
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA
CAMPUS DI CESENA

Scuola di Scienze
Corso di Laurea in Ingegneria e Scienze Informatiche

EDGE-AWARE GRAPH ATTENTION NETWORKS:

JOINT REASONING ON TEXT AND KNOWLEDGE GRAPHS

FOR BIOMEDICAL QUESTION ANSWERING

Elaborato in
Text Mining

Relatore
Prof. Gianluca Moro
Co-relatore
Dott. Giacomo Frisoni

Presentata da
Francesco Boschi

Appello straordinario riservato
Anno Accademico 2020 – 2021

PAROLE CHIAVE

Graph Neural Networks

Natural Language Processing

Machine Learning

Deep Neural Networks
Python

Even if it’s just for a moment
I’m gonna burn so bright and so red,

I’d dazzle everyone.
And all that’ll be left is pure white ash.

- Ashita no Joe

Sommario

Buona parte dei dati provenienti dal mondo reale, tra i quali quelli testuali,
possono essere rappresentati mediante delle strutture a grafo. L’utilizzo di grafi
per rappresentare dati testuali porta con se numerosi vantaggi, principalmente
legati alla possibilità di mantenere una maggiore quantità di informazioni, come
le relazioni tra le parole e la loro tipologia.
Negli utlimi anni sono state proposte numerose architetture di reti neurali per
affrontare task su grafi. Molte di queste tengono in considerazione solamente
le caratteristiche dei nodi, ignorando o non dando la giusta rilevanza a quelle
delle relazioni tra essi, nonostante queste ultime in numerosi task di node
classification giochino un ruolo fondamentale.

Questa tesi si pone come obiettivo quello di analizzare le principali GNN,
valutarne vantaggi e svantaggi, proporre una soluzione innovativa, considera-
bile come un’estensione di GAT, e applicarle ad un caso di studio in ambito
biomedico.

Si propongono quindi le reti di riferimento, implementate con metodologie
in seguito analizzate, e poi applicate ad un sistema di question answering
in ambito biomedico in sostituzione alla GNN pre-esistente, nel tentativo di
ottenere risultati migliori grazie all’utilizzo di modelli in grado di accettare in
input sia le feature dei nodi che quelle degli archi.
Come sarà mostrato in seguito, i modelli da noi proposti sono in grado di
battere la soluzione originale e definire il nuovo stato dell’arte per il task in
analisi.

vii

Abstract

Much of the real-world dataset, including textual data, can be represented
using graph structures. The use of graphs to represent textual data has
many advantages, mainly related to maintaining a more significant amount
of information, such as the relationships between words and their types. In
recent years, many neural network architectures have been proposed to deal
with tasks on graphs. Many of them consider only node features, ignoring or
not giving the proper relevance to relationships between them. However, in
many node classification tasks, they play a fundamental role.

This thesis aims to analyze the main GNNs, evaluate their advantages and
disadvantages, propose an innovative solution considered as an extension of
GAT, and apply them to a case study in the biomedical field.

We propose the reference GNNs, implemented with methodologies later
analyzed, and then applied to a question answering system in the biomedical
field as a replacement for the pre-existing GNN. We attempt to obtain better
results by using models that can accept as input both node and edge features.
As shown later, our proposed models can beat the original solution and define
the state-of-the-art for the task under analysis.

ix

Introduzione

Contesto
Buona parte dei dati provenienti dal mondo reale possono essere rappresen-

tati mediante delle strutture a grafo. Pensiamo per esempio ai social network,
nei quali gli utenti possono essere rappresentati come nodi e gli archi tra essi
ne rappresentano le relazioni, o più in generale al World Wide Web.

Anche il testo, spesso presentato sotto forma non strutturata e di conse-
guenza più difficile da analizzare, può essere espresso mediante un grafo. Tale
grafo può essere un semplice albero sintattico, nel quale emergono le categorie
lessicali di ciascuna parola dipendentemente dal contesto in cui compare (figura
1), piuttosto che una struttura più complessa che permette di individuare le
entità, ovvero i concetti presenti nel testo, e le relazioni che le legano, come
gli Abstract Meaning Representation [1]. Gli AMR sono dei grafi etichettati,
diretti e aciclici che contengono intere frasi e hanno come obiettivo quello di
astrarre la rappresentazione sintattica, nel senso che due frasi con lo stesso
significato ma non identiche sono assegnate allo stesso AMR (figura 2).

Figure 1: Example of syntax tree.
From: Relational Graph Attention Network for Aspect-based Sentiment Analysis,

2020 [2]

L’utilizzo di grafi per rappresentare dati testuali offre numerosi vantaggi:
queste struttture sono infatti intuitive, flessibili e basate su regole matematiche

xi

xii Introduzione

Figure 2: Example of AMR.
From: MRP 2020: The Second Shared Task on Cross-Framework and Cross-Lingual

Meaning Representation Parsing, 2020 [3]

che forniscono un elevato grado di dimostrabilità. Inoltre mantengono, rispetto
a del semplice testo, numerose informazioni aggiuntive, come relazioni e tipo
di relazioni tra parole, tipologia delle entità, cardinalità ecc. che arricchiscono
e disambiguano il testo rendendolo più facilmente utilizzabile per i task più
disparati.

Tendenzialmente i nodi, gli archi e le caratteristiche di un grafo vengono
trasformate e portate in uno spazio vettoriale di dimensione ridotta, cercando
di preservare le proprietà e la struttura del grafo stesso: si parla di graph
embedding.
Questa famiglia di algoritmi può essere suddivisa in varie sottocategorie che si
differenziano per l’output ottenuto, per l’input richiesto e per la logica che viene
applicata per il raggiungimento del risultato. Esistono infatti tecniche di graph
embedding che mirano ad ottenere una rappresentazione per ciascun nodo, altre
procedure che generano un solo embedding per l’intero grafo, caso più raro
in quanto difficilmente scalabile e con maggior perdita di informazione. Una
seconda considerazione riguarda il grafo richiesto in input; buona parte degli
approcci accettano grafi omogenei, nei quali le relazioni non hanno direzione,
tipologia e tutti i nodi svolgono lo stesso ruolo.

Negli ultimi anni questo ambito ha attirato l’attenzione di numerosi studiosi,

Introduzione xiii

che hanno inizialmente sviluppato reti neurali su grafi [4]. Kipf et al. [5] hanno
proposto una rete convoluzionale sui grafi detta GCN, poi migliorata per tenere
in considerazione le relazioni tra i nodi [6] ed infine evoluta grazie al lavoro di
Velickovic et al. [7] "Graph Attention Networks" (GAT).

GAT unisce i vantaggi del meccanismo di Attention [8] e delle classiche GCN
[5]: se prima durante l’aggregazione i nodi connessi venivano tutti considerati
in egual maniera, grazie a GAT ciascun nodo sarà in automatico in grado di
assegnare una rilevanza differente a ciascun nodo del vicinato.

Problema

Uno dei problemi principali delle reti esistenti risiede nel fatto che ignorano
le caratteristiche delle relazioni, rappresentate mediante gli archi del grafo,
nonostante spesso giochino un ruolo fondamentale nel comprendere appieno gli
aspetti semantici del testo. La figura 3, per esempio, mostra come, mediante la
tipologia delle relazioni, sia possibile classificare i nodi vicini a "David Beckham"
in tre categorie: "locazione", "lavoro", "famiglia" e assegnare a ciascuno di essi
una rilevanza differente dipendentemente dal contensto in analisi.

Figure 3: Example of multi-relational graph.
From: r-GAT: Relational Graph Attention Network for Multi-Relational Graphs, 2021

[2]

Sebbene ultimamente stiano nascendo numerose reti in grado di prendere
in cosiderazione anche la tipologia delle relazioni [9][10][11][12][13][2], spesso
quese soluzioni non sono general purpose, non prendono in considerazione
tutte le caratteristiche tipiche di un grafo, non mettono a disposizione il codice
dell’implementazione o non sfruttano il meccanismo di self-attention, risultando
quindi inadatte alle nostre esigenze.

Una delle implementazioni più interessanti è sicuramente EGAT [14], in
quanto, tramite un meccanismo di self-attention di ispirazione a GAT [7],
genera una nuova rappresentazione per ciascun nodo e relazione tenendo in

xiv Introduzione

considerazione non solo i nodi del vicinato, ma anche la relazione che li unisce,
sfruttando semplici trasformazioni sul grafo stesso.

Contributo
La tesi si colloca in questo contesto. Considerando come punto di partenza

l’architettura di EGAT [14], della quale il codice non è reso pubblico, ci si pone
come obiettivo quello reimplementare tale soluzione, proporne una variante e
applicarle ad un secondo lavoro, QA-GNN [15], andando a sostituire la GNN
utilizzata in modo da verificare se, tenendo in considerazione anche le feature
delle relazioni, sia possibile ottenere un aumento di performance.

Organizzazione della tesi
L’elaborato è suddiviso nei seguenti capitoli:

• Capitolo 1 - presenta un quadro generale sulle GNN [4] e sulle modalità
con la quale vengono scambiati i dati tra i nodi, analizzando le principali
implementazioni e valutandone vantaggi e svantaggi.

• Capitolo 2 - illustra i lavori di riferimento, nello specifico la soluzione
reimplementata (EGAT) e quella alla quale sarà applicata (QA-GNN).

• Capitolo 3 - si descrive nel dettaglio il design proposto e l’applicazione
ad un caso di studio in ambito biomedico. Viene analizzata la fase di
sperimentazione e i risultati ottenuti.

• Capitolo 4 - vengono mostrati i passaggi più interessanti dell’implmene-
tazione proposta e i comandi necessari all’esecuzione.

• Capitolo 5 - nell’ultimo capitolo si traggono le conclusioni e si descrivono
i possibili sviluppi futuri.

Introduction

Context

Most of the real-world datasets come together with some form of graph struc-
ture: in social networks, users are represented as nodes and edges representing
their relationships, or more generally, the World Wide Web.

Text, which is often presented in an unstructured form and thus more
challenging to analyze, can be expressed using a graph. Such a graph can
be a simple syntactic tree (figure 1), in which the lexical categories of each
word emerge depending on its context, rather than a more complex structure
that allows identifying entities present in the text and relationships among
them, such as Abstract Meaning Representation (AMR) [1]. AMRs are labeled,
directed, acyclic graphs that contain entire sentences and aim to abstract the
syntactic representation of the sentence: this means that two sentences with
the same meaning but not identical must be assigned to the same AMR (figure
2).

Using graphs to represent textual data offers many advantages: these
structures are intuitive, flexible, and based on mathematical rules that provide
a high degree of demonstrability. Moreover, compared to simple text, they
maintain much more information, such as relationship and type of relationship
between words, entity types, and cardinality that enrich and disambiguate the
text, making it more suitable for many tasks.

Graph embedding is a technique used to transform nodes, edges, and features
into vector space with a lower dimension while preserving graph structure and
information properties. This family of algorithms can be divided into several
subcategories depending on the output obtained, the input required and the
logic applied to achieve the result. Some graph embedding procedures aim to
obtain a representation for each node rather than generate a single embedding
for the entire graph, which is less common as it does not scale well and has a
more significant information loss. A second consideration concern the graph
required as input: most algorithms accept homogeneous graphs, which are not
directed, relationships have no type, and each node plays the same role.

xv

xvi Introduction

Recently, this field of study has attracted the attention of many researchers,
who initially developed Graph Neural Networks [4]. Kopf et al. [5] proposed a
Graph Convolutional Network, then improved to take into account relationship
between nodes [6] and finally enhanced through Velickovic et al. work "Graph
Attention Networks" [7].

GAT combines the advantages of the Attention mechanism [8] and of the
classical GCN [5]: before this architecture, during the aggregation, connected
nodes were equally weighted; now, thanks to GAT, each node will automatically
be able to assign a different relevance to each node in the neighborhood.

Problem

One of the main problems of existing networks is that they ignore relationship
features, which often play a fundamental role in thoroughly understanding
every semantic aspect of the text. The figure 3, for example, shows how through
relation types, it is possible to classify nodes connected to "David Beckham" in
three categories: "location", "work", and "family" and assign them a different
relevance depending on the content under analysis.

Although recently many networks can take into account the type of relations
[9][10] [11][12][13][2], often these solutions are not general-purpose, they do not
take in consideration all the typical characteristics of a graph, they do not
exploit the self-attention mechanism, and usually the implementation code is
not available, resulting therefore unsuitable for our requirements.

One of the most exciting implementations is certainly EGAT [14], since,
through a self-attention mechanism inspired by GAT [7], it generates a new
representation for each node and relation, taking into account nodes of the
neighborhood and relations between them, using simple transformations on the
graph itself.

Contribution

This thesis is set in this context. Considering as a starting point the
architecture of EGAT [14], which code has not been published yet, the goal is
to reimplement and propose a variant of this solution, apply them to a second
work, QA-GNN [15], replacing the GNN used, and verify whether taking into
account edge features leads to a performance boost.

Introduction xvii

Thesis Organization
The thesis is divided in the following sections:

• Chapter 1 - presents an overview of GNNs, how data is exchanged bet-
ween nodes, analyzes the main implementations, and evaluates advantages
and disadvantages.

• Chapter 2 - illustrates the reference work, precisely the reimplemented
solution (EGAT) and the one to which it will be applied (QA-GNN).

• Chapter 3 - describes the proposed design and the application to a case
study in the biomedical field. The experimental phase and the results
obtained are analyzed.

• Chapter 4 - shows the most exciting steps of the proposed implementa-
tion and the commands needed to execute them.

• Chapter 5 - in the last chapter, conclusions are drawn and possible
future developments are described.

Indice

1 Background on Graph Neural Networks 1
1.1 Overview . 1

1.1.1 Motivation . 1
1.1.2 History . 1

1.2 Main models . 6
1.2.1 GCN . 6
1.2.2 RGCN . 8
1.2.3 GAT . 10
1.2.4 GATv2 . 12

2 Reference Architectures 17
2.1 Edge-Featured Graph Attention Network (EGAT) 17

2.1.1 Introduction . 17
2.1.2 EGAT model . 18
2.1.3 Results obtained by the original model 24

2.2 QA-GNN . 25
2.2.1 QA-GNN architecture 26
2.2.2 Joint graph representation 27
2.2.3 Relevance scoring . 27
2.2.4 GNN architecture . 28
2.2.5 Results obtained by the original model 30

3 Contributions 31
3.1 Proposed design . 31
3.2 Dataset preparation . 32

3.2.1 Reverse graph creation 32
3.2.2 Relation embeddings creation 33

3.3 EGAT variant with graph transformation (EGATv2) 34
3.4 Training . 34

3.4.1 Dataset . 35
3.4.2 Knowledge graphs . 35
3.4.3 Implementation and training details 36

xviii

INDICE xix

3.5 Results . 36
3.5.1 Ablations . 37

4 Implementation 45
4.1 Preliminary Technical Choices 45
4.2 GAT . 46

4.2.1 PyTorch . 46
4.2.2 DGL . 47

4.3 GATv2 . 49
4.4 RGCN . 49
4.5 EGAT . 52

4.5.1 PyTorch . 52
4.5.2 PyTorch Geometric . 56

4.6 Dataset preparation . 59
4.6.1 Creation of the reversed graph 60
4.6.2 Creation of relation embeddings 60

4.7 Server commands . 61

Conclusions and Future Challenges 63

Ringraziamenti 65

Ringraziamenti 67

Bibliografia 69

Elenco delle figure

1 Example of syntax tree. xi
2 Example of AMR. xii
3 Example of multi-relational graph. xiii

1.1 An overview of a CNN. 3
1.2 Graph Representation Learning taxonomy. 6
1.3 A simplified representation of a GCN architecture. 8
1.4 2: Diagram for computing the update of a single graph node/en-

tity (red) in the R-GCN model. Embeddings from neighboring
nodes (dark blue) are gathered and then transformed for each
relation type individually. The resulting representation (green)
is aggregated via a normalized sum and passed through a ReLU
activation function. 9

1.5 A multi-head GAT layer. Every neighbor of the central node
sends it’s own vector of attentional coefficients, one per each
head. These are used to compute k different new node features
which are then aggregated, in the example by a concatenation
or average operation. 13

1.6 Static attention computed on a complete bipartite graph. The
ranking of attention scores is the same for all nodes in the graph
and is independent on the query node. In the example, all queries
(q0 to q9) attend mostly on the key k8. 14

1.7 Dynamic attention computed on the same complete bipartite
graph 1.6. The ranking of attention scores now is not the same
for all nodes in the graph and depends on the query node. . . . 15

2.1 Structure of EGAT layer. It accepts node features H and edge
features E as inputs and produces two sets of new features,
H

′ and E
′ . Each attention block is also fed with its extended

adjacency matrix MH and ME. Unlike the original solution,
edge mapping and node matrices are not provided as input to
each attention block. 19

xx

ELENCO DELLE FIGURE xxi

2.2 An example of graph transformation. Nodes become edges and
edges become nodes. 22

2.3 Edge adjacency matrix of graph 2.2.For simplicity, the one-hot-
vector contained in each cell is replaced with the corresponding
non-zero index. 23

2.4 Overall EGAt architecture. Many EGAT layers are stacked.
Each one receives as input the output of the previous layer. At
the end of the architecture, a merge layer merges edge-integrated
node features produced by each layer. 24

2.5 Example of the QA context and its integration with a knowledge
graph. 26

2.6 Overview of the model. 27
2.7 Relevance scoring of the retrieved KG. 28
2.8 QA-GNN test accuracy on MedQA-USMLE. 30

3.1 Proposed solution. The original GNN has been replaced with
EGAT. Relation embeddings are also generated and relevance
score is not used anymore. 31

3.2 The proposed graph transformation. For each relation, a new
node is created and initialized with a function that considers the
source node and the edge embeddings. The now node is then
connected to the source node, with a new relation of the same
type of the original one. 34

3.3 The same transfomation on the graph is reflected on the reversed
graph. 35

3.4 Best results obtained by our models. 37
3.5 Results obtained by EGATv2 after 30 epochs. 38
3.6 Results of the EGAT base solution. 39
3.7 Results of the EGAT solution with different number of layer

(Lϵ{2, 5, 8}). 40
3.8 Results of the EGAT solution with different number of heads

(Kϵ{2, 4, 8}). 41
3.9 Results of the EGAT solution with different number of heads

and layers (L = 2, K = 8). 42
3.10 Results of the EGAT solution with non-alphanumeric characters

removed from relations’ text. 42
3.11 Results of the EGAT solution with a different merge logic in the

final layer. 43
3.12 Results of the EGAT solution with features of additional nodes

initialized as average of the adjacent ones. 43

xxii ELENCO DELLE FIGURE

3.13 Results of the solution with graph transformation, using EGAT
as GNN. 44

3.14 Results of the solution with graph transformation, using classic
GAT as GNN. 44

Capitolo 1

Background on Graph Neural
Networks

This chapter describes the main GNNs developed over the years, their
evolutions, and analyzes their limitations and strengths.

1.1 Overview

1.1.1 Motivation

Graphs are data structures that can model entities (nodes) and relationships
between them (edges). Recently they have attracted a lot of attention because
they have a great expressive power and are suitable to represent many real
world datasets (knowledge graphs [16], social networks [17][18], protein-protein
interaction [19], text [10][15], web [20] etc.).
Graphs are mainly used for tasks such as node classification, link prediction,
and clustering.
Graph neural networks (GNNs) are neural models that operate on graph domain
and capture graphs’ structure via a message-passing system between nodes.

1.1.2 History

The first GNNs date back to the end of the 90s, when simple recursive
neural networks began to be used on direct acyclic graphs to learn transductions
from an input structured space to an output structured space [21].

Although the results of these early recursive networks were satisfactory at
the time, many datasets are suitable to be represented by graphs with cycles,
making the earlier architectures inappropriate in many real-world applications.
To address this constraint, new variants of recursive neural networks [22] and

1

2 Capitolo 1. Background on Graph Neural Networks

feed-forward neural networks [23] were introduced respectively to map a graph
and one of its nodes into an m-dimensional Euclidean space and realize adaptive
contextual transductions for both classification and regression tasks. These
networks were already able to process most common graphs, e.g., acyclic, cyclic,
directed, and undirected. Despite their initial success, the basic idea behind
these networks is to build state transition systems on graphs that can iterate
until convergence is reached: this severely limits these models’ extensibility
and representation capability.

CNNs

The turning point in GNNs, as well as in Deep Learning in general, is
represented by Convolutional Neural Networks (CNNs) [24], which opened the
new era of deep learning [25]. CNNs are a class of neural networks that, since
the first astounding results obtained in the object recognition task [26] [27],
have sparked the interest of experts and have proven to be dominant in many
areas in which Euclidean data (e.g., images and text) must be processed.

CNNs take inspiration from the human visual cortex; this means that the
first layers are intended to extract simple and essential features from the input
(such as lines and edges), which are then aggregated to extract higher-level
information. CNNs’ architecture is based on:

• Local connections: neurons are only locally connected to neurons of
the previous level.

• Shared Weights: different neurons of the same level share weights: this
means that they perform the same operation on different portions of the
input.

These two features support spatial invariance, which aims to process images
translated in any direction in the same way.
Three main types of layers are used to build a CNN:

• Convolutional layers: counting a set of learnable filters whose size is
smaller than the input volume. These filters are scrolled through the
input and used to apply the convolution operation necessary to extract
features.

• Pooling layers: it performs a down-sampling of the volume by aggrega-
ting the information received in input according to a function defined a
priori and not trainable.

1.1. Overview 3

• Fully-connected layers: a CNN includes a portion that consists of a
simple fully-connected neural network which, after receiving in input the
result of the convolutional block, performs the task of classification.

Figure 1.1: An overview of a CNN.
From: Convolutional neural networks: an overview and application in radiology, 2018

[24]

However, CNNs can only operate on regular Euclidean data like images and
texts. These data structures can be regarded as instances of graphs. Therefore,
it is straightforward to generalize CNNs on graphs.

Graph representation learning

The second impetus in the development of GNNs comes from graph re-
presentation learning, which aims to map nodes, edges, and subgraphs in the
form of low-dimensional vectors [28]. Many approaches in this field rely on
hand-engineered features and are limited by their inflexibility and cost. Over
the years, many graph representation learning techniques have been developed
and, depending on their characteristics, can be subdivided into many categories.
We will follow the taxonomy proposed by Frisoni et al. [29] (figure 1.2) and
only focus on node-level and graph-level embedding techniques:

• Node-level embedding: these approaches aim to produce an embedding
for each node of the graph.

– Matrix factorization: matrix factorization models are the histori-
cally oldest and most studied theoretically. They represent graphs
as a large matrix and try to approximate it with different low-rank
matrix factorizations (e.g., SVG [30]).
Although these models are mathematically interpretable and trans-
parent, they generally only take adjacent nodes into account when

4 Capitolo 1. Background on Graph Neural Networks

generating the embedding and have high costs in terms of time and
memory.

– Deep Learning with Random Walks: these techniques are par-
ticularly suitable to perform node-embedding tasks on large graphs,
as they avoid processing the entire structure, finding the right com-
promise between accuracy and efficiency.
The firstborn model belonging to this category is DeepWalk [31],
based on the idea of generalizing NLP skip-gram models to graphs,
extracting from them paths interpreted as sentences in which each
node corresponds to a word. After generating different paths, Deep-
Walk trains a neural network trying to maximize the probability of
predicting the node’s context (the structure of neighboring nodes),
taking into account the embedding of the node itself and the co-
occurrences in the neighborhood. This approach is similar to Word
Embedding generation.
Numerous studies take inspiration from this first model (e.g., LINE
[32], node2vec [33], HARP [34]). Although they are unsupervised
models that can take into account second-order neighbors and cap-
ture long-distance relationships, they are limited because they do
not evaluate global graph information.

– Deep Learning without Random Walks: the idea behind these
techniques is to apply Deep Leaning models to entire graphs.
A typical approach is to use autoencoders that, through an encoder,
try to encode the input generating a compressed representation
by aggregating local information and, through a decoder, try to
reconstruct the original input. The quality of the model increases
as it increases the similarity between the original input and the one
generated by the decoder.
An example of a model belonging to this family is VGAE [35].
GNNs are also within this category of techniques. They typically
require the graph’s adjacency matrix as input, and, although they
often perform worse than autoencoder-based models, they do not
have to sequence the graph (turn it into a sequence of tokens which is
the standard input of encoders). therefore they can retain spatial in-
formation. GNNs do not aim to generate node embeddings, but their
goal is to optimize graph-related tasks (nodes or graph classification,
link prediction between nodes). For this reason, in general, they
are highly supervised and need labeled input data. The embedded
representation is built internally to achieve the objective imposed
by the task. For this reason, it is strictly dependent on the task, on

1.1. Overview 5

the data provided in input and consequently not general-purpose.
Such models compute node embeddings through a message exchange
process which allows data propagation taking adjacent nodes into
account.
Two of the most famous works are Graph Convolutional Networks
(GCN) [5], and GAT [7]. The first one replaces message-passing
with graph convolution. At the same time, GAT exploits a self-
attention mechanism [8] that is automatically able to assign a
different relevance to each node in the neighborhood.

• Graph-level embedding: these approaches aim to produce a single
embedding for the whole graph.

– Supervised learning: the network needs to learn how to perform
aggregation, and a parameterized pooling layer is usually used for
this purpose (e.g., DiffPool [36], SortPool [37], TopKPool [38]. Other
more basic techniques perform a simple sum or average of all nodes
in an additional final layer [39].

– Unsupervised learning: although there are numerous works be-
longing to this family, a pooling operation is usually performed,
similar to an MLP. Just as in an MLP, representations of individual
tokens (words or portions thereof) are learned and then joined; si-
milarly, these models generate and merge embeddings of individual
nodes. To mirror the classical MLP technique of adding a CLS token
that aggregates the embeddings of all the words in the sentence, a
supernode connected to every other node can also be added in a
graph-based approach [40].
There are also more straightforward techniques that perform flat
pooling (e.g., average, maximum, sum) or hierarchical pooling, which
recursively applies a chain of flat pooling techniques after partitioning
the graph into subgraphs until embedding individual nodes.

– Statistical representations: this last category of graph-level em-
bedding techniques represents graphs with hand-engineered feature
vectors, after defining a priori the number of dimensions [41] [42].
They can consider local characteristics and statistical or topological
properties (e.g., number of nodes, edges, nodes average, nodes max,
etc.).

6 Capitolo 1. Background on Graph Neural Networks

Figure 1.2: Graph Representation Learning taxonomy.
From: Unsupervised Event Graph Representation and Similarity Learning on

Biomedical Literature, 2022 [29]

1.2 Main models

1.2.1 GCN

In section 1.1.2 CNNs were analyzed, in which the operation of convolution
is applied, and neurons of a given layer are multiplied with a set of weights
called filters or kernels. These filters act as a sliding window across the image
to allow each pixel to aggregate information from its neighbors. In addition, by
sliding the same filter across the entire image, different portions are processed
in the same way (shared weights).

The convolution operation performed in GCNs is the same but on graphs in-
stead of images. The model learns node features, considering the neighborhood,
making the network a generalization of CNNs suitable not only on regular
Euclidean structured data.
The original idea behind GCN was inspired by wave propagation, implemented
by leveraging the Eigen-decomposition of graph Laplacian matrix, necessary
to understand the graph structure. This process is similar to the idea behind
PCA [43] and LDA [44], in which such decomposition is used to reduce dimen-
sionality.
GNNs take into account the adjacency matrix (A), as well as a matrix contai-
ning the features of the graph nodes (input features).
A is a matrix expressing connections between nodes: cell A[i, j] has a value of

1.2. Main models 7

1 if nodes i and j are connected, 0 otherwise. The typical equation used during
the forward step is the following:

H [i+1] = σ(W [i]H [i] + b[i]) (1.1)

To the standard equation is then added the adjacency matrix A:

H [i+1] = σ(W [i]H [i]A∗ + b[i]) (1.2)

W [i] contains the weights of the previous layer (i), H [i] contains the feature
representation of the previous layer (i) and b[i] is the bias.

Thomas N. Kipf and Max Welling [45] refer to matrix A∗ as renormalization
trick which is obtained by the following procedure:

1. A self loop is added to each node, which means setting each value on the
main diagonal of A to 1.
The dot product between A and the feature matrix X represent the sum
of neighbors, self loops are added to take into account the feature of the
node itself.

2. The dot product between the matrix A just obtained and the feature
matrix X is computed to produce AX.

3. A symmetric normalization us applied to AX:

A∗ = D−1/2AXD−1/2 (1.3)

D, named degree matrix, contains information about the degree of each
node, which is the number of edges attached to each vertex.
This normalization prevents numerical instabilities and vanishing/exploding
gradients and simplifies model convergence. Also, the lower a node degree, the
stronger it will belong to a cluster and so taken into account.

Once this flexible model for propagating information within graphs is defined,
it can be used within arbitrarily complex networks, as shown in image 1.3.
Through this message-passing system, each layer will update node features
which will then be forwarded to the next layer after applying an activation
function (e.g., ReLU).
An exciting feature of GCNs is that they can learn features representation even
before the training process.

8 Capitolo 1. Background on Graph Neural Networks

Figure 1.3: A simplified representation of a GCN architecture.
From: Gentle Introduction to Graph Neural Networks and Graph Convolutional

Networks [46]

1.2.2 RGCN

RGC [6] was one of the first models to show how a classical GCN could be
applied to relational data, specifically for link prediction and entity classification
tasks. The authors also introduced parameter sharing techniques to ensure a
greater degree of scalability for the model to be used even on large graphs.

Given a directed and labeled graph G = (V, E , R) with nodes viϵV and
labeled edges (vi, r, vj)ϵE , where rϵR is a relation type, the typical message-
passing framework, used to perform the convolution, can be expressed as:

hl+1
i = σ(

∑
mϵMi

gm(h
l
i, h

l
j)) (1.4)

In this equation, hl
i is the hidden state of node vi in the l-th layer of the

network and dl is the dimensionality of the representation.
Messages of the form gm(., .) are accumulated and passed through an element-
wise activation function σ, for example a ReLU. Mi is the set of incoming
messages for node vi and often corresponds to the set of incoming edges. gm(., .)
can be a message-specific neural network or simply a linear transformation.
Schlichtkrull et al. [6] defined the following propagation model to update the
node embeddings in a relational and directed graph:

hl+1
i = σ(

∑
rϵR

∑
jϵNr

i

1

ci,r
W l

rh
l
j +W l

0h
l
i) (1.5)

Nr
i denotes the set of neighbor indices of node i under relation rϵR, ci,r is

a problem–specific normalization constant, that can be learned or chosen in
advance.

Equation 1.5 aggregates embeddings of the neighboring nodes through a
normalized sum. Different from regular GCNs, a relation-specific transformation

1.2. Main models 9

is introduced (i.e. depending on the type and the direction of an edge).
In addition, a self-loop with a special relation type is added to each node. In
this way, during the aggregation of each node, the node itself is also taken into
account.
A neural network layer update consists of evaluating (1.5) in parallel for every
node in the graph, as shown in figure 1.4.
The overall RGCN model has the following form: L RGCN are stacked and the
output of the previous layer becomes the input of the next layer. The input of
the first layer can be chosen as a unique one-hot vector for each node in the
graph.

Figure 1.4: 2: Diagram for computing the update of a single graph node/entity
(red) in the R-GCN model. Embeddings from neighboring nodes (dark blue)
are gathered and then transformed for each relation type individually. The
resulting representation (green) is aggregated via a normalized sum and passed
through a ReLU activation function.

From: Modeling Relational Data with Graph Convolutional Networks, 2017 [6]

Regularization

The main problem of this message-passing framework is its application
to highly and multi-relation data, because off the rapid growth in number of
parameters depending on the number of relation types in the graph. This can
also cause overfitting on rare relations.

10 Capitolo 1. Background on Graph Neural Networks

To solve these issues, authors introduced two separate methods for weight
regularization: basis and block-diagonal decomposition.
With the basis decomposition, each W l

r is defined as:

W l
r =

B∑
b=1

alrbV
l
b (1.6)

Equation 1.6 can be seen as a linear combination of basis transformation
V l
b ϵRdl+1xdl with coefficients alrb such that only the coefficients depend on the

relation type r.
In the block diagonal decomposition, each W l

r is defined through the direct
sum over a set of low-dimensional matrices:

W l
r =

B⊕
b=1

Ql
br (1.7)

W l
r are block diagonal matrices: diag(Ql

1r, ..., Q
l
br) with Ql

brϵR(dl+1/B)x(dl/B).
The basis function decomposition 1.6 is a sort of weight sharing between

different relation types, while block decomposition 1.7 can be seen as a sparsity
constraint on the weight matrices for each relation type.
Both decompositions reduce the number of parameters needed on high and
multi-relational data and can also reduce the overfitting problem on rare
relations.

1.2.3 GAT

Graph Attention Networks (GATs) are architectures that operate on graphs,
exploiting masked self-attentional layers [8] succeeding in improving and solving
the main limitations of the previous methods based on graph convolution.

The main idea is the same that led to the birth of GCNs, namely the desire
to aggregate information between neighboring nodes. In addition to that, it
would be good if graph convolution layers guaranteed the following properties:

• Computational and storage efficiency (max O(V + E))

• Number of parameters independent of the input graph

• Taking into account the neighborhood of a node

• Ability to assign different importance to each neighbor

Consider a graph G with n nodes, defined by a set of node features
(
−→
h1,

−→
h2, ...,

−→
hn) and its adjacency matrix A, which expresses connections between

1.2. Main models 11

nodes: Ai,j = 1 if nodes i and j are connected, 0 otherwise.

Typical graph convolutional layer

A typical graph convolutional layer computes a set of new node features
(
−→
h1

′
,
−→
h2

′
, ...,

−→
hn

′
) taking into account node features and graph structure.

The first operation performed in each graph convolutional layer is a shared
transformation between all nodes, performed using a shared weight matrix W .

−→gi = W
−→
hi (1.8)

This transformation is necessary to obtain a higher-level representation and
the new representations are then used to perform the convolutional operation.

The convolutional operator can be defined as a weighted sum of all the
neighbors of the node.
Given Ni the set of neighbors of node i, including i itself, the new features can
be defined as:

−→
hi = σ(

∑
jϵNi

αij
−→gj) (1.9)

σ is an activation function, gj is the new representation of the node features,
and aij is a weight factor that allows giving different relevance to each neighbor
of the node i.
All previous GNN-based approaches defined this parameter explicitly (e.g.,
by a trainable weight matrix or by considering the graph’s structure) thus
preventing satisfying one of the desired properties defined above.

Velickovic et al. [7] idea is to let the coefficient aij be defined implicitly by
using a self-attention [8] mechanism over the node features. The reason behind
this decision was that the self-attention mechanism had already proven to be
critical achieving state-of-the-art performance in numerous machine translation
tasks.

To calculate the coefficient aij, first the non-normalized coefficients eij are
computed for each pair of nodes i and j taking into account their features.

eij = a(
−→
hi ,

−→
hj) (1.10)

a is the attentional mechanism and can be implemented in many different
ways. In the original paper, Velickovic et al. decided to use a straightforward
single-layer neural network, whose parameters are trained with the rest of the
network.
The graph structure is injected by exploiting the set of neighboring nodes Ni,

12 Capitolo 1. Background on Graph Neural Networks

forcing the node to pay attention only to the nodes to which it is directly
connected.
In addition, coefficients are normalized using a softmax function to ensure more
excellent stability and a more straightforward comparison between coefficients
belonging to different nodes.

aij =
exp(eij)∑

kϵNi
exp(eik)

(1.11)

To further regularize the learning process, Velickovic et al. decided to use
multi-head-attention, introduced by Vaswani et al. [8].
Namely, the layer just described is repeated k times. Each replica is independent
and has its parameters.
The individual layers’ outputs are then aggregated, usually by an average or
concatenation operation.

−→
hi

′
= ∥Kk=1σ(

∑
jϵNi

akijW
k−→hj) (1.12)

akij are the attention coefficients computed by the k-th head and W k is the
weight matrix used for the initial linear transformation by the k-th replica.

Finally, it has been demonstrated how, by applying the dropout technique
[47] during the computation of aij coefficients, it is possible to regularize the
training process, especially for small training sets. In this way, during the
training, the neighborhood of each node is sampled stochastically.

The layer defined satisfies all of the desired properties defined before:

• The computation of attentional coefficients and their aggregation can be
parallelized, making the layer computationally efficient.

• The layer can be implemented using a sparse matrix, requiring no more
than O(V + E)) entries.

• The number of parameter is fixed and independent of the input graph.

• Node’s neighbors are taken into account, and to each one is assigned a
different relevance

1.2.4 GATv2

Shaked Brody et al. with their work "How Attentive are Graph Attention
Networks?" [49] showed that GAT computes a limited kind of attention. Namely,
the ranking of the attention scores is unconditioned on the query node. They
define this kind of attention as static which does not allow GAT to handle

1.2. Main models 13

Figure 1.5: A multi-head GAT layer. Every neighbor of the central node sends
it’s own vector of attentional coefficients, one per each head. These are used
to compute k different new node features which are then aggregated, in the
example by a concatenation or average operation.

From: https://petar-v.com/GAT/ [48]

some graph problems.
Another way to think about attention is the ability to attend to the most
relevant inputs, given a specific query. This is possible only by decaying other
inputs by giving them lower scores than others. If one key, as with GAT, is
always given an attention score greater or equal than other keys, queries can
not ignore this key and apply the score decay.

Static attention: a family of scoring functions F computes static scoring
for a given set of key vectors K = {k1, ..., kn} and query vectors Q = {q1, ..., qm}
if, for every function fϵF , there is a "highest scoring" key jf such that for
every query i: f(qi, kjf) ≥ f(qi, kj).
This attention is minimal because every function fϵF a key is always selected
regardless of the query, as shown in figure 1.6. These solutions can not work
correctly when keys have different relevance depending on the query.

Dynamic attention: a family of scoring functions F computes dynamic
scoring for a given set of key vectors K = {k1, ..., kn} and query vectors
Q = {q1, ..., qm} if, for any mapping φ : [m] → [n], exists a function fϵF such
that for any query i and and any key k j̸=φ(i): f(qi, kφ(i)) ≥ f(qi, kj).
In other words, the dynamic attention can chose every key φ(i) given the query
i, by making f(qi, kφ(i)) the maximal in {f(qi, kj)|jϵ[n]}.

Although the equation for calculating the non-normalized attention coef-
ficients eij (1.10) can be implemented in different ways, the one proposed by
Velickovic et al. has become the de facto standard and is now used in many ap-

14 Capitolo 1. Background on Graph Neural Networks

Figure 1.6: Static attention computed on a complete bipartite graph. The
ranking of attention scores is the same for all nodes in the graph and is
independent on the query node. In the example, all queries (q0 to q9) attend
mostly on the key k8.

From: How Attentive are Graph Attention Networks?, 2021 [49]

plications belonging to different domains, especially in all GAT implementation
of the main libraries.

Given the attention mechanism a, a weight matrix W , the previous equations
can be rewritten as:

e(hi, hj) = LeakyReLU(aT [Whi ∥Whj]) (1.13)

ai,j = softmaxj(e(hi, hj)) =
exp(e(hi, hj))∑

j′ϵNi
exp(e(hi, h

′
j))

(1.14)

h
′

i = σ(
∑
jϵNi

aijWhj) (1.15)

The learned parameter a can be rewritten as a concatenation between a1
and a2, so equation 1.13 becomes:

e(hi, hj) = LeakyReLU(aT1Whi + aT2Whj) (1.16)

In the original GAT, exists a node jmax such that aT2Whjmax is maximal
along all nodes j. Due to the monotonicity of LeakyReLU and the softmax
function, for every query node i, the node jmax also leads to the maximal value
of its attention. For this reason, the classical GAT computes static attention.

The main problem in GAT scoring function 1.13 is that W and a are applied
consecutively and can be collapsed in a single layer.

1.2. Main models 15

GATv2 solves this problem and obtains a much higher expressive power just
by modifying the order of internal operations:

GAT : e(hi, hj) = LeakyReLU(aT [Whi ∥Whj]) (1.17)

GATv2 : e(hi, hj) = aTLeakyReLU(W [hi ∥ hj]) (1.18)

GATv2 has the same time complexity as GAT, but by merging linear layers,
GAT can be computed faster.

The authors demonstrated the weakness of GAT on a simple task on a
bipartite graph 1.6. They also showed that GATv2 is more robust to edge noise
because dynamic attention allows decaying noisy edges.
Finally, they compared GAT and GATv2 on 12 benchmarks, and they found
that GAT is inferior to GATv2 across all of them.

Figure 1.7: Dynamic attention computed on the same complete bipartite graph
1.6. The ranking of attention scores now is not the same for all nodes in the
graph and depends on the query node.

From: How Attentive are Graph Attention Networks?, 2021 [49]

Capitolo 2

Reference Architectures

This chapter describes the two main reference architectures for this thesis,
namely EGAT [14], the implemented GNN, and QA-GNN [15], used in our
case study.

2.1 Edge-Featured Graph Attention Network (EGAT)
This section describes the EGAT [14] solution, which is the starting point

for our implementation.
Our decision fell on EGAT because it was the one with the view of GAT

applied to labeled graphs most similar to ours.
The idea is to create a version of GAT in which the aggregation operation
considers node and edge features. Each of these elements can be taken into
account and weighted differently through the attention mechanism.

2.1.1 Introduction

Wang et al. [14] noticed that most existing architectures do not consider
edges features, which in many real-world node classification tasks play a funda-
mental role. As the authors themselves point out, for example, in a trading
network, the node labels may be relevant to the transactions. In such a case,
the information contained in edges may have a more significant contribution to
the classification accuracy than node features.

Some approaches use a priori defined static aggregation functions to integrate
edge features. These solutions perform well on some specific graphs and tasks,
but are not general-purpose solutions suitable for any need. Other works
manage to process the information contained in the relations, but always with
limitations.
For example, R-GCN proposed by Schlichtkrull et al. [50] accepts only discrete

17

18 Capitolo 2. Reference Architectures

features, not allowing to work with continuous attributes.
Gong et al. [51] have developed a framework that accepts continuous features
for edges but uses them as simple weights between pairs of nodes.
On top of that, each graph has different preferences for node and edge features
and should be able to learn how to manage them automatically.

EGAT addresses all these challenges and can be considered an extension of
GAT. The original attention mechanism is enhanced so that edges information
can be exploited during the computation of the attention coefficients.
The authors had to redefine the attention mechanism, data structures, and the
entire process used in traditional GAT.
Edges features are also updated like those of the nodes as iterations proceed,
allowing the model to maintain consistency between edges and nodes.
EGAT accepts as input graphs with discrete or continuous features for both
edges and nodes.

2.1.2 EGAT model

EGAT layer overview

A single EGAT layer is composed of two different blocks: a node attention
block and an edge attention block, as shown in figure 2.1. The proposed design
is symmetrical: both nodes and edges can update their features in a parallel
and equivalent way.

Each EGAT layer accepts as inputs a set of node features H = {
−→
h1,

−→
h2...,

−→
hN},−→

hiϵRFH and a set of edge features E = {−→e1 ,−→e2 ...,−→eM},−→ei ϵRFE .
N and M represent the number of nodes and edges, respectively, while FE and
FH represent the number of their respective features.
At the end of the process, the layer will produce high-level outputs, namely
a new set of node feature H

′
= {

−→
h

′
1,
−→
h

′
2...,

−→
h

′
N},

−→
h

′
iϵRF

′
H and a new set of edge

features E
′
= {

−→
e
′
1 ,
−→
e
′
2 ...,

−→
e
′
N},

−→
e
′
i ϵRF

′
E .

Moreover, two extended adjacency matrices of nodes (MH) and edges (ME)
are injected into the two blocks. Compared to a classic adjacency matrix, they
expand a third dimension to indicate which edge connects every pair of nodes.
MH has a size of [NxNxM], while ME has a size of [MxMxN]. Each cell
MEx,y,z is set to 1 if nodes x and y are connected via edge z, 0 otherwise, while
MHx,y,z is set to 1 if node z is placed between edges x and y, 0 otherwise.
The original implementation also requires an extra matrix for each attention
block, called mapping matrices for nodes and edges, used to transform both
adjacency matrices and make it more intuitive to find relationships between
nodes and edges. In the implemented solution, it has been decided to omit

2.1. Edge-Featured Graph Attention Network (EGAT) 19

them because we do not use sparse matrices, making this step useless and even
harmful in computational terms.

The cardinality of F and F
′ can be different (for both FH and FE since an

independent linear transformation is applied on both edges and nodes. For this
transformation, we use two learnable matrices, WHϵRFHxF

′
H and WEϵRFExF

′
E .

For each node i and edge p, their transformed features are computed as:

−→
h∗
i = WH

−→
hi (2.1)

−→
e∗p = WE

−→ep (2.2)

After this initial transformation, the results are fed into both node and edge
attention blocks to produce the new set of edge and node features.

Figure 2.1: Structure of EGAT layer. It accepts node features H and edge
features E as inputs and produces two sets of new features, H ′ and E

′ . Each
attention block is also fed with its extended adjacency matrix MH and ME.
Unlike the original solution, edge mapping and node matrices are not provided
as input to each attention block.

From: Edge-Featured Graph Attention Network, 2021 [14]

Node attention block

The node attention block accepts a set of node features H, a set of edge
features E, the adjacency matrix MH and produces a new set of node features
H

′ passed to the next EGAT layer, and a set of node features Hm used in the
last level merge layer to achieve a multi-scale concatenation. The adjacency
matrix is unique for each graph and thus can be computed in a pre-processing
step before the training process.

20 Capitolo 2. Reference Architectures

From now on, we will refer to the node features after the linear transformation
as hi.

The model can easily find the edge connecting two nodes thanks to the
adjacency matrix. Based on that, an enhanced attention mechanism that takes
into account not only node features but also the features of the edge connecting
them can be performed on each node to produce the attention coefficients.
For each node i, the weight wij is computed for every node jϵNi, where Ni is
the set of the first-order neighbors of the node i, including i itself.
The logic behind this process is pretty much similar to the one used in normal
GAT:

• Features of node i (hi) and the neighbor j (hj) are concatenated (2.3).

• To the previous result, features of the edge connecting node i and j
((eij))are also concatenated (2.4).

• Concatenated features are then parametrized by a weight vector (−→a T)
(2.5).

• A LeakyReLU function is applied as the activation function (2.6).

• At the end, the result in normalized across node i neighborhood, by using
a softmax function. The whole process can be formulated as shown inf
equation 2.7.

−→
h ij = [

−→
h i ∥

−→
h j] (2.3)

−→
ehij = [

−→
h ij ∥ −→e ij] (2.4)

−→a ij =
−→a T−→ehij (2.5)

aij = LeakyReLU(
−→
aehij) (2.6)

aij =
exp(LeakyReLU(−→a T [

−→
h i ∥

−→
h j ∥ −→e ij]))∑

kϵNi
exp(LeakyReLU(−→a T [

−→
h i ∥

−→
h k ∥ −→e ik]))

(2.7)

As shown in equation 2.7, the aggregated features should also include the
features of the node itself. Without edge features, this can be done by adding
an identity matrix to the adjacency one. We use a tricky method by adding a
virtual self-loop to each node that does not have an edge that connects itself.

2.1. Edge-Featured Graph Attention Network (EGAT) 21

Features of this edge are initialized as an average on each dimension of adjacent
edges’ features.

After producing the normalized attention coefficients, for each neighborhood,
new node features are computed by performing a weighted sum for each neighbor
node 2.8.

−→
h

′

i = σ(
∑
jϵNi

aij
−→
h j) (2.8)

Notice that only node features are taken into account to generate new node
features. Edge features are used only during attention coefficient computation.
In fact, by merging edge and node features at each iteration, the model would
be too complex, and the features could become unnecessarily complicated.
In order to also consider edge features during the aggregation and obtain a
multi-scale concatenation in the last-level merge layer, a set of edge-integrated
node features Hm is also produced, generated as follows:

−→mi = σ(
∑
jϵNi

aij(
−→
h j) ∥ −→e ij) (2.9)

The process is the same as the standard node features, but features of the
edge connecting each node pair are concatenated to the neighbor node features.
However, this set of edge-integrated node features is never passed to the
following EGAT layer as the inputs, for the reasons mentioned before.

Edge attention block

Node features are updated in the node attention block to acquire high-level
features, so it is unreasonable to reuse the original low-level edge features during
the weight computation. Besides, by obtaining high-level edge features, we can
keep a balance of importance between nodes and edges.
For this reason, each EGAT layer contains also an edge attention block, which
accepts a set of node features H, a set of edge features E, the adjacency matrix
ME and produces a new set of edge features E ′ passed to the next EGAT layer.
The adjacency matrix is unique for each graph and thus can be computed in a
pre-processing step before the training process.

A natural idea to implement this block is to update edge features considering
adjacent edges by applying a classical GAT. Two edges are considered adjacent
if they have at least one common vertex.
This aggregation is implemented by adopting a tricky approach that switches
the roles of nodes and edges in the graph, an approach similar to the one
proposed by Chen et al. [52] for community detection.

22 Capitolo 2. Reference Architectures

A new graph is created based on the original one, whose nodes become edges
and edges become nodes. The transformation is shown in figure 2.2.
In the new graph, two new nodes (original edges) are connected by an edge
(original node) represented by the vertex in common between the two edges in
the original graph.
Consequently, the original node adjacency matrix (MH) will also be transformed
into the edge adjacency matrix (ME) to reflect the structure of the new graph.
MExyz is set to 1 if, in the new graph, nodes x and y are connected via edge z.
This means that in the original graph edges x and y had vertex z in common.
An example of the new adjacency matrix of the graph of figure 2.2 is shown if
figure 2.3.

Figure 2.2: An example of graph transformation. Nodes become edges and
edges become nodes.

From: Edge-Featured Graph Attention Network, 2021 [14]

For each original edge p, the normalized attention weight in relation to edge
q can be expressed as:

βpq =
exp(LeakyReLU(

−→
b T [−→e p] ∥ −→e q ∥

−→
h pq))∑

kϵNp exp(LeakyReLU(
−→
b T [−→e p] ∥ −→e k ∥

−→
h pk))

(2.10)

Np is the first-order neighbor set of edge p and p itself,
−→
b is a weight vector

of size R2F
′
E+F

′
H .

The equation is the same of the one used in the node attention block, with
switched roles for nodes and edges.
After producing the normalized attention coefficients, for each neighborhood,

2.1. Edge-Featured Graph Attention Network (EGAT) 23

Figure 2.3: Edge adjacency matrix of graph 2.2.For simplicity, the one-hot-
vector contained in each cell is replaced with the corresponding non-zero index.

From: Edge-Featured Graph Attention Network, 2021 [14]

new edge features are computed by performing a weighted sum for each neighbor
edge 2.11.

−→e ′

p = σ(
∑
qϵNp

βpq
−→e q) (2.11)

Note that there is no middle node between the two edges when the attention
weight of an arbitrary edge and the edge itself is computed. As is the case
within the node attention block, a dummy node is then created whose features
are initialized, in the original solution, with zeros.

EGAT architecture

The overall architecture of an EGAT model is composed by stacking various
EGAT layers and joining a final merge layer at the end, as shown in figure 2.4.

As described in section 2.1.2, each EGAT layer not only produces new node
features used as input for the next layer but also computes edge-integrated
node features (Hm) used in the merge layer.
More specifically, the results of the individual layers are aggregated by concate-
nating them.
Furthermore, taking inspiration from the GAT [7] architecture, EGAT exploits
a multi-head attention mechanism. K different EGAT models (named heads)
are instantiated, and each of them produces its edge-integrated node features,
then aggregated in the final merge layer.
In the end, the individual results are merged through another concatenation
operation. The main difference with GAT is that the final merge is performed
on the union of the outputs of all EGAT layers rather than on a single layer.
The final features are computed as follows:

24 Capitolo 2. Reference Architectures

Figure 2.4: Overall EGAt architecture. Many EGAT layers are stacked. Each
one receives as input the output of the previous layer. At the end of the
architecture, a merge layer merges edge-integrated node features produced by
each layer.

From: Edge-Featured Graph Attention Network, 2021 [14]

−→
h ∗

i = ∥Kk=1(∥Ll=1m
l,k
i) (2.12)

L indicates the number of EGAT layers in each head, ml,k
i represents the

edge-integrated node features of node i produced by the l-th layer of the k-th
head.

2.1.3 Results obtained by the original model

The original model was tested on five node classification task containing
both node-sensitive and edge-sensitive datasets. The former are graphs where
node features are highly correlated with node labels, while the latter are graphs
where edges are more relevant than nodes.
The model was compared against many approaches, including GAT.

For the node-sensitive tasks, a convolutional operation was performed in
the merge layer followed by a softmax function to predict the probability of
each class.
Results showed that EGAT is highly competitive against state-of-art solutions,
achieving superior performance on one dataset and slightly lower performance
on the remaining two, probably due to the dummy edge features introduced
and initialized with the number of adjacent edges.

For the edge-sensitive task, to ensure fairness, the authors created three
variants of GAT to aggregate edge features into node features by simply
performing sum, average or max pooling.
EGAT shows an incredible performance, which is ahead of other approaches on
both datasets.

2.2. QA-GNN 25

2.2 QA-GNN

Question answering systems need much information in order to carry out the
necessary reasoning and achieve the task in the matter. Usually, this knowledge
is represented through language models (LMs) or through knowledge graphs
(KGs), where entities are represented as nodes and relations between them are
the edges that connect them.
Several recent works have obtained excellent results using language models,
which generally do not perform well on structured reasoning, such as handling
of negations. This situation is more suitable for knowledge graphs, which often
introduce noise and lack of coverage.
The solution proposed by Yasunaga et al. [15] aims to combine the use of both
data sources, but this presents two challenges. Given the QA context (question
and answer choices) the model needs to:

• Identify the knowledge from a large KG

• Merge the KG with the QA context to perform joint reasoning

Some existing models take a portion of the KG considering the entities of
QA context and their few-hop neighbors but introduce many irrelevant entities
and consequently noise.
Other methods consider the QA context and the KG separately, applying the
LM individually on the QA and a GNN on the KG, limiting the capacity and
power of the model.

The solution proposed by Yasunaga et al. [15] is an end-to-end LM+KG
model that addresses the two challenges listed above through the following
technique.
The QA context is encoded using an LM, and then a KG subgraph is retrieved,
considering the few-hop neighbors of the entities contained in the QA context
(named topic entities). Since each entity has a different relevance considering
the QA context, relevance scoring is calculated for each node of the graph: each
KG entity is concatenated to the QA context. Its similarity is then calculated
using a pre-trained LM.
Subsequently, a joint graph is generated, in which the QA context is explicitly
represented as an additional node connected to the topic entities of the KG.
Finally, a new attention-based GNN is applied, taking into account relevance
scores, node types, nodes, and relationships between them, updating both the
KG entities and the QA context node to leverage the gap between the two
sources of information.

26 Capitolo 2. Reference Architectures

2.2.1 QA-GNN architecture

Given a knowledge graph G = (V , E), V is the set of entity nodes in the
KG, E ⊆ VRV is the set of edges connecting entities, and R represents a set of
relation types.
Given a question q and an answer choice a, each entity mentioned in the
question or the answer is linked to the given KG. Vq is the set of entities
mentioned in the question (blue entities in figure 2.5), Va is the set of entities
mentioned in the answer (red entities in figure 2.5) and Vq,a = Vq ∪ Va is the
set of all entities that appear in either the question or the answer choice and is
called topic entities.
For each question-answer pair, a subgraph Gq,a

sub = (Vq,a
sub, E

q,a
sub) is extracted from

the graph G, including all k-hop neighbors of each topic entity.

Figure 2.5: Example of the QA context and its integration with a knowledge
graph.

From: QA-GNN: Reasoning with Language Models and Knowledge Graphs for
Question Answering, 2021 [15]

As shown in figure 2.6, question q and answer a are concatenated to obtain
the QA context. The LM is then used to obtain the representation of the QA
context. Following, the subgraph Gsub is retrieved from the KG.
After that, the context node Z is added to the graph and connected to the
topic entities Vq,a to obtain a joint graph over the two sources of knowledge.
To capture the relationships between Z and every other node, first of all, a
relevance score is computed for each pair, which is used as an additional feature

2.2. QA-GNN 27

for each node.
Finally, an attention-based GNN module spread information across nodes to
update node features which will then be used to make the final prediction.

Figure 2.6: Overview of the model.
From: QA-GNN: Reasoning with Language Models and Knowledge Graphs for

Question Answering, 2021 [15]

2.2.2 Joint graph representation

The first step is to create a merged graph with both knowledge sources,
and to do that a context node Z is created to capture the QA context. ‡ is
connected to each topic entity in Vq,a with two new relation types rz,q and rz,a,
which capture relationships between the context node and the topic entities,
depending on whether the entities appear in the question or in the answer.
Each node embedding is initialized by the corresponding LM representation.
In the original solution, each node is also associated with one of the four node
types T = Z,Q,A,O, each indicating the context node Z, nodes in Vq, nodes
in Va and other nodes.

2.2.3 Relevance scoring

Many nodes retrieved from the original KG may be irrelevant under the QA
context. As shown in figure 2.7, for example, nodes "holiday" and "riverbank"
are off-topic under the current context, while "human" and "place" are generic.
For this reason, their score should be much lower than more informative nodes.
These irrelevant nodes may cause overfitting and uselessly complicate the
model’s training phase, especially when the retrieved subgraph is large.
The solution proposed by Yasunaga et al. [15] solves this problem via a node
relevance scoring technique. The pre-trained language model is used to score
the relevance of each node of the retrieved KG under the QA context.
For each node v, the entity embedding text(v) is concatenated with the QA
context embedding text(z) and then is computed the relevance score as follows:

28 Capitolo 2. Reference Architectures

pv = fhead(fenc([text(z); text(v)])) (2.13)

fhead ◦ fenc is the probability of text(v) computed by the LM. pv is the
relevance score of the node v under the current QA context, and will be used
during the reasoning phase and to prune the retrieved subgraph.

Figure 2.7: Relevance scoring of the retrieved KG.
From: QA-GNN: Reasoning with Language Models and Knowledge Graphs for

Question Answering, 2021 [15]

2.2.4 GNN architecture

The original work exploits, to perform reasoning on the working graph, a
GAT-inspired GNN. The GNN adopts a multi-layer architecture, and, in each
layer l, the representation of each node v of the graph is updated using the
following formula:

hl+1
t = fn(

∑
sϵNt∪t

αstmst) + hl
t (2.14)

Nt is the set of neighbor nodes of node t, mst is the message sent from each
neighbor s to node t, and αst is the attention coefficient that gives a different
relevance to each message mst.
The sum of every message received is then passed through a 2-layer MLP fn
with batch normalization and is finally summed to the embedding coming from
the previous layer.
For each note t, h0

t is set using a linear transformation that maps the initial
node embedding obtained by the LM.

2.2. QA-GNN 29

As the GNN operates on the graph, it will leverage the gap between the QA
context and the KG subgraph.

Message-passing system

As the working graph is a relational graph, the message from a source node
to a target node needs to consider the relation type of the edge connecting
them and, only in the original work, the node types.
For this reason, first of all, the type embedding ut is computed for each node t,
as well as the relation embedding rst from node s to t. The new embeddings
are computed as:

ut = fu(ut) (2.15)

rst = fr(est, us, ut) (2.16)

us, utϵ{0, 1}|T |, are one-hot vectors indicating the node types of s and t,
estϵ{0, 1}|R| is a one-hot vector indicating the relation type of the edge between
node s and s, fu is a linear transformation, and fr is a 2-layer MLP.

The message from node s to node t is computes as:

mst = fm(h
l
s, us, rst) (2.17)

fm is a linear transformation that takes into account the source node
embedding, the source note type and the relation type between source and
target node.

Node type, relation and score aware attention

The attention coefficient is used to assign a different relevance to each pair
of nodes, and should consider node types, relations and relevance score.
First of all the relevance score of each node t is embedded as:

pt = fp(pt) (2.18)

fp is an MLP. To compute the attention score, αst from node s to node t
are first obtained starting from query q and key k vectors as:

qs = fq(h
l
s, us, ps) (2.19)

kt = fk(h
l
t, ut, rst) (2.20)

30 Capitolo 2. Reference Architectures

fq and fk are both linear transformations. The final attention coefficient is
computed as:

Υst =
qTs kt√
D

(2.21)

αst =
exp(Υst)∑

t′ϵNs∪s exp(Υst′)
(2.22)

2.2.5 Results obtained by the original model

QA-GNN was evaluated on three question-answering datasets. In our case,
the one of interest is also involved in our experiments, namely MedQA-USMLE.
Figure 2.8 compares results obtained from QA-GNN and those obtained from
LM approaches.
As can be seen, QA-GNN outperforms state-of-the-art fine-tuned LMs, proving
to be an effective improvement of LMs and KGs in the biomedical domain.
Our goal during the experiments will be to exceed the maximum accuracy
achieved by QA-GNN (38%).

Figure 2.8: QA-GNN test accuracy on MedQA-USMLE.

Capitolo 3

Contributions

This chapter describes the contribution to Yasunaga et al. work [15], the
experiments carried out, and the results obtained, motivating each choices
made.

3.1 Proposed design

The proposed design is similar to the original QA-GNN solution, as shown
in figure 3.1 , with some differences due to replacing their GNN with EGAT.

Figure 3.1: Proposed solution. The original GNN has been replaced with
EGAT. Relation embeddings are also generated and relevance score is not used
anymore.

Our proposed design differs from the original QA-GNN solution mainly in
the following features:

• Relevance scores of the various nodes are no longer considered as node
features, buto only to prune the knowledge graph.

• The typology of each node is not considered.

31

32 Capitolo 3. Contributions

• The relation type relation is not considered anymore, as the edge embed-
dings already capture it.

In addition, our solution has undergone some modifications from the original
EGAT, proposed in the experimental phase because, as we will see in sections
3.2 and 3.3, they can improve performances:

• Dummy node features/relationships created during the addition of self-
loops to the graph are no longer initialized to 0, but by averaging adjacent
features/nodes.

• The final aggregation performed in the merge layer is not necessarily done
by concatenation, but it is up to the user to choose the reference mode
(e.g., average, sum).

• The text used for the generation of edge embeddings is pre-processed in
order to increase its accuracy.

3.2 Dataset preparation
For our tests, we used the MedQA dataset [53], a biomedical dataset that

contains a series of questions and for each to be four associated answers, of
which only one is the correct one.
The original work provides a script capable of processing the dataset and
producing a subgraph for each pair question-answer, stored using the pickle
module.

3.2.1 Reverse graph creation

The implemented EGAT requires as input both adjacency matrices for
the standard and reversed graph. The latter is not taken into account in the
original QA-GNN solution, so the preprocessing script had to be modified.
Although computationally expensive, this step can be performed only once
before training. The results of the transformations can also be stored on file,
not negatively impacting the solution’s computational cost.

Optimizations

EGAT’s original solution required as input two adjacency matrices A and A
′

of dimension [N,N,M] and [M,M,N], respectively, with N number of nodes
and M number of relations. Each cell A[i, j, k] has value 1 if nodes i and j
are connected by relation k of the original graph, similarly for the matrix A

′

3.2. Dataset preparation 33

which refers to the reverse graph. This mode of representation involves several
problems:

• The matrices are sparse and very large, although only a few cells have
value 1 and are therefore relevant

• Since it is necessary to evaluate the entire matrix, the training phase is
unnecessarily slow and complex.

• Also, the phase of preprocessing comes uselessly slow down

For the reasons mentioned above, the proposed solution uses compressed
adjacency matrices, which only keep track of the existing relationships, thus
allowing for smaller data structures and speeding up both preprocessing and
actual training times.
The new adjacency matrix is represented by two tensors, named edge_index
and edge_type. The former is a tensor of dimension [2,M], while the latter is
a tensor of dimension [M], with M number of relations.
Given edge_index[0][i] = x, edge_index[1][i] = y, and edge_type[i] = z,
nodes x and y are connected via a relation of type z.

3.2.2 Relation embeddings creation

The original solution does not consider edge features, but only node ones,
generated by a script which uses the specified language model. For this reason,
it was necessary to repeat the same procedure in order to also generate edge
features. Node and edge embeddings can be written on file and then read
to be used inside the GNN, making this process executable only once in the
preprocessing phase.
The script that performs this operation is analogous to the one already present
for the generation of node embeddings. The only difference is that the input
received does not correspond to nodes’ text but relations’ text.

Optimizations

We noticed that the relations’ text included non-alphanumeric characters,
such as "_" used instead of space, "?" at the beginning of the sentence in some
reverse edges, etc.
These are not characters that the language model is used to working with, thus
making the embeddings of the relations that contain them less accurate.
Therefore, we decided to test the model during our experiments even after
processing the relations’ text and removing every unrecognized character.

34 Capitolo 3. Contributions

3.3 EGAT variant with graph transformation
(EGATv2)

We have also proposed a new solution, which involves transforming the
input graph to aggregate edge features directly within those of the nodes.
This transformation is shown in figure 3.2: for each relation, a new node is
created and initialized with a function that considers the source node and the
edge embeddings (in our case subtraction between embeddings). The new node
is then connected to the source node, with a new edge of the same type of the
original one.

Figure 3.2: The proposed graph transformation. For each relation, a new node
is created and initialized with a function that considers the source node and
the edge embeddings. The now node is then connected to the source node,
with a new relation of the same type of the original one.

This transformation is also reflected on the reverse graph in which additional
edges become new nodes and nodes resulting from aggregation, where expected,
become new edges.

3.4 Training

The experimental setup for the question-answering task is described below.

3.4. Training 35

Figure 3.3: The same transfomation on the graph is reflected on the reversed
graph.

3.4.1 Dataset

The dataset used for our experiments is MedQA-USMLE [53], a 4-way
multiple choice QA dataset that requires biomedical and clinical knowledge,
whose questions are originally from practice tests for the United States Medical
License Exam (USMLE). The dataset contains 12,723 questions. As in the
original QAGNN [15] training, we use the original data splits from Jin et al.
[54].

3.4.2 Knowledge graphs

We used a Knowledge Graph constructed by Yasunaga et al. [15] that
integrates the Disease Database portion of the Unified Medical Language
System [55] and DrugBank [56]. The knowledge graph contains 9,958 nodes
and 44,561 edges.
Given each QA context (question + answer), we retrieve the subgraph Gsub

from G, with hope size k = 2. Gsub is then pruned to keep only the top 200
nodes according to the node relevance score computed.

36 Capitolo 3. Contributions

3.4.3 Implementation and training details

We test our solution (EGAT) with dimension (D = 200). We set the number
of layers L from {2, 5, 8} and the number of heads K from {2, 4, 8}. We set
the dropout rate to 0.2 applied to each layer. We also tested the EGAT model
after removing all non-alphanumeric characters from the relations’ text, and we
initialized the embeddings of the additional nodes created during the addition
of the self-loops with both 0 values and the average of the adjacent nodes.
Entities and relation embeddings are always initialized using the representations
from PubMedBert-abstract [57].
Features in the final merge layer have been both concatenated and averaged in
our tests.
The EGAT solution with graph transformation (EGATv2 3.3) was tested with
fixed parameters (L = 5, K = 4), additional nodes’ features filled with 0 values,
merge layer features averaged and alphanumeric characters not removed, but
with two different GNNs: the proposed EGAT and the classic GAT, so as to
verify the importance of aggregating to the node features those of the outgoing
edges.
We train the model with RAdam oprimizer using one GPU (GeForce RTX 3090
Turbo).
We set the batch size (b_s = 128), learning rate for the LM module (elr =
5e− 5), and learning rate for the GNN module (dlr = 1e− 3).

3.5 Results

Figure 3.4 shows the results of our two best solutions on MedQA-USMLE.
The best EGAT solution was the one with 5 layers (L = 5), 4 heads (K = 5),

features of additional nodes initialized as average of the adjacent ones and final
aggregation in the merge layer by averaging. The model achieved an accuracy
of 42.18%, beating the previous state-of-the-art of 4.18%.

The best EGATv2 solution turned out to be one that leverages classic
GAT as GNN. As explained in section 3.4.3, EGATv2 was trained with fixed
parameters. The model achieved an accuracy of 42.11%, beating the previous
state-of-the-art of 4.11%.

For the two best models, we also decided to run 15 additional epochs, for a
total of 30, to see if performance could further increase.
The solution with EGAT, as the number of epochs increases, fails to increase
the test accuracy.
EGATv2, at the twenty-first epoch, reaches an accuracy on the test set of
43.13%, beating the previous state-of-the-art of 5.13%, as shown in figure 3.5.

3.5. Results 37

Figure 3.4: Best results obtained by our models.

Our experiments have shown that edge features can positively affect the
performance of a GNN.
Moreover, since graphs extracted from the MeQA-USMLE dataset include
only 14 types of relations (34 considering the inverse ones), we also believe
our approach may be even more influential on graphs in which the number of
distinct relation types is higher.

3.5.1 Ablations

We conduct ablation studies on the MeQA-USMLE dataset to show the
importance of each parameter and strategy applyed to our model. For all these
experiments, we train the model (EGAT/EGATv2) for 15 epochs and compare
it to the base EGAT solution.

Baseline

The EGAT base solution has the following features: L = 5, K = 4,
additional nodes’ features initialized with 0 values, feature averaged in the
merge layer and non-alphanumeric characters not removed.

As shown in figure 3.6, our base solutions reach, after at its 15-th epoch,
41.4% accuracy on the test set. This result will be considered as our lower-bound
and compared to other trainings to show the importance of each parameters
and strategy applyed to our model.

38 Capitolo 3. Contributions

Figure 3.5: Results obtained by EGATv2 after 30 epochs.

The importance of the number of EGAT layers and heads

The following paragraphs show the performance obtained by changing the
number of layers(L) and/or heads (K).

Changing number of layers: The model shown in figure 3.7 has a fixed
number of heads (K = 4) and a variable number of layers Lϵ{2, 5, 8}. Dummy
node features are initialized with zero values, features in the merge layer are
averaged, and non-alphanumeric characters are not removed.

The 2-layers solution (L = 2) performed best, achieving an accuracy on the
test set of 41.87% and thus improving the base solution by 0.47%.

Changing number of heads: The model shown in figure 3.8 has a fixed
number of layers (L = 5) and a variable number of heads Kϵ{2, 4, 8}. Dummy
node features are initialized with zero values, features in the merge layer are
averaged, and non-alphanumeric characters are not removed.

The solution with two heads (K = 2) performed best, achieving an accuracy
on the test set of 41.95% and thus improving the base solution by 0.55%.

Changing number of layers and heads: As shown in figure 3.9, the best
performance was achieved by the solution with 5 layers (L = 5) and 4 heads
(K = 4) which is the same configuration used in the baseline solution in terms
of layers and heads. This setup achieved an accuracy on the test set of 41.95%,
improving the baseline by 0.55%.

3.5. Results 39

Figure 3.6: Results of the EGAT base solution.

The importance of non-alpanumeric characters

This solution uses 5 layers (L = 5), 4 heads (K = 4), additional node
features are initialized with 0 values, features are averaged in the merge layer
and non-alphanumeric characters are removed.

As shown in figure 3.10, removing non-alphanumeric characters improves the
accuracy on the test set by 0.39%, achieving its maximum accuracy (41.79%)
at its 14-th epoch.

The importance of of the final merge logic

This comparison was made at an advanced stage of development. For this
reason the two solutions share the number of layers and heads (L = 5 and
K = 4), do not provide for the removal of non-alphanumeric characters and
initialize the features of additional nodes by averaging adjacent ones. The
difference between the two models is the logic with which the features are
merged into the final merge layer: in one case by concatenating them and in
the other by averaging.

As shown in figure 3.12, averaging features in the final merge layer is more
efficient than concatenating them. Specifically, the solution that exploits feature
averaging achieves an accuracy of 42.18% on the test set, 1.17% higher than
the solution that uses concatenation. Despite this, the latter reaches maximum
accuracy after only 4 epochs, compared to 15 for the best solution.

40 Capitolo 3. Contributions

Figure 3.7: Results of the EGAT solution with different number of layer
(Lϵ{2, 5, 8}).

The importance of the new nodes’ features initialization logic

This solution uses the same parameter of the base one, so 5 layers (L = 5), 4
heads (K = 4), features are averaged in the merge layer and non-alphanumeric
characters are not removed, but additional node features are initialized with
the average of the adjacent nodes (for the reverse graph, with the average of
adjacent relations).

As shown in figure 3.12, this solution improves the accuracy on the test set
by 0.78%, achieving its maximum accuracy (42.18%) at its 15-th epoch.

EGATv2

The EGAT solution with graph transformation (3.3) was tested with fixed
parameters (L = 5,K = 4), additional nodes’ features filled with 0 values,
merge layer features averaged and alphanumeric characters not removed, but
with two different GNNs: the proposed EGAT and the classic GAT.

EGAT As shown in figure 3.13, aggregating the edge features directly within
those of nodes can lead to an increase in performance; specifically, the solution
that exploits the graph transformation explained in section 3.3 achieves an
accuracy on the test set of 41.95%, 0.55% higher than the baseline solution.

GAT As shown in figure 3.14, aggregating the edge features directly within
those of nodes and using the classic GAT as GNN further increases performance,
reaching an accuracy on the test set of 42.11%, 0.71% higher than the baseline

3.5. Results 41

Figure 3.8: Results of the EGAT solution with different number of heads
(Kϵ{2, 4, 8}).

solution and 0.16 higher than the solution with EGAT as GNN.
This suggests to us that the combined use of EGAT with graph transformation
leads to the introduction of redundant information (edge features), in GAT not
present, causing overfitting and a decrease in overall performance.

42 Capitolo 3. Contributions

Figure 3.9: Results of the EGAT solution with different number of heads and
layers (L = 2, K = 8).

Figure 3.10: Results of the EGAT solution with non-alphanumeric characters
removed from relations’ text.

3.5. Results 43

Figure 3.11: Results of the EGAT solution with a different merge logic in the
final layer.

Figure 3.12: Results of the EGAT solution with features of additional nodes
initialized as average of the adjacent ones.

44 Capitolo 3. Contributions

Figure 3.13: Results of the solution with graph transformation, using EGAT as
GNN.

Figure 3.14: Results of the solution with graph transformation, using classic
GAT as GNN.

Capitolo 4

Implementation

The following chapter shows each model implemented for this thesis, some
of which are used on the practical side during the training (e.g., EGAT). In
contrast, others have been necessary to deeply understand the functioning of
some GNNs (e.g., GAT) and development frameworks.
The code produced during the thesis can be found at the following links:

• Github repository

• Google Colab notebooks

4.1 Preliminary Technical Choices
Python is the most popular programming language for data science. It’s

an open source, general-purpose and intuitive language born in 1991 which
supports different paradigms.
For these reasons it is the most widely used programming language for data
science, because it is fast and therefore the best option for data manipulation.
Moreover, the numerous packages contained in python make it easier for
programmers to implement complex models and operate on data.
All implementations are done using the following framework and libraries:

• PyTorch[58]: an open source machine learning framework based on torch
library which has greatly simplified data processing, model creation, and
model training.

• PyTorch Geometric[59]: a library built upon PyTorch to easily write
and train GNNs.

• Deep Graph Library[60]: frequently abbreviated as DGL. A framework
agnostic, efficient and scalable library to create and train GNNs.

45

https://github.com/disi-unibo-nlp/bio-qagnn
https://drive.google.com/drive/folders/1S6jpWsObX5RMRuK-yGx4gs7WB5Ta1_jv?usp=sharing

46 Capitolo 4. Implementation

4.2 GAT
The following subsections show GAT’s implementations, exploiting PyTorch

and DGL.

4.2.1 PyTorch

class GraphAttentionLayer(Module):
def __init__(self, in_features: int, out_features: int, n_heads:

int, is_concat: bool = True, dropout: float = 0.6,
leaky_relu_negative_slope: float = 0.2):

self.linear = nn.Linear(in_features, self.n_hidden * n_heads,
bias=False)

self.attn = nn.Linear(self.n_hidden * 2, 1, bias=False)
self.activation =

nn.LeakyReLU(negative_slope=leaky_relu_negative_slope)
self.softmax = nn.Softmax(dim=1)
self.dropout = nn.Dropout(dropout)

In order to instantiate the model, the following parameters are required:

• in_features: the number of input features per node.

• out_features: the number of output features per node.

• n_heads: number of atttention heads.

• is_concat: merge logic for attention heads’ output. Default is concate-
nation (true), otherwise feature are averaged.

• dropout: dropout probability to regularize the training process.

• leaky_relu_negative_slope: negative slope for LeakyReLU to avoid
the "dying ReLU" problem.

The model to its inside defines five layers, thought respectively, for the
following purposes:

• self.linear: this layer performs the initial transformation on the node
features to get more expressive power (equation 1.8).

• self.attn: this layer computes the non-normalized attention coefficients
(equation 1.10).

4.2. GAT 47

• self.activation: on the non-normalized attention coefficient, a LeakyRe-
LU function is applied.

• self.softmax: the softmax layer normalize attention coefficient conside-
ring node neighbors (equation 1.11).

• self.dropout: at the end, a dropout regularization is applied to regularize
the training process.

...
e = self.activation(self.attn(g_concat))
e = e.masked_fill(adj_mat == 0, float('-inf'))
a = self.softmax(e)
a = self.dropout(a)
attn_res = torch.einsum('ijh,jhf->ihf', a, g)
...

The forward step is very intuitive: after creating the matrix containing all
possible concatenations between nodes, the previously defined layers are applied
in sequence to produce the attention coefficients, and finally, for each node, the
output is calculated as a weighted sum for the nodes in the neighborhood.

4.2.2 DGL

class GATLayer(nn.Module):
def __init__(self, g, in_dim, out_dim):

self.fc = nn.Linear(in_dim, out_dim, bias=False
self.attn_fc = nn.Linear(2 * out_dim, 1, bias=False)

In order to instantiate the model, the following parameters are required:

• g: DGL graph. Contains the information for constructing the graph,
including the adjacency matrix.

• in_dim: the number of input features per node.

• out_dim: the number of output features per node.

The model to its inside defines only two layers:

• self.fc: the layer used for the initial transformation on node features to
get more expressive power (equation 1.8).

48 Capitolo 4. Implementation

• self.attn_fc: The layer used to compute the non-normalized attention
scores (equation 1.10).

def forward(self, h):
z = self.fc(h)
self.g.ndata['z'] = z
self.g.apply_edges(self.edge_attention)
self.g.update_all(self.message_func, self.reduce_func)
return self.g.ndata.pop('h')

The forward step exploits three user defined functions, necessary to perform
the graph convolution, executed through DGL API.
The unnormalized attention score eij (equation 1.10) is calculated using the
embeddings of adjacent nodes. For this reason it can be viewed as edge data
which can be calculated by the apply_edges API, which updates features of
the edges by the provided function.
The update_function API is used to start the message passing procedure
on all the nodes and requires two parameters: the message function and the
reduce function. The first one defines how messages between nodes should be
generated, while the latter defines how received messages should be aggregated.

def edge_attention(self, edges):
z2 = torch.cat([edges.src['z'], edges.dst['z']], dim=1)
a = self.attn_fc(z2)
return {'e': F.leaky_relu(a)}

The edge_attention function returns the unnormalized attention scores by
creating the embedding concatenation and applying the linear transformations
defined in the model.

def message_func(self, edges):
return {'z': edges.src['z'], 'e': edges.data['e']}

The message_func function defines how each message exchanged between
nodes should be generated.
In this case, each node sends its embedding and the attention score computed
before.

def reduce_func(self, nodes):
alpha = F.softmax(nodes.mailbox['e'], dim=1)
h = torch.sum(alpha * nodes.mailbox['z'], dim=1)
return {'h': h}

The last function, called reduce_func, defines how to aggregate received
messages.

4.3. GATv2 49

In this case, the attention scores are normalized using a softmax and the
neighbor embeddings are aggregated and weighted by the attention scores
(equation 1.11).

4.3 GATv2

The following section shows the PyTorch implementation of Gatv2.

class GraphAttentionV2Layer(Module):
def __init__(self, in_features: int, out_features: int, n_heads:

int, is_concat: bool = True, dropout: float = 0.6,
leaky_relu_negative_slope: float = 0.2):
self.linear_l = nn.Linear(in_features, self.n_hidden *

n_heads, bias=False)
self.attn = nn.Linear(self.n_hidden, 1, bias=False)
self.activation =

nn.LeakyReLU(negative_slope=leaky_relu_negative_slope)
self.softmax = nn.Softmax(dim=1)
self.dropout = nn.Dropout(dropout)

The model requires the same parameters as GAT (4.2.1) to be instantiated
and defines the same layers needed to perform convolution within it.

e = self.attn(self.activation(g_sum))
e = e.masked_fill(adj_mat == 0, float('-inf'))
a = self.softmax(e)
a = self.dropout(a)

The only difference from the classic version of GAT is in the order in which
the operations are performed.
Specifically, in this case, the LeakyReLU activation function is first applied, and
then the linear layer is used to calculate the unnormalized attention coefficients.
Finally, as in GAT, the graph structure is injected using the adjacency matrix,
the coefficients are normalized using a softmax, and the dropout technique is
applied.

4.4 RGCN

The following section shows the DGL implementation of RGCN.

class RGCNLayer(nn.Module):
def __init__(self, in_feat, out_feat, num_rels, num_bases=-1,

bias=None, activation=None, is_input_layer=False):

50 Capitolo 4. Implementation

if self.num_bases <= 0 or self.num_bases > self.num_rels:
self.num_bases = self.num_rels

self.weight = nn.Parameter(torch.Tensor(self.num_bases,
self.in_feat, self.out_feat))

if self.num_bases < self.num_rels:
self.w_comp = nn.Parameter(torch.Tensor(self.num_rels,

self.num_bases))

In order to instantiate the model, the following parameters are required:

• in_feat: the number of input features per node.

• out_feat: the number of output features per node.

• num_rels: the total number of edges.

• num_bases: the number of basis used for basis decomposition and
reduce the number of parameters.

• bias: the bias.

• activation: if not None, applies the given activation function to the
result.

• is_input_layer: if set True, the layer is designed as the input one, so
node features will be initialized as one-hot vectors for each node.

if self.num_bases <= 0 or self.num_bases > self.num_rels:
self.num_bases = self.num_rels

self.weight = nn.Parameter(torch.Tensor(self.num_bases, self.in_feat,
self.out_feat))

if self.num_bases < self.num_rels:
self.w_comp = nn.Parameter(torch.Tensor(self.num_rels,

self.num_bases))

The number of bases is used to reduce the number of trainable parameter
that grows in relation to the number of relations. For this reason, if num_bases
is greater than num_rels or invalid, is set to num_rels. self.weight is the weight
bases matrix used for basis decomposition (Vb in equation 1.6).
self.w_comp are the linear combination coefficients for basis decomposition
(arb in equation 1.6).

g.update_all(message_func, fn.sum(msg='msg', out='h'), apply_func)

4.4. RGCN 51

The forward step can be summarized by the following call, which exploits
the DGL update_all API and two user-defined functions necessary to define
the exchange of messages between nodes and axtivation function applied to the
result. The aggregation is a simple sum over all messages received.

weight = self.weight.view(self.in_feat, self.num_bases, self.out_feat)
weight = torch.matmul(self.w_comp, weight).view(self.num_rels,

self.in_feat, self.out_feat)

In the forward step, the weight matrix for the basis decomposition is created
by multiplying the two matrices defined within the model.

if self.is_input_layer:
def message_func(edges):

embed = weight.view(-1, self.out_feat)
index = edges.data['rel_type'] * self.in_feat + edges.src['id']
return {'msg': embed[index] * edges.data['norm']}

else:
def message_func(edges):

w = weight[edges.data['rel_type']]
msg = torch.bmm(edges.src['h'].unsqueeze(1), w).squeeze()
msg = msg * edges.data['norm']
return {'msg': msg}

After that, depending on whether basis-decomposition is used or not, the
function for message exchange is defined.
If the layer is an input layer, the matrix multiplication can be converted to
be an embedding lookup based on source node id. Otherwise, the message is
generated as matrices multiplication (1.5).

def apply_func(nodes):
h = nodes.data['h']
if self.bias:

h = h + self.bias
if self.activation:

h = self.activation(h)
return {'h': h}

The apply_func function is used to apply a specific activation function on
the result. If no activation function is passed as parameter, the result will not
be transformed.

52 Capitolo 4. Implementation

4.5 EGAT
The following subsections show EGAT’s implementations, exploiting Py-

Torch and PyTorch Geometric, showing the most relevant portions of code,
and motivating the choices made.

4.5.1 PyTorch

EGAT layer

As described previously, each EGAT layer is composed by two blocks in
a symmetrical design, to update in an equivalent way both nodes and edges
features: node and edge attention block.

class EGATLayer(nn.Module):
def __init__(self, in_features_nodes: int, in_features_edges: int,

out_features_nodes: int, out_features_edges: int):
self.linear_nodes = nn.Linear(in_features_nodes,

out_features_nodes, bias=False)
self.linear_edges = nn.Linear(in_features_edges,

out_features_edges, bias=False)
self.attn_nodes = nn.Linear(out_features_nodes * 2 +

out_features_edges, 1, bias=False)
self.attn_edges = nn.Linear(out_features_edges * 2 +

out_features_nodes, 1, bias=False)
self.activation = nn.LeakyReLU(negative_slope=0.02)
self.softmax = nn.Softmax(dim=1)

In order to instantiate the model the following parameters are required as
input:

• in_features_nodes: The number of input features per node

• in_features_edges: The number of input features per edge

• out_features_nodes: The number of output features per node

• out_features_edges: The number of output features per edge

The model exploits 6 distinguished layers, necessary to perform the opera-
tions listed in chapter 2.1:

• The first two are linear layer for initial node and edges transformation,
used to get a more expressive power and obtain higher level features
(equation 2.1 and 2.2). The mapping is obviously made taking into
account the number of features in input and output.

4.5. EGAT 53

• The third is a linear layer to compute the attention score in the no-
de attention block (equation 2.5). The size of the layer’s input is
out_features_nodes * 2 + out_features_edges because the attention
score is computed from the concatenation of the source node, the target
node and the edge connecting them, after the previous transformation.

• The fourth is a linear layer to compute the attention score in the edge atten-
tion block. In this case, the size of the layer’s input is out_features_edges
* 2 + out_features_nodes because the attention score is computed from
the concatenation of the source edge, the target edge and the node
between them.

• The fifth layer refers to equation 2.6 and, through the use of a LeakyReLU
activation function, allows to compute the not-normalized attention scores.
The negative slope prevents the dying ReLU [61] problem because it allows
backpropagation also on negative values.

• The last layer exploits a softmax function to normalize the attention
scores.

def forward(self, nodes_features: torch.Tensor, edges_features:
torch.Tensor, edges_mapping_matrix:torch.Tensor,
is_node_attention: bool):

The forward step requires in input nodes and edges features, the adjacency
matrix and a boolean indicating if the node or edge attention should be
performed. The computation is pretty straightforward and after concatenating
the matrices of nodes and edges to obtain every possible concatenations, it
uses the layers explained before to compute the attention score and the new
features, which will be the input of the subsequent layer. In the node attention
block, the edge-integrated node features are also computed (equation 2.9).

EGAT with multiple layers

class EGAT(nn.Module):
def __init__(self, in_features_nodes: int,

in_features_edges: int,
out_features_nodes: int,
out_features_edges: int,
n_layers : int):

A complete EGAT layer includes different single EGAT layers where the
input of each one is the output of the previous. For this reason, the parameters

54 Capitolo 4. Implementation

required to instantiate the model are the same as those required to instantiate
a single layer, with the addition of n_layers which indicates the total number
of layers.

self.layers = nn.ModuleList()
self.layers.append(EGATLayer(in_features_nodes,in_features_edges,

out_features_nodes, out_features_edges))
for i in range(n_layers - 1):
self.layers.append(EGATLayer(out_features_nodes,

out_features_edges, out_features_nodes,
out_features_edges))

The model simply creates a list oh layers which is then populated with
n_layers - 1 single EGAT layers in a loop and an extra EGAT layer. The
reason is that the first EGAT layer has input sizes equal to the model input,
while every other layer has input sizes equal to the output size of the previous
layer, both for nodes and edges.

def forward(self, nodes_features: torch.Tensor, edges_features:
torch.Tensor, edges_mapping_matrix:torch.Tensor,
nodes_mapping_matrix:torch.Tensor):
merged_nodes_feats =

torch.empty(nodes_features.shape[0],self.out_features_nodes)
for layer in self.layers:
nodes_features, tmp_merged_nodes_feats, nodes, edges =

layer(nodes_features, edges_features,
edges_mapping_matrix, True)

edges_features = layer(edges, nodes, nodes_mapping_matrix,
False)

merged_nodes_feats = torch.cat([merged_nodes_feats,
tmp_merged_nodes_feats], dim = 1)

return merged_nodes_feats

The forward step executes the forward step two times for each layer; the
first computes new nodes features using node attention block while the second
computes new edges features using edge attention block. The first forward step
also return tmp_merged_nodes_feats, which represents edge-integrated node
features that are finally concatenated and used as output of the EGAT.
For this computation, nodes and edges features, and adjacency matrices for
both node and edge attention blocks are required.

4.5. EGAT 55

Multi-head EGAT

As explained in the chapter 2.1, EGAT takes inspiration from GAT, more
specifically it exploits a multi-head attention mechanism. K different EGAT
models (called heads) are created, each one is independent from the others and
produces it’s own features. These output are at the end merged in a final layer,
typically. with a concatenation.

class MultiHeadEGAT(nn.Module):
def __init__(self, in_features_nodes: int,

in_features_edges: int,
out_features_nodes: int,
out_features_edges: int,
n_layers : int,
n_heads:int):

To create the model the required parameters are the same of the EGAT with
multiple layers, because they will be used to create each single head. There is
also one additional parameters, n_heads, which indicates the number of heads
that will be created.

self.layers = nn.ModuleList()
for i in range(n_heads):
self.layers.append(EGAT(in_features_nodes,in_features_edges,

out_features_nodes, out_features_edges, n_layers))

The model simply creates a list of EGAT with multiple layers, each with
the same parameters.

def forward(self, nodes_features: torch.Tensor, edges_features:
torch.Tensor, edges_mapping_matrix:torch.Tensor,
nodes_mapping_matrix:torch.Tensor):

head_outs = [layer(nodes_features, edges_features,
edges_mapping_matrix,nodes_mapping_matrix) for layer in
self.layers]

return torch.cat(head_outs, dim=1)

The forward step requires as input the initial nodes and edges feature as
well as both adjacency matrices of the graph and the "reversed" graph, used
respectively by the node and edge attention blocks.
The method collects in the variable head_outs the output of each single heads
and finally concatenates them to obtain the final result (equation 2.12).

56 Capitolo 4. Implementation

4.5.2 PyTorch Geometric

The original implementation suffered from numerous problems, including:

• Graphs used in the dataset contain an average of 800 nodes and a variable
number of relations, in general, highly connected graphs. The initial
operation of merging nodes and edges feature matrices to obtain their
concatenation led to the creation of matrices with too many entries(e.g.,
400000000 entries), as all possible combinations were calculated even
though they were present in the graph.
This problem made it impossible to load them on the GPU, thus making
the implementation unsuitable for our dataset.

• Using adjacency matrices of size [N,N,M], with N number of nodes and
M number of relations, made the computation of the same during the
dataset preprocessing very slow, which, although it can be performed
only once in the initial phase, would still slow down the experiments.

For these reasons it was decided to implement EGAT using PyTorch Geo-
metric, as it provides a complex framework able to simplify the creation of any
GNN and optimize its training.

EGAT with multiple layers

self.gnn_layers = nn.ModuleList([EGAT(args, hidden_size,
hidden_size, n_ntype, n_etype, self.edge_encoder) for _ in
range(k)])

Within the class used to instantiate the GNN, k EGAT layers are created,
which share the required parameters for their creation.

class EGAT(MessagePassing):
def __init__(self, args, emb_dim, transform_dim, n_ntype,

n_etype, edge_encoder, head_count=4, aggr="add"):
self.dim_per_head = emb_dim // head_count
self.transform_dim = transform_dim
self.linear_nodes = nn.Linear(emb_dim, self.transform_dim,

bias=False)
self.linear_edges = nn.Linear(emb_dim, self.transform_dim,

bias=False)
self.activation = nn.LeakyReLU(negative_slope=0.02)
self.attn_nodes = nn.Linear(int(transform_dim * 3 /

head_count), 1, bias=False)
self._alpha = None

4.5. EGAT 57

The EGAT class defines all the layers needed for the operations performed
in the original paper, starting from the initial ones on nodes and edges up to
those needed to compute attention coefficients and new features.

The MessagePassing base class provides a series of functionalities that
facilitate the GNN creation by taking care of message propagation. We only
had to define the message() method, to specify how propagated messages should
be created and how they should be aggregated, in this case, "add" to respect
the aggregation originally proposed by EGAT (equation 2.8).

def forward(self, x, edge_index, edge_type, node_type,
rel_features, is_node_attention,
return_attention_weights=False):
...
new_rel_features = torch.zeros(x.size(0),

self.emb_dim).to(edge_index.device)
new_rel_features = torch.cat((rel_features, new_rel_features),

dim = 0)
loop_index = torch.arange(0, x.size(0), dtype=torch.long,

device=edge_index.device)
loop_index = loop_index.unsqueeze(0).repeat(2, 1)
edge_index = torch.cat([edge_index, loop_index], dim=1)

if is_node_attention == True:
x = self.linear_nodes(x)
rel_features = self.linear_edges(rel_features)

x1 = (x, x)
aggr_out = self.propagate(edge_index, x=x1, rel_features =

new_rel_features, is_node_attention = is_node_attention,
is_merged = False) #[N, emb_dim]

if is_node_attention:
merged_features = self.propagate(edge_index, x=x1,

rel_features = new_rel_features, is_node_attention =
is_node_attention, is_merged = True) #[N, emb_dim]

merged_features = self.merged_mlp(merged_features)
...

The forward step, after adding a self-loop to each node, performs the initial
transformation on node and edge features and invokes the propagate method
of the MessagePassing class, which automatically invokes the message() and
update() methods to start the message exchange process and update node
features.

58 Capitolo 4. Implementation

For the node attention block, the propagate method is called twice, one to
produce node features for the next EGAT layer, the other to compute edge-
integrated node features used in the final merge layer as the final output of the
model.

def message(self, edge_index, x_i, x_j, rel_features, is_merged):
#[E, n_heads, emb_dim * 3 / n_heads]
concat = torch.cat((x_i, x_j, rel_features), dim =

1).view(rel_features.shape[0], self.head_count, -1)
#[E, n_heads , 1]
e = self.attn_nodes(concat)
[E, n_heads , 1]
e = self.activation(e)
#[E,n_heads]
e = e.sum(dim = 2)
alpha = softmax(e, src_node_index)

if is_merged:
merged_concat = torch.cat((x_j, rel_features), dim =

1).view(rel_features.shape[0], self.head_count, -1)
merged_features = (merged_concat * alpha.view(-1,

self.head_count, 1))
return merged_features.view(-1, self.emb_dim * 2)

out = x_j.view(rel_features.shape[0], self.head_count, -1) *
alpha.view(-1, self.head_count, 1)

return out.view(-1, self.emb_dim)

The message() method constructs messages to node i for each edge in
(i, j) and can take any argument which was initially passed to propagate().
In addition, features can be automatically mapped to the respective nodes
i and j by appending _i or _j to the variable name (in this case x_i and
x_j). For this reason, the two tensors x_i and x_j have a shape equal to
[N_REL,NODE_SIZE], and in each position x_i represent the embedding
of the source node for the given edge, while x_j the embedding of the target
node.

The method produces the needed concatenation between nodes and edges
for each relation. After computing, the attention scores produce the new output
automatically updated for each node in the graph.
In this implementation, nodes and edges concatenation is reshaped to
[E,N_HEADS,DIM]; thus, independent computation of each head is imple-
mented by adding a third dimension to the matrix, rather than instantiating
numerous independent layers.

4.6. Dataset preparation 59

The final "if" construct produces edge-integrated node features for the final
aggregation. It is computed as the standard output except that features taken
into account correspond only to the concatenation between target nodes and
edges.

i = 0
for layer in self.gnn_layers:

_X, merged_features, nodes, edges = layer(_X, edge_index,
edge_type, _node_type, _rel_fatures, True)

new_nodes = torch.empty(reverse_edge_type.shape[0],
self.hidden_size).to(edge_index.device)

new_nodes = nodes[reverse_edge_type]
_rel_fatures = layer(edges, reverse_edge_index,

reverse_edge_type, edge_type, new_nodes, False)
_X = self.activation(_X)
_X = F.dropout(_X, self.dropout_rate, training = self.training)
merged_features = self.activation(merged_features)
merged_features = F.dropout(merged_features,

self.dropout_rate, training = self.training)
if i == 0:

total_merged = merged_features
else:

total_merged = torch.div(torch.add(total_merged,
merged_features),2)

i = i + 1
return total_merged

The MessagePassing class used to instantiate the EGAT layer, in its forward
step, exploits a for loop to invoke those layers. Each one is called twice. The
first one is used as a node attention block, the second one as an edge attention
block, and in the end, features are merged (in the example above by averaging
them) to compute the final output.

4.6 Dataset preparation

For our tests we used the MedQA dataset [53], a biomedical dataset that
contains a series of questions and for each to be 4 associated answers, of which
only one is the correct one.
The original work provides a script capable of processing the dataset and
producing a subgraph for each pair question-answer, stored using the pickle
module.

60 Capitolo 4. Implementation

4.6.1 Creation of the reversed graph

The implemented EGAT requires as input both adjacency matrices for
the normal and reversed graph, for the problem mentioned in chapter 4.5.2
represented with two distinct tensors: edge_index and edge_type. The first
one is a tensor with shape [2, number_of_relations] and is populated with
values between 0 and the total number of nodes, while the latter is a tensor
[number_of_relations] containing values between 0 and the total number of
relation types.
Given edge_index[0][i] = x, edge_index[1][i] = y, and edge_type[i] = z,
nodes x and y are connected via the z-type relation.
The original script has been edited to produce both adjacency matrices.

#Loop through all relations
for index in range(edge_index_.shape[1]):

#Given a relation, get the target node
#From the source node, get all indexes with the same node
mask = edge_index_[0] == edge_index_[1][index].item()
indices = mask.nonzero()
#For each of these node, since it's in common between the

previous and the actual relation, the orginal relation and
the new one are connected via the node in common

for node in indices:
edge_index_list.append(index)
edge_index_list1.append(node.item())
edge_type_list.append(edge_index_[1][node].item())

4.6.2 Creation of relation embeddings

The original solution does not take into account edge features, but only
node ones, which are generated by a script using the specified language model.
For this reason it was necessary to repeat the same procedure in order to
generate also edge features. Node and edges embedding are written on file and
then read to be used inside the GNN.

Directory where storing model embeddings
modelShortName = "pubmedbert_abstract"

Model name from HuggingFace
model =

"microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext"

embs = []

4.7. Server commands 61

tensors = tokenizer(relations, padding=True, truncation=True,
return_tensors="pt")

with torch.no_grad():
for i, j in enumerate(tqdm(relations)):

outputs =
bert_model(input_ids=tensors["input_ids"][i:i+1].to(device),
attention_mask=tensors['attention_mask'][i:i+1].to(device))

out = np.array(outputs[1].squeeze().tolist()).reshape((1, -1))
embs.append(out)

embs = np.concatenate(embs)

filename=f"{repo_root}/data/ddb/{modelShortName}/rel_emb.npy"
os.makedirs(os.path.dirname(filename), exist_ok=True)
np.save(filename, embs)

4.7 Server commands

FROM nvcr.io/nvidia/pytorch:20.09-py3
LABEL maintainer="DISI NLU Research Group"

Zero interaction (default answers to all questions)
ENV DEBIAN_FRONTEND=noninteractive

Set work directory
WORKDIR /qagnn/

Install general-purpose dependencies
RUN apt-get update -y && \

apt-get install -y curl \
git \
bash \
nano \
ssmtp \
subversion && \

apt-get autoremove -y && \
apt-get clean -y && \
rm -rf /var/lib/apt/lists/*

RUN pip install --upgrade pip
RUN pip install wrapt --upgrade --ignore-installed
RUN pip install gdown
RUN apt-get update && apt-get install cron && apt-get install ssmtp

&& apt-get install lsof

62 Capitolo 4. Implementation

Project dependencies
RUN pip install torch==1.10.2+cu113 torchvision==0.11.3+cu113

torchaudio===0.10.2+cu113 -f
https://download.pytorch.org/whl/cu113/torch_stable.html

RUN pip install transformers==3.4.0
RUN pip install nltk spacy==2.1.6
RUN pip install wandb==0.12.10
RUN pip install streamlit==1.6.0
RUN pip install labml-helpers

Back to default frontend
ENV DEBIAN_FRONTEND=dialog

pip install torch-scatter -f
https://pytorch-geometric.com/whl/torch-1.10.2+cu113.html

pip install torch-sparse -f
https://pytorch-geometric.com/whl/torch-1.10.2+cu113.html

pip install torch-geometric -f
https://pytorch-geometric.com/whl/torch-1.10.2+cu113.html

Installing Pytorch extensions (Scatter, Geometric and Sparse) caused pro-
blems if done directly within the Dockerfile, and thus during image creation.
For this reason they have been removed from the DockerFile and must therefore
be run manually after the container is started.

Conclusions and Future Challenges

This thesis explored the world of edge-aware GNNs, i.e., those graph neural
networks that can also consider the characteristics of the relationship between
nodes. The path is finished by implementing a pre-existing model, also with
an innovative variant, and applying them to a task in the biomedical field,
specifically to a question-answering system on the MedQA dataset [53].

The realization of this thesis was possible thanks to the following steps.
First, the pre-existing solutions have been carefully analyzed and implemented
through the most popular frameworks (PyTorch, PyTorch Geometric) and
innovative (DGL) to understand the theoretical concepts learned during the
reading.
The re-implemented model, applied to question-answering, has obtained excel-
lent results in beating the pre-existing solution and defining the new state-of-
the-art. Furthermore, the proposed model can process edge features and be
used for different tasks, such as link prediction, thus introducing an additional
advantage. Moreover, the innovative model we proposed has shown how a
simple transformation on a graph allows a significant boost in performance
without increasing the complexity of the original GAT but simply expanding
the number of nodes of an additive factor. Finally, compared to the original so-
lution used in the QA-GNN [15] paper, our models still ignore the node-ranking
score and the node typology that can further increase performance.

In future developments, we plan to integrate the node ranking score and
the node typology into the developed models to establish a solution similar to
the original one and verify the performance deviation. It is then intended to
apply orthogonal regularization to remove redundancies and thus improve the
results or equalize them using fewer layers. In addition, the representation of
the square adjacency matrix is not scalable. Still, it can be approximated with
random kernel functions that generate orthogonal and positive vectors, thus
reducing the size by at least an order of magnitude.
We also believe that the variant that uses the transformation on the graph
combined with classic GAT can be further improved. It still does not take
advantage of the improvements made to the solution with EGAT (removal of
non-alphanumeric characters, feature generation by averaging, etc.) and has

63

64 CONCLUSIONS AND FUTURE CHALLENGES

not been tested with different configurations in terms of layers and heads.
Regardless of the GNN used, QA-GNN offers many ideas for future develop-
ments, some of which have already been analyzed. For example, the reference
language models can be modified, and the parameter k, indicating the k-hop,
taken into account during the Knowledge Graph extraction.

In conclusion, the goal will be to improve further the models defined and,
consequently, the question-answering system, and then conclude the process
with the development of an application that allows users to test the work done.

Ringraziamenti

Arrivato al termine di questo percorso di studi, che mi ha cambiato come
studente, lavoratore e persona, mi sento in dovere di ringraziare tante persone
che hanno reso questo traguardo possibile.

In primis desidero ringraziare il mio relatore Gianluca Moro per la compe-
tenza con la quale mi ha guidato nella realizzazione di questo lavoro. Ringrazio
poi il mio co-relatore Giacomo Frisoni che, con pazienza, mi ha seguito durante
l’intero sviluppo della tesi, aiutandomi e fornendomi il supporto non solo tec-
nico, ma anche motivazionale. Senza loro la riuscita di questo lavoro sarebbe
risultata impossibile.

Ringrazio i miei genitori, per avermi sempre sostenuto indipendentemente
dalle mie scelte e avermi reso la persona che sono. Poter seguire un percorso
senza sentire alcuna pressione gravare sulle proprie spalle mi ha permesso di
godere appieno di questo viaggio, dando il massimo ogni giorno.

Non posso dimenticare i miei amici, in quanto parte integrante delle mie
giornate e in grado di rendere belle anche quelle più buie.
Un ringraziamente in particolare a Gianni e Mattia, non solo amici ma compagni
di studio e di progetti, senza i quali questo percorso sarebbe sicuramente
risultato più complesso e meno divertente.

Non posso non ringraziare me stesso, perchè sebbene sia sempre vissuto in
un ambiente stimolante e favorevole al mio studio, ho sempre dato il massimo
e ho perserverato per il raggiungimento di questo obiettivo, che spero sia solo
l’inizio di un nuovo bellisimo percorso.

65

Acknowledgments

At the end of this course of study, which has profoundly changed me as a
student, a worker, and a person, I feel obliged to thank many people who have
made this goal possible.

First of all, I would like to thank my supervisor Gianluca Moro for the
competence with which he guided me in realizing this work. I would also like
to thank my co-director Giacomo Frisoni. He patiently followed me throughout
the development of the thesis, helping me and providing me with technical and
motivational support. Without them, the success of this work would have been
impossible.

I would like to thank my parents for always supporting me regardless of my
choices and for making me the person I am. Following a path without feeling
any pressure on my shoulders has allowed me to fully enjoy this journey, giving
my best every day.

I can’t forget my friends, as they are an integral part of my days and able
to make even the grayest days beautiful.
A special thanks to Gianni and Mattia, not only friends but also study and
project companions, without whom this journey would indeed have been more
complex and less fun.

And above all, thanks to me. Even though I have always lived in a stimula-
ting and favorable environment for my study, I have always tried hard to reach
this goal, which I hope is only the beginning of a new beautiful path.

67

Bibliografia

[1] IBM Watson Explorer. https://amr.isi.edu. Accessed 01 Feb 2022.

[2] Meiqin Chen, Yuan Zhang, Xiaoyu Kou, Yuntao Li, and Yan Zhang. r-gat:
Relational graph attention network for multi-relational graphs. ArXiv,
abs/2109.05922, 2021.

[3] Stephan Oepen, Omri Abend, Lasha Abzianidze, Johan Bos, Jan Hajič,
Daniel Hershcovich, Bin Li, Tim O’Gorman, Nianwen Xue, and Daniel
Zeman. Mrp 2020: The second shared task on cross-framework and
cross-lingual meaning representation parsing. pages 1–22, 01 2020.

[4] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang,
Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph
neural networks: A review of methods and applications. AI Open, 1:57–81,
2020.

[5] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[6] Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den
Berg, Ivan Titov, and Max Welling. Modeling relational data with graph
convolutional networks. In Aldo Gangemi, Roberto Navigli, Maria-Esther
Vidal, Pascal Hitzler, Raphaël Troncy, Laura Hollink, Anna Tordai, and
Mehwish Alam, editors, The Semantic Web, pages 593–607, Cham, 2018.
Springer International Publishing.

[7] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. Graph Attention Networks. International
Conference on Learning Representations, 2018.

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

69

https://amr.isi.edu

70 Bibliografia

[9] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and
Philip S Yu. Heterogeneous graph attention network. In The World Wide
Web Conference, WWW ’19, page 2022–2032, New York, NY, USA, 2019.
Association for Computing Machinery.

[10] Hu Linmei, Tianchi Yang, Chuan Shi, Houye Ji, and Xiaoli Li. Heteroge-
neous graph attention networks for semi-supervised short text classification.
In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 4821–4830, Hong Kong,
China, November 2019. Association for Computational Linguistics.

[11] Zhifei Li, Hai Liu, Zhaoli Zhang, Tingting Liu, and Neal N. Xiong. Lear-
ning knowledge graph embedding with heterogeneous relation attention
networks. IEEE Transactions on Neural Networks and Learning Systems,
pages 1–13, 2021.

[12] Zhao Zhang, Fuzhen Zhuang, Hengshu Zhu, Zhiping Shi, Hui Xiong, and
Qing He. Relational graph neural network with hierarchical attention for
knowledge graph completion. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(05):9612–9619, Apr. 2020.

[13] Taichi Ishiwatari, Yuki Yasuda, Taro Miyazaki, and Jun Goto. Relation-
aware graph attention networks with relational position encodings for
emotion recognition in conversations. In Proceedings of the 2020 Confe-
rence on Empirical Methods in Natural Language Processing (EMNLP),
pages 7360–7370, Online, November 2020. Association for Computational
Linguistics.

[14] Ziming Wang, Jun Chen, and Haopeng Chen. Egat: Edge-featured graph
attention network. In Igor Farkaš, Paolo Masulli, Sebastian Otte, and
Stefan Wermter, editors, Artificial Neural Networks and Machine Lear-
ning – ICANN 2021, pages 253–264, Cham, 2021. Springer International
Publishing.

[15] Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, Percy Liang, and
Jure Leskovec. QA-GNN: Reasoning with language models and knowledge
graphs for question answering. In Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 535–546, Online, June
2021. Association for Computational Linguistics.

[16] Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, and Yuji Matsumoto.
Knowledge transfer for out-of-knowledge-base entities : A graph neural

Bibliografia 71

network approach. In Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI-17, pages 1802–1808, 2017.

[17] Xiaodong Wang, Zhen Liu, Nana Wang, and Wentao Fan. Relational Metric
Learning with Dual Graph Attention Networks for Social Recommendation,
pages 104–117. 05 2020.

[18] Yongji Wu, Defu Lian, Yiheng Xu, Le Wu, and Enhong Chen. Graph
convolutional networks with markov random field reasoning for social
spammer detection. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(01):1054–1061, Apr. 2020.

[19] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein
interface prediction using graph convolutional networks. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

[20] Franco Scarselli, Sweah Liang Yong, Marco Gori, Markus Hagenbuchner,
Ah Chung Tsoi, and Marco Maggini. Graph neural networks for ranking
web pages. In Proceedings of the 2005 IEEE/WIC/ACM International
Conference on Web Intelligence, WI ’05, page 666–672, USA, 2005. IEEE
Computer Society.

[21] P. Frasconi, M. Gori, and A. Sperduti. A general framework for adaptive
processing of data structures. IEEE Transactions on Neural Networks,
9(5):768–786, 1998.

[22] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE Transactions
on Neural Networks, 20(1):61–80, 2009.

[23] Alessio Micheli. Neural network for graphs: A contextual constructive
approach. IEEE Transactions on Neural Networks, 20(3):498–511, 2009.

[24] Rikiya Yamashita, Mizuho Nishio, Richard K. G. Do, and Kaori Togashi.
Convolutional neural networks: an overview and application in radiology.
Insights into Imaging, 9:611 – 629, 2018.

[25] Yann LeCun, Y. Bengio, and Geoffrey Hinton. Deep learning. Nature,
521:436–44, 05 2015.

[26] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael

72 Bibliografia

Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet large scale visual
recognition challenge, 2015.

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classi-
fication with deep convolutional neural networks. In F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 25. Curran Associates, Inc., 2012.

[28] William L. Hamilton, Rex Ying, and Jure Leskovec. Representation
learning on graphs: Methods and applications. IEEE Data Eng. Bull.,
40(3):52–74, 2017.

[29] Giacomo Frisoni, Gianluca Moro, Giulio Carlassare, and Antonella Carbo-
naro. Unsupervised event graph representation and similarity learning on
biomedical literature. Sensors, 22(1), 2022.

[30] G. W. Stewart. On the early history of the singular value decomposition.
SIAM Rev., 35(4):551–566, dec 1993.

[31] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online
learning of social representations. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD
’14, page 701–710, New York, NY, USA, 2014. Association for Computing
Machinery.

[32] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu
Mei. Line: Large-scale information network embedding. In Proceedings of
the 24th International Conference on World Wide Web, WWW ’15, page
1067–1077, Republic and Canton of Geneva, CHE, 2015. International
World Wide Web Conferences Steering Committee.

[33] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for
networks. Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2016.

[34]

[35] Seong Jin Ahn and MyoungHo Kim. Variational Graph Normalized Au-
toEncoders, page 2827–2831. Association for Computing Machinery, New
York, NY, USA, 2021.

[36] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton,
and Jure Leskovec. Hierarchical graph representation learning with diffe-
rentiable pooling. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,

Bibliografia 73

N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc., 2018.

[37] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An
end-to-end deep learning architecture for graph classification. In Pro-
ceedings of the Thirty-Second AAAI Conference on Artificial Intelligence
and Thirtieth Innovative Applications of Artificial Intelligence Conferen-
ce and Eighth AAAI Symposium on Educational Advances in Artificial
Intelligence, AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018.

[38] Hongyang Gao and Shuiwang Ji. Graph u-nets, 2019.

[39] Jiawei Zhang. Graph neural distance metric learning with graph-bert.
ArXiv, abs/2002.03427, 2020.

[40] Peter Battaglia, Jessica Blake Chandler Hamrick, Victor Bapst, Alvaro
Sanchez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David
Raposo, Adam Santoro, Ryan Faulkner, Caglar Gulcehre, Francis Song,
Andy Ballard, Justin Gilmer, George E. Dahl, Ashish Vaswani, Kelsey
Allen, Charles Nash, Victoria Jayne Langston, Chris Dyer, Nicolas Heess,
Daan Wierstra, Pushmeet Kohli, Matt Botvinick, Oriol Vinyals, Yujia
Li, and Razvan Pascanu. Relational inductive biases, deep learning, and
graph networks. arXiv, 2018.

[41] Danai Koutra, Joshua Vogelstein, and Christos Faloutsos. Deltacon: A
principled massive-graph similarity function. 04 2013.

[42] Danai Koutra, Joshua T. Vogelstein, and Christos Faloutsos. Deltacon: A
principled massive-graph similarity function, 2013.

[43] Andrzej Maćkiewicz and Waldemar Ratajczak. Principal components
analysis (pca). Computers Geosciences, 19(3):303–342, 1993.

[44] Alaa Tharwat, Tarek Gaber, Abdelhameed Ibrahim, and Aboul Ella Hassa-
nien. Linear discriminant analysis: A detailed tutorial. Ai Communications,
30:169–190„ 05 2017.

[45] Thomas N. Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. In 5th International Conference on Lear-
ning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017.

[46] Gentle Introduction to Graph Neural Networks and Graph Convolutional
Networks. https://perfectial.com/blog/graph-neural-networks-
and-graph-convolutional-networks/. Accessed 15 Feb 2022.

https://perfectial.com/blog/graph-neural-networks-and-graph-convolutional-networks/
https://perfectial.com/blog/graph-neural-networks-and-graph-convolutional-networks/

74 Bibliografia

[47] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res., 15(1):1929–1958, jan 2014.

[48] Graph Attention Networks. https://petar-v.com/GAT/. Accessed 16
Feb 2022.

[49] Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph
attention networks?, 2022.

[50] Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den
Berg, Ivan Titov, and Max Welling. Modeling relational data with graph
convolutional networks. In Aldo Gangemi, Roberto Navigli, Maria-Esther
Vidal, Pascal Hitzler, Raphaël Troncy, Laura Hollink, Anna Tordai, and
Mehwish Alam, editors, The Semantic Web, pages 593–607, Cham, 2018.
Springer International Publishing.

[51] Liyu Gong and Qiang Cheng. Exploiting edge features for graph neural
networks. pages 9203–9211, 06 2019.

[52] Zhengdao Chen, Lisha Li, and Joan Bruna. Supervised community de-
tection with line graph neural networks. In International Conference on
Learning Representations, 2019.

[53] Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and
Peter Szolovits. What disease does this patient have? a large-scale open
domain question answering dataset from medical exams. arXiv preprint
arXiv:2009.13081, 2020.

[54] Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and
Peter Szolovits. What disease does this patient have? a large-scale open
domain question answering dataset from medical exams. Applied Sciences,
11(14), 2021.

[55] Olivier Bodenreider. The unified medical language system (umls): Inte-
grating biomedical terminology. Nucleic acids research, 32:D267–70, 02
2004.

[56] David Wishart, Yannick Djoumbou, An Chi Guo, Elvis Lo, Ana Marcu,
Jason Grant, Tanvir Sajed, Daniel Johnson, Carin Li, Zinat Sayeeda,
Nazanin Assempour, Ithayavani Iynkkaran, Yifeng Liu, Adam Maciejewski,
Nicola Gale, Alex Wilson, Lucy Chin, Ryan Cummings, Diana Le, and
Michael Wilson. Drugbank 5.0: A major update to the drugbank database
for 2018. Nucleic acids research, 46, 11 2017.

https://petar-v.com/GAT/

Bibliografia 75

[57] BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext. https://hu
ggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abs
tract-fulltext. Accessed 20 Apr 2022.

[58] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019.

[59] PyTorch Geometric. https://pytorch-geometric.readthedocs.io/e
n/latest/. Accessed 01 Apr 2022.

[60] Deep Graph Library. https://www.dgl.ai. Accessed 12 Apr 2022.

[61] The Dying ReLU Problem, Clearly Explained. https://towardsdatasci
ence.com/the-dying-relu-problem-clearly-explained-42d0c54e0d
24. Accessed 18 Mar 2022.

https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
https://pytorch-geometric.readthedocs.io/en/latest/
https://pytorch-geometric.readthedocs.io/en/latest/
https://www.dgl.ai
https://towardsdatascience.com/the-dying-relu-problem-clearly-explained-42d0c54e0d24
https://towardsdatascience.com/the-dying-relu-problem-clearly-explained-42d0c54e0d24
https://towardsdatascience.com/the-dying-relu-problem-clearly-explained-42d0c54e0d24

	Background on Graph Neural Networks
	Overview
	Motivation
	History

	Main models
	GCN
	RGCN
	GAT
	GATv2

	Reference Architectures
	Edge-Featured Graph Attention Network (EGAT)
	Introduction
	EGAT model
	Results obtained by the original model

	QA-GNN
	QA-GNN architecture
	Joint graph representation
	Relevance scoring
	GNN architecture
	Results obtained by the original model

	Contributions
	Proposed design
	Dataset preparation
	Reverse graph creation
	Relation embeddings creation

	EGAT variant with graph transformation (EGATv2)
	Training
	Dataset
	Knowledge graphs
	Implementation and training details

	Results
	Ablations

	Implementation
	Preliminary Technical Choices
	GAT
	PyTorch
	DGL

	GATv2
	RGCN
	EGAT
	PyTorch
	PyTorch Geometric

	Dataset preparation
	Creation of the reversed graph
	Creation of relation embeddings

	Server commands

	Conclusions and Future Challenges
	Ringraziamenti
	Ringraziamenti
	Bibliografia

