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Abstract

The SARS-CoV-2 pandemic has galvanized the interest of the scientific com-
munity. Particular interest has been posed on methodologies apt at predicting
the trend of the epidemiological curve, i.e. the daily number of infected in-
dividuals in the population. In this work, we argue for a model capable of
producing intervention plans focused on counteracting the negative effects of
an outbreak, with real applications on the ongoing pandemic. To do so, we re-
lied on the use of Machine Learning models and Combinatorial Optimization
approaches.
The project entails the development of a new predictive model capable of fore-
casting the number of infected individuals depending on non-pharmaceutical
interventions. The development of the model required the use of state-of-the-
art techniques, which relied on prior knowledge injection to guide the training
process. The model is then used to boost a combinatorial process effectively
producing the intervention plan. The ultimate result is a working prototype of
a Decision Support System capable of assisting policy-makers during a virus
outbreak.



Introduction

The SARS-CoV-2 (also known as COVID-19) virus was firstly identified in
late 2019 in Wuhan, China: the resulting outbreak quickly faced a worldwide
spread, becoming a pandemic and affecting people all across the globe. Out-
side of the Asian continent, the first country to encounter severe issues was
Italy: the first wave started in late February, quickly leading to a major health
emergency. Authorities quickly reacted by enforcing a set of containment
measures, including social distancing, face mask-wearing and a generalised
lockdown. However, clear intervention plans required months to be investi-
gated, evaluated and adopted, meanwhile leaving room for week-by-week —
if not day-by-day — decisions. This situation highlighted the need for effec-
tive methods to assist policy-makers in such unprecedented scenarios. In the
context of an emerging infectious disease outbreak, a major role is played by
the ability to forecast the trend of the epidemic in order to determine its socio-
economical impact on the population and to plan effective control policies
aimed at limiting its adverse effects. In this work, we precisely address these
tasks through the development of a predictive and prescriptive system with
the purpose of providing both accurate predictions of the epidemic evolution
and effective policies to assist policy-makers in the complex task of coun-
teracting the negative impacts on society. We focus on Non-Pharmaceutical-
Interventions (NPIs), namely actions andmeasures that can be taken by people
and enforced by authorities to help the spread of infectious diseases — other
than vaccines and medicines.

The recent successes of Machine Learning (ML) and Deep Learning (DL)
has already promoted several research works to investigate the application of
ML methods within the field of predictive epidemiology. However, prescrip-
tive analytics often remains a major concern, given the complex relationships
between the containment measures and the outbreak evolution.

To address the predictive task, we make use of knowledge injection to
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enrich the typical data-driven approach of ML models with model-driven in-
formation, namely domain-specific background theories. In particular, we ex-
ploit the Universal Differential Equations approach introduced in [16], which
enables an integration of universal approximators such as MLmodels into dif-
ferential equations. Regarding the prescriptive task, we explore the Empirical
Decision Model Learning (EML) framework introduced in [13], which com-
bines ML and Combinatorial Optimization techniques. Specifically, the ap-
proach differentiates from traditional techniques — often referred to as black-
box optimization — since it introduces the encoding of a formal representa-
tion of the ML predictive model into a prescriptive optimization process. As
opposed to ”generate and test” methods, this approach allows providing the
prescriptor with insights about the predictive model, boosting the optimization
process due to a dynamic reduction of the search space during execution. As
a result, it brings benefits in terms of robustness, accuracy and computational
times with respect to traditional black-box optimization.

Recent work in predictive and prescriptive epidemiology has been encour-
aged by the insurgency of the COVID-19 pandemic, which promoted several
research articles [15] [14] [11]. To the best of our knowledge, however, this
is the first application of both Universal Differential Equations and Empirical
Decision Model Learning respectively to predictive and prescriptive epidemi-
ology.



Chapter 1

Problem formulation

As already mentioned, the aim of this work is the development of an effective
Decision Support System (DSS) designed to recommend the best political in-
terventions to assist policy-makers within an epidemic scenario. In partic-
ular, we focus on Non-Pharmaceutical-Interventions (NPIs) and we provide
a real-world case application by employing publicly available data regarding
the SARS-CoV-2 pandemic diffusion in Italy.

1.1 Outline

Generally speaking, such a task could be addressed in a Combinatorial Op-
timization fashion, provided that the relationship between the interventions
and the epidemiological curve is known and expressible in a mathematical
form: the task would amount to formalizing the problem into a constraint
modelling language exploiting Constrained Programming (CP), Satisfaction
(SAT) or SAT-Modulo Theories (SMT), and deploying solvers to find feasible
solutions. However, a formal definition of said relationship is hard to provide,
because of both the complex nature of the underlying interactions between the
variables and the high variability in the spread of epidemics. A common ap-
proach to the task involves its decoupling into two sub-problems, namely a
predictive and a prescriptive problem. The former amounts to building a pre-
dictor to effectively model a relationship between two variables: in our case,
we strive to assess how interventions affect the epidemiological curve (see
Chapter 3). The latter aims at exploiting the resulting information to build a
prescriptor, which determines the best possible interventions apt at obtain-
ing the desired outcome, for instance, the minimization of the said curve (see
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Chapter 4). As already mentioned, the second component can be modelled in
a Combinatorial Optimization fashion, while the first one is more challeng-
ing. A well-established practise involves employing a simulator to forecast
the evolution of the target variables depending on input ones, which however
allows for a poor exploration of the input space. Another viable approach is
to encode the relationship through the deployment of Machine Learning (ML)
and Deep Learning (DL) techniques — for example by means of an Artificial
Neural Network (ANN) mapping NPIs into the number of infected people.

1.2 Integration

Following the existing literature, the integration of a DL predictive component
into an Optimization prescriptive problem can mainly follow two techniques
[1].

Black-BoxOptimization A first simple approach is the use of the DLmodel
as a predictor whose internal structure is not known (a black-box): although
advantages typically include a speedup in the optimization process due to the
relatively scarce computational complexity, the lack of structural knowledge
of the DLmodel can lead to inefficient exploration of the input space, since the
optimization solver has no (direct) access to first- and second-order derivatives
of the predictor.

Model Embedding A more advanced approach involves the explicit em-
bedding of the DLmodel into the optimization process in the form of variables
and constraints encoding the neurons of the network along with their interac-
tions. Introduced by [13] as Empirical Decision Model Learning (EML), this
framework has the advantage of providing helpful insights to the optimization
process, allowing it to perform a guided exploration of the input space. How-
ever, limitations include the restriction of DL model to Feed-Forward Neural
Networks— thus excluding Recurrent Neural Networks (RNNs), for example
— and higher computational costs and times when it comes to encoding large
DNNs.
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1.3 The UODE framework

Employing domain-specific knowledge to guide the learning phase of the pre-
dictor can provide great benefits to DL models both in terms of accuracy and
explainability [2] [17]. Universal Ordinary Differential Equations (UODEs)
[16] can enable this hybrid approach allowing ODEs to incorporate a Uni-
versal approximator, i.e. a parameterized object capable of representing any
possible function in some parameter size limit [16] — for example a Neural
Network. Such an object can be formalized as follows:

d

dt
y(t) = f(y, t, U(y, t)) (1.1)

where the first-order derivative of y, specified by the function f , explicitly
depends on the approximator U(y, t). In other words, this hybrid framework
combinesmodel-driven and data-driven approaches, allowing differential equa-
tions to include learnable components, which provides a twofold advantage.
On the one hand, a dynamic model of the system can be exploited to make
use of domain-specific knowledge, thus contributing to interpretability and
(hopefully) accuracy. On the other hand, certain terms of the model do not
need to be explicitly modelled by an expert in an analytical fashion, which
can be particularly helpful in case of complex real-world interactions. As a
consequence, this approach allows learning non-measurable model parame-
ters — for which historical data is not available — addressing the key issue
of parameters tuning, which is typically critical when dealing with parametric
models. Training a Neural Network in this framework is performed as fol-
lows. Learning targets (y) are retrieved from historical data, while predictions
are obtained by inserting the network outputs into a numerical integration of
the ODE: regression loss functions such as the Mean Squared Error can be
employed to perform the backward pass.

However, the very formulation of the technique raises a possible draw-
back. As just mentioned, learning targets do not correspond to the actual
model’s predictions — except for the trivial case f(y, t, U(y, t)) = U(y, t).
Accordingly, training will promote the network’s predictions towards the best
fitting curve independently of the correctness of the parameters. In other
words, this kind of integration does not explicitly provide the network with
prior knowledge about the nature of the underlying physical phenomenon,
thus possibly resulting in unrealistic deviations of the predicted parameters
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from the feasible ones. In this context, a critical role is played by the accuracy
of the numerical approximation method: for instance, when employing ex-
plicit Runge-Kutta iterative methods, the accuracy of the approximation can
be enhanced by relying on higher-order instances. Besides, the proper use of
regularization throughout the training phase can help mitigate these effects
through the injection of semantic constraints.



Chapter 2

Related Works

2.1 Epidemiological Models

A major issue in the case of epidemics is the availability of trustworthy pre-
dictive systems that can be successfully deployed to forecast the spreading dy-
namics of the virus. In this regard, a central point within the field of epidemi-
ology is the study of epidemiological models. Approaches include Mathemat-
ical models, Complex network models, (more recently) Agent–based models
and Deep Learning–based models [5] [1].

2.1.1 Mathematical models

Mathematical models of epidemics are the earliest methods used to formulate
epidemic spread, and they are usually classified into two categories: deter-
ministic epidemic models and stochastic epidemic models.

Compartmental models are among the most effective methods used to de-
scribe the spread of infectious diseases. In particular, they rely on parti-
tioning the population into categories called compartments, the interactions
among which are modelled as differential equations and describe the popu-
lation flow from one compartment to another. There are several instances
of this approach differing in the partitioning of the population as well as in
the equations governing the flow across compartments, named after the com-
partments they introduce. A further distinction can be made between deter-
ministic and stochastic compartmental models. The main characteristic of the
former kind is that, given a certain initial state for the variables, along with
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the parameter values, the evolution of the variables is fully determined by the
differential equations used to describe the model. On the contrary, the latter
kind is characterized by the deployment of probabilities (e.g. of infection as
a consequence of a contact): as a result, the behaviour of the system cannot
be exactly determined in advance, rather can be only observed through sim-
ulations. Stochastic processes, such as Markov Chains and the Monte Carlo
method, are usually deployed to build stochastic epidemic models in order
to represent uncertainty or randomness in epidemic models. This approach
typically involves the introduction of another parameter, namely the infection
probability within a contact between a susceptible individual and an infectious
individual. As an example, the Reed-Frost model — which is the most widely
used stochastic epidemic model — assumes that an infection event in contact
between two individuals can be modelled as a binomial stochastic process.

Strengths of mathematical models of epidemics include the capability to
perform a large-scale theoretical analysis of epidemic diffusions, such as the
epidemic threshold and final epidemic size.

However, mathematical models rely on some assumptions and approxi-
mations that limit their deployment, in particular precluding small-scale and
detailed insights on the epidemic. For instance, the determining factor of an
epidemic is human behaviour, since the spread is ultimately conveyed through
human contact. Unfortunately, human behaviour is characterized by high vari-
ance both in space and time, meaning that people behave both variously— i.e.
differently with respect to one another— and variably— i.e. in different ways
in the course of the epidemic. Mathematical models have troubles with this
kind of detailed representation due to several factors: the small set of variables
that are included in the models limit their complexity; variables parameterized
with average quantities and mean values, such as average infection rate and
average recovery rate, cannot be used to describe the heterogeneous nature
of epidemic spread; the assumptions of homogeneous and well-mixed popu-
lation and of full connection — i.e. that all individuals make a contact with
each other in a time step — fail to represent the individual human behaviour.

2.1.2 Complex networks models

Complex networks can be used to model epidemics, with nodes representing
individuals and links representing interactions among individuals. They can
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be classified into two categories: spreading dynamics in complex networks
and numerical simulations of epidemics in complex networks.

Models of spreading dynamics divide individuals into different groups ac-
cording to their health states, as in compartmental models. In homogeneous
networks, the infectivity of infectious nodes is a function of average node de-
gree, while nodes are further partitioned according to degrees in heterogeneous
networks.

Numerical simulations of epidemics usually integrate with the Reed-Frost
model and use individual–based models to represent contact patterns between
individuals and infection probability on links.

Compared to mathematical models, complex networks can provide more
detailed representations, since they allow to represent heterogeneous popula-
tion structure and interaction patterns among individuals, for instance through
node degrees and edge weights.

However, the diversified nature of human behaviour and interactions result
in difficulties for complex networks, especially when it comes to modelling
daily activities, mobility, ages, and occupations of individuals. A possible
improvement in this direction can be achieved by extending the static network
topology with the temporal dimension, in order to allow the representation of
dynamic patterns.

2.1.3 Agent–based models

Agent–based modelling is a promising computational approach that allows a
detailed depiction of the reality, since it provides heterogeneity in individ-
ual attributes and behaviours, incorporating the stochastic nature of epidemic
spread. The previously discussed techniques can be combined in order to take
advantage of the corresponding strengths: complex networks can be exploited
to represent agent mobility patterns and contact patterns, while mathematical
methods can be used to describe agent behaviours, such as stochastic pro-
cesses.

However, the higher resolution of agent–based models comes at the cost
of data availability and computational complexity. Moreover, data related to
human behaviour is typically difficult to collect and formalize into agent al-
gorithms.
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2.1.4 Deep Learning–based models

The recent success of Machine Learning (ML) and Deep Learning (DL) has
encouraged the development of epidemic models based on such techniques.
In particular, DL typical advantages include the relatively simple modelling
phase, due to the ability of Deep Neural Networks (DNNs) to easily approx-
imate any given function without any prior knowledge on the physical phe-
nomenon. However, DL–based methods suffer several drawbacks, including
the need for large amounts of data and a general lack of explainability.

Traditional approaches to predictive epidemiology includeRecurrent Neu-
ral Networks (RNNs) and Convolutional Neural Networks (CNNs). RNNs
were repeatedly proven to work well on sequential data, becoming the stan-
dard neural model of choice when it comes to time series forecasting, finding
successful applications in the field of predictive epidemiology as well [1].
On the other hand, CNNs are especially well known due to their strengths in
handling spatial proximity correlations, which can be translated to temporal
correlations in the case of sequential temporal data [1].

Composed approaches aim at performance gains by combining the ad-
vantages of multiple traditional DL methods.

Hybrid approaches aim at improving the interpretability and accuracy
of the models by adopting domain-specific techniques to guide the learning
process. A recent trend in predictive epidemiology is the exploitation of com-
partmental models (see Section 2.1.1) as domain-specific knowledge to rely
upon.

2.2 Decision-Focused Learning

Another critical task within predictive epidemiology consists in developing
effective models capable of determining the impact of containment measures
on the virus spread.Thus, determining the actual relationship between the in-
terventions and the evolution of the epidemiological curve is a key predictive
issue, that can be addressed through DL. A common approach going under
the name of ”Predict, then Optimize” basically relies on the quite intuitive as-
sumption that — within an optimization process — the higher the accuracy
of the predictive component, the better the results achieved by the prescrip-
tive one. As first pointed out in [4], however, the criteria used to train ML
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models frequently differ from the ones eventually employed to assess them,
especially when they are deployed as components of larger processes, possibly
resulting in an overestimation of the effective performance of the predictive
model within the process. Accordingly, the authors propose a form of end-
to-end approach through the deployment of a proper loss function, aiming
at validating the predictive model directly on the ultimate task. Such work
paved the way to the entire field of Decision-Focused Learning, including
works in which ML models are directly trained in conjunction with the opti-
mization algorithm [18]. Following the literature, DL approaches to address
the predictive task include Surrogate Models, Recurrent Neural Networks
and Knowledge Injection.

SurrogateModels. Whenever supervised data is not available, and yet local
interactions between the variables can be described — e.g. by a simulator
— surrogate models represent an effective way to develop a predictive DL
model. Specifically, a Feed-Forward Neural Network can be trained to learn
the mapping between the variables by firstly sampling in the input space and
then running the simulator on the input samples to obtain the learning targets.
Drawbacks of this type of model include computational efficiency and bias
injection.

(Recurrent) Neural Networks. Whenever supervised data is available, the
problem could be directly tackled via DL. As already mentioned in 2.1.4,
RNNs are very well-known to work well on sequential data. Long-Short Term
Memory Networks (LSTM) and Gated Recurrent Unit (GRU) are especially
suitable for such a task due to their typical capability to capture temporal pat-
terns and develop long-term memory.

Knowledge Injection. Another viable alternative in the presence of super-
vised data is the exploitation of a mathematical model that frames historical
data in a background theory. The idea underlying this approach is to guide
the training phase with some form of prior knowledge on the phenomenon.
Specifically, the Universal Differential Equations framework introduced in
[16] can be exploited in order to effectively estimate the parameters of differ-
ential equations via DL from historical data. As already discussed in Section
2.1, compartmental models are an effective way to describe the spread of a
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virus in a mathematical framework through parametric differential equations.
They can bring great benefits to Deep Learning models in terms of explain-
ability, thanks to the introduction of a form of causal knowledge on the under-
lyingmechanisms of the epidemics. However, they are also prone to excessive
approximations, since they provide a simplified description of complex phe-
nomena, which are often driven by several interconnected causes.



Chapter 3

Deep Learning for epidemic
forecasting

This chapter aims to address the predictive task of the decision system, namely
to build a DL predictor mapping the NPIs in the epidemiological curve. In-
stead of approaching the task in a traditional way, i.e. trying to directlymap the
NPIs in the number of infected people, we explore a form of neuro-symbolic
integration. Specifically, we are going to exploit the compartmental SIRmodel
as a mathematical background theory to frame the epidemic spread and the
UODE framework as a learning paradigm (see Section 1.3). The underlying
idea is to combine formal and implicit knowledge: the former can be achieved
by building a deterministic, parametric model of the epidemic based on differ-
ential equations, so as to be able to express the spread of the epidemic through
certain parameters. The latter amounts to learning a relationship between the
NPIs and said parameters, which can be accomplished through the UODE
framework by employing a DNN as approximator: in fact, ANNs are a suit-
able system for implementing the approximator, due to their typical capabil-
ity to learn high-dimensional complex mappings. We should emphasize here
that our design choices are constrained from the requirements of the model
needed to approach the prescriptive task: for instance, RNNs are precluded
from EML-based methods, since the encoding of the network would result
into very complex optimization problems. From an implementation point of
view, this task can be accomplished in two ways, both explored in the fol-
lowing sections. In short, the first one relies on two separate models to firstly
learn the parameters of the SIRmodel from the epidemiological curve and then
map the NPIs in such parameters, while the second one learns the relationship
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NPIs-infected in an end-to-end fashion.

3.1 SIR-NPI

In this section we aim to approach the task employing two separate models.
We develop a first neural network to map the epidemiological curve into the
parameters of the SIRmodel: the resulting estimation can be regarded as learn-
ing target for a second neural network with the aim of mapping the NPIs into
such parameters. Aswe discussed in chapter 2, compartmentalmodels are an
effective method, especially when applied to predictive epidemiology. In par-
ticular, the simplest one is the SIR model, which is nonetheless very popular
since it provides a basic theory background, still offering good local approxi-
mations of the epidemic progression.

3.1.1 Modelling

The deterministic SIRmodelwithout vital dynamics— i.e. in which birth and
death rates are neglected—divides the populationN into three compartments:
S for Susceptible (healthy), I for Infectious (diseased and infective) and R

for Recovered (either healed and immunized or deceased): since demography
is not taken into account, a key property of this model is the constant total
populationN = S+I+R. The following set of ordinary differential equations
(ODEs) describes the flow of the population across the compartments:



d

dt
S(t) = −βS(t)

N

d

dt
I(t) = βI(t)S(t)

N
− γI(t)

d

dt
R(t) = γI(t)

(3.1)

where β is the infection rate — defined as the average number of contacts
per person per time, multiplied by the probability of disease transmission in a
contact between a susceptible and an infectious subject — and γ is the recov-
ery rate— defined as the inverse of the recovery period, i.e. the time that an
individual stays in the I compartment (before moving to R). These parame-
ters allow to compute the basic reproduction number R0 = β/γ , quantifying
the average new cases generated by an infected individual in the population
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(also referred to as secondary infections).
In the most general formulation, both parameters of the SIR model are

time-dependent, but we can apply a simplification by arguing that γ tends to
keep a roughly constant value during an epidemic — since the average recov-
ery period is affected only by clinical and treatment issues — which eventu-
ally become stable whenever a practice is established — rather than depend-
ing on possibly variable external factors. Still, β is highly variable during
an epidemic, since it does not depend only on biological characteristics of
the epidemic, rather it is also influenced by continuously floating variables
such as environmental conditions, containment measures, and ultimately peo-
ple behaviour (see Section 2.1.1). Accordingly, we can assign a fixed value
to the former — which can be easily retrieved by historical data and earlier
estimates — while we express the latter as a time-dependent variable β (t).
Taking into account that data generically consist of daily recordings, we will
apply discretization and more appropriately refer to it as a vector of param-
eters β = (β0, ..., βT −1) — one for each day t where βt ≡ β (t) with T the
total number of days covered by available data.

3.1.2 Estimation

The above formulation allows us to formally define the β estimation problem,
i.e. that of finding the optimal parameters β to fit the historical SIR curves1,
given the initial state and a fixed value for γ:

β∗ = argmin
β

{∑
y

∑
t

L(ŷt, yt,β(t))
∣∣∣∣∣ y(0) = ŷ0

}
(3.2)

where y ranges over S, I and R and follows Equations 3.1, and L is a loss
function to measure the error of approximating ŷ with y. Estimating the β

parameters will give us access to target data to build a DNN mapping their
relationship with the NPIs. The optimal parameters can be obtained through a
shallow ANN (Artificial Neural Network): the network receives as input the
series of historical data relative to the three compartments, while its output
is precisely the vector β, randomly initialized at the beginning. The network
thus consists of a single layer formed by as many neurons as the days on the

1Specifically the I compartment, since it represents the most critical variable, causing
significant social and economic impact.
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historical series.

Training

Training consists in minimizing the prediction error — represented by an ob-
jective function that we can variously choose— by repeatedly performing two
steps. The forward phase consists of simulating the evolution of the SIRmodel
compartments employing a numerical iterative method— specifically the Eu-
ler’s method— on Equations 3.1. Due to the inaccuracy of such simple meth-
ods, higher order methods such as the Runge-Kutta 4th-order method (RK4)
were tested as well, leading however to comparable results whilst significantly
increasing training time due to the higher computational time required to per-
form the simulation. Nevertheless, the accuracy of the Euler method can be
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Numerical approximation with Euler method 
 at varying increment (K) 

 of the ODE y'=y with initial value y(0)=1
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K=50

Figure 3.1: In reference to the example ODE y′ = y with initial condition y(0) = 1,
the graph reports the exact solution y = ex (black curve) and numerical approxima-
tions obtained employing the Euler Method with different increments.

enhanced by employing a sub-unitarian increment h, accordingly performing
K = 1

h
simulation steps (see Figure 3.1). The backward phase consists in

updating the network weights by applying gradient descent on the objective
function, initially defined as a simple Mean Squared Error (MSE) on the SIR

compartments:

L (β) = 1
3

∑
X∈{S,I,R}

1
T

T −1∑
t=0

(
Xt − X̂t (β)

)2
(3.3)
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where T is the number of recorded days, i.e. the length of the historical time
series. However, such a simple formulation does not take two issues into ac-
count. On the one hand, the I compartment is typically both the least relevant
in terms of numerical proportions and the most relevant in terms of physical
interest. In other words, while it tends to provide the smallest contribution to
the MSE, it is also the compartment of highest interest, since it provides the
major proxy of the virus spread. On the other hand, the parameterβ represents
a physical phenomenon, namely the infectivity rate of the epidemic: as such,
it is not realistic to expect large and quick fluctuations from its trend. We can
therefore revise the objective function accordingly:

L (β) = MSE(Î (β)) + ϵ
(
MSE(Ŝ (β)) + MSE(R̂ (β))

)
+ λΘβ

with

Θβ = 1
T − 1

T −1∑
t=1

(βt+1 − βt)2

(3.4)

where we introduced two hyperparameters: ϵ and λ. The former can be tuned
to adjust the contribution of the S and R compartments to the MSE: since we
are mainly interested in the I compartment, it should take values 0 ≤ ϵ < 1.
The latter weights the relevance of the term Θβ with respect to the whole
objective function: in particular, λΘβ acts as a regularization term, as it
helps enforcing smoothness on β by penalizing abrupt variations.

Regularization , however, is a possible source of issues: semantical con-
straints introduce a model-driven component into a data-driven approach, thus
typically sacrificing fitting accuracy in order to complywith desired behaviours.
Accordingly, the scale of the regularization term — namely the parameter λ

used to control its relevance with respect to the whole loss function — plays a
critical role: a proper trade-off allows to reach both high quality fitting of the
epidemiological curve and a smooth trend for the estimated parameters. We
therefore decided to exploit a recent approach introduced in [7] to perform
optimization over λ, which relieves us from the burden of tuning the parame-
ter, allows it to be learned and thus automatically provides us with an optimal
solution. Formally, the presence of a regularization term (see Equation 3.4)
in the optimization problem of Equation 3.2 amounts to the minimization of
a Lagrangian Relaxation of the original loss function. As pointed out in the
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reference paper [7], the relaxation is by construction a lower bound for the
original problem: L(LRλ) ≤ L(O), where O is the optimal solution to the
original problem, LRλ is the optimal solution to the relaxed form and λ is
a (vector of) Lagrangian multiplier(s). The best multipliers can be found by
obtaining the strongest Lagrangian Relaxation through the Lagrangian Dual
Framework:

LD = argmax
λi≥0

f (LRλ) . (3.5)

From an implementation point of view, this can be easily achieved in an it-
erative way: at each step k, firstly usual training is performed, seeking for a
minimization of the loss function with respect to the training parameters β;
then, the Lagrangian multiplier λk is updated through Gradient Ascent on the
same loss function, now seeking for its maximization.

3.1.3 Prediction

The purpose of the second step is to address the β prediction problem, namely
creating a DL predictor to map the NPIs into β. In this context we cannot
rely on any theoretical model due to the peculiarity of the problem: NPI is a
broad term and can refer to a variety of interventions that can be undertaken
in different areas. Accordingly, we deploy a simple Multi-Layer Perceptron
(MLP), experimenting with different combinations of hyperparameters such
as the learning rate, the number of epochs, hidden layers and neurons per layer.

3.2 End-to-End

Since the UODE framework allows to integrate arbitrary approximators in
ODEs (see Section 1.3), we can develop an end-to-end approach by building a
single neural network and directly providing NPIs as input for the SIR model
parameters. Within this approach, we explored the provision of the initial
state of the epidemic as input to the model, represented by the (normalized)
number of infected: the underlying idea is to provide the model with a proxy
of the epidemic status at time t0, and requiring it to output the state at time
t1. It is worth to point out that the development of a predictive model to time-
series involves a common pitfall, which is straightforward in our example: the
newtork takes as input It and is supposed to output It+1. Actually, as common
to all non-independent time-series, a very good prediction for It+1 would be
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precisely It, namely simply requiring the network to approximate the identity
function: the number of infected of each day is closely related to that of the
next one. Hence, the deployment of the UODE framework plays a key role in
this setup: the number of infected It is indeed given as input alongside NPIt,
but the actual network predictions represent the βt+1 parameters, which are
later employed to numerically approximate the output It+1 (see below). This
represents a great benefit of this approach, since it allows us to neglect the
possibility to learn trivial mappings. Otherwise, we should have explicitly
addressed this issue, for example by enforcing the output to exhibit a minimum
deviation from the input through regularization terms.

3.2.1 Modelling

We can accordingly rewrite Equations 3.1 to emphasize this paradigm shift:


d

dt
S(t) = −β(NPI(t))S(t)

N

d

dt
I(t) = β(NPI(t))I(t)S(t)

N
− γI(t)

d

dt
R(t) = γI(t)

(3.6)

where we expressed the implicit dependency of β on time — which allows us
to identify β with the universal approximator U(y, t) — through the explicit
dependency on the NPIs, which represents the actual input to the network. The
peculiarity of this approach is to directly map the NPIs into the epidemiolog-
ical curve, exploiting the SIR model as a theoretical framework but without
striving to explicitly fit the real β parameters. Although this method has the
advantage of assessing the quality of predictions directly on the degree of fit-
ting of the epidemiological curve, a potential drawback relies in the already
mentioned adjustment that an inaccurate numerical approximation algorithm
such as the Euler method tends to produce in the parameters. However, as
long as a good fit is achieved, we could reasonably neglect the correctness
of the estimated β parameters, considering that our actual goal is to correctly
forecast the evolution of the epidemic. Besides, such an implementation lever-
ages a DNNmapping NPIs into β parameters, which allows us to compare the
results with the predictive model described in Section 3.1.3.
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3.2.2 Training

The actual implementation of the presented model can be done by wrapping
the neural network as a layer of a bigger model. Specifically, the layer consists
of an MLP taking both It and NPIt as input and giving a prediction of βt+1 as
output: since the output is supposed to be non-negative, an exponential acti-
vation function was used for the output layer, while the ReLU was employed
within the hidden ones. The forward phase involves getting said predictions
and employing them together with the Euler method in order to obtain the
actual epidemiological curve as described by the SIR compartments. Accord-
ingly, the backward phase consists in performing gradient descent on the loss
function, namely the MSE, computed on such values. Regarding the predic-
tor, tunable hyperparameters include the number of hidden layers and neurons
per layer, while for the whole model we also include the number of training
epochs and simulation steps (K).

Moreover, this kind of end-to-end approach lends itself to a further paradigm
shift, suggested by the actual nature of data: specifically, measures taken by
the government are typically revised not more often than weekly. This par-
ticular layout suggests the reduction of input data, by providing weekly rather
than daily NPIs: accordingly, we explored a different model setting by itera-
tively performing the prediction and simulation steps before backpropagating.
In other words, βt+1 is predicted 7 times, employing each time weekly NPIs
alongside an updating It as input: the resulting estimate for βt+1 is then used
to produce a numerical approximation of It+1, which serves as input for the
following iteration.



Chapter 4

Optimal Policies for Epidemic
Control

The prescriptive task amounts to determining the best possible interventions to
carry out in order to achieve a given desired outcome of the epidemic. In other
words, we can regard the NPIs as decision variables within a Combinatorial
Optimization (see Chapter 1) problem and choose a certain objective to repre-
sent our goal— for instance, the minimization of the number of infected. This
approach is enabled by the work described in Chapter 3, since the availability
of a predictor able to effectively forecast the evolution of the epidemiolog-
ical curve based on given NPIs allows for the assessment of a deterministic
relationship between decision variables and the objective function.

We can formally describe the problem as follows:

x∗ = argmin
x

f(yT +1, x)

s.t. h(x) = yt+1 ∀i ∈ 1, ..., T

πt(xt) ∀i ∈ 1, ..., T

xt ∈ D ∀i ∈ 1, ..., T

x ∈ F

(4.1)

where T represents the temporal interval over which we are considering
the decision process (i.e., the temporal span of the intervention plan). The
variable yT +1 represents a proxy for the evolution of the epidemic (e.g., the
rate of infected people in the population); while x = (x1, .., xT ) are the NPIs in
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time, which take value in the domain D; πt are the predicate representing the
constraints on the interventions (e.g., a reduced throughput in the production
of vaccines can be expressed as a constraint on the distribution of shots in
the population) and F is the feasible set containing all the admissible solution
for the optimization problem. Finally, the function h is the predictive model
approximating the relation NPI–infected, while f is the objective function:
due to the socio-economical costs derived by the deployment of strict NPIs, f
might involve indices relative to different aspects of the epidemic, apart from
the number of infected, such as stringency terms (measuring the restrictiveness
of the policies) or economic impact estimations.

4.1 Empirical Model Learning

An effective embedding approach (see 1.2) going under the name of Empirical
Model Learning (EML)was introduced in [13] with the goal of enabling the in-
tegration ofMLmodels within Optimization processes. As already mentioned
in 1.2, this paradigm aims at enhancing the optimization process by providing
the solver with explicit knowledge about the relationship between the input
and output variables. In the words of the authors, EML is a methodology that:
(1) learns relations between decidables and observables from data, and (2) en-
capsulates these relations into components of an optimization model, namely
objective functions or constraints. As opposed to a ”generate and test” mech-
anism, this technique has the advantage of boosting the optimization process
by providing a dynamic reduction of the input space during execution.

4.2 Modelling

The implementation of this approach requires to encode the ML predictor in a
constrained modeling language, which is enabled by EMLlib, a Python library
directly provided by the authors of the reference paper and available at [6].
The library allows the encoding of different kinds of ML models — such as
Decision Trees and Feed-Forward Neural Networks — in an internal format,
which is needed to enable an interface with supported optimization solvers.
Specifically, theMLmodel’s input variables are encoded as decision variables,
while a cost function needs to be defined in terms of the output, in order to
drive the search.
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In particular, we formalized the problem using Mixed-Integer-Linear Pro-
gramming (MILP) and deployed the CBC solver [8] to perform the search. As
required by the EML approach, input features to the ML model, i.e. the NPIs,
were encoded as decision variables, while the minimization of the output vari-
able β was chosen as objective function.

From an implementation point of view, both decision and output variables
were constrained to belong in the range [0, 1]: as described in Section , this
range ensures physical values for beta β; as for the NPIs, actual values take
integer discrete values, but we performed normalization, as common practice
when designing DL models. The solving process was wrapped into a loop to
iteratively perform the optimization process in the following way. As a first
thing, the ML model weights are loaded and the EML encoding is performed
as described above. Secondly, the SIR initial state is provided to the model,
in order to be able to create the epidemiological curve. Thirdly, the solver is
used to obtain prescriptions and resulting predictions: striving to obtain the
lowest possible value for the β parameters, the optimization process gives a
solution in the form of NPIs. These are then fed to the ML model to obtain
correspondingβ predictions, which are in turn employed to obtain SIR predic-
tions through numerical approximation, as usual. Depending on the instance
of the End-to-end model (see Section 5.2.2), the loop thus creates either daily
or weekly prescriptions aimed at minimizing the β parameters at each step,
along with the number of infected people. Keeping track of the predictions
regarding the evolution of the epidemic throughout the optimization process
allows to assess the good functioning of themodel, i.e. to establish whether the
desired minimization is achieved. It is worth pointing out a possible pitfall of
this approach: whenever the input space is not uniformly represented in train-
ing data, the ML model can behave in quite unpredictable ways, which can
lead to performance deterioration. This is likely to be the case for historical
data as well as for synthetic data, as will become clearer after the description of
the generation system. We decided to address this eventuality by constraining
the possible deviation of βt+1 with respect to βt at each optimization step: al-
though pretty rough, this approach allows to avoid edge cases in particular, for
instance prescriptions corresponding to the trivial prediction β = 0. This task
was accomplished through an hyperparameter c, corresponding to the maxi-
mum allowed deviation: formally, a constraint of the form βt+1 ≥ βt − c was
employed, which required several tests to tune the hyperparameter.



Chapter 5

Experimental results

To test the methods described in Chapters 3 and 4, several experiments were
conducted to test both the validity and the effectiveness of such methods.

Reliably assessing model performance within an epidemic scenario is a
hard challenge, mainly for two reasons. On the one hand, the amount of avail-
able data is both scarce and inconsistent — especially in the early stages of
the outbreak, when the practices still need to be established: since DL mod-
els are extremely data-hungry, this can easily lead to overfitting on currently
available data, rather than capturing the actual trend and learning the spread
evolution mechanism. Whenever we rely on a mathematical model, on the
other hand, it is hard to correctly evaluate a certain parameter configuration,
apart from hard physical boundaries: we already mentioned the risk of em-
ploying loss functions striving for curve-fitting along with numerical approx-
imation methods, namely that optimal parameters are not necessarily the most
reasonable nor likely, rather those that more accurately comply with the ex-
pected outcome (see Section 3.2.1). Despite the already discussed reasonable
possibility to neglect this problem, we would definitely prefer to address it in
order to keep the benefits from our design choices: indeed, a predictive model
using correct parameters arguably leads to results that are both more robust
and interpretable.

To mitigate and possibly overcome the just mentioned issues, we decided
to rely on synthetic data generation to establish a more solid grounding of
the performance evaluation of the model: indeed, a great variety of realistic
data — complying with the phenomenological interactions that the model is
meant to detect — is an effective indicator of its ability to capture meaningful
insights, instead of forcing parameters to adapt to historical data.
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5.1 Data

In this section, we describe experimental data that was used to test the methods
described in Chapters 3 and 4. As already mentioned, we firstly give a brief
description of publicly available data concerning a real-world case, namely
the COVID-19 global pandemic.

5.1.1 Historical data

Official data related to the COVID-19 pandemic situation in Italy is main-
tained to date by the Protezione Civile department of the Presidenza del Con-
siglio dei Ministri [3]. Among other information, it stores the daily number of
infectious (as resulting by swab testing operations), recovered and deceased
people: when paired with the records on the total population provided by Istat
[10], this information allows to fully determine the epidemiological curve, i.e.
to retrieve daily data regarding all three compartments of the SIR model.

The NPIs were collected from the OxCGRT dataset, created and main-
tained by theBlavatnik School ofGovernment of OxfordUniversity [9]. Quot-
ing from the official website, ”The Oxford Covid-19 Government Response
Tracker (OxCGRT) collects systematic information on policy measures that
governments have taken to tackle COVID-19”. Specifically, data consists of
23 indicators, divided by areas: containment and closure, economic, health
system, and vaccination policies: we focused in particular on the first group,
consisting of 13 different measures. Indicators are recorded in integer ordinal
scales of different length, such that a value of 0 represents the complete relax-
ation of the intervention, while the highest value (up to 5) represents the most
strict intervention.

Historical data regarding themetropolitan area of the city of Bologna (Italy)
provides an average recovery period from COVID-19 of 17 days, thus result-
ing in γ = 1/17, which we decided to employ within the simulations.

5.1.2 Synthetic data

Synthetic data was obtained by starting with the generation of β as an in-
dependent variable, from which both the SIR and the NPI values were then
obtained.
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Example β data
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Figure 5.1: A few examples of synthetic data representing the β parameters.

β values were produced according to the following observations and speci-
fications. Firstly, the distributions for β should be realistic, starting with the
domain: since the infectivity rate is a probability, physical values should com-
ply with 0 < β < 1. However, historical values for R0 range in the interval
[1.9, 2.6]with a 95%C.I. [12]: hence, feasible values forβ should accordingly
belong in the range [0.11, 0.15]. Secondly, the distributions for β should be
diverse, meaning that we would like to account for as many different evolu-
tion scenarios as possible, for instance: different starting points (β0) indicate
different stages at which the pandemic was detected (higher values indicate a
later detection, lower values an earlier detection); on the other hand, a sort of
periodicity (as opposed to monotonicity) indicates the occurrence of different
infection waves. To account for these variety of possible scenarios, we gen-
erated 18 different curves combining base shapes, including Gaussian mix-
tures and sine-squared distributions, andmodifier shapes, including (inverse-)
sigmoids and (inverse-) exponentials. The latter are employed to enforce in-
creasing or decreasing trends, along with different detection stages, while the
former have the task of providing a ground realistic shape: Gaussian mixtures
help modeling random behaviours with no specific trends, and consist of the
sum of Gaussian distributions, each having a randomσ, with 1

2 < σ < 1 and a
random binary weight to randomly exclude some distributions from the sum.
Sine-squared ditributions, defined as f(x) = sin2(νx) with a random fre-
quency 0.25 < ν < 0.5, help modeling infection waves by injecting a period
in the distribution. To further enlarge the dataset, each of said 18 combina-
tions was generated in 5 differently-parameterized instances, thus resulting in
90 total distributions: some examples are reported on Figure 5.1, while a more
comprehensive overview is presented in Appendix A on Figure A.1.
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A formal definition of the modifier shapes is quite straightforward:

βσ(x, k) = 1
1 + ekx

βexp(x, k) = ekx/10
with k = ±1 (5.1)

where k is used to tune the kind of general trend, namely increasing or decreas-
ing. On the other hand, the base distributions can be described as follows:

βbase(x) =


∑T −1

t=0 wt
1

σt

√
2π

e
− 1

2

(
x−xt

σt

)2

with wt ∈ {0, 1}, σt ∈ [0, 1]

sin2(νx) with ν ∈ [0.25, 0.5]
(5.2)

where the first case represents the Gaussian mixture, namely the sum of a
Gaussian distribution for each sample t, with mean xt, weight σt and a binary
weight wt, used to randomly suppress some distributions; the second case de-
scribes the sine-squared distribution, where ν is used to vary the period fre-
quency.

Formally, the β distribution is simply obtained as the composition of base
and modifier shapes:

β(x) = βbase(x)βσ(x)βexp(x) (5.3)

Afterwards, the resulting distributions were rescaled to approximately comply
with the feasible domain for β: the actual range was slightly enlarged in order
to take into account a wider set of scenarios.

SIR variables were straightforwardly obtained from β through a numerical
approximation method — specifically, the fourth-order Runge-Kutta method
(RK4) — employing Equations 3.1, fixing N = 6 × 107 (a rough estimate for
Italy’s population) and γ = 1/17 (see Section 5.1.1) and choosing an initial
state for the SIR variables of SIR(0) = (S(0), I(0), R(0)) = (6 × 107 −
1050, 1000, 50), i.e. an epidemic in quite an early stage.

NPIs generation involved a more complex design: contrary to the SIR vari-
ables, we did not make any theoretical assumptions on the connection between
β and the NPIs. Since we need to generate data according to unknown rela-
tionships, we firstly deal with taking into account a variety of possible links
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Example NPI data
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Figure 5.2: A few examples of synthetic data representing the NPIs.

between β and the NPIs by employing several different common functions,
such as polynomials, exponentials and trigonometric functions, along with
their combinations. Examples include f(x) = x log(x) and f(x) = sin2(x).
To achieve more realistic distributions, we inject random gaussian noise into
the generation as well, to several different extents. The actual values were ob-
tained by performing a rebinning on such distributions, since real NPIs from
the OxCGRT dataset take integer values between 0 and a variable upper bound
(up to 5) (see Section 5.1.1): to obtain such a staircase distribution, we as-
signed a random number of bins between 2 and 5 to each distribution, and
then accordingly resampled the NPI to take discrete values. In the end, nor-
malization was applied in order to obtain values belonging in the range [0, 1].
Some examples are reported in Figure 5.2.

After some experiments, we increased the complexity of the hypothesized
dependency by introducing a further variable u in the generation of the NPIs,
which we produced relying on the same techniques employed for β. Accord-
ingly, the generation of the NPIs was modified to take into account multiple
independent variables rather than a single one, which we achieved in differ-
ent ways: examples include f(x, y) = x log(xy) and f(x, y) = sin(x + y).
The variable u was left unknown within the predictive phase of the first ex-
perimental setting (see Section 3.1.3), thus not being provided as target along
training. A more comprehensive overview of the employed shapes is given in
Appendix A in Figure A.2
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5.2 Results

The experimental phase was carried out by deploying models firstly on syn-
thetic data and then on real data, in several different configurations of hyper-
parameters (see Chapter 3). As already mentioned in the introduction to the
present Chapter, this approach has the purpose of providing a more solid vali-
dation of the model performance so as to more effectively estimate the quality
of the results on real data. Accordingly, we firstly present the results on the
synthetic dataset, and then move to historical data.

5.2.1 Synthetic data

In this section, we describe the results and corresponding evaluations on syn-
thetic data regarding both approaches: we firstly address the SIR-NPI ap-
proach (see Section 3.1), thenmoving to theEnd-to-End approach (see Section
3.2).

Estimation: example SIR approximations
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(b) Regularized loss function

Figure 5.3: Example of fitting results for SIR compartments employing 200, 500,
1000 training epochs.

SIR-NPI

As already discussed, this first method relies on a partitioning of the predictive
task: we firstly seek for a curve-fitting estimate of the β parameters relying
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Estimation: example β approximations
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(b) Regularized loss function

Figure 5.4: Example of fitting results for β employing 200, 500, 1000 training
epochs.

the epidemiological data, then we try to obtain a predictive mapping of the
NPIs into such parameters.

Estimation results are obtained by curve-fitting on epidemiological data
(see Section 3.1.2): an example is reported on Figures 5.3 and 5.4, respec-
tively showing results on the SIR compartments and on β for a simple Gaus-
sian mixture. Specifically, we employed the loss function as in Equation 3.4
setting ϵ = 10−3 and an unitarian Euler step size (K = 1) for the simulation,
training the network on 100-samples time series.

A first observation suggests that an increase in the training epochs pro-
vides quite significant improvements on β, though much less relevant ones
on the SIR compartments: this also allows us to corroborate our arguments
about the possibility to obtain good quality curve-fitting even in case of sen-
sible deviations of the estimated parameters from ”real” ones, likely due to
adjustments on behalf of the approximation method.

Similar results can be observed by looking at a more comprehensive re-
view of obtained results, which is reported in Appendix B in Figures B.1 and
B.2: in particular, the increase in training epochs appears to be particularly rel-
evant in the approximation of β whenever quick variations are present, which
is remarkable in sine-squared distributions. Still, approximations of the SIR
compartments are much less prone to variations, again indicating that also non
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accurate estimates for β can lead to a good fit for the epidemiological curve.
Overall result metrics are summarised in Figure 5.5, reporting the evalua-

tion of results performed through three different scores, namelyMean Squared
Error (MSE), Mean Absolute Percentage Error (MAPE) and R2-score: we fo-
cus on the β parameters and the I compartment, which are the most critical
variables.

Estimation: evaluation scores
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Figure 5.5: Scores over β parameters and the I compartment, varying on different
shapes for β.

We firstly point out the correlation between the model performances on β

and the I compartment, indicating that the better the estimation for the parame-
ters, the better the fitting of the epidemiological curve. Besides, the quality of
I predictions stays very high even when β estimates are not as precise, show-
ing that the Euler simulation can lead to accurate fitting even with non-optimal
parameters, as expected (see Sections 1.3 and 3.2.1). We observe a system-
atical, albeit not always remarkable, enhancement of the model performance
alongside the increase in the number of epochs. However, we identify some
shapes for β as more challenging: we notice how issues mainly arise in the
case of oscillations characterized by both high frequency and large amplitude.

Prediction differs from the previous task, since we are evaluating results
directly on the obtained estimates for β, rather than on the actual epidemio-
logical curve (see Section 3.1.3). This setting implies the need for separate
splits for training and testing, due to the information flow of ground truth
throughout the backward pass. Some training and test results are reported in
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Figure 5.6, with focus on β and the I compartment. By inspecting the plots,
we generally obtain good fitting results for both variables. Even in some cases
in which β is not correctly captured in its oscillations — for instance on the
3rd plot in Figure 5.6 — we notice how the I compartment reaches nonethe-
less good matching: a possible explanation for this behaviour relies in the low
absolute values for the parameters, which results in little to no variations in
the evolution of the epidemiological curve.

Prediction: β and SIR approximations
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Figure 5.6: Some prediction results for β and the I compartment on both training and
test data.

With the purpose of performance analysis, figure 5.7 reports evaluation
metrics relative to both training and test data: results regarding the β param-
eters generally comply with expectations, as the model reaches overall good
results on test data, still performing worse than on training data. Actually, the
R2 test score for β shows very bad performances on a few shapes in partic-
ular, even with some negative values, still not affecting the performance on
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the infected curve. The I compartment exhibits a more peculiar behaviour, in
particular the R2 score is generally higher for test data than for training data.

Prediction: evaluation scores
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Figure 5.7: Scores over β parameters and the I compartment, varying on different
shapes for β. MAPE results on the I compartment are nearly not visible, since they
range in the interval 10−7 ÷ 10−5.

End-to-End

In this section, we present results obtained through the End-to-End approach
described in Section 3.2: we performed awider set of experiments with respect
to the first approach, due to both the simpler setup and accordingly faster com-
putation times, and the encouraging initial results. Specifically, we performed

hyper-parameter benchmark values
β upper bound 0.12, 0.15, 0.2, 0.3

noise(%) 0, 20, 50, 100
hidden layers 16, 32, 16+16, 32+32

K 1, 5, 10

Table 5.1: The different parameters used to perform the benchmark of the End-to-
End model. The lower bound for β was set to 0.04. Values reported for hidden layers
indicate the number of neurons for each layer.

a benchmark on several different combinations for the following parameters:
the range of β, the amount of noise injected in the NPI generation, the num-
ber K of Euler increment, the number and size of hidden layers of the neural
network, alongside the usual 18 different shapes for β: values are reported in
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Table 5.1. We tested every possible combination of the parameters, namely
3456 different training runs: accordingly, we are forced to present aggregated
results.

Some test results are reported in Figure 5.8: it is immediately noticeable
how fitting results forβ are less accuratewith respect to the previous approach,
while the epidemiological curve exhibits good matches.

End-to-End: β and SIR approximations
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Figure 5.8: Some prediction results for β and the I compartment on test data.

Averaged evaluation results are presented in Figure 5.9, which reports the
usual metrics for both the β parameters and the I compartment. It is imme-
diately noticeable how the parameters achieve quite bad performances, still
not affecting a generally satisfying fit for the epidemiological curve. More
comprehensive results are reported in Appendix B in Figures B.3 and B.4,
separately aggregated by different values of K, upper bound for β and noise
ratio.
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End-to-End averaged evaluation scores
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Figure 5.9: Scores for β parameters and the I compartment, varying on different
shapes for β and averaged over all performed test runs.

Prescription

Eventually, we performed an exploration of the Empirical Model Learning
approach, employing the End-to-End model as predictive component and the
CBC solver for the optimization process (see Section 4.2).

Prescription: example NPIs prescriptions, β and SIR approximations
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Figure 5.10: Example of daily prescription and prediction results for 30 days.

Example results are reported in Figure 5.10: the grids represent the allow-
able discrete values for the NPIs. Although values for β are nearly constant,
we can appreciate a monotonic lowering of the infected people, which well
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reflects our goal. Since we have no ground truth for best interventions, we do
not provide a formal evaluation of prescripted NPIs: however, we can notice
how variations in some NPIs generally correlate with even slight variations in
the output values, i.e. of the β parameters. Constraints on β were imposed
through an hyperparameter c = 10−1 (see Section 4.2).

5.2.2 Historical data

In this section, we describe the results and corresponding evaluations on his-
torical data regarding both approaches: as already done for synthetic data, we
firstly address the SIR-NPI approach (see Section 3.1), then moving to the
End-to-End approach (see Section 3.2). Data employed to perform the exper-
iments refers to the period starting on August 8th, 2020 and ending on October
1st, 2021: the total number of days is 413, sequentially divided between train-
ing and test data with a test ratio of 20%.

Estimation and prediction: β and SIR approximations
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(a) Estimation: 500 training epochs,
different regularization learning rates
µ. The grey line represents the x-axis
β = 0, which is useful to identify
negative unfeasible results.
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(b) Prediction results: 5000 training
epochs, 2 hidden layers of size 32
with L2 regularization.

Figure 5.11: Fitting results for β and corresponding SIR compartments.
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SIR-NPI

Estimation results are reported in Figure 5.11, which shows two instances
differing in the parameter µ, i.e. the regularization learning rate used to per-
form Lagrangian Dual optimization on the λ parameter (see Section 3.1.2).
While we can observe little to no differences between the two estimates within
the epidemiological fitting curves, we can appreciate a smoother behaviour for
β relative to a stronger regularization. Moreover, it is worth pointing out how
the I compartment exhibits the most accurate approximation, due to its higher
relevance within the loss function.

Prediction was performed by employing β estimates obtained with µ =
1016. Results show significant deviations with respect to both the β parame-
ters and the epidemiological curve: Figure 5.11 shows quite noisy predictions
for the parameters and accordingly not accurate predictions for the SIR com-
partments. Actually, the main issue here appears to be the scale, since the
trend shape of all compartments closely resembles real data.

β SIR
train test train test

MSE 2.58 × 10−4 2.28 × 10−3 6.08 × 1012 2.12 × 1011
R2 0.68 −3.96 0.18 −3.06

MAPE 2.62 × 10−1 4.75 × 10−1 2.94 × 10−1 2.57 × 10−1

Table 5.2: SIR-NPI: Prediction evaluation scores for β and SIR compartments on
both training and test data.

Table 5.2 summarizes the evaluation scores for the predictive task in terms
of usual metrics. We don’t appreciate good results, especially through the
inspection of the R2 score:

End-to-End

Prediction results obtained through the End-to-End approach are reported on
Figure 5.12: to evaluate the predictions for the β parameters, we employed
the estimates obtained with the SIR-NPI model with Lagrangian Dual learning
rate µ = 1016 as target data. Both daily and weekly results are reported, in
reference to Section : in the former case, predictions are obtained through a
single simulation step, while in the latter case the simulation is performed 7
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times in a row, each time employing the updated estimated curve as input for
the next prediction step. Remarkably, daily results achieve systematic but not
overwhelming better performance, indicating that weekly predictions can be
provided with reasonable accuracy as well. The main difference with respect
to the results obtained with the SIR-NPI approach consists in the very good
evaluation scores achieved by the SIR compartments on both training and test
sets, even though the performance on β remains mostly unsatisfactory: in
particular, the model seems to exhibit a sort of regression to the mean, settling
for an average estimation of the parameters able to correctly reproduce the
epidemiological curve, rather than trying to capture its oscillations.

End-to-End: β and SIR approximations
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Figure 5.12: Daily and weekly prediction results for β and corresponding SIR com-
partments employing 500 training epochs and 2 hidden layers of size 32 with L2
regularization. Notice that training and test data are reported on different scales in
order to make the results easier to inspect.

β SIR
train test train test

MSE 8.59 × 10−4 8.04 × 10−4 1.29 × 109 4.70 × 107

R2 −0.01 −0.75 0.999 0.998
MAPE 9.58 × 10−1 2.58 × 10−1 1.12 × 10−2 7.27 × 10−3

Table 5.3: End-to-end: daily prediction evaluation scores for β and SIR compart-
ments on both training and test data.
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β SIR
train test train test

MSE 7.80 × 10−4 8.56 × 10−4 5.53 × 1010 1.62 × 109

R2 0.09 −0.97 0.98 0.92
MAPE 9.01 × 10−1 2.54 × 10−1 6.80 × 10−2 4.26 × 10−2

Table 5.4: End-to-end: weekly prediction evaluation scores for β and SIR compart-
ments on both training and test data.

Prescription

Eventually, we performed an exploration of the Empirical Model Learning
approach, employing the End-to-End model as predictive component and the
CBC solver for the optimization process (see Section 4.2), as we already did
for synthetic data.

Prescription: example NPIs prescriptions, β and SIR approximations
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Figure 5.13: Example of daily prescription and prediction results for 30 days.

Example results are reported in Figure 5.13: the grids represent the allow-
able discrete values for the NPIs. We can appreciate a monotonic lowering
in both the β parameters and the I compartment, which correctly reflects our
goal. However, we should highlight here howβ tends to always take the mini-
mum allowable value, which is given by the constraint (see Section 4.2), tuned
to c = 10−3 after some experiments. As for synthetic data, we have no ground
truth for best interventions for historical data as well: still, we can observe a
systematic propensity of NPIs to take low values, which is physically counter-
intuitive, since it represents less restricting measures. A possible explaination
for this unexpected behaviour could be researched into the input space being
scarcely represented across training data, leading to unpredictable output for
the ML model when it comes to edge cases such as values close to 0.



Conclusion

The present work explored an application of Empirical DecisionModel Learn-
ing to epidemic scenarios, setting up a working approach to effectively fore-
cast the evolution of outbreaks and accordingly suggest proper interventions
plan. We validated our models through synthetic data generation, which pro-
vided a robust assessment of the capabilities of the models with respect to
simulated data and paved the way to their application to real-world cases. We
were able to obtain good results regarding the predictive task, namely the fore-
cast of epidemiological evolution based on current NPIs. However, we could
not simultaneously achieve good fittings for both the β parameters and the
compartments of the SIR model, likely due to the simplifications entailed by
the epidemiological background theory. As already discussed, this kind of sit-
uation is not ideal when it comes to interpretability, since either the epidemic
is not correctly forecasted or the predictions for β fail to represent a reliable
proxy of the outbreak evolution. Nevertheless, within a Decision-Focused
Learning setup (see Section 2.2) the major interest resides in the capability
to obtain high-quality mapping of decision variables into observables: this
perspective allows us to reasonably neglect poor results regarding the β pa-
rameters, as long as a high-quality forecasting of the epidemiological curve is
achieved.

As for the prescriptive task, we obtained promising results as long as syn-
thetic data was concerned, while the application to real data posed a harder
challenge. In particular, we identified the tendency of the prescriptor to pro-
duce NPIs close to their lower bound, which is scarcely represented within
training data. This behaviour could be caused by the optimization process
trying to exploit unexplored regions of the input space. In other words: the
prescriptor seeks for the minimization of the β parameters as a function of the
NPIs, which is encoded as a ML model. However, a non-uniform sampling of
the input space within training data is reflected into unpredictable behaviour
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when it comes to model forecasts. As a consequence, the optimization process
will search for whatever input features lead to a minimization of the output,
regardless of the robustness of the prediction.

Even though there is still much work to do, we have introduced a method
to combine model-driven and data-driven approaches to predictive epidemi-
ology through knowledge injection and Universal Differential Equations, as
long as setting up an approach to prescriptive epidemiology through an hybrid
strategy which exploits Machine Learning and Combinatorial Optimization
techniques.
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Appendix A

Synthetic data - generation
0 gaussian 9 sin
1 gaussian_exp 10 sin_exp
2 gaussian_inverse_exp 11 sin_inverse_exp
3 gaussian_sigmoid 12 sin_sigmoid
4 gaussian_sigmoid_exp 13 sin_sigmoid_exp
5 gaussian_sigmoid_inverse_exp 14 sin_sigmoid_inverse_exp
6 gaussian_inverse_sigmoid 15 sin_inverse_sigmoid
7 gaussian_inverse_sigmoid_exp 16 sin_inverse_sigmoid_exp
8 gaussian_inverse_sigmoid_inverse_exp 17 sin_inverse_sigmoid_inverse_exp

Table A.1: β shapes used to generate synthetic data.
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Figure A.1: Graphical representation of β generated shapes.
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0 f(β) = exp(β) f(β, u) = exp(β + u)
1 f(β) = 1

1+exp(β) f(β, u) = 1
1+exp(β−u)

2 f(β) = exp(−β) f(β, u) = exp(−β ∗ u)
3 f(β) = 1

1−exp(−β)+10−5 f(β, u) = 1
1−exp(−β∗u)+10−5

4 f(β) = log(β + 10−5) f(β, u) = log(β + 2 ∗ u + 10−5)
5 f(β) = β ∗ log(β + 10−5) f(β, u) = x ∗ log(β ∗ u + 10−5)
6 f(β) = sin(β) f(β, u) = sin(β + u)
7 f(β) = sin2(β) f(β, u) = sin2(β ∗ u)

Table A.2: Functions used to generate NPI synthetic data as a function of β either
with or without the hidden variable u. The small constant 10−5 is added to ensure
that functions are well-defined for β >= 0.

0 100 200 300
0.0

0.5

1.0

NP
I

shape_0

0 100 200 300
0.0

0.5

1.0
shape_1

0 100 200 300
0.0

0.5

1.0

NP
I

shape_2

0 100 200 300
0.0

0.5

1.0
shape_3

0 100 200 300
0.0

0.5

1.0

NP
I

shape_4

0 100 200 300
0.0

0.5

1.0
shape_5

0 100 200 300
time

0.0

0.5

1.0

NP
I

shape_6

0 100 200 300
time

0.0

0.5

1.0
shape_7

Figure A.2: Graphical representation of NPI generated shapes.



Appendix B

Synthetic data - results

Estimation: β and SIR approximations
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Figure B.1: Fitting results for some Gaussian mixtures-shaped β and corresponding
SIR compartments employing 200, 500, 1000 training epochs.
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Estimation: β and SIR approximations
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Figure B.2: Fitting results for some sine-squared-shaped β and corresponding SIR
compartments employing 200, 500, 1000 training epochs.
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End-to-End aggregated evaluation scores: β
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Figure B.3: Scores for β parameters over varyingK, upper bound and noise amount.
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End-to-End aggregated evaluation scores: SIR
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Figure B.4: Scores for the I compartment over varying Euler increment (K), β range
(in particular, the upper bound) and noise in the generation of NPIs (µ.
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