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So here we are again, today, on another trail, he thought, reaching for a
cup of precious gas and vacuum, a handful of different fire with which to

run back up cold space, lighting our way, and take to Earth a gift of fire that
might burn forever. Why? He knew the answer before the question.

− Ray Bradbury, The Golden Apples of the Sun



Abstract

Turbulent plasmas inside tokamaks are modeled and studied using guiding center theory,
applied to charged test particles, in a Hamiltonian framework. The equations of motion
for the guiding center dynamics, under the conditions of a constant and uniform magnetic
field and turbulent electrostatic field are derived by averaging over the fast gyroangle, for
the first and second order in the guiding center potential, using invertible changes of co-
ordinates such as Lie transforms. The equations of motion are then made dimensionless,
exploiting temporal and spatial periodicities of the model chosen for the electrostatic
potential. They are implemented numerically in Python. Fast Fourier Transform and its
inverse are used. Improvements to the original Python scripts are made, notably the in-
troduction of a power-law curve fitting to account for anomalous diffusion, the possibility
to integrate the equations in two steps to save computational time by removing trapped
trajectories, and the implementation of multicolored stroboscopic plots to distinguish
between trapped and untrapped guiding centers. The post-processing of the results is
made in MATLAB. The values and ranges of the parameters chosen for the simulations
are selected based on numerous simulations used as feedback tools. In particular, a re-
curring value for the threshold to detect trapped trajectories is evidenced. Effects of
the Larmor radius, the amplitude of the guiding center potential and the intensity of
its second order term are studied by analyzing their diffusive regimes, their stroboscopic
plots and the shape of guiding center potentials. The main result is the identification of
cases anomalous diffusion depending on the values of the parameters (mostly the Lar-
mor radius). The transitions between diffusive regimes are identified. The presence of
highways for the super-diffusive trajectories are unveiled. The influence of the charge on
these transitions from diffusive to ballistic behaviors is analyzed.
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Chapter 1

Introduction

Nowadays, magnetically confined plasmas can not be controlled and exploited up to the
point of properly producing energy with fusion reactors such as tokamaks. Turbulence
within the plasma itself can reduce the effectiveness of magnetic confinement, leading to
a loss of the conditions that allow fusion reactions to take place.
The motion of a charged particle in strong electromagnetic fields is characterized by a
fast cyclotron motion around magnetic field lines and slower drifts associated with the
motion of its guiding center, i.e. the center around which the rotational component of
motion develops. Given that the fast component of motion is, in practice, not relevant
for the analysis of plasma turbulence, reduced kinetic models have been developed in the
late 1980s and numerically studied from the early 2000s.
The hottest regions of plasma are weakly collisional and for this reason they are studied
with with gyrokinetic codes.
Gyrokinetics is nowadays considered to be the standard way to investigate plasma tur-
bulence. It is associated with distribution functions for the gyrocenters, i.e. modified
guiding centers that account for low-frequency electromagnetic fluctuations produced by
plasmas themselves.
Multiple gyrokinetic models exist and they depend on the assumptions made for the
reduction. The main element behind them is the choice of the ordering between the vari-
ous small parameters characterizing elements like the inhomogeneities of the background
electromagnetic field, the amplitude and the fluctuations (in both space and time) of
perturbing electromagnetic fields.
Deriving a gyrokinetic model has to be consistent with the chosen ordering from the
particle to the guiding center dynamics and from the guiding center to the gyrocenter
one. The order associated with the reduction sets the limits of investigation of a given
model. Currently, all gyrokinetic codes are of first or second order in the amplitude of
the perturbing electromagnetic fields, but while the first order is well known, there is
less information about how the second order term affects the dynamics of gyrocenters.
Gyrokinetics is based on guiding center theory, in which particles are tracked using guid-
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ing centers instead of gyrocenters.
The equations for guiding center dynamics can be obtained through changes of coordi-
nates that allow one to move from the point of view of particles to the one of guiding
centers. Working with guiding centers instead of particles has a huge advantage when
numerical simulations are considered, in particular because a lot of computational time
can be saved. In that regard, one of the most important procedures within guiding cen-
ter theory consists in averaging the angle of rotation of particles around their guiding
centers, with the consequence of removing it from the set of variables. In essence, this
is possible because the rotation of charged particles around magnetic field lines is much
faster than their translation and is related to very small spatial scales. Many phenomena
of interest for magnetically confined plasmas, such as turbulence, suit gyrokinetic and
guiding center approaches. Following [Lit80], a Hamiltonian framework has been used
in this work. The cancellation of the gyroangle is done, in practice, with a Lie transform
acting on the Hamiltonian of the system and with integrations over the angle itself (this
is the case, for example, when changes of coordinates are being applied to electrostatic
potentials).
The equations that are obtained allow one to know the position of guiding centers in
the plane perpendicular to the uniform magnetic field lines through spatial derivatives
of potentials and can be implemented with more or less efforts, depending on the elec-
tromagnetic field, into numerical scripts for fusion-related simulations. For this work, a
dimensionless version of the equations, equipped with a simplified version of the electro-
magnetic fields that can be found in real tokamaks, has been implemented in Python. In
particular, the helicoidal magnetic field was turned into a uniform one and measurements
of actual electrostatic fields were used to model an analytic electrostatic potential as a
superposition of trigonometric functions of space and time, with random phases serving
as the tools to reproduce turbulence. The integration of the equations can be a long
process, given the nature of the problem itself, but when there are periodic functions,
the extremely efficient Fast Fourier Transform algorithm can be used (together with its
inverse), making possible to perform derivatives very rapidly. Once the equations and the
tools to numerically solve them are available, then what remains to be done is to write
efficient scripts, select the kinds of outputs they can produce and/or improving already
existing files. The latter is what has been done in this work, in the sense that, starting
from the original versions of the Python scripts, they have been extensively developed
and changed, simulation after simulation, in order to make them faster and more loyal
to the physics involved.
The peculiar feature of the equations for guiding center dynamics associated with this
work is the fact that they involve two orders of the potential. Orders beyond the first are
usually neglected because they are considered to have very small effects. The core idea
for this work was to see if adding the second term, which is more complicated from a
mathematical point of view and slower to numerically calculate, produced some relevant
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effects that could justify the implementation of second order terms into more sophisti-
cated and developed gyrokinetic codes.
The structure of the manuscript is the following:

• In Chapter 2, the physical context of this work is presented in short, with focuses on
nuclear fusion reactions, magnetic confinement of plasmas and motion of charged
particles.

• In Chapter 3, the physical problem associated with this work is outlined and the
equations for guiding center dynamics are derived from scratch. The potential
associated with such equations is characterized to mimic the ones that can be
measured in turbulent plasmas inside tokamaks. Then, quantities and equations
undergo a nondimensionalization procedure.

• In Chapter 4, final forms of the Python scripts are presented and comparisons with
their older versions are made to highlight and justify the modifications that have
been introduced. The MATLAB files used for the post-processing are described,
too. Some interesting results obtained during the tuning of the scripts are shown.

• In Chapter 5, the outputs of the simulations launched with the final versions of the
Python files are extensively analyzed.

• In Chapter 6 a summary of the main results and a general recap is made, while the
Appendices contain some information about the main mathematical and numerical
tools that have been exploited.
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Chapter 2

Controlled thermonuclear fusion and
magnetic plasma confinement

This work is related to turbulent plasmas in tokamaks. In this chapter, an overview
of nuclear fusion, charged particles interacting with electromagnetic fields and magnetic
confinement in experimental fusion reactors will be presented.
This chapter is mostly based on [Mon83], [Cha18], [Fre08], [IRF19], [Vil07] and [HSK00].

2.1 Magnetically confined thermonuclear fusion
It is well known that an atomic nucleus with atomic mass A is composed of Z protons
and N neutrons kept together by bonds. The energy ∆ required to completely break
these bonds is called nuclear binding energy and it corresponds, in different units, to the
mass defect between the nucleus and its nucleons considered as free particles: during
the formation of a nucleus, a fraction of the mass of neutrons and protons is released
as energy. Therefore, in order to get back the starting free particles, the same amount
of energy released during the nucleus creation needs be given to it. The higher the
average nucleon binding energy ∆/A, the more stable the corresponding nucleus. Nuclear
reactions which proceed towards the formation of more stable nuclei than the starting
ones are exothermic and such that the total mass of the reactants is higher than the one
of the products. The mass defect associated with the reaction is equal to the energy
released during the process.
With nuclear fusion it is possible to obtain energy thanks to the combination of two light
nuclei into a new, more stable one. This is the reason why this reaction is of high interest
for humans. Fusion is exploited for military applications inside the hydrogen bomb and
since last century a lot of research has been conducted in order to use it also as a safe and
clean energy source inside power plants. It would represent an important way to both
contrast climate change and meet the always increasing energy demand from humans.
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Figure 2.1: Average binding energy per nucleon, expressed in MeV, as a function of
atomic mass number. Taken from [Sta07].

One of the main reasons why fusion is already used for non-pacific applications only is
the fact that for these, the desired effect is an abrupt release of energy: no particular
control over the process is required. On the contrary, fusion would need to be constantly
monitored inside nuclear plants, as it is common for every kind of energy source. Being
able to properly control fusion reactions is a high demanding task and further research
is required.
In order to undergo fusion, nuclei have to be sufficiently close, but them being positively
charged means that they have the tendency to repel each other. To overcome this
repulsive force, they need to have an energy so high that the system is the state of
plasma: atoms are completely ionized, with electrons detached from their nuclei and
forming, with them, a globally quasi-neutral fluid able to both conduct electricity and
interact with electromagnetic fields.
Inside stars, fusion is a continuous and natural process made possible by the fact that
the plasma spontaneous tendency to disperse and cool down is countered by the force
of gravity. On Earth, however, gravitational confinement, which constitutes a form of
control over the reactions, is not possible and other confinement strategies are needed.
Focusing on thermonuclear controlled fusion, which is of interest for this work, there are
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mainly two types of plasma confinement on Earth:

• Inertial confinement: it consists in keeping millimetric pellets of matter at very
high pressures (∼ 106 times the density of air) and temperatures (∼ 108 T) for a
limited amount of time (∼ 10−11 s).

• Magnetic confinement: it consists in trapping a considerable volume (∼ 103 m3) of
plasma with the help of strong magnetic fields (∼ 10 T) for a considerable amount
of time with respect to inertial confinement (∼ 10 s). Magnetically confined plas-
mas are kept at high temperature (∼ 108 K) and at low density (∼ 10−5 times the
density of air).

This work has to do with magnetically confined plasmas. The next sections of this
chapter complete the physical introduction for the work being presented in this report.

2.2 Nuclear fusion reactions
The three fusion reactions typically taken into account for applications on Earth involve
hydrogen and helium isotopes: deuterium (D), tritium (T) and helium-3 (He3). In
particular, they are the D-D, the D-He3 and the D-T reaction. All of them are exothermic
and feature subatomic particles among the products:

2
1D+ 2

1D →
{

3
2He +

1
0n + 3.27 MeV (50%),

3
1T

+ + 1
1p + 4.03 MeV (50%),

(2.1)

2
1D+ 3

2He → 4
2α + 1

1p + 18.3 MeV, (2.2)
2
1D+ 3

1T → 4
2α + 1

0n + 17.6 MeV. (2.3)

In each of those, around 80% of the energy released is carried by the subatomic particle in
the form of kinetic energy, while the rest is taken by the newly formed nucleus. Assuming
that these reactions take place inside a magnetically confined plasma:

• Neutrons, having no charge, can carry their energy outside the plasma. They can
be used as the media through which extract energy from the system inside a power
plant. However, they could also lead to material activation, meaning that they
consititute a radioactivity enabler.

• Protons and nuclei are kept inside the plasma and so does their energy, which can
be then transferred to other plasma particles via interactions.

Considering the reactants, deuterium can be easily obtained from seawater, while neither
helium-3 nor tritium can be naturally found on Earth. However, it is possible to produce
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tritium, which is radioactive with a very short half life of approximately 12.3 years, by
means of nuclear reactions that involve neutrons and lithium:

6
3Li +

1
0n(slow) → 4

2α + 3
1T + 4.8 MeV, (2.4)

7
3Li +

1
0n(fast) → 4

2α + 3
1T + 1

0n− 2.5 MeV. (2.5)

The process is called tritium breeding and it can take place next to the plasma system,
where D-T reactions take place, if lithium is put around it (neutrons are made available
from the fusion reactions themselves). Even if it is evident that the D-D reaction is the
most appealing in terms of the availability of reactants, the D-T one, thanks to tritium
breeding, does not represent a big problem in that regard, too. The most interesting
reaction overall is in fact the one involving tritium. The reasons for that are related to
two common quantities in nuclear reactor physics: microscopic cross section and reaction
rate.

2.2.1 Microscopic fusion cross section
The probability that a certain fusion reaction takes place is closely related to the concept
of microscopic fusion cross section σ. It has the unit measure of an area and, given that
it is a very small quantity, it is usually expressed in barns:

1 b = 10−28 m2. (2.6)

By looking at Fig. 2.2 it can be noticed that, for a fixed energy value, the D-T reaction
has almost always the highest cross section. Moreover, it can also be obtained for quite
low plasma temperatures compared to the other two, meaning that it is easier to ignite
and less energy demanding.
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Figure 2.2: Microscopic fusion cross section, expressed in barns, as a function of Deuteron
kinetic energy, expressed in keV and that has to be intended as the relative velocity
between the nuclei involved in fusion reactions. Taken from [Fre08].

2.2.2 Fusion reaction rate
In a plasma, the number of fusion reactions per unit time and unit volume (i.e. the fusion
reaction rate) is directly proportional to 〈σv〉v, which is the velocity-averaged product
of fusion cross section with the relative velocity between interacting nuclei.
Again, by looking at Fig. 2.3, conclusions similar to the ones for Fig. 2.2 can be derived:
the D-T reaction has the highest reaction rate and is also available for lower plasma
temperatures than the others.

14



Figure 2.3: Velocity-averaged product between fusion cross section and the relative ve-
locity of the interacting nuclei, expressed in m3/s, as a function of temperature. A
Maxwellian distribution has been assumed for the velocity. Taken from [Fre08].

The plasma in which fusion reactions take place inside experimental nuclear reactors
has to be properly controlled and confined, because otherwise fusion conditions are easily
lost. In order to understand how this can be achieved, the behavior of charged particles
interacting with electromagnetic fields has to be investigated. This is important because
it will also lead to the reason why fusion reactors have certain shapes and characteristics.

2.3 Charged particles in electromagnetic fields
As already mentioned, the nature of plasma puts it in the condition of being able to
interact with electromagnetic fields. In order to describe how plasma magnetic confine-
ment is obtained in practice, it is convenient to start by analyzing the dynamics of single
charged particles. Given a particle of mass m and charge e inside an electric field E and
a magnetic field B, its position r at any given time t can be obtained, for example and
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simplicity, by solving this initial value problem:





m
d2r(t)

dt2
= e

(
E(r, t) +

dr(t)

dt
×B(r, t)

)
,

dr(t)

dt

∣∣∣∣
t=0

= v0,

r(0) = r0.

(2.7)

Given that this work focuses on fusion applications on Earth, in problem 2.7 the effect of
gravitational force is so small that it is neglected (this would not be the case for stars).
In one of the simplest possible cases, when E = 0 and the particle is only subjected to
a constant and uniform magnetic field, it exhibits and helicoidal motion. In particular,
it translates along magnetic field lines while rotating around them.

Figure 2.4: Helicoidal motion of a negatively charged particle with initial velocity neither
parallel nor perpendicular to the unidirectional magnetic field lines. Taken from [Den90].
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The rotational component of motion is associated with a radius, called Larmor radius
or gyroradius, which depends on e, m, the magnitude of B and the component of the
velocity of the particle perpendicular to magnetic field lines:

ρ =
mv⊥
|e|B . (2.8)

If, for example, a Cartesian system of coordinates S = (x, y, z) is taken into account, and
magnetic field lines are only along the z-axis, then the perpendicular velocity at time t
in the position (x, y) of the particle in the transverse plane is:

v⊥ =
√
v2x + v2y . (2.9)

The central point around which each particle rotates is called guiding center. The angle
of gyration (gyroangle) of the particle around its guiding center is usually labelled as θ.
In this particular case, the guiding center translates in the direction of the magnetic field,
but in more complex configurations it could move in a different way. The rate at which
particles rotate around their guiding centers is the absolute value of a quantity named
Larmor frequency and indicated with Ω:

Ω =
eB

m
. (2.10)

The sign of Ω, which depends on e, indicates the direction in which the particle is
rotating, i.e. clockwise or counter-clockwise, as it is shown in Fig. 2.5.

Figure 2.5: Directions of rotation, in the transverse plane, of positively and negatively
charged particles when magnetic field lines are unidirectional and ideally entering the
page.
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2.3.1 Confinement of charged particles
A simple magnetic field, like the one just taken into account, is therefore capable of
simultaneously confining multiple charged particles in the transverse plane, but not in
the direction of magnetic field lines. In order to achieve total confinement, i.e. including
also the third direction, as it is needed for fusion reactors, it could be thought that the
solution would be to move from a unidirectional magnetic field to a circular one. Mag-
netic field lines would then describe a torus in this new congifuration. However, this
modification complicates the dynamics of charged particle and leads to a trochoidal mo-
tion, which is again not associated with total confinement: a translation across magnetic
field lines, called drift, is added to the helicoidal motion. This drift is caused by a spatial
gradient in the magnetic field: being ring-shaped means that it is more intense on the
inside than on the outside. Because of its nature, it is also more properly known as ∇B
drift.
Moreover, if multiple particles are considered at once, the drift would result in a sep-
aration of charges: positive and negative particles move across magnetic field lines in
opposite directions. Such effect would then in turn result in the formation of an electric
field which would determine a complete loss of confinement under the effect of a new
drift, called E×B drift.
The idea is then to twist the toroidal magnetic field lines so that they become helices.
In other words, a rotational transform needs to be applied. Once in this configuration,
which is usually known as magnetic bottle, drift of single particles and global charge
separation are largely countered. Therefore, in theory, a magnetic bottle is capable of si-
multaneously confining multiple charged particles. However, in practice, it is not granted
that magnetic bottles alone can properly confine plasmas: these systems are made up of
so many particles that microscopic electromagnetic interactions can add up to produce
global effects that go against magnetic confinement. In fusion reactors, this would lead
to a position in which fusion can not take place because temperatures would become
too low and plasma state would be lost. In any case, having an helicoidal magnetic
field is one of the basic mandatory requirements for magnetically confined and closed
fusion machines. In the following, few relevant experimental fusion reactors are briefly
described, with a focus on their magnetic fields and how they are generated. Moreover,
since in this work the attention is put on tokamaks, a small section is dedicated to its
instabilities and turbulent regimes.
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2.4 Experimental fusion reactors

2.4.1 Tokamaks

Figure 2.6: Schematic representation of the main components of a tokamak and its
magnetic field. Taken from [HSK00].

Nowadays, the tokamak is the most famous device for magnetically confined fusion. It
has a toroidal shape, much like its helicoidal magnetic field lines wrap around a torus.
Its magnetic field is the result of the superposition of two magnetic fields of different
nature:

• A toroidal magnetic field Bφ, which is generated outside the plasma by ring-shaped
vertical magnets called toroidal field coils. Its field lines surround the torus hole.

• A poloidal magnetic field Bθ, which is obtained with an electromagnetically induced
electric current j inside the plasma. In order to create this large axial current,
the working principle of a transformer is used: the plasma is the single-winding
secondary, while a current flows in the primary winding playing the role of the
inductor. In practice, this transformer action can be obtained with or without an
iron core. In the latter case, there is a central field coil that works as the primary
winding.

On top of these two components, a third magnetic field Bv, generated by horizontal
circular magnets called poloidal field coils, is there to provide a control tool for the
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tokamak. Its presence is vitally important because it can contrast the natural tendency
of a torus-shaped plasma to outward expand. In general, this vertical field is associated
with the equilibrium, the position and the shape of the plasma, other than being capable
of controlling its induced current. These three fields are such that the poloidal one is
the stronger, followed by the toroidal and then by the vertical one. Tokamaks with the
above characteristics can only work in pulsed mode, and not in steady-state, because
the inductive nature of plasma current means it can only be created in presence of time-
varying quantities.

2.4.2 Stability of Tokamaks and plasma turbulence
As already mentioned, in practice magnetic confinement is not applied to single particles
or to a relatively small group of them, but it is instead associated with a plasma, which
contains an enormous amount of interacting charged particles. This complex ionized gas
can very easily be associated with instabilities, both on macroscopic and microscopic
scales, and become turbulent. In general, instability and turbulence in conductive fluids
have fluid and electromagnetic natures. This is not the case with non-conductive fluids
like normal gases and liquids.
There is a group of instabilities that can arise when a conductive fluid is moving inside a
magnetic field. They are called magnetohydrodynamic instabilities and, if uncontrolled,
can cause the plasma to move closer to the machine edges. This can have a huge impact
on the quality of plasma confinement and on temperature, but can also determine the
complete loss of the plasma state. These macroscopic instabilities happen to be heavily
linked with plasma current and pressure, which therefore need to be kept below certain
threshold values.
Then, there are instabilities, which are not suppressed when the above measures are
taken, that are related to plasma gradients of various nature. In general, when spatial
gradients of plasma temperature, plasma pressure or magnetic field become too high,
microscopic instabilities of mostly electrostatic nature appear. Even if they have the
tendency to not significantly influence magnetic fields, they can however add up and
threaten plasma confinement and fusion reactions in the sense that they determine the
formation of a turbulent state. Once in this state, particles with different temperatures
and coming from different plasma regions are mixed, resulting in transport issues regard-
ing particles and energy in terms of how well the plasma is kept under confinement. In
tokamaks, fusion only takes place in the hottest part of the plasma, which by the way
occupies only a very limited volume of the plasma chamber. This core region is separated
from the solid parts of the fusion device, i.e. the tokamak walls, by colder plasma. There-
fore, given that turbulence can facilitate mixing between these two plasma regions, fusion
conditions are more difficult to be met or kept for an appropriate amount of time. In this
sense microinstabilities, by means of turbulence regimes they create, can lead to thermal
isolation problems inside the plasma. Further sources of instability are represented by
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the magnetic configuration itself, which has a direct influence on how particles interact
and, therefore, on their velocity distributions. Being more specific, non-Maxwellian ve-
locity distributions can cause microinstabilities: limiting interactions between particles
reflects on the system ability to reach or maintain an equilibrium distribution.

2.4.3 Stellarators

Figure 2.7: Schematic representation of a section of a classic stellarator. Taken from
[HSK00].

Another widely known fusion device is the stellarator. Differently from a tokamak, its
helical magnetic field is entirely obtained using direct currents flowing in conductors that
surround the plasma.
A classic stellarator has the toroidal field component generated by toroidal coils, like
in a tokamak. However, while tokamaks use plasma currents to generate the poloidal
component, stellarators have coils surrounding the vacuum chamber for that. In theory,
such windings would alone provide both components for the helicoidal magnetic field,
however they would also produce an undesired vertical field. Therefore, to avoid that,
adjacent helical windings require their currents to flow in opposite directions: this elim-
inates the vertical component, but also the toroidal one. It is then clear that toroidal
coils are necessary to keep a toroidal component and, therefore, to ensure the presence
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of a global helical magnetic field. More advanced stellarator configurations realize their
plasma confinement with modular non-planar twisted coils (see Fig. 2.8). Their bizarre
shape makes them able to simultaneously produce both toroidal and poloidal components
of a particularly stable helical magnetic field, which however is different from the one of
tokamaks. In fact, when the two fields are compared from above, the one of tokamaks
resembles a circle, while the one of advanced stellarators is more similar to a polygon.
Moreover, not having to depend on induced plasma currents means that stellarators can
work in continuous mode, which would be more suitable for pacific energy production.

Figure 2.8: Schematic representation of an advanced stellarator. Magnets are in blue,
while the magnetic field is in yellow. Taken from [BK12].

2.4.4 Reversed Field Pinches
The reversed field pinch (RFP) is a toroidal configuration similar to tokamaks, since it
involves plasma currents to produce its magnetic confinement:

• The toroidal field Bϕ is obtained like in tokamaks, but it is weaker and altered by
the strong plasma current generated using trasformer action. This alteration, which
occurs spontaneously only above certain plasma current intensities, determines a
sign change of Bϕ known as field reversal: the toroidal magnetic field at the plasma
center points in a different direction than at the plasma edge. This condition results
in an increased level of plasma stability, other than being associated with a higher
plasma temperature.
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• The poloidal field Bθ is much stronger than in a tokamak and is provided by the
same current responsible for field reversal.

Figure 2.9: Schematic representation of the magnetic field inside a Reversed Field Pinch.
Red lines wrapped around the yellow surface are pointing in a different direction than
the ones around the green surface (field reversal). Taken from [RFX].

Similarly to tokamaks, a third component of the magnetic field is provided by field shap-
ing coils and is intended to have control over plasma equilibrium. The main advantage
of RPFs, compared to tokamaks and stellarators, is that a less intense external magnetic
field is required to meet fusion conditions and therefore their coils can be simpler.

2.5 Equations to describe plasma dynamics
Plasma dynamics can be studied with different kinds of equations, which are associated
with different levels of description. Depending on various factors, they can be more or
less suitable for numerical implementations and for an adequate description of certain
phenomena. The two main physical aspects that have to be kept in mind when dealing
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with plasmas are charged particles and electromagnetic fields. Particles interact with
one another inside the plasma, but also with electromagnetic fields, which in practice are
the superposition of external fields and fields produced by the plasma itself. Levels of
description means that plasma can be investigated by considering every charged particle
of it, or using distribution functions, or even by treating it as a fluid that is capable of
interacting with electromagnetic fields and that is globally quasi-neutral.

2.5.1 Equations of motion for charged particles
The most immediate way to approach plasma description is to use the equations of
motion for every particle, like what has been displayed in the system of equations 2.7.
These equations are coupled with Maxwell’s equations to account for the feedback that
particles have on their superimposed electromagnetic field. Their solution allows one
to know the exact position r(t) and velocity v(t) of each particle in the system at any
given time t. While equations in this case are very straightforward, even more so if
simplified cases with no feedback are considered, there would be an equal number of
vectorial equations and particles: this is not something that computers nowadays can
handle for plasma systems, given that, for example, they can have particle densities of
the order of 1020 m−3.

2.5.2 Kinetic approach
A possibility is then to pass to statistical mechanics: starting from the equations of
motion of single particles, for example in Hamiltonian form, it is possible to derive
the so called kinetic equations. The solution for the most used of these equations is
usually represented by the distribution function for one particle, commonly named just
distribution function and labelled as f(r,v, t). This quantity gives information about
the expected number of particles that have position inside [r + dr] and velocity inside
[v + dv] at an instant of time in [t + dt]. Kinetic equations, in general, can have much
more readable and interpretable results than the previous description. However, in the
form presented up to here and in relation to plasmas, they are still quite challenging for
computers to deal with, given that f(r,v, t) is a function of seven variables. Starting
from distribution functions, it is then possible to obtain a series of useful quantities, such
as plasma temperature. Among kinetic equations used for magnetically confined plasmas,
some of the most relevant are the Vlasov-Maxwell equations, which in essence consist
in the Vlasov equation coupled with Maxwell’s equations to account for electromagnetic
feedback.
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2.5.3 Fluid description
In order to further reduce the required computational effort, losing however on general-
ity and equations simplicity, it is possible to use fluid equations, which can be directly
derived from kinetic equations. The simplest and most widely known fluid model for
magnetically confined plasmas is called magnetohydrodynamics (MHD). In this descrip-
tion, plasma is globally seen as an electrically conductive fluid. MHD equations are
associated with fluid equations and Maxwell’s equations and allow one to describe those
already mentioned macroscopic instabilities that can lead to a complete loss of confine-
ment. Solving fluid equations allows one to directly know a series of mean quantities that
are related to the plasma as a whole. For example, a simple set of MHD equations, when
solved, gives information about the plasma density '(r, t), the plasma velocity V (r, t),
the pressure P (r, t) and the magnetic field B(r, t). By looking at these quantities, it is
immediately clear that they are simpler than f(r,v, t) to compute and analyze, given
that they are functions of just four variables instead of seven.
One of the main restrictions associated with MHD equations is that the plasma needs
to be strongly collisional, i.e. the velocity distribution for its particles ideally is a
Maxwellian. In tokamaks, this limits their applicability to the plasma edges, since in
the hottest areas, where fusion reactions take place, there is no such equilibrium distri-
bution.
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2.5.4 Gyrokinetics framework

Figure 2.10: Comparison between positions, in the transverse plane, of a particle, its
guiding center and the gyrocenter. Inspired by [GL21].

Another way of obtaining more tractable equations without moving away from a ki-
netic description, is to use a reduced set called gyrokinetic equations. When applying
the gyrokinetic description, the area of interest is usually represented by low frequency
phenomena in strongly magnetized plasmas, i.e. phenomena with characteristic times
that are slower than the period associated with the rotational component of motion of
charged particles around magnetic field lines. With respect to kinetic equations, which
are related to the particles themselves, gyrokinetic theory and its distribution functions
have to do with gyrocenters, which in essence are modified guiding centers that account
for low-frequency electromagnetic fluctuations produced by the plasma itself.
Moving from the particles to their guiding centers and then to the fictional gyrocenters
is mathematically challeging and strongly relies on multiple changes of coordinates and
an averaging procedure over the gyroangle θ. However, once all the steps are performed,
there is a concrete gain in the sense that the new distribution function reduces to having
just six variables, since the gyroaveraging procedure just mentioned effectively removes
one of them:

f(r,v, t) −→ fgy(rgy, v‖gy, µgy, t), (2.11)
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where rgy is the position of the gyrocenter, v‖gy is the component of its velocity that
parallel to magnetic field lines and µgy is the magnetic moment of the gyrocenter, which
is associated with the one of the particle:

µ =
mv2⊥
2B

. (2.12)

Not only having reduced the variables simplifies the whole scenario, but it also drastically
reduces computational time during simulations with respect to the kinetic approach. The
main reason for that is that the fast rotational component of motion is not involved in the
computations: in essence, the gyroaveraging procedure has this effect from a numerical
point of view. One of the main gyrokinetic equations is derived as a dynamical reduction
of Vlasov-Maxwell equations.
Given that gyrokinetics is more closely related to particles than fluid descriptions, it is
usually used to study the turbulent dynamics happening in the plasma core of fusion
devices.

2.5.5 Guiding center approach
As briefly hinted, an intermediate step in gyrokinetics is associated with guiding cen-
ters. This work has guiding center theory (see [Lit80])) as its main component. As it
will be later clarified, the intent here is to investigate some test particles in order to
obtain information about particle transport in magnetically confined plasmas under an
electrostatic turbulent regime. To do that, the equations used to describe plasma are
related to single particles, but they are changed through a gyroaveraging procedure so
that the point of view is the one of guiding centers. While embracing this particular
guiding center approach may seem time consuming since distribution functions are not
involved, if its application is properly limited to test particles, which constitute a small
fraction of an actual plasma, then that makes it reasonable.
An additional source of time saving and complexity reduction is created when it is pos-
sible to consider test particles in just two dimensions, which are usually associated with
the plane perpendicular to magnetic field lines. This possibility opens up when the par-
ticles move in a trivial way along the third direction or when that particular component
is of little to no interest. Even at this simplified stage of following very few sample
trajectories, the computational gain offered by the gyroaveraging is well evident.
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Chapter 3

Description of the problem and
theoretical part

It was decided to do this work because in could have been interesting in relation to
the way gyrokinetic theory is built. Gyrokinetic equations are widely used to study
fusion plasmas, with a focus on their turbulent regimes and transport processes. As
discussed in subsection 2.5.4, they involve a gyroaveraging procedure that eliminates θ
from the variables. This particular step is made possible from the use of a canonical
change of coordinates represented by the Lie transform, which is outlined in section A.5
of Appendix A. This transformation is associated with expressing coordinates and, more
in general, observables, as series. Nowadays, the sets of coordinates that are used in
relevant gyrokinetic codes are obtained only by considering the first two terms of these
series, i.e. the zeroth and first order ones. This first order gyrokinetic approach is chosen
because it seems that higher orders are of really low relevance and are therefore negligible.
On top of that, their implementation would complicate the equations and significantly
increase the time required to complete simulations.
However, in parallel, it is evident that fusion devices still experiment particular diffusion
processes that go against magnetic confinement and therefore the possibility to achieve
a proper controlled fusion.
The idea was then to try to create a watered-down physical model of a plasma in a
tokamak and see if adding the second order term of these series had some relevant effect,
possibly leading to a better understanding of particle transport in fusion, further research
and the complete or partial implementation of second-order terms in gyrokinetics codes.
In other words, this work just started with the willingness to explore what adding a
previously neglected term could do, but, in practice, it also opened up to other interesting
aspects which were not expected and that will be extensively presented later.
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3.1 Summary of what has been done
This work is based on [Cha21] for the theoretical part and on the original version of three
Python scripts that are associated with it (they have been updated and can be found at
github.com/cchandre/Guiding-Center/). In essence, they implement the equations of
guiding center dynamics obtained in [Cha21] (see Eq. 3.93) in dimensionless form and
with a specific electrostatic potential (see Eq. 3.152) that mimics the ones associated
with direct measures inside tokamaks [Pet+88]. They allow one to perform simulations
on test particles inside a superimposed electromagnetic field. They have been written by
Cristel Chandre, who is the Research Professor of the Centre National de la Recherche
Scientifique (CNRS) at the Institut de Mathématiques de Marseille.
For this work, I have collaborated with Cristel Chandre himself and Professor Guido
Ciraolo, who currently leads the Groupe Thèorie et Simulation Numérique (GTSN) at
the Institut de Recherche sur la Fusion par Confinement Magnétique (IRFM) of the
CEA (Commissariat à l’Énergie Atomique et aux Énergies Alternatives) at Cadarache.
I worked in direct contact with them during my stage in France at the IRFM.
In short, this is what I have done:

• I studied the main features of tokamaks, charged particles in electromagnetic fields
and guiding center theory. This part was facilitated by my prior university studies
in electromagnetism, particle and radiation transport, plasma physics and, more
in general, nuclear engineering.

• I got acquainted with the mathematical tools needed for this work, which essen-
tially consist in Hamiltonian mechanics, changes of coordinates, Lie Transforms
and Discrete Fourier Transforms. University studies in mathematical methods for
energetics, analytical mechanics and heat transfer were very useful in that regard.
In particular, it was very important for me to have prior knowledge on aspects like
Hamiltonian functions, nondimensionalization of equations, Fourier Analysis and
Bessel functions.

• I learned to read, write and remotely launch Python scripts. I improved my skills
on how to read files and analyze data with MATLAB and I learned how to write
more efficient lines of code, for example by substituting for cycles with specific
functions or by avoiding unnecessary repetitions. My studies on numerical methods
for energetics and on modelling and simulation techniques for energetics gave me
a relevant background on multiple aspects, such as algorithms, discretization and
numerical implementation of equations. Moreover, at university, I did multiple
projects that allowed me to familiarize more rapidly with Python:

– I extensively used MATLAB for projects on computational heat transfer, ther-
mofluid dynamics and control theory. In addition to that, I used MATLAB
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for post-processing of data coming from Monte Carlo simulations associated
with radiation protection. The vast majority of what I know about coding
from scratch comes from these experiences.

– I used the particle-in-cell code XOOPIC for a project on helicon plasma
thrusters. It was helpful for this work because I learned to work by under-
standing and modifying already existing scripts, other than consulting man-
uals.

– I used the Monte Carlo codes PENELOPE (written in FORTRAN) and
OpenMC (written in Python) for radiation protection problems related to
X-rays and neutrons. They were particularly helpful because they taught me
the relevance of the selection of parameters and trained me to find ideas on
how to improve coding in order to save computational time. OpenMC was
also my first contact with Python, but it was a really different experience with
respect to the work of this report.

While it is true that I exploited my prior knowledge, I still had to make many efforts
in order to embrace a huge amount of new physical, mathematical and numerical
tools and concepts. From a purely personal point of view, this work allowed me to
improve under multiple aspects.

• Moving onto more practical things, I made sure that the derivation in a Hamiltonian
framework of the equations for guiding center dynamics reported in [Cha21] did
not contain any mistake. In particular, I re-derived them from scratch using a
very similar approach to the one that is presented in [TC18] and I mixed it with
the short number of steps available in [Cha21]. I produced a detailed and longer
description on how to obtain those equations, which is presented in its entirety in
this Chapter. It was entirely obtained by hand, but for a part regarding changes
of coordinates I used some short MATLAB scripts I wrote.

• The generic electrostatic potential that appears in the equations for guiding center
dynamics was more specifically defined on the basis of [Pet+88] and with the help
of some handwritten notes made by Cristel Chandre. I checked them, too.

• The last part of the derivation was better characterized by adding an explicit nondi-
mensionalization procedure of quantities and equations. It was partially inspired
by [Pet+88] and [Cir+04], but it was almost entirely done from scratch.

• I analyzed and understood the Python scripts associated with the theoretical part.
I found a small error in one the files, which is discussed in subsection 4.8.2.

• I launched many different simulations to test the scripts in their original form and I
wrote some entirely new scripts in MATLAB to analyze the outputs. MATLAB was
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very important as a feedback tool because it allowed me to suggest and implement
some improvements in Python to save computational time and, in general, to better
match the nature of the physical problem that has been studied. As the scripts
evolved in Python, they did the same in MATLAB, up to the point where final
forms were reached in both cases. This part took the vast majority of the time I
spent on this work and served also to properly choose the values (or the range of
values) of the various parameters that characterize the Python scripts.

• With the final versions of the scripts in Python, I launched some simulations whose
results have been analyzed in MATLAB from physical and numerical points of view,
without the need to use them as feedback or diagnostic tools anymore. Even though
most of the results were obtained from these last simulations, some relevant and
interesting information about the modelled physical system were found even during
the time spent on improving the scripts.

The theoretical aspects are dealt with in this Chapter (and in the Appendices), while
the scripts, the way they were improved and the analysis of the outputs are extensively
discussed in Chapters 4 and 5.
The choice of using different programming languages has been made because Python is
free and relatively fast if used properly, but MATLAB is generally better (and easier for
me to use) when dealing with post-processing and data plotting.
The portions of the Python scripts that have been modified are discussed only after the
presentation of their final versions in order to better highlight what has been imple-
mented, even at the cost of potential partial overlapping of contents.

3.2 Description of the problem

3.2.1 General outline of the electromagnetic field
This work exploits guiding center theory and revolves around investigating the turbulent
motion of charged test particles driven by electromagnetic fields that approximate, to
some extent, the ones that can be found in tokamak devices. In particular, this 3D field
consists in the the combinations of:

• A constant and uniform magnetic field:

B = B0k̂. (3.1)

• A 2D turbulent electric field, defined through an electrostatic potential which varies
with time only in the plane transverse to the magnetic field lines (the transverse
plane):

E = −∇Φ(x, y, t). (3.2)
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Cartesian coordinates have been used here (k̂ is the unit vector associated with the z-
axis). The magnetic field can be seen as a very basic simplification of the true helicoidal
field lines associated with plasma confinement in tokamaks, but can also be interpreted
as an approximation of such spiral lines if a limited portion of space is considered, so that
curved and straight lines are almost identical. Such an approximation for the magnetic
field suits better tokamaks whose vessels have large aspect ratios, and it is also done to
decouple the different drift velocities from one another.
This particular choice of the magnetic field helps to keep the equations relatively simple
both to derive and code, while also allowing to more effectively see the effect that varying
the values of parameters has on the results. However, this is one of the points that could
be very well developed in further works so that a more realistic condition is met.
Moving onto the electric field, it is mathematically built in such a way that it resembles
what can be directly measured inside tokamaks as effect of plasma microinstabilities
(when the magnetic field is helicoidal and there is even the effect of stabilizing coils). As
it will be extensively presented later, it is defined via its electrostatic potential, which
in turn is represented as a truncated Fourier series. The specification of Φ(x, y, t) will
be done only after having completed the derivation of the equations for guiding center
dynamics.

3.2.2 Specifications on the test particles
The test particles that are studied in this electromagnetic environment can be thought of
as either samples of the plasma responsible for the electric field, or impurities (which are
part of the plasma too, even if in an unwanted manner). In any case, they are associated
with some important hypotheses and considerations:

• They no feedback on the electromagnetic field. This is an approximation that
has the considerable advantage of not having to consider couplings with Maxwell’s
equations, and it is also not that far from reality. In fact, given that part of the
electromagnetic field is caused by the plasma itself and is modelled on the basis of
real measurements, it is as if the feedback is already taken into account with the
particular choice of the electric field. In this sense, test particles can be simply seen
as specific parts of the plasma that are highlighted during the simulations, emerging
from the hidden plasma that would otherwise manifests itself only through its
electric field.

• When multiple trajectories are simulated at the same time, the particles do not see
each other. There is nothing in the equations or in the the associated scripts that
considers that. Again, what is discussed in the previous point suggests something
that can also serve as a justification for this one.

• Even in the case that, for some reason, either of the previous two points turns out
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to be too unrealistic, the fact that very few test particles are simulated (compared
to the typical particle densities in fusion plasmas) means that the approximations
would have limited relevance;

• Test particles are actually studied by simulating the motion of their guiding centers.
Almost all the mathematical efforts prior to the coding part has to do with this
specific choice, which however turns out to be very powerful.

3.2.3 Reduction from three to two spatial coordinates
As it will become clear in the following parts of this report, another important feature of
this problem is that it can be coded and treated in such a way that it is reduced to con-
sidering just two spatial dimensions out of three. Guiding centers are then individuated
only by two spatial coordinates, i.e. the ones associated with the plane perpendicular to
the direction of magnetic field lines. In short, this is possible because of two aspects: the
position of guiding centers or particles along the direction of magnetic field lines is both
trivial and of little interest. In fact, what matters is how far particles move from their
initial position in the transverse plane. If a certain particle remains close to its initial
transverse position as time passes, then it means that it is properly confined, otherwise
it is possible that, for that particular particle, the turbulent regime has reduced the
effectiveness of confinement offered by the magnetic field.
If the system of Eqs. 2.7 is considered only for the component of r that is parallel to
the magnetic field lines, i.e. z (in a Cartesian frame of coordinates), and Eqs. 3.1 and
3.2 are used, then it is possible to write:






d2z(t)

dt2
= 0,

dz(t)

dt

∣∣∣∣
t=0

= w0,

z(0) = z0,

(3.3)

where w0 is the component of the initial velocity that is parallel to the magnetic field
lines. The solution is trivial and is given by:

z(t) = w0t+ z0. (3.4)

In other words, the position of a particle (and, consequently, of its guiding center) along
z at time t is always straightforward to determine, provided that z0 and w0 are known
(they are both needed at least in this particular formulation of the problem, in which a
second order derivative of z with respect to time has been considered).
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3.3 Obtaining the equations of guiding center dynam-
ics in Hamiltonian formalism

With regard to the theorical portion of this work, it can be ideally split into three parts.
In the very first one, the given equations that describe guiding center dynamics have been
checked by extensively re-deriving them from a canonical Hamiltonian system associated
with a single charged particle inside a generic and externally imposed electromagnetic
field. This was long and necessary, but apart from its intrinsic relevance it could also
be helpful for similar works in the future: it has allowed to outline, later in this report,
a very precise list of mathematical steps that are often not displayed in full length and
that could be used by the reader as a tutorial. This same idea of expliciting as many
details as possible is also repeated for the remaining two theoretical parts.
Anyway, after all of this, the second step has consisted in validating the correct imple-
mentation of the true form of the electrical field, i.e. the truncated Fourier series. In the
third part, the procedure to make the equations and the parameters dimensionless has
been carried out from scratch (very little information was available on this), but in such
a way that everything still worked out properly. In other words, this means that if this
last part was removed, the Python scripts and would have required no modifications at
all: the results of the simulations would have just needed to be accompanied by units of
measurement.

3.3.1 Canonical setting
The starting point to obtain the guiding center equations is the equation of motion for
a single charged particle in an electromagnetic field and its associated Hamiltonian in
canonical formalism. The relevant aspects of Hamiltonian mechanics for this work are
briefly summarized in Appendix A.
The very first step to do is to select a generic 3D orthonormal basis B that helps to
describe the space where the particle moves:

B = (b̂1, b̂2, b̂3). (3.5)

Given that there are N = 3 degrees of freedom and that the focus is just on a single
particle, a total of 2N = 6 canonical variables is needed: three positions and three
conjugated momenta. They can be respectively written in this form:

q(t) =
(
q1(t), q2(t), q3(t)

)
= q1(t)b̂1 + q2(t)b̂2 + q3(t)b̂3, (3.6)

p(t) =
(
p1(t), p2(t), p3(t)

)
= p1(t)b̂1 + p2(t)b̂2 + p3(t)b̂3. (3.7)

In the following, the implicit time dependencies appearing in Eqs. 3.6 and 3.7 will be
omitted for simplicity. The canonical variables can be gathered to form a single vector:

z = (q,p). (3.8)
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This will soon become useful. It is now possible to define both a magnetic and an electric
field with the help of potential functions (see [Str07]):

B(q, t) = ∇×A(q, t), (3.9)

E(q, t) = −∇Φ(q, t)− ∂A(q, t)

∂t
, (3.10)

where A is the vector potential and Φ is the scalar electrostatic potential associated with
E. However, because of what has been depicted in subsection 3.2.1, the form of the two
fields that will be actually used is simpler. In particular, the magnetic field is stationary,
uniform and directed along b̂3 with superimposed amplitude B:

B(q) = (B1, B2, B3) = (0, 0, B) = Bb̂3. (3.11)

By analyzing Eqs. 3.9 and 3.11, it is clear that the vector potential has to be stationary:

A = A(q). (3.12)

Since A has no time dependence, the electric field is reduced just to:

E(q, t) = −∇Φ(q, t). (3.13)

At this point it is possible to write the equation of motion for a single particle of electric
charge e and mass m:

m
d2q

dt2
= e

(
E(q, t) +

dq

dt
×B(q)

)
. (3.14)

Similarly to Eq. 2.7, the effect of gravitational force is neglected since the focus is always
on magnetically confined plasma. For now, no further specifications on Φ are made, but
anyway it will not involve any feedback from the charged particle. The Hamiltonian for
this mechanical system is well known and is given by:

H(q,p, t) =
1

2m

(
p− eA(q)

)2
+ eΦ(q, t). (3.15)

Eq. 3.14 can be obtained from q̇ = {q,H} and ṗ = {p,H}, in which Poisson brackets
act on canonical variables and on the Hamiltonian. They have the canonical variables
themselves as their variables (see Appendix A).
It is now that two subsequent and invertible changes of coordinates are performed. The
first keeps the attention towards the single charged particle, but takes the derivation
into the more familiar Cartesian setting. Instead, the second one shifts the focus to the
guiding center. An additional transformation will be performed later, but it will only
have a concrete effect on the Hamiltonian for the purposes of this work.
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The exploitation of changes of coordinates is associated with the nature of charged par-
ticles inside uniform magnetic fields. Such particles move in a helicoidal way around
magnetic field lines. However, rotation happens on much faster timescales than trans-
lation. As a consequence, in order to study phenomena such as turbulent dynamics, it
is possible to neglect the rotational component of motion by performing an averaging
of fast timescales, which means focusing just on guiding center dynamics. Focusing on
guiding center dynamics means needing a series of invertible changes of coordinates to
move from the positions of particles to the positions of their guiding centers, while aver-
aging of fast timescales means integrating over the gyroangle θ, which is a variable that
appears because of changes of coordinates.

3.3.2 First change of coordinates
The first transformation maps z to a new vector z̄ composed of three positions (exactly
like in z) and three velocities (instead of momenta):

z ←→ z̄ = (x,v), (3.16)






q = (q1, q2, q3),

p = (p1, p2, p3),

←→






x = q = (x1, x2, x3),

v =
1

m
(p− eA(q, t)) = (v1, v2, v3).

(3.17)

Again, there is an implicit time dependence for both x and v, but it is omitted. The
choice of using numeric subscripts even in a Cartesian environment has been done to
facilitate part of the following derivation of the wanted equations, but after a while
(!1,!2,!3) will be relabelled. Moreover, this transformation effectively characterizes B
by showing that it can be seen as an orthonormal Cartesian basis.
The Hamiltonian then becomes:

H(x,v, t) =
1

2
mv2 + eΦ(x, t). (3.18)
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3.3.3 Second change of coordinates

Figure 3.1: Visual representation of the second change of coordinates, from the particle
framework to the guiding center one.

While the first change of coordinates simplifies the Hamiltonian and turn momenta into
velocities, the next transformation seems to complicate them again. This is however a
necessary step to get to the guiding center point of view and is vital to have acceptable
computation times for the simulations. In specific, the three components of the parti-
cle position are shifted to the guiding center ones and then there are three additional
quantities: the Larmor radius (which is a length like positions), the gyroangle and the
component of the particle velocity that is parallel to the magnetic field lines. In can be
noticed that this last variable and its correspondent for the guiding center are almost
the same: the guiding center and the particle move along the direction of the magnetic
field lines with the exact same velocity (the only difference is that they are in different
positions in the transverse plane). In symbols, the new change of coordinates maps z̄ to
¯̄z:

z̄ = (x,v) ←→ ¯̄z = (X, ρ, θ, u‖), (3.19)
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




x = (x1, x2, x3),

v = (v1, v2, v3),

←→






X = x− m

eB
b̂3 × v = (X1, X2, X3),

ρ =
m

|e|B
√
v21 + v22,

θ = − tan−1

(
v2
v1

)
,

u‖ = v3.

(3.20)

It is straightforward to verify by substitution that the Hamiltonian written with these
new variables is:

H(X, ρ, θ, u‖, t) =
e2B2

2m
ρ2 +

1

2
mu2

‖ + eΦ(X, ρ, θ, t). (3.21)

Simple and useful relations that connect the position of the particle and the one of its
guiding center are obtainable by exploiting the Larmor vector ρ:

ρ = (ρ cos θ,−ρ sin θ, 0), (3.22)





x1 = X1 + ρ cos θ,

x2 = X2 − ρ sin θ,

x3 = X3.

(3.23)

It is important to notice that the different signs appearing in the components of the
Larmor vector have to do with the particular definition of the gyroangle, which ideally
starts from the actual Larmor radius pointing outwards, and not viceversa. It is actually
straightforward to verify these signs by trying to decompose the particle distance to the
guiding center using the angle α displayed in Fig. 3.2, which is the opposite of the
gyroangle:

x1 −X1 = ρ cosα = ρ cos (−θ) = ρ cos θ, (3.24)

x2 −X2 = ρ sinα = ρ sin (−θ) = −ρ sin θ. (3.25)
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Figure 3.2: Schematic representation to explain the expression of the Larmor vector
based on the particular choice for the gyroangle.

3.3.4 Determining the Poisson bracket for the guiding center
configuration

After having completed the changes of coordinates, the following important step is to
determine the form of the Poission brackets for the system described through ¯̄zτ . This
has to do with the fact that the temporal evolution of any observable, such as the
coordinates themselves, can be determined once the Hamiltonian and the Poisson bracket
are known. The idea is that this can be exploited to formulate the equations that describe
the guiding center dynamics. All the useful information regarding Poisson brackets and
how to calculate them are displayed in sections A.2-A.4 of Appendix A.
Before going into the mathematical details, it is useful to explicitly show and stress the
other label that has been given to the various coordinates:

z = (q,p) = (z1, ..., z6), (3.26)

z̄ = (x,v) = (z̄1, ..., z̄6), (3.27)
¯̄z = (X, ρ, θ, u‖) = (¯̄z1, ..., ¯̄z6). (3.28)

This is helpful because there will be a lot of indices in the formulae involved in the
following steps, which by the way are a direct application of what can be found in the
above-mentioned Appendix. It is important to underline even here that the procedure
revolves around evaluating the matrices that account for the changes of coordinates.
The last one of those matrices is then used to express the Poisson bracket in the guiding
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center setting.
Proceding step by step, the starting point is to determine the matrix J (z) associated
with the original set of canonical coordinates. Its explicit form is:

J (z) =





{q1, q1} {q1, q2} {q1, q3} {q1, p1} {q1, p2} {q1, p3}

{q2, q1} {q2, q2} {q2, q3} {q2, p1} {q2, p2} {q2, p3}

{q3, q1} {q3, q2} {q3, q3} {q3, p1} {q3, p2} {q3, p3}

{p1, q1} {p1, q2} {p1, q3} {p1, p1} {p1, p2} {p1, p3}

{p2, q1} {p2, q2} {p2, q3} {p2, p1} {p2, p2} {p2, p3}

{p3, q1} {p3, q2} {p3, q3} {p3, p1} {p3, p2} {p3, p3}





. (3.29)

Each element of this matrix represents a Poisson bracket that acts on two out of the
six coordinates of z and that has all these six coordinates as its variables. The generic
element positioned in the k-th row and l-th column can therefore be evaluated with this
formula:

k, l = 1, ..., 6 : Jkl(z) = {zk, zl} =
∂zk
∂q

· ∂zl
∂p

− ∂zk
∂p

· ∂zl
∂q

. (3.30)

Eq. 3.30 is then used to build the second transformation matrix, i.e. the one associated
with the second set of coordinates:

J (z̄) =





{x1, x1} {x1, x2} {x1, x3} {x1, v1} {x1, v2} {x1, v3}

{x2, x1} {x2, x2} {x2, x3} {x2, v1} {x2, v2} {x2, v3}

{x3, x1} {x3, x2} {x3, x3} {x3, v1} {x3, v2} {x3, v3}

{v1, x1} {v1, x2} {v1, x3} {v1, v1} {v1, v2} {v1, v3}

{v2, x1} {v2, x2} {v2, x3} {v2, v1} {v2, v2} {v2, v3}

{v3, x1} {v3, x2} {v3, x3} {v3, v1} {v3, v2} {v3, v3}





. (3.31)

This time, each Poisson bracket acts on two out the six coordinates of z̄, but the variables
are still the ones contained in z. This is caused by the fact that the new set depends
on the old one through the relations 3.17. The expanded version of the generic element
actually shows the presence of J (z) and is given by:

k, l = 1, ..., 6 : Jkl(z̄) = {z̄k, z̄l} =
6∑

m,n=1

∂z̄k
∂zm

Jmn(z)
∂z̄l
∂zn

=
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=
6∑

m,n=1

∂z̄k
∂zm

{zm, zn}
∂z̄l
∂zn

. (3.32)

The third step is exactly the same as the second: Eq. 3.32 serves as the main tool to
create the transformation matrix for the guiding center set of coordinates:

J (¯̄z) =





{X1, X1} {X1, X2} {X1, X3} {X1, ρ} {X1, θ} {X1, u‖}

{X2, X1} {X2, X2} {X2, X3} {X2, ρ} {X2, θ} {X2, u‖}

{X3, X1} {X3, X2} {X3, X3} {X3, ρ} {X3, θ} {X3, u‖}

{ρ, X1} {ρ, X2} {ρ, X3} {ρ, ρ} {ρ, θ} {ρ, u‖}

{θ, X1} {θ, X2} {θ, X3} {θ, ρ} {θ, θ} {θ, u‖}

{u‖, X1} {u‖, X2} {u‖, X3} {u‖, ρ} {u‖, θ} {u‖, u‖}





. (3.33)

The recurring pattern now should be more evident: each Poisson bracket acts on two
out of the six elements of ¯̄z, but the variables are still taken from the previous set z̄:

k, l = 1, .., 6 : Jkl(¯̄z) = {¯̄zk, ¯̄zl} =
6∑

m,n=1

∂z̄k
∂zm

Jmn(z̄)
∂ ¯̄zl
∂z̄n

=

=
6∑

m,n=1

∂ ¯̄zk
∂z̄m

{z̄m, z̄n}
∂ ¯̄zl
∂z̄n

. (3.34)

At this point it is possible to write down the form of the desired Poisson bracket:

{F,G} =
6∑

m,n=1

∂F
¯̄zm

Jmn(¯̄z)
∂G

∂ ¯̄zn
=

∂F

∂ ¯̄z
· J (¯̄z)

(
∂G

∂ ¯̄z

)T

, (3.35)

where F = F (¯̄z) and G = G(¯̄z) are any two observables, i.e. scalar functions of the
chosen set of coordinates. It can be noticed that, in order to properly perform the scalar
product, the first vector on the right-hand side is a row vector, while the second is a
column vector obtained by transposition.
Arrived at this point, the formula for the Poisson bracket is there but actually has not
been evaluated yet. The procedure to obtain the true form could be done manually with
pen and paper. However, it is tricky because it tends to be repetitive and it is easy to
make confusion given the considerable amount of indices and similar symbols. Therefore,
a clever idea is to write small MATLAB scripts that exploit the Symbolic Math Toolbox.
Other than saving time, this has also other advantages:
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• The scripts can be easily recycled and adapted to calculate other Poisson brackets.

• The method ensures that the calculations are correct (provided that the scripts
have no errors).

The explicit forms of the three matrices of transformation are:

J (z) =





0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0




, (3.36)

J (z̄) =





0 0 0
1

m
0 0

0 0 0 0
1

m
0

0 0 0 0 0
1

m

− 1

m
0 0 0

Be

m2
0

0 − 1

m
0 −Be

m2
0 0

0 0 − 1

m
0 0 0





, (3.37)
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J (¯̄z) =





0 − 1

Be
0 0 0 0

1

Be
0 0 0 0 0

0 0 0 0 0
1

m

0 0 0 0 − 1

eρB
0

0 0 0
1

eρB
0 0

0 0 − 1

m
0 0 0





. (3.38)

Thanks to the explicit form of J (¯̄z), the actual expression for the Poisson bracket of Eq.
A.21 is:

{F,G} =
1

eBρ

(
∂F

∂θ

∂G

∂ρ
− ∂F

∂ρ

∂G

∂θ

)
− 1

eB

(
∂F

∂X1

∂G

∂X2
− ∂F

∂X2

∂G

∂X1

)
+

+
1

m

(
∂F

∂X3

∂G

∂u‖
− ∂F

∂u‖

∂G

∂X3

)
. (3.39)
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1 syms P O real
2 syms v_x v_y v_z real
3 syms e B m real
4 syms r_x r_y r_z real
5 b = [0 0 1];
6 r = [r_x r_y r_z];
7 v = [v_x v_y v_z];
8 P = (m/(abs(e)*B))*sqrt(v(1)^2+v(2)^2);
9 O = -atan(v(2)/v(1));

10 z = [r, v];
11 j1 = [ 0, 0, 0, 1/m, 0, 0;...
12 0, 0, 0, 0, 1/m, 0;...
13 0, 0, 0, 0, 0, 1/m;...
14 -1/m, 0, 0, 0, (B*b(3)*e)/m^2, -(B*b(2)*e)/m^2;...
15 0, -1/m, 0, -(B*b(3)*e)/m^2, 0, (B*b(1)*e)/m^2;...
16 0, 0, -1/m, (B*b(2)*e)/m^2, -(B*b(1)*e)/m^2, 0];
17 J1 = j1(1:6,1:6);
18 dP = simplify(gradient(P, z));
19 dO = simplify(gradient(O, z));
20 Di = dP;
21 Dj = dO;
22 for i = 1:6
23 for j = 1:6
24 a(i, j) = Di(i)*J1(i, j)*Dj(j);
25 end
26 end
27 P_O = simplify(sum(a, 'all'));
28 O_P = -P_O;

Listing 1: Selected portion of one of the MATLAB scripts used to obtain transformation
matrices and the Poisson bracket displayed in Eq. 3.39. First, the MATLAB Symbolic
Toolbox is exploited to define ρ, θ and z̄ (i.e. P, O and z, respectively). Then, the
transformation matrix J(z̄) (previously obtained with another MATLAB script) is used
together with the derivatives of ρ and θ to compute {ρ, θ} and {θ, ρ} (i.e. P_0 and O_P),
which are part of J(¯̄z).
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3.3.5 Autonomization of the system and extension of the Poisson
bracket

It can be noticed that the Hamiltonian in Eq. 3.21 has an explicit time dependence
through Φ(X, ρ, θ, t). This has to do with the presence of external forces acting on the
charged particle. In these cases, it is convenient to autonomize the entire system by
introducing a new variable, h, which is canonically conjugated with time t. Therefore,
H is transformed into a new version labelled as H:

H(X, ρ, θ, u‖, t, h) =
e2B2

2m
ρ2 +

1

2
mu2

‖ + eΦ(X, ρ, θ, t) + h. (3.40)

Moreover, an extended set of coordinates, denoted by the subscript τ , can be outlined:

¯̄zτ = (¯̄z, t, h). (3.41)

Because of the autonomization, it is important at this point to also extend the Poisson
bracket that has been obtained in the previous section. Information about this procedure,
which is actually straightforward, can be found in section A.3 of Appendix A together
with a closer look on autonomization. The end result, which is one of those important
formulae that needed a validation, is:

{F ,G}τ =
1

eBρ

(
∂F
∂θ

∂G
∂ρ

− ∂F
∂ρ

∂G
∂θ

)
− 1

eB

(
∂F
∂X1

∂G
∂X2

− ∂F
∂X2

∂G
∂X1

)
+

+
1

m

(
∂F
∂X3

∂G
∂u‖

− ∂F
∂u‖

∂G
∂X3

)
+

(
∂F
∂t

∂G
∂h

− ∂F
∂h

∂G
∂t

)
, (3.42)

where τ denotes the above-mentioned extension, while F and G are two generic observ-
ables of the extended set of coordinates ¯̄zτ . The same result could have been obtained
by slightly modifying the MATLAB script used for the various matrices. However, since
the extension always modifies the Poisson bracket in the same way, regardless of the set
of coordinates, it is far more convenient to manually perform it afterwards.

3.4 Elimination of the gyroangle from the autonomized
Hamiltonian using the Lie Transform

In the previous section, the Hamiltonian has been changed by autonomizing the system.
However, an additional modification is required in the framework of guiding center theory
and that has to do with the gyroangle θ. In fact, it is true that a single guiding center is
associated with a single particle, but it also true that the particle rotates, while the center
does not. It is this rotation that can arise problems when simulations are performed:
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not only it increases computation time by a huge amount, but it is also an unnecessary
phenomenon to process and analyze, given that many relevant plasma phenomena are
much slower than the rotation period. What guiding center theory wants to achieve
could be alternatively explained by saying that it is trying to replicate the screen of a
computer as it is seen by human eyes when it is switched on. The eye only cares about
what is being displayed, but it is not capable of detecting the constant and super fast
refreshing of the screen itself (actually, it is also not interested in that aspect at all). In
this metaphor, the relevant plasma phenomena are what is displayed on screen, while
the screen refreshing is the rotational component of motion.
In this context, the idea is then to eliminate the gyroangle from the Hamiltonian so
that the guiding center dynamics in the transverse plane can be independent of it when
it is evaluated with Poisson brackets that act on H together with either X1 or X2. In
order to achieve this, the Lie Transform has to be taken into account. It can act on any
observable in such a way that the form of Poisson brackets remains unchanged. This
very relevant fact helps to avoid an otherwise possible inconvenience, which is making the
Poisson bracket explicitly dependent of the gyroangle. More details on Lie transforms
can be found in section A.5 of Appendix A.

3.4.1 Introduction of small dimensionless parameters to further
characterize the problem

This part of the derivation opens up with the introduction of a parameter, ε, that
measures how fast the particle rotates around its guiding center. In particular, it is
a dimensionless real number of the order of 1/(Ωζ), where Ω is the Larmor frequency
defined in Eq. 2.10 and ζ is the typical timescale of interest. The Poisson bracket is
affected by ε because the first term on the right-hand side of Eq. 3.42 is associated with
the fast Larmor dynamics of rotation around the guiding center:

1

eBρ

(
∂F
∂θ

∂G
∂ρ

− ∂F
∂ρ

∂G
∂θ

)
−→ 1

εeBρ

(
∂F
∂θ

∂G
∂ρ

− ∂F
∂ρ

∂G
∂θ

)
, (3.43)

{F ,G}τ =
1

εeBρ

(
∂F
∂θ

∂G
∂ρ

− ∂F
∂ρ

∂G
∂θ

)
− 1

eB

(
∂F
∂X1

∂G
∂X2

− ∂F
∂X2

∂G
∂X1

)
+

+
1

m

(
∂F
∂X3

∂G
∂u‖

− ∂F
∂u‖

∂G
∂X3

)
+

(
∂F
∂t

∂G
∂h

− ∂F
∂h

∂G
∂t

)
. (3.44)

In the following, the subscript τ will not be used for simplicity. Other than ε, another
dimensionless parameter that accounts for the scales of variation of the electrostatic
potential Φ is from now on exploited: εδ. The double assumption that is made at this
point consists in having Φ small and slowly varying with both time and the direction of
the magnetic field lines. Effectively, the old potential is turned into εδΦ with the first
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hypothesis, and then is characterized in its variables as εδΦ(X1, X2, εδX3, ρ, θ, εδt) with
the second one.
It can be noticed that the latter assumption is somewhat related to what has been said
in section 3.2.1. Actually, the hypothesis on the electric field in that section is slightly
stricter than what is being considered here. Again, this has to do with the will to keep
the derivation more general than what is really needed for the coding section of this
work. This allows us to possibly recycle what is presented here for other scenarios.
With this second introduction, the autonomized Hamiltonian is evidently changed into:

H(X, ρ, θ, u‖, t, h) =
e2B2

2m
ρ2 +

1

2
mu2

‖ + eεδΦ(X1, X2, εδX3, ρ, θ, εδt) + h. (3.45)

It is now convenient, for later clarity, to label the various terms of H in this way:





H0 = H0(ρ, u‖, h) =
e2B2

2m
ρ2 +

1

2
mu2

‖ + h,

εδH1 = εδH1(X, ρ, θ, t) = eεδΦ(X, ρ, θ, t).

(3.46)

This allows one to write a very compact Hamiltonian:
H = H0 + εδH1, (3.47)

in which a further inspection reveals that H0 could be seen as ε0δH0 and therefore suggests
that the names given to the Hamiltonian terms are based on the instances of εδ and its
exponents in Eq. 3.45.
This last observation is very helpful, since it shows what could be said to be a more
mathematical approach to this portion of the derivation. In fact, the new Hamiltonian
can be seen as a series expansion with all the terms beyond the second equal to zero:

H =
∞∑

n=0

εnδHn. (3.48)

Given that this way of proceeding is more general (even if it contains less physics) and
does not overcomplicate anything, the following steps will be made in an even broader
setting than what has been done up to here. In essence, this simply means that while

H =
1∑

n=0

εnδHn (3.49)

or even

H =
2∑

n=0

εnδHn (with H2 = 0) (3.50)

would be both sufficient for this work, the Hamiltonian will be treated as:

H =
2∑

n=0

εnδHn +O(ε3δ). (3.51)

47



3.4.2 Application of the Lie transform in a more general setting
In this subsection, the Lie transform will be actively used. The fundamental elements are
the Hamiltonian function of Eq. 3.51, the small parameter ε and a generating function
S, which is expressed through a series like H:

S(¯̄zτ ) =
+∞∑

n=0

εnδSn(¯̄zτ ) =
2∑

n=0

εnδSn(¯̄zτ ) +O(ε3δ), (3.52)

which can also be written as:

S = S0 + εδS1 + ε2δS2 +O(ε3δ). (3.53)

At this point, a Lie transform equipped with ε and S is immediately applied to H to get
H̄. However, the effect of this operation, i.e. eliminating θ from the Hamiltonian, will
take several steps to become evident:

H̄ = e−εLSH =
2∑

n=0

(−1)nεn

n!
Ln

SH +O(S3). (3.54)

Expliciting the expression and recalling the definition of the Liouville operator LS lead
to:

H̄ =
(−1)0ε0

0!
L0

SH +
(−1)1ε1

1!
L1

SH +
(−1)2ε2

2!
L2

SH +O(S3) =

= H− ε{S,H}+ 1

2
ε2{S, {S,H}}+O(S3), (3.55)

where the Poisson brackets are all in the form of Eq. 3.44. This expression can be
developed with the help of Eqs. 3.51 and 3.53 and then by assigning new symbols to the
various relevant terms of H̄:

H̄0 = H = H0 + εδH1 + ε2δH2 +O(ε3δ), (3.56)

H̄1 = −ε{S,H} = −ε{(S0 + εδS1 + ε2δS2), (H0 + εδH1 + ε2δH2)}+O(ε3δ), (3.57)

H̄2 =
1

2
ε2{S, {S,H}} =

=
1

2
ε2{(S0 + εδS1 + ε2δS2), {(S0 + εδS1 + ε2δS2), (H0 + εδH1 + ε2δH2)}}+O(ε3δ). (3.58)

The compact version of H̄ is therefore given by:

H̄ = H̄0 + H̄1 + H̄2 +O(S3). (3.59)

It is important to point out here that the O(...) notation does not imply that all the
terms that should go in it are already there. Some parts could still be hidden inside other
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non-explicit or non-developed terms. This is true for what has already been written, but
also for what comes after.
Now that Eq. 3.59 is in place, the next step to do is the elimination of its low-order
fluctuating parts by pushing them to higher orders.
Their removal can be done by choosing the value of the generating function S or, more
precisely, by properly setting its terms: S0, S1 and so on. In order to better characterize
what has just been said, it has to be pointed out that each observable can be seen as
the superposition of a fluctuating and a mean part. In this context, fluctuating means θ-
depending and it is indicated with !̃, while mean stands for θ-depending and its symbol
is 〈!〉θ or, equivalently, 〈!〉. Considering a generic observable F , it can be rewritten as:

F = 〈F〉+ F̃ . (3.60)

The averaging has a specific mathematical expression:

〈F〉 = 1

2π

∫ 2π

0

Fdθ. (3.61)

In the case that the observable is expressed through a Poisson bracket like {F ,G}, then
the adopted notation is slightly different:

{F ,G} = {F ,G}(<>) + {F ,G}(∼), (3.62)

where, as usual, F and G are any two observables themselves. It is easier to see now
that the attention has to be put towards H1, because all the fluctuating terms can only
be there.

Determination of S0

If Eq. 3.57 is partially developed, the first two Poisson brackets that appear feature S0,
with the second of them being θ-dependent.

H̄1 = −ε{S0,H0}− ε{S0, εδH1}− ε{(εδS1 + ε2δS2), (H0 + εδH1)}+O(ε3δ). (3.63)

By looking at that bracket, the conclusion is that eliminating its fluctuating component
requires to choose S0 = 0:

−ε{S0, εδH1} = −εεδ{S0, 〈H1〉} −εεδ{S0, H̃1}︸ ︷︷ ︸
actual fluctuating term

−→

−→ {S0, H̃1} = 0 −→ S0 = 0. (3.64)
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In this way, both the two above-mentioned brackets are cancelled. Moreover, together
with the fact that H2 is null, also other terms are removed from H̄:






H̄0 = H0 + εδH1,

H̄1 = −ε{(εδS1 + ε2δS2), (H0 + εδH1)}+O(ε3δ),

H̄2 =
1

2
ε2{(εδS1 + ε2δS2), {(εδS1 + ε2δS2), (H0 + εδH1)}}+O(ε3δ).

(3.65)

It can be noticed that non-fluctuating parts are removed with procedure, too. However,
defining S1 and S2 is not as easy. It is trickier and requires some further calculations.

Determination of S1

Both H̄1 and H̄2 can be expanded in such a way that more higher-order terms become
explicit. They are then gathered into O(...) notations. Moreover, this allows one to
individuate all the terms containing S1 and therefore creates the condition to properly
set its value as discussed before. H̄1 is now given by:

H̄1 = −ε{(εδS1 + ε2δS2), (H0 + εδH1)}+O(ε3δ) =

= −ε{εδS1,H0}− ε{εδS1, εδH1}− ε{ε2δS2,H0}− ε{ε2δS2, εδH1}+O(ε3δ) =

= −εεδ{S1,H0}− εε2δ{S1,H1}− εε2δ{S2,H0}− εε3δ{S2,H1}+O(ε3δ). (3.66)

H̄2 requires more rearrangments:

H̄2 =
1

2
ε2{(εδS1 + ε2δS2), {(εδS1 + ε2δS2), (H0 + εδH1)}}+O(ε3δ) =

=
1

2
ε2{εδS1, {(εδS1 + ε2δS2), (H0 + εδH1)}}+

+
1

2
ε2{ε2δS2, {(εδS1 + ε2δS2), (H0 + εδH1)}}+O(ε3δ) =

=
1

2
ε2εδ

[
{S1, {εδS1,H0}}+ {S1, {εδS1, εδH1}}+

+{S1, {ε2δS2,H0}}+ {S1, {ε2δS2, εδH1}}
]
+

+
1

2
ε2ε2δ

[
{S2, {εδS1,H0}}+ {S2, {εδS1, εδH1}}+
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+{S2, {ε2δS2,H0}}+ {S2, {ε2δS2, εδH1}}
]
+O(ε3δ) =

=
1

2
ε2ε2δ{S1, {S1,H0}}+

1

2
ε2ε3δ{S1, {S1,H1}}+

+
1

2
ε2ε3δ{S1, {S2,H0}}+

1

2
ε2ε4δ{S1, {S2,H1}}+

+
1

2
ε2ε3δ{S2, {S1,H0}}+

1

2
ε2ε4δ{S2, {S1,H1}}+

+
1

2
ε2ε4δ{S2, {S2,H0}}+

1

2
ε2ε5δ{S2, {S2,H1}}+O(ε3δ) =

=
1

2
ε2ε2δ{S1, {S1,H0}}+

1

2
ε2ε3δ{S1, {S1,H1}}+

+
1

2
ε2ε3δ{S1, {S2,H0}}+

1

2
ε2ε4δ{S1, {S2,H1}}+

+
1

2
ε2ε3δ{S2, {S1,H0}}+

1

2
ε2ε4δ{S2, {S1,H1}}+

+
1

2
ε2ε4δ{S2, {S2,H0}}+

1

2
ε2ε5δ{S2, {S2,H1}}+O(ε3δ). (3.67)

To sum up, the three main terms of H̄ become:





H̄0 = H0 + εδH1,

H̄1 = −εεδ{S1,H0}− εε2δ{S1,H1}− εε2δ{S2,H0}− εε3δ{S2,H1}+O(ε3δ),

H̄2 =
1

2

(
ε2ε2δ{S1, {S1,H0}}+ ε2ε3δ{S1, {S1,H1}}+

+ε2ε3δ{S1, {S2,H0}}+ ε2ε4δ{S1, {S2,H1}}+
+ε2ε3δ{S2, {S1,H0}}+ ε2ε4δ{S2, {S1,H1}}+

+ε2ε4δ{S2, {S2,H0}}+ ε2ε5δ{S2, {S2,H1}}
)
+O(ε3δ).

(3.68)

These equations can and must be simplified by removing all the terms of order ε3δ or
higher: 





H̄0 = H0 + εδH1,

H̄1 = −εεδ{S1,H0}− εε2δ{S1,H1}− εε2δ{S2,H0}+O(ε3δ),

H̄2 =
1

2
ε2ε2δ{S1, {S1,H0}}+O(ε3δ).

(3.69)
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By gathering and ordering the terms using the powers of εδ, H̄ assumes this form:

H̄ = H0 + εδ
(
H1 − ε{S1,H0}

)
+

−ε2δ

(
ε{S1,H1}+ ε{S2,H0}−

1

2
ε2{S1, {S1,H0}}

)
+O(ε3δ). (3.70)

S1 will be chosen to eliminate the fluctuating parts at order εδ in Eq. 3.70.
Before doing that, a particular notation is conveniently introduced here. It can be
recalled in fact that the extended Poisson bracket of Eq. 3.44 has the first term which
contains ε. It can be relabelled in this compact way:

ε−1{F ,G}(θ,ρ) =
1

εeBρ

(
∂F
∂θ

∂G
∂ρ

− ∂F
∂ρ

∂G
∂θ

)
, (3.71)

where {F ,G}(θ,ρ) is called gyrobracket.
With regard to this, a useful consideration is that H0 actually depends on a limited
amount of coordinates: 





∂H0

∂X
= 0,

∂H0

∂Y
= 0,

∂H0

∂Z
= 0,

∂H0

∂θ
= 0,

∂H0

∂t
= 0,

∂H0

∂ρ
=

e2B2

m
ρ.

(3.72)

In fact, all these null derivatives suggest that any Poisson bracket acting on H0 (plus a
generic observable F) can be essentially reduced to the gyrobracket:

{F ,H0} = ε−1{F ,G}(θ,ρ). (3.73)

The term to look for in Eq. 3.70 is the second on the right-hand side, whose fluctuating
part has to be cancelled through S1. Using Eq. 3.73 and the definition of H1:

H1 − {S1,H0}(θ,ρ) −→ 〈H1〉+ H̃1 − {S1,H0}(θ,ρ) −→ H̃1 − {S1,H0}(θ,ρ) = 0, (3.74)
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{S1,H0}(θ,ρ) = H̃1 −→
∂S1

∂θ
=

m

Be
H̃1 −→ S1 =

m

Be

∫
H̃1 dθ. (3.75)

Given the choice of S1, it has to have the same two slow dependencies on t and X3 as
the electrostatic potential contained in H1. This allows one to turn the Poisson brackets
acting on it into gyrobrackets (still multiplied for ε−1). With a bit of substitutions and
semplifictations, the Hamiltonian of Eq. 3.70 is then turned into:

H̄ = H0 + εδ〈H1〉 − ε2δ

(
{S1,H1}(θ,ρ) + {S2,H0}(θ,ρ) −

1

2
{S1, H̃1}(θ,ρ)

)
+O(ε3δ). (3.76)

Determination of S2

Now the terms at order ε2δ are developed so that S2 can be properly chosen. The first
and the third of those terms can be rewritten in such a way that they can be partially
combined. The main steps are shown below:

{S1,H1}(θ,ρ) + {S2,H0}(θ,ρ) −
1

2
{S1, H̃1}(θ,ρ) =

= {S1, 〈H1〉}(θ,ρ) + {S1, H̃1}(θ,ρ) + {S2,H0}(θ,ρ) −
1

2
{S1, H̃1}(θ,ρ) =

= {S1, 〈H1〉}(θ,ρ) + {S2,H0}(θ,ρ) +
1

2
{S1, H̃1}(θ,ρ) =

= {S1, 〈H1〉}(θ,ρ) + {S2,H0}(θ,ρ) +
1

2
{S1, H̃1}(<>)

(θ,ρ) +
1

2
{S1, H̃1}(∼)

(θ,ρ). (3.77)

S2 is then indirectly defined so that the following is true:

{S1, 〈H1〉}(θ,ρ) + {S2,H0}(θ,ρ) +
1

2
{S1, H̃1}(∼)

(θ,ρ) = 0. (3.78)

In short, this is the effect sorted by this choice:

{S1,H1}(θ,ρ) + {S2,H0}(θ,ρ) −
1

2
{S1, {S1,H0}(θ,ρ)}(θ,ρ) −→

1

2
{S1, H̃1}(<>)

(θ,ρ) . (3.79)

Final form of the autonomized Hamiltonian

The surviving term at order ε2δ should now be investigated. To do this, it is helpful to
rearrange the derivatives associated with its Poisson bracket in this way:

∂A
∂α

∂B
∂β

− ∂A
∂β

∂B
∂α

=
∂

∂α

(
A∂B
∂β

)
− ∂

∂β

(
A∂B
∂α

)
, (3.80)
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where A and B are generic scalar functions, while α and β are generic variables. Making
the Poisson bracket explicit and using Eq. 3.80 lead to:

{S1, H̃1}(<>)
(θ,ρ) = −{H̃1, S1}(<>)

(θ,ρ) = − 1

eBρ

1

2π

∫ 2π

0

(
∂H̃1

∂θ

∂S1

∂ρ
− ∂H̃1

∂ρ

∂S1

∂θ

)
dθ =

=
1

eBρ

1

2π

∫ 2π

0

[
∂

∂ρ

(
H̃1

∂S1

∂θ

)
− ∂

∂θ

(
H̃1

∂S1

∂ρ

)]
dθ. (3.81)

Given that θ is an angle, it comes with periodic boundary conditions, which means that
the integral over the gyroangle of a derivative done with respect to the gyroangle itself
is null. In particular: ∫ 2π

0

∂

∂θ

(
H̃1

∂S1

∂ρ

)
dθ = 0. (3.82)

This allows one to write:

−1

2
ε2δ{S1, H̃1}(<>)

(θ,ρ) = − ε2δ
2eBρ

∂

∂ρ

(〈
H̃1

∂S1

∂θ

〉)
= − ε2δ

2eBρ

m

Be

∂

∂ρ
〈H̃2

1〉, (3.83)

where use of Eq. 3.75 has been made. The final form of H̄, with no fluctuating terms
below order ε3δ , can be outlined:

H̄ = H0 + εδ〈H1〉 −
ε2δ

2eBρ

m

Be

∂

∂ρ
〈H̃2

1〉+O(ε3δ) =

= H0 + eεδ〈Φ〉 −
ε2δ

2eBρ

m

Be
e2

∂

∂ρ
〈Φ̃2〉+O(ε3δ).

Here, H1 has been made explicit using its definition from Eqs. 3.46. If now two quan-
tities are introduced, namely the guiding center electrostatic potential Ψ and the real
parameter η, then:

εδΨ = εδ〈Φ〉 −
ηε2δ
B

1

ρ

∂

∂ρ
〈Φ̃2〉, (3.84)

η =
m

2eB
=

1

2Ω
, (3.85)

H̄ = H0 + eεδΨ+O(ε3δ). (3.86)

One of the assumptions was to have Φ small and therefore it was changed into εδΦ: it is
evident that the same is true for Ψ, which in fact appears multiplied by εδ.
The parameter η has the dimension of time and it is close to being the inverse of the
Lamor frequency. In this sense, its absolute value can be seen as double of the time that
a particle needs to completely rotate around its guiding center once. In the Hamiltonian,
it measures the relevance of the second order term. In particular, when η = 0 the second
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order is neglected. It is important to notice that, while for example ρ does not depend
on the charge of the particle, η does. In this sense, it can assume both positive and
negative values and this can lead to the birth of otherwise invisible asymmetries in the
simulations.
A new parameter, which will be extensively used later, is called A and is obtained by
dividing εδΨ for the amplitude of the magnetic field:

εδ
B
Ψ =

εδ
B
〈Φ〉 − η

ε2δ
B2

1

ρ

∂

∂ρ
〈Φ̃2〉, (3.87)

〈Φ〉 = 1

2π

∫ 2π

0

Φdθ, (3.88)

A =
εδ
B
. (3.89)

The terms of Eq. 3.87 are not electrostatic potentials. In fact, they have the dimension of
an electric potential divided by a magnetic field. They are rewritten with the introduction
of A:

AΨ = 〈AΦ〉 − η
1

ρ

∂

∂ρ
〈(AΦ̃)2〉 (3.90)

It is convenient to relabel both potentials to further simplify the notation:





potential: φ =
εδ
B
Φ = AΦ,

guiding center potential: ψ =
εδ
B
Ψ = AΨ.

(3.91)

As it will be later shown in this report, A is the amplitude of the potentials. Using these
last notations, Eq. 3.90 becomes:

ψ = 〈φ〉 − η
1

ρ

∂

∂ρ
〈φ̃2〉. (3.92)

Everything is now in place to finally determine the equations that govern the guiding
center dynamics. This is achieved by combining the Poisson bracket of Eq. 3.44 and the
Hamiltonian of Eq. 3.85:






Ẋ1 = {X1, H̄} = {X1, H̄}(X1,X2) = −εδ
B

∂Ψ

∂X2
= − ∂ψ

∂X2
,

Ẋ2 = {X2, H̄} = {X2, H̄}(X1,X2) =
εδ
B

∂Ψ

∂X1
=

∂ψ

∂X1
,

(3.93)

where !̇ stands for d!/dt, the definition of ψ has been used and {!, H̄}(X1,X2) is asso-
ciated with the second term on the right-hand side of Eq. 3.44.
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It is important to remind here that the quantities of Eqs. 3.93 are associated with the
set of coordinates ¯̄zτ .
ψ can be made explicit to make φ appear:






Ẋ1 = − ∂ψ

∂X2
= − ∂

∂X2

[
〈φ〉 − η

1

ρ

∂

∂ρ
〈φ̃2〉

]
,

Ẋ2 =
∂ψ

∂X1
=

∂

∂X1

[
〈φ〉 − η

1

ρ

∂

∂ρ
〈φ̃2〉

]
.

(3.94)

An additional notation, which will be extensively used, can be taken into consideration:





ψGC1 = 〈φ〉,

ψGC2 = −η
1

ρ

∂

∂ρ
〈φ̃2〉,

(3.95)

where the subscript GC stands for Guiding Center and allows one to visually split ψ
into its first and second order terms (with respect to the powers of φ):

ψ = ψGC1 + ψGC2 . (3.96)

This same idea about the representation of ψ is used in the Python scripts, too. There-
fore, Eqs. 3.94 are turned into:






Ẋ1 = −∂ψGC1

∂X2
− ∂ψGC2

∂X2
,

Ẋ2 = +
∂ψGC1

∂X1
+

∂ψGC2

∂X1
.

(3.97)

The set of equations for the guiding center dynamics that has been obtained validates
the equations that can be found in [Cha21]. The other aspect that required a check is
the actual form assumed by ψ for this particular work.

3.5 Characterization of the guiding center potential
It is evident from the result of the previous section that guiding center dynamics rely on
ψ or, equivalently, on φ. From now on, some coordinates are relabelled:






(x1, x2, x3) = (x, y, z),

(X1, X2, X3) = (X, Y, Z).

(3.98)
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3.5.1 Nondimensionalization of quantities and equations
?? The step associated with the implementation of the theoretical part into the Python
scripts was originally direct, i.e. without an explicit section dedicated to obtaining
dimensionless equations. It was implicit, closely following what can be found in many
related works, where this portion is only briefly mentioned (see [Cir+04] and [Pet+88]).
Here, this procedure is more extensively presented instead.
The primary aspect that drives this section is the mathematical model of the turbulent
electrostatic potential Φ: a truncated series based on the shapes of the electrostatic
potential of real tokamaks. However, it has to be intended as a toy model:

Φ(x, y, t) =
M∑

n,m=1
n2+m2≤M2

1

(n2 +m2)3/2
sin

(
2π

L
(nx+my)− ϕnm − 2π

T
t

)
. (3.99)

In this series:

• The generic modes are represented by the couple (n,m).

• L and T are the spatial and temporal periods of Φ.

• ϕnm is a phase whose value is randomly picked between 0 and 2π. Random phases
are used to emphasize the turbulent nature of the potential.

• There are two limitations on the modes, with the first being (1, 1) ≤ (n,m) ≤
(M,M) and second being n2 +m2 ≤ M2.

Φ is time-dependent and constructed in the transverse plane. In fact, it does not vary
along the direction z of magnetic field lines. This represents something stricter than what
has been said in the previous section, but it still fits that assumption as a particular case.
The following conversion formulae are mostly based on Eq. 3.99 and allow one to get
dimensionless quantities in such a way that the equations for guiding center dynamics
keep their original form:

x̂ = 2π
x

L
, (3.100)

ŷ = 2π
y

L
, (3.101)

X̂ = 2π
X

L
, (3.102)

Ŷ = 2π
Y

L
, (3.103)

ρ̂ = 2π
ρ

L
, (3.104)

57



t̂ = 2π
t

T
, (3.105)

η̂ = 2π
η

T
, (3.106)

B̂ =
B

B0
, (3.107)

Â =
εδ

B̂
= B0A, (3.108)

Φ̂ =
Φ

Φ0
, with Φ0 =

L2

T

B0

2π
, (3.109)

Ψ̂ =
Ψ

Φ0
. (3.110)

In general, !̂ is the dimensionless version of !, while B0 is a rescaling value of the
magnetic field amplitude that can be chosen in accordance with real physical data. By
using these conversions, it is possible to obtain the dimensionless versions of some relevant
equations:

Φ̂ =
M∑

n,m=1
n2+m2≤M2

1

(n2 +m2)3/2
sin (nx̂+mŷ − ϕnm − t̂), (3.111)






˙̂X = − ∂ψ̂

∂Ŷ
,

˙̂Y =
∂ψ̂

∂X̂
.

(3.112)

The dimensionless potentials are given by:

φ̂ =
εδ

B̂
Φ̂, (3.113)

ψ̂ =
εδ

B̂
Ψ̂. (3.114)

For example, this is how the equation for ˙̂X is obtained:

Ẋ1 = −εδ
B

∂Ψ

∂X2
−→ ˙̂X = −T

L

εδ

B0B̂

2π

L
Φ0

∂Ψ̂

∂Ŷ
=

= −T

L

εδ

B0B̂

2π

L
Φ0

∂Ψ̂

∂Ŷ
= −

(
T

L

εδ

B0B̂

2π

L

L2

T

B0

2π

)
∂Ψ̂

∂Ŷ
= −εδ

B̂

∂Ψ̂

∂Ŷ
= − ∂ψ̂

∂Ŷ
. (3.115)

As already hinted, the equations of motion before and after the change of units have the
exact same form. Therefore, starting from the next section of this report:
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• All the new quantities that will be introduced will be considered dimensionless.

• All dimensionless quantities, old and new, will be labelled without the !̂ notation.

This simplification has been made possible by the specific definition of Φ0. Once the
dimensionless results of a simulation are available, it is possible to recover the dimensional
quantities provided that the followings are known, chosen, provided or used:

• The conversion formulae above, i.e. from Eq. 3.100 to Eq. 3.110.

• The values of L, T , B0 and εδ.

• The actual perpendicular plasma temperature (needed for the square root of ve-
locities that features in the definition of the Larmor radius).

• The nature of test particles, i.e. their mass m and charge e.

3.5.2 Model for the dimensionless potential
Based on Eqs. 3.111 and 3.113, the mathematical model for φ, inspired by the one used
in [Pet+88], is given by:

φ(x, y, t) =
M∑

n,m=1
n2+m2≤M2

A

(n2 +m2)3/2
sin(nx+my + ϕnm − t). (3.116)

It is a turbulent potential, in the sense that it is characterized by eddies that cyclically
arise at certain spots in the transverse plane, then move in space over time and eventually
disappear. The presence of random phases ensures some degree of unpredictability that is
responsible for the presence of eddies, while the nondimensionalization procedure makes
it a potential with periods of 2π both in time and space. In particular, a window on
the (x, y) plane that goes from 0 to 2π in each of the two axial directions, which can be
called fundamental square, is sufficient to represent the entire potential. This fact also
has positive implications on the way scripts are written, but this will be discussed later.
It seems appropriate here (and only here) to show what the guidelines of subsection ??
refer to. The rigorous way of writing the dimensionless potential would be:

φ̂(x̂, ŷ, t̂) =
M∑

n,m=1
n2+m2≤M2

Â

(n2 +m2)3/2
sin(nx̂+mŷ + ϕnm − t̂), (3.117)

but both the notation and the full name of the potential would prove to be tedious,
considering the amount of steps to go through.
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Moving away from this brief consideration, the idea is to write φ in terms of a complex
potential φc. This will allow, after some steps, to have an expression for ψ that can be
efficiently introduced in the Python scripts. The starting point for this derivation is the
following formula, which can be be easily verified:

φ(x, y, t) = *
[
φc(x, y)e

−jt
]
= *[φc(x, y)] cos(t)−+[φc(x, y)] sin(t), (3.118)

where real and imaginary parts are indicated with +[!] and *[!], respectively. Moreover,
the complex potential is defined as:

φc(x, y) =
M∑

n,m=1
n2+m2≤M2

Knme
j(nx+my), (3.119)

with
Knm =

Aeϕnm

(n2 +m2)3/2
. (3.120)

Using the Larmor vector of Eq. 3.23, it is possible to rewrite Eqs. 3.117, 3.118 and 3.119
in this way:

φ(x, y, t) = φ(X + ρ cos θ, Y − ρ sin θ, t) =

=
M∑

n,m=1
n2+m2≤M2

A

(n2 +m2)3/2
sin

[
n(X + ρ cos θ) +m(Y − ρ sin θ) + ϕnm − t

]
, (3.121)

φ(x, y, t) = φ(X + ρ cos θ, Y − ρ sin θ, t) =

= *[φc(X + ρ cos θ, Y − ρ sin θ)] cos(t)−+[φc(X + ρ cos θ, Y − ρ sin θ)] sin(t), (3.122)

φc(x, y) = φc(X+ρ cos θ, Y −ρ sin θ) =
M∑

n,m=1
n2+m2≤M2

Knme
j(nX+mY )ej(nρ cos θ−mρ sin θ). (3.123)

3.5.3 First order of the guiding center potential
Because of the relations φ, ψ can be expressed in terms of complex potentials too. First,
ψGC1 is considered:

ψGC1 = ψGC1,1 = *[ψGC1,ce
−jt], (3.124)

with
ψGC1,c =

〈
φc(X + ρ cos θ, Y − ρ sin θ)

〉
=

=
M∑

n,m=1
n2+m2≤M2

Knme
j(nX+mY )

〈
ej(nρ cos θ−mρ sin θ)

〉
. (3.125)
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At this point, the gyroaveraging has to be actively performed. This will make Bessel
functions appear. More informations about them can be found in [Bar05]. In order to
see how this happens, it is important to recall two possible definitions for the Bessel
function of the first kind Jν :

Jν(s) =
1

2π

∫ π

−π

ej(s sinβ−νβ)dβ, (3.126)

Jν(s) =
∞∑

k=0

(−1)k
(s/2)2k+ν

k! Γ(k + ν + 1)
. (3.127)

In these definitions:

• s is a generic variable.

• ν is an integer number that constitutes the order of the Bessel function.

• Γ is the Gamma function.

A useful relation for Γ is the following:

Γ(a+ 1) = a!, ∀a ∈ I. (3.128)

In the particular case of ν = 0, then the two definitions become:

J0(s) =
1

2π

∫ π

−π

ej(s sinβ)dβ =
1

2π

∫ 2π

0

ej(s sinβ)dβ, sin β = cos (β + π/2), (3.129)

J0(s) =
∞∑

k=0

(−1)k
(s/2)2k

(k!)2
. (3.130)

At this point, the gyroaveraging is developed as presented below:
〈
ej(nρ cos θ−mρ sin θ)

〉
=

〈
e
j
√

n2+m2√
n2+m2

(nρ cos θ−mρ sin θ)
〉

=

=

〈
exp

[
jρ
√
n2 +m2

(
n√

n2 +m2
cos θ − m√

n2 +m2
sin θ

)]〉
. (3.131)

The quantities n/
√
n2 +m2 and m/

√
n2 +m2 can be expressed in terms of trigonometric

functions: 




cos θnm =
n√

n2 +m2
,

sin θnm =
m√

n2 +m2
.

(3.132)
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By exploiting Eq. 3.129 and the well known formula for the cosine of a sum

cos(θ + θnm) = cos θ cos θnm − sin θ sin θnm, (3.133)

it is possible to reformulate Eq. 3.131 as:
〈
ej(nρ cos θ−mρ sin θ)

〉
=

〈
ejρ

√
n2+m2 cos(θ+θnm)

〉
=

=
1

2π

∫ 2π

0

ejρ
√
n2+m2 cos(θ+θnm)dθ = J0

(
ρ
√
n2 +m2

)
. (3.134)

In can also be verified that the way in which the integral definition of J0 has been
exploited relies on the value assumed by β:






β = θ + θnm − π/2,

dβ = dθ,

sin β = cos(β + π/2) = cos(θ + θnm).

(3.135)

To further reduce complexity, the notation

snm =
√
n2 +m2 (3.136)

is introduced. Here, the symbol s helps reminding the presence of a square root. This
allows one to write:

J0
(
ρ
√
n2 +m2

)
= J0(ρsnm). (3.137)

Putting everything together gives:

ψGC1,c(X, Y ) =
M∑

n,m=1
n2+m2≤M2

KnmJ0(ρsnm)e
j(nX+mY ). (3.138)

It is important to note here that, since θ has been averaged out, ρ is now considered
a parameter (like A, for example) and not a variable (like X or Y ). Obviously, this is
true even for the following subsection, in which the second order term of the potential is
considered.

3.5.4 Second order of the guiding center potential
The second term associated with ψ is:

ψGC2 = −η
1

ρ

∂

∂ρ
〈φ̃2〉, (3.139)
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in which φ̃ can be written in this form:

〈φ̃2〉 = 〈φ2〉 − 〈φ〉2. (3.140)

Having to work with two terms instead of just one may seem more difficult, but the
absence of !̃ is really helpful. This substitution modifies Eq. 3.139:

ψGC2 = −η
1

ρ

∂

∂ρ

(
〈φ2〉 − 〈φ〉2

)
= −η

1

ρ

∂

∂ρ
〈φ2〉+ η

1

ρ

∂

∂ρ
〈φ〉2. (3.141)

New symbols can be assigned to the two terms on the right-hand side:





ψ(I)
GC2

= +η
1

ρ

∂

∂ρ
〈φ2〉,

ψ(II)
GC2

= +η
1

ρ

∂

∂ρ
〈φ〉2.

(3.142)

This allows one to write:
ψGC2 = −ψ(I)

GC2
+ ψ(II)

GC2
, (3.143)

with some attention that has to be put on the different signs.
It is also useful to give a name to the product between the complex potential φc and e−jt:

ϕc,τ (X, Y, ρ, θ, t) = φc(X, Y, ρ, θ)e−jt, (3.144)

where the subscript τ accounts for the presence of time. This opens up to these relations,
whose validity can be easily verified:





φ = *
[
ϕc,τ

]
,

φ =
ϕc,τ − ϕ∗

c,τ

2j
,

φ2 =
ϕ2
c,τ + ϕ∗2

c,τ − 2ϕc,τϕ∗
c,τ

−4
=

ϕ2
c,τ + ϕ∗2

c,τ − 2|ϕc,τ |2

−4
=

1

2
|ϕc,τ |2 −

1

2
+[ϕ2

c,τ ],

〈φ〉2 = 1

2
|〈ϕc,τ 〉|2 −

1

2
+[〈ϕc,τ 〉2],

〈φ2〉 = 1

2
〈|ϕc,τ |2〉 −

1

2
+[〈ϕ2

c,τ 〉],

(3.145)
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where !∗ is the complex conjugated of !. The last two of these can be implemented
into Eqs. 3.142 so that the following is obtained:






ψ(I)
GC2

= +
η

2ρ

∂

∂ρ

(
〈|ϕc,τ |2〉 − +[〈ϕ2

c,τ 〉]
)
,

ψ(II)
GC2

= +
η

2ρ

∂

∂ρ

(
|〈ϕc,τ 〉|2 −+[〈ϕc,τ 〉2]

)
.

(3.146)

At this point, if the notation
J(!) =

1

ρ

∂

∂ρ

〈
!
〉

(3.147)

is introduced, Eqs. 3.146 become:





ψ(I)
GC2

= +
η

2

(
J
(
|ϕc,τ |2

)
−+[J(ϕ2

c,τ )]

)
,

ψ(II)
GC2

= +
η

2

∂

∂ρ

(
〈ϕc,τ 〉〈ϕ∗

c,τ 〉 − +[〈ϕc,τ 〉2]
)
=

= +
η

2

(
〈ϕ∗

c,τ 〉J(ϕc,τ ) + 〈ϕc,τ 〉J(ϕ∗
c,τ )−+[2〈ϕc,τ 〉J(ϕc,τ )]

)
.

(3.148)

If both terms are put back into Eq. 3.143, then the following expression for the second
order of the potential is obtained:

ψGC2 =
η

2

(
− J

(
|ϕc,τ |2

)
+ +[J(ϕ2

c,τ )]〈ϕ∗
c,τ 〉J(ϕc,τ )+

+〈ϕc,τ 〉J(ϕ∗
c,τ )−+[2〈ϕc,τ 〉J(ϕc,τ )]

)
=

=
η

2

(
− J

(
|ϕc,τ |2

)
+ 〈ϕ∗

c,τ 〉J(ϕc,τ )+

〈ϕc,τ 〉J(ϕ∗
c,τ ) + +

[
J(ϕ2

c,τ )− 2〈ϕc,τ 〉J(ϕc,τ )
])

. (3.149)

3.5.5 Relabelling of some terms to account for their numerical
implementation

The guiding center potential can be written in this form:

ψ = ψGC1,1 + ψGC2,0 + ψGC2,2 , (3.150)
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where 




ψGC1,1 = +*[〈φc〉e−1jt],

ψGC2,0 = −η

2

(
J
(
|φc|2

)
− 〈φ∗

c〉J(φc)− 〈φc〉J(φ∗
c)
)
e−0jt,

ψGC2,2 = +
η

2
+
[(
J(φ2

c)− 2〈φc〉J(φc)
)
e−2jt

]
.

(3.151)

The form used to represent the time-dependent exponential parts has been chosen to
highlight the meaning of subscripts. For example, ψGC2,0 means portion of second order
(2) of the guiding center (GC) potential that has time, in the exponential part, that is
multiplied by zero (0).






Ẋ = −
∂ψGC1,1

∂Y
−

∂ψGC2,0

∂Y
−

∂ψGC2,2

∂Y
,

Ẏ = +
∂ψGC1,1

∂X
+

∂ψGC2,0

∂X
+

∂ψGC2,2

∂X
.

(3.152)

The general idea of the quantities hidden in the system of Eqs. 3.152 is the following:

〈!〉 =
M∑

n,m=1
n2+m2≤M2

!̂nmJ0(ρsnm)e
+j(nX+mY ), (3.153)

J(!) = −
M∑

n,m=1
n2+m2≤M2

!̂nm
snm
ρ

J1(ρsnm)e
+j(nX+mY ), (3.154)

where ! is a generic quantity (e.g. φc) and !̂nm is a generic coefficient (e.g. Knm).
Moreover, if ρ = 0, the numerical implementation of J(!) can exploit this limit:

lim
ρ→0

snm
ρ

J1(ρsnm) =
s2nm
2

. (3.155)

Numerically, left-hand sides of Eqs. 3.153 and 3.154 can be related to their associated
coefficients !̂nm with the help of the Fast Fourier Transform algorithm and its inverse
in two dimensions (see Appendix B and section 4.3).
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Chapter 4

Numerical part

4.1 General overview
This chapter presents the numerical scripts used to carry out the simulations and to
analyze the outputs. The first are associated with three scripts in Python, while the
analysis was done with two scripts in MATLAB in order to produce results and provide
feedback to improve the Python files.
Unless otherwise noted, this chapter is associated with the final versions of the scripts.
However, from time to time, references or comparisons will be made with older versions
of them. In general, the simulations can be divided into three categories: those that allow
one to plot the potentials (potentials mode), those that allow one to plot the temporal
evolution of guiding centers in the transverse plane (poincare mode) and those that
provide information about the way in which these guiding centers diffuse (diffusion
mode).
Some fundamental aspects of this section are the Fast Fourier Transform algorithm in two
dimensions and the anomalous diffusion of particles. They are presented in Appendices
B and C.
As for the three scripts in Python:

• gc2d_dict.py constitutes the interface with the user, where it is possible to set
the values of the parameters for the simulations.

• gc2d.py contains the physics of the problem, in the sense that it has the main
functions to define the guiding center dynamics. In essence, it revolves around the
system of Eqs. 3.152.

• gc2d_modules.py is the one that collects the various steps that the computer must
perform during the simulations. In particular, it involves the methods to integrate
the guiding center dynamics and the instructions to provide the outputs.
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Moving now to the MATLAB scripts, reader_diffusion.m deals with analyzing the out-
puts associated with diffusion simulations, while reader_poincare.m does the same
for poincare simulations. What has just been presented here as an introductory overview
will be fully described in the following.

Figure 4.1: Parameter dictionary as it appears in the README.md file that accompanies
the Python scripts.

4.2 Description of gc2d_dict.py
The gc2d_dict.py file constitutes the parameter dictionary: it allows the user to select
the values of some fundamental parameters. Fig. 4.1 shows a list of parameters with a
short comment, as they are reported in the README.md that can be found in the same
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folder as the Python files. In the following list, the same parameters are described more
in detail:

• Potential: it allows one to select the type of potential. With reference to this
work, this parameter has never been modified and has always been left set as
turbulent so as to implement in Python the turbulent potential equations devel-
oped in Chapter 3. Everything concerning the other mode has not been considered,
neither theoretically nor numerically.

• Method: with this parameter it is possible to choose the type of simulation by
assigning it one of the strings among potentials, diffusion and poincare. The
first works only if Potential = ’turbulent’ and causes the simulation output to
be some plots associated with φ and ψ. In the cases of Method = ’diffusion’
and Method = ’poincare’, the potentials are used to calculate the evolution over
time of guiding centers. However, in the diffusion case the main output is a .txt
file that contains some quantities of interest associated with transport of particles,
while in the poincare case the output is a graph showing the trajectories of guiding
centers in the transverse plane. The three modes and their outputs will be better
characterized in section 4.4.

• FLR: this parameter is associated with a pair of values (one for the first and one for
the second order of ψ), each of which can be a positive integer, ’all’ or ’none’.
FLR stands for Finite Larmor Radius and it allows one to take into account the
approximation that consists in confusing the position of guiding centers with those
of the associated particles. To do this, it is necessary to set FLR = (’none’,
’none’), which means that ρ is zero in all of ψ (in reality ρ can never be zero
when e,m,B > 0). The result of this is that the first order of ψ has J0(0) = 1 and
the second order has snmJ1(nm)/ρ = s2nm/2, as it can be easily checked by looking
at section 3.5.5. In the case of eta = 0, then having no FLR effect leads to ψ = φ
(with the only theoretical difference that one has (X, Y ) and the other (x, y) as
spatial coordinates). If, on the other hand, other values are used (i.e. a positive
and finite Larmor radius is used), then interesting effects of the Bessel functions
are taken into account. In particular, if FLR = (’all’, ’all’), then the Bessel
functions are implemented in their entirety in Python. If a pair of numerical values
is used, then the Bessel functions are approximated with a finite number of terms
of the series with which they can be defined (see section 4.3) In general, more
complicated pairs can be chosen, such as FLR = (’all’, ’none’) or even FLR =
(’none’, 5).

• A: it is the dimensionless amplitude of the turbulent potential and obviously cor-
responds to A from the theory. Single numeric values or multiple values can be
assigned to it. This second case is normally implemented through the
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numpy.linspace function, which allows one to create a vector of equally spaced
elements. If A is a vector, launching a simulation means launching a series of sub-
simulations, one for each value of A. The same is also true when other parameters
are defined as vectors rather than single values. It is important to notice here that
even if A is described as an amplitude, the potentials in which it features could have
smaller actual amplitudes because of other terms, e.g. ejϕnm and (n2 +m2)−3/2.

• rho: it is the Larmor radius associated with the test particles and its values can
be assigned in the same way as for A. It corresponds to ρ. When FLR is not equal
to (0,0), it is possible to confuse the particle with its guiding center by setting
rho = 0 or, more generally, by including the value 0 inside a vector obtained with
numpy.linspace. This last possibility is particularly useful when you want to
compare the effect of a non-zero Larmor radius with a zero one. However, using
rho as a vector does not mean that the test particles have different radii during the
same simulation: each rho value corresponds to a single sub-simulation in which
all test particles have the same Larmor radius.

• eta: it is the coefficient that takes into account the weight of the second order
of ψ in the equations of the guiding centers and its values can be assigned in the
same way as for A. It corresponds to η. Unlike A and rho, eta can also assume
negative values since it depends on the charge of test particles. When eta = 0,
then simulations do not take into account the second order of the potential.

• M: it is the number of modes (along each direction of the transverse plane) with
which the truncated series of the turbulent potential is constructed. It corresponds
to M from the theory. M is one of those parameters that has a default value even
if the user does not directly assign it, and it is 25 in the case of Potential =
’turbulent’.

• Ntraj: it is the number of trajectories of the guiding centers that are simulated
when Method = ’potentials’ or Method = ’poincare’.

• Tf: it is the number of cycles for the integration of the Ntraj trajectories, that
is, it is the number of temporal periods of the potential that are considered for
the simulations. Each of the periods, based on how the nondimensionalization was
carried out in the theory, is worth 2π. At the end of the k-th cycle (or period),
time is equal to 2πk.

• threshold: it is the threshold value used to distinguish between two kinds of
trajectories: trapped, which do not contribute to diffusion, and untrapped. From
now on, trajectory will specifically mean the collection of positions, of a single
guiding center, registered only at t = 0 and and the end of each temporal cycle. The
criterion by which this parameter is used is closely related to gc2d_modules.py,
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while its value can be fixed based on some analysis with MATLAB (see subsection
4.8.4). In any case, it can be thought of as a dimensionless distance in the transverse
plane.

• TwoStepIntegration: it is the parameter that indicates the way in which the
simulation of guiding centers is conducted. If it is set as False, all Ntraj guiding
centers are followed for all Tf cycles. If instead it is set as True, then Ntraj
guiding centers are followed up to an intermediate number of cycles <Tf and then
only the untrapped ones are followed for the remaining cycles. This parameter is
particularly important because it allows one to considerably reduce the time and
computational efforts and therefore will be discussed further on.

• Tmid: it is the intermediate number of cycles (it has to be less than Tf) which is
used if TwoStepIntegration = True. This parameter, like threshold and oth-
ers, can be chosen more efficiently after some post-processing with MATLAB (see
subsection 4.8.5).

• init: with this parameter it is possible to choose the initial conditions to be
associated with the equations for the guiding centers. It fixes the positions from
which the guiding centers start in the transverse plane. If init = ’random’, the
initial positions are chosen at random within the fundamental square [0, 2π]×[0, 2π],
while, if init = ’fixed’, the positions are preset and to form a sort of structured
grid. In the latter case, the number of trajectories that are actually followed may
be different from the one manually assigned to Ntraj. In particular, the new value
of Ntraj becomes equal to the integer part of the square root of Ntraj.

• modulo: when this parameter is set to True and in case of poincare simulations
with, stroboscopic plots are referred to the fundamental square and the modulo
function is used. Standard plots are produced instead if modulo = False.

• N: it is the number of points on the axes of the transverse spatial plane where the
guiding centers are studied. It is also the number of Fourier coefficients associated
with the numerical implementation of the potential. Its default value is 2**10.

• TimeStep: it is the time step used by the Python integrator to solve the equations
for the guiding center position. The smaller this number is, the more accurate and
slower the solution is to obtain.

• SaveData: when this parameter is set to True, then the results of simulations
are saved in a .mat file, which for example can be easily imported in MATLAB
as a workspace. Even in the case of SaveData = False, some data obtained in
diffusion mode are still saved in a .txt file.
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• PlotResults: if True, the results are plotted right after the computation. In
particular, this allows one to plot stroboscopic plots in poincare mode, potentials
in potentials mode and the mean square displacement of guiding centers as a
function of time in diffusion mode.

• Parallelization: this setting requires two assignments and allows one to activate
the parallelization of sub-simulations associated with a single simulations. If the
first value given to is True, then the second value is the number of processes to run
in parallel. Its value has to be a positive integer or ’all’. If the chosen number
is higher than the number of available cores of the computer, then it is reduced
accordingly. Instead, if ’all’ is used, then the number of parallel processes is
exactly equal to the number of available cores.

• dpi: it has to be an integer and it is associated with the resolution of images
obtained with the simulations. The name dpi stands for dots per inch.

• darkmode: if True, all plots have a black background (colors of text and plotted
quantities are automatically set to be readable). Otherwise, if False, plots have a
white background (see Fig. 4.10 as an example).

4.3 Description of gc2d.py
This file contains the definitions useful for calculating the potentials and, consequently,
the evolution over time of guiding centers in the transverse plane. This file is used to
carry out a series of instructions that appear in the gc2d_modules.py file, which is
presented in the 4.4. In addition to physical and modelling aspects, a part of this file is
dedicated to the parallelization of the sub-simulations.

4.3.1 Evaluation of the potentials alternating between physical
and Fourier spaces

The numerical implementation of potentials is done by exploiting the physical space (the
transverse plane) and the Fourier space (the frequency domain). This is done due to the
nature of the turbulent potential φ, which is periodic. The definition of φc, which is part
of φ, can be traced back to a truncated Fourier series and therefore its numerical version
can be associated with Discrete Fourier Transform. φc, and all its related potentials,
can therefore be very well approximated using the 2D Fast Fourier Transform algorithm
(and its inverse).
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Physical and Fourier spaces

The number of points with which the transverse plane is discretized is equal to N × N
and only refers to the fundamental square. This creates a squared structured mesh with
an equal number of points along each coordinate. This mesh refers to both the (x, y)
and the (X, Y ) coordinates of the theory, but in the file the same symbols (x,y) are
used interchangeably. This is possible since the two orders of ψc contain, in their series,
the same exponential part of φc if, in the latter, the instances (x, y) are replaced with
(X, Y ). The equality of exponential parts derives from the averaging procedure which
simultaneously eliminates the angle of rotation from the equations and makes the Larmor
radius a parameter (from being a variable). It should be emphasized that it is possible
to limit the physical mesh just to the fundamental square due to the periodicity of the
potential, which can be greatly exploited by the use of the modulo function in Python,
which is indicated as %.
The physical space defined for this problem is naturally associated with a Fourier space
involving a number of wave numbers and Fourier coefficients equal to the number of
nodes: N × N. Fourier space is used to evaluate potentials and their spatial derivatives,
in a very accurate way, with the help of the Fast Fourier Transform algorithm in two
dimensions (numpy.fft.fft2) and its inverse (numpy.fft.ifft2). It is intuitive that,
in order to have a good degree of approximation of the potential and therefore of the
temporal evolution of guiding centers, it is important that N is very high. When applying
numpy.fft.fft2 to an N × N matrix that approximates a function in physical space, a
matrix of Fourier coefficients of equal size is then obtained in Fourier space.

From φc to an inverse Discrete Fourier Transform in two dimensions

Given what has been just said, it is clear that discretized versions of any potential of the
theory:

• Need to be defined in the N× N points of the fundamental square.

• Need to have N× N coefficients in Fourier space.

The building block of any potential of the theory is φc, which is defined through Eq.
3.119. From that equation, it is evident that:

• The numerical version of φc can be defined, without problems, in the N× N points
of the fundamental square. This means that applying a direct Fourier transform
to it would lead to N× N coefficients in Fourier space.

• The series of φc has no more than M2 coefficients.

• The series of φc is very similar to an inverse Discrete Fourier Transform in two
dimensions.
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Therefore, in order to obtain the matrix that approximates 3.119, what must be solved
is the relation between Knm (i.e. the coefficients of φc) and the Fourier coefficients of
the numerical version of φc. By looking at the expressions for φc and a generic inverse
Discrete Fourier Transform in two dimensions, the solution to the problem is quite easy
to obtain:

φc(x, y) =
M∑

n,m=1
n2+m2≤M2

Knme
j(nx+my), (4.1)

anm =
1

N2

N−1∑

k,l=0

Akle
j(kxn+lym), (4.2)

where N = N, M = M and, therefore, N > M .
The idea is that the series of φc has to be extended without actually changing it:

φc(x, y) =
1

N2

N−1∑

n,m=0

cnme
j(nx+my), (4.3)

where

• cnm = 0 if (n,m) < (1, 1) or (n,m) > (M,M) or n2 +m2 ≥ M2.

• cnm = N2Knm otherwise.

After that, by regularly discretizing (x, y) in the fundamental square with

x = (x0, ..., xN−1) (4.4)

and
y = (y0, ..., yN−1), (4.5)

it is possible to reach the formulation of an inverse Discrete Fourier Transform in two
dimensions for the complex potential. In gc2d.py:

• The numerical matrix that accounts for φc is called phi. It is an inverse Discrete
Fourier Transform in two dimensions.

• The numerical matrix that accounts for cnm/N2 is called fft_phi. It represents
the Fourier coefficients of phi its non-zero terms are associated with Knm.

Put simply, phi is defined in Python by applying the inverse Fast Fourier Transform
algorithm in two dimensions (numpy.fft.ifft2) to (N**2)*fft_phi, i.e. to cnm.
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Definition of the Fourier coefficients

In light of what has been explained, the matrix of Fourier coefficients is defined with a
series of steps, which are presented in Listing 2.

1 import numpy as xp
2 from numpy.fft import fftfreq
3 from gc2d_modules import run_method
4 from gc2d_dict import dict_list
5 xp.random.seed(27)
6 phases = 2 * xp.pi * xp.random.random((self.M, self.M))
7 n = xp.meshgrid(xp.arange(1, self.M+1), xp.arange(1, self.M+1),

indexing='ij')↪→

8 self.xy_ = 2 * (xp.linspace(0, 2 * xp.pi, self.N+1, dtype=xp.float64),)
9 nm = xp.meshgrid( fftfreq (self.N, d=1/self.N), fftfreq (self.N, d=1/self.N),

indexing='ij')↪→

10 sqrt_nm = xp.sqrt(nm[0]**2 + nm[1]**2)
11 fft_phi = xp.zeros((self.N, self.N), dtype=xp.complex128)
12 fft_phi[1:self.M+1, 1:self.M+1] = (self.A / (n[0]**2 +

n[1]**2)**1.5).astype(xp.complex128) * xp.exp(1j * phases)↪→

13 fft_phi[sqrt_nm > self.M] = 0

Listing 2: Portion of gc2d.py. The N × N matrix of Fourier coefficients fft_phi is
defined. The use of numpy.fft.fftfreq is described in Appendix B.

Evaluation of all potentials and their spatial derivatives starting from Fourier
coefficients

By exploiting the N2 Fourier coefficients, the potentials are defined in rapid sequence.
Then, they can be graphically represented or exploited to determine the temporal evo-
lution of trajectories. It is possible to reconstruct the three matrices that are used to
approximate the terms of ψc as shown in Listing 3.

74



1 import numpy as xp
2 from numpy.fft import ifft2
3 from gc2d_modules import run_method
4 from gc2d_dict import dict_list
5 if (self.FLR[0] == 'none') or (self.FLR[0] in range(2)):
6 flr1_coeff = 1
7 elif self.FLR[0] == 'all':
8 flr1_coeff = jv(0, self.rho * sqrt_nm)
9 elif isinstance(self.FLR[0], int):

10 x = sp.Symbol('x')
11 flr_expansion = sp.besselj(0, x).series(x, 0,

self.FLR[0]+1).removeO()↪→

12 flr_func = sp.lambdify(x, flr_expansion)
13 flr1_coeff = flr_func(self.rho * sqrt_nm)
14 fft_phi_gc1_1 = flr1_coeff * fft_phi
15 self.phi = ifft2 (fft_phi) * (self.N**2)
16 self.phi_gc1_1 = ifft2 (fft_phi_gc1_1) * (self.N**2)

Listing 3: Portion of gc2d.py that comes immediately after Listing 2. Fourier coefficients
are exploited to calculate the complex potential φc and ψGC1,c (i.e. phi and phi_gc1_1).
The effect of considering guiding centers is taken into account with flr1_coeff, which
in its full version is associated with J0(ρsnm).
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1 import numpy as xp
2 from numpy.fft import fft2, ifft2
3 from gc2d_modules import run_method
4 from gc2d_dict import dict_list
5 if (self.FLR[1] == \texttt{none}) or (self.FLR[1] in range(3)) or (self.rho

== 0):↪→

6 flr2_coeff = - sqrt_nm**2 / 2
7 else:
8 if self.FLR[1] == \texttt{all}:
9 flr2_coeff = - sqrt_nm * jv(1, self.rho * sqrt_nm) / self.rho

10 elif isinstance(self.FLR[1], int):
11 x = sp.Symbol('x')
12 flr_exp = sp.besselj(1, x).series(x, 0,

self.FLR[1]+1).removeO()↪→

13 flr2_coeff = - sqrt_nm * sp.lambdify(x, flr_exp)(self.rho *
sqrt_nm) / self.rho↪→

14 self.flr2 = lambda psi: ifft2 ( fft2 (psi) * flr2_coeff)
15 self.phi_gc2_0 = - self.eta * (self.flr2(xp.abs(self.phi)**2) -

self.phi_gc1_1 * self.flr2(self.phi.conjugate()) -
self.phi_gc1_1.conjugate() * self.flr2(self.phi)).real / 2

↪→

↪→

16 self.phi_gc2_2 = - self.eta * (self.flr2(self.phi**2) - 2 * self.phi_gc1_1 *
self.flr2(self.phi)) / 2↪→

17 derivs = lambda psi: [xp.pad( ifft2 (1j * nm[_] * fft2 (psi)), ((0, 1),),
mode='wrap') for _ in range(2)]↪→

18 self.dphidx_gc1_1, self.dphidy_gc1_1 = derivs(self.phi_gc1_1)
19 self.dphidx_gc2_0, self.dphidy_gc2_0 = derivs(self.phi_gc2_0)
20 self.dphidx_gc2_2, self.dphidy_gc2_2 = derivs(self.phi_gc2_2)

Listing 4: Portion of gc2d.py that comes immediately after Listing 3. Fourier coefficients
are exploited to calculate the time-independent factors of the second order terms of ψ
(i.e. phi_gc2_0 and phi_gc2_2). The effect of considering guiding centers is taken into
account with flr2_coeff, which in its full version is associated with −(snm/ρ)J1(ρsnm).
Complex potentials are then used to calculate their spatial derivatives at mesh nodes
with the definition of derivs.
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4.3.2 Updating the positions of guiding centers with interpola-
tions in the fundamental square

The three terms of the complex potential ψc can be used to quickly and accurately
calculate, through fast transforms, spatial derivatives of psi at any given point of the
transverse plane (these points, that correspond to the positions of guiding centers at any
given time, are folded into the fundamental square through the modulo function). This
is carried out by exploiting the scipy.interpolate.interpn function, which acts on
the spatial derivatives that are available at the N× N nodes.
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1 import numpy as xp
2 from scipy.interpolate import interpn
3 from gc2d_modules import run_method
4 from gc2d_dict import dict_list
5 def eqn_phi(self, t, y):
6 yr = xp.array(xp.split(y, 2)).transpose() % (2 * xp.pi)
7 dphidx = interpn (self.xy_, self.dphidx_gc1_1, yr)
8 dphidy = interpn (self.xy_, self.dphidy_gc1_1, yr)
9 dy_gc1 = xp.concatenate((-(dphidy * xp.exp(-1j * t)).imag, (dphidx *

xp.exp(-1j * t)).imag), axis=None)↪→

10 if self.GCorder == 1:
11 return dy_gc1
12 elif self.GCorder == 2:
13 dphidx_0 = interpn (self.xy_, self.dphidx_gc2_0, yr)
14 dphidy_0 = interpn (self.xy_, self.dphidy_gc2_0, yr)
15 dphidx_2 = interpn (self.xy_, self.dphidx_gc2_2, yr)
16 dphidy_2 = interpn (self.xy_, self.dphidy_gc2_2, yr)
17 dy_gc2 = xp.concatenate((-dphidy_0.real + (dphidy_2 *

xp.exp(-2j * t)).real, dphidx_0.real - (dphidx_2 *
xp.exp(-2j * t)).real), axis=None)

↪→

↪→

18 return dy_gc1 + dy_gc2

Listing 5: Portion of gc2d.py that defines the equations of guiding center dynamics
that are integrated in gc2d_modules.py with scipy.integrate.solve_ivp. The use of
the modulo function % folds actual positions of guiding centers inside the fundamental
square. There, modular spatial derivatives (needed to update the positions of guiding
centers) are approximated by interpolating the values of derivatives of time-independent
complex potentials known at mesh nodes. Derivatives of first and second orders of ψ are
then obtained by taking time into account.

4.4 Description of gc2d_modules.py
This file contains the instructions to integrate the equations of motion and to produce
the different kinds of outputs, based on the parameter dictionary. This is the file that
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has undergone the greatest amount of changes compared to its original form.

4.4.1 Creating animations of the potentials

Figure 4.2: Potentials for a system with A = 0.700, ρ = 0.115 and η = −0.100. ψ(1) and
ψ(2) correspond to ψGC1 and ψGC2 , respectively.

In the section that is activated only if Method = ’potentials’ and
Potential = ’turbulent’, up to four animated plots are produced: one for φ, one for
ψ, one for the first order of ψ and one for the second order of ψ. All the graphs are
produced within the fundamental square and refer to a single termporal cycle starting
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at t = 0. This representation is sufficient to characterize the potentials given their
periodicity in both space and time. A single frame of the animations is displayed in Fig.
4.2 A graphical extension in space of any of the potentials would result in something
similar to what is shown in Fig. 4.3. The extension is highlighted by the use of gray
scales. The animations are saved as .gif files. The effects on the potentials of the three
fundamental parameters A, rho and eta, as well as of other quantities such as the phases,
are discussed in section 4.7.

Figure 4.3: Partial extension of ψ from Fig. 4.2 outside the fundamental square. This
allows one to visually show the spatial periodicity of potentials. In this case, the potential
covers a square with sides equal to 6π.
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4.4.2 Multicolored stroboscopic plots to highlight different be-
haviors

Figure 4.4: Multicolored non-modular stroboscopic plot obtained with Python using A
= 0.600, rho = 0.015 and eta = 0.000. Trapped trajectories (threshold = 4) are
in magenta, while the others are in blue. The fundamental square is highlighted in red
(this is a minor addition with respect to the original version of Python scripts, but it is
helpful to get an idea of where guiding centers are spawned at t = 0). For better clarity,
only 64 test particles and 500 cycles have been used (TimeStep = 0.05).

When Method = poincare, the aim is to produce stroboscopic plots like the one of Fig.
4.4. A single one of them represents, in the transverse plane, the positions of all guiding
centers at t = 0 and then at the end of each cycle. It should be remembered here that,
in reality, particles do not move only in the transverse plane, but also along the direction
of the magnetic field. However, in addition to the fact that the position along z at time
t is always known in a trivial way, what is of interest is precisely the movement in the
transverse plane, because the more the particles move radially away from their initial
position, the more the effectiveness of the magnetic confinement is reduced.
The word stroboscopic refers to the fact that the positions of guiding centers are recorded
in the graph in synchronism with the period of the potential (i.e. the promoter of the
motion through the system of Eqs. 3.152). Instead, the poincare instance that appears
in the file, which actually stands for Poincaré, refers to the fact that the stroboscopic plots
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are linked to Poincaré sections, in the sense that they are particular cases of Poincaré
sections in which time is considered as the dynamical variable and whose associated
equation is t = 0 (modulo 2π). In the following, the terms stroboscopic plot and Poincaré
section will be used interchangeably. In this work I decided to use multicolored plots
with two colors: one of them is used to highlight the trajectories of trapped particles,
while the other is associated with the untrapped ones. This allows one to better analyze
the system and its behavior.
A more complete investigation of this system is obtained by combining the analysis of
curve fitting plots with the investigation of stroboscopic plots. The former tries to unravel
the general characteristics of the system, while the latter allows one to more specifically
look for what may be the causes of potentially anomalous diffusion.
An aspect that differentiates the needs related to diffusion and poincare methods is
number of trajectories to simulate: to have a curve fitting as accurate as possible, it
is important to have both Ntraj and Tf sufficiently large, while to graphically analyze
trajectories, it is possible to use a smaller number of test particles (Tf still needs to be
high in most cases).
Another relevant consideration is that, having to deal with less trajectories, it could be a
good idea to use single step integrations for stroboscopic plots, so that the true evolutions
of all trajectories can be followed. For example, this could be used to detect those rare
particles that suddenly go from having a non-diffusive behavior to being untrapped.
Last but not least, the tendency is to launch simulations with a high number of sub-
simulations in diffusion mode, while stroboscopic plots are usually produced with more
focused simulations. This helps to make poincare an overall lighter feature to use.
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4.4.3 Standard and modular stroboscopic plots

Figure 4.5: Modular version of the stroboscopic plot of Fig. 4.4.

The periodic nature of the potential makes it possible to create modular stroboscopic
plots in addition to the normal ones. Modular graphs are limited to the fundamental
square and are obtained through the aforementioned modulo function acting on the true
positions of guiding centers. Non-modular figures allow one to have a more immediate
idea of the type of diffusion regime and of the actual distance traveled by the particles,
while the modular ones allow one to focus more on the visual differences between trapped
and untrapped trajectories. In addition, by looking at them, it is possible to qualitatively
identify the degree of chaos of the system with little effort. Although Poincaré sections
can be produced with Python, notably with the package matplotlib, they are better
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analyzed through MATLAB for a variety of reasons, such as the ability to interact more
easily with figures and the possibility to highlight trajectories with more colors, even
according to criteria different from the trapped-untrapped one used in Python.
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1 import numpy as xp
2 import matplotlib.pyplot as plt
3 from matplotlib.patches import Rectangle
4 cs = ['w', 'k', 'b', 'm']
5 if case.Method == 'poincare':
6 if case.PlotResults:
7 fig, ax = plt.subplots(1, 1)
8 ax.set_xlabel('$x$')
9 ax.set_ylabel('$y$')

10 if case.modulo:
11 ax.plot(x_un % (2 * xp.pi) , y_un % (2 * xp.pi) ,

'.', color=cs[2], markersize=2,
markeredgecolor='none')

↪→

↪→

12 ax.plot(x_tr % (2 * xp.pi) , y_tr % (2 * xp.pi) ,
'.', color=cs[3], markersize=2,
markeredgecolor='none')

↪→

↪→

13 ax.set_xlim(0, 2 * xp.pi)
14 ax.set_ylim(0, 2 * xp.pi)
15 if not case.modulo:
16 ax.plot(x_un, y_un, '.', color=cs[2], markersize=2,

markeredgecolor='none')↪→

17 ax.plot(x_tr, y_tr, '.', color=cs[3], markersize=2,
markeredgecolor='none')↪→

18 ax.add_patch(Rectangle((0, 0), 2 * xp.pi, 2 * xp.pi,
facecolor='None', edgecolor='r', lw=2))↪→

Listing 6: Selected portion of gc2d_modules.py that is used to produce modular and
non-modular stroboscopic plots. If darkmode = False, trapped trajectories (i.e. x_tr
and y_tr are in magenta, while the untrapped ones (i.e. x_un and y_un) are in blue.
If modulo = True, then the modulo function % is used to fold actual trajectories into
the fundamental square. If modulo = False, the edges of the fundamental square are
highlighted in red.
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4.4.4 Integration of the equations of motion in one or two steps
The second part of the file involves the integration of the equations for the guiding
centers. It is associated with both Method = ’diffusion’ and Method = ’poincare’.
The user, through gc2d_dict.py, can choose whether to carry out the integration in one
or two steps. In the first case, the idea is that Ntraj guiding centers are followed during
all the Tf cycles. Instead, in the second case:

1. Ntraj guiding centers are followed for Tmid cycles.

2. Untrapped guiding centers are separated from the trapped on the basis of the value
of threshold.

3. Untrapped guiding centers are integrated for the remaining cycles, up to a total of
Tf cycles. In the case of one step only, trapped particles are separated from the
untrapped only at the very end of the integration.

Figure 4.6: Visual representation of how integrations in two steps work. It is based on
the fact that the percentage of trapped trajectories, for a reasonable value of threshold
(e.g. 4, as it will be later justified), almost does not change after a sufficiently high
number of cycles, which is assigned to Tmid.
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Integration via scipy.integrate.solve_ivp

1 import numpy as xp
2 from scipy.integrate import solve_ivp
3 if case.init == 'random':
4 y0 = 2 * xp.pi * xp.random.rand(2 * case.Ntraj)
5 elif case.init == 'fixed':
6 y_vec = xp.linspace(0, 2 * xp.pi, int(xp.sqrt(case.Ntraj)),

endpoint=False)↪→

7 y_mat = xp.meshgrid(y_vec, y_vec)
8 y0 = xp.concatenate((y_mat[0], y_mat[1]), axis=None)
9 case.Ntraj = int(xp.sqrt(case.Ntraj))**2

10 t_eval = 2 * xp.pi * xp.arange(0, case.Tf + 1)
11 sol = solve.ivp (case.eqn_phi, (0, t_eval.max()), y0, t_eval=t_eval,

max_step=case.TimeStep, atol=1, rtol=1)↪→

12 x, y = xp.split(sol.y, 2)

Listing 7: Simplified version of a portion of gc2d_modules.py associated with the in-
tegration of the equations of guiding center dynamics. First, random or fixed initial
conditions are generated and stored in y0. Then, the Tf+1 instants of time associated
with stroboscopic plots are defined. After that, scipy.integrate.solve_ivp acts on
eqn_phi (see Listing 5) to obtain the temporal evolution of positions of guiding centers.
The time step is kept fixed at TimeStep thanks to atol = 1 and rtol = 1. Positions
are stored in sol.y only in correspondence of instants included in t_eval. For better
clarity, sol.y is split into two distinct components x and y, i.e X and Y ).

The numerical integration is essentially performed thanks to the
scipy.integrate.solve_ivp function (see Listing 7), where ivp stands for initial value
problem. This solver, in default mode, is used to solve systems of differential equations
through the explicit Runge-Kutta method of order 5. The use of this function inside
gc2d_modules.py is associated with Listing 5, which is part of gc2d.py, because of
case.eqn_phi. The file, through the definition of t_eval, is made in such a way that
the positions of the guiding centers are recorded only at the end of each cycle to form a
trajectory. This means that, if the equations are integrated with reference to Tf cycles,
for example, then the data will be available at Tf + 1 instants of time.
For purposes of clarity, Listing 7 shows simpler form of the implementation of
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scipy.integrate.solve_ivp than it actually is inside gc2d_modules.py. The real
version (see Listing 8) is longer because it takes into account the possibility to do the
integration in one or two steps.
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1 import numpy as xp
2 from scipy.integrate import solve_ivp
3 if not case.TwoStepIntegration:
4 sol = solve.ivp (case.eqn_phi, (0, t_eval.max()), y0, t_eval=t_eval,

max_step=case.TimeStep, atol=1, rtol=1)↪→

5 x, y = xp.split(sol.y, 2)
6 untrapped = compute_untrapped((x, y), thresh=case.threshold)
7 x_un, y_un = x[untrapped, :], y[untrapped, :]
8 x_tr, y_tr = x[xp.logical_not(untrapped), :],

y[xp.logical_not(untrapped), :]↪→

9 else:
10 sol = solve.ivp (case.eqn_phi, (0, t_eval[case.Tmid]), y0,

t_eval=t_eval[:case.Tmid+1], max_step=case.TimeStep, atol=1,
rtol=1)

↪→

↪→

11 x, y = xp.split(sol.y, 2)
12 untrapped = compute_untrapped((x, y), thresh=case.threshold)
13 x_un, y_un = x[untrapped, :], y[untrapped, :]
14 x_tr, y_tr = x[xp.logical_not(untrapped), :],

y[xp.logical_not(untrapped), :]↪→

15 print('\033[90m Continuing with the integration of {}
untrapped particles... \033[00m'.format(untrapped.sum()))↪→

16 y0 = xp.concatenate((x_un[:, -1], y_un[:, -1]), axis=None)
17 sol = solve.ivp (case.eqn_phi, (t_eval[case.Tmid], t_eval.max()),

y0, t_eval=t_eval[case.Tmid:], max_step=case.TimeStep, atol=1,
rtol=1)

↪→

↪→

18 x, y = xp.split(sol.y, 2)
19 x_un = xp.concatenate((x_un, x[:, 1:]), axis=1)
20 y_un = xp.concatenate((y_un, y[:, 1:]), axis=1)

Listing 8: Actual portion of gc2d_modules.py associated with the integration of the
equations of guiding center dynamics. It takes into account the possibility to have an
integration in one or two steps. The number of untrapped trajectories is determined
after one step in both cases. If TwoStepIntegration = False, this allows Python to
save computational time during the second step. See Listing 9 for the definition of
compute_untrapped.
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4.4.5 Computation of trapped particles
As already said, it is possible to distinguish between trapped and untrapped particles
by analyzing their trajectories. It is important to note that plotted trajectories will be
discrete and disconnected (some of them may appear continuous lines, depending on the
level of zoom), always because here the term trajectory is not associated with positions
recorded at every simulated instant of time.
However, there is not an unique way to do that. Indicatively, trapped particles have
trajectories in the transverse plane which tend to remain close to the point where they
were at t = 0. Guiding centers tend to draw closed lines of limited size (usually, they are
called orbits and they are associated with islands of stability). One of the characteristics
of orbits is that they are usually completed much earlier than Tf cycles (if Tf is sufficiently
high to allow a good determination of the diffusive regime of the system), in the sense that
guiding centers cyclically return to the areas they had already passed through multiple
times.

Figure 4.7: Example of regular trapped trajectories in the transverse plane.

Untrapped particles, on the other hand, as the name suggests, tend to move con-
siderably away from their initial position. They could do that in a chaotic way or in a
more regular way. The term chaotic is generally associated with a guiding center whose
trajectory:

• Tends to fill a 2D region of phase space (if it is folded using the modulo function).
In this case, a chaotic trajectory would fill the fundamental square.
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• Is very sensitive to initial conditions.

• Tends to escape (even if this is not always true).

On the other hand, a guiding center has a regular evolution when its path is very clear and
easily identifiable (even when it is considered together with other trajectories). Chaos
and regularity are better recognizable when looking at modular or zoomed non-modular
stroboscopic plots (see, for example, Figs. 4.5 and 4.20).

Figure 4.8: Example of untrapped trajectories in the transverse plane. It can be seen
that trajectories are not continuous, but are formed by a discrete set of points. In the
regions where lines seem continuous, single dots would be obtained by zooming in by a
sufficient amount.

The need to distinguish between these two types of trajectories derives from a series
of factors:

• Trapped particles do not diffuse (neither in the classical way nor in an anoma-
lous way) and therefore are not relevant for calculating coefficients associated with
diffusion.

• Continuing to integrate the equations for trapped particles beyond necessary is
only a useless computational effort that increases computation time: an island, as
already mentioned, is completed after a limited number of cycles, much less than
Tf , if Tf 0 1.

In theory, the correct number of cycles to dedicate to the integration of a trapped tra-
jectory is the one that allows one to understand if the trajectory actually belongs to a
trapped particle.
There may be some cases in which a particle that appears trapped after a certain number
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of cycles, at some point abruptly changes behavior. However, if one or more particles of
this kind are categorized incorrectly, it is not a problem for the purposes of the simula-
tions: simulating a very high number of trajectories allows one to properly counteract
these scenarios. In fact, the purpose of the simulations is not to count exactly the num-
ber of trapped particles, but to understand, or at least record, the general behavior of
the system as the main parameters A, rho and eta vary.
However, the main reason for which I have decided to introduce TwoStepIntegration
is essentially computational in nature and serves to save time. In fact, it should not be
forgotten that, in general, simulating the individual trajectories still requires a consider-
able effort.
The idea of increasing the number of integration steps beyond 2 was considered, but it
was not then implemented, since with two steps already the gain is considerable and
the script remain quite easy to write and read. However, the simulations can also be
conducted just by keeping a single step for the integration. Moreover, this is also useful
as a tool for checking and validating the results that can be obtained with two steps.
The method that is used to effectively find the trapped trajectories is:

1. For each trajectory, the maximum and minimum values of their transverse coordi-
nates are identified. A total of 4Ntraj coordinates are collected among
4Ntraj(Tmid+1) or 4Ntraj(Tf+1) total values, depending on the number of inte-
gration steps (one or two, respectively).

2. Ideally, these coordinates allow one to construct Ntraj rectangles, each containing
the entire associated trajectory.

3. The length of the diagonal of each of these rectangles, which can be determined us-
ing the simple Pythagorean theorem, is compared with threshold. Any trajectory
whose diagonal is less than or equal to threshold, is considered to be trapped.
The others are consequently untrapped.
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Figure 4.9: Example that shows how the method for detecting untrapped trajectories
work. First, a rectangle is ideally drawn just outside the trajectory, then the length of
its diagonal is compared with threshold. In Python, drawing a rectangle translates to
finding maxima and minima of a trajectory in both directions of the transverse plane.
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1 import numpy as xp
2 untrapped = compute_untrapped((x, y), thresh=case.threshold)
3 def compute_untrapped(x, thresh=0, axis=1, output=[True, False]):
4 vec = xp.sqrt(xp.sum([xel .ptp (axis=axis)**2 for xel in x], axis=0))

> thresh↪→

5 return xp.where (vec==True, *output)

Listing 9: In order to determine the number of untrapped trajectories after a certain
number of steps, the compute_untrapped function is used. First, thanks to .ptp, which
stands for peak to peak, distances between maxima and minima coordinates along both
axes are found for each trajectory (this corresponds to individuating a rectangle for each
trajectory). Then, the sum of the square of those distances is evaluated for each tra-
jectory (this corresponds to individuating a diagonal for each rectangle). After that,
the number of untrapped trajectories is determined with the help of numpy.where,
which compares each diagonal with a threshold value (which in the script corresponds
to threshold).

The choice of using the diagonal, although not representative of the true max. distance
spaced by the particle, is an extremely fast method and a good approximation. The
diagonal suits well almost any type of trajectory and, if it is paired with a wise selection
of threshold, it allows one to get to a good level of reliability.
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4.4.6 Curve fitting to account for anomalous diffusion

Figure 4.10: Plots of the evolution of mean square displacements (in blue and black)
and their curve-fittings (in magenta) obtained with Python. Both plots are associated
with Ntraj = 1024, Tf = 5000, TimeStep = 0.05, A = 0.700, rho = 0.115 and initial
random conditions. On the left, the system has eta = -0.100 and is sub-diffusive, while
on the right it has eta = 0.100 and is super-diffusive (see subsection 5.3.2). Both curve
fittings have R2 ≥ 0.99. Initial and final parts of r2 (in black) and are not considered for
the curve fittings, since they can have anomalies, as it is the case for the plot on the left.

Depending on the values of (A, rho, eta), the system can give rise to anomalous diffusion.
For this reason, it is not recommended to have a part of the file dedicated to determining
a diffusion coefficient based on the mean square displacement r2(t) of the trajectories (see
Appendix C). Instead, it makes more sense to proceed with a power-law curve fitting of
the type (at)b. This is a more general approach which:

• Can detect the type of diffusion regime (anomalous or normal) through the value
of b.

• In the case of b being close to 1, allows one to know the diffusion coefficient of the
system, which is practically equal to a.

• Allows one to compare the behavior of different systems through b and, in smaller
measure, also through a.

The curve fitting is obtained in this way:
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1. r2(t) is calculated as a vector r2 of Tf terms by implementation of Eq. C.4, with
only the untrapped trajectories giving a contribution. Each term of r2 is build as
described in Appendix C using the positions of guiding centers at t = 0 and the
end of each cycle. The instant of time corresponding to the generic k-th element
of r2 is equal to 2πk, with k = 0, ..., Tf− 1.

2. The beginning and the tail of r2 are cut to eliminate possible noises or anomalous
behaviors that can typically appear in these regions (see, for example, the left plot
in Fig. 4.10).

3. The curve fitting is carried out for the remaining part of using a power-law model
(a*t)**b implemented thanks to the scipy.optimize.curvefit function (see
section C.2 of Appendix C).

4. The value of the coefficient of determination R2, associated with the fitting, is
calculated via the
sklearn.metrics.r2score function (see Eq. C.9 in Appendix C). The result is
stored in the variable R2.

In the analysis of the results, the value of R2 should provide an indication of the goodness
of the fit. Acceptable values are typically those greater than or equal to 0.990. Using
a power-law curve fitting with two variable parameters almost never causes R2 to be
too low. The curve fitting is the specific part of the file that is activated if Method
= ’diffusion’. Furthermore, by default, an output file in .txt format is produced
with this method. It contains a table with the following data gathered from the various
sub-simulations associated with a single run: A, rho, eta, trapped, a, b and R2, where
trapped is the percentage of trapped particles with respect to the true value of Ntraj.
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1 import numpy as xp
2 from scipy.optimize import curve_fit
3 from sklearn.metrics import r2_score
4 r2 = xp.zeros(case.Tf)
5 for t in range(case.Tf):
6 r2[t] = ((x_un[:, t:] - x_un[:, :-t if t else None])**2 + (y_un[:,

t:] - y_un[:, :-t if t else None])**2).mean()↪→

7 t_win, r2_win = t_eval[case.Tf//8:7*case.Tf//8], r2[case.Tf//8:7*case.Tf//8]
8 func_fit = lambda t, a, b: (a * t)**b
9 popt, pcov = curve_fit (func_fit, t_win, r2_win, bounds=((0, 0.25),

(xp.inf, 3)))↪→

10 r2_fit = func_fit(t_win, *popt)
11 R2 = r2_score (r2_win, r2_fit)
12 trapped = xp.logical_not(untrapped).sum()

Listing 10: Portion of gc2d_modules.py associated with curve fittings. First, the mean
square displacement of all untrapped trajectories is evaluated at Tf instants of time (from
t = 0 to t = 2π(Tf− 1)) by implementing Eq. C.4. Then, time and r2 are cut to remove
initial and final portions. With them, a power-law curve fitting is performed thanks
to scipy.optimize.curve_fit. After that, the associated coefficient of determination
is obtained with sklearn.metrics.r2_score and the number of trapped particles is
determined.

4.5 Description of Reader_diffusion.m
The first of the two MATLAB files is the self-explanatory Reader_diffusion.m. It
specifically deals with plotting the data collected inside the .txt file produced by Python
when Method = ’diffusion’. The convenience of using a file which is not the one that
produced the results is the ability to work more easily on it, other than being able to
analyze the results more quickly. In fact, it can be written using a large number of for
loops, which are intuitive to write, without compromising its speed, since it is simply a
file for reading and plotting data. The usage of for loops is very limited in the Python
files because they tend to be very slow. Moreover, it can be edited and changed live
while the same set of Python output data is being used as a sample.
What Reader_poincare.m does is essentially producing 2D or 3D plots of trapped, a,
b and/or R2 as A, rho and/or eta vary.

97



In general, the file includes some editable lines that allow one to completely disable some
of the graphs and to select secondary parameters such as colors, text size, type of graphs
(e.g. surf, heatmap, plot and contourf) and so on. It is also immediate to change, if
needed in particular occasions, some lines in the file to realize more specific plots.
The most convoluted part of this file is the one that puts the quantities in the correct
order and form to be plotted, regardless of the of the graphs that are used. Tables
are usually very readable with MATLAB, but the structure of the .txt file forces some
additional efforts in MATLAB.

4.6 Description of Reader_poincare.m
The second MATLAB file is Reader_poincare.m and it takes care of the .mat file pro-
duced in Python when Method = ’poincare’ and SaveData = True. Actually, it can
also analyze the results contained in the .mat file associated with Method = ’diffusion’
and SaveData = True. By reading those files, it can create a series of plots:

• Non-modular stroboscopic plots with up to three colors: as in Python, the trajec-
tories are plotted in the transverse plane at t = 0 and at the end of each cycle. The
novelty here is that from one to three colors can be used to highlight trajectories.
Basically, each color can be associated with a different threshold value, allowing to
put the focus on different kinds of trajectories, e.g. trapped, untrapped and super-
diffusive. Of course, the code can be easily adapted to be able to display even more
than three colors, however it must be kept in mind that too many colors can lower
the visual efficiency of Poincaré sections. An advantageous aspect in using MAT-
LAB is that if the Python data are handled in a certain way, it is possible to use
the figure environment to highlight the evolution, clockwise or counterclockwise, of
the trajectories using the computer cursor. Graphs like the one just described can
be made even if modulo = True in Pyton. In fact, the data are saved in the .mat
file before it is scaled inside the fundamental square. Furthermore, the Poincaré
sections can also be turned into animations through small additions to the file.

• Modular stroboscopic plots with up to three colors: as in Python, it is the scaled
version to the fundamental square of the Poincaré section of point (1).

• Untrapped trajectories as a function of a threshold value: this graph is particularly
useful to provide a feedback to properly set threshold in Python and also to
compare particles from another point of view, in some ways similar to that of the
curve fitting. In particular, this plot shows on the horizontal axis a dense range of
possible values of the Python threshold parameter, while on the vertical axis it
shows the number of trajectories whose diagonal values are greater than or equal
to a certain value. The values of diagonals are recalculated in MATLAB in the
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same way as they are calculated in Python. The comparison of diagonals with each
element of the threshold vector is done by means of for loops. In other words,
what is done is a multiple distinction between numerically (and not necessarily true,
where the true is associated with the threshold value of 4) trapped and untrapped
trajectories, each time based on a different threshold value. The information that
can be obtained from this graph is discussed in sections 4.8.4 and 4.8.5.

• Curve fitting for the mean square displacement (only if the .mat file comes from
a diffusion-type simulation): exactly as in Python, the curve fitting is recreated
starting from the trend of the truncated mean square displacement (also a non-
truncated version or a differently cut version can be used). This allows one to
compare curve fittings performed in two different environments and gave the idea
to implement r2(t) plots in Python too.

4.7 Effects of A, ρ and η on the potentials
The three parameters A, ρ and η that appear in the theory as well as in the Python
files in the form of A, rho and eta, can be characterized by the effect that they have
on the potentials. There are different ways that can be used to properly show their
influences, which are discussed in the following subsections. Other important quantities
for the characterization of the potential are the phases ϕnm, which in the files appear
as elements of the matrix phases. Each term of the summation through which the
potential is defined is associated with a different phase chosen at random between 0 and
2π. Although it may seem like a secondary parameter, the phase is crucial for a correct
modelling of the potential: if all the phases were equal (for example, all null), then the
potential would not be turbulent because it would appear too regular and predictable
in its evolution. Having a different phase for each term of the summation is precisely
one of the main techniques for modelling a turbulent behavior. In this way, the trend
over time of the potential is not symmetric and is characterized by the formation, the
movement and the periodic disappearance of eddies in several non-symmetric areas of
the fundamental square. The effect of phases is shown in Fig. 4.11.
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Figure 4.11: Comparison between potentials φ, obtained in Python with A = 1.000, at
t = 0. On the left, all the phases are null, while on the right they are random. Random
phases allow one to model turbulence.

4.7.1 Effect of A
Of the various parameters, A is certainly the easiest to predict: being the amplitude of
the potential, the higher A is, the more the sinusoids characterizing the potential will
be marked. By plotting the predominant term of the potential φ, evaluated at t = 0
and with ϕ11 = 0, it is possible to clearly evaluate the influence of A. A graphical
representation inside the fundamental square is given by Fig. 4.12.

φ(1,1)(x, y, t = 0) = *[2−1.5Aej(x+y)] (4.6)

Some results are shown in Fig. 4.12 Equivalently, the same graphs can be obtained using
the predominant term of ψ with ρ = η = 0:

ψ(1,1)(X, Y, t = 0) = *[2−1.5AJ0(0)e
j(X+Y )] = *[2−1.5Aej(X+Y )] (4.7)
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Figure 4.12: Changes in the shape of ψ(1,1) inside the fundamental square as A varies.
The actual amplitude increases with A, but it is not exactly equal to A because of how
φ is defined using modes. The four subplots have been obtained with MATLAB.
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4.7.2 Effect of ρ

Figure 4.13: Bessel functions of the first kind of order 0 and 1, plus a curve for −x1J1(x)
that is there to show the general behavior of −snmJ1(ρsnm)/ρ.

The effect of the Larmor radius on ψ is less straightforward to predict, since it seems to
have no direct relationship with potentials from a physical perspective. However, a hint
of its possible influence can be obtained if it is recalled that gyroaveraging causes Bessel
functions to appear (see, for example, Eq. 3.134). Given that J0(snmρ), for a fixed value
of snm, oscillates and decays as ρ becomes bigger, it is reasonable to assume that ρ has
the effect of watering down the sinusoids when moving from φ to the first order of ψ
(with A fixed). In fact, this is what can be seen in the left plots of Fig. 4.14, where
again the effect of the phases is neglected. Positive and negative peaks of φ become much
weaker in ψ under the effect of the Bessel function J0.
The influence of the Larmor radius on the second term of the guiding center potential
is more difficult to predict, given that η has to be taken into account too and that ρ
appears inside the term −snmJ1(snmρ)/ρ. By looking at the bottom-right plot of Fig.
4.14, which has been made with A = 1.00, rho = 1.00 and eta = 1.00, shows that
the Larmor radius generates small peaks at the four corners of the fundamental square
(at t = 0). Their limited range means that, when the two orders are combined to form
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ψ, the end result is much more similar to the first order term than the second (see the
upper-right plot of Fig. 4.14).

Figure 4.14: Potentials, at t = 0, obtained in Python with A = 1.000, rho = 1.000,
eta = 1.000 and null phases.

4.7.3 Effect of η
It is obvious that η has no effect on the first order of ψ. However, it is interesting, by
exaggerating its possible values, what it can produce on ψ by acting inside its second
order. The analysis in this case is a little bit easier if compared to the previous one,
since ρ (other than the phases) can be set to zero. Moreover, the investigation is also
more interesting because η can be increased in both positive and negative directions. By
looking at Figs. 4.15 and 4.16, a nice behavior emerges:

• Negative values of η tend to amplify the positive areas of the potential. In other
words, larger portions of the fundamental square are occupied by positive values
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of ψ than of ψ. This is caused by a second order of ψ which is entirely positive or
close to being null, with predominant peaks at the four corners of the fundamental
square.

• Positive values of η produce the exact opposite, with negative values of the potential
becoming more predominant than the positive ones, which see their space reduced.
In φ, negative and positive values at t = 0 occupy the exact same fraction of the
fundamental square.

Figure 4.15: Potentials, at t = 0, obtained in Python with A = 1.000, rho = 0.000,
eta = -1.000 and null phases.
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Figure 4.16: Potentials, at t = 0, obtained in Python with A = 1.000, rho = 0.000,
eta = 1.000 and null phases.
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4.8 Comparisons between features of different versions
of the Python scripts and choices of values and
ranges for the parameters

4.8.1 Power-law curve fitting instead of diffusion coefficients

Figure 4.17: Evolution of the mean square displacement (in blue and black) obtained in
MATLAB with Ntraj = 1024, Tf = 5000 and TimeStep = 0.05. The dashed portions
of r2 are not used to perform the curve fitting (in red). For this particular graph, both
trapped and untrapped particles have been used (threshold = 0) because it is taken
from a .mat file associated with a simulation in poincare mode. The system is diffusive,
having b 1 1 (the same diffusive regime would have been detected even in the case of
threshold = 4, obviously with slightly different values for R2, a and b).
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Initially, the main purpose of this work was to investigate the effect of the second term
of ψ with respect to using the first term alone.
Within the original gc2d_modules.py file, in diffusion mode, the dynamics of guiding
centers were used to determine the diffusion coefficient of the system. As indicated more
extensively in Appendix C, this means that the system is always assumed to have a linear
trend of the mean square displacement with respect to time, with the diffusion coefficient
being equal to the slope of the associated curve. However, this created anomalies in
some of the output values. In particular, some R2 values associated with the diffusion
coefficients were very far from being acceptable, i.e. below or well below 0.99. This
suggested that it is not true that all combinations of A, rho and eta give rise to a linear
curve fitting.
Numerous simulations were then carried out with higher values of Ntraj and Tf, but no
improvements on R2 were made. The low values of R2 were therefore mostly independent
of those parameters, but they were linked to something different: the physics of the
systems and the way Python was told to interpret it.
For this reason, a considerable part of this work was dedicated to deciding how to handle
the possibility of anomalous diffusion (or no diffusion at all) for some combinations of A,
rho and eta. The solution to this problem is the one presented in subsection 4.4.6, which
consists in having replaced the calculation of diffusion coefficients with power-law curve
fittings, together with eliminating some ranges of values for the three parameters (see
subsection 4.8.7). Curve fitting is a more general approach because it does not impose
any assumption on the type of diffusive regime, other than containing the evaluation of
diffusion coefficients as a particular case.
The original diffusion part of the file looked like in Listing 11, while the new one has
already been displayed in Listing 10. What was kept from the original version is the
truncation of r2.
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1 import numpy as xp
2 from scipy.stats import linregress
3 r2 = xp.zeros(case.Tf)
4 for t in range(case.Tf):
5 r2[t] = (xp.abs(sol.y[:, t:] - sol.y[:, :case.Tf-t]) ** 2).sum() /

(case.Ntraj * (case.Tf - t))↪→

6 diff_data = linregress (t_eval[case.Tf//8:7*case.Tf//8],

r2[case.Tf//8:7*case.Tf//8])↪→

7 max_y = xp.sqrt((xp.abs(sol.y[:case.Ntraj, :] - sol.y[:case.Ntraj,
0].reshape(case.Ntraj,1)) ** 2 + xp.abs(sol.y[case.Ntraj:, :] -
sol.y[case.Ntraj:, 0].reshape(case.Ntraj,1)) ** 2).max(axis=1))

↪→

↪→

8 trapped = (max_y <= 3.0 * xp.pi).sum()

Listing 11: Portion of the original gc2d_modules.py that is associated with the determi-
nation of diffusion coefficients. This part was later changed into Listing 10. The formula
for r2[t] is only visually different from the one in the latest version, but it in the end
they are the same. Here, instead of a power-law curve fitting, a linear regression is per-
formed with scipy.stats.linregress. From diff_data it was then possible to obtain
the diffusion coefficient of the system as the slope of the linear curve fitting, other than
the coefficient of determination R2. The number of trapped particles is evaluated using
the old version of compute_untrapped (see Listing 9), i.e. the one that relies on initial
positions and not on diagonals and rectangles. In the original script, threshold was not
a parameter and was fixed at 3π.

4.8.2 Methods to find trapped and untrapped trajectories
In the dictionary, threshold is used to distinguish between trapped and untrapped
guiding centers. In the original version of the file, threshold had a suggested value of
3π and was used as it is described here:

1. For each trajectory, the max. distance from the coordinate that the guiding center
had at the beginning of the simulation was determined.

2. For each trajectory, the max. distance was compared with threshold. If the max.
distance was bigger, then the associated particle was considered to be untrapped.

This approach presents two problems (even though not of significant relevance): the
value of threshold and the criterion used to the determine max. distances.
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Leaving aside for now the value of threshold, which will be discussed in subsection
4.8.4, the other aspect could have been improved because of some considerations:

• The potential is periodic in time: the initial positions of guiding centers do not
have more special characteristics than other positions at other instants of time.
Therefore, it makes no particular sense to give initials positions a privileged role
in the formula for the max. distance.

• Even under the assumption that that initial positions have, for some reason, the
right to be considered more important than others, they would still not allow one
to always accurately evaluate the extension of trajectories in the transverse plane.

For these reasons, the first modification that was tested involved measuring the max.
distance travelled by each guiding center by extending the procedure just presented in
this section. In this case, the max. distance was no longer evaluated by comparing
the starting point with any other point of the associated trajectory, but it was instead
calculated by comparing every possible pair of points within each trajectory, giving rise
to much more accurate evaluations. However, it is evident that this method is much
slower than the original, even without considering that it requires the use of for loops.
This turned out to be a bad solution, because the gain in accuracy was much lower than
the increase of computation time.
Therefore, it was decided to adopt another solution, which is the one that has already
been presented in section 4.4. Not only this technique is very fast, being associated
with the computation of maxima and minima within vectors, but it is also able to be
more accurate, in general, than the original solution. A visual comparison of these three
methods is available in Fig. 4.18.
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Figure 4.18: Graphical comparison of the methods used and tested to find max. distances
covered by guiding centers. The original method, that relies on initial positions (the
magenta dot in this case), can be problematic when trajectories are far from being
circular or are open. The method that relies on diagonals is much more consistent, even
if it slightly overestimates true max. distances.

Interestingly, the worst case scenario for the last version of the max. distance is also
the best condition for the original one. Ideally, if the trajectory that is being studied
happens to be a perfect and continuous circumference of radius r, then:

• The original method would almost exactly give the max. distance, i.e. the diame-
ter, regardless of the initial position of the guiding center. The same would be true
for the slow method, obviously.

• The latest method would give a max. distance that is 2r
√
2, which is

√
2 1 1.41

times bigger than the actual result. This is the maximum error that can be made
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with this method, and it can be more directly explained with Fig. 4.19. Also, this
method can not give a result that is less than the actual max. distance.

Figure 4.19: In the ideal case of a perfectly circular trajectory, the method that relies on
diagonals to find untrapped trajectories has the highest discrepancy with the true max.
distance, that is the diagonal of the circle. The same case would result in the minimum
error for the method that relies on initial positions.

Fortunately, the biggest trapped trajectories are often far from being perfect circum-
ferences and, even if this was not the case, the error would still be very limited. The
randomness of initial positions makes errors in the original method much more unpre-
dictable in the relevant cases. A striking example of how elongated trapped trajectories
can actually be is shown in Fig. 4.20.

111



Figure 4.20: Zoomed-in version of a non-modular stroboscopic plot in which two elon-
gated and regular trapped trajectory can be clearly seen in magenta. Around them,
there is a blue chaotic sea of untrapped trajectories. The plot has been realized with
MATLAB.

Description of the error in the original gc2d_modules.py

The only error that was found within the three original Python files had to do with
calculation of the max. distance. Quite trivially, a square root was missing, (see line
7 in Listing 11, in which numpy.sqrt was added only after a while). This error caused
the number of untrapped particles to be higher. Numerous simulations were launched
before noticing the error, but this did not compromise some of the information obtained
from them. In fact, to consider some trapped particles as untrapped does not alter
the diffusive regime, since trapped particles do not diffuse. It is clear that this specific
error would have been a huge problem if, instead, it caused a decrease in the number of
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untrapped particles.

4.8.3 Multicolored stroboscopic plots instead of monocolored ones

Figure 4.21: Comparison between two different modular stroboscopic plots of the same
system On the left, the graph is monochromatic (as it is usually done with Poincaré sec-
tions), while on the right two different colors are used to distinguish trapped trajectories
(in magenta) from untrapped ones (in blue) using a threshold value of 4. These plots
have been made in MATLAB using the outputs of simulations with Ntraj = 1024, Tf
= 5000 and TimeStep = 0.05.

During the analysis with MATLAB for the determination of threshold, it spontaneously
appeared the need to highlight with a different color the trajectories associated with
trapped guiding centers. Thus, in MATLAB, the lines of code dedicated to the creation of
stroboscopic plots were modified to be able to color the trajectories in two different ways
according to an arbitrary threshold value (not necessarily equal to threshold). Adding
a color makes it possible to read Poincaré sections much better and also to highlight
aspects that would otherwise be more complicated to identify, such as the intermediate
cases between the well-marked trapped guiding centers and the clearly untrapped ones.
This possibility was then also implemented in Python, where different colors are assigned
this time on the basis of threshold, which is fixed for a given simulation (in this case,
it is clear that using a different file to process the outputs is more flexible).
In this context, it is possible to use threshold (or, more conveniently, its equivalent in
MATLAB) not only as a discriminating value between trapped and untrapped guiding
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centers, but also, for example, as a detector for particular types of guiding centers: those
with very tiny closed trajectories, those with very high values of the max. distance, and
so on.
Focusing on those systems that exhibit anomalous diffusion through the value of b,
being able to highlight super-diffusive particles can help to understand if there is some
relationship between their behavior and other aspects like their initial positions or the
first part of their paths within the fundamental square.
In the final version of Reader_poincare.m, it is possible to choose up to three colors,
which are usually (but not necessarily) assigned to:

• Physically trapped guiding centers, i.e. associated with a threshold value of 4.

• Untrapped guiding centers with very high max. distances. Their threshold values
are typically chosen case by case.

• The remaining part of untrapped guiding centers.
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4.8.4 Choice of a reasonable value for threshold

Figure 4.22: Percentage of numerically untrapped trajectories as the threshold value to
compare with max. distances vary from 0 to the highest of max. distances. The blue
curve is a zoomed-in version of the red one. It allows one to see the recurring plateau
around the threshold value of 4 (other flat areas are present, but they tend to appear in
different regions of the curves as other systems are considered. These plots have been
made in MATLAB using the outputs of simulations with Ntraj = 1024, Tf = 5000,
TimeStep = 0.05 and threshold = 0.

In addition to the criterion for the max. distance, the other aspect that needed an
improvement was the choice of threshold, which for a long time remained fixed at
3π 1 9.42. This value seemed reasonable because it was comparable with the sides of the
fundamental square. However, during the analysis of .mat files obtained with Python,
it was discovered that a different value, more accurate and supported by numerical
evidence, would have suited better. To do this:
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1. Some simulations have been launched with threshold = 0, so as to be able to
obtain only numerically untrapped particles, without distinctions of any kind.

2. The associated .mat files were analyzed with MATLAB in order to plot, as a
function of a series of threshold values, the percentage of trajectories with max.
distance greater than or equal to those values. The range of thresholds was only
partially fixed and went from 0 to the maximum of all max. distances related to a
single simulation.

Some graphs obtained in this way are shown in Figs. 4.22 and 4.23.

Figure 4.23: Percentage of numerically untrapped trajectories as the threshold value to
compare with max. distances vary from 0 to the highest of max. distances, as in Fig.
4.22. These plots have been made in MATLAB using the outputs of simulations with
Ntraj = 1024, Tf = 5000, TimeStep = 0.05 and threshold = 0.

From these figures (and many others that were produced), it is clear that there is a
tendency of the curve to flatten at around a threshold value of 4, which suggests that
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trapped trajectories tend to be associated with rectangles whose dimensionless diagonals
are not bigger than 4. It is evident from the graphs that 4 is still an arbitrary choice,
but it is certainly more accurate than 3π. This evidence was also checked with the help
of stroboscopic plots (see, for example, Fig. ??, where the islands have been correctly
identified using a magenta color associated with threshold = 4). Moreover, having a
recurring plateau around 4 could be seen as a way to characterize the system from a
physical point of view: islands tend to be no bigger than a certain size, regardless of the
particular form of the guiding center potential. Moreover, threshold-defining plots give
hints about the possible diffusion regime, since the horizontal axis is much longer in the
case of high b (different systems are obviously compared keeping the same values for Tf).

4.8.5 Benefits of two-step integrations and choice of a reasonable
value for Tmid

In the original version of the Python files there was no TwoStepIntegration option:
all guiding centers were integrated the entirety of time cycles, and at the end only the
untrapped portion contributed to the calculation of the diffusion coefficient. Given the
nature of scripts, however, any element that can be used to reduce computational efforts
should be adopted. One of these is precisely the use of a limited number of test particles
that are still able to represent a plasma (in combination with and thanks to the fact that
the modelled electric field is produced by the plasma), while another is the exploitation
of guiding center theory itself. On a numerical level, other aspects are the limitation of
the number of cycles and the TimeStep used for integrating the equations.
In any case, however, it is possible to introduce an additional level of improvement, which
can act regardless of all the other expedients: breaking the integration into two steps.
In essence, this allows one to save numerous resources that would be unnecessarily used
(in most cases) to follow the evolution of trapped guiding centers.
From a purely numerical point of view, TwoStepIntegration is more effective if
threshold is high and Tmid is low, because both contribute to collect a greater number
of trapped particles. For this work, however, it is not possible to ignore the physics:
threshold is set to 4, a value that is less than half the original 3π, and Tmid should
be selected with cleverness too. After some tests, it was found out that after 800 cycles
the ratio between simulated and untrapped guiding centers tended to remain more or
less stable, meaning that in most systems the vast majority of trapped trajectories can
be completely individuated within 800 cycles. Knowing that increasing the number of
cycles has a somewhat limited effect on the computation time (see subsection 4.8.6), it
seemed reasonable to decide that Tmid needed to be at least equal to two times 800: at
1500 cycles, the percentage of trapped particles is even more stable.
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4.8.6 Choice of reasonable values for Ntraj, Tf
and TimeStep

It is intuitive that having a higher number of trajectories or cycles causes an increase of
the computation time (what is reported in this section is completely irrelevant in the case
of Method = ’potentials’). The same effect is also given by a lowering of the time step
used for integrating the equations of guiding centers. In general, variations of Ntraj and
TimeStep have more marked effects on the duration of simulations. Some simulations
were dedicated to finding a reasonable range of values for the three parameters. In
general, a compromise between the duration and the accuracy of simulations has to be
made:

• If Ntraj is too high, the simulations are very slow because the computer has to
integrate numerous equations at the same time (2 for each trajectory), while if
it is too low, then the results are likely to be inaccurate because the number of
guiding centers is not sufficient to extract reliable data. This last aspect is evi-
dently more relevant in the case of diffusive simulations, since for those aimed at
obtaining stroboscopic plots, in certain cases, it may helpful to track a very limited
number of trajectories. Among the various possible cases, it can be observed, for
example, that a too small Ntraj can be particularly counterproductive for those
systems with intermediate characteristics, that is, those that have a high but not
excessively high number of trapped particles in percentage terms: the risk is to
consider as non-diffusive (a close to 0) a system that is actually weakly diffusive
(b slightly below 1) only for lack of data.
Usually, if in a simulation with high Ntraj (and other appropriately chosen param-
eters) only very few guiding centers are untrapped, then the system can be said to
be non-diffusive, that is, as if it were composed only of trapped particles.

• If Tf is too high, the simulations undergo a moderate slowdown (the time increases
approximately linearly with the increase of Tf) because the trajectories must be
integrated for a greater number of time instants. This is a completely different
computational effect with respect to that of increasing Ntraj, since Tf acts on
the number of instants associated with each equation, and not on the number of
equations to be managed for each of those instants. Moreover, simulations tends
to lose more and more accuracy as they approach higher number of cycles, much
like humans gradually age with time.
If Tf is too low, simulations risk to be unrepresentative, because no sufficient time
is given to untrapped guiding centers to evolve properly. This could cause some
errors in identifying the diffusive regime of the system. Therefore, unlike Ntraj,
Tf should be high regardless of the type of simulation.

• If TimeStep is too low, the simulations are highly accurate, but the equations take
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a very long time to integrate as the number of cycles is divided into a greater
number of instants. Instead, using time steps that are too high is to be avoided
because the risk is to have trajectories that differ highly from the more precise
ones, that is those obtainable with very small time steps.

Figure 4.24: Absolute differences between the x-coordinates assumed, at the end of each
cycle, by a single trapped guiding center using different time steps. The simulations
have been launched with A = 0.100, rho = eta = 0.00 and with three different time
steps: 0.01 (the reference one), 0.05 and 0.30. This is just a semi-logarithmic graph
that wants to give an indication of what happens if different time steps are used.

The conclusions that have been reached after numerous simulations (with
TwoStepIntegration = False) are:

• TimeStep equal to 0.05. The suggested value in the original dictionary was 0.03,
but some preliminary investigations did not reveal any particular differences in the
accuracy of results. In the case of high definition simulations, a value of 0.01 can
be used, but the tunings for Tf and Ntraj, as well as all the simulations that are
mentioned in this report, were done using TimeStep= 0.05. Just to give an idea,
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using TimeStep = 0.01 is around 5 times slower than TimeStep = 0.05 when Tf
= 500, Ntraj = 484, eta = 0 and TwoStepDiffusion = False, i.e. under very
light conditions.

• Ntraj greater than 1000. By using 1024, which is a perfect square, it is ensured
that there is an equal number of simulated test particles, regardless of init.

• Tf equal to or greater than 5000. This is perhaps higher than necessary, but this
does not heavily influence the computation time as increasing Ntraj or TimeStep
would. The idea of using more than enough cycles was also applied when selecting
a reasonable value for Tf.
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4.8.7 Choice of reasonable ranges for A, rho and eta

Figure 4.25: Modular stroboscopic plot, made with Python, that shows very regular tra-
jectories. It was obtained with Ntraj = 400, Tf = 1000, TimeStep = 0.05, threshold
= 4, A = 0.150, rho = 0.050 and eta = 0.000. Such systems, given that they have
a very high percentage of trapped guiding centers (in magenta) can be considered as
non-diffusive.

The ranges of values for A, rho and eta that have been used in the final set of simulations
are a subset of the ones chosen at earlier stages of this work.
Initially the focus was only on the first order of ψ, and therefore eta was set to 0. Under
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these conditions, the ranges were from 0 to 1 for both the amplitude and the Larmor
radius. In light of the numerous tests that have been performed, it can be said that:

• For A close to 0 (more or less up to 0.20), the system does not diffuse at all,
regardless of the adopted Larmor radius.

• For rho = 0 and A approximately in the range from 0.2 to 0.6, there is a transition
from a non-diffusive to a diffusive regime. The associated simulations showed
problems in the definition of a diffusion coefficient with the original version of the
Python files, in the sense that there were unacceptable values of R2.

• Too high values of rho are unrealistic (this is mostly based on conversations I had
with the people that worked with me).

• The combination of medium to low values of A and medium to high values of rho
tends to cause an excessive slowdown in the dynamics of the guiding centers, which
makes those systems particularly difficult to study with a reasonable setting of Tf.
In other words, there are combinations of A and rho for the first order of ψ whose
trapped trajectories take a very long time to close and whose untrapped guiding
centers do not travel very far from their initial positions.

In light of these considerations, it was decided by mutual agreement to limit the ranges for
the definitive simulations for both the amplitude and the Larmor radius. In particular,
A has a range from 0.6 to 1.0, while the one for rho starts at 0 and ends at 0.3. These
values:

• Are associated with the zone just outside the transition zone from non-diffusive to
diffusive regimes.

• Leave out those systems that take very long to evolve or that are non-diffusive at
all.

These choices can also be justified from another point of view, which has to do with the
regularity or chaos in the system. The selected ranges tend to have a good mix of regular
and chaotic trajectories, at least when just the first order of ψ is considered. Near A =
0, regularity has the tendency to prevail, while systems are almost entirely chaotic for
A above 1. It is more interesting to investigate those systems where both behaviors are
present.
However, this way to fix ranges is not unique: it would have been equally possible to
start from A = 0.5 or to investigate rho up to 0.4, for example, everything in this section
would have still been presented in the exact same way.
In later stages of the work, it had also to be understood which values of eta would have
suited the second order of ψ. Considering that the second order is usually not employed

122



in gyrokinetic codes, it was assumed that eta should have been small in magnitude. The
chosen range for eta includes both negative and positive values, but at the same time
it is asymmetric, as it goes from −0.2 to 0.3. These particular selection was made to
recover some sort of symmetry in certain portions of the results presented in Chapter 5.
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Parameter Value, range and/or comments

A from 0.6 to 1
(input) amplitude of the potential (corresponds to A)

rho from 0.0 to 0.3
(input) Larmor radius (corresponds to ρ)

eta from −0.2 to 0.3
(input) intensity of ψ(2) (corresponds to η)

threshold 4
(input) threshold value for trapped trajectories

Ntraj ≥ 1000 (diffusion mode only)
(input) number of test particles

Tf ≥ 5000
(input) number of cycles

Tmid ≥ 1500
(input) intermediate number of cycles if integration is in two steps

TimeStep 0.05
(input) time step for integrating the equations

a found through scipy.optimize.curve_fit using f(t) = (at)b

(output) coefficient of the curve fitting

b found through scipy.optimize.curve_fit using f(t) = (at)b

(output) exponent of the curve fitting

R2 found through sklearn.metrics.r2_score, acceptable if ≥ 0.99
(output) R2 of the curve fitting

trapped found through compute_untrapped
(output) number of trapped trajectories

Table 4.1: Summary of the main parameters in input and output.
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Original version Latest version

Integration of the equations Integration of the equations
in one step in one or two steps

Monocolored Multicolored
stroboscopic plots stroboscopic plots

Max. distances based on Max. distances based on rectangles
initial positions around trajectories and their diagonals

Linear curve fittings Power-law curve fittings
and diffusion coefficients

Table 4.2: Main modifications to the Python scripts.
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Chapter 5

Simulations and analysis of the results

Launching simulations with the final versions of the Python scripts is driven by the
willingness to address some questions, such as:

• what are the effects sorted by A, ρ and η on the number of trapped particles, a, b
and Poincaré Sections? In other words, can patterns be found in the behavior of
the system as its parameters A, ρ and η vary?

• Are curve fittings acceptable?

• Are there any relevant effects caused by considering the second order of ψ with
respect to the cases with η = 0? In other words, is the second order potential
negligible or not?

• Are there connections between results obtained in diffusion mode, stroboscopic
plots and the effects of A, ρ and η on ψ?

• Are there any really unexpected behaviors for some values of A, ρ and η?

• What things can be further investigated on the basis of these simulations and the
post-processing of their outputs?

• Does opposite values of η sort similar effects on the system?

• Are there any relevant differences in using ρ = 0 or finite values for the Larmor
radius?

• Can systems with different diffusive regimes be distinguished by looking at their
stroboscopic plots?

• Is it possible to obtain useful information about the diffusive regime of a system
by looking at curve of the percentage of its numerically untrapped particles?
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In some sense, there are considerations and results in Chapter 4 that can be viewed as
actual results of simulations, such as the recurrence of the number 4 when dealing with
trapped trajectories, or the fact the ratio between untrapped and simulated particles
tends to change very little after a certain number of cycles is reached. At the same time,
most of what has been reported in Chapter 4 is not accompanied by detailed descriptions
of what specific simulations have been conducted to get to this or that conclusion. This
is justifiable by the many simulations that have been carried out as feedback tools. In
other words, it is not far from truth to say that almost over two months of simulations
have been analyzed before reaching the conclusion that, for example, Ntraj should be
no smaller than 1000. This is because those simulations have not been launched with
the specific idea of fixing the number of trajectories: they were used to see how the
runs behaved, how much the scripts were able to properly match the physics behind the
problem and, therefore, being able to improve both the files in Python and MATLAB.
The exact same description can be applied to almost every other aspect that has been
presented in Chapter 4.
However, it is not the same in Chapter 5. The results that will be presented in the
following were obtained specifically with the idea of getting them, i.e. knowing that
all the feedback simulations allowed to have both a convincing set of values for all the
parameters in the dictionary and an improved version of all the files that have been
described in Chapter 4. For this reason, the results will be presented together with a
clear description of the values assumed by all the relevant parameters. This will help to
get a better analysis of the results and ensures that the simulations and their outputs
can be perfectly reproduced.
To sum up, feedback simulations (Chapter 4) had the main purpose of improving the
numerical tools, but still managed to produce some interesting results from a physical
or mathematical point of view, while final simulations (Chapter 5) were made to get to
interesting conclusions on the strength of already improved files at disposal and values
of the parameters.

5.1 List of the simulations that have been launched
Among the simulations, a preliminary distinction has to be made between those with
Method = ’diffusion’ and the ones with Method = ’poincare’:

• For both cases, the following parameters have been fixed (unless otherwise specifi-
cally indicated): FLR = (’all’, ’all’) (as by default), M = 25 (as by default), N
= 2**10 (as by default), Ntraj = 1024, Tf = 1000, TimeStep = 0.05 and init
= ’fixed’. Moreover, phases have been defined using numpy.random.seed(27)
(the number 27 is not an actual parameter, but it is something that in theory could
be changed).
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• In ’diffusion’ mode: threshold = 4, TwoStepIntegration = True and Tmid
= 1500.

• In ’poincare’ more: threshold = 0 and TwoStepIntegration = False.

A list of the physical parameters A, rho and eta that characterize each single simulation
is presented below:

• In ’diffusion’ mode:

1. A = numpy.linspace(0.60, 0.10, 9),
rho = numpy.linspace(0.00, 0.30, 150)
and eta = 0.00 (see subsection 5.2.1).

2. A = 0.70, rho = numpy.linspace(0.00, 0.30, 28)
and eta = numpy.linspace(-0.20, 0.30, 125) (see subsection 5.2.2).

• In ’poincare’ mode:

1. A = 0.70,
rho = numpy.linspace(0.00, 0.30, 2)
and eta = 0.00 (see subsection 5.3.1).

2. A = 0.70,
rho = 0.115
and eta = numpy.linspace(-0.10, 0.10, 2) (see subsection 5.3.2). In this
case, init = ’random’.

From the list of simulations in diffusion mode, it is clear that:

• The first step was identify a general behavior of the system without the second
order of ψ, i.e. under the approximation of considering the particles in the same
positions of their guiding centers. This part was driven by the unexpected discovery
of anomalous diffusion from previous simulations.

• Focusing on a single value of the amplitude, the next natural step was to identify
a behavior when the second order of ψ was also taken into account. This part has
to do with was what was originally planned to do, i.e. investigating the effect of a
term which is usually neglected.

The choice of not wanting to explore the effects of varying eta for more values of the
amplitude had to do with the fact that non-zero values of eta significantly increase
computational time (just to give an idea, they tend to be slower by almost an order of
magnitude, e.g. simulations with non-zero eta and associated with 100+ sub-simulations
could take more over week to complete, even when highly performing computers and
parallel computing are exploited). But still, useful information on the modelled system
can be obtained even with this limited approach.
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5.2 Analysis of the results

5.2.1 Effects of A and ρ on percentage of trapped guiding centers,
a and b through the first order of ψ

Figure 5.1: Graphical representation of the results of the first simulation in diffusion
mode. They are four contourf plots obtained with MATLAB by post-processing the
.txt file obtained with Python. Each figure has 10 distinct colors in its colormap.

The output .txt file from the first simulation in diffusion mode has been post-
processed with MATLAB, resulting in a series of plots that display the percentage of
trapped particles, coefficients a and b from curve fittings and R2 as functions of A and
ρ, with no second order effects. Fig. 5.1 sums up the results in multicolored contourf
plots, in which colormaps with only 10 colors have been used to better highlight transi-
tions and behaviors.
In order to avoid confusion, four different colormaps have been used, with some of them
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(all but the one for b) being obtained with the help of the freely downloadable file
brewermap.m. Moreover, the same colorbar limits (upped and lower limits change from
quantity to quantity) and number of colors have been used to produce similar figures,
but associated with different simulations (see, for example Fig. ??).

Effects on Trapped (rel.)

Figure 5.2: Plots obtained with MATLAB of the percentage of trapped particles as a
function of ρ, with A and η fixed. They are associated with the first simulation in
diffusion mode.
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The general trend of the percentage of trapped particles can be appreciated by looking
at either the upper-left plot in Fig. 5.1 or the nine subplots in Fig. 5.2:

• An imaginary and almost straight line could be drawn in the contourf plot con-
necting the bottom-right and the upper-right corners. Below this line, the percent-
age of trapped guiding centers is more or less within the range 0% − 25%, while
above it the range is roughly 25% − 50% (these clean values are used on purpose
to stress the different behaviors). The lowest values correspond to high amplitudes
of the potential and small Larmor radii, i.e. the bottom-right corner. The highest
values are found along the vertical line on the opposite side, where A is around
0.60.

• Two dark-blue spikes, pointing to the right, can be easily identified on the left side
of the contourf plot (ρ 1 0.10 and ρ 1 0.25). Both tend to propagate and decay
moving towards the right side of the plot, i.e. less-intense spikes are visible within
almost each other color. The lower spikes are more or less associated with the same
values of ρ as A increases, while the higher ones have the tendency to slightly bend
towards higher values of the Larmor radius. This trend can be also appreciated
by looking at Fig. 5.2, where it is revealed that the spikes tend to be less and
less recognizable as A becomes bigger. In particular, starting from A = 0.750, the
spikes gets confused within the rest of the points.

• As it is evident when the darker spikes are taken into account, the valley between
them is approximately in the range 0.15− 0.20 for the Larmor radius.

• The fact that fewer trapped particles are found for higher values of the amplitude
makes sense: the potential becomes more corrugated and guiding centers trajecto-
ries more chaotic.

• The fact that fewer trapped particles are found for lower values of the Larmor
radius makes also sense: the more ρ is near 0, the more it has a lighter effect on
the first order of ψ, with the effect being a relaxation of the waves. In fact, it can
be recalled that ψ = φ when ρ = η = 0.

• In general, when both A and ρ increase, there are less trapped particles and the
associated curves are less irregular, becoming more similar to straight lines with a
positive slope. This trend is even more clearer by looking at Fig. 5.3.
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Figure 5.3: A different version of Fig. 5.2 with all the sub-plots that are merged in a
single figure.

Effects on b

In analogy with the previous analysis, investigating the behavior of b can be done with
either 5.1 or 5.4:

• Just by comparing how the colors are spread out in the contourf plots for b and
trapped guiding centers, it is immediately evident that the first has much more
violent transitions, i.e. there are colors that occupy considerably less portions of
the b plot than the trapped one.
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• The vast majority of pairs (A, ρ) have an almost diffusive behavior or a slightly
sub-diffusive one (cold-colored areas);

• there is a small range of the pair (A, ρ) for which the system is strongly super-
diffusive (hot-colored areas), i.e. almost ballistic;

• as already pointed out, the regions where the system is mildly super-diffusive
(greenish and yellowish areas) are very limited in extension regardless of the posi-
tion in the contourf plot, suggesting that moving from diffusion to super-diffusion
is an abrupt process. The transition happens approximately along a diagonal that
goes from (A, ρ) = (0.60, 0.15) to (A, ρ) = (1.00, 0.30), even though some excep-
tions are present.

• Before reaching the super-diffusive regions, there is an area with the lowest values
of b, which can be more clearly identified by looking at Fig. 5.4.

• In general, moving towards higher values of ρ with A fixed, causes the system to
gently move from diffusive (ρ 1 0), to slightly sub-diffusive, to diffusive again and
then, very rapidly, to almost ballistic.

• The abrupt transition of b towards super-diffusive regimes are very clearly depicted
in the subplots of Fig. 5.4, where it also shown that the change of behavior required
higher Larmor radii as the amplitude of the potential increases. For the highest
values of A the transition seems to become less marked, suggesting maybe that
is happens for non-investigated values of ρ, i.e. above 0.3. In addition to that,
high A also cancels the sub-diffusive behavior. It seems that having more chaotic
dynamics is connected with diffusive regimes (at least when only the first order of
ψ is considered).

• The fact that the transition happens very late in ρ (above 0.15) makes an interesting
effect when all the separated curves of Fig. 5.4 are put together in a single plot,
as displayed in Fig. 5.5. Using blue to represent the curves for both A = 0.6 and
A = 1.00, with the others being in red, allows one to notice that, for ρ < 0.15,
it is very difficult to recognize two distinct blue lines, while just beyond ρ = 0.15
there is a complete split between the lines (even the red ones). This suggests that,
at least for the first order of the potential, a small Larmor radius can influence
the number of trapped particles much more than the diffusive regime. Moreover,
given that ρ sorts a different effect in the two cases (in terms of how fast and where
transitions happen), it seems that the number of trapped particles has a relatively
limited relation with the diffusive regime, with the most interesting aspect being
that the largest differences between blue lines of trapped trajectories in Fig. 5.3
take place just before the threshold value ρ = 0.15.
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Figure 5.4: Plots obtained with MATLAB of the curve fitting exponent b as a function
of ρ, with A and η fixed. They are associated with the first simulation in diffusion
mode.
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Figure 5.5: A different version of Fig. 5.4 with all the sub-plots that are merged in a
single figure.

Effects on a

Fig. 5.1 can be also exploited to analyze the effect that A and ρ have on the coefficient
a, but before doing that it is important to underline that the physical meaning of a
(even though in this report it is being considered after a nondimensionalization process)
changes with b. This can be explained by going through the two simplest cases and
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recalling that r2(t) −→ f(t) = (at)b = abtb:

• If b = 1, then ab = a1 = a and, given that the r2 would have the units of an
area if it had dimensions, this means that a represents a (dimensionless) diffusion
coefficient (area over time).

• If b = 2, then ab = a2 and, for the same reason as before, this time a is a (dimen-
sionless) velocity.

Having said that, the following list of observations can be better interpreted:

• Roughly speaking, the upper-right plot in Fig. 5.1 can be divided into two main
regions much like it was done for the trapped trajectories. This time, however,
the curve delimiting the upper-left and the bottom-right regions should be more
like an oblique sinusoid. While the division resembles the one for the trapped
guiding centers, what can be said about these areas has more to do with b. In fact,
the most striking fact is that a is very small and constant (white or almost white
coloring) in the regions where the system is either sub-diffusive or super-diffusive,
i.e. in correspondence of dark-blue and red areas within the contourf graph for b.
Instead more shadings of purple and magenta, even if not many, can be found in
those regions where the system is diffusive of almost diffusive.

• Particular attention has to be put towards the regions of almost ballistic regimes,
because there the coefficient a is very close to 0. It seems that reaching such
conditions has the effect of uniforming the curve fittings much more than in any
other cases. This aspect is even more evident when looking Fig. 5.6. This plot also
shows that a oscillates a lot more when A is closer to 0.6 than 1.0. In addition,
it is interesting to notice that the highest and the lowest values of a are reached
(for different values of A) within the same ranges of the Larmor radius, i.e. for
ρ > 0.15.

• Similarly to the already investigated quantities, different systems have narrower
red-and-blue dotted plots for smaller values of ρ, while they tend to more spread
out after ρ 1 0.15.
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Figure 5.6: Merged plot obtained with MATLAB of the coefficient a as a function of ρ,
with η fixed. Each curve refers to a different values of A. They are associated with the
first simulation in diffusion mode.

Effects on R2

A brief comment can also be given to the R2 subplot of Fig. 5.1: all the values of the
coefficient of determination are not below 0.99, meaning that all curve fittings can be
treated as reliable.
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Summary of the effects

To recap, increasing A tends to:

• Corrugate the potential.

• Make the dynamics more chaotic.

• Gently reduce the number of trapped guiding centers.

• Raise the values of a.

• Reduce the values of b when, at lower values, the system is super-diffusive.

Moving from ρ = 0.00 to ρ = 0.30 has the effect of:

• Relax the corrugation of the potential.

• Make the dynamics more regular.

• Gently increase the number of trapped guiding centers.

• Reduce and then suddenly raise the values of b.

Moreover, a particularly relevant Larmor radius seems to approximately be ρ = 0.15,
because a blend of interesting phenomena happen around it:

• The relative number of trapped trajectories, at least for the cases in which A < 0.75,
has one of the two peaks just before that threshold.

• The more ρ is far from the threshold value, the less the percentage of trapped
particles are spread, with the systems tending to form narrower windows.

• The system tends to be diffusive or sub-diffusive before that threshold and, some-
where near it or after it, the regime abruptly becomes almost ballistic. In other
words, different systems have much more similar values of b before ρ 1 0.15 rather
than after.

• Similarly to b, different systems have much more similar values of a before ρ 1 0.15
rather than after, with the narrowest window of values of a among the systems
being reached almost exactly at ρ = 0.15. Another way of describing this phe-
nomenon is that the more ρ is far from the threshold value (in both directions, but
predominantly towards ρ = 0.30), the more the values of a are widely spread.
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5.2.2 Effects of ρ and η on percentage of trapped guiding centers,
a and b through both orders of ψ

Figure 5.7: Graphical representation of the results of the second simulation in diffusion
mode. They are four contourf plots obtained with MATLAB by post-processing the
.txt file obtained with Python. Each figure has 10 distinct colors in its colormap.

Simulations that are associated with full ψ are longer to computer because of the com-
plexity added by the second term. Given that the latter is usually neglected, it is
reasonable to expect that simulations do not differ much if ψ or just its first order are
used. However, the outputs revealed interesting scenarios, much like simulations with
η = 0 highlighted the possibility of anomalous diffusion. In short, if η varies while A and
ρ are fixed, then the behavior of the system changes (more significantly in some cases
than others).
As in the previous case, reference contourf sub-plots have been obtained with MATLAB.
They are displayed in Fig. 5.7.
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Effect on Trapped (rel.)

With A fixed at 0.70, the percentage of trapped particles as ρ varies is influenced by the
value of η. In particular, by looking at the upper-left subplot:

• There is a moderate symmetry along the vertical direction, which however is cen-
tered slightly above η = 0, where the coefficient is positive (1 0.05).

• The general trend is that the number of trapped guiding centers decreases as |η|
gets bigger.

• The two spikes that were present in the graph associated with the first order of
ψ are clearly evident here too (the darkest areas). They seem to have an effect
on the shape of the differently colored levels, as it is possible to see some sort of
propagation of these spikes. However, a closer look reveals that this propagation
(i.e. a decay in their intensity) is not entirely symmetric. In fact, for η > 0,
interfaces between different colors are like sinusoids, whereas for η < 0 they are
more similar to straight lines. For example, a sign of asymmetry (or shifted and
partial symmetry) is represented by the outer sides of the light-blue areas, given
that they approximately reach η = 0.20 and η = −0.10.

• Large values of eta correspond to almost absence of trapped guiding centers. From
a computational point of view, this means that the associated sub-simulations are
longer and for them there is a very limited benefit of having implemented a two-
step integration of the equations. Unfortunately, this adds up to fact that the
second order of ψ is already demanding on its own (regardless of how many steps
are used);

• As already seen for trapped trajectories, the transition from blue to light-green is
rather smooth.

Effect on b

The scenario that is depicted in the bottom-left subplot of Fig. 5.7 reveals some very
interesting aspects for the value of b:

• The plot can be vertically split into three regions, with the first approximately in
the range 0.00−0.10 of ρ, the second in 0.10−0.20 and the third in 0.20−0.30. An
equal quantity of very different behaviors can be associated with each one of them.
Within the left one, varying η has little to no effect, with the system remaining
more or less diffusive or weakly sub-diffusive with respect to the reference values at
η 1 0. In the middle section, some positive values of η cause the system to become
slightly super-diffusive, while negative values maintain the system in its first order

140



state, that is sub-diffusive. However, high values of |η| lead to an almost diffusive
behavior. The remaining regions is associated with a decay of the value of b, as |η|
increases, in such a way that almost ballistic regimes become diffusive.

• It is not clear why the system has opposite (while still not too different) behaviors
when first order regimes are sub-diffusive. This is even more strange when it
is taken into account that the associated range for η involves very small absolute
values. This is one of the cases in which using stroboscopic plots can be particularly
helpful.

Effects on a

Sub-plots for a and R2 are more or less similar to the previously investigated ones. In
particular, a is small and constant in the sub-diffusive and highly super-diffusive areas,
whereas it has higher and more diversified values in the diffusive and mildly super-
diffusive ones. All the values of R2 are above 0.99.

Summary of the effects

Below, the main effects of η are put together:

• Increasing |η| corrugates the potential. In this sense, η is more similar to A than
ρ.

• For η > 0, negative values of ψ prevail over positive ones in terms of how much
area they involve.

• For η < 0, positive values of ψ prevail instead.

• Ultimately, when |η| is sufficiently big, there are very few trapped guiding centers
and the systems leans toward diffusive regimes.

• It can have asymmetric or opposite influences on some quantities (e.g. b) when
certain pairs (A, ρ) are considered.

141



5.3 Analysis of some stroboscopic plots

5.3.1 Comparison between diffusive and almost ballistic regimes
without the second order of ψ

Figure 5.8: Comparison between a diffusive and an almost ballistic system through their
non-modular stroboscopic plots (the one on the right has been split in two for clarity).
Trapped trajectories are in magenta, trajectories with max. distances above 350 are in
green, while the rest is in blue. They are associated with the first simulation in poincare
mode.

There are some correlations between the results in diffusion mode and stroboscopic
plots, which are more evident when extreme cases are considered. Other than Poincaré
sections, another useful tool is provided by the graphs of untrapped trajectories as a
threshold value is varied, because the shapes of their curves could present patterns or
peculiar behaviors.
The starting point is Fig. 5.8, in which a comparison between non-modular stroboscopic
plots for systems with (A, ρ, η) = (0.70, 0.00, 0.00) and (A, ρ, η) = (0.70, 0.30, 0.00) is
made. They are associated with diffusive and almost ballistic regimes, respectively. From
these plots, where magenta trajectories are trapped particles (max. distances no greater
than threshold = 4), green trajectories have max. distances above 350 (arbitrarily
chosen value, based on the right-hand plot in Fig. 5.12) and the blue ones are the
remaining, the following can be said:

• Guiding centers in diffusive regime are more evenly distributed in the transverse
plane, whereas those of the super-diffusive system are almost entirely developed
only along the horizontal axis.
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• Overall, trajectories in diffusive regime cover shorter distances and as a consequence
their strboscopic plot is much more zoomed-in than the other. In other words, when
a system is super-diffusive, axes have wider ranges (in this report, Poincaré sections
have always an aspect ratio equal to 1).

Figure 5.9: Modular version of Fig. 5.8, but with green trajectories that have been
colored in blue as all the other untrapped ones.

Different aspects can be highlighted when modular versions of stroboscopic plots, which
are displayed in Fig. 5.9, are taken into account (this time, all green trajectories have
been substituted with blue ones, leaving just the distinction between trapped and un-
trapped guiding centers):

• Trapped trajectories are visually less and, on average, much smaller in the diffusive
system. In addition to that, they occupy more diversified areas, meaning that there
are more concentric islands in the super-diffusive case.

• Modular untrapped trajectories evenly cover the space in both plots (if single dots
were smaller in size or if figures were zoomed, those blue areas would reveal an
very high number of blue points over a white background).

• The super-diffusive system has a lot of regular trapped trajectories, with only a
very limited amount of them being more chaotic. This is in accordance with the
fact that increasing ρ relaxes the shape of ψ.

143



At this stage, there is little that could explain why the second system is super-diffusive.
Actually, just considering modular plots, it could seem counterintuitive that the super-
diffusive system is more regular and has more and bigger trapped trajectories. This is
why twists on both modular and non-modular plots have to be made in order to highlight
some otherwise hidden details. These twists are shown in Fig. 5.10 and ??:

• The modular left plot in Fig. 5.10 shows in green those untrapped trajectories
which are also highlighted in Fig. 5.8. The area occupied by them (in modulo
version) is very precise and narrow. Moreover, it is well inside the blue area,
that is there are blue regions of considerable size that separate green and magenta
areas. This would seem to suggest that super-diffusive regime is activated because
of a phenomenon that happens away from islands in the potential (but it requires
additional investigation).

Figure 5.10: An almost ballistic system represented through its modular (on the left)
and its zoomed-in non-modular Poincaré section (on the right). Untrapped trajectories
with max. distances above 350 are in green. The non-modular plot clearly shows the
presence of white highways. They are associated with the Poincaré section on the right
side of Fig. 5.8.

• The non-modular right plot in Fig. 5.10 is zoomed-in and shows an area slightly
wider than the fundamental square. Even though less clearly, the first part of
those few green trajectories can still be noticed. Here, the advantage of using the
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non-modular Poincaré section is that it gives a strong hint about what could be
associated with strong super-diffusion regimes, even more so if the non-modular
Fig. 5.11 is used as a comparison, where a diffusive system is represented instead.
In the almost ballistic system, it is as if white highways breach the blue areas within
the fundamental square. Those highways are clearly not present in the diffusive
regime, suggesting that they appear as a consequence of increasing ρ over a certain
value (it has to be kept in mind that ρ > 0 can also lead to slightly sub-diffusive
conditions). If the green threshold were reduced to 300 or 250, for example, then
most of the additional areas to become green would be the ones next to or inside
highways.

• A possibly interesting aspect, that can be verified by using the cursor in MATLAB,
is the fact that trapped trajectories on opposite sides of highways (and close to
them) tend to have different curls, i.e. if one evolves clockwise, the other spins
counterclockwise.

Figure 5.11: Zoomed-in version of the non-modular stroboscopic plot on the left side of
Fig. 5.8. The fundamental square can be seen, in red, in some areas.
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Some other pieces of information are obtained by looking at Fig. 5.12, where the per-
centage of numerically untrapped trajectories is plotted:

• Focusing on the plots with red curves, the horizontal axis for the diffusive system
is considerably shorter (by a factor close to 6). This can be seen as another repre-
sentation of non-modular stroboscopic plots of Fig 5.8, with one being much more
developed in a specific direction than the other.

• Focusing on the plots with blue curves, which are just zoomed-in versions of the
others around the zone of threshold = 4, reveal that in both cases 4 is associated
with a plateau. However, there is a major difference, given that the diffusive system
has a much extended flat zone than the super-diffusive one. In addition and that,
these plots confirm the visual sensation that trapped trajectories are smaller and
less in quantity. The plateau for the plot on the right starts approximately when
threshold is 1 and the percentage of untrapped guiding centers is well above 90%,
whereas in the other case the starting point is 1 3.0, 70%.

Figure 5.12: Visual comparison between the same systems of Fig. 5.8, but through the
variation of the percentage of numerically untrapped trajectories as a function of the
threshold value for max. distances. Flat zones can be spotted around the threshold
value of 4 in both plots.

• The red curve on the left is rather smooth, with two relatively flat zones connected
by an oblique section of transition. In contrast to that, the red curve on the left
can be divided in two main areas which are very different from one another. The
first, which strongly descends, ends around the point 10.0, 30%). The second,
which occupies a wider range of threshold values, has a very soft decay, but at the
same time appears abruptly and sharply. It seems that the super-diffusive system
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tends to have sharper transitions and this is somehow in line with the formation
of highways, whereas the smoothness that characterizes the diffusive system is
relatable to having evenly distributed trajectories in the transverse plane (both
inside and outside the fundamental square).

Figure 5.13: Zoomed-in versions of the non-modular stroboscopic plots of Fig. 5.8. The
diffusive system (on the left) has more chaotic trajectories. White highways can be seen
in the super-diffusive system.

5.3.2 Comparison between sub-diffusive and super-diffusive
regimes associated with opposite values of η

During the analysis of the effect of η on diffusive regimes with A fixed, it emerged
that around ρ = 0.115 increasing |η| could lead to sub-diffusive (η < 0) as well as
super-diffusive (η > 0) systems, before they eventually become diffusive as |η| becomes
significantly high. Given that this is rather unexpected, considering that this happens
when the system is sub-diffusive for ρ 1 0, but not when it is diffusive or super-diffusive,
it could be interesting to compare associated Poincaré sections and curves for numer-
ically untrapped trajectories. In particular, the systems that have been explored are
(A, ρ, η) = (0.700, 0.115,−0.100) and (A, ρ, η) = (0.700, 0.115, 0.100). The two cases can
be compared using modular and non-modular stroboscopic plots shown in Figs. 5.14 and
5.15 (green trajectories have max. distances above 350 as for the cases with η = 0):
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Figure 5.14: Non-modular stroboscopic plots of the super-diffusive system associated
with η > 0 for the second simulation in poincare mode. The plot on the right is a
zoomed-in version of the plot on the right, which for convenience has been split in two.
Colors are used in the same way as in Fig. 5.8. White highways can be seen in the
zoomed-in plot.

• The sub-diffusive system has a non-modular Poincaré section very similar to the
left one in Fig. 5.8. This is normal given that diffusive and slightly sub-diffusive
systems have very similar power-law exponents.

• The super-diffusive systems has a non-modular Poicaré section very similar to the
right one in Fig. 5.8. The main differences are the fact that in this case the axes
have smaller ranges and the horizontal direction is bolder in terms blue trajectories.
Again, this is in line with having a lower value of b.

• The size of trapped trajectories is visually very similar, but the ones in the sub-
diffusive system are more regular. It is probable that η 1 0.100 is the cause of
a partial loss of regularity in the super-diffusive system, because ρ > 0 can not
do that. The reason why this is not matched for η 1 −0.100 is not clear, with
the obvious answer being that changing the sign of η alters ψ in different ways.
However, it can also be said that opposite values of η modify ψ in exactly opposite
ways when ϕnm = 0 and ρ = 0. It could be that a combination of all these
factors (random phases, Larmor radius, amplitude and η) is the cause for this loss
of symmetry when moving from a plotting simplified non-turbulent potential to
analyzing guiding center dynamics associated with actual forms of ψ;

• The number of trapped trajectories also seems to be more or less the same, with
a good mix of islands with few and many concentric trajectories in both scenarios.
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It seems that opposite values η does not have a huge impact on this particular
aspect.

Figure 5.15: Non-modular stroboscopic plots of the sub-diffusive system associated with
η < 0 for the second simulation in poincare mode. The plot on the right is a zoomed-in
version of the plot on the right. Colors are used in the same way as in Fig. 5.8.

• by looking at the plot on the right of Fig. 5.14, hints of a familiar situation can
be found. In fact, highways (and some green trajectories) can be detected. They
are not present for the sub-diffusive system, as they were not present with diffusive
regimes too. What is rather strange is the fact that, in this case, a super-diffusive
regime is reached with the help of a term that acts on ψ more similarly to A than
ρ, while in the case of η = 0 a much stronger condition was obtained by means of
increasing ρ, i.e. a parameter that introduces a relaxation in the potential.

This last point is a natural connection to Fig. 5.16:

• The red curve on the left is somewhat reminiscent of the one for the diffusive case
of the previous section. The range of thresholds is smaller than in the diffusive
regime by almost a factor of 2, providing an indication of a sub-diffusive condition.
The blue curve around the threshold value of 4 is not so regular, but a plateau
is still present. The non-zero Larmor radius contributes to having the flat zone
starting at around 80% of untrapped trajectories and also to having a loss in the
smoothness of the entire curve (a lower degree of chaos is associated with sharper
transitions).
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Figure 5.16: Visual comparison between the same systems of Figs. 5.14 and 5.15, but
through the variation of the percentage of numerically untrapped trajectories as a func-
tion of the threshold value for max. distances. Flat zones can be spotted around the
threshold value of 4 in both plots.

• The red curve on the right has some similarities with the one of the almost ballistic
system of Fig. 5.12, but it also has at least one relevant difference. While it
is true that the range of thresholds is more or less the same (slightly smaller
here, in accordance with having a lighter super-diffusive system), it is evident that
there is a much weaker transition between the descending first part and the slowly
decaying second part of the red curve. From another perspective, the percentage
of untrapped particles at which the first part stops is almost 60%, while before
it was closer to 30%. As for the blue curve, it is very similar to the other one
with η = −0.100, again suggesting that opposite values of η have more relevant
influences on other aspects than the number and the sizes of trapped trajectories.

• In this case, red curves for opposite values of η show many more differences than
modular stroboscopic plots. This observation is being made here to underline that
it is often important to analyze systems by exploiting various kinds of outputs and
ways of representing them.

5.4 Possible developments and future analysis
Many other simulations could be launched and analyzed to reach a better understanding
of the system, for example:

• The influence of Bessel functions could be investigated by approximating them
with their truncated series. This would require to change the values assigned to
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FLR.

• Smoother contourf plots could be made by increasing the number of
sub-simulations through A, rho and eta (while keeping the same ranges that have
already been used).

• Analyzing other Poincaré sections and plots that display the percentage of numer-
ically untrapped trajectories to find patterns or hidden aspects (such as highways).

• More precise data could be extracted with higher values of Ntraj, Tf and Tmid,
together with a lower TimeStep. However, it should be kept in mind that simu-
lations could be very slow because of the number of trajectories and/or instants
used for integrating the equations. Moreover, increasing Tf too much could cause
an unacceptable loss of accuracy.

• The effect of phases on super-diffusive systems could be tested by varying the
argument of numpy.random.seed, given that their strboscopic plots tend to be
highly developed only along one axis, whereas this is not the case for other diffusive
regimes. This difference is unusual and unexpected.

• It should be important to check whether almost ballistic regimes have physical
relevance or are just the result of some issues with how the problem was approached
or its model was implemented and treated in Python.

An important aspect that has to be noticed is that nothing has been done here to check
which nondimensionalized values of A ρ and η have corresponding values in real cases,
e.g. it could be that using eta = 0.100 in Python has no pratical applications even
thought it seems to be a reasonable value. This is something that should be investigated
case by case if these scripts (or similar versions) were to be used in contexts where all the
physical information is known (nature of particles, measurements of the electricmagnetic
field inside a tokamak, plasma temperature in the transverse plane and so on). In
addition to using the existing tools to explore new aspects, there are also other ways to
develop what has been presented in this report:

• To better model the real situation (now that some information about the main
parameters has been collected), variations could be made to the Python files in
order to implement a different magnetic field, either toroidal or helicoidal, and a
toroidal geometry. This would require to find new equations for the guiding centers,
which would certainly be more challenging to obtain than having a uniform and
constant magnetic field in Cartesian coordinates. Fortunately, the steps to follow
would pretty much be the same of Chapter 3 (in essence, changes of coordinates
and elimination of fluctuating parts from low-order terms of the Hamiltonian).
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• Even without exploring different geometries or magnetic fields, other models for
similar or different electrostatic potentials could be used.

• Given that the second order term of the potential seems to have relevant influences
on the behavior of the system, a similar approach could be used to include it in
gyrokinetic codes. In order to include the second term inside gyrokinetic codes,
the procedures would be much more complicated and the second term would be
different from the one used in this work. For example, guiding centers would be
substituted by gyrocenters and Maxwell’s equations would be used to account for
electromagnetic feedback. Moreover, the equations to be numerically implemented
or modified would be those of statistical mechanics, that is equations that allow
one to find distribution functions.
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Chapter 6

Conclusions

With this work, which exploits guiding center theory, an existing simplified model of
turbulent plasmas inside tokamaks, consisting in the 2D equations for guiding center
dynamics, has been checked by re-deriving it from scratch. The equations were then
characterized with an analytic electrostatic potential based on measurements made in
real tokamaks. After that, they underwent a nondimensionalization procedure before
being implemented in Python scripts for numerical simulations.
While the initial idea was to investigate the effect that the usually-neglected second
order of the potential ψ had on the system, with η (i.e. the intensity of the second
order term) being the main parameter in that sense, some additional aspects emerged
during the work. In particular, unexpected cases of anomalous diffusion showed up, for
some combinations of A (i.e. the amplitude of the potential) and ρ (the Lamor radius of
charged particles), when simulations that involved only the first order of ψ were launched
as feedback tools to improve the scripts. Feedback simulations allowed to properly set
the values or the ranges of the main parameters of the simulations. Moreover, they
opened up to many modifications to the original Python files that were not necessarily
related to the second order of ψ, such as:

• The introduction of multicolored stroboscopic plots to distinguish between trapped
and untrapped trajectories.

• The use of power-law curve fittings for the evolution of mean square displacements
over time to account for anomalous diffusion.

• The implementation of a fast and reliable method to individuate trapped trajec-
tories which is based on drawing rectangles around each trajectory and comparing
their diagonals with a wisely chosen threshold value.

• The possibility to integrate the equations for guiding center dynamics in one or
two steps. In the case of two steps, trapped particles are removed after an inter-
mediate number of temporal cycles in order to save computational time (this is

153



possible because trapped guiding center manifest their nature very early and do
not contribute to diffusion).

Most of the ideas behind these changes emerged from post-processing the Python outputs
with MATLAB files written from scratch.
The main aspects that were highlighted by analyzing the outputs of the simulations with
both Python and MATLAB are essentially the following:

• Different sets of A, ρ and/or η are associated with more chaotic or more regular
behaviors of the trajectories of guiding centers. In this work, the focus was put on
systems neither too regular (because they do not diffuse) nor too chaotic (because
other approaches can suit them better).

• There can be differences in the behavior of the system (stroboscopic plots, diffusive
regimes) if a finite Larmor radius is considered instead of using the approximation
ρ = 0, for which particles and guiding centers are treated as if they were in the
same places. This is an effect that can be detected even without considering the
second order of ψ.

• There can be differences in the behavior of the system if ψ is associated with η = 0,
η > 0 or η < 0. The tendency is that increasing |η| ultimately leads to diffusive
behaviors and higher levels of chaos.

• The systems can be diffusive, slightly sub-diffusive, super-diffusive or almost ballis-
tic depending on the values of A, ρ and η. Increasing ρ can lead to almost ballistic
regimes, with this effect that can be countered if A and/or η are sufficiently high.
Power-law curve fittings are therefore better at describing the physical system asso-
ciated with this work than linear regressions and diffusion coefficients (which were
originally implemented in Python).

• The size of trapped trajectories on the transverse plane seems to be almost in-
dependent of the values assumed by A, ρ and η, in the sense that it is possible
to utilize a unique and fixed value in the Python scripts to distinguish between
untrapped and trapped guiding centers, with the latter not giving contribution to
normal of anomalous diffusion. Such unique and fixed value was found during the
simulations, is equal to 4 and has to be intended as the maximum possible distance
between two points of the same trapped trajectory.

Among all, the facts that systems can have anomalous diffusion and that η seems to
have relevant effects on the dynamics of guiding centers are the ones that should be fur-
ther investigated to understand them better and to check if they can have implications
in real applications. From an analytical point of view, it should be investigated why
super-diffusive systems tend to have stroboscopic plots characterized by highways (i.e.
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almost empty regions traveled by few untrapped guiding centers that are responsible for
super-diffusive regimes) and developments of trajectories along only one axis, depending
on the values assumed by the random phases of ψ and which are essential to reproduce
turbulence. It could be, for example, that these aspects are closely related to the partic-
ular choice of the potential.
In any case, this work, even with all its limitations, opens up to future research in this
field and has shown some interesting behaviors of modelled turbulent plasmas for pacific
fusion applications.
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Appendix A

Hamiltonian systems

This Appendix is based on [HS20] and [Cha18].

A.1 Hamilton’s equations in canonical form
Charged particles can be treated in the framework of Hamiltonian systems, i.e. their
dynamics are described with Hamilton’s equations, which, considering a system with N
degrees of freedom, have the following canonical form:

i = 1, ..., N :






dqi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H

∂qi
,

(A.1)

where (q1(t), ...qN(t)) are the positions canonically conjugated with (p1(t), ..., pN(t)),
which are the momenta. The canonical form of Hamilton’s equations is therefore as-
sociated with these particular coordinates, which for convenience can be gathered to
form a single vector:

z(t) = (q,p) = (q1, ..., qN , p1, ..., pN). (A.2)

The 2N -dimensional phase space for Hamiltonian systems in canonical form is defined by
(q,p). It is important to notice that, for example, in the case of a Hamiltonian system
composed of a single free particle in 3D space, then there would be N = 3 degrees of
freedom and therefore that particle would be associated with three positions and three
momenta.
The relevant quantity that appears in Eqs. A.1 is the Hamiltonian H(z), a scalar function
which is closely related to the energy of the system that is being considered. Functions
like the Hamiltonian are more properly called observables, and even each pi and qi fall
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into that category. Since these are independent of one another by definition, then the
following equations featuring the Kronecker delta hold true:

i, j = 1, ..., 2N :
∂zi
∂zj

= δij. (A.3)

In general, the evolution in time of any observable F (z) can be expressed by exploiting
the Hamiltonian:

dF

dt
=

N∑

i=1

(
∂F

∂qi

∂H

∂pi
− ∂F

∂pi

∂H

∂qi

)
. (A.4)

A.2 Canonical Poisson brackets
It is simple to recover Hamilton’s equations as a special case of Eq. A.4 by setting F = zi
for i = 1, ..., 2N and by using Eqs. A.3. A cleaner expression for Eq. A.4 is obtained
with the Poisson bracket {·, ·}, which is a bilinear operator acting on scalar functions
and that is equipped with the following:

• Anti-symmetry property
{F,G} = −{G,F}. (A.5)

• Leibniz rule
{F,GH} = {F,G}H +G{F,H}. (A.6)

• Jacobi identity

{{F,G}, H}+ {{H,F}, G}+ {{G,H}, F} = 0. (A.7)

F , G and H in Eqs. A.5-A.7 are just generic names given to scalar functions. When this
operator is used, the time evolution of F is:

dF

dt
=

N∑

i=1

(
∂F

∂qi

∂H

∂pi
− ∂F

∂pi

∂H

∂qi

)
= {F,H}. (A.8)

By exploiting Einstein’s notation for repeated indices it is possible to obtain the following:

{F,H} =
∂F

∂qi

∂H

∂pi
− ∂F

∂pi

∂H

∂qi
. (A.9)

Given that the sum in Eq. A.10 can be associated with the scalar product, another
possibility would be to introduce vectors:

{F,H} =
∂F

∂q
· ∂H
∂p

− ∂F

∂p
· ∂H
∂q

. (A.10)
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Whenever a Poisson bracket has canonical coordinates as its variables, it is said to be
canonical. Hamilton’s canonical equation can be also expressed in the Poisson bracket
form:

i = 1, ..., N :






dqi
dt

= {qi, H},

dpi
dt

= {pi, H}.

(A.11)

A.3 Time-dependent Hamiltonian systems
Up to this point, the Hamiltonian has always been intended as autonomous, i.e. a
function that at most depends implicitly on time through z(t). While this is the case for
many physical systems, there are however also ones whose corresponding Hamiltonians
happen to have an explicit time dependence:

H = H(z(t), t). (A.12)

These systems are the ones that have an external force acting on them, e.g. plasmas
confined by magnetic fields in fusion devices. Non-autonomous systems can be harder to
deal with and for this reason it can be highly convenient to autonomize them. In order
to do that, a new variable h is introduced as the coordinate canonically conjugated with
time. The new Hamiltonian H is related to the old one H in this way:

H(z, t, h) = H(z, t) + h. (A.13)

The newly autonomized Hamiltonian system is associated with observables that in gen-
eral depend on both t and h (other than z). They have an extended Poisson bracket
{·, ·}τ which is slightly different from the one already introduced:

{F ,G}τ = {F ,G}+ ∂F
∂t

∂G
∂h

− ∂F
∂h

∂G
∂t

, (A.14)

where F = F(z, t, h) and G = G(z, t, h). In this case it could be helpful to modify the
notation to obtain a more compact and cleaner version of the extended Poisson bracket.
In particular, it is obtained by making the variables associated with each portion of the
whole bracket explicit:

{F ,G} =
∂F
∂q

· ∂G
∂p

− ∂F
∂p

· ∂G
∂q

−→ {F ,G}(q,p), (A.15)

∂F
∂t

∂G
∂h

− ∂F
∂h

∂G
∂t

−→ {F ,G}(t,h), (A.16)
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{F ,G}τ = {F ,G}(q,p) + {F ,G}(t,h). (A.17)

An extendend Poisson bracket which derives from a canonical Poisson bracket, like the
one in Eq. A.14, is called extended canonical Poisson bracket. Moreover, the extended
phase space for the autonomized Hamiltonian system is defined by:

zτ = (z, t, h) = (q,p, t, h) (A.18)

A.4 Changes of coordinates
The canonical Poisson bracket for an autonomous Hamiltonian system in canonical form
with N degrees of freedom can be also expressed, in compact way, with the introduction
of the symplectic (i.e. nonsingular skew-symmetric) 2N × 2N matrix J :

J =

(
ON IN

−IN ON

)
, (A.19)

{F,G} =
2N∑

k,l=1

∂F

∂zk
Jkl

∂G

∂zl
=

∂F

∂z
· J

(
∂G

∂z

)T

, (A.20)

where IN is the N × N identity matrix, ON is the null N × N matrix and the apex T
indicates that the row vector ∂G/∂z has to be transposed before operating the multi-
plication with J . This is required to have compatible vectors so the the scalar product
can be properly done.
To clarify:

• ∂F/∂z is a row vector of length 2N .

• (∂G/∂z)T is a column vector of length 2N .

• J (∂G/∂z)T is a column vector of length 2N .

Actually, Eq. A.20 is only a special case of a more general formula which allows one to
write the Poisson bracket for any Hamiltonian system given any set of coordinates. In
fact, it is not mandatory that canonical coordinates have to be used to describe a Hamil-
tonian system: other coordinates can be used, depending maybe on what the purposes
are or what suits better in a certain situation. It happens very often that physical sys-
tems are described with sets of variables which are very different from (q,p). However,
it is always possible, in a Hamiltonian framework, to write the chosen coordinates in
terms of the canonical ones. It could be the case that, for example, the final set that is
being used is the result of a subsequent series of changes of coordinates, with this chain
starting from (q,p).
Moreover, regardless of the changes, it is possible to autonomize time-dependent systems
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even at later stages, which means that it is not necessary to immediately add h to (z(t), t)
before performing the various transformations leading to the final set.
Going back to Eq. A.20, the generalized version J is the square matrix that accounts
for the change of coordinates, meaning that it contains the information linking the old
and the new coordinates. In particular, each element of the generalized version of J is
a Poisson bracket that acts on the new coordinates and has the old ones as its variables.
The value of the generalized version of J can be found, in practice, if the chain of trans-
formations between the sets of coordinates is known. In order to show how, it is easier to
first write the generalized version of Eq. A.20 and then start the reasoning from there.
Given a generic set of M coordinates zα = (z1, ..., zM) that forms the phase space for a
Hamiltonian system, and given two generic observables F (zα) and G(zα), then:

{F,G} =
M∑

k,l=1

∂F

∂zαk

Jkl(zα)
∂G

∂zαl

=
∂F

∂zα
· J (zα)

(
∂G

∂zα

)T

, (A.21)

k, l = 1, ..,M : Jkl(zα) = {zαk
, zαl

}. (A.22)
In true essence, finding the value of the left-hand side in Eq. A.21 relies on being able
to evaluate the terms in Eqs. A.22, because the rest is much easier. If, for example, the
considered Hamiltonian system has N degrees of freedom and its coordinates are directly
linked to the canonical ones, in the sense that only the change

z = (q,p) 2→ z0(z) = z0 = (z01 , ..., z02N ) (A.23)

has been performed, then it is possible to determine {z0k , z0l} = {z0k(z), z0l(z)} by
exploitation of Eq. A.19 thanks to J (z) being exactly J . This fact comes from Eqs.
A.3, because all the elements of J (z) are canonical Poisson brackets acting on observables
that are the canonical coordinates themselves. In other words, this is the special case
that allows one to recover Eq. A.20 from Eq. A.21.
The elements of J (z0) are then evaluated by applying A.21 with {F,G} = {z0k , z0l} (for
k, l = 1, ..., 2N) and zα = z:

k, l = 1, ..., 2N : Jkl(z0) = {z0k , z0l} =
∂z0k
∂z

·J (z)

(
∂z0l
∂z

)T

=
∂z0k
∂z

·J
(
∂z0l
∂z

)T

. (A.24)

It is important to notice that the change of coordinates A.23 can also be viewed as a
wrapping change of coordinates which takes into account every intermediate transforma-
tion that could take place when a physical system is being studied. However, if multiple
steps are considered or there is the intention to keep them well distinguished for some
reason, then the procedure is very similar to the one just shown. In particular, if n
changes of coordinates

z = z0 2→ z1 2→ ... 2→ zk... 2→ ... 2→ zn (A.25)
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have been performed starting from 2N canonical coordinates, then, following the example
where n = 1 and given that zn = zn(zn−1), J (zn) would require J (zn−1) to become a
known matrix:

k, l = 1, ..., 2N : Jkl(zn) = {znk
, znl

} =
∂znk

∂zn−1
· J (zn−1)

(
∂znl

∂zn−1

)T

. (A.26)

In turn, J (zn−1) would then need J (zn−2) to be determined and this backward pairing
pattern would continue up to the couple formed by J (z1) and J (z0). The general
recursive formula, for s = 0, ..., n− 1, is:

k, l = 1, ..., 2N : Jij(zs+1) = {zs+1k , zs+1l} =
∂zs+1k

∂zk
· J (zk)

(
∂zs+1l

∂zk

)T

. (A.27)

However, since J (z0) = J (z) = J is given by Eq. A.19, it is now evident that it is
possible to evaluate each possible J (zs+1). Summing up, in a Hamiltonian framework,
once the various changes and J for the canonical coordinates are known, it is possible
to determine any Poisson Bracket for whatever system of coordinates.

A.5 Lie transform
A particular class of changes of coordinates is represented by the Lie transform, which has
the effect of mapping a generic set of coordinates z into a new set z̄ without modifying
the form of Poisson brackets. All the transformations of this kind are said to be canonical
and in essence they do not require Eq. A.27.
Lie transforms are associated with a numeric parameter ε ∈ R such that z̄ is equal to z
when ε = 0. In symbols:

z 2→ z̄(z, ε) : z̄(z, 0) = z. (A.28)

The expression for the Lie transform that can be actively used to concretize the change
of coordinates is obtained by solving the following differential equation:

dz̄

dε
= {S, z̄}, (A.29)

where S = S(z) is the generating function of the Lie transform. The Poisson bracket in
Eq. A.29 can be rewritten with the introduction of the Liouville operator LS:

{S, z̄} = LSz̄. (A.30)

The solution of Eq. A.29 can be expressed in terms of a series similar to the Taylor one
for the exponential function:

ex =
∞∑

k=0

xn

n!
, (A.31)
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dz̄

dε
= LSz̄ −→ z̄(z, ε) = eεLS z̄(z, 0) = eεLSz =

∞∑

n=0

εn

n!
Ln

Sz. (A.32)

In expanded form, the series in Eq. A.32 is:

∞∑

n=0

εn

n!
Ln

Sz =
∞∑

n=0

εn

n!
{S, {S, {..., {S, z}...}}}}, (A.33)

where n-th term has n nested Poisson brackets. In particular, this means that the term
for n = 0 reduces to only z: there are zero Poisson brackets and also ε0 = 0! = 1. In
short, the change of coordinates associated with the Lie transform is:

z 2→ z̄ = eεLSz. (A.34)

The inverse of this transformation is basically obtained by changing ε into −ε:

z̄ 2→ z = e−εLS z̄. (A.35)

If now a generic observable of the starting coordinates F (z) is taken into account, it is
possible to obtain a new observable which is function of the new coordinates, namely
F̄ (z̄):

F (z) = F (e−εLS z̄) = e−εLSF (z̄) = F̄ (z̄). (A.36)

Use of the property
β(eεLSG) = eεLSβ(G), (A.37)

which is valid for any scalar function β and observable G, has been made here. It can
be noticed that this property can suit vectors in the sense that it is applied element
by element. Anyway, Eq. A.36 states that F and F̄ have the same value when their
arguments are z and z̄, respectively. Besides Eq. A.37, there are two other important
properties of the Lie transform:

• It is a linear operator, i.e. for any number N of constants αi and scalar functions
fi (i = 1, ..., N) it is possible to write

eεLS

( N∑

i=1

αifi

)
=

N∑

i=1

αie
εLSfi. (A.38)

• Given any two observables F and G, it satisfies the relation

{eεLSF, eεLSG} = eεLS{F,G}. (A.39)
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Appendix B

Discrete and Fast Fourier Transforms

This Appendix is based on [BK22], [Joh11] and [com21].

B.1 Discrete Fourier Transform
Any function a(x) that is periodic with period P in [x0, x0+P [ can be expressed through
a Fourier series:






a(x) =
∞∑

k=−∞

Ake
jkx,

k = −∞, ..., 0, ...,+∞ : Ak =
1

P

∫ x0+P

x0

a(x)e−
2πjkx

P dx.

(B.1)

The numerical implementation of a(x) that exploits its periodic nature is associated with
a discretization of its domain and the construction of a truncated series. If N points are
chosen for the discretization, then vectors of length N are obtained:

x = (x0, ..., xN−1)
T, (B.2)

a = (a0, ..., aN−1)
T, (B.3)

A = (A0, ..., AN−1)
T, (B.4)

xn =
nP
N

, (B.5)

a(xn) 1 an =
1

N

N−1∑

k=0

Ake
+ 2πjnk

N , (B.6)
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Ak =
N−1∑

n=0

ane
− 2πjnk

N . (B.7)

Eq. B.7 is expressing an inverse Discrete Fourier Transform (DFT−1). On the other
hand, Eq. B.7 is a (direct) Discrete Fourier Transform (DFT ). A is the vector of
Fourier coefficients. The numerical evaluation of the elements of A starting from those
of a (and viceversa) is usually done with the help of two high-performing algorithms:
the Fast Fourier Transform (FFT ) and its inverse (FFT 1). The main concepts behind
them are described in section B.2.
Naturally, it is possible to extend the DFT and its calculation with the FFT to di-
mensions beyond 1. For example, the DFT and its inverse in two dimensions involve
matrices instead of vectors. Their elements, in the case of an equal discretization along
both directions x and y, are given by:

Akl =
N−1∑

n,m=0

anme
− 2πj(nk+ml)

N , (B.8)

a(xn, ym) 1 anm =
1

N2

N−1∑

k,l=0

Akle
+ 2πj(nk+ml)

N , (B.9)

where the generic element ym is obviously part of a vector similar to x:

y = (y0, ..., yN−1)
T, (B.10)

yn =
nP
N

. (B.11)

In the special case of P = 2π, there is a considerable simplification:

Akl =
N−1∑

n,m=0

anme
−j(kxn+lym), (B.12)

a(xn, ym) 1 anm =
1

N2

N−1∑

k,l=0

Akle
j(kxn+lym). (B.13)

B.2 Fast Fourier Transform algorithm
The problem with the DFT and its inverse is that they can be significantly slow and
expensive to evaluate with a computer when N 0 1. For example, the monodimensional
DFT has a quadratic scaling with N , meaning that it involves O(N2) operations when
evaluated by means of matrix multiplication:

A = WNa, (B.14)
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u, v = 0, ..., N − 1 : WNuv = ωuv
N = (e−2πj/N)uv = e−2πjuv/N . (B.15)

A solution to this problem is represented by the Fast Fourier Transform algorithm (FFT)
and its inverse (FFT 1). As its name suggests, the FFT is much faster and efficient than
the DFT , while still getting to the same result. For example, the 1D version takes only
O(N log2(N)) operations instead of O(N2). Without going into all the details of how the
FFT algorithm can be coded, on a base level it exploits the fact that there is a way of
efficiently rearranging the DFT matrix (like W) and the quantity it is multiplying (like
a), when N is a power of 2. For example, if N = 2p, with p being a positive natural so
that N 0 1, then the right-hand side of Eq. B.14 can be written as the product of two
matrices and a differently stacked version of a, which is obtained by putting elements
with even indices on top of the remainings:

WNa =

(
IN/2 DN/2

IN/2 −DN/2

)(
WN/2 ON/2

ON/2 WN/2

)

︸ ︷︷ ︸
factorized WN

(
a(even)

a(odd)

)

︸ ︷︷ ︸
rearranged a

, (B.16)

where
u, v = 0, ..., N/2− 1 : DN/2uv = ωu

Nδuv = e−2πju/Nδuv, (B.17)

a(even) = (a0, a2, ..., aN−4, aN−2)
T, (B.18)

a(odd) = (a1, a3, ..., aN−3, aN−1)
T. (B.19)

As it can be clearly seen, the first of the two matrices in the right-hand side of Eq. B.16
involve identity and diagonal matrices of size N/2×N/2, while the second one contains
null matrices and smaller versions of the original DFT matrix WN . The power of this
new arrangement lies in two facts:

• The first matrix involves four diagonal sub-matrices, which in general make com-
putations much easier.

• The second matrix is half as costly as the original dense WN since half of its
coefficients are zeros.

The procedure that led to Eq. B.16 can be the reiterated multiple times to further speed
up the computing of the DFT. The repetition of the first rearrangement step is what lies
behind the FFT algorithm:

• WN/2 can be associated with a similar expression to Eq. B.16. This involves
obtaining WN/4, which following the same reasoning can be related to WN/8 and
so on up to the point of getting W2, which is a simple 2× 2 matrix:

WN/2 =

(
IN/4 DN/4

IN/4 −DN/4

)(
WN/4 ON/4

ON/4 WN/4

)
, (B.20)
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↓

WN/4 =

(
IN/8 DN/8

IN/8 −DN/8

)(
WN/8 ON/8

ON/8 WN/8

)
, (B.21)

↓

...

↓

W4 =

(
I2 D2

I2 −D2

)(
W2 O2

O2 W2

)
. (B.22)

• The rearranged version of a can be futher mixed in similar way to Eq. B.16. In
particular, after having reindexed all its elements in order from 0 to N−1, the ones
that are also part of a(even) are rearranged in such a way that the even-indexed
ones are put on top of the others. Then, the same modification is made for the
elements that are also part of a(odd). This exact procedure, which involved one
rearrangement the first time (Eq. B.16) and has two rearrangements now, can then
be repeated for a number of times that matches the iterations executed starting
from WN . It can be verified that each subsequent modification of the original a
involves 2(k−1) restacking operations, where k stands for the generic k-th iteration
of the process.

The requirement of having N as a power of 2 does not represent a true constriction: if
N is not like that, then it can be increased to meet this condition in such a way that the
results for the original N and the the matching portion in the modified one are the same.
This can be achieved by padding with zeros the vector or the matrix that undergoes direct
or inverse transformation. Even if it may seem that padding goes against computation
time, it has to be kept in mind that the number of operations depends on a logarithmic
factor: increasing N has therefore a very limited and decreasingly relevant effect on the
number of operations themselves.
When the FFT algorithm is used to evaluate the DFT in numerical computations, a
and A are square matrices that can be linked using the following compact notations:

A = FFT(a), (B.23)

a = FFT−1(A). (B.24)

In two dimensions:
A = FFT2(a), (B.25)

a = FFT−1
2 (A). (B.26)

However, approximating quantities like derivatives, e.g. da(x)/dx, is a little bit trickier.
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B.3 Computing first order derivatives with the FFT
algorithm

The Fast Fourier Transform can be very useful to efficiently approximate derivatives of
functions that can be expressed through Fourier series.
The actual first derivative of a(x) is given by:

d

dx
a(x) =

∞∑

k=−∞

(
2πj

P kAk

)
e

2πj
P kx (B.27)

When dealing with Discrete Fourier Transforms, the expression is similar, but, in order
to fully characterize it, a trigonometric interpolation has to be defined. More about it
can be found in [Joh11]. The associated procedure leads to a formula that allows one to
approximate da(x)/dx at the sample points gathered in x:

da(x)

dx

∣∣∣∣
xn

1 a′n =
∑

0<k<N/2

2πj

P k

(
Ake

2πj
N nk − AN−ke

− 2πj
N nk

)
=

N−1∑

k=0

A′
ke

2πj
N nk; (B.28)

where a′n is the n-th element of the vector of approximates first derivatives and

• A′
k = 0 for k =

N

2
, if N is even. In fact, if N is odd, then k, being an integer, can

not be equal to half of N .

• A′
k =

2πj

P kAk for 0 ≤ k <
N

2
.

• A′
k = −2πj

P (N − k)Ak for k >
N

2
.

The notation 0 < k < N/2 has been used to take into account that N can be even or
odd. If N is even, then that notation means k = 1, ..., N/2, whereas if N is odd, then
k = 1, ..., (N − 1)/2 (in the second sum of Eq. B.28, k always goes from 0 to N − 1).
Fourier coefficients for the first derivative are more easily defined by using a rearranged
vector κ of length N (this is especially helpful when coding):

• If N is even
κ =

2π

P

(
0, ...,

N

2
− 1,−N

2
, ...,−1

)
, (B.29)

A′
k = jκkAk. (B.30)

• If N is odd
κ =

2π

P

(
0, ...,

N − 1

2
,−N − 1

2
, ...,−1

)
, (B.31)

A′
k = jκkAk. (B.32)
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Using a direct Fast Fourier Transform acting on the vector of a′n can be used to calculate
the vector of Ak.
Then, using an inverse Fast Fourier Transform acting on the vector of A′

k can be used
to obtain a good estimate of da/dx. Because this is a numerical process that involves
Fourier space, it is common that using the inverse FFT for derivatives produces complex
numbers (with very small imaginary parts) instead of real numbers. This is why the real
part is explicitly taken when actual implementations of inverse Fast Fourier Transforms
are made in scripts.
A very similar procedure is applied in the case of functions of two or more variables.

B.3.1 Implementation in Python

1 import numpy as xp
2 from numpy.fft import fft, ifft, fftfreq
3 N = 2**10
4 P = 2*xp.pi
5 x = xp.linspace(0, 2*xp.pi, N, endpoint=False)
6 kappa = (2*xp.pi/P)* fftfreq (N, d=1/N)
7 a = xp.sin(x)
8 A = fft (a)
9 A_prime = 1j*kappa*A

10 a_prime = ( ifft (A_prime)).real

Listing 12: Simple Python script that shows how to set up and use direct and inverse Fast
Fourier Transforms to compute derivatives. In this case, the use of numpy.fft.fftfreq
with d=1/N creates a vector κ like in Eq. B.29. a_prime (i.e. a′) is the vector that
approximates the first derivative of a (i.e. a), while A (i.e. A), which is the vector of
Fourier coefficients of a, is then turned into A_prime (i.e. A′) with a multiplication for
1j*kappa (i.e. jκ).

The way the Fast Fourier Transform and its inverse can be used to compute first
order derivatives in Python is simply shown through Listing 12, in which a(x) = sin (x),
x ∈ [0, 2π[ and N = 210 have been implemented. The result, i.e. an approximation of
da/dx = cos (x), is displayed together with the approximation of a(x) in Fig. B.2.
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Figure B.1: Visual comparison between the number of numerical operations to compute
a mono-dimensional Discrete Fourier Transform with or without the help of the Fast
Fourier Transform algorithm, as the number of discretizing points vary. The plot has
been realized with MATLAB.
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Figure B.2: Visual representation of a and a_prime of Listing 12. They approximate a
sinusoidal function and its derivative, with the latter being obtained through direct and
inverse Fast Fourier Transform algorithms.
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Appendix C

Mean square displacement and
anomalous diffusion of particles

This Appendix is based on [Wik22a], [Wik22b], [Pet+88] and [dev22].

C.1 Mean square displacement
The mean square displacement r2(t) (also indicated as MSD or 〈r2(t)〉) is a quantity
that, in essence, measures the portion of space being explored by entities (e.g. a particle
or a group of them) through the comparison between their positions at time t and some
reference positions.

C.1.1 r2(t) for a system of N particles
There are many formulae that can be used to calculate r2(t). Considering N particles
constituting a single system to be studies, the most simple formula is the mean value of
the deviations of their positions at time t with respect to their initial positions at t = 0:

r2(t) =
1

N

N−1∑

n=0

∣∣r(n)(t)− r(n)(0)
∣∣2, (C.1)

where r(n)(t) is the position of the n-th particle at time t. In the case of a 2D space and
Cartesian coordinates r = (x, y), the same formula would be written as:

r2(t) =
1

N

N−1∑

n=0

[(
x(n)(t)− x(n)(0)

)2
+
(
y(n)(t)− y(n)(0))2

)]
. (C.2)
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C.1.2 r2(t) for single particle tracking
When there is interest in following single particles, their positions are usually registered
at specific instants of time, which are commonly spaced with an arbitrary fixed spacing
∆t. In those cases, r2 is defined not as an average of deviations over the number of
particles, but as an average over time intervals within the same trajectory:

r2(t) = r2(τ∆t) =
1

T − τ

T−τ∑

k=0

∣∣rk+τ − rk

∣∣2, τ = 0, ..., T − 1, (C.3)

where:

• T is the number of time intervals between instants, i.e. there are T + 1 instants of
time at which the particle has been tracked.

• τ represents the generic τ -th instant of time (apart from the very last one).

• t = τ∆t is the numerical value of the τ -th instant of time that is being considered;

• r2 is evaluated from t = 0 to t = (T − 1)∆t. This allows, for example, to plot r2(t)
as a set of T data points.

• rk+τ = r(k∆t+ τ∆t) is the position of the particle at the (k + τ)-instant of time.

• rk = r(k∆t) is the position of the particles at the k-th instant of time.

C.1.3 r2(t) for a system of N particles inspired by single particle
tracking

It is possible to modify Eq. C.2 by exploiting Eq. C.3 in the case of N particles whose
positions are being recorded as in single particle tracking. From another perspective, it
could be said that Eq. C.3 can be extended to account for having N particles. In any
case, the end result is a merged formula that contains a double averaging and in which
r2 is referred to the entire system of particles:

r2(t) = r2(τ∆t) =
1

N

N−1∑

n=0

1

(T − τ)

T−τ∑

k=0

∣∣r(n)
k+τ − r(n)

k

∣∣2, τ = 0, ..., T − 1. (C.4)

C.2 Anomalous diffusion
Plotting the evolution in time of the mean square displacement of a given system allows
one to determine its diffusive regime, which can be normal (linear relationship between
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r2 and t), anomalous (non-linear relationship), or absent. If r2 is associated with a set
of experimental or numerical data, then performing a power-law curve fitting can help
the analysis. In particular, when the fit is based on the equation

f(t) = (at)b, (C.5)

with a and b being real parameters to be found, then:

• If b 1 1, the fit is linear (or almost linear) and the system exhibits (normal)
diffusion. In particular, the diffusion coefficient D (which can only be defined in
this case) of the system is associated with the slope of the curve, that is ab 1 a.
From a mathematical point of view, the diffusion coefficient can be defined as the
asymptotic value of the ratio between the mean square displacement and time:

D = lim
t→∞

r2(t)

t
. (C.6)

• If b 1 0, the system practically does not diffuse at all.

• If 0 < b < 1, the system is sub-diffusive.

• If b > 1, the system is super-diffusive. In particular, if b > 2, then it is labelled as
hyper-ballistic.

C.2.1 Goodness of fit expressed through the coefficient of deter-
mination R2

The coefficient of determination R2 is a measure of how good is a curve fitting, i.e. how
well the model offered by the fit represents the set of experimental or numerical data.
The best possible score for R2 is 1.0 and it is common to treat curve fittings with R2 ≥
0.99 as acceptable. If y = (y0, ..., yS−1) is the vector that contains the the experimental
or numerical data in the correct order and ŷ = (ŷ0, ..., ŷS−1) is the vector that contain
the values of the associated curve fitting, then the coefficient of determination is defined
as:

R2(y, ŷ) = 1−
∑S−1

k=0 (yk − ŷk)2∑S−1
k=0 (yk − ȳ)2

, (C.7)

where ȳ is the mean value of y:

ȳ =
1

S

S−1∑

k=0

yk. (C.8)
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In the case of anomalous diffusion and power-law curve fittings, the value of R2 would
be related to r2(t) and f(t):

R2(r2, f) = 1−
∑S−1

k=0 (r
2
k − fk)2

∑S−1
k=0

(
r2k − 1

S

∑S−1
k=0 r

2
k

)2 . (C.9)
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