it can be subdivided into two major areas:
lossless data compression, and lossy data compression.

By lossless compression, we refer to algorithms that compress their data
without loss of information. If we were to revert the output of a lossless
compression algorithm, we would reconstruct, bit-by-by, the exact input we
started from.

Lossy data compression, on the other hand, compromises on the quality
of its data, as long as this leads to higher compression ratios. That is, lossy
data compression algorithms allow some loss of the unessential data (subtle
traces of audio records, tiny details of pixel images etc.), in an attempt to
reduce the space requirements of the input data even further.

While both approaches are important on their own, each has its area of
applicability. For the purposes of our study, only lossless data compression
will be relevant.

In the remainder of the section, we will provide some theory behind com-
pression codes and describe some of the more important compression algo-
rithms.

1.3.1 Models

When designing a compression algorithm, we sometimes construct a model
for the data. One such model is the probabilistic model, where a probability
distribution is used to reason about the data. When the assumption of a
probabilistic model for the data isn’t available a-priori, we can generate it on
the basis of the input we see. For example, the Huffman coding assumes the
existence of a probability distribution on the alphabet it works on; if this dis-
tribution isn’t available, a construction can be used that determines it on the
basis of the data that is received by the algorithm. This variation of Huffman
coding is named adaptive Huffman coding.

An alternative way of modeling a data source is to use a Markov model,
specifically a discrete time Markov chain.

Note, however, that not all algorithms have to make use of an explicit
mathematical model. Dictionary-based techniques for text compression are



10 Chapter 1. Introduction

Letter Code 1 Code 2 Code 3
a0 0 0 0
a1 1 1 10
a2 0 00 110
a3 01 10 111

TABLE 1.1: A four-letter alphabet, along with three possible
codes.

an example, where data is seen like a series of repeated patterns, rather than
the manifestation of a probabilistic outcome.

1.3.2 Codes

The algorithms we will be considering work by mapping the symbols of
an input alphabet A to so-called codewords, strings built on top of an alphabet
B, possibly equal to A itself. These algorithms, when scanning its input,
associate a codeword to a single symbol a ∈ A, or to more symbols of A
packed together. We call an association of codewords to strings of symbols
s ∈ A∗ a code.

One remark concerns how we pack more codewords together to form the
compressed output. We may use a separator character between each code-
word, but this would be far from being an efficient method. In a data com-
pression scenario, we strive to squeeze our output as much as possible. In-
stead, we will simply pack our codewords one next to the other, without any
padding in the middle or any header information before the output. What
is required is to be able to recognize a codeword on the basis of its symbols
alone.

And now, for the actual codes. Consider Table 1.1. In that table, we in-
cluded an alphabet of four symbols, along with three possible codes. We’ll
introduce some common code classifications on the basis of these examples.
They are all variable-length codes, meaning that, if the probability of an in-
dividual symbol was higher than that of another, we may be able to achieve
compression2.

Let’s start with Code 1. Code 1 is noticeably flawed: the same codeword,
0, is mapped to two different symbols, a0 and a2. If we met a 0 in the output
stream, we wouldn’t be able to tell whether it came from a0 or a2. We call
codes like Code 1 ambiguous codes.

We then have a look at Code 2. Although Code 2 is not ambiguous, it is
not free of defects. Imagine we had to decode the string ω = 0100. One way
to decode this string would be to split it as 0 1 00, and interpret its inverse
image as a0a1a2. However, if we split it as 0 10 0, we would be getting the
equally plausible inverse image a0a3a0. This, clearly, is an undesirable situa-
tion to us. What we would like to have is a code that, unlike Code 2, admits

2We assume that the least advantageous way of compressing the {a0, a1, a2, a3} alphabet
is by assuming an uniform distribution, and using log2 4 = 2 bits per each symbol.



1.3. Overview of Data Compression 11

one and only one possible interpretation for each combination of its code-
words. Such a code is termed uniquely decodable code. Code 2 is not uniquely
decodable.

Let us finally take a look at Code 3. Clearly, this code is unambiguous.
Further, it exhibits an important property: no codeword is the prefix of any
other codeword. Codes with this property go under the name of prefix codes.
Prefix codes are also instantaneous codes, that is codes whose codewords can
be interpreted as soon as they are read, with no need to read the whole string
they are embedded in. What we are most pressed to remark though is that,
Code 3, like any other prefix code, is uniquely decodable. This is true be-
cause, no matter how we mix up the codewords together, the union of two
codewords ω1, ω2 never produces a third distinct codeword ω3. (If this did
happen, then ω1 would be a prefix for ω3.) Being a uniquely decodable code,
Code 3 is a viable code for the {a0, a1, a2, a3} alphabet of Table 1.1.

On more abstract terms, we may wonder: if every prefix code is a uniquely
decodable code, what can we say about uniquely decodable codes in gen-
eral? Are there non-prefix, uniquely decodable codes that are shorter than
some prefix code? Fortunately for us, this is not the case, as the following
two statements demonstrate.

Theorem 1.3.1 — Kraft-McMillan Inequality

Let C be a uniquely decodable code with N codewords of length
l1, l2, . . . , lN. Then

N

∑
i=1

2li ≤ 1 (1.36)

The relation in (1.36) is known as Kraft-McMillan inequality. Next we have

Theorem 1.3.2

For every set of integers l1, l2, . . . , lN satisfying the inequality

N

∑
i=1

2−li ≤ 1 (1.37)

it is possible to find a prefix code whose codewords have lengths
l1, l2, . . . , lN.

These two statements allow us to deduce the following fact: if we are
given a uniquely decodable code C, then C satisfies the Kraft-McMillan in-
equality; and if it satisfies the Kraft-McMillan inequality, then a prefix code
exists whose codewords have the same length as the codewords of C. Thus,
we lose nothing when focusing on prefix codes.



12 Chapter 1. Introduction

Symbol Probability
c 0.5
e 0.25
a 0.1
d 0.1
b 0.05

TABLE 1.2: Example probability distribution of a source alpha-
bet Σ for the Huffman algorithm. The entropy of this distribu-

tion is 1.88 bits per symbol.

1.3.3 Compression Algorithms

In the next few paragraphs, we describe some of the more important com-
pression algorithms. The purpose of this explanation is twofold. First, al-
though limited to just a few examples, we would like to provide the reader
with a sense of what a compression algorithm actually is. Second, we will
need this explanation later in Section 5.1, when we consider the problem of
logarithmic compression.

Huffman Coding The Huffman algorithm is an prefix code developed by
David A. Huffman in 1952 [Huf52], that assumes a probability distribution
over a source alphabet Σ. For our own purposes, we will assume the algo-
rithm to work on the binary alphabet {0, 1} as a codomain, so that, ∀s ∈
Σ∗, C(s) ∈ {0, 1}∗, where C denotes the application of the Huffman encod-
ing.

The central idea of the method is to construct a mapping for each symbol
σ ∈ Σ to a sequence of bit strings in {0, 1}∗, so that, if the probability of
a symbol σ1 ∈ Σ is higher than that of another symbol σ2 ∈ Σ, then the
codeword C(σ1) for σ1 is shorter than the one for σ2. In other terms

P(σ1) > P(σ2) =⇒ |C(σ1)| < |C(σ2)| (1.38)

To simplify understanding, we provide a small example for the construc-
tion of a Huffman code for the alphabet Σ = {a, b, c, d, e}. There are various
ways to depict the construction of a Huffman code. The one we utilise relies
on a binary tree.

Consider Table 1.2, where the symbols from Σ have been sorted accord-
ing to their own probability P(σ). We build the binary tree starting from the
symbols with the lowest probability. This tree satisfies the following proper-
ties

• Every edge connecting two nodes is labeled with either 0 or 1

• Each symbol σ ∈ Σ is represented by one and only one leaf node

• Internal nodes of the tree correspond to no symbols from Σ

The tree building procedure, whose complete formal steps we omit for
brevity, applied to the probability distribution of Table 1.2, results in the tree



1.3. Overview of Data Compression 13

Symbol Codeword
c 0
e 10
a 110
d 1111
b 1110

TABLE 1.3: Codewords for the alphabet Σ of Table 1.2.

of Figure 1.2. The codewords thus obtained for the Σ alphabet are shown in
Table 1.3.

FIGURE 1.2: Binary tree representing the Huffman encoding of
the alphabet of Table 1.2.

With a mapping between symbols of Σ and binary codewords, we can
translate a string s ∈ Σ into one from {0, 1}∗. Assume, for example, that
s = cedcea. Then

C(s) = 0 · 10 · 1111 · 0 · 10 · 110 (1.39)

where · is just a visual aid with no implications for the representation of
C(s).

Recall that the entropy of the probability distribution of Table 1.2 is 1.88
bits per symbol, meaning that, for a string of 6 characters, we would need, on
average, 6× 1.88 = 11.28 bits for transmitting it, provided we had an optimal
encoding method.

While, in general, Huffman coding is not perfectly optimal with respect
to the theoretical entropy of a source, it performs pretty close to it.

For instance, if we were to represent Σ with a uniform encoding method,
using dlog2 5e = 3 bits per symbol, we would need 6× 3 = 18 bits to transmit
s. With Huffman encoding, instead, we only need 13, since |C(s)| = 13.

In general, the higher the number of symbols in s with high probability,
the higher also the space saving of its Huffman-encoded version C(s).



14 Chapter 1. Introduction

LZ77 LZ77 is a classical lossless textual compression algorithm, introduced
by Abraham Lempel and Jacob Ziv in 1977 [ZL77]. Together with LZ78
[ZL78], published in 1978, they form the basis for a series of modifications,
such as LZW, LZMA, LZSS, introduced by other researchers throughout the
years.

LZ77 is a dictionary coder. Dictionary coders are compression algorithms
that translate strings of symbols from an input string into “keywords” stored
within the dictionary as a mapping for these sequences. If the content of the
dictionary is not allowed to change during the execution, then we are dealing
with a static dictionary coder, otherwise, just as with LZ77 and LZ78, we are
dealing with a dynamic one.

To describe the functioning of LZ77, we start from the underlying idea.
Take a string of text s = s1s2 . . . sn, built from a series of symbols from an
alphabet Σ. Then we can split s into two halves s′ and s′′, such that s = s′s′′.
s′ is considered to be the part of the input stream that is already compressed
(also referred as sliding window in the literature), while s′′ the part of the input
that is to be yet compressed. In compressing s′′, we take a look back at s′, to
see whether some string of symbols k ∈ Σ∗ is occurring there that also occurs
in s′′. If such a k exists, then we take the longest, and output its location in s′,
plus its length in characters, to the output stream. In addition, the character
c ∈ Σ occurring right after k in s′′ is also output in the output stream3.

This approach is effective the longer k is in characters, since its com-
pressed representation (that is, the triple of values indicating the position
of k in s′, its length and the character c) is constant in size. However, other
factors also determine the effectiveness of LZ77. To understand them, we
have to take a look at the fuller picture of LZ77.

The crucial bit of information that we have omitted from this informal
explanation is that LZ77 has limited buffer, that is a limited memory capac-
ity, and as a consequence also a limited view into both s′ and s′′. Let B be
the number of symbols that LZ77 can hold in its buffer, and F the number
of symbols that it is allowed to read from s′′. The number of symbols read-
able from s′ will consequently be B − F. Therefore, the performance of LZ77
depends not only on the concrete input string it is run with, but also on the
parameters B and F it is configured with. The larger these values, the greater
the length of a possible k will be allowed to be (although, then, running times
will also tend to increase).

This tuning aspect is important, and will be considered again in Sec-
tion 5.1, when we study LZ77 under the problem of logarithmic compression.

Another relevant aspect we want to mention is the size, in bits, of the
triple output by the algorithm. The size of the triple is a function of the
parameters of LZ77, and therefore constant with respect to the input string s.
It is expressed as

d = m + dlog (B − F)e+ dlog Fe (1.40)

3This is true in the pure LZ77 version. Other variations, such as LZSS, allow this character
c to be omitted when it is possible to save some space.



1.3. Overview of Data Compression 15

where m > 0 is the number of bits needed to represent a character c ∈ Σ
(m = dlog |Σ|e if Σ is given a uniform memorization scheme), dlog (B − F)e is
the number of bits needed to express the position of k in s′ (as a relative offset
starting at s′′ and going backwards for up to B − F symbols) and dlog Fe the
number of bits needed to encode the length of k.

If LZ77 parses its input string s into N distinct triples, the size of its output
will therefore be dN.





17

Chapter 2

Introduction to Spines

In the previous chapter, we introduced many of the concepts of informa-
tion theory and data compression that will be relevant during the course of
the work. This chapter is also an introduction, but to spines, and to the few
other technical concepts that we will directly make use of, such as the XBW
transform for trees from [Fer+09]. After these pages, we are going to deal
with the problem of spine detection.

2.1 Spine Trees

There is not an univocal definition of spine tree. In fact, there are two, a
left spine tree and right spine tree one. However, their difference is minimal,
in that one is symmetrical to the other. Therefore, it only suffices to formally
state what a left spine tree is.

Definition 2.1.1 — Left Spine Tree

A left spine tree, or simply left spine, is an ordered and labeled tree such
that

• The root node, r, has two child nodes c1 and c2, with c1 preceding
c2

• c2 is a leaf node

• c1 is either the root of a left spine, or a leaf node

To get the definition of a right spine tree, one only needs to invert the roles
of the c1 and c2 nodes. We give a graphical example of two spine trees, a left
and a right one, in Figure 2.1.

In dealing with the detection and storage of spines, we mainly rely on
the work of [Fer+09], where the XBW transform, a highly-compressible vec-
torized representation of labeled trees, is discussed. The study of [Fer+09] is
useful to us because it reduces the problem of the compression of a labeled
tree into the compression of a pair of strings. We will tweak the concept of
the XBW transform to suit our needs by introducing the XBW− transform, a
type of XBW transform whose final, ordering step hasn’t yet been performed.



18 Chapter 2. Introduction to Spines

A

B

C

D

e f

g

h

i

(A) A left spine.

A

i B

h C

g D

f e

(B) A right spine.

FIGURE 2.1: Two spine trees.

2.2 Basic Concepts and Notation

2.2.1 Mathematical Notation

Integer Interval We write [i, j] for the set of all integers between i and j, that
is [i, j] = {x ∈ Z | i ≤ x ≤ j}. In those rare cases—if any—where we want to
designate the real-valued interval, we will write [i, j]R, and more generally,
∀Q ⊆ R, we let [i, j]Q = {x ∈ Q | i ≤ x ≤ j}.

Congruence Modulo n We will denote the congruence modulo n of two
numbers a and b as a ≡n b. This is a departure from the more common
notation a = b mod n of some authors, but we prefer it for its succinctness.

Internal and Leaf Node Labels As in [Fer+09], we adopt the convention
of representing the internal nodes of a labeled tree with values drawn from
an alphabet ΣN, and leaf nodes with values drawn from an alphabet ΣL, so
that Σ = ΣN ∪ ΣL. This convention only affects the presentational aspect.
Internally, an additional bit for each node may be used to distinguish internal
nodes from leaf ones.

Vector Indexing Let V be a vector. We write V[i] for the ith element of V,
and V[i, j] for all elements of V such that their index k ∈ [i, j].

2.2.2 XBW Transform

In this section, we summarize some of the key aspects of the XBW trans-
form. If interested to get the fuller picture, please refer to [Fer+09].

Take an ordered and labeled tree T, of arbitrary shape and depth. In order
to define the XBW transform xbw[T] of T, we need the following elements.
Let u be any node of T, then we consider

• last[u], a binary value equal to 1 if u is the rightmost (i.e. last) child of
its parent



2.2. Basic Concepts and Notation 19

• α[u], the label, or value, associated to u

• π[u], the string obtained by concatenating all the labels from u’s parent
up to the root. If u is the root node, π[u] = ε, the empty string

The XBW transform of T consists then of the multi-set S of t triplets
〈last[u], α[u], π[u]〉, one for each node of T. The transform is constructed ac-
cording to the following procedure

1. Initially, set S = ∅

2. Perform a pre-order visit of T

3. For each visited node u, store 〈last[u], α[u], π[u]〉 into S

4. Stably sort S with respect to the lexicographic order of π[u]

To simplify understanding, Figure 2.2 depicts a labeled tree T, along with
its XBW transform xbw[T].

E

B

A

b

a C

b

D

B

c

b c

B

A

b

(A) A labeled tree T.

Slast Sα Sπ

0 E ε
1 b ABE
1 b ABE
1 c BDE
0 A BE
0 a BE
1 C BE
1 A BE
1 b CBE
0 B DE
0 b DE
1 c DE
0 B E
0 D E
1 B E

(B) Its XBW transform.

FIGURE 2.2: An example XBW transform.

Given xbw[T], we sometimes identify each node u ∈ T with an integer i,
that is u = S[i]. In such a case, we denote last[u], α[u] and π[u] with Slast[i],
Sα[i] and Sπ[i] respectively, or even lasti, αi and πi for the sake of brevity.

Note that the vector 〈Slast, Sα〉, consisting only of Slast and Sα, is sufficient
for recovering the whole structure of T. In fact, Sπ does not need to be stored
in a compressed representation of xbw[T], since it can be reconstructed dur-
ing the decompression process.

[Fer+09] discusses different results concerning the XBW transform on trees.
We report a few of the more important ones, omitting their proof.



20 Chapter 2. Introduction to Spines

Theorem 2.2.1

Let T be a labeled tree with t nodes and labels drawn from an alpha-
bet Σ. Then the transform xbw[T] can be computed in O (t) time and
O (t log t) bits of working space.

Theorem 2.2.2

A labeled tree T of t nodes can be reconstructed from its XBW trans-
form xbw[T] in optimal O (t) time and O (t log t) bits of working space.

The XBW transform is interesting for the task of tree compression because
of the locality principle. The locality principle for a string s ∈ Σ∗ states that
the surrounding elements of a value in s closely depend from the predecessor
and successor values. Due to the sorting step of xbw[T], Sα satisfies the local-
ity principle and can be compressed efficiently by BWT-based compressors
[BW94; Fer+05].



21

Chapter 3

Spine Detection

Spine detection—the problem of locating a spine tree within a labeled tree
of arbitrary shape—is the first actual problem we will be facing. Even though
it is not the main objective of our work, it nonetheless forms a very important
part of it.

We will be building our solution for spine detection by means of the XBW
transform on trees, that we introduced in the earlier chapter. Although a de-
tection algorithm for spines could be easily implemented in any procedural
programming language through an ADT (Abstract Data Type) for trees, do-
ing so wouldn’t necessarily result in an efficient detection procedure. In fact,
the use of an ADT would not make any guarantee on the underlying data
structure utilized in the representation of the tree. This data structure might
be efficient or inefficient for our purposes, depending on the case. To ensure
an efficient implementation, we must choose ourselves this data structure,
and the one we chose is, as said, the XBW transform.

The use of the XBW transform has two primary known advantages. First,
since it consists of nothing more than a pair of vectors stored in a contiguous
memory location, navigating the tree that it represents is fast, also thanks
to many performance optimizations available for the different programming
languages. Second, due to the same reason, the whole cache-memory hier-
archy is guaranteed to work more smoothly, as opposed to, say, a pointer-
based implementation of a tree, since the memory content of the tree is not
dislocated in distant areas of central memory, but is concentrated in a single
memory block.

3.1 XBW− Transform

What we have just said in the introduction to this chapter was only true
in part. In fact, rather than working with an ordinary XBW transform, we
will be mostly relying on a derived concept of it, the XBW− transform.

The XBW− transform is a derived concept from the ordinary XBW trans-
form that we introduce for our own purposes. When applied to left and right
spine trees, it encodes peculiar patterns of these within the tree they are em-
bedded in, allowing for a very fast—in fact, optimal—identification of spines.
We will introduce the concept of the XBW− transform informally, and then
proceed to formalize it mathematically.



22 Chapter 3. Spine Detection

Definition 3.1.1 — XBW− Transform

An XBW− transform of a tree T, denoted by xbw−[T], is the XBW trans-
form of T deprived of the sorting step with respect to Sπ.

Observation 3.1.1

Computing an XBW− transform demands no computational overhead,
if we expect to compute the full XBW transform at a later time.

In Figure 3.1, we give the example of an XBW− transform, taken from the
tree of Figure 2.2.

E

B

A

b

a C

b

D

B

c

b c

B

A

b

(A) The labeled tree of Figure 2.2.

Slast Sα Sπ

0 E ε
0 B E
0 A BE
1 b ABE
0 a BE
1 C BE
1 b CBE
0 D E
0 B DE
1 c BDE
0 b DE
1 c DE
1 B E
1 A BE
1 b ABE

(B) Its XBW− transform.

FIGURE 3.1: An example XBW− transform.

Observation 3.1.2

Since no sorting is performed, the order of the entries in an
XBW− transform reflects that of a pre-order visit.

3.2 Informal Detection Description

The idea behind the identification of left and right spines is inspecting
the Slast and Sπ subvectors of the XBW− transform. Consider, by way of
example, the left spine of Figure 2.1a, along with its XBW− transform, that
we show in Figure 3.2.

Clearly, some visible patterns emerge from Figure 3.2b. Let h = 4 be the
height of the spine. Then Slast exposes a series of h contiguous 0s, followed by



3.3. Properties of XBW- Transforms on Spines 23

A

B

C

D

e f

g

h

i

(A) The left spine of Figure 2.1a.

Slast Sα Sπ

0 A ε
0 B A
0 C BA
0 D CBA
0 e DCBA
1 f DCBA
1 g CBA
1 h BA
1 i A

(B) Its XBW− transform.

FIGURE 3.2: The left spine of Figure 2.1a along with its
XBW− transform.

another consecutive h 1s, while Sπ is characterized by a kind of “symmetry”
for all the nodes except the root.

Albeit dissimilar, even right spines display their own distinctive pattern.
Consider Figure 3.3 for a reference. In this case, an alternating series of 0s
and 1s takes place of the contiguous series of 0s and 1s found in the left-
spine case. And Sπ is characterized by a sort of “increasing monotonicity”,
rather than a symmetry.

A

i B

h C

g D

f e

(A) The right spine of Figure 2.1b.

Slast Sα Sπ

0 A ε
0 i A
1 B A
0 h BA
1 C BA
0 g CBA
1 D CBA
0 f DCBA
1 e DCBA

(B) Its XBW− transform.

FIGURE 3.3: The right spine of Figure 2.1b along with its
XBW− transform.

Having introduced informally the detection of left and right spines by
means of their XBW− transform, we make our discourse more precise by
stating some propositions in the mathematical language.

3.3 Properties of XBW− Transforms on Spines

In some of the following statements, we will make use of the is_leaf(i)
predicate, evaluating to true when the node indexed i in the tree T under
consideration is a leaf node, and to false otherwise. Although it is not our



24 Chapter 3. Spine Detection

concern here, it is possible to offer a constant-time implementation of the
predicate, so that its use does not result in any performance penalty.

Proposition 3.3.1

Let S be a spine tree, and |S| the number of its nodes. Then |S| = 2h+ 1,
where h is the height of S.

Proposition 3.3.2

Let S be a spine of height h ≥ 1 rooted under a tree T. Enumerate the
nodes of T in a pre-order visit fashion, and let a and b be the indices of
the first and last elements of S, respectively. Then

b − a = 2h (3.1)

Lemma 3.3.1 — Left Spine to XBW− Transform

Let L be a left spine of height h ≥ 1, rooted in a tree T possibly equal
to L itself. Also let a be the index of the root node of L, b = a + 2h the
index of the last node of L and S the XBW− transform of T. Then we
have that

Slast[i] =

{
0, a + 1 ≤ i ≤ a + h
1, a + h + 1 ≤ i ≤ b

(3.2)

Sπ[i] =

{
Sα[i − 1]Sπ[i − 1], a + 1 ≤ i ≤ a + h
Sπ[k − i], a + h + 1 ≤ i ≤ b

(3.3)

where k = 2(a + h) + 1.

α0

◦ αa

αa+1 αa+2

◦ ◦

FIGURE 3.4: A tree T with a left spine of height h = 1.

Proof. We proceed by induction on h.

Base Case We have h = 1, and the tree T is shown in Figure 3.4.
Clearly, nodes of T whose index i is such that i < a or a + 2 < i have no
impact on S[a, a + 2], the portion of XBW− transform whose entries are
indexed from a to a + 2.
From Table 3.1, where we represent S[a, a + 2], it is obvious that



3.3. Properties of XBW- Transforms on Spines 25

i Slast Sα Sπ

0 0 α0 ε
1 ? ? α0
...

...
...

...
a ? αa πa

a + 1 0 αa+1 αaπa
b = a + 2 1 αa+2 αaπa

...
...

...
...

|T| − 1 ? ? ?

TABLE 3.1: The S[a, a + 2] portion of the XBW− transform S.

α0

◦ αa

αa+1

◦

αa+h αa+h+1

αb−1

αb

◦ ◦

FIGURE 3.5: A tree T with a left spine of height h > 1.

Slast[a + 1] = 0 (3.4)
Slast[a + 2] = 1 (3.5)

Sπ[a + 1] = Sπ[a + 2] = Sα[a]Sπ[a] (3.6)

Inductive Step In this case, h > 1, and a left spine of height h′ = h − 1 is
rooted at node a + 1 (Figure 3.5).
Therefore, by the inductive hypothesis

Slast[i] =

{
0, a + 2 ≤ i ≤ a + 1 + h′

1, a + 2 + h′ ≤ i ≤ b − 1
(3.7)

Sπ[i] =

{
Sα[i − 1]Sπ[i − 1], a + 2 ≤ i ≤ a + 1 + h′

Sπ[k − i], a + 2 + h′ ≤ i ≤ b − 1
(3.8)

with k = 2(a + 1 + h′) = 2(a + h) + 1. We finally have to consider nodes
a + 1 and b. It is evident that Slast[a + 1] = 0, Slast[b] = 1 and Sπ[a + 1] =
Sπ[b] = Sα[a]Sπ[a]. The inductive hypothesis and this last point lead us to



26 Chapter 3. Spine Detection

Slast[i] =

{
0, i = a + 1 ∨ a + 2 ≤ i ≤ a + 1 + h′

1, i = b ∨ a + 2 + h′ ≤ i ≤ a + 1 + 2h′
(3.9)

=

{
0, a + 1 ≤ i ≤ a + h
1, a + 1 + h ≤ i ≤ b

(3.10)

Sπ[i] =

{
Sα[i − 1]Sπ[i − 1], i = a + 1 ∨ a + 2 ≤ i ≤ a + h
Sπ[k − i], i = b ∨ a + 2 + h ≤ i ≤ b − 1

(3.11)

=

{
Sα[i − 1]Sπ[i − 1], a + 1 ≤ i ≤ a + h
Sπ[k − i], a + 1 + h ≤ i ≤ b

(3.12)

Lemma 3.3.2 — XBW− Transform to Left Spine

Let S be an XBW− transform of length n. Then if ∃a, b | b − a = 2h,
with h ≥ 1, conditions (3.2) and (3.3) hold and ∀i | a + h ≤ i ≤ b

is_leaf(i) (3.13)

the subtree U encoded by the subportion S[a, b] of S is a left spine of
height h.

i Slast Sα Sπ

0 0 α0 ε
1 ? ? α0
...

...
...

...
a ? αa πa

a + 1 0 αa+1 αaπa
b = a + 2 1 αa+2 αaπa

...
...

...
...

n − 1 ? ? ?

TABLE 3.2: The S[a, a + 2] portion of the XBW− transform S.

αa

αa+1 αb

FIGURE 3.6: A left spine of height h = 1.

Proof. By induction on h.

Base Case If h = 1, then we have the XBW− transform from Table 3.2



3.3. Properties of XBW- Transforms on Spines 27

i Slast Sα Sπ

0 0 α0 ε
1 ? ? α0
...

...
...

...
a ? αa πa

a + 1 0 αa+1 αaπa
...

...
...

...
a + h 0 ? αa+h−1πa+h−1

a + h + 1 1 ? αa+h−1πa+h−1
...

...
...

...
b − 1 1 ? αa+1πa+1

b 1 ? αaπa
...

...
...

...
n − 1 ? ? ?

TABLE 3.3: The S[a, a + 2] portion of the XBW− transform S.

αa

αa+1

◦

◦

αa+h αa+h+1

◦

◦

αb

FIGURE 3.7: A left spine of height h = 1.

Given a generic node indexed i, its parent node has index j, where

j = max
{

j′ | 0 ≤ j′ < i ∧ πi = αjπj
}

(3.14)

Nodes a + 1 and b have node a as their parent, since πa+1 = πb = αaπa,
a < a + 1 < b and a is the greatest index satisfying these conditions. Fur-
thermore, a + 1 and b are the only child nodes of a (because Slast[b] = 1).
To complete the base case, consider nodes i such that i < a. These nodes
can have no influence over the structure of the subtree rooted at a. How-
ever, it may happen that nodes i | b < i, are descendants of b. This case is
ruled out by the fact that is_leaf(b). Therefore the structure of the subtree
rooted at a matches that of Figure 3.6

Inductive Step In this case, we have b − a = 2h, with h > 1, and S[a, b]
satisfies conditions (3.2), (3.3) and (3.13). Of course, these conditions still
hold for a′ = a + 1, b′ = b − 1, and since b′ − a′ = a − b − 2 = 2(h − 1) =
2h′, we can apply the inductive hypothesis to (3.2) and claim that S[a′, b′]
encodes a left spine of height h′.



28 Chapter 3. Spine Detection

To conclude the proof, observe nodes a + 1 and b. By a reasoning analo-
gous to that for the base case, a + 1 and b are the only children of node a,
and so they form the subtree of Figure 3.7
Since node a + 1 is the root of a left spine of height h′, a is the root of a left
spine of height h′ + 1 = h.

Lemma 3.3.3 — Right Spine to XBW− Transform

Let R be a right spine of height h ≥ 1, rooted in a tree T possibly equal
to R itself. Also let a be the index of the root node of R, b the index of
the last node of R and S the XBW− transform of T. Then we have that
∀i | a + 1 ≤ i ≤ a + 2h = b

Slast[i] =

{
0, i 6≡2 a
1, i ≡2 a

(3.15)

Sπ[i] =

{
Sα[i − 1]Sπ[i − 1], i 6≡2 a
Sπ[i − 1], i ≡2 a

(3.16)

α0

◦ ◦ αa

αa+1 αa+2

◦ ◦

◦ αb−2

αb−1 αb

◦

FIGURE 3.8: A tree T with a right spine of height h > 1.

Proof. By induction on h.

Base Case For h = 1, we assume to have a tree and an XBW− trans-
form identical to those of Figure 3.4 and Table 3.1, respectively. Verifying
equations (3.15) and (3.16) is thus straightforward.

Inductive Step For the tree of Figure 3.8, it is easy to observe that the
subtree rooted at a + 2 is a right spine of height h′ = h − 1.
By the inductive hypothesis, we have that for all i such that



3.3. Properties of XBW- Transforms on Spines 29

a′ + 1 ≤i ≤ a′ + 2h′ (3.17)

a′ + 1 ≤i ≤ a + 2 + 2h − 2 (3.18)
a + 3 ≤i ≤ a + 2h = b (3.19)

conditions (3.15) and (3.16) hold. By an easy check, they are verified even
for nodes a + 1 and a + 2, and therefore for every node i such that a + 1 ≤
i ≤ a + 2h.

Lemma 3.3.4 — XBW− Transform to Right Spine

Let S be an XBW− transform of length n. Then if ∃a, b | b − a = 2h,
with h ≥ 1, conditions (3.15) and (3.16) hold and also

is_leaf(b) (3.20)

the subtree U encoded by the subportion S[a, b] of S is a right spine of
height h.

i Slast Sα Sπ

0 0 α0 ε
1 ? ? α0
...

...
...

...
a ? αa πa

a + 1 0 ? αaπa
a + 2 1 ? αaπa

...
...

...
...

b − 1 0 ? αb−2πb−2
b 1 ? αb−2πb−2
...

...
...

...
n − 1 ? ? ?

TABLE 3.4: The S[a, a + 2] portion of the XBW− transform S.

Proof. By induction on h.

Base Case For a right spine of height h = 1, we have an XBW− trans-
form portion identical to that of Table 3.2. The reasoning follows similarly
for the proof of the left-spine case: nodes a, a + 1 and a + 2 = b form a
potential right spine of height h = 1. For it to be effectively so, it must be
is_leaf(b), which is true by hypothesis.

Inductive Step Table 3.4 shows the XBW− transform for the inductive
step. The S[a, b] portion of S satisfies properties (3.15), (3.16) and (3.20),
with b − a = 2h and h > 1. These properties still hold for the portion



30 Chapter 3. Spine Detection

S[a′, b′] of S, where a′ = a + 2 and b′ = b. In this case, b′ − a′ = 2h′ and
h′ = h − 1, so we can apply the inductive hypothesis to the subtree rooted
in a′ and conclude that it represents a right spine of height h′.
If we finally consider entries a + 1 and a + 2 we immediately notice that,
with a reasoning similar to that of previous proofs, they represent two
nodes whose parent is a, and that they are the only children. Since the
subtree rooted at a + 2 is a right spine of height h − 1, the subtree rooted
at a is a right spine of height h.

This marks the end of the formal statement of properties of the XBW− trans-
form on spines. With these conceptual tools at our disposal, we can introduce
and justify a detection algorithm for spines, the main objective of this chapter.

3.4 An Algorithm for Spine Detection

Theorem 3.4.1

Let T be a tree of arbitrary shape, and S its XBW− transform. Then an
algorithm exists that is able to detect all left and right spines of T in
Θ(|T|) time and Θ(1) space.

1 function spines (automaton)
2 spines = ∅
3

4 while automaton.has_next()
5 automaton.next()
6

7 if automaton.state == ACCEPTED
8 spines = spines ∪ automaton.spine_range()
9 automaton.reset_state()

10

11 return spines

ALGORITHM 1: Spine detection algorithm.

Proof. The proof is constructive, and deploys an algorithm that performs
the detection of all left and right spines of T with a single scan of S in
constant space. We give the pseudocode of this algorithm in Algorithm 1.
The algorithm receives as input a particular finite-state automaton, and
returns spines, the set of all (a, b) pairs such that a and b are the first- and
last-node index of a spine in T, respectively. The finite-state automaton
that is fed into the algorithm does not define a language, but maintains
the state of the current scan of the vector S. It comes in two varieties, a left
and a right one.



3.4. An Algorithm for Spine Detection 31

resetstart up

downaccept

(
not (2)

) (
i = 0

set height = 1

)(1)


not (1)

Slast[i] = 0
Sπ[i] = Sπ[i − 1]Sα[i − 1]

set height = 1


(2)

 Slast[i] = 0
Sπ[i] = Sα[i − 1]Sπ[i − 1]
set height = height + 1

(3)



not (3)
is_leaf(i − 1)

is_leaf(i)
Slast[i − 1] = 0

Slast[i] = 1
Sπ[i] = Sπ[i − 1]

set opposite = i − 2
set height = height − 1



(4)

(
not (4)

reset()

)



0 < height
i < length

Slast[opposite] = 0
Slast[i] = 1

Sπ[i] = Sπ[opposite]
is_leaf(i)

set opposite = opposite − 1
set height = height − 1



(5)

(
not (5)

)

FIGURE 3.9: The left-spine automaton.

This automaton is initialized with the vector S and is stepped for-
ward by the next() operation. The has_next() operation returns
true as long as the automaton hasn’t finished iterating on S. When-
ever the automaton detects a new spine, automaton.state equals
the special valute ACCEPTED, and the (a, b) pair of this spine can
be obtained by the spine_range() operation. Algorithm 1 simply
manipulates this automaton until it comes to the end of vector S.

To explain the left and right automata in more detail, consider Figure 3.9
and Figure 3.10. The graphical notation can be interpreted as follows: each
node represents a state in the ordinary sense of finite-state automata, but
each edge connects two nodes a and b if and only if the conditions en-
closed by the parentheses are satisfied when the state is a. Sometimes, a
horizontal rule separates this list of conditions from a set of instructions,
that are executed on the transition from a to b. The aggregate of conditions
is identified, when necessary, by an (x) at the top-right corner, where x is
a number.



32 Chapter 3. Spine Detection

resetstart left

rightaccept

(
not (1)

)


0 < i < length
Slast[i] = 0

Sπ[i] = Sα[i − 1]Sπ[i − 1]
is_leaf(i)

set start = i − 1


(1)

 i < length
Slast[i] = 1

Sπ[i] = Sπ[i − 1]

(2)

(
not (2)

reset()

)


i < length
Slast[i] = 0

Sπ[i] = Sα[i − 1]Sπ[i − 1]
is_leaf(i)


(3)

 not (3)
i = length ∨ is_leaf(i − 1)

set end = i − 1

(4)

(
not (4)

reset()

)

FIGURE 3.10: The right-spine automaton.

We describe the logic of the left automaton in detail, and only mention that
of the right one, which is similar. What the automaton does is to simply
follow the pattern described by Lemma 3.3: it looks for an “upward” series
of h Sπ values, followed by a “downward” series of other h values that are
“symmetric” to the first group. In the meanwhile, it also checks for the
correct series of Slast values, that is, a contiguous run of h 0s followed
by a contiguous run of h 1s. This is done by maintaining some internal
variables, like i, which is automatically increased at each step, and a few
others.
The automaton starts at the reset state, and may eventually enter the up
state. If it does, but then realizes that any condition is not satisfied for
the detection of a left spine, it falls back to reset. Alternatively, it may
detect the end of an “upward” phase, and make a transition to the down
state. Once there, the detection of a left spine, of height h = 1 or greater,
is guaranteed. The automaton greedily iterates itself until some condition
in the down state is no longer satisfied, and then terminates in the accept
state. The calling algorithm, when notified of the acceptance, collects the
(a, b) range and resets the state of the automaton with a call to reset().



3.4. An Algorithm for Spine Detection 33

reset() does not bring i back to 0, but merely resets the state and a few
other internal variables.
The explanation for the right-spine automaton is analogous, ex-
cept that the automaton looks for a pattern of alternating 0
and 1 pairs in Slast. Two sibling nodes of a right spine i and
i + 1 are such that Sπ[i] = Sπ[i + 1] = Sα[i − 1]Sπ[i − 1].

The correctness of Algorithm 1 follows almost directly by the two au-
tomata, and the correctness of these can be verified in detail by Figure 3.9
and Figure 3.10.
To analyze the complexity of Algorithm 1, consider its while loop. Clearly,
this runs as long as automaton.has_next() which, by definition, returns
true at most |T| times. The space complexity depends from |spines|.
This is not constant, but it can be made so by the use of generator functions
that generate, rather than store in memory, the values of spines on a
one-by-one fashion. If Algorithm 1 is implemented on a language with-
out generator functions support, then the space complexity is Θ(|spines|).

Finally, to prove that Algorithm 1 is able to detect all left and right spines
in a single run, note that the left and right automata maintain an internal
state that is independent from that of the other. It is therefore possible to
modify Algorithm 1 in such a way that, on each iteration, it updates both
automata. They will terminate in the same number of steps, as long as
they are initialized with the same XBW− transform S.





35

Chapter 4

Storage of Spines

Now that we have introduced a practical algorithm for the identification
of spine trees, we turn to the problem of what to do with them once they have
been detected, specifically, how to store spines so that they can benefit from
enhanced compression ratios with respect to the remaining portions of the
tree. We have devised two primary and alternate solutions to this problem:
a prune-based storage technique, and a so–called context-manipulation one.
We’ll start with the simpler.

4.1 Pruning of Spine Trees

As the name itself suggests, the pruning storage technique consists of de-
tecting all spine trees of a tree T and moving them out of the tree. Formally,
let i be the index of a spine subtree S within T, then the pruning of S has the
effect of replacing the whole subtree of S with its root node, namely the node
indexed i. Figure 4.1 depicts this process for a tree hosting a left and a right
spine.

R

B

C

D

d f

c

a

B

b C

c D

d f

(A) A tree T, with a left and a right spine.

R

B B

(B) The same tree, pruned of all of its left
and right spines.

FIGURE 4.1: Pruning of a tree T.

Once the spines have been pruned out of their host tree, they can be safely
stored and compressed as strings, due to their linear structure. For example,
the two arms of a left spine can be concatenated to each other; for the case
of Figure 4.1a, this would produce the string BCDdacf. Or the same spine
may be turned into string by a level-wide visit; for the same left spine of of
Figure 4.1a, this would give the string BCaDcdf.



36 Chapter 4. Storage of Spines

4.2 Context Manipulation of Spine Trees

For the second technique of spine storage, consider the properties of the
XBW transform. As you may be able to recall from the introductory section,
the construction of the XBW transform is comprised of a final sorting step,
that orders the tuples within the XBW transform S by the lexicographic order
of their Sπ component. The Sπ subvector is often also referred to as context
[Fer+09].

We may take advantage of this ordering to devise an alternate storage
scheme for spines. We will explain it with reference to the tree of Figure 4.1,
that we newly report in Figure 4.2, along with its XBW− transform.

R

B

C

D

d f

c

a

B

b C

c D

d f

(A) The tree of Figure 4.1.

Slast Sα Sπ

0 B ε
0 B B
0 C BB
0 D CBB
0 d DCBB
1 f DCBB
1 c CBB
1 a BB
1 B B
0 b BB
1 C BB
0 c CBB
1 D CBB
0 d DCBB
1 f DCBB

(B) Its XBW− transform.

FIGURE 4.2: The tree of Figure 4.1, along with its XBW− trans-
form.

The idea of this scheme is to manipulate the Sπ subvector (that is, the
context–hence the name context manipulation) in such a way as to cluster all
the nodes of a spine together. The way we do this is the following. First, we
detect all the spines of the input tree T, and associate a simple numeric index
to them. We then consider the alphabet A used for the labeling of T, and pick
a symbol ξ /∈ A. Then for each spine i and for each of its nodes j that is not
the root, we alter Sπ[j] so as to set it to

Sπ[j] = ξi (4.1)

We then proceed to order the XBW− vector according to Sπ, waiting for
the sorting process to do the rest. Since this sorting procedure is a stable one
by hypothesis, we are guaranteed that the local order of nodes within their
spine tree remains unaffected.

This procedure, applied to the XBW− transform of Figure 4.2, results in
the XBW transform of Figure 4.3b.



4.2. Context Manipulation of Spine Trees 37

R

B

C

D

d f

c

a

B

b C

c D

d f

(A) The tree of Figure 4.1.

Slast Sα Sπ

0 B ε
0 B B
1 B B
0 C s01
0 D s01
0 d s01
1 f s01
1 c s01
1 a s01
0 b s02
1 C s02
0 c s02
1 D s02
0 d s02
1 f s02

(B) Its XBW transform with context ma-
nipulation.

FIGURE 4.3: The tree of Figure 4.1, along with its XBW trans-
form that has undergone a context manipulation. Here, ξ = s.

In addition to the manipulation of context of the nodes of a spine, we also
have to memorize which nodes of the transformed XBW belong to the root
of a spine, like the nodes B and B in Figure 4.3. There are multiple ways to
do this, from picking a special value for the label of the root nodes to alterate
their own context in peculiar ways. Since this is more of an implementational
aspect, we do not detail it futher here.

The choice of which storage scheme to adopt may depend on the con-
crete application. The context-manipulation technique is easier to imple-
ment, since it just requires to alter the context of some nodes, leaving the
rest to the XBW transform procedure, but it does not offer a way to com-
press separately the spines from the tree they were originally embedded in;
with this storage scheme, only one compression algorithm can be used for
the whole tree. On the other hand, with the pruning technique, we can adopt
a general-purpose compression algorithm for the input tree, and use a spe-
cialized one for the spine trees, which may be simpler (i.e. low–entropy) and
able to be compressed with a higher compression ratio; on the other hand,
the pruning technique requires one to devise a way of storing the pruned
tree and the extracted spines apart, which may be a little bit trickier to realize
in practice.





39

Chapter 5

Spine Compression

Having described techniques for the detection and storage of spines, we
turn to the problem of spine compression. Utilizing the technique of pruning
from the previous section for storing spines, we can utilise two distinct algo-
rithms for compressing a tree: one dedicated to the compression of spines,
and the other to the compression of the pruned tree. If the spines we deal
with are regular and long enough, we can produce an actual saving in space.

In recent times, spine trees have made an appearance in the implemen-
tation of functional programming languages [ALV21]. We have already seen
that the detection of spines is asymptotically optimal, producing neither time
nor space overhead, and the implementation we can realize is performant in
practice too. Therefore, if we discovered ways to efficiently compress spines
other than detect them, we would have found ways to improve the compila-
tion or the runtime environment of these functional programming languages.
To that account, we dedicate the next section to tackling one problem, sitting
in the topic of data compression, that we refer to as logarithmic compression.

5.1 Logarithmic Compression

Shannon’s contribution to the study of data communication [Sha48] teaches
us that there is a limit to how far we can losslessly compress a string. Specif-
ically, for a random variable (also referred to as source) X drawing symbols
from an alphabet A = {a1, . . . , an} with individual probabilities p1, . . . , pn
we can’t, on average, compress a string x = x1x2 · · · xt ∈ At with a number
of bits per symbol less than

H (X) = ∑
x∈A

P (x) log
(

1
P (x)

)
(5.1)

where P(x) denotes the probability of the source X emitting the symbol
x. The quantity expressed in (5.1) is called entropy of the source X and is
a characterization independent of the particular string x originated from X.
For a message x of length t we therefore need, on average, about tH (X) bits
to convey it from one sender to one receiver. The specific number of bits
required will depend on the encoding method, or algorithm.

Remember that a spine is nothing more than a pair of strings, or just one
resulting from the concatenation of the two. Therefore, the usual limitations
of data compression apply to spines as to any other textual string.



40 Chapter 5. Spine Compression

The problem we want to tackle is the following. Consider a compres-
sion algorithm C, capable of operating on a variety of sources X. As we
know, C can’t compress, on average, any better than Shannon’s lower bound.
However, is there a limited subset of strings for which C can achieve a com-
pression rate lower than H(X)? (Of course, it might also be the case that
for a given compression algorithm C there exist groups of strings which are
expanded, rather than compressed, by a given factor.) Specifically, can we
achieve some sort of logarithmic compression for a proper subset of all possible
inputs of C?

5.2 Problem Statement

Consider a compression algorithm C, and denote by dom C the domain
upon which compression by C is possible. Suppose, for the sake of generality,
that dom C = A∗, where A is an alphabet set of arbitrary size. We state the
problem of logarithmic compression by C as finding a constant c ≥ 1 and a
subset D ⊆ dom C such that, ∀x ∈ D

l(C(x)) ≤ c log (l(x)) (5.2)

Here, C(x) denotes the application of C to x to yield a compressed version
of x, while l(x) denotes the number of bits needed to represent x with some
coding convention. For example, if |x| = t and every xi ∈ A is encoded
uniformly with m = dlog |A|e bits, then l(x) = |x|m = tm.

One objection that could be moved against this definition is that we are
being too lax by allowing the choice of a constant c. In fact if we, say, were to
pick c = 106, we would consent to the expansion, rather than compression,
of an input string x.

The rationale for considering logarithmic compression minus a constant
factor, however, is that the log function is a slowly-increasing one, and for
inputs x of very large size, logarithmic compression would no longer be pos-
sible. Imagine to have a string x of 109 bytes: if we had no regard for constant
factors (corresponding to implicitly set c = 1), and worked with logarithms
in base 2, then we would force ourselves to compress x with no more than
29 bytes (log2 109 ≈ 29.9). On the other hand, by even setting c to an as low
a value as 2 or 3, we expand the set of strings x that can be logarithmically
compressed by C, without sacrificing much in terms of space performance.

The choice of c is up to the algorithm designer, and is of course fixed
before picking any D ⊆ dom C and x ∈ D.

We can generalize the problem beyond the logarithm function, by consid-
ering an arbitrary function f : R+ → R+. We denote by dom f ,c C and call it
the restriction domain of C by f the set of all inputs x which C compresses up
to c f (l(x)) bits. Formally, given a c ≥ 1

dom f ,c C = {x ∈ dom C | l(C(x)) ≤ c f (l(x))} (5.3)

When we don’t want to be overly precise, or can deduce the value of c
from the context, we’ll simply write dom f C instead of dom f ,c C.



5.3. Candidate Algorithms 41

5.3 Candidate Algorithms

Rather than devise a new compression algorithm from scratch, we will
examine some of the existing ones. The approach we follow is a gradual one,
transitioning from inapplicable solutions to more promising ones.

Huffman Coding To start with, consider the Huffman coding [Huf52; Say18a],
that is, let C be a compression algorithm that compresses according to the
Huffman method. In such a case, domlog,1 C = ∅. In fact, for the Huffman
algorithm to work, each symbol xi is mapped to another symbol yi, possibly
occupying fewer bits. That is, if y = C(x) then |y| = |x| = t, and since we
need at least one bit for each yi (and more than one for at least a given yj,
j 6= i), c log(l(y)) ≤ t � l(y).

If we wanted to stick with the Huffman coding, we could consider the ex-
tended Huffman coding [Say18a], where each chunk of k symbols from x gets
encoded as a single symbol in the output string y. While this could increase
the chances of achieving logarithmic compression, for large values of k we
would need to construct a correspondingly large table of |A|k entries associ-
ating every possible sequence s ∈ Ak to its own codeword. In a networked
setting, transmitting this entire table would soon cancel out any advantage
derived from the text compression.

LZ77 Recall, from section 1.3.3, when we talked about Lempel-Ziv com-
pression methods. In the current paragraph, we will investigate the perfor-
mance of LZ77 [ZL77] with reference to logarithmic compression. As we are
going to see, LZ77 acts as a solution of intermediate effectiveness, since it is
able to perform well only for inputs of a limited size.

We will denote by C the LZ77 compression algorithm, and by x an arbi-
trary input string of n symbols; if the alphabet of x is A, then the binary size
of x, l(x), is given by mn, where m = dlog |A|e.

As we have seen, LZ77 has a limited view into the compressible sequence,
being limited to scan no more than F symbols of its input string. Therefore,
the best it is able to perform is scan its whole input, split it up into n

F “chunks”
and compress those into an equal number of blocks of size d each. Clearly,
as the length n of the sequences we expect to compress increases, we have to
adapt the algorithm parameters accordingly.

To achieve logarithmic compression with LZ77 means to find a constant
c ≥ 1 and a subset D ⊆ dom C such that, ∀x ∈ D, l(C(x)) ≤ c log (mn) (see
(5.2)). LZ77 works by scanning the input string x, dividing it into N chunks
xi of possibly distinct length, and compressing them into fixed-sized blocks
of length d each (recall the definition of d from (1.40))

The binary length, expressed in bits, l(C(x)) of the algorithm output is
therefore given by dN. Since we want it to be no longer than c log(nm) we
have that

dN ≤ c log(nm) (5.4)



42 Chapter 5. Spine Compression

mn (bytes) chunks num. chunks length output size %
210 130 8 41.26
211 140 15 22.22
212 150 28 11.90
213 160 52 6.35
214 170 97 3.37
215 180 183 1.79
216 190 345 0.94
217 200 656 0.50
218 210 1249 0.26
219 220 2384 0.14
220 230 4560 0.07

TABLE 5.1: Maximum number N of allowable splits of x as its
length n increases. As always, m denotes the number of bits
needed to encode one single symbol of x uniformly. In this case,
m = 8bits = 1byte; all other measures are likewise in bytes. d
denotes the size of a single block out of N, and c the multiplica-
tive constant from (5.2). We expressed c in terms of d and set

c = 10d.

or

N ≤ c
d

log (nm) (5.5)

(5.5) tells us how many chunks x can be split into at most. Since mn grows
more quickly than log(mn) for greater values of n, the greater n, i.e. the
longer x, the more difficult it will be to compress x down to a logarithmic
factor. To get a sense of how this is true, take a look at Table 5.1.

In Table 5.1, we set m = 8 bits, B = 1024, F = 512; each row of the table
reports an input length, in bytes, as a power of two, the maximum number of
chunks N that an input of that length can be split into by the LZ77 algorithms,
the average number of symbols per chunk, and the output size, in percent-
age, of a compressed version of the string if the LZ77 algorithm was able to
parse its input in exactly N chunks. As we can see, although the size of these
inputs increases exponentially, the maximum number of allowed chunks for
these inputs is only incremented by a constant of 10 per row. To be able to
consistently achieve logarithmic compression as the input size increases is a
feat getting harder and harder as we progress toward greater input sizes.

To experiment with this situation, we set up a compression experiment
for LZ77. We considered files of exponentially growing size, from 1 KiB = 210

bytes up to 1 MiB = 220 bytes. These files—denoted as LCFs (Logarithmically
Compressible Files)—are formed by a concatenation of a limited number of
chunks, each composed by the repetition of a single character. In the exper-
iment we conducted, we fixed the number of distinct chunks to 10 and their
length equal to B−F

5 , so that about 5 chunks can fit into the window buffer of
LZ77. An example LCF of 1KiB is shown in Figure 5.1.



5.3. Candidate Algorithms 43

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee c
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee c
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee c
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee c
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee c
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee c
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeHHHHHHHHH c
HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH c
HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH c
HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH c
HHHHHHHHHHHHHHHHHHsssssssssssssssssssssssssssssssssssssssss c
sssssssssssssssssssssssssssssssssssssssssssssssssssssssssss c
sssssssssssssssssssssssssssssssssssssssssssssssssssssssssss c
sssssssssssssssssssssssssssssssssssssssssssssssssssssssssss c
sssssssssssssssssssssssssssssssssssssssssssssssssssssssssss c
sssssssssssssssssssssssssssssssssssssssssssssssssssssssssss c
sssssssssssssssssssssssssssssssssssssssssssssssssssssssssss c
sssssssssssssHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH c
HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH c
HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH c
HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

FIGURE 5.1: An example of a LCF (Logarithmically Compress-
ible File) of 1KiB. The name for these files is a convenience,
since LCFs aren’t necessarily logarithmically compressible, and
if they are, they are with respect to one algorithm, without nec-

essarily being with respect to another.

The outcome of our experiment is visualized in Table 5.2, where the first
column denotes the number of bytes for a given LCF and the second the
number of blocks that LZ77 divided its input into. Knowing that each of
these blocks is encoded in d bits, LZ77 would be able to compress these files
with just dN bits. The halfway horizontal line splitting Table 5.2 in two halves
demarcates the extent by which LZ77 is able to achieve logarithmic compres-
sion with c = 10, i.e. about 32KiB. This conclusion is derived from Table 5.1,
where the maximum number of allowed chunks N for an input of 215 bytes is
180. If our requirements aren’t excessive and our expected input is not overly
complex, we can put LZ77 to good use and expect to receive a logarithmic
compression factor.

The BWT–RLE Approach We finally take a look at a candidate algorithm
for the problem of logarithmic compression, given by the combination of the
Burrows-Wheeler Transform [BW94] and run-length encoding, that is fast
and has a wide restriction domain domlogC. To the best of our knowledge,
this is the best solution we could come up with.



44 Chapter 5. Spine Compression

LCF length (bytes) N = parsed blocks num.
210B = 1KiB 5

211 11
212 20
213 37
214 73

215B = 32KiB 147
216 293
217 552
218 1158
219 2243

220B = 1MiB 4514

TABLE 5.2: LZ77 performance on a series of exponentially-
growing LCFs (Logarithmically Compressible Files). Having
set a logarithmic constant c = 10, LZ77 achieves logarithmic
compression up to a file of 32KiB, reflecting the fact that being
able to do so for infinitely growing inputs becomes harder and

harder.

Run-length encoding is a compression scheme acting on runs of repeated
characters. When an input string is formed by a series of identical symbols,
they are substituted by a shorter description, indicating the character that is
being repeated and the number of times it appears in the source text. For
example, if our input string x = AAAAABBB, then C(x) = 5A3B. With this
algorithm, we find it easy to characterize, although in part, the restriction
domain domlog C of C. For example, for sufficiently large values of n

0n ∈ domlog,1 C (5.6)

0n1n ∈ domlog,2 C (5.7)

0n10n ∈ domlog,2 C (5.8)

Run-length encoding is a simple compression algorithm, but its scope of
application may seem limited at first. However, consider the following. On
one hand, the set of logarithmically-compressible strings is known to be “lim-
ited” and somehow “simple”, from the point of view of information theory.
On the other hand, run-length encoding can find application beyond the set
of inputs described in (5.8). For this, it suffices to consider the BWT (Burrows-
Wheeler Transform) [BW94].

The BWT is not a compression algorithm per se, but a transformation be-
tween strings from the same alphabet. Given an input string x, the BWT pro-
duces an output string x′ containing the same symbols as x, but rearranged in
such a way as to form runs of repeated characters. This process improves the
compression ratio of algorithms that apply the MTF (Move to Front) trans-
form, or directly apply run-length encoding, as in our case. Although hard
to analyze mathematically, the combination of run-length encoding and BWT



5.3. Candidate Algorithms 45

makes for a promising practical solution to our problem of logarithmic com-
pression.

As an example, take the string x = ABABABAB . . . AB. If ∀c ∈ A, C(c) = c,
then C(x) = x, meaning that we obtain no compression at all. However,
consider the application of the BWT to x to obtain a string x′. In this case, we
have that

x′ = AAA...A︸ ︷︷ ︸
|x|
2

· BBB...B︸ ︷︷ ︸
|x|
2

(5.9)

We can now apply the run-length encoding to x′; if x′ is long enough,
we get a logarithmic compression; otherwise, an equally good compression
factor.

Run-length encoding would also achieve a better compression ratio, with
lower computational resources consumption, with the type of LCFs (Loga-
rithmically Compressible Files) described in the LZ77 paragraph, since these
files are constituted by a run of repeated characters.

Experimental Outcomes To validate the choice of the BWT plus RLE
approach (BWT–RLE), some experiments were run. As a first attempt, con-
sider an input string sequence of the form x = AB2i

, with i ∈ {1, . . . , 16}, like
the one just mentioned (higher values of i weren’t considered due to com-
putational overhead and lack of performance optimization). The experiment
of compressing this first type of sequence is illustrated in Figure 5.2. With a
tendency such as the one shown in the picture, it also emerges from an ex-
perimental basis that for sufficiently large values of i, ABi ∈ domlog,2C, and
possibly, even that ABi ∈ domlog,1C, where C denotes the BWT–RLE combi-
nation.

Similar results are obtained if we extend the iterated character pair AB to
a longer sequence, like ABCDE. In fact, thanks to the BWT, we have that

BWT(ABCDE·ABCDE·...·ABCDE) = AAA...A︸ ︷︷ ︸
n
5

· BBB...B︸ ︷︷ ︸
n
5

· · · EEE...E︸ ︷︷ ︸
n
5

(5.10)

Figure 5.3 shows how the BWT–RLE algorithm performed with ABCDE2i
.



46 Chapter 5. Spine Compression

8 16 32 64

210B

0

5

10

15

20

25

30

35

uncompressed size

co
m

pr
es

se
d

si
ze

exp. data
2 log2 x
log2 x

FIGURE 5.2: Compression of AB2i
for i ∈ {1, . . . , 16}.

8 16 32 64

210B

0

10

20

30

40

50

uncompressed size

co
m

pr
es

se
d

si
ze

exp. data
3 log2 x
2 log2 x

FIGURE 5.3: Compression of ABCDE2i
for i ∈ {1, . . . , 16}.



47

Chapter 6

Conclusions

Of all the major topics that we addressed in this work—detection, storage
and compression of spines—the one more likely to benefit from extended
research is spine compression. As we have seen, spine detection on XBW
transforms can be solved efficiently, both in time and space, and it is hard
to see any possibility of improvement, since the detection of all spines of
a tree requires a single iteration of the XBW transform. Spine storage has
been given a couple of satisfying solutions, and one would hardly expect
any improvement in the study of spines to originate from here. Still, novel
ideas might still be proposed.

For spine compression, and even more specifically logarithmic compres-
sion, there is still a plethora of different compression algorithms that could be
evaluated and proposed as an alternative. One of these is arithmetic coding
[Say18b], that we haven’t considered just for lack of more time.

An additional problem that was originally proposed by my thesis advi-
sor, but was not given complete attention, is the study of a couple of oper-
ations on labeled trees—of any type, not just spine trees—that were named
construction and destruction.

Formally, the construction operation on trees is an algorithmic procedure
that is specified to receive a tuple of n trees (T1, . . . , Tn), and produce as out-
put a tree T with a single root r and n direct child nodes ci, such that each ci
is the root of the tree Ti. The peculiarity of this operation is that it is required
to operate on the compressed representation of each tree Ti, and produce the
output tree T without decompressing it. This is a bit like homomorphic en-
cryption, where we try to perform some operations on encrypted data with-
out decrypting it, except that we have compression, and not encryption.

Analogously, the destruction operation on trees is a procedure that is
specified to take the compressed representation of a tree T, formed by a sin-
gle root r and n direct child nodes ci, and output a tuple (T1, . . . , Tn), where
each Ti is the compressed sub tree obtained by the child node ci of r. Again,
the implementation specifications require this operation not to decompress
any of the individual trees Ti.

These two problems, construction and destruction of compressed trees,
were considered since the beginning, but never managed to reach a full, ma-
ture solution, mostly because of time limitations. It is likely that an adequate
solution for them would benefit to the same area that motivated the study of
the efficient compression of spines.





49

Chapter 7

Acknowledgements

The following persons have been involved, directly or indirectly, in the
preparation of this work, and I feel an obligation to acknowledge their role
in it.

First, my thesis advisor, professor Ugo Dal Lago1, whose mere presence
was already a merit. I want to thank him for giving me the possibility to
delve in a topic—information theory—that I had longed to study for a long
time, but had not managed to do, either because no formal lectures were
offered for it in my computer science curriculum, or because I never found
the time to self-study it. I hope that someday our department will be able to
equip itself with such a course.

My co-advisor Gabriele Vanoni2 deserves no less gratitude for keeping
a constant pressure on my work, and soliciting for my drafts, even when I
was delaying for them. I thank him for taking the time to read the work and
give direct feedback on it, and also for providing precious indications in the
relevant literature.

My family played an important role throughout all my whole undergrad-
uate (laurea triennale) degree, not only during the time of my thesis, so I want
to also express gratitude for them. Thank you for providing me with the
resources and the time needed to focus on my studies.

1https://www.unibo.it/sitoweb/ugo.dallago/.
2https://www.unibo.it/sitoweb/gabriele.vanoni2/.

https://www.unibo.it/sitoweb/ugo.dallago/
https://www.unibo.it/sitoweb/gabriele.vanoni2/




51

Bibliography

[Nyq24] H. Nyquist. “Certain Factors Affecting Telegraph Speed”. In: Trans-
actions of the American Institute of Electrical Engineers XLIII (1924),
pp. 412–422. DOI: 10.1109/T-AIEE.1924.5060996.

[Har28] R. V. L. Hartley. “Transmission of information”. In: The Bell System
Technical Journal 7.3 (1928), pp. 535–563. DOI: 10.1002/j.1538-
7305.1928.tb01236.x.

[Sha48] C. E. Shannon. “A mathematical theory of communication”. In:
The Bell System Technical Journal 27.3 (1948), pp. 379–423. DOI: 10.
1002/j.1538-7305.1948.tb01338.x.

[Huf52] David A. Huffman. “A Method for the Construction of Minimum-
Redundancy Codes”. In: Proceedings of the IRE 40.9 (1952), pp. 1098–
1101. DOI: 10.1109/JRPROC.1952.273898.

[ZL77] J. Ziv and A. Lempel. “A universal algorithm for sequential data
compression”. In: IEEE Transactions on Information Theory 23.3 (1977),
pp. 337–343. DOI: 10.1109/TIT.1977.1055714.

[ZL78] J. Ziv and A. Lempel. “Compression of individual sequences via
variable-rate coding”. In: IEEE Transactions on Information Theory
24.5 (1978), pp. 530–536. DOI: 10.1109/TIT.1978.1055934.

[Wel84] Welch. “A Technique for High-Performance Data Compression”.
In: Computer 17.6 (1984), pp. 8–19. DOI: 10.1109/MC.1984.1659158.

[BW94] Michael Burrows and David Wheeler. A Block-Sorting Lossless Data
Compression Algorithm. Tech. rep. DIGITAL SRC RESEARCH RE-
PORT, 1994.

[Fer+05] Paolo Ferragina et al. “Structuring Labeled Trees for Optimal Suc-
cinctness, and Beyond”. In: Proceedings of the 46th Annual IEEE
Symposium on Foundations of Computer Science. FOCS ’05. USA: IEEE
Computer Society, 2005, pp. 184–196. ISBN: 0769524680. DOI: 10.
1109/SFCS.2005.69. URL: https://doi.org/10.1109/SFCS.
2005.69.

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of Information The-
ory (Wiley Series in Telecommunications and Signal Processing). USA:
Wiley-Interscience, 2006. ISBN: 0471241954.

[Fer+09] Paolo Ferragina et al. “Compressing and Indexing Labeled Trees,
with Applications”. In: J. ACM 57.1 (Nov. 2009). ISSN: 0004-5411.
DOI: 10.1145/1613676.1613680. URL: https://doi.org/10.
1145/1613676.1613680.

https://doi.org/10.1109/T-AIEE.1924.5060996
https://doi.org/10.1002/j.1538-7305.1928.tb01236.x
https://doi.org/10.1002/j.1538-7305.1928.tb01236.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1978.1055934
https://doi.org/10.1109/MC.1984.1659158
https://doi.org/10.1109/SFCS.2005.69
https://doi.org/10.1109/SFCS.2005.69
https://doi.org/10.1109/SFCS.2005.69
https://doi.org/10.1109/SFCS.2005.69
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1145/1613676.1613680


52 Bibliography

[Say18a] Khalid Sayood. “Chapter 3 - Huffman Coding”. In: Introduction
to Data Compression (Fifth Edition). Ed. by Khalid Sayood. Fifth
Edition. The Morgan Kaufmann Series in Multimedia Information
and Systems. Morgan Kaufmann, 2018, pp. 41–88. ISBN: 978-0-12-
809474-7. DOI: https://doi.org/10.1016/B978-0-12-809474-
7.00003-3. URL: https://www.sciencedirect.com/science/
article/pii/B9780128094747000033.

[Say18b] Khalid Sayood. “Chapter 4 - Arithmetic Coding”. In: Introduction
to Data Compression (Fifth Edition). Ed. by Khalid Sayood. Fifth Edi-
tion. The Morgan Kaufmann Series in Multimedia Information
and Systems. Morgan Kaufmann, 2018, pp. 89–130. ISBN: 978-0-
12-809474-7. DOI: https://doi.org/10.1016/B978-0-12-809474-
7.00004-5. URL: https://www.sciencedirect.com/science/
article/pii/B9780128094747000045.

[ALV21] Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. “The
Space of Interaction”. In: 2021 36th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS). 2021, pp. 1–13. DOI: 10.1109/
LICS52264.2021.9470726.

https://doi.org/https://doi.org/10.1016/B978-0-12-809474-7.00003-3
https://doi.org/https://doi.org/10.1016/B978-0-12-809474-7.00003-3
https://www.sciencedirect.com/science/article/pii/B9780128094747000033
https://www.sciencedirect.com/science/article/pii/B9780128094747000033
https://doi.org/https://doi.org/10.1016/B978-0-12-809474-7.00004-5
https://doi.org/https://doi.org/10.1016/B978-0-12-809474-7.00004-5
https://www.sciencedirect.com/science/article/pii/B9780128094747000045
https://www.sciencedirect.com/science/article/pii/B9780128094747000045
https://doi.org/10.1109/LICS52264.2021.9470726
https://doi.org/10.1109/LICS52264.2021.9470726

	Contents
	List of Figures
	List of Tables
	Introduction
	Historical Notes of Information Theory
	Overview of Information Theory
	Entropy of a Random Variable
	Conditional Entropy
	Relative Entropy and Mutual Information

	Overview of Data Compression
	Models
	Codes
	Compression Algorithms


	Introduction to Spines
	Spine Trees
	Basic Concepts and Notation
	Mathematical Notation
	XBW Transform


	Spine Detection
	XBW- Transform
	Informal Detection Description
	Properties of XBW- Transforms on Spines
	An Algorithm for Spine Detection

	Storage of Spines
	Pruning of Spine Trees
	Context Manipulation of Spine Trees

	Spine Compression
	Logarithmic Compression
	Problem Statement
	Candidate Algorithms

	Conclusions
	Acknowledgements

