
ALMA MATER STUDIORUM
UNIVERSITÀ DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

ARTIFICIAL INTELLIGENCE

MASTER THESIS

in

Text-To-Speech

Conditioning text-to-speech synthesis on dialect accent:
a case study

CANDIDATE

Alessio Falai

SUPERVISOR

Prof. Zeynep Kiziltan

CO-SUPERVISOR

Dr. Federico Ruggeri

Academic Year 2020/21

Session 3rd

To my 1-hop neighbours.

1

ABSTRACT

Modern text-to-speech systems are modular in many different ways. In recent years, end-

users gained the ability to control speech attributes such as degree of emotion, rhythm

and timbre, along with other suprasegmental features. More ambitious objectives are

related to modelling a combination of speakers and languages, e.g. to enable cross-

speaker language transfer. Though, no prior work has been done on the more fine-grained

analysis of regional accents. To fill this gap, in this thesis we present practical end-

to-end solutions to synthesise speech while controlling within-country variations of the

same language, and we do so for 6 different dialects of the British Isles. In particular,

we first conduct an extensive study of the speaker verification field and tweak state-

of-the-art embedding models to work with dialect accents. Then, we adapt standard

acoustic models and voice conversion systems by conditioning them on dialect accent

representations and finally compare our custom pipelines with a cutting-edge end-to-end

architecture from the multi-lingual world. Results show that the adopted models are

suitable and have enough capacity to accomplish the task of regional accent conversion.

Indeed, we are able to produce speech closely resembling the selected speaker and dialect

accent, where the most accurate synthesis is obtained via careful fine-tuning of the multi-

lingual model to the multi-dialect case. Finally, we delineate limitations of our multi-

stage approach and propose practical mitigations, to be explored in future work.

2

ACKNOWLEDGEMENTS

First, I would like to express my deepest appreciation to professor Kiziltan, for giving

me the possibility to work on such an interesting and educational research project and

supporting me throughout the entire experimentation and writing process. This extends

to Federico, my co-supervisor, who additionally helped me feel relieved when certain

research questions had to remain unanswered.

I’m also extremely thankful to all the amazing lecturers of the Artificial Intelligence

course, who guided me in the discovery of many fields of study which I’m now very fond

of. A special word has to be spent on professors Samuele Salti, Michele Lombardi and

Paolo Torroni, for the uncountable eureka moments they sparked in me and for imparting

true passion for their subjects.

I also feel very lucky to have met so many great educators throughout my educational

path. Out of them all, I would like to acknowledge Grazia Biondi and Paolo Frasconi,

who were the initiators of my curiosity in the two broad fields I enjoy the most: Computer

Science and Artificial Intelligence.

Moreover, I will always be grateful to my study buddies, Leonardo, Lorenzo and

Jacopo, with whom I have had the pleasure to tinker and experiment on Computer Sci-

ence projects since high school. I must also thank my best friends, Saul and Flavio in

particular, for their infallible support and sincere friendship.

My deepest gratitude obviously goes to my family, my parents and my brother, for

teaching me the importance of hard work, for inheriting their ambitiousness and for pro-

viding me with all the resources and endearment necessary to achieve the long-term goals

I set for myself.

3

Finally, the last word of appreciation goes to my life partner, Silvia, who has always

been there to support and encourage me and act as a constant reminder of what’s really

important in life: love and happiness. Thank you for your patience, for your uncondi-

tional love and for standing by my side at all times.

4

CONTENTS

1 Introduction 1

1.1 TTS overview . 1

1.2 Motivations and contributions . 3

1.3 Related work . 5

1.4 Document structure . 8

2 Background 9

2.1 Learning . 9

2.1.1 Supervised learning . 10

2.1.2 Towards representation learning 11

2.1.3 About inductive biases . 14

2.2 Speech . 18

2.2.1 Communication . 18

2.2.2 Phonetics . 21

2.2.3 Signal processing . 23

2.3 TTS . 29

2.3.1 Legacy systems . 29

2.3.2 Modern components . 32

3 Conditioning TTS on dialect accent 40

3.1 Speaker and dialect accent embeddings 42

3.1.1 Tasks and terminology . 42

5

3.1.2 Architectures . 43

3.1.3 Evaluation . 48

3.2 Acoustic model . 51

3.2.1 Architectures . 51

3.2.2 Evaluation . 56

3.3 Voice/accent conversion system . 59

3.3.1 Tasks and terminology . 59

3.3.2 Architectures . 61

3.4 Vocoder . 64

3.4.1 Architectures . 64

3.5 End-to-end approach . 66

4 Dataset 69

4.1 Data resources . 69

4.1.1 LJ Speech . 70

4.1.2 LibriSpeech . 71

4.1.3 VCTK . 73

4.1.4 SLR83 . 74

4.1.5 Others . 78

4.2 Data processing . 81

4.2.1 Text . 81

4.2.2 Audio . 82

4.2.3 Splits . 91

5 Experiments 93

5.1 Experimental setup . 93

5.2 Evaluation strategy . 95

5.3 Speaker and dialect accent embeddings 97

5.3.1 Speaker embeddings . 99

5.3.2 Dialect accent embeddings . 107

5.4 Acoustic model . 109

5.4.1 Single-speaker . 110

5.4.2 Multi-speaker and multi-dialect 115

5.5 Voice/accent conversion . 121

6

5.5.1 Voice conversion . 122

5.5.2 Accent conversion . 128

5.6 Joint TTS and voice/accent conversion 133

5.7 Discussion of results . 138

Conclusions 142

Bibliography 144

7

LIST OF FIGURES

2.1 Examples of linearly and non-linearly separable data 13

2.2 MLPs are universal approximators . 14

2.3 Example of a convolutional layer . 16

2.4 LSTM layer dataflow . 17

2.5 Diagram of the human vocal organs or articulators 21

2.6 Example of an audio waveform . 23

2.7 Fourier transform visualization . 24

2.8 Common STFT windowing functions 26

2.9 Example of a spectrogram . 27

2.10 Example of a triangular mel filter bank 27

2.11 The common-form model . 29

2.12 Example of a unit selection system . 30

2.13 Example of a train announcement with phrase splicing 32

2.14 Main TTS components . 32

2.15 DeepVoice architecture . 35

2.16 Griffin-Lim vs naïve inverse STFT . 37

2.17 The WaveNet model . 38

3.1 Proposed architectures . 41

3.2 D-vector embeddings . 44

3.3 Similarity matrix with the GE2E loss . 45

3.4 TitaNet architecture . 45

8

3.5 Tensor shape journey in TitaNet . 46

3.6 ArcFace loss computation . 48

3.7 Confusion matrix in a binary classification problem 49

3.8 ROC curves comparing speaker verification systems 49

3.9 Examples of DET curves . 50

3.10 The Tacotron model . 51

3.11 The Tacotron 2 architecture . 53

3.12 From speaker verification to multi-speaker Tacotron 2 55

3.13 Cross-lingual Tacotron 2 . 55

3.14 Example of a MUSHRA test with the webMUSHRA interface 58

3.15 Audio conversion system . 60

3.16 AutoVC architecture . 61

3.17 MelGAN architecture . 64

3.18 YourTTS architecture at training and inference time 67

4.1 LJ Speech audio durations . 71

4.2 LibriSpeech audio durations . 72

4.3 VCTK audio durations . 74

4.4 SLR83 audio durations . 75

4.5 SLR83 audio durations by dialect . 77

4.6 Dialects in the IViE corpus . 78

4.7 Location of informants in the FRED corpus 80

4.8 Example of raw text to indices pre-processing 82

4.9 Audio pre-processing steps . 84

4.10 Facebook’s denoiser architecture . 85

4.11 Silence removal through VAD . 86

4.12 Silero VAD test-set precision-recall curve 87

4.13 Example of a simulated RIR extracted in a small room 89

4.14 Convolution reverb . 89

4.15 Waveform to mel-spectrogram conversion 90

4.16 SpecAugment transform . 92

5.1 Description of the Mechanical Turk accentedness evaluation 97

5.2 Example task from the Mechanical Turk accentedness evaluation 97

9

5.3 D-vector vs TitaNet loss and F1 curves on LibriSpeech 100

5.4 D-vector vs TitaNet speaker embeddings trained on LibriSpeech 101

5.5 TitaNet speaker embeddings tested on SLR83 102

5.6 Resemblyzer speaker embeddings tested on SLR83 103

5.7 TitaNet CE vs TitaNet ArcFace loss and F1 curves on Librispeech 104

5.8 TitaNet CE vs TitaNet ArcFace speaker embeddings on LibriSpeech . . . 105

5.9 Extraction of high-level features using Resemblyzer on SLR83 106

5.10 TitaNet CE dialect embeddings metrics on SLR83 107

5.11 Speaker/dialect discrimination with TitaNet dialect embeddings on SLR83 108

5.12 Predictions for Tacotron 2 trained on LJ Speech with r = 2 and r = 5 . . 112

5.13 Single-speaker Tacotron 2 at inference time 112

5.14 Noam learning rate schedule . 114

5.15 Attention alignment for Tacotron 2 trained on LJ Speech with r = 5 . . . 115

5.16 Outputs from multi-speaker Tacotron 2 trained on VCTK 116

5.17 Tacotron 2 multi-speaker test score distributions on SLR83 119

5.18 Acoustic model with neutral voice and a joint VC/AC system 120

5.19 Self-reconstruction quality of AutoVC over training on VCTK 124

5.20 AutoVC training and validation losses on VCTK 125

5.21 AutoVC voice conversion test score distributions on VCTK 126

5.22 Self-reconstruction quality of AutoVC over training on SLR83 127

5.23 AutoVC voice conversion test score distributions on SLR83 128

5.24 AutoVC accent conversion test score distributions on SLR83 132

5.25 YourTTS accent conversion test scores on SLR83 136

5.26 YourTTS vs AutoVC crowd-sourced accentedness on SLR83 137

10

LIST OF TABLES

2.1 Subset of data from the Adult dataset . 11

4.1 Transcriptions statistics definitions . 70

4.2 LJ Speech transcriptions statistics . 71

4.3 Data subsets in Librispeech . 72

4.4 LibriSpeech transcriptions statistics . 73

4.5 VCTK transcriptions statistics . 74

4.6 SLR83 audio duration statistics . 76

4.7 SLR83 transcriptions statistics . 76

4.8 Dialect accent regions in the ABI corpora 79

4.9 Grapheme-index mapping . 83

4.10 Waveform to mel-spectrogram conversion fixed parameters 91

5.1 D-vector hyper-parameters . 98

5.2 TitaNet hyper-parameters . 99

5.3 Tacotron 2 hyper-parameters . 111

5.4 Single-speaker acoustic modelling results 113

5.5 Multi-speaker acoustic modelling results on SLR83 119

5.6 AutoVC hyper-parameters . 123

5.7 AutoVC voice conversion results . 128

5.8 AutoVC voice conversion intelligibility details 129

5.9 AutoVC accent conversion crowd-sourced accentedness 131

5.10 AutoVC accent conversion crowd-sourced inter-rater reliability 132

11

5.11 AutoVC accent conversion results on SLR83 132

5.12 YourTTS accent conversion crowd-sourced accentedness 135

5.13 YourTTS accent conversion crowd-sourced inter-rater reliability 135

5.14 YourTTS accent conversion results on SLR83 136

5.15 YourTTS vs AutoVC accent conversion t-tests on SLR83 137

12

LIST OF ABBREVIATIONS

ABI Accents of the British Isles

AC Accent Conversion

AD Analogue to Digital

AI Artificial Intelligence

ASR Automatic Speech Recognition

BAP Band Aperiodicity Parameter

BFC Bark-Frequency Cepstrum

BFCC Bark-Frequency Cepstral Coefficient

BN Batch Normalization

CAPT Computer-Assisted Pronunciation Training

CE Cross Entropy

CER Character Error Rate

CLIPS Corpora e Lessici dell’Italiano Parlato e Scritto

CNN Convolutional Neural Network

CSV Comma-Separated Values

CV Computer Vision

13

CVAE Conditional Variational Auto Encoder

DCF Detection Cost Function

DCT Discrete Cosine Transform

DET Detection Error Trade-off

DFT Discrete Fourier Transform

DL Deep Learning

DNN Deep Neural Network

DSP Digital Signal Processing

ECAPA Emphasized Channel Attention, Propagation and Aggregation

EER Equal Error Rate

FAC Foreign Accent Conversion

FAD Fréchet Audio Distance

FFT Fast Fourier Transform

FFTW Fastest Fourier Transform in the West

FID Fréchet Inception Distance

FRED FReiburg corpus of English Dialects

G2P Grapheme-to-Phoneme

GAN Generative Adversarial Network

GD Gradient Descent

GE2E Generalized End-To-End

GRU Gated Recurrent Unit

HMM Hidden Markov Model

HPC High-Performance Computing

14

IPA International Phonetic Alphabet

IViE Intonational Variation in English

kNN k-Nearest Neighbors

LSTM Long Short-Term Memory

MCD Mel-Cepstral Distortion

MFC Mel-Frequency Cepstrum

MFCC Mel-Frequency Cepstral Coefficient

ML Machine Learning

MLE Maximum Likelihood Estimation

MLP Multi-Layer Perceptron

MOS Mean Opinion Score

MSE Mean Squared Error

MT Machine Translation

MUSHRA MUltiple Stimuli with Hidden Reference and Anchor

NER Named Entity Recognition

NLP Natural Language Processing

OOV Out Of Vocabulary

PCM Pulse Code Modulation

PER Phoneme Error Rate

PESQ Perceptual Evaluation of Speech Quality

POS Part-Of-Speech

15

QA Quality Assurance

ReLU Rectified Linear Unit

RIR Room Impulse-Response

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

RP Received Pronunciation

S2S Sequence-to-Sequence

SCL Speaker Consistency Loss

SDR Signal to Distortion Ratio

SE Squeeze-and-Excitation

SGD Stochastic Gradient Descent

SOTA State Of The Art

SPSS Statistical Parametric Speech Synthesis

STFT Short-Time Fourier Transform

STT Speech-To-Text

SVD Singular Value Decomposition

SVM Support Vector Machine

t-SNE t-distributed Stochastic Neighbor Embedding

TDNN Time-Delay Neural Network

TTS Text-To-Speech

UMAP Uniform Manifold Approximation and Projection

V/UV Voiced/UnVoiced

16

VAD Voice Activity Detection

VAE Variational Auto Encoder

VC Voice Conversion

VITS Variational Inference with adversarial learning for end-to-end

Text-to-Speech

W&B Weights & Biases

WAV Waveform Audio File Format

WER Word Error Rate

17

CHAPTER 1

INTRODUCTION

In this chapter, we aim to touch on the fundamental topics that will be extensively covered

in this thesis, to give a high-level overview to the impatient reader. First, Section 1.1

provides the big picture on the history of Text-To-Speech (TTS) and what is current in the

field; then Section 1.2 sets the research direction and summarizes the main contributions

of this thesis. Next, Section 1.3 introduces related work and how this thesis differs from it.

Finally, Section 1.4 outlines the document structure, by concisely explaining the content

of each chapter.

1.1 TTS overview

Synthesising speech has been one of the ultimate goals of humankind since as far as 200
years ago when the vision was to build mechanical apparatus to artificially simulate the

human vocal tract [160]. In the 20th-century, the advent of electronic devices enabled

researchers to ditch mechanical solutions and transition to more powerful and flexible

digital representations. The first digital TTS system was built based on the same re-

production of human articulators mentioned above [88], even though many more popular

paradigms started to emerge. In particular, concatenative systems and unit selection so-

lutions [72], in which small audio snippets are merged together, were all the rage in the

1950 − 1980 period, until the recent Artificial Intelligence (AI) revolution came to be.

Nowadays, thanks to the vast availability of computational resources, the latest and most

1.1 TTS overview 2

accurate TTS systems are all based on neural architectures [5, 185].

A modern TTS system is usually composed of different modules, that can either be

trained jointly or at different stages [165, 166]. The first step is to convert raw characters

to phonemes, which represent units of sound. Then, an acoustic model [145, 185] is

tasked to predict an intermediate representation of speech starting from such phonemes

and a final vocoder [100, 131] takes this representation and outputs the waveform that

most closely matches the provided linguistic content. There are many alternatives to

the reported pipeline, with more and more emphasis on end-to-end solutions [47], to

go directly from character symbols to waveforms, to avoid the propagation of errors of

multi-stage approaches.

One of the reasons to work with intermediate speech representations is that wave-

forms do not align well with the one-to-many nature of TTS systems, given that two

similar waveforms could refer to very different linguistic contents. The opposite reason-

ing also holds, meaning that a single piece of text may correspond to multiple waveforms.

This is because speech encodes much more than just linguistic content. For example, two

different speakers are very likely to pronounce the same sentence in disparate ways, as

both are influenced by their unique background, which includes age, location, social sta-

tus, cognitive biases and much more.

The idea of modelling the so-called prosodic properties of speech, i.e. all the at-

tributes remaining after removing the textual component, is what powers most of the

contemporary research streams in the TTS field. To do so, TTS systems borrow tech-

niques and architectures from many other disciplines, such as Automatic Speech Recog-

nition (ASR). For example, models from the speaker verification [44, 93, 157, 181]

literature, where the goal is to understand whether or not two utterances come from the

speaker, are often employed to condition TTS synthesis on speaker identity, to alter the

output and make it sound as if it was uttered by the selected speaker [32, 77].

The output of a TTS system, or the intermediate representation produced by its acous-

tic model, can also be used for downstream tasks. For example, Voice Conversion (VC)

[104, 141, 142] is a speech-to-speech task that has the goal of converting speaker iden-

tity, while keeping linguistic content as is. In this case, a VC model could be used to

convert the output of a mono-speaker system and simulate a multi-speaker one. VC sys-

tems have also been used for other purposes, such as data augmentation, to train TTS

models on speakers for which not enough recordings are available [103].

1.2 Motivations and contributions 3

All of the above contribute to the major objective of making TTS systems as con-

trollable as possible, giving the user the possibility to tweak many different aspects

of speech. Some examples, other than changing speaker identity, include adjusting the

speaking rate (i.e. how fast or slow to utter) [141], making the model emote (e.g. sound-

ing sad or happy) [78, 84, 106], sing [3, 25], laugh [173] and whisper [34]; and the list

goes on with many more dimensions.

Recent advancements in Deep Learning (DL) and neural models for TTS have also

given rise to more ambitious objectives, such as the ones related to multi-lingual [129,

200] and polyglot [126] models. In the former case, a single model is trained to speak

many different languages with each language having its own associated speaker identity,

while in the latter case a single model aims to maintain the same identity across multiple

languages.

1.2 Motivations and contributions

All of the approaches presented in Section 1.1, such as the ones in the multi-lingual

and polyglot streams, ignore more fine-grained modelling of language varieties within

a country. In particular, previous work either focuses on completely different languages

(such as English and French) or different locales of the same language (such as American

English and British English).

We believe that shifting the attention towards dialects and regional accents would

be beneficial in many ways. In particular, even though written languages are usually

standardized in a country, their spoken counterparts may be subject to non-negligible

variability that depends on many factors. Out of them all, location and education are

usually attributed to be the largest contributors of such irregularities. In many countries,

people who don’t have access to higher education and those who live out of urban areas

tend to communicate in ways that differ from what’s regarded as the standard language.

The gap between such standards and each variation of the language is very difficult to

measure, but it’s part of the cultural heritage of a country and should be preserved as

such.

Thus, the benefits of providing accent control at the regional level for a speech system

are multiple. One of them is to ease the approach of the uneducated user to modern tech-

nology and another one is to pass on knowledge of a country, as intimate as its linguistic

1.2 Motivations and contributions 4

traditions and history. We also see a possible business application for voice assistants,

such as Google Assistant and Amazon Alexa, which could take advantage of localization

to more closely customize the user experience by relying on geographical location. In

this way, someone living in Scotland would be able to hear a Scottish variation of the

voice assistant’s identity, while someone living in Ireland would hear a variety of British

English closely resembling Irish English.

Given the above, the aim of this thesis is to give the user even more freedom, by

adding a new controllability dimension to TTS systems, namely dialect accent. To the

best of our knowledge, no prior work exists in the exploration of regional accents in a

full TTS scenario. Thus, we summarize our contributions as follows.

First, we research for available open-source corpora containing information about

dialect accents of the recorded speakers and decide to settle for what we will refer to as

SLR83 [42], which is a dataset of more than 30 h of speech from 120 speakers spanning

6 broad dialects of the British Isles1, i.e. Southern, Midlands, Northern, Irish, Scottish

and Welsh.

Then, we explore how well-established and State Of The Art (SOTA) approaches in

the speaker identification and speaker verification world might be adapted to their dialect

accent counterparts. In particular, we compare a baseline d-vector [181] model and the

cutting-edge TitaNet [93] model on the dialect accent classification task and perform

detailed latent space analyses to check for speaker and accent leakage in dialect and

speaker embeddings, respectively.

Next, we adapt a VC model, namely AutoVC [142], to the Accent Conversion (AC)

task, where the goal is to convert accent while keeping both speaker identity and lin-

guistic content fixed. To do so, we rely on our pre-trained speaker and dialect accent em-

bedding models, to either convert speaker identity and dialect accent information jointly

or just the latter.

On the TTS side of things, we mainly rely on the popular Tacotron 2 [152] architec-

ture and propose a number of practical pipelines to convert text to speech uttered with

the desired speaker identity and regional accent. We also compare our custom approaches

with an end-to-end model from the multi-lingual field, namely YourTTS [20].

1The British Isles is a geographical term which refers to the two large islands that contain the mainlands
of Scotland, Northern Ireland, the Irish Republic, Wales, and England, together with a large number of
other, smaller islands that are part of the territories of these countries [96].

1.3 Related work 5

Finally, we conduct an extensive experimental study where we first verify the cor-

rectness of our custom implementations and assess the efficacy of individual components,

to then evaluate the whole TTS pipelines from start to finish. In this regard, results show

that each module achieves the intended goal when tested separately from the others, but

fails to output satisfactory results when evaluated jointly. We attribute this shortcoming

to the propagation of errors between the many modules that are part of the TTS pipeline

and provide practical mitigations and directions for future research in the last chapter of

the thesis.

It has to be noted that we are not proposing new architectures per se, but rather tak-

ing different building blocks that are nowadays mainstream to build TTS systems, and

putting them together to show that such architectures have enough capacity to model

regional variations of a given language (British English in our case).

As a further contribution, we open-source our code and evaluations through a pub-

licly available GitHub repository2 and we provide a collection of demo samples for most

of the reported systems in a blog post3. Moreover, in case corrigenda and other resources

will be needed in the future, they will be made available in a different GitHub reposi-

tory4, the same one holding the source LATEX files for this document. We hope the linked

resources will stand the test of time.

1.3 Related work

The controllable TTS stream of research introduced in Section 1.1 can be thought to be

part of the more general flexible TTS one. One of the pillars of flexible TTS systems is

adaptive TTS, where topics such as voice adaptation [23] and voice cloning [6] are key.

All such systems share the common objective of adapting a source TTS model to a certain

target, where the target could be a voice, a language, an accent, a style and more, using

techniques such as few-shot and zero-shot learning5. Adaptive TTS also finds its way

in many business applications, such as custom voice [22], a TTS service in commercial

speech platforms that aims to adapt a source TTS model to synthesize personal voice for

2https://github.com/Wadaboa/tts-dialects
3https://alessiofalai.it/blog/master-thesis-samples
4https://github.com/Wadaboa/master-thesis
5For zero-shot adaptation (such as the one performed in [19]), a pre-trained encoder is mandatory, in

order to extract embeddings for unseen entities, such as speakers not present in the training data; however,
this scenario usually falls short in terms of adaptation quality and target similarity [165].

https://github.com/Wadaboa/tts-dialects
https://alessiofalai.it/blog/master-thesis-samples
https://github.com/Wadaboa/master-thesis

1.3 Related work 6

a target speaker using few speech data.

Furthermore, adaptive TTS comes in handy in low-resource settings, i.e. in those set-

tings where target data is limited. Examples of low-resource settings include modelling

minority languages (e.g. Vietnamese, Swahili, Hindi), exotic styles (e.g. newscaster,

sarcastic) or simply speakers for which not enough high-quality recordings are available.

In these cases, data from other languages/styles/speakers can be leveraged to improve

the synthesis quality of the under-resourced target. For what regards cross-lingual trans-

fer, one possible solution is to fine-tune pre-trained TTS models, where the pre-training

happens with the high-resource languages, while fine-tuning is performed on the low-

resource target language [175]. Other approaches (that also work in a zero-shot fashion)

rely on shared grapheme/phoneme representations, such as International Phonetic Alpha-

bet (IPA) [66] or byte-encoding [64], so that input text is mapped to a single latent space,

regardless of the language it is written in. Dialect accents (or regional accents) may also

be considered as low-resource languages, thus potentially allowing us to exploit prior

work in such streams of research.

Other ways to achieve flexibility in TTS systems is by dealing with disentangle-

ment, i.e. the concept of learning representations of speech attributes independent of each

other. Possible ways to obtain such independent representations is by relying on well-

established techniques, such as adversarial training and information bottlenecks [172].

Regarding the former, Wang et al. propose to rely on auxiliary losses to obtain speaker-

independent text representations, by forcing a speaker classifier’s output probabilities to

obey a uniform distribution6. Regarding the latter, Qian et al. propose an extension of

their popular AutoVC [142] architecture, so as to disentangle multiple speech properties

(i.e. rhythm, pitch, content and timbre) using different bottleneck reconstructions. To the

best of the author’s knowledge, no prior work has been done in the disentanglement of re-

gional accent (or even accent as a whole) from other speech properties such as linguistic

content and speaker identity.

Also, approaches for disentanglement may rely on either explicit or implicit infor-

mation, as described in [165]. Speech attributes for which labels can be extracted, either

automatically or through a manual process, fall under the explicit information category,

while everything else has to be considered as implicit information. Usually, attributes

such as speaker/accent/language information are part of the former, while prosodic-level

6Intuitively, encouraging a classifier to follow a uniform distribution has the effect of confusing it, as
the objective is to avoid it being able to distinguish the speaker classes.

1.3 Related work 7

features could be regarded as implicit. An example of how to deal with such implicit

information is by using a so-called reference encoder [155], where prosody embeddings

are extracted from reference audio at training time, while at test time a different refer-

ence might be used to reproduce its prosodic structure. An extension of the reference

encoder [2] includes the use of a Variational Auto Encoder (VAE) to learn a latent space

from which prosody embeddings can be sampled at inference time, thus allowing even

more flexibility (e.g. exploring interpolations in the latent space to create new styles).

Another extension of the reference encoder is with the popular style tokens [184], where

prosody embeddings are used as part of an attention mechanism to attend to a bank of

style tokens; then, at inference time the model can either rely on attention to select the

best mix of style tokens, or such tokens can be forced by the user to allow some kind

of style transfer to happen. In this thesis, disentanglement is always performed on the

explicit side, as we rely on labelled data for both speaker and dialect accent information.

Regarding the overall pipeline, going from text to controllable speech, much inspi-

ration is taken from [77], where a multi-speaker extension of the Tacotron 2 architecture

is proposed. The key takeaway from [77] is that pre-trained speaker embedding mod-

ules can be used to condition the mel-spectrogram generation of an acoustic model. We

rely on this result and extend this concept to the multi-accent case. Moving to the AC

module, the closest work is described in [186], where a voice and accent joint conver-

sion approach is proposed. The main difference with our solutions is that they adopt a

recognition-synthesis framework, for which well-trained accent-dependent speech rec-

ognizers are mandatory to obtain meaningful bottleneck features. Moreover, they model

2 Chinese dialects, namely standard Mandarin and Tianjin-accented Mandarin, while our

work focuses on 6 regional accents of the British Isles. Some parallels can also be made

with [153], where authors propose to use style transfer techniques from the Computer

Vision (CV) world for converting between British and American accents. Nevertheless,

most of the regional accent investigations have been done in the ASR field, to solve chal-

lenges such as accent classification [41, 128] and speech recognition as a whole [149].

1.4 Document structure 8

1.4 Document structure

Chapter 2 presents a broad introduction to the topics of Machine Learning (ML), DL,

speech processing and TTS. Each section aims to be self-contained, meaning that some-

one who’s expert in DL but has never worked with speech can directly jump to the last

two sections in the chapter.

Chapter 3 starts with an overview of the original contributions of this thesis, to then

dive deep into each component of the proposed TTS pipelines. For each module, we

devise a section to introduce the task it was designed to solve and how it can be used as

part of a TTS system. Then, we provide a thorough description of the main architectures,

the adaptations needed to work with regional accents, and possible ways to evaluate each

component.

Chapter 4 presents the extensive literature review for the selection of the SRL83

dataset and presents supporting data resources needed to verify the correctness of our

custom implementations. We provide a common set of statistics for each dataset, related

to the distributions of characters and the duration of utterances. Then, we outline all the

pre-processing steps needed for training and testing each module of the TTS pipeline, for

both text and audio data types.

Chapter 5 details the experimental study carried out to assess the correctness and effi-

cacy of our proposed solutions and how they compare with SOTA architectures from the

multi-lingual field. In particular, we first present the experimental setup and evaluation

strategy common to all modules and then delineate steps and parameters specific for each

model in their corresponding section. The structure of the experimental study mirrors the

order in which models are described in Chapter 3. In particular, we first report results

for individual components and then assemble them together to evaluate the whole TTS

pipeline.

To conclude, in the last chapter we summarize the results observed in the experi-

mental study and provide practical solutions to attenuate the propagation of errors of

our multi-stage approach. Moreover, we devote the final bits of this thesis to set future

research directions.

CHAPTER 2

BACKGROUND

In this chapter, Section 2.1 first provides the reader with a comprehensive introduction to

the fields of ML and DL. Then, Section 2.2 introduces the main concepts behind speech

signals and their representation on a digital machine. Finally, a wide overview of both

legacy and modern TTS systems is presented in Section 2.3, along with their challenges

and SOTA solutions. Each section in this chapter is self-contained, meaning that the

reader can feel free to skip one of the sections if already familiar with the concepts

therein.

2.1 Learning

In the most general sense, AI concerns the study and application of rational agents, i.e.

agents that perceive and act in an environment, as thoroughly described by Russell and

Norvig in their landmark book Artificial Intelligence: A Modern Approach. In a more

narrow sense, this thesis only considers rationality as the ability to generalize, which

intuitively means to perform sound inferences on previously unseen pieces of data. In the

words of Russell and Norvig, the rational agent has to act well enough even on percepts

it has never before experienced.

On a more practical scale, a rational agent might be considered as a function f that is

completely defined by its set of beliefs (usually referred to as parameters) θ. The agent

has the goal of learning a mapping between perceptions x (which we may as well name

2.1 Learning 10

inputs) and actions (which will be referred to as outputs), i.e. y = f(x; θ). To act well,

the agent has to minimise the number of incorrect actions taken (or some other objective)

and adjust its future actions accordingly, by shifting its beliefs. This iterative process,

whereby the agent acts, receives feedback from the environment and updates its beliefs,

is called learning. In case the agent is an artificial one, ML is the right term to use.

2.1.1 Supervised learning

The most common ML formulation is in the so-called supervised scenario. Let D =
{(xi, ŷi)}N

i=1 be a set of N i.i.d. (independent and identically distributed) observations

drawn from an unknown distribution, where X is the input domain and Y is the corre-

sponding output (or label) domain. As described above for the rational agent, we also

assume labels ŷ to be generated by an unknown function f , s.t. ŷi = f(xi; θ∗), fully

parametrized by θ. At this point, the learning problem reduces to the estimation of the

best-fitting parameters θ∗ = minθ
∑N

i=1 L(f(xi; θ), ŷi), where L is a loss function that

measures how close predictions yi = f(xi; θ) are to ground truths ŷi.

Usually, the input domain X is assumed to be a Euclidean space Rd of large dimen-

sion d. In this sense, each observation xi = [xi,1, . . . , xi,d] would actually be a vector

in Rd, meaning that each entry xi,j would describe a different feature (or peculiarity) of

the input. For problems that are inherently easily described in a tabular format, adopting

a numerical representation for the input data is straightforward. For example, if the

objective is to predict whether or not an individual is likely to be wealthy (where wealthy

is defined as earning more than 50 thousand dollars per year) based on census data1, the

set of features in Table 2.1 might suffice. In this example, each row is an observation xi,∗

and each column x∗,j represents a different dimension that the learning procedure can

exploit to minimize its loss function L.

As can be observed, only a subset of features in Table 2.1 is actually numerical, while

some of them (i.e. Education and Sex) stem from what’s called a categorical distribu-

tion2. Categorical variables need to be further processed before being fed to ML models,

using techniques such as one-hot encoding, whereby column x∗,j gets transformed into

k binary columns (where k is the number of unique values attainable by feature j) s.t. if

xi,j = v, then xi,v = 1 and xi,u = 0 for all u ̸= v.

1Examples and data are all based on the Adult dataset [49].
2A categorical distribution is a discrete probability distribution whose sample space is the set of k

individually identified items [189].

2.1 Learning 11

Age Education Sex Capital gain Capital loss Hours per week

39 Bachelors Male 2174 0 40
50 Bachelors Male 0 0 13
38 HS-grad Male 0 0 40
58 7th-8th Male 2936 0 40

Table 2.1: Subset of data from the Adult dataset [49]. Each row corresponds to a different
individual from the census and each column represents a different attribute of such
individual.

2.1.2 Towards representation learning

As input distributions become more complex, relying on standard ML techniques gets

harder and harder. For example, how can images, words, speech and graphs be repre-

sented in a strictly numerical format? For decades, ML practitioners have relied on do-

main expertise and careful engineering of custom features to deal with such intricacies.

Instead, nowadays more and more researchers are headed towards the field of represen-

tation learning, where objectives are twofold: models need to be able to perform well on

downstream tasks (such as classification or regression), with the caveat of doing so via

a learned representation. Given that we are working with numerical vectors, the model

(based on its architecture) discovers such representation by finding lower-dimensional

approximations and using non-linear higher-dimensional combinations of the original

feature vector. The main motivation for higher-dimensional representations is that we

can construct new features as non-linear combinations of the original features, which in

turn may make the learning problem easier [40].

To stress the importance of representation learning, we first describe the logistic re-

gression method, which is a probabilistic classification model, and then propose ways

to address its limitations. In the simplest binary case, logistic regression aims to esti-

mate the probability P (yi = 1 | xi) that observation xi is a member of the so-called

positive class (which is class 1 in this example). Logistic regression solves this task by

learning, from a training set D, a matrix of weights W and a bias term b: the weights

Wj represent how important feature j is to the classification decision, and can be posi-

tive (providing evidence that the instance being classified belongs to the positive class)

or negative (providing evidence that the instance being classified belongs to the negative

class). Then, in order to force outputs zi = W · xi + b to be legal probabilities we pass

2.1 Learning 12

zi through the sigmoid function3 σ(zi) = 1
1+e−zi

(also called logistic function). After we

have P (yi = 1 | xi) = σ(zi) we can threshold the output probability with t (the decision

boundary) to obtain a discrete class, i.e. if P (yi = 1 | xi) ≥ t then we classify example

xi as belonging to class yi = 1. In terms of the training procedure, logistic regression

aims to minimize a Cross Entropy (CE) loss, which is a function that prefers the correct

class labels of the training examples to be more likely, under the Maximum Likelihood

Estimation (MLE) principle4, and can be computed using Equation 2.15.

LCE(yi, ŷi) = − log P (ŷi | xi) = −[ŷi log yi + (1 − ŷi) log(1 − yi)] (2.1)

One of the possible optimization strategies for logistic regression is Gradient De-

scent (GD)6, which can be computed according to Equation 2.2.

∂LCE(yi, ŷi)
∂Wj,i

= [σ(Wj · xi + bi) − yi] · xi,j = (yi − ŷi) · xi,j (2.2)

In case the number of examples in the training set becomes prohibitively large, the es-

timation of the gradient in Equation 2.2 may become computationally expensive. Hence,

Stochastic Gradient Descent (SGD) is often employed, whereby outputs yi and corre-

sponding gradients are computed in batches (usually referred to as mini-batches) of B

examples at once. Then, the mini-batch loss is the average of the losses for each exam-

ple in the batch and the gradient is the average of the individual gradients. In this way,

parameters are updated (at each training iteration) using an approximation of the true gra-

dient, thus enabling convergence even when the number of training examples becomes

very large [59].

One of the limitations of naïve logistic regression is that it is a linear model, i.e. it can

only discriminate between linearly-separable classes (as the ones shown in Figure 2.1a),

as zi is just an affine transformation of the inputs xi. To be able to linearly separate

data points that are not linearly separable in input space, there’s the need to map them

to a different vector space, in which linear separability can be achieved. The way to do

3The sigmoid function is commonly used as it’s differentiable in an elegant and easy way, i.e. σ′(zi) =
σ(zi)(1 − σ(zi)), it’s nearly linear around 0 and tends to squash outlier values toward 0 or 1.

4Intuitively, MLE chooses the parameters that maximize the log-probability of the true labels in the
training data, given the observations.

5The full derivation of CE is the following P (ŷi | xi) = yŷi · (1 − yi)1−ŷi ≡ log P (ŷi | xi) =
log[yŷi

i · (1 − yi)1−ŷi] = ŷi log y + (1 − ŷi) log(1 − yi).
6For logistic regression, CE is conveniently convex, i.e. it has just one minimum, so GD starting from

any point is guaranteed to find it.

2.1 Learning 13

so is by relying on non-linear transformations. For example, Figure 2.1 shows how

mapping features xi,1 and xi,2, represented by the red and blue data-points in Figure 2.1b,

to their squared counterparts can make the two classes linearly separable, as shown in

Figure 2.1c.

Such non-linear transformations can either be handcrafted (as in the example above),

in which case we talk about kernel methods that are usually employed in standard ML

algorithms such as Support Vector Machines (SVMs); or learned through a stack of affine

transformations interleaved by such non-linearities, in which case no domain expertise is

required and we enter the realm of DL, neural networks, and representation learning. In

this thesis, we’ll mainly focus on the latter case, given that TTS systems rely on complex

data such as text and speech signals.

positive
negative

(a) Inherently linearly separable
data-points, i.e. we can draw a
vertical line between red and
blue dots.

positive
negative

(b) Inherently non-linearly
separable data-points,
represented by concentric
circles in input space.

positive
negative

(c) Warping the input space, by
squaring each dimension, to
make data linearly-separable.

Figure 2.1: Examples of linearly (left) and non-linearly (middle) separable data and how to make
the latter linearly separable in feature space (right). Red and blue data-points
represent the positive and negative class, respectively.

Moving to the neural network scenario, we might consider logistic regression as a

Multi-Layer Perceptron (MLP) with no hidden layers. Here, a layer is considered as

an affine transformation followed by a non-linear one (usually referred to as activation

function). As soon as one hidden layer7 is added to the network’s architecture, MLPs

gain the so-called universal approximation property [37], meaning that they can approx-

imate any continuous function of n real variables. Even though a single hidden layer

suffices in the theoretical sense, empirical evidence suggests that adding more layers al-

lows the network to learn better and better representations [162], where the term "better"

7A hidden layer is roughly defined as a layer between the input and output ones in a neural network.

2.1 Learning 14

is used to refer to semantically-meaningful properties.2. LEARNING IN HIGH DIMENSIONS 7

Figure 1: Multilayer Perceptrons (Rosenblatt, 1958), the simplest feed-
forward neural networks, are universal approximators: with just one hidden
layer, they can represent combinations of step functions, allowing to approx-
imate any continuous function with arbitrary precision.

In the case of neural networks, the complexity measure c can be expressed
in terms of the network weights, i.e. c(f✓) = c(✓). The L2-norm of the net-
work weights, known as weight decay, or the so-called path-norm (Neyshabur
et al., 2015) are popular choices in deep learning literature. From a Bayesian
perspective, such complexity measures can also be interpreted as the neg-
ative log of the prior for the function of interest. More generally, this com-
plexity can be enforced explicitly by incorporating it into the empirical loss
(resulting in the so-called Structural Risk Minimisation), or implicitly, as
a result of a certain optimisation scheme. For example, it is well-known
that gradient-descent on an under-determined least-squares objective will
choose interpolating solutions with minimal L2 norm. The extension of such
implicit regularisation results to modern neural networks is the subject of
current studies (see e.g. Blanc et al. (2020); Shamir and Vardi (2020); Razin
and Cohen (2020); Gunasekar et al. (2017)). All in all, a natural question
arises: how to define e�ective priors that capture the expected regularities
and complexities of real-world prediction tasks?

Figure 2.2: MLPs are universal approximators [14], i.e. the single-hidden-layer architecture on
the left can model the smooth function on the right (blue curve) with a step-wise
approximation of it (red curve).

2.1.3 About inductive biases

One of the core principles that has allowed the steady growth of DL is the use of inductive

biases, which are ways to constrain the learning procedure based on prior knowledge.

One way to inject inductive biases in neural networks is by restricting the set of functions

they’re allowed to learn. A popular example is with Convolutional Neural Networks

(CNNs), which exploit geometric priors such as shift (or translation) equivariance and

invariance, to enforce the use of local features [14]. The former (shift-equivariance)

is achieved through convolutional operators, while the latter (shift-invariance) can be

obtained with layers such as pooling. The simplest examples in which CNNs excel and

MLPs tend to fail is with image classification, where the classification result should not

be affected by the position of the object in the image (thus exploiting shift-invariance),

or image segmentation, where instead the output mask should shift along with the input

image (thus relying on shift-equivariance).

Therefore, a convolutional layer holds a set of shared weights (instead of having

a fully-connected matrix as MLPs do), also named kernels or filters, that encode the

mentioned geometric priors. Assuming an input activation8 A of shape Cin × Win × Hin,

a convolutional layer computes channel-wise convolutions between filters K (of shape

Cout×Cin×Hk ×Wk) and the input, as shown in Equation 2.3 and depicted in Figure 2.3.

8An activation, or feature map, in a CNN could be the input signal (such as an RGB image) or the
output of a convolutional layer.

2.1 Learning 15

Outputs for each filter are then aggregated (i.e. concatenated) along the output channel

dimension to obtain a tensor of size Cout ×Hout ×Wout, where Hout = ⌊Hin−Hk+2P
S

⌋+1,

Wout = ⌊Win−Wk+2P
S

⌋ + 1, P is the amount of zero padding (on one side) and S is the

stride (i.e. how fast we are moving in the input). In Equation 2.3, the ∗ symbol refers

to the convolution operator, K(j) is the j-th kernel in the layer and b is a learnable bias

term.

[K(j) ∗ A](i, j) =
∑

c

∑
m

∑
n

K(j)(c, m, n) · A(c, i − m, j − n) + b (2.3)

Different convolutional operators may also be applied depending on the task at hand.

For example, fractionally strided convolutions (or transposed convolutions) are used

in tasks such as image segmentation to learn to upsample9 the input signal [147], while

dilated convolutions are used in sequence to exponentially increase the CNN’s receptive

field10 without coarsening the input feature map (which would be the case with simple

strided convolutions) [197].

Another popular example of inductive bias is with Recurrent Neural Networks

(RNNs), where their vanilla versions are translation-equivariant, while their gated al-

ternatives are also invariant to time-warping [14]. As introduced in [79], in a simple

RNN (or Elman network) [51] the activation value of a hidden layer depends on the cur-

rent input as well as the activation value of the hidden layer from the previous time step.

The hidden layer from the previous time step provides a form of memory (or context),

that encodes earlier processing and informs decisions to be made at later points in time.

Hence, the main benefit of using RNNs over standard feed-forward networks is the abil-

ity to deal with inherently sequential inputs (such as natural language and speech) and

the possibility to model sequences of varying length, which wouldn’t be possible with

plain MLPs.

On a more formal note, in simple RNNs the hidden state at time t is computed as

h(t) = g(Uh(t−1) + Wx(t)), where parameters U, W are shared between each layer, g is a

non-linear point-wise function such as tanh and h(0) is fixed. Given x(1), . . . , x(n) inputs

we obtain h(1), . . . , h(n) hidden states (through time), that can be either directly mapped

to an output (e.g. y(t) = f(V h(t)), where f is usually softmax) or passed as input to

9Upsampling is a necessary part of segmentation pipelines, as most of them rely on encoder-decoder ar-
chitectures, where the encoder maps images to semantically-rich, but coarse, feature maps, and the decoder
has to exploit such information while also recovering the original input resolution.

10The receptive field in CNNs is the region of the input space that affects a particular unit of the network.

2.1 Learning 16

0

0

0

0

0

0

0

0

2

2

3

0

3

0

0

0

0

1

0

3

0

0

0

0

2

1

2

0

0

0

2

2

3

1

0

0

1

2

3

1

0

0

0

0

0

0

0

0

0

0

2

0

1

2

1

2

0

2

6.0

8.0

6.0

4.0

17.0

17.0

4.0

13.0

3.0

(a) Computing the output values of a discrete convolution.

+ + +

(b) A convolution mapping from two input feature maps to
three output feature maps.

Figure 2.3: Example of a convolutional layer [50], showing how to compute output values with a
single kernel and input channel (above), along with a visualization of input-output
shapes (below).

2.1 Learning 17

another RNN to obtain a stacked RNN and exploit the benefits of deep representations.

As explained in [164], ordinary RNNs are highly non-resilient to time rescaling, i.e.

a task can be rendered impossible for the network simply by inserting a fixed, small

number of zeros between all elements of the input sequence. Moreover, such networks

suffer from vanishing and exploding gradient problems [9] when dealing with long input

sequences, thus struggling to model long-term dependencies. These issues have led to the

introduction of recurrent models with gating mechanisms, such as LSTM [69] and GRU

[24]. Figure 2.4 shows an example of a Long Short-Term Memory (LSTM) network,

which (in addition to what already explained for vanilla RNNs) relies on cell states c(t)

that are preserved between computational steps. The cell state c(t) is updated based on

what the forget gate f (t) lets through from the previous cell state c(t−1) and how much

of the cell content c̃(t) (an intermediate cell state) the input gate i(t) selects. The hidden

state is then the result of picking entries from the cell state c(t), based on the output gate

o(t). Gated Recurrent Units (GRUs) are simply a more lightweight variant of LSTMs,

as they combine the forget and input gates into a single update gate, while also merging

the cell state and hidden state. 5. GEOMETRIC DEEP LEARNINGMODELS 95

Wc,Uc,bc

Wi,Ui,bi

Wf ,Uf ,bf

Wo,Uo,bo

z(t)

h(t�1) ⇥ + tanh ⇥ h(t)

⇥

M

ec(t)

c(t�1)

i(t)

o(t)

f (t) c(t)

LSTM

Figure 20: The dataflow of the long short-term memory (LSTM), with its
components and memory cell (M) clearly highlighted. Based on the current
input z(t), previous summary h(t�1) and previous cell state c(t�1), the LSTM
predicts the updated cell state c(t) and summary h(t).

5.8 Long Short-TermMemory networks

A key invention that significantly reduced the e�ects of vanishing gradients
in RNNs is that of gating mechanisms, which allow the network to selec-
tively overwrite information in a data-driven way. Prominent examples of
these gated RNNs include the Long Short-Term Memory (LSTM; Hochreiter
and Schmidhuber (1997)) and the Gated Recurrent Unit (GRU; Cho et al.
(2014)). Here we will primarily discuss the LSTM—specifically, the variant
presented by Graves (2013)—in order to illustrate the operations of such
models. Concepts from LSTMs easily carry over to other gated RNNs.

Throughout this section, it will likely be useful to refer to Figure 20, which
illustrates all of the LSTM operations that we will discuss in text.

The LSTM augments the recurrent computation by introducing a memory
cell, which stores cell state vectors, c(t) 2 Rm, that are preserved between
computational steps. The LSTM computes summary vectors, h(t), directly
based on c(t), and c(t) is, in turn, computed using z(t), h(t�1) and c(t�1).
Critically, the cell is not completely overwritten based on z(t) and h(t�1),
which would expose the network to the same issues as the SimpleRNN.
Instead, a certain quantity of the previous cell state may be retained—and

Figure 2.4: Flow of data in an LSTM layer [14]. Here, z is the input, h is the hidden state, c the
cell state, f , i, o are the forget, input and output gates, M is the memory of cell states
and other symbols represent learnable weights.

As with CNNs, extensions of RNNs have also been devised. One example is about bi-

directionality, whereby the input is processed in two ways, from left to right (the forward

pass) and from right to left (the backward pass); then, outputs of the two computations are

merged (usually by concatenating them over their last dimension). The intuition behind

bi-directional RNNs is that they tend to understand the overall context better than their

2.2 Speech 18

uni-directional counterparts since they can aggregate information from the past and from

the future, which might be a useful property for tasks in the natural language domain,

where meaning does not usually simply flow from left to right.

2.2 Speech

In this section, we are introducing speech signals, both from a linguistic and digital per-

spective. Subsection 2.2.1 starts with a broad explanation of communication and the el-

ements of its spoken component, such as prosody, to then detail the concepts of dialects

and accents. Then, Subsection 2.2.2 deals with how speech is produced by the human

vocal organs and identifies important notions that will be carried over to the digital world,

such as the use of fundamental frequency. Finally, Subsection 2.2.3 introduces the main

useful Digital Signal Processing (DSP) concepts, such as ways to represent speech in

a digital form and how to further process it to extract information in the way humans

perceive sound.

2.2.1 Communication

Human communication can be thought of as having 2 principal dimensions, the verbal

and the prosodic one [166]. The former relies on a symbolic system and deals with

arranging words in sequences to form sentences, while the latter is used to emphasize

meaning and help the listener better understand the underlying message.

Communication can also travel through different means, such as text or speech. In

the former case, the concept of written communication is devised, whereby a message

is structured in sentences made of words, which are in turn composed of graphemes11.

Instead, spoken communication (at least its verbal component) has its principal unit of

form in the phoneme. In the same way as text, phonemes can be mixed to form words

and sets of words are then lined up to form meaningful sentences. Differently from

graphemes, phonemes tend to vary less from language to language.

11In alphabetic languages like English and French, graphemes can be thought of as letters or characters,
while in syllabic writing like Japanese, each grapheme represents a syllable, and in languages like Chinese
each grapheme represents a full word or part of a word.

2.2 Speech 19

Prosody

The second component in human communication is prosody and it’s the main dimension

that discriminates spoken from written communication. Prosody can serve as a way to

express emotions (e.g. anger, sadness, happiness), to indicate where a sentence ends

and more, and it does so with stress, rhythm, intonation, tone and other phonological

structures.

Prosody is fundamental in many applications, such as smart assistants, that cannot

complement speech with other cues, like visual ones (e.g. hand gestures, head nodding),

which is instead an important part of human communication, as it adds to the overall

meaning conveyed by the speaker.

As already hinted above, the written signal contains little or no prosodic information

and smart use of the verbal component has to be made to compensate for the lack of

prosody. For example, if the goal is to convey sadness, a writer may write "I’m over the

moon. I finally got promoted to assistant regional manager." instead of "I’m doing fine.

Today I got a promotion." when answering the question "How are you doing today?".

Writers may also rely on emoticons to further stress specific aspects of their message:

might mean that the writer is disgusted or not feeling very well, while means that the

writer is somehow having fun or laughing at their correspondent’s previous messages.

Another way to embed prosody in written messages is to use punctuation and underlined

italicised or bold text.

Taylor differentiates between 2 main forms of prosody, termed affective and aug-

mentative. The affective use of prosody is probably the most common, as it deals with

expressing primary and secondary emotions12, speech acts (e.g. question) and modes of

expression (e.g. sarcasm). Instead, the augmentative use of prosody serves as an addi-

tion to the verbal component in situations where its syntax can lead to confusion, as it

relies on word emphasis (to focus the listener’s attention on a specific concept) and phras-

ing structure (e.g. pauses) to nudge the listener’s interpretation towards the one intended

by the speaker.

12The term primary emotions refers to emotions which are supposed to be innate, while secondary
emotions are assumed to arise from higher cognitive processes, based on the ability to evaluate preferences
over outcomes and expectations [38].

2.2 Speech 20

Accents and dialects

As the main goal of this thesis is to include the dialect accent dimension as part of the

speech properties that can be controlled in an end-to-end modern TTS system, we devote

the next few paragraphs to explain what we mean by accent and introduce the notion of

dialect from a linguistics perspective.

An accent can be regarded as a set of speech features (such as rhythm, stress and

intonation) that are common within individuals belonging to a certain group. In other

words, people who share the same location, ethnicity, social class or native language are

more likely to also share the same accent.

Some common accent variations are labelled with adjectives. For example, the vari-

ation of accent between regions of the same country is referred to as regional accent.

Another example is the variation of accent that is due to a speaker’s native language,

which is often recognized as foreign accent. Anyways, the definition of accent mostly

comprises pronunciation-related attributes and, depending on which kind of accent vari-

ation one wishes to study, different features may be affected.

A dialect is instead considered as a superset of accents, meaning that to correctly dis-

criminate between different dialects, more than just pronunciation-related features need

to be considered, including other linguistic dimensions such as lexicon and grammar.

The usual way of dealing with dialects is by clustering them in dialect areas, i.e. by ar-

ranging them along geographical lines, as done with the broader concept of languages,

even though other factors (such as social class or ethnicity) may play an important role

in the definition of dialect, as it happens for accents.

In this work, we mainly focus on variations of accents that are due to geographi-

cal reasons, meaning that we use the terms accent, dialect accent and regional accent

interchangeably. In particular, we focus on the dialect accents of the British Isles.

Regarding accents of the British Isles, Received Pronunciation (RP) is usually pre-

sented as a supra-regional accent and it’s the variation of British English most frequently

taught in schools worldwide. RP is, still today, the main accent used in formal spoken

communication (such as broadcast television) and is often referred to as the Queen’s

English or BBC English. Other than RP, the British Isles span many different regional

accents, and care needs to be taken in their identification, as accents and dialects blend

subtly and imperceptibly into one another, i.e. there is no way to mark regional cut-off

points for ways of speaking [96]. Because of this, what we focus on in this thesis is the

2.2 Speech 21

exhibition of a set of features that most closely conform to a characteristic local way of

speaking.

2.2.2 Phonetics

Phonetics deals with the study of speech production and speech perception. The for-

mer examines the processes by which humans convert linguistic messages into speech,

while the latter aims at understanding the opposite process. Speech production is part

of articulatory phonetics, while speech perception is part of acoustic phonetics. For the

purpose of this thesis, we will only focus on speech production.

Something to keep in mind is that in the field of phonetics, phonemes are realised

as phones13 and if a phoneme has more than one phone the set of phones are called

allophones. Moreover, the term segment is used as a general term to refer to phonemes,

phones and allophones.

Speech productionSection 7.1. Articulatory phonetics and speech production 149

nasal cavity

oral cavity

tongue pharynx

glottis

larynx

vocal folds

hard palate soft palate

lips

nostril

alveolar ridge

teeth

velum

uvula

Figure 7.1 Diagram of the vocal organs or articulators

passage of the air flow, one or more constrictions is applied, the effect of which is to generate a
sound. We call constriction that causes the sound the source and the sound produced the source
sound. We shall consider the types of source in turn.

The vocal folds are two folds of tissue which stretch across the larynx. A speaker can
control the tension in his or her vocal folds (Figure 7.2) so that they can by fully closed, narrow
or open. The gap between the vocal folds is called the glottis, and we usually refer to this type of
sound production as a glottal source. When the vocal folds form a narrow opening, the air stream
moving through them causes them to vibrate, giving rise to a periodic sound. We term the rate
of vibration of the vocal folds the fundamental frequency, denoted F0. The term pitch is used
for the rate of vibration that is perceived by the listener, and in general the pitch and fundamental
frequency can be taken as the same thing. By varying the tension in the vocal folds, a speaker can
change the fundamental frequency of the sound being produced. When the vocal folds operate in
this way, they are said to be generating a voiced sound. A typical male speaker can vibrate his
vocal folds between 80 and 250 times a second, so using the standard terminology we say that his
fundamental frequency varies from 80 Hertz (Hz) to 250 Hertz. By comparison a female speaker
might have a fundamental frequency range of 120Hz to 400 Hz. All vowels are voiced sounds -

Figure 2.5: Diagram of the human vocal organs or articulators [166]. Sound is produced by
tension in the vocal folds and modified by other articulators on its way out.

13Phones are "absolute" and are not specific to any language, while phonemes can be discussed only in
reference to specific languages [189].

2.2 Speech 22

A speaker can use a combination of different vocal organs to produce a wide range of

sounds. The main source of sound is produced by tension in the vocal cords (also known

as vocal folds) and the degree of the opening between them (the gap between vocal folds

is the glottis). A narrow opening causes vocal folds to vibrate, giving rise to a peri-

odic sound identified by a so-called fundamental frequency or F0. Opening the glottis

slightly further forces periodic vibrations to stop and generates what’s called an unvoiced

sound (as opposed to the voiced one produced with a narrow opening), which is the basis

for certain speech processes such as whispering.

In voiced sounds, the speaker can vary the fundamental frequency of the produced

sound, by increasing or decreasing the tension applied to vocal folds. As a consequence,

harmonics will also change, as they represent energy sources at frequencies that are mul-

tiples of the fundamental. Harmonics give sound its basic timbre, while the fundamental

is related to sound pitch.

Sound is thus generated by a basic source, but it can be modified on its way out, and

other vocal organs, shown in Figure 2.5, come into play at this stage of the speech produc-

tion process. For example, the vocal tract (which comprises the pharynx, the oral cavity

and the nasal cavity) functions by altering the basic timbre, i.e. it tweaks harmonics’

relative strengths, but it keeps the fundamental fixed. As soon as harmonics are ampli-

fied or attenuated in amplitude by the vocal tract, they are referred to as formants14 and

named F1, F2, F3 and so on15. This model of speech, whereby source sound is generated

and further altered by the positions of body parts such as tongue, jaw and lips, is named

source/filter model. At the very last step of such a model, sound needs to be outputted:

this can happen via the mouth (oral sounds), the nose (nasal sounds) or both (nasalised

sounds).

One of the most difficult aspects of speech production is co-articulation: to a cer-

tain extent, two neighbouring phonemes have a joint articulation and this is because the

articulators are constantly moving and the pattern of movement for a particular phoneme

is heavily dependent on the phonemes preceding and following. This phenomenon has

been studied for a long time in speech processing and linguistics and it’s one of the main

sources of complexity in building artificial models of articulators.

14An amplification caused by a filter is known as resonance in signal processing and formant is the
corresponding term in speech processing.

15The fundamental frequency is named F0 but it’s not a formant, as it is not modified by the vocal tract.

2.2 Speech 23

2.2.3 Signal processing

In this section, we transition from the linguistic type of notions introduced so far to talk

about signal processing concepts. In particular, we first focus on the raw representation

of a speech signal on a digital machine, to then explain how to further process such

representations to obtain higher-level features, that will be useful for downstream tasks.

Waveform

−2

2

time

am
pl

itu
de

Figure 2.6: Example of an audio waveform. The blue line indicates the original analogue signal
and the red markers are the selected sampling points.

All speech signals in the real world are continuous signals which describe the pattern

of air pressure variation over time. These signals can be recorded with a variety of ana-

logue means, but for computer analysis, we require our signals to be digitised such that

the continuous signal is converted to a discrete one. This Analogue to Digital (AD)

process is composed of 2 main tasks: sampling and quantization. The former depends

on the sampling rate (or frequency) parameter, which intuitively indicates how many

equispaced data points to extract over a specific time frame, while the latter aims to limit

the (otherwise possibly infinite) range of amplitude values to a finite set. For example,

a continuous signal might be sampled with a frequency of 8 kHz = 8000 Hz, meaning

that once every 1
8000 = 0.000125 s an amplitude value is extracted from the signal. After

sampling, we end up with a sequence of amplitudes xn, n ∈ N that must be quantized

to be represented in a digital system. This can happen by truncation or rounding or any

other quantization method, by choosing a fixed number of bits to represent each data-

point with: a common choice is to rely on 16 bit integers, but there are also other options,

such as 32 or 64 bit floats16.
16There is usually a trade-off that needs to happen when selecting sampling rates and quantization bits

in speech systems, as the higher they are, the better the data quality, the worse the memory efficiency and
the higher the time required to process them.

2.2 Speech 24

The usual way to graphically represent a speech signal is with a waveform, i.e. by

plotting time over amplitudes. Figure 2.6 shows an example waveform, in which the blue

plot indicates the original analogue signal and the red markers are the selected sampling

points.

Fourier transform

Figure 2.7: Fourier transform visualization (image courtesy of NTi Audio). The red and blue
plots indicate the variation of amplitude over time and frequency, respectively.

The Fourier theorem states that any periodic function which is reasonably continuous

may be expressed as the sum of sine and cosine terms (called the Fourier series). The

Fourier transform is a way to achieve such decomposition and it can be applied to both

continuous and discrete signals. When applied to discrete signals it is referred to as

Discrete Fourier Transform (DFT) and it’s usually expressed with Equation 2.4.

yk =
N−1∑
n=0

xne−ϕi (2.5)=
N−1∑
n=0

xn cos(ϕ) − xn sin(ϕ)i, with ϕ = 2π
kn

N
(2.4)

In Equation 2.4, x is our discrete signal, xn is the n-th element of x, N refers to the

number of observations, i is the imaginary unit, yk are the main components of the dis-

crete transform (the amplitudes of the waves that are employed to reconstruct the original

signal) and e−ϕi is the frequency of the component. In order to transition from polar to

Cartesian coordinates in the complex plane, we can rely on Euler’s formula and split e−ϕi

into cosine and sine terms, as in Equation 2.5.

eϕi = cos(ϕ) + sin(ϕ)i (2.5)

https://www.nti-audio.com/en/support/know-how/fast-fourier-transform-fft

2.2 Speech 25

Plotting amplitudes over frequencies gives the so-called spectrum of the signal,

which intuitively tells us which frequencies play more important roles than others. As

shown in Figure 2.7, the spectrum is represented in the frequency domain (frequency on

the x-axis), while the original signal is in the time domain (time on the x-axis) and both

have amplitudes on the y-axis. Using the inverse DFT formula we can also go the other

way around, from frequency to time domain, as reported in Equation 2.6.

xn = 1
N

N−1∑
k=0

ykeϕi (2.6)

The phase spectrum, that encodes in which way signals are delayed for each fre-

quency component, can also be computed through Fourier transform. One important

consideration is that the human ear is largely insensitive to phase information in discern-

ing speech and other sounds. Thus, two waveforms with the same magnitude spectra will

sound the same regardless of phase, which is instead only used to localise sounds. This

is why in speech analysis only the magnitude spectrum is taken into consideration. Nev-

ertheless, the phase spectrum is essential for speech synthesis, as it is needed to correctly

reconstruct the original waveform when starting from the frequency domain.

Fourier transform, in its discrete variant, is quite popular also thanks to its compu-

tational efficiency. As mentioned above, Fourier transform decomposes the input signal

into a number of waves, each one with an amplitude and a frequency. Once the number of

observations N is known, frequencies are also known (they are fixed), but amplitudes yk

need to be tuned so as to make Equation 2.6 hold: for the discrete case this turns out to be

relatively simple, as there is a closed-form formula which tells exactly what the values of

each yk should be. The worst-case time complexity to compute a DFT decomposition is

O(N2), but there are faster algorithms, termed Fast Fourier Transform (FFT) methods,

that are able to achieve an upper bound of O(N log N)17.

Fourier analysis has lots of interesting applications, spanning from seasonality detec-

tion in time-series data to speeding up convolutional operators (thanks to the equivalence

between convolution in the time domain and multiplication in the frequency domain).

For what regards speech, the spectrum can be used to derive representations that in some

way better encode the information which we are interested in than simple waveforms, as

we shall see in the following sections.

17One of the fastest implementations of DFT can be found in the Fastest Fourier Transform in the West
(FFTW) C package, available at the following address: https://www.fftw.org/.

https://www.fftw.org/

2.2 Speech 26

Windowing

One of the problems of applying DFT over speech signals is that they are usually non-

stationary, meaning that their statistical properties change with time. Thus, performing

standard DFT on discretized audio snippets would result in a spectrum that does not

convey useful information, due to the "random" frequency components that might be

observed. We can get around this problem by assuming that the speech signal is in

fact stationary if considered over a sufficiently short period of time (this is because long

windows are not able to capture transitions in spectral content). Therefore we model a

complete speech waveform as a series of short term frames of speech, each of which we

consider as a stationary time-invariant system.

This approach, termed Short-Time Fourier Transform (STFT), is specified by mul-

tiple steps. First, a windowing function, along with its parameters, has to be selected

to extract frames of speech (common windowing functions are depicted in Figure 2.8).

Then, frames of speech sn are obtained from the full waveform xn by multiplication by

the chosen window wn in the time domain: sn = wn · xn. Finally, DFT is applied to each

windowed segment to obtain a sequence of short term spectra. Other important aspects

to keep in mind are related to the size of each window and the selected stride, or hop

length, which represents the amount of shift between consecutive windows.

0 200 400 600 800 1000
Sample

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

triang
boxcar
hamming
hann
bohman
blackman

Figure 2.8: Common STFT windowing functions. Windows are used to obtain a local view on
the signal and compute DFT over amplitude values inside the window.

The usual way to represent the computed sequence of short term spectra is using a

so-called spectrogram, which is a 3-dimensional plot having time and frequency on the

2.2 Speech 27

horizontal and vertical axis, respectively, and amplitudes as colour or brightness intensi-

ties. Figure 2.9 shows an example of such representation.

0 0.6 1.2 1.8 2.4 3 3.6 4.2 4.8
Time

0

2000

4000

6000

8000

10000

Hz

-80 dB

-60 dB

-40 dB

-20 dB

+0 dB

Figure 2.9: Example of a spectrogram. Each pixel in the image represents the decibel value of
the analysed signal at a specific time and frequency.

In order to reproduce human sensitivity to sound, spectrograms are usually repre-

sented in mel-scale and the logarithm operation is computed over the resulting mel-

spectrogram. The mel-scale is used because humans are more sensitive to lower frequen-

cies, while the logarithm is taken because humans are less sensitive to slight differences

in amplitude at high amplitudes than at low ones (a doubling in sound only produces an

additive increase in perceived loudness). The mel-scale intuition can be implemented in

practice by leveraging non-uniform window sizes and strides, so as to be more discrim-

inative at lower frequencies and less discriminative at higher frequencies. Figure 2.10

shows an example of a mel filter bank that uses a triangular windowing function, while

formulae in Equation 2.7 are used to transition between Hertz (f) and mel (m) units of

measure.

m = 2595 log10(1 + f/700)

f = 700(10m/2595 − 1)
(2.7)

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.10: Example of a triangular mel filter bank. Note how windows at higher frequencies
are more spaced out w.r.t. the ones at lower frequencies.

2.2 Speech 28

Acoustic features

As spectra and waveforms are high-dimensional and highly correlated from one window

to the next one, low-dimensional approximations of them might also be leveraged for

some applications. The cepstrum is a well-known example of this. Starting from a

spectrum, the cepstrum is obtained by computing the Discrete Cosine Transform (DCT)

of the log-amplitudes in the spectrum, as if it were a signal. As stated in [31], there are

8 different versions of DCT, with type 2 being the go-to reference. DCT type 2 can be

computed using the formula in Equation 2.8 [13].

yk = 2
N−1∑
n=0

xn cos
(

πk(2n + 1)
2N

)
(2.8)

The DCT is highly similar to the DFT: whereas in a DFT the basis functions are si-

nusoids, in a DCT they are restricted solely to cosines. A signal’s DCT representation

tends to have more of its energy concentrated in a smaller number of coefficients when

compared to the DFT, and is thus commonly used for signal compression [13]. In case

DCT is computed on a mel-scaled spectrum, the cepstrum is termed Mel-Frequency Cep-

strum (MFC) and its amplitudes are referred to as Mel-Frequency Cepstral Coefficients

(MFCCs). The cepstrum can also be computed on more exotic scales, such as the Bark

one, a psychoacoustical18 scale (similar to the mel one) that defines 24 barks based on

the first 24 critical bands of hearing. To convert Hertz (f) into Bark (b), and vice-versa,

we can rely on the formulae reported in Equation 2.9 [174].

b = 26.81f

1960 + f
− 0.53

f = 1960(b + 0.53)
26.28 − b

(2.9)

In case DCT is computed on a Bark-scaled spectrum, the cepstrum is termed Bark-

Frequency Cepstrum (BFC) and its amplitudes are referred to as Bark-Frequency Cepstral

Coefficients (BFCCs).

Another family of acoustic features is related to speech aperiodicities, as they are

essential for high-quality waveform synthesis. As reported in [154], a binary voicing

decision, referred to as Voiced/UnVoiced (V/UV), describes whether the signal is voiced

18Psychoacoustics is the branch of psychophysics involving the scientific study of sound perception and
audiology, i.e. how humans perceive various sounds [189].

2.3 TTS 29

or not i.e. whether there is a fundamental frequency (F0) associated with the signal or

not. However, even for the speech segments defined voiced the vocal-cord vibration

is not perfectly periodic. The amount of devoicing, occurring especially in the high

frequencies, is described by the voice aperiodicity, where aperiodicity is defined as the

power ratio between the speech signal and the aperiodic component19 of the signal [124].

Usually, aperiodicities are computed as averages in a pre-defined number of frequency

bands, such as [0 − 1, 1 − 2, 2 − 4, 4 − 6, 6 − 8] kHz, giving rise to the Band Aperiodicity

Parameter (BAP) feature.

2.3 TTS

written signal graphemes

text decoding

words phonemes spoken signal

speech encoding

Figure 2.11: The common-form model [166], which shows the flow of a signal from written to
spoken form, through the successive encoding of it in graphemes, words and
phonemes.

TTS, or speech synthesis, is the process of generating speech from some kind of tex-

tual input representation, as opposed to ASR systems that follow the opposite flow (from

audio to text). Nowadays TTS and ASR methods are ubiquitous, having the greatest ac-

complishments in smart assistants (such as Amazon Alexa, Google Assistant, Apple Siri

and Microsoft Cortana), call-centre automation and many more business applications.

This section provides an overview of the main topics and areas of research in speech

synthesis, starting from its key constituents and the most successful historical models, all

the way up to SOTA architectures and training procedures.

2.3.1 Legacy systems

TTS systems became popular for the diverse range of applications they have. One of the

first real use of this technology was in reading systems for the blind, in which a synthetic

voice is tasked to read books and articles out loud and help the disabled person to navigate

around some kind of ad-hoc operating system.

19A speech signal may be separated into a periodic and an aperiodic component using specialized algo-
rithms, such as the ones described in [124, 196].

2.3 TTS 30

Figure 2.12: Example of cost to synthesize the word cat [k æ t] in a unit selection system [176].

Before the advent of neural architectures, a diverse set of techniques were employed

to make the synthetic voice sound as intelligible and natural as possible, even though

the quality levels that could be reached were quite limited and far behind human perfor-

mance.

The most common legacy techniques can be clustered in 3 categories: articulatory,

formant and concatenative synthesis. We can position the different synthesis methods

along a knowledge about speech scale, as done in [15]: articulatory synthesis needs a

considerable understanding of the speech act itself, while concatenative systems tend to

be on the opposite side and formant models are positioned in the middle of the scale, as

they generally look for higher-level parameters or to larger pre-stored units than concate-

native models.

Articulatory synthesis is related to the creation of physical models of human articu-

lators and its popularity gradually declined because of the scarcity of data that would be

required for proper articulator simulation.

Formant synthesis, also referred to as rule-based synthesis, requires a considerable

amount of work by domain experts, as they need to work out the formant structure and

other spectral properties of speech as closely as possible. Speech is then synthesized by

various signal processing modules that are dependent on a range of parameters, such as

the formant values, bandwidth, voicing, F0 and more.

On the other side, concatenative synthesis abstracts from human characteristics and

relies on copy-pasting pre-recorded samples of audio to obtain intelligible speech. The

main problem with concatenative approaches is that in their naïve versions they produce

choppy results, with discontinuities at snippet boundaries, resulting in less natural voices.

2.3 TTS 31

Best results are obtained when working with sub-word units, such as diphones and tri-

phones20, to solve co-articulatory issues and reduce the number of recordings needed.

Early work in concatenative synthesis relied on diphone synthesis, in which profes-

sional speakers recorded one sample for each diphone in the target language and signal

processing techniques were applied on the concatenated signal to ensure naturalness.

Subsequent solutions rely on unit selection, in which speakers record entire sentences

(thus resulting in many copies of the same diphone) and correct diphones (or more gen-

erally, units) are extracted by cost minimization using two cost functions: the target cost

Ct(ui, ti) and concatenation cost Cc(ui−1, ui). An example of such costs is shown in Fig-

ure 2.12. As reported in [176], the target cost describes the mismatch between the target

speech unit specification ti and a candidate unit ui from the database, while the con-

catenation cost describes the mismatch of the join between the candidate unit ui and the

preceding unit ui−1. Unit selection greatly improves diphone synthesis thanks to its abil-

ity to capture both local and global effects (e.g. word-level and syllable-level structures),

even though speech quality is not on par with Statistical Parametric Speech Synthesis

(SPSS) and neural methods.

For some applications, legacy techniques might still suffice. In particular, sci-fi

movies commonly rely on old TTS methods to enrich the dramatic component of certain

scenes by deliberately making the synthetic voice sound more robotic or computerised:

this is because current TTS technologies generate sound that’s similar or on par with the

one produced by human articulators and the movie audience is more used to associate

a robotic-sounding voice, rather than a more natural sound, to a non-human being [79].

Also, intermediate forms of automated speech production, such as phrase splicing [48]

(also referred to as canned speech or pre-recorded prompts), might be very useful for

applications like announcements on transportation systems (such as trains and buses) or

speaking clocks. In the former example, the train staff records common sentences like the

one reported in Figure 2.13 (without the content in angular brackets), along with all the

possible train names (e.g. Frecciarossa), train numbers (e.g. 9956), train stations (e.g.

Roma Termini) and hours of the day (e.g. 21.30); then, the phrase splicing system fills

the gaps in the common sentences with the appropriate audio snippets or using speech

synthesis for novel content (e.g. a new train station).

20A diphone is an adjacent pair of phones in an utterance, a triphone consists of triples instead of pairs,
and so on. As n grows, more and more context is incorporated and intricacies such as co-articulation
become less of an issue as the transition between phones is included in the unit itself.

2.3 TTS 32

"Welcome aboard the light speed train <TRAIN-NAME>
<TRAIN-NUMBER>. The train will stop in <STOP-LIST> and will
arrive in <DESTINATION> at <TIME>."

Figure 2.13: Example of a train announcement with phrase splicing. The content in angular
brackets is what needs to be recorded separately from the template sentence.

2.3.2 Modern components

Text
analysis

Converts characters into
phonemes or linguistic features

Acoustic
model

Generates acoustic features,
from either linguistic features

or characters/phonemes

Vocoder
Generates waveforms

from either linguistic fea-
tures or acoustic features

Figure 2.14: Main TTS components. Raw text is taken as input and further processed by the
frontend module. Then, the acoustic model produces an intermediate speech
representation, which is converted to a raw waveform by the vocoder.

Figure 2.14 shows the 3 main components that are part of all modern TTS systems, as

identified in [165]. The usual pipeline starts from raw textual input, which could be a

sequence of words, characters or, more generally, graphemes. The text analysis module

(also referred to as frontend) converts the input representation into a set of linguistic fea-

tures, such as Part-Of-Speech (POS) tags and suprasegmental information, or phonemes.

The output generated by text analysis is then used as input for the subsequent acous-

tic model, which takes care of building acoustic features such as spectrograms. Finally,

acoustic features are given to a vocoder, that is tasked to generate the correct waveform

from the intermediate representation.

There are some notable exceptions to the standard pipeline depicted in Figure 2.14:

researchers have tried to skip specific steps of the workflow, giving rise to a family of

different models. For example, models such as GAN-TTS [12], EATS [47] and Effi-

cientTTS [123] are headed towards the end-to-end direction, i.e. they generate the fi-

nal waveform output from either characters or phonemes. Such end-to-end processing

has several practical advantages: first, it reduces time-to-market thanks to the simplified

maintenance required by a single model vs multiple ones; and second, it gives the entire

2.3 TTS 33

model the ability to be optimized on a single metric, the one we care about the most for

downstream tasks.

Text analysis

As described in [166], the job of the text analysis system is to take arbitrary text as input

and convert this to a form more suitable to subsequent linguistic processing.

There are multiple steps in the frontend module and they all add up to the overall

complexity of the system. One of the first tasks that should be tackled is text normaliza-

tion, which comprises 2 sub-tasks. The first is tokenization, which aims to extract tokens

from raw text and its output might depend on the language we are working with. For ex-

ample, word boundaries are generally more difficult to be identified in character-based

languages such as Chinese. The second sub-task is text normalization is verbalization, a

Sequence-to-Sequence (S2S) problem that takes as input a word or set of words targeted

for text representation and outputs a normalized variant of them that’s more suited for

synthesis. Common examples are dates, times, acronyms, currencies and more. Compli-

cations for this task are given by the one-to-many relationship between input and output

representations. For example, the time 10:09 am can be translated as "nine past ten in

the morning" or "ten oh nine a m" or simply "ten oh nine" and the correctness of the

output might depend on the context. This step can be carried out by rule-based systems,

function approximators or a combination of the two.

The next stage of the text analysis process is homograph resolution, in which raw

text is augmented with linguistic features to remove ambiguity and aid subsequent mod-

els achieve better speech synthesis. The ambiguity stems from words having the same

form, but different meanings. For example, the word "address" can be used in contexts

"The business had moved to a new address" and "We need to address the problem of ab-

senteeism", but in the first sentence its meaning is associated to that of a location, while in

the second phrase it means "to give attention to a problem". In this example, the two uses

of the word "address" require different pronunciation, meaning that it is a homograph but

not a homophone. For the purpose of TTS, homographs that are not homophones have

the greatest importance, as they entail that different sounds need to be produced out of

the same word form. To solve this issue, we can rely on well-established techniques for

POS tagging, for which a POS label is attached to each input token. In our example, the

first use of "address" would be associated with a NN label (noun), while the second one

2.3 TTS 34

to a VB label (verb), thus resolving ambiguity. In certain cases POS tagging alone might

not be sufficient to discriminate homographs. For example, in the sentence "I have an

apple" the word "apple" could mean the fruit or the company and POS tagging would

assign the same NN label (noun) in both cases. In these situations, other Natural Lan-

guage Processing (NLP) techniques such as Named Entity Recognition (NER) can come

in handy, as they could be able to tag the "apple" word with the ORG label (organization),

in case the user is referring to the company, and this would all be based on surround-

ing tokens21. Both POS and NER can be implemented as dense classification models

and nowadays SOTA results are achieved with sequence-based neural networks, such as

RNNs and Transformers.

Next, prosody prediction aims to predict a prosodic form for each linguistic and

acoustic segment from the text. One of the most important aspects of prosody prediction

is end-of-utterance detection, which deals with sentence splitting and is one of the phe-

nomena that listeners are most sensitive to [166]. If an utterance ends with a question

or exclamation mark, then the task is relatively simple, but most of the ambiguities are

related to periods, as they can be associated with both end-of-abbreviation and end-of-

utterance. For example, in the sentence "Specifically w.r.t. the unemployment problem"

the word "w.r.t." is an abbreviation for "with respect to" and periods inside "w.r.t." may

confuse the sentence splitter module. End-of-utterance detection is usually solved with

relatively simple ML methods, such as decision trees, because of their interpretability

and the possibility to inject custom rules in them [133]. Other than sentence splitting,

prosody prediction deals with identifying variations in syllable duration, loudness and

pitch to predict rhythm, stress and intonation of speech and all such procedures are based

on tagging systems to label each kind of prosody [165]. It’s also very common to com-

pute prosodic forms for different text granularities (such as phoneme, syllable, word,

phrase and utterance level) and concatenate them in a single feature vector.

The final step is Grapheme-to-Phoneme (G2P) conversion, i.e. generating a se-

quence of phonemes from a sequence of characters. This step is mostly solved with

rule-based techniques, even though care should be taken to make sure Out Of Vocabulary

(OOV) words are correctly translated.

21This step is only required for homographs that are not homophones. In the "apple" example, the word
most probably has the same pronunciation for both the fruit and the company, but it’s still reported to stress
the potential impact of a NER model in such situations.

2.3 TTS 35

Acoustic model

The acoustic model is tasked to convert graphemes/phonemes or linguistic features to

acoustic ones. Solutions that output acoustic features such as F0, MFCC, BFCC and BAP

fall under the umbrella of SPSS and rely on either Hidden Markov Models (HMMs) or

Deep Neural Networks (DNNs) to learn proper mappings between linguistic and acoustic

features. One of the main issues in SPSS-based modelling is that of alignment, meaning

that there usually isn’t a one-to-one correspondence between textual features and speech

properties. Instead, solutions that compute high-dimensional spectrograms (either linear

or mel-scaled), in place of low-dimensional features such as those based on cepstrum,

tend to perform much better because they require less pre-processing (they usually di-

rectly take characters/graphemes or phonemes as input) and they provide an easy way to

learn alignments (through attention or explicit duration prediction) [165].

One of the first acoustic models to be composed entirely of neural building blocks is

DeepVoice [5], shown in Figure 2.15.
Deep Voice: Real-time Neural TTS

�D�

'XUDWLRQV

)��
3UR

ILOH

,QIHUHQFH

*UDSKHPH�WR�3KRQHPH

'XUDWLRQ�3UHGLFWLRQ

)XQGDPHQWDO�)UHTXHQF\�
�)���3UHGLFWLRQ

$XGLR�6\QWKHVLV
7H[W $XGLR3KRQHPHV

3KRQHPH�
'LFWLRQDU\

7UDLQLQJ

�E�

$XGLR
6HJPHQWDWLRQ

*UDSKHPH�WR�3KRQHPH
7H[W 3KRQHPHV

$XGLR�6\QWKHVLV
'XUDWLRQV

'XUDWLRQ�
3UHGLFWLRQ

)XQGDPHQWDO�)UHTXHQF\�
�)���3UHGLFWLRQ)��([WUDFWLRQ3KRQHPH�

'LFWLRQDU\
$XGLR

Figure 1. System diagram depicting (a) training procedure and (b) inference procedure, with inputs on the left and outputs on the right.
In our system, the duration prediction model and the F0 prediction model are performed by a single neural network trained with a joint
loss. The grapheme-to-phoneme model is used as a fallback for words that are not present in a phoneme dictionary, such as CMUDict.
Dotted lines denote non-learned components.

the desired text.

During inference, text is fed through the grapheme-to-
phoneme model or a phoneme dictionary to generate
phonemes. Next, the phonemes are provided as inputs to
the phoneme duration model and F0 prediction model to
assign durations to each phoneme and generate an F0 con-
tour. Finally, the phonemes, phoneme durations, and F0
are used as local conditioning input features to the audio
synthesis model, which generates the final utterance.

Unlike the other models, the segmentation model is not
used during inference. Instead, it is used to annotate
the training voice data with phoneme boundaries. The
phoneme boundaries imply durations, which can be used
to train the phoneme duration model. The audio, anno-
tated with phonemes and phoneme durations as well as
fundamental frequency, is used to train the audio synthe-
sis model.

In the following sections, we describe all the building
blocks in detail.

3.1. Grapheme-to-Phoneme Model

Our grapheme-to-phoneme model is based on the encoder-
decoder architecture developed by (Yao & Zweig, 2015).
However, we use a multi-layer bidirectional encoder with
a gated recurrent unit (GRU) nonlinearity and an equally
deep unidirectional GRU decoder (Chung et al., 2014). The
initial state of every decoder layer is initialized to the final

hidden state of the corresponding encoder forward layer.
The architecture is trained with teacher forcing and decod-
ing is performed using beam search. We use 3 bidirectional
layers with 1024 units each in the encoder and 3 unidirec-
tional layers of the same size in the decoder and a beam
search with a width of 5 candidates. During training, we
use dropout with probability 0.95 after each recurrent layer.

For training, we use the Adam optimization algorithm with
�1 = 0.9,�2 = 0.999, " = 10

�8, a batch size of 64, a
learning rate of 10�3, and an annealing rate of 0.85 applied
every 1000 iterations (Kingma & Ba, 2014).

3.2. Segmentation Model

Our segmentation model is trained to output the align-
ment between a given utterance and a sequence of target
phonemes. This task is similar to the problem of aligning
speech to written output in speech recognition. In that do-
main, the connectionist temporal classification (CTC) loss
function has been shown to focus on character alignments
to learn a mapping between sound and text (Graves et al.,
2006). We adapt the convolutional recurrent neural net-
work architecture from a state-of-the-art speech recogni-
tion system (Amodei et al., 2015) for phoneme boundary
detection.

A network trained with CTC to generate sequences of
phonemes will produce brief peaks for every output
phoneme. Although this is sufficient to roughly align the
phonemes to the audio, it is insufficient to detect precise

Figure 2.15: DeepVoice architecture [5], showing the speech production process at training
(above) and inference time (below).

DeepVoice comprises the following five main modules.

1. A G2P module to convert English characters to phonemes, which are determinis-

tically mapped using the CMU dictionary22 or using a S2S model in the case of

OOV words;
22http://www.speech.cs.cmu.edu/cgi-bin/cmudict

http://www.speech.cs.cmu.edu/cgi-bin/cmudict

2.3 TTS 36

2. A segmentation model, that identifies phoneme start and end indices in an audio

file, which is only used at training time as a data labelling approach to provide

ground truths to the phoneme duration model;

3. A phoneme duration prediction model, that predicts the temporal duration of every

phoneme in a phoneme sequence (an utterance);

4. A fundamental frequency prediction model, which predicts F0 throughout the

phoneme’s duration (only if the phoneme is voiced);

5. An audio synthesis model, that combines the outputs of previous modules to syn-

thesise audio at a high sampling rate.

Unlike prior work, DeepVoice only relies on phonemes with stress annotations,

phoneme duration, and fundamental frequency (F0) as acoustic features, which are then

fed to a vocoder to generate raw waveforms.

Further work has been carried out by the same authors with DeepVoice 2 [7] and

DeepVoice 3 [139], with the former being a multi-speaker extension of the first iteration,

and the latter being a fully-convolutional variant that inherits some of the good findings

from related work, such as the use of mel-scaled log magnitude spectrograms as acoustic

features.

Vocoder

The vocoder (a contraction of voice and encoder) is the final module in the TTS pipeline

and it’s used to generate waveforms from either linguistic or acoustic features. It was

originally introduced to synthesise speech in SPSS systems, with well-known implemen-

tations such as STRAIGHT [80] and WORLD [125], and further gained popularity with

neural models such as WaveNet [131]. Vocoders used in SPSS are bound to take as input

acoustic features such as F0, MFCC and BAP, since they are the main output of SPSS-

based acoustic models. Instead, neural vocoders tend to work with magnitude spectro-

grams and are based on the concept of phase reconstruction, to recover the missing

phase spectrum and obtain higher quality waveforms. The phase spectrum is mandatory

because an arbitrary signal cannot be reconstructed by means of an inverse Fourier trans-

form when only its magnitude is known. Other non-neural algorithms can also be used

with spectrogram-based vocoders, with the most popular one being Griffin-Lim [62].

2.3 TTS 37

Figure 2.16: Griffin-Lim vs naïve inverse STFT [119]. Notice how the Griffin-Lim reconstructed
waveform (green) is way closer to the original signal (blue), than the one obtained
with an inverse STFT without phase information (red).

As described in [163], the Griffin-Lim method [62] is a signal-processing-based it-

erative algorithm to reconstruct a phase spectrogram from the amplitude spectrogram.

Let y = [y1, . . . , yT] and z = [z1, . . . , zT] be amplitude and phase spectrograms, respec-

tively. Vectors yt = [yt,0,, . . . , yt,f , . . . , yt,F] and zt = [zt,0,, . . . , zt,f , . . . , zt,F] represent

the amplitude and phase values at frame t, respectively, f is the frequency index and F

corresponds to the Nyquist frequency. Both yt,f and zt,f are real-valued variables, but

only zt,f is a variable with a period of 2π. The Griffin-Lim method randomly initializes

z first. Then, it iteratively takes an inverse STFT to obtain a waveform from y and z, fol-

lowed by an STFT to re-obtain z from the waveform. In the loop, y is substituted for the

newly computed one and the process goes on until convergence or a maximum number of

iterations is reached. The method can reconstruct the phase spectrogram consistent with

the given amplitude spectrogram, but makes some artefacts in the synthesized speech,

such as extra reverberation and phasiness owing to inappropriate initialization of z. Fig-

ure 2.16 shows the difference between a magnitude-only inverse STFT and the waveform

that can be obtained with the more accurate Griffin-Lim algorithm.

There are also notable variations of the standard Griffin-Lim method, such as its

fast variant [138], that introduces a momentum parameter α to give more control over

phase estimates updates. If α is correctly tuned and α ∈ [0, 1], it can lead to faster con-

vergence, but whenever α > 1 original convergence properties are lost. Griffin-Lim can

2.3 TTS 38

also be implemented in its deep variant [118], which stacks a sub-block including two

Griffin-Lim-inspired fixed layers and a DNN for incorporating prior knowledge of tar-

get signals into phase reconstruction. In this work, authors formulate Griffin-Lim as a

parameter-fixed RNN consisting of STFT and inverse STFT layers within the network,

along with a trainable DNN made of convolutions, batch normalization, residual connec-

tions and gated units.

Recent advances in neural models also enabled the exploitation of much more power-

ful modelling techniques. In particular, neural vocoders are generative neural networks

that can produce speech samples by sampling from a learned distribution, and WaveNet

[131] was the first model of this kind.

where �1 < xt < 1 and µ = 255. This non-linear quantization produces a significantly better
reconstruction than a simple linear quantization scheme. Especially for speech, we found that the
reconstructed signal after quantization sounded very similar to the original.

2.3 GATED ACTIVATION UNITS

We use the same gated activation unit as used in the gated PixelCNN (van den Oord et al., 2016b):

z = tanh (Wf,k ⇤ x)� � (Wg,k ⇤ x) , (2)

where ⇤ denotes a convolution operator, � denotes an element-wise multiplication operator, �(·) is
a sigmoid function, k is the layer index, f and g denote filter and gate, respectively, and W is a
learnable convolution filter. In our initial experiments, we observed that this non-linearity worked
significantly better than the rectified linear activation function (Nair & Hinton, 2010) for modeling
audio signals.

2.4 RESIDUAL AND SKIP CONNECTIONS

1⇥ 1 ReLUReLU
1⇥ 1

Dilated
Conv

tanh

⇥

+

�

1⇥ 1+ Softmax

Residual

Skip-connections

k Layers

Output

Causal
Conv

Input

Figure 4: Overview of the residual block and the entire architecture.

Both residual (He et al., 2015) and parameterised skip connections are used throughout the network,
to speed up convergence and enable training of much deeper models. In Fig. 4 we show a residual
block of our model, which is stacked many times in the network.

2.5 CONDITIONAL WAVENETS

Given an additional input h, WaveNets can model the conditional distribution p (x | h) of the audio
given this input. Eq. (1) now becomes

p (x | h) =
TY

t=1

p (xt | x1, . . . , xt�1,h) . (3)

By conditioning the model on other input variables, we can guide WaveNet’s generation to produce
audio with the required characteristics. For example, in a multi-speaker setting we can choose the
speaker by feeding the speaker identity to the model as an extra input. Similarly, for TTS we need
to feed information about the text as an extra input.

We condition the model on other inputs in two different ways: global conditioning and local condi-
tioning. Global conditioning is characterised by a single latent representation h that influences the
output distribution across all timesteps, e.g. a speaker embedding in a TTS model. The activation
function from Eq. (2) now becomes:

z = tanh
�
Wf,k ⇤ x+ V T

f,kh
�
� �

�
Wg,k ⇤ x+ V T

g,kh
�
.

4

(a) Architecture and residual blocks. The residual blocks are followed by
1 × 1 convolutions to control the number of activation maps and the
output is a distribution over 16-bit amplitude values.

Because models with causal convolutions do not have recurrent connections, they are typically faster
to train than RNNs, especially when applied to very long sequences. One of the problems of causal
convolutions is that they require many layers, or large filters to increase the receptive field. For
example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1). In this paper we use
dilated convolutions to increase the receptive field by orders of magnitude, without greatly increasing
computational cost.

A dilated convolution (also called à trous, or convolution with holes) is a convolution where the
filter is applied over an area larger than its length by skipping input values with a certain step. It is
equivalent to a convolution with a larger filter derived from the original filter by dilating it with zeros,
but is significantly more efficient. A dilated convolution effectively allows the network to operate on
a coarser scale than with a normal convolution. This is similar to pooling or strided convolutions, but
here the output has the same size as the input. As a special case, dilated convolution with dilation
1 yields the standard convolution. Fig. 3 depicts dilated causal convolutions for dilations 1, 2, 4,
and 8. Dilated convolutions have previously been used in various contexts, e.g. signal processing
(Holschneider et al., 1989; Dutilleux, 1989), and image segmentation (Chen et al., 2015; Yu &
Koltun, 2016).

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

Figure 3: Visualization of a stack of dilated causal convolutional layers.

Stacked dilated convolutions enable networks to have very large receptive fields with just a few lay-
ers, while preserving the input resolution throughout the network as well as computational efficiency.
In this paper, the dilation is doubled for every layer up to a limit and then repeated: e.g.

1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512.

The intuition behind this configuration is two-fold. First, exponentially increasing the dilation factor
results in exponential receptive field growth with depth (Yu & Koltun, 2016). For example each
1, 2, 4, . . . , 512 block has receptive field of size 1024, and can be seen as a more efficient and dis-
criminative (non-linear) counterpart of a 1⇥1024 convolution. Second, stacking these blocks further
increases the model capacity and the receptive field size.

2.2 SOFTMAX DISTRIBUTIONS

One approach to modeling the conditional distributions p (xt | x1, . . . , xt�1) over the individual
audio samples would be to use a mixture model such as a mixture density network (Bishop, 1994)
or mixture of conditional Gaussian scale mixtures (MCGSM) (Theis & Bethge, 2015). However,
van den Oord et al. (2016a) showed that a softmax distribution tends to work better, even when the
data is implicitly continuous (as is the case for image pixel intensities or audio sample values). One
of the reasons is that a categorical distribution is more flexible and can more easily model arbitrary
distributions because it makes no assumptions about their shape.

Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible values.
To make this more tractable, we first apply a µ-law companding transformation (ITU-T, 1988) to
the data, and then quantize it to 256 possible values:

f (xt) = sign(xt)
ln (1 + µ |xt|)
ln (1 + µ)

,

3

(b) Stack of dilated causal convolutions. The former property is used to
exponentially increase the receptive field, while the latter one to
respect the auto-regressive nature of the model.

Figure 2.17: The WaveNet model [131]. The model’s architecture (above) comprises a stack of
residual layers with dilated causal convolutions (below).

Inspired by the PixelCNN architecture [132], WaveNet relies on dilated causal con-

volutions, as shown in Figure 2.17b. The causality comes from conditioning the predic-

tion only on previous time-steps, which can be thought of as performing a sequence of

masked convolutions. Instead, the dilation is given by how the convolutional filters are

2.3 TTS 39

expanded while maintaining the same number of parameters. One of the big advantages

of dilated convolutions is that stacking multiple layers with exponentially increasing dila-

tion rate allows the receptive field to grow exponentially, while the number of parameters

only increases linearly and input resolution is kept the same, as briefly introduced in

Subsection 2.1.3.

The WaveNet model is auto-regressive, i.e. generating the speech sample at time t

depends on all previous samples before t. This is both an advantage, since training can be

parallelized (all time-steps of the ground truth are known a priori), and a disadvantage,

since predictions need to be generated sequentially.

Regarding the actual architecture, shown in Figure 2.17a, WaveNet relies on a stack

of residual blocks with gated activation units before the skip connection itself. Gates are

the same as the ones used in PixelCNN and they were empirically observed to be better

than standard Rectified Linear Unit (ReLU) units for modeling audio signals. Finally, the

output layer is implemented with a softmax that computes a categorical distribution of

size 65 536, because of the 16-bit integer values used to store waveforms. In practice, to

ease the training procedure authors rely on µ-law quantization, so that the training data

is transformed according to µ-law encoding, as in Equation 2.10.

x̂t = sign(xt)
ln(1 + µ|xt|)

ln(1 + µ)
, xt ∈ (−1, 1) (2.10)

Instead, WaveNet waveforms are transformed with µ-law expansion, as in Equation 2.11.

xt = sign(x̂t)
(1 + µ)|x̂t| − 1

µ
, x̂t ∈ (−1, 1) (2.11)

In this way, the final softmax layer need only output µ + 1 = 256 values.

For TTS applications, WaveNet is also conditioned on the logarithmic fundamen-

tal frequency values in addition to linguistic features and phone durations. One of the

strengths of WaveNet is that it can also be conditioned on further inputs. For example,

in a multi-speaker setting the speaker identity can be used to select different speaking

styles.

CHAPTER 3

CONDITIONING TTS ON DIALECT

ACCENT

As already introduced in Chapter 1, a long-standing goal of TTS systems has been to

gain the ability to learn representations of speech attributes independent of each other1.

Fulfilling this objective would enable end-users to tweak individual speech properties,

without affecting the others, thus opening a world of possibilities and business applica-

tions. Following this objective, in the following sections we thoroughly describe how this

thesis extends previous research, providing detailed explanations of the overall work and

each of its constituents.

In particular, this thesis proposes 2 different pipelines to deal with the dialect accent

dimension, as shown in Figure 3.1. All architectures are composed of 4 main compo-

nents, i.e. embedding modules for both speaker identity and dialect accent information,

which will be introduced in Section 3.1; an acoustic model to convert text to an interme-

diate speech representation, which is described in Section 3.2; a voice/accent conversion

system to transform speech in the target speaker/dialect accent (see Section 3.3); and a

final vocoder that converts the speech representation into a proper waveform (refer to

Section 3.4).

The first pipeline, depicted in Figure 3.1a extends the work proposed in [77] to a

multi-accent scenario. Instead, the second pipeline, reported in Figure 3.1b, relies on a

1We later refer to this core concept of independent representations as disentanglement.

Conditioning TTS on dialect accent 41

standard multi-speaker acoustic model and achieves accent control through a novel AC

system.

As a further contribution, we compare our proposed approaches with a cutting-edge

SOTA multi-lingual model that performs joint multi-speaker and cross-lingual synthesis

in an end-to-end fashion. In Section 3.5 we describe such model and the adaptations

needed to work with regional accents.

Encoder D
ec

od
er

Attentionhello there

Mel-spectrogram Waveform

Vocoder

Dialect accent
embeddings

Speaker embeddings

Acoustic model

(a) Acoustic model with speaker and accent conditioning.

Acoustic model

Accent conversion

Encoder D
ec

od
er

Attentionhello there

Mel-spectrogram

Waveform

Vocoder

Autoencoder

Mel-spectrogram

Speaker embeddings

Dialect accent
embeddings

(b) Acoustic model with speaker conditioning and accent conversion system.

Figure 3.1: Proposed architectures to control for dialect accent in TTS synthesis.

3.1 Speaker and dialect accent embeddings 42

3.1 Speaker and dialect accent embeddings

Embedding modules are used to compress a high-dimensional signal in a low(er)-

dimensional vector while keeping the main properties of the original input. Embeddings

are projected on a so-called latent (or hidden) space, which is a manifold2 that allows

to model complex similarity relationships between input features. Such similarities are

usually controlled through the training procedure of the embedding model, using custom

loss functions that encode the semantics to propagate over to the embedding space.

In this thesis, embedding spaces have to follow two different objectives: the first one

is to cluster together audio belonging to the same speaker (this is the speaker embedding

model), while the second one is to form clusters of audio uttered by speakers in the

same dialect (this is the dialect accent embedding model). In the following sections,

we first introduce learning tasks and objectives to be used in audio embedding models,

then describe the main metrics used to evaluate such models, and finally explain the

baseline model used in subsequent experiments and the SOTA model taken from the

speaker verification literature, adapted to work with both speaker and dialect classes.

3.1.1 Tasks and terminology

Audio embedding modules are usually trained on an identification task and evaluated on

a verification one. For example, in speaker embedding models the training task is speaker

identification and the evaluation task is speaker verification. Both speaker identification

and verification are sub-tasks of the broader speaker recognition challenge. In the for-

mer, the goal is to understand from which of the registered speakers a given utterance

comes, while the latter aims to accept or reject the identity claim of a speaker. Speaker

recognition systems can also be divided in text-dependent and text-independent, with

the former requiring the speaker to issue a pre-determined utterance, whereas the latter

does not rely on a specific text being spoken. The main practical difference between text-

dependent and text-independent systems is that the first one is usually easier to train and

more reliable, while the second one requires much more data to account for the variability

of a single speaker’s speech.

Speaker recognition can also be categorised into closed-set or open-set settings [29].

In the former, all identities are predefined in the training set, thus no zero-shot abilities

2In mathematics, a manifold is a topological space that locally resembles Euclidean space near each
point [189].

3.1 Speaker and dialect accent embeddings 43

are required and a simple classification model might suffice. In the latter, some identities

are not seen during training: this can be cast as a metric learning problem in which voices

must be mapped to a discriminative embedding space.

To perform speaker identification using a speaker embedding model, input speech

is mapped to the embedding space and compared to speaker centroids (extracted from

the training set) to assess which one is closest in the latent space: the label associated

with the closest centroid can then be interpreted as the speaker identified in input speech.

There are multiple ways to measure closeness, but the most popular one is to use a

k-Nearest Neighbors (kNN) approach based on some sort of distance metric, such as

Euclidean or Manhattan, or similarity measure, such as cosine similarity. Instead, in

speaker verification, the input is a pair of utterance and speaker label l̂ and the goal is to

assess whether or not the speaker identified by l̂ is the one speaking in the given utterance.

In order to do so, speaker identification is performed on the input utterance, producing

speaker label l, and labels are compared as l == l̂.

The same tasks described for speakers can be generalized to dialects, thus spanning

the dialect recognition task and its constituents’ dialect identification and dialect verifi-

cation sub-tasks. The case of full dialect recognition is strongly simplified over dialect

accent recognition, as the former can rely on dialect-specific lexicons to discriminate dif-

ferent dialects, while the latter has to rely on speech alone and models need to be able to

disentangle speech identity from dialect accent information.

In this thesis, we’ll mainly focus on text-independent and closed-set speaker/dialect

recognition systems. Also, variations of dialects due to lexicon will be ignored by our

classification models, as they are entirely dependent on the dataset being used and the

dataset of the British Isles we rely on does not expose dialect-specific lexicons.

3.1.2 Architectures

The baseline model for speaker and dialect accent embeddings this thesis adopts is based

on the d-vector concept. A d-vector is simply a way to refer to speaker embeddings gen-

erated by a DNN, hence the d prefix. The standard way to compute such d-vectors, as

described in [181] and shown in Figure 3.2, is through a stack of LSTM layers process-

ing spectrogram segments. In particular, the full spectrogram of shape [B, M, T] (with

B batch size, M number of mel-bands and T number of time steps) is unfolded in a se-

quence of overlapping tensors of shape [B, M, S], where S is the segment length. Then,

3.1 Speaker and dialect accent embeddings 44

Table 1. MultiReader vs. directly mixing multiple data sources.
Test data Mixed data MultiReader
(Enroll ! Verify) EER (%) EER (%)
OK Google ! OK Google 1.16 0.82
OK Google ! Hey Google 4.47 2.99
Hey Google ! OK Google 3.30 2.30
Hey Google ! Hey Google 1.69 1.15

Table 2. Text-dependent speaker verification EER.
Model Embed Loss Multi Average
Architecture Size Reader EER (%)
(512,) [13] 128 TE2E No 3.30

Yes 2.78
(128, 64)⇥ 3 64 TE2E No 3.55

Yes 2.67
(128, 64)⇥ 3 64 GE2E No 3.10

Yes 2.38

to a single phrase, nor completely unconstrained. We solve this
problem using the MultiReader technique (Sec. 2.3). MultiReader
has a great advantage compared to simpler approaches, e.g. directly
mixing multiple data sources together: It handles the case when
different data sources are unbalanced in size. In our case, we have
two data sources for training: 1) An “OK Google” training set from
anonymized user queries with ⇠ 150 M utterances and ⇠ 630 K
speakers; 2) A mixed “OK/Hey Google” training set that is manually
collected with ⇠ 1.2 M utterances and ⇠ 18 K speakers. The first
dataset is larger than the second by a factor of 125 in the number of
utterances and 35 in the number of speakers.

For evaluation, we report the Equal Error Rate (EER) on four
cases: enroll with either keyword, and verify on either keyword. All
evaluation datasets are manually collected from 665 speakers with
an average of 4.5 enrollment utterances and 10 evaluation utterances
per speaker. The results are shown in Table 1. As we can see, Mul-
tiReader brings around 30% relative improvement on all four cases.

We also performed more comprehensive evaluations in a larger
dataset collected from ⇠ 83 K different speakers and environmen-
tal conditions, from both anonymized logs and manual collections.
We use an average of 7.3 enrollment utterances and 5 evaluation
utterances per speaker. Table 2 summarizes average EER for differ-
ent loss functions trained with and without MultiReader setup. The
baseline model is a single layer LSTM with 512 nodes and an em-
bedding vector size of 128 [13]. The second and third rows’ model
architecture is 3-layer LSTM. Comparing the 2nd and 3rd rows, we
see that GE2E is about 10% better than TE2E. Similar to Table 1,
here we also see that the model performs significantly better with
MultiReader. While not shown in the table, it is also worth noting
that the GE2E model took about 60% less training time than TE2E.

3.2. Text-Independent Speaker Verification

For TI-SV training, we divide training utterances into smaller seg-
ments, which we refer to as partial utterances. While we don’t
require all partial utterances to be of the same length, all partial
utterances in the same batch must be of the same length. Thus,
for each batch of data, we randomly choose a time length t within
[lb, ub] = [140, 180] frames, and enforce that all partial utterances
in that batch are of length t (as shown in Figure 3).

Fig. 3. Batch construction process for training TI-SV models.

«��5XQ�/670�RQ�HDFK�RI�WKHVH�VOLGLQJ�ZLQGRZV

6OLGLQJ�ZLQGRZ�VWULGH

6OLGLQJ�ZLQGRZ�
OHQJWK

/��QRUPDOL]H��WKHQ�DYHUDJH�WR�JHW�
HPEHGGLQJ

G�YHFWRUV

Fig. 4. Sliding window used for TI-SV.

During inference time, for every utterance we apply a sliding
window of fixed size (lb + ub)/2 = 160 frames with 50% overlap.
We compute the d-vector for each window. The final utterance-wise
d-vector is generated by L2 normalizing the window-wise d-vectors,
then taking the element-wise averge (as shown in Figure 4).

Our TI-SV models are trained on around 36M utterances from
18K speakers, which are extracted from anonymized logs. For eval-
uation, we use an additional 1000 speakers with in average 6.3 en-
rollment utterances and 7.2 evaluation utterances per speaker. Ta-
ble 3 shows the performance comparison between different train-
ing loss functions. The first column is a softmax that predicts the
speaker label for all speakers in the training data. The second col-
umn is a model trained with TE2E loss. The third column is a model
trained with GE2E loss. As shown in the table, GE2E performs bet-
ter than both softmax and TE2E. The EER performance improve-
ment is larger than 10%. In addition, we also observed that GE2E
training was about 3⇥ faster than the other loss functions.

Table 3. Text-independent speaker verification EER (%).
Softmax TE2E [13] GE2E
4.06 4.13 3.55

4. CONCLUSIONS

In this paper, we proposed the generalized end-to-end (GE2E) loss
function to train speaker verification models more efficiently. Both
theoretical and experimental results verified the advantage of this
novel loss function. We also introduced the MultiReader technique
to combine different data sources, enabling our models to support
multiple keywords and multiple languages. By combining these two
techniques, we produced more accurate speaker verification models.

Figure 3.2: Computation of d-vector embeddings [181] in the baseline architecture. Intermediate
representations are computed in a sliding window fashion and averaged to obtain a
final embedding.

each segment is fed into a recurrent module and hidden states are collapsed in a single

dimension by either averaging or simply by keeping the last one. Collapsed vectors are

then projected onto the embedding size and segment embedding vectors are averaged

together to obtain the embedding vector of the full spectrogram.

The standard d-vector architecture is quite simple, but effective. Still, the major

strength of the d-vector model comes from its loss function, namely Generalized End-

To-End (GE2E) loss, first introduced in [181]. Considering a mini-batch of size M × N

with M utterances from each of N different speakers and ej,i as the embedding of utter-

ance i (1 ≤ i ≤ M) from speaker j (1 ≤ j ≤ M), the GE2E loss is computed as reported

in Equation 3.1.

LGE2E = − 1
N

∑
j,i

log exp(Sj,i,j)∑N
k=1 exp(Sj,i,k)

, (3.1)

where

Sj,i,k =

w · cos(ej,i, c

(−i)
j) + b if k = j

w · cos(ej,i, ck) otherwise
, (3.2)

with w and b learnable weights and biases and centroids c computed as in Equation 3.3.

cj = 1
M

∑M
m=1 ej,m,

c
(−i)
j = 1

M−1
∑M

m=1
m ̸=i

ej,m.
(3.3)

At each training step, GE2E builds a similarity matrix S (as shown in Figure 3.3) that

defines the similarities between each ej,i and all centroids ck. This approach contrasts

3.1 Speaker and dialect accent embeddings 45

with TE2E [65], a previous work by the same authors, where similarity is a scalar value

that defines how close embedding vector ej,∼ is to a single tuple centroid ck.

([WUDFW�
)HDWXUH

VSN�

VSN�

VSN�

VSN�

VSN�

VSN�

6LPLODULW\�0DWUL[

/670�
1HWZRUN

(PEHGGLQJ�9HFWRUV%DWFK�RI�)HDWXUHV'DWD�8WWHUDQFH

3RV�/DEHO

1HJ�/DEHO

Fig. 1. System overview. Different colors indicate utterances/embeddings from different speakers.

Fig. 2. GE2E loss pushes the embedding towards the centroid of the
true speaker, and away from the centroid of the most similar different
speaker.

2. Negative tuples: {xji, (xk,i1 , . . . ,xk,iP)} for k 6= j and
1 ip M for p = 1, . . . , P . For each xji, we have to
compare with all other N � 1 centroids, where each set of
those N � 1 comparisons contains

�
M
P

�
tuples.

Each positive tuple is balanced with a negative tuple, thus the to-
tal number is the maximum number of positive and negative tuples
times 2. So, the total number of tuples in TE2E loss is:

2⇥max
⇣ M

P

!
, (N � 1)

M
P

!⌘
� 2(N � 1). (11)

The lower bound of Equation 11 occurs when P = M . Thus, each
update for xji in our GE2E loss is identical to at least 2(N � 1)
steps in our TE2E loss. The above analysis shows why GE2E up-
dates models more efficiently than TE2E, which is consistent with
our empirical observations: GE2E converges to a better model in
shorter time (See Sec. 3 for details).

2.3. Training with MultiReader

Consider the following case: we care about the model application
in a domain with a small dataset D1. At the same time, we have a
larger dataset D2 in a similar, but not identical domain. We want to
train a single model that performs well on dataset D1, with the help
from D2:

L(D1, D2;w) = Ex2D1 [L(x;w)] + ↵Ex2D2 [L(x;w)]. (12)

This is similar to the regularization technique: in normal regular-
ization, we use ↵||w||22 to regularize the model. But here, we use
Ex2D2 [L(x;w)] for regularization. When dataset D1 does not have

sufficient data, training the network on D1 can lead to overfitting.
Requiring the network to also perform reasonably well on D2 helps
to regularize the network.

This can be generalized to combine K different, possibly ex-
tremely unbalanced, data sources: D1, . . . , DK . We assign a weight
↵k to each data source, indicating the importance of that data
source. During training, in each step we fetch one batch/tuple of
utterances from each data source, and compute the combined loss
as: L(D1, · · · , DK) =

PK
k=1 ↵kExk2Dk [L(xk;w)], where each

L(xk;w) is the loss defined in Equation 10.

3. EXPERIMENTS

In our experiments, the feature extraction process is the same as [6].
The audio signals are first transformed into frames of width 25ms
and step 10ms. Then we extract 40-dimension log-mel-filterbank
energies as the features for each frame. For TD-SV applications,
the same features are used for both keyword detection and speaker
verification. The keyword detection system will only pass the frames
containing the keyword into the speaker verification system. These
frames form a fixed-length (usually 800ms) segment. For TI-SV
applications, we usually extract random fixed-length segments after
Voice Activity Detection (VAD), and use a sliding window approach
for inference (discussed in Sec. 3.2) .

Our production system uses a 3-layer LSTM with projec-
tion [16]. The embedding vector (d-vector) size is the same as the
LSTM projection size. For TD-SV, we use 128 hidden nodes and
the projection size is 64. For TI-SV, we use 768 hidden nodes with
projection size 256. When training the GE2E model, each batch
contains N = 64 speakers and M = 10 utterances per speaker.
We train the network with SGD using initial learning rate 0.01,
and decrease it by half every 30M steps. The L2-norm of gradient is
clipped at 3 [17], and the gradient scale for projection node in LSTM
is set to 0.5. Regarding the scaling factor (w, b) in loss function,
we also observed that a good initial value is (w, b) = (10,�5),
and the smaller gradient scale of 0.01 on them helped to smooth
convergence.

3.1. Text-Dependent Speaker Verification

Though existing voice assistants usually only support a single key-
word, studies show that users prefer that multiple keywords are
supported at the same time. For multi-user on Google Home, two
keywords are supported simultaneously: “OK Google” and “Hey
Google”.

Enabling speaker verification on multiple keywords falls be-
tween TD-SV and TI-SV, since the transcript is neither constrained

Figure 3.3: Similarity matrix with the GE2E loss [181]. For all speakers, the same number of
utterances is added to a mini-batch and the similarity matrix between d-vectors is
used as a mean for contrastive learning.

Other than the baseline d-vector model, we rely on TitaNet [93], an encoder-decoder

architecture, shown in Figure 3.4, that at the time of writing is SOTA on the speaker

verification and diarization tasks.

Figure 3.4: TitaNet architecture, composed of an encoder-decoder structure and an attentive
statistics pooling layer to compute utterance-level features.

Most of TitaNet’s complexity can be attributed to the encoder, while the decoder’s

number of parameters is kept low. The former is divided into blocks B0, . . . , BN , where

3.1 Speaker and dialect accent embeddings 46

B0 is called prolog and BN is called epilog. The prolog and epilog blocks are a sequence

of 1D convolution, Batch Normalization (BN) [74] and ReLU activation, while mega-

blocks are composed by R sub-blocks each (R = 3 in the TitaNet paper).

One sub-block is a sequence of 1D depth-wise convolution, BN, ReLU and dropout

[159]. After an input passes through all sub-blocks, it also goes through a Squeeze-and-

Excitation (SE) [70] layer. Then, the initial mega-block input is merged with the SE

output through a skip connection that contains a 1 × 1 convolution (to match input and

output channels) and BN. After the skip connection, ReLU activation and dropout are

applied and one mega-block computation is over.

The decoder has an attentive statistics pooling layer [130] to form fixed-size

utterance-level features from variable frame-level features. It can be thought of as an

alternative to global average pooling [110], where each channel is given different weight,

computed by the attention mechanism. The main peculiarity of attentive statistics

pooling is that it generates not only weighted means but also weighted variances and

concatenates them to form a single attention context vector.

Pooling is a mandatory step in audio embedding models, as the goal is to compress

frame-level features to utterance-level features. In order to understand why that is the

case, looking at input/output shapes helps. In the case of TitaNet, its input is a mel-

scaled spectrogram of shape [B, M, T] (with B batch size, M number of mel-bands and

T number of time steps) and its output is an embedding matrix of size [B, E], where E is

the chosen embedding size. Figure 3.5 shows the shape adjustments that an input tensor

has to go through in order to get the correct output: the encoder produces an output of

shape [B, H, T] (where H is the hidden size, a hyper-parameter), that has one too many

dimensions in order to be used as an embedding vector.

[B, M, T] [B, H, T]

encoder

[B, H × 2]

pooling

[B, E]

embedding

[B, C]

logit

Figure 3.5: Tensor shape journey in TitaNet. The input mel-spectrogram of shape [B, M, T]
flows through the network and gets mapped to an embedding vector of shape [B, E].

So, one solution is to compress the time-dimension (i.e. the last one). The simplest

approach for compression would be to average or sum along the dimension that has to

be removed [158], but in this way, the same weight would be given to all spectrogram

frames. Instead, it is often the case that some frames are far more important than others to

discriminate speakers and/or dialect accents. To account for such variability, the attention

3.1 Speaker and dialect accent embeddings 47

mechanism comes to the rescue, as it allows to compute frame-level importance as part

of the training procedure. As described in [130], a simple attention model computes a

scalar score et for each frame-level feature, i.e. et = vT f(Wht + b) + k, where f(·) is

a non-linear activation function, such as tanh or ReLU. The score is normalized over all

frames by a softmax function to get αt = exp(et)∑T

k
exp(ek)

. The normalized score αt is then used

as the weight in the pooling layer to calculate the weighted mean vector µ = ∑T
t αtht.

Okabe, Koshinaka, and Shinoda additionally compute higher-order statis-

tics in the attention module, where standard deviations are calculated as σ =√∑T
t αtht

⊙
ht − µ

⊙
µ and

⊙
is the Hadamard product. The intuition behind includ-

ing weighted standard deviations is to bring even more discriminability to utterance-level

features and model long-term variations in accord with importance. Finally, weighted

means and standard deviations are concatenated to get an output of shape [B, H × 2].
Notice that the additional number of parameters when using attentive statistics pooling

does not come from the attention module itself, as both µ and σ share the same weights

α, but from subsequent layers that have to work with an input double the size of what

would be obtained with the non-statistics version of attentive pooling.

After the attention mechanism, a linear layer projects vectors from the attention con-

text output size to the given embedding size (192 in the TitaNet paper). This linear layer

is followed by BN and its output is the embedding vector.

Afterwards, another linear layer maps vectors from the embeddings space to output

logits and the chosen loss function is applied. Candidate loss functions include standard

CE or angular margin variants of it. In its original implementation, TitaNet relies on an

additive angular margin loss, also referred to as ArcFace loss [43] and computed as in

Equation 3.4.

LArcF ace = − 1
N

N∑
i=1

exp(s · cos(θyi,i + m))
exp(s · cos(θyi,i + m) +∑

j ̸=yi
exp(s · cos(θj,i))

(3.4)

In Equation 3.4, s is the scale parameter, m is the additive margin, N is the total number

of utterances in the mini-batch, yi (1 ≤ yi ≤ C) is the label for utterance i (1 ≤ i ≤ N)

and C is the total number of classes. Figure 3.6 shows the flow of operations needed to

compute the ArcFace loss on an example input tensor xi.

TitaNet’s architecture is heavily inspired by previous work. In particular, the main

building blocks were first introduced in QuartzNet [97], an ASR model that was SOTA

3.1 Speaker and dialect accent embeddings 48

Figure 3.6: ArcFace loss computation. The margin m is summed to the angle between
normalized features and weights.

in 2019; then, SE was brought in by ContextNet [63], another ASR architecture, taking

the lead in SOTA over QuartzNet in 2020. The same authors presented another speaker

recognition/verification model 1 year before TitaNet, i.e. SpeakerNet [92]. The main dif-

ference between SpeakerNet and TitaNet is that the former is based on QuartzNet, while

the latter is based on ContextNet. Moreover, SpeakerNet uses MFCCs input features,

while TitaNet relies on mel-scaled spectrograms. Another gap between the 2 models

is in the amount of data used: SpeakerNet was trained with VoxCeleb1 [127] and Vox-

Celeb2 [28] public datasets, while TitaNet on the same, plus Fisher [27], Switchboard

[58] and LibriSpeech [134] datasets.

3.1.3 Evaluation

In terms of evaluation, speaker verification systems are assessed through Receiver Op-

erating Characteristic (ROC) curves and derived metrics. Furui explains how metrics

such as Equal Error Rate (EER) and minimum of the Detection Cost Function (DCF) are

computed. As with all binary classification problems, in speaker verification (and dialect

verification) there are 4 different error types, as depicted in the confusion matrix in Fig-

ure 3.7. In particular, denoting P as the positive class (which marks the speaker/dialect

of the utterances being compared as the same) and N as the negative class, the outcome

of a prediction either coincides with the target, in which case a true positive TP or a true

negative TN is spawn, or it does not, in which case the count of false positives FP or

false negatives FN increases.

Switching from raw numbers to rates, we obtain TPR = T P
P

, FPR = F P
P

, TNR =
T N
N

, FNR = F N
N

. In the speaker verification literature, FNR is also referred to as FR,

i.e. the probability of false rejection, while FPR is also referred to as FA, i.e. the

probability of false acceptance.

3.1 Speaker and dialect accent embeddings 49

TPP

P

FN

N

FPN TN

target

prediction

Figure 3.7: Confusion matrix in a binary classification problem. P represents the positive class,
N the negative one and T and F indicate True and False prefixes.

Plotting FPR over TPR gives rise to the ROC curve. Figure 3.8 shows an ROC

plot comparing three speaker verification systems A, B and C where only the decision

threshold a, b and c is varied: such curves show system B as being consistently superior

to the others.

The ROC curve is sufficient to compute the EER score of each system: in Figure 3.8,

EER is the point at the intersection of each curve with the dashed straight line of 45
degrees.18 EVALUATION OF TEXT AND SPEECH SYSTEMS

b

a

1

10
False acceptance

A

B

C

C
or

re
ct

 a
cc

ep
ta

nc
e

EER

Figure 4. Receiver operating characteristic (ROC) curves; performance examples of three
speaker verification systems: A, B, and C.

Decision criterion (Threshold)
a c b

0

E
rr

or
 r

at
e

1

FA=
P (S | n)

FR=
P (N | s)

Figure 5. Relationship between error rate and decision criterion (threshold) in speaker
verification.

of curve B is consistently superior to that of curve A; and C corresponds
to the limiting case of purely chance performance. On the other hand, the
relationship between the decision criterion and the two kinds of errors is
presented in Figure 5. A “tight” decision criterion makes it difficult for impos-
tors to be falsely accepted by the system. However, it increases the possibility
of rejecting customers. Conversely, a “loose” criterion enables customers to
be consistently accepted, while also falsely accepting impostors. Position a in
Figures 4 and 5 corresponds to the case in which a strict decision criterion is
employed, and position b corresponds to that wherein a lax criterion is used. To
set the threshold at the desired level of FR and FA, it is necessary to know the
distribution of customer and impostor scores as baseline information. The de-
cision criterion in practical applications should be determined according to the

Figure 3.8: ROC curves comparing speaker verification systems. A, B and C refer to the same
system with different decision thresholds a, b and c.

Another popular metric in speaker verification evaluation is the minimum of the DCF.

Equation 3.5 reports its computation, following the standard introduced in the NIST

3.1 Speaker and dialect accent embeddings 50

speaker recognition evaluations [140].

min DCF = min CDET

min{CF R · PC , CF A · (1 − PC)}
(3.5)

Computing min DCF requires obtaining min CDET first, and then normalizing it. To

compute min CDET , the minimum CDET at different decision thresholds θ = [θ1, . . . , θN]
is selected. Equation 3.6 reports a CDET computation for a generic threshold θi.

CDET (θi) = CF R · FR(θi) · PC + CF A · FA(θi) · (1 − PC) (3.6)

Computing CDET and min DCF also requires setting the following hyper-parameters:

the cost of a false rejection CF R, the cost of a false acceptance CF A and the a priori

probability of a customer PC . In [140], such variables are set to CF R = CF A = 1.0 and

PC = 0.01 and this thesis follows the exact same approach. Finally, Figure 3.9 shows

examples of Detection Error Trade-off (DET) curves3.

Figure 3.9: Examples of DET curves for different systems. The EER for each system is obtained
by intersecting its DET curve with the first bisector.

3EER corresponds to the intersection of the DET curve with the first bisector curve [56].

3.2 Acoustic model 51

3.2 Acoustic model

This section deals with the introduction of the core module that is tasked to convert

input text into speech representations. As acoustic models are part of the standard TTS

pipeline described in Section 2.3, no more words will be spent in describing the goals and

objectives of such models. Rather, the following sections report the neural architecture

selected for this thesis and delineate well-established evaluation methods and metrics for

acoustic models, both as a whole and for what concerns this thesis.

3.2.1 Architectures

$WWHQWLRQ

3UH�QHW

&%+*

&KDUDFWHU�HPEHGGLQJV

$WWHQWLRQ�
511

'HFRGHU�
511

3UH�QHW

$WWHQWLRQ�
511

'HFRGHU�
511

3UH�QHW

$WWHQWLRQ�
511

'HFRGHU�
511

3UH�QHW

&%+*

/LQHDU�VFDOH
VSHFWURJUDP

6HT�VHT�WDUJHW
ZLWK�U �

*ULIILQ�/LP�UHFRQVWUXFWLRQ

$WWHQWLRQ�LV�DSSOLHG�
WR�DOO�GHFRGHU�VWHSV

�*2!�IUDPH

Figure 1: Model architecture. The model takes characters as input and outputs the corresponding

raw spectrogram, which is then fed to the Griffin-Lim reconstruction algorithm to synthesize speech.

or machine translation (Wu et al., 2016), TTS outputs are continuous, and output sequences are
usually much longer than those of the input. These attributes cause prediction errors to accumulate
quickly. In this paper, we propose Tacotron, an end-to-end generative TTS model based on the
sequence-to-sequence (seq2seq) (Sutskever et al., 2014) with attention paradigm (Bahdanau et al.,
2014). Our model takes characters as input and outputs raw spectrogram, using several techniques
to improve the capability of a vanilla seq2seq model. Given <text, audio> pairs, Tacotron can
be trained completely from scratch with random initialization. It does not require phoneme-level
alignment, so it can easily scale to using large amounts of acoustic data with transcripts. With a
simple waveform synthesis technique, Tacotron produces a 3.82 mean opinion score (MOS) on an
US English eval set, outperforming a production parametric system in terms of naturalness1.

2 RELATED WORK

WaveNet (van den Oord et al., 2016) is a powerful generative model of audio. It works well for TTS,
but is slow due to its sample-level autoregressive nature. It also requires conditioning on linguistic
features from an existing TTS frontend, and thus is not end-to-end: it only replaces the vocoder and
acoustic model. Another recently-developed neural model is DeepVoice (Arik et al., 2017), which
replaces every component in a typical TTS pipeline by a corresponding neural network. However,
each component is independently trained, and it’s nontrivial to change the system to train in an
end-to-end fashion.

To our knowledge, Wang et al. (2016) is the earliest work touching end-to-end TTS using seq2seq
with attention. However, it requires a pre-trained hidden Markov model (HMM) aligner to help the
seq2seq model learn the alignment. It’s hard to tell how much alignment is learned by the seq2seq
per se. Second, a few tricks are used to get the model trained, which the authors note hurts prosody.
Third, it predicts vocoder parameters hence needs a vocoder. Furthermore, the model is trained on
phoneme inputs and the experimental results seem to be somewhat limited.

Char2Wav (Sotelo et al., 2017) is an independently-developed end-to-end model that can be trained
on characters. However, Char2Wav still predicts vocoder parameters before using a SampleRNN
neural vocoder (Mehri et al., 2016), whereas Tacotron directly predicts raw spectrogram. Also, their
seq2seq and SampleRNN models need to be separately pre-trained, but our model can be trained

1Sound demos can be found at https://google.github.io/tacotron

2

(a) Encoder-decoder architecture.

from scratch. Finally, we made several key modifications to the vanilla seq2seq paradigm. As
shown later, a vanilla seq2seq model does not work well for character-level inputs.

3 MODEL ARCHITECTURE

The backbone of Tacotron is a seq2seq model with attention (Bahdanau et al., 2014; Vinyals et al.,
2015). Figure 1 depicts the model, which includes an encoder, an attention-based decoder, and a
post-processing net. At a high-level, our model takes characters as input and produces spectrogram
frames, which are then converted to waveforms. We describe these components below.

&RQY�'�OD\HUV

+LJKZD\�OD\HUV

&RQY�'�EDQN���VWDFNLQJ

0D[�SRRO�DORQJ�WLPH��VWULGH ��

%LGLUHFWLRQDO�511

5HVLGXDO�FRQQHFWLRQ

&RQY�'�SURMHFWLRQV

Figure 2: The CBHG (1-D convolution bank + highway network + bidirectional GRU) module
adapted from Lee et al. (2016).

3.1 CBHG MODULE

We first describe a building block dubbed CBHG, illustrated in Figure 2. CBHG consists of a
bank of 1-D convolutional filters, followed by highway networks (Srivastava et al., 2015) and a
bidirectional gated recurrent unit (GRU) (Chung et al., 2014) recurrent neural net (RNN). CBHG
is a powerful module for extracting representations from sequences. The input sequence is first
convolved with K sets of 1-D convolutional filters, where the k-th set contains Ck filters of width
k (i.e. k = 1, 2, . . . ,K). These filters explicitly model local and contextual information (akin to
modeling unigrams, bigrams, up to K-grams). The convolution outputs are stacked together and
further max pooled along time to increase local invariances. Note that we use a stride of 1 to
preserve the original time resolution. We further pass the processed sequence to a few fixed-width
1-D convolutions, whose outputs are added with the original input sequence via residual connections
(He et al., 2016). Batch normalization (Ioffe & Szegedy, 2015) is used for all convolutional layers.
The convolution outputs are fed into a multi-layer highway network to extract high-level features.
Finally, we stack a bidirectional GRU RNN on top to extract sequential features from both forward
and backward context. CBHG is inspired from work in machine translation (Lee et al., 2016),
where the main differences from Lee et al. (2016) include using non-causal convolutions, batch
normalization, residual connections, and stride=1 max pooling. We found that these modifications
improved generalization.

3.2 ENCODER

The goal of the encoder is to extract robust sequential representations of text. The input to the
encoder is a character sequence, where each character is represented as a one-hot vector and em-

3

(b) CBHG module.

Figure 3.10: The Tacotron model [185], in its first iteration. The architecture (left) is a S2S one
and comprises a set of CBHG modules (right).

The acoustic model of our choice is that of Tacotron 2. Starting from its first version,

Tacotron [185] is a S2S model [8, 161] that directly generates spectrograms from raw

characters. This approach greatly simplifies the legacy TTS pipeline described in Subsec-

tion 2.3.1 and achieves better performance than SPSS-based acoustic modelling, while

also enabling rich and easy conditioning. Tacotron slightly modifies the standard S2S

approach, but still maintains its basic components:

1. Encoder: the combination of two custom modules, namely pre-net and CBHG, the

former being a bottleneck block (composed of linear, ReLU and dropout layers)

and the latter being a contrived building block (shown in Figure 3.10b) made of

convolutions, batch normalization, highway and GRU cells (hence the name); the

output of this step is a hidden representation of the whole input sequence;

3.2 Acoustic model 52

2. Decoder: a number of GRU cells are given in input a vector obtained by concate-

nating outputs from a "pre-net" (the same module used in the encoder) and the

dynamic context vector produced by the attention mechanism described in [8]; the

output of this step is an 80-band mel-scaled spectrogram;

3. Post-processing: the combination of a CBHG module and a final linear layer to

convert mel-scaled spectrograms to linear ones and perform waveform synthesis

through the Griffin-Lim algorithm.

About the encoder, its output should be a set of semantically-meaningful hidden

states, one for each character/phoneme in the input sequence. Intuitively, convolutional

layers are there to encode local correlations between inputs and to enable the inclusion

of a relatively large context, in ways comparable to n-grams processing.

Once the encoder outputs are generated, hidden states are fed to an attention network

that consumes them to generate context vectors. In a plain S2S model, the encoder would

map the entire input sequence (such as a sentence) in a single vector (named context

vector), that would ideally correctly summarize the input. Then, the decoder would be

trained to predict the output sequence, one step at a time, using the same context vector

at each step. Bahdanau, Cho, and Bengio extend the concept of context vector in the

following way: each decoder step relies on a different context vector, by learning to

attend to a mix of encoder hidden states. This attention mechanism removes the tight

information bottleneck that was imposed by the use of a single, fixed-length context

vector. As a side effect, this attention mechanism allows the model to align outputs

with corresponding inputs in an effective way: in acoustic modelling, this means that

the models have an intrinsic way of learning grapheme/phoneme durations. Formally, in

Bahdanau attention (or content-based attention) the context vector for decoder step i is

computed as ci = ∑
j αi,jhj , where hj is the encoder hidden state at step j and αi,j is

a learnable attention weight (also referred to as alignment), that encodes the relevance

of encoder step j for the decoder step i. The soft attention weights αi,j are computed

as αi,j = exp(ei,j)∑
k

exp(ei,k) , where ei,j is a score (referred to as energy) obtained as ei,j =
vT f(Wsi−1 + Uhj), with v, W, U learnable weights, si−1 the decoder output from the

previous step and f being a non-linear function such as tanh.

As soon as a context vector is generated for the current step, the decoding stage can

start. At each decoder step, the previous spectrogram frame (or a special <GO> at the

very beginning) is passed through a pre-net module and its output is concatenated with

3.2 Acoustic model 53

the attention context vector, to then be fed to a simple RNN. The recurrent network is

finally tasked to output the predicted spectrogram frame(s): how many to predict at each

step depends on the selected reduction factor parameter r4. Something to keep in mind

is that being an auto-regressive S2S model, Tacotron suffers from a train-test mismatch,

as teacher forcing5 [190] is used at training time, while auto-regressive generation has

to be enabled at inference time.

As far as losses go, Tacotron only relies on reconstruction errors. In particular, its

total loss is given by an equally-weighted sum of a simple L1 loss for both the decoder

outputs (mel-scale spectrograms) and post-processing net (linear-scale spectrograms).

While linear spectrograms discard phase information (and are
therefore lossy), algorithms such as Griffin-Lim [14] are capable of
estimating this discarded information, which enables time-domain
conversion via the inverse short-time Fourier transform. Mel spectro-
grams discard even more information, presenting a challenging in-
verse problem. However, in comparison to the linguistic and acoustic
features used in WaveNet, the mel spectrogram is a simpler, lower-
level acoustic representation of audio signals. It should therefore
be straightforward for a similar WaveNet model conditioned on mel
spectrograms to generate audio, essentially as a neural vocoder. In-
deed, we will show that it is possible to generate high quality audio
from mel spectrograms using a modified WaveNet architecture.

2.2. Spectrogram Prediction Network

As in Tacotron, mel spectrograms are computed through a short-
time Fourier transform (STFT) using a 50 ms frame size, 12.5 ms
frame hop, and a Hann window function. We experimented with a
5 ms frame hop to match the frequency of the conditioning inputs
in the original WaveNet, but the corresponding increase in temporal
resolution resulted in significantly more pronunciation issues.

We transform the STFT magnitude to the mel scale using an 80
channel mel filterbank spanning 125 Hz to 7.6 kHz, followed by log
dynamic range compression. Prior to log compression, the filterbank
output magnitudes are clipped to a minimum value of 0.01 in order
to limit dynamic range in the logarithmic domain.

The network is composed of an encoder and a decoder with atten-
tion. The encoder converts a character sequence into a hidden feature
representation which the decoder consumes to predict a spectrogram.
Input characters are represented using a learned 512-dimensional
character embedding, which are passed through a stack of 3 convolu-
tional layers each containing 512 filters with shape 5⇥ 1, i.e., where
each filter spans 5 characters, followed by batch normalization [18]
and ReLU activations. As in Tacotron, these convolutional layers
model longer-term context (e.g., N -grams) in the input character
sequence. The output of the final convolutional layer is passed into a
single bi-directional [19] LSTM [20] layer containing 512 units (256
in each direction) to generate the encoded features.

The encoder output is consumed by an attention network which
summarizes the full encoded sequence as a fixed-length context vector
for each decoder output step. We use the location-sensitive attention
from [21], which extends the additive attention mechanism [22] to
use cumulative attention weights from previous decoder time steps
as an additional feature. This encourages the model to move forward
consistently through the input, mitigating potential failure modes
where some subsequences are repeated or ignored by the decoder.
Attention probabilities are computed after projecting inputs and lo-
cation features to 128-dimensional hidden representations. Location
features are computed using 32 1-D convolution filters of length 31.

The decoder is an autoregressive recurrent neural network which
predicts a mel spectrogram from the encoded input sequence one
frame at a time. The prediction from the previous time step is first
passed through a small pre-net containing 2 fully connected layers
of 256 hidden ReLU units. We found that the pre-net acting as an
information bottleneck was essential for learning attention. The pre-
net output and attention context vector are concatenated and passed
through a stack of 2 uni-directional LSTM layers with 1024 units.
The concatenation of the LSTM output and the attention context
vector is projected through a linear transform to predict the target
spectrogram frame. Finally, the predicted mel spectrogram is passed
through a 5-layer convolutional post-net which predicts a residual
to add to the prediction to improve the overall reconstruction. Each

'LEVEGXIV�
)QFIHHMRK

0SGEXMSR�
7IRWMXMZI�
%XXIRXMSR

��'SRZ�
0E]IVW

&MHMVIGXMSREP�
0781-RTYX�8I\X

��0E]IV�
4VI�2IX

��0781�
0E]IVW 0MRIEV�

4VSNIGXMSR

0MRIEV�
4VSNIGXMSR

7XST�8SOIR

��'SRZ�0E]IV�
4SWX�2IX

0HO�6SHFWURJUDP

;EZI2IX�
1S0

;EZIJSVQ�
7EQTPIW

Fig. 1. Block diagram of the Tacotron 2 system architecture.

post-net layer is comprised of 512 filters with shape 5⇥ 1 with batch
normalization, followed by tanh activations on all but the final layer.

We minimize the summed mean squared error (MSE) from before
and after the post-net to aid convergence. We also experimented
with a log-likelihood loss by modeling the output distribution with
a Mixture Density Network [23, 24] to avoid assuming a constant
variance over time, but found that these were more difficult to train
and they did not lead to better sounding samples.

In parallel to spectrogram frame prediction, the concatenation of
decoder LSTM output and the attention context is projected down
to a scalar and passed through a sigmoid activation to predict the
probability that the output sequence has completed. This “stop token”
prediction is used during inference to allow the model to dynamically
determine when to terminate generation instead of always generating
for a fixed duration. Specifically, generation completes at the first
frame for which this probability exceeds a threshold of 0.5.

The convolutional layers in the network are regularized using
dropout [25] with probability 0.5, and LSTM layers are regularized
using zoneout [26] with probability 0.1. In order to introduce output
variation at inference time, dropout with probability 0.5 is applied
only to layers in the pre-net of the autoregressive decoder.

In contrast to the original Tacotron, our model uses simpler build-
ing blocks, using vanilla LSTM and convolutional layers in the en-
coder and decoder instead of “CBHG” stacks and GRU recurrent
layers. We do not use a “reduction factor”, i.e., each decoder step
corresponds to a single spectrogram frame.

2.3. WaveNet Vocoder

We use a modified version of the WaveNet architecture from [8] to
invert the mel spectrogram feature representation into time-domain
waveform samples. As in the original architecture, there are 30
dilated convolution layers, grouped into 3 dilation cycles, i.e., the
dilation rate of layer k (k = 0 . . . 29) is 2k (mod 10). To work with
the 12.5 ms frame hop of the spectrogram frames, only 2 upsampling
layers are used in the conditioning stack instead of 3 layers.

Instead of predicting discretized buckets with a softmax layer,
we follow PixelCNN++ [27] and Parallel WaveNet [28] and use a 10-
component mixture of logistic distributions (MoL) to generate 16-bit
samples at 24 kHz. To compute the logistic mixture distribution, the
WaveNet stack output is passed through a ReLU activation followed

Figure 3.11: The Tacotron 2 architecture [152]. The CBHG module of the first variant is replaced
for simpler convolutional blocks and the attention mechanism is location-sensitive.

The second version of Tacotron was presented 1 year after the first one, by the same

authors. Tacotron 2 enhances the original model through small but effective changes,

mainly related to architectural revisions, as shown in Figure 3.11. For what concerns

the encoder, it is greatly simplified as it only contains 1D convolutions (followed by

batch normalization and ReLU activations) and GRU cells are replaced by LSTM ones.

Experiments on switching the Tacotron 2 encoder with its Tacotron counterpart (and

4Wang et al. report that predicting multiple, non-overlapping output frames at each decoder step is ben-
eficial for the model to learn alignments faster, likely because neighbouring speech frames are correlated
and each character usually corresponds to multiple frames. This also allows for more efficient training and
inference procedures, given that predicting r frames at once divides the number of decoder steps by r.

5Teacher forcing [190] is a technique to train auto-regressive models, whereby at training time the
model is fed with the ground truth output sequence for the previous step, instead of being given what it
produced one step before.

3.2 Acoustic model 54

vice-versa) result in very similar outcomes, thus suggesting that the former has enough

capacity to correctly perform its task.

Moreover, a new location-sensitive attention module [26] is introduced in place of

the one described by Bahdanau, Cho, and Bengio. In location-sensitive attention the

energies ei,j are computed as ei,j = vT f(V li,j + Uhj), where li,j are the location features

obtained by convolving previous alignments αi−1 with convolutional filters F and v, V, U

are learnable weights. At the opposite end of the spectrum w.r.t. content-based attention,

location-based attention doesn’t care at all about the content of the input tokens, but only

cares about their locations and the distances that exist between them. To get the best

of both worlds, an hybrid between the content and location based modules can be used,

where energies are obtained as ei,j = vT f(Wsi−1 + V li,j + Uhj). Shen et al. rely on a

slightly modified version of this hybrid attention, that uses cumulative attention weights

from previous decoder time steps as an additional feature.

Also, the final post-net ditches CBHG for a 5-layer CNN with BN and residual con-

nections. As a final (and most important) remark, waveform synthesis is done using a

modified version of WaveNet [131] (as opposed to the Griffin-Lim algorithm) that takes

mel-spectrograms as input, instead of the original set of features (linguistic features, pre-

dicted log fundamental frequency and phoneme durations). The feature prediction net-

work and the modified WaveNet are trained separately, one after the other, with the first

one being trained with a Mean Squared Error (MSE) loss (as opposed to L1 loss used

in Tacotron) between the predicted and target mel-spectrograms. Experiments show that

Tacotron 2 is able to generate natural speech that is sometimes indistinguishable from

human speech.

For what regards the multi-speaker extension of the acoustic model, we follow the

architecture depicted in Figure 3.12, where the speaker encoder is used to condition the

synthesis network on a reference speech signal from the desired target speaker [77]. The

conditioning happens by concatenating an embedding vector for the target speaker with

the encoder’s output at each time step. Alternative solutions include substituting the

speaker encoder for a lookup table [7, 139], with which the model learns a fixed embed-

ding for each speaker in the training set, thus completely disposing of zero-shot abilities.

Also, extensive research has been carried out on the best position to concatenate speaker

embeddings. For example, Cooper et al. show that concatenating speaker embeddings

3.2 Acoustic model 55

to both the pre-net and encoder outputs could be beneficial in terms of speaker similar-

ity while concatenating on the same plus at the post-net stage has been observed to be

detrimental.

speaker
reference
waveform

Speaker
Encoder

grapheme or
phoneme
sequence

Encoder concat Attention Decoder

Synthesizer

Vocoder waveform

speaker
embedding

log-mel
spectrogram

Figure 1: Model overview. Each of the three components are trained independently.

signal, (2) a sequence-to-sequence synthesizer, based on [15], which predicts a mel spectrogram from
a sequence of grapheme or phoneme inputs, conditioned on the speaker embedding vector, and (3) an
autoregressive WaveNet [19] vocoder, which converts the spectrogram into time domain waveforms.1

2.1 Speaker encoder

The speaker encoder is used to condition the synthesis network on a reference speech signal from the
desired target speaker. Critical to good generalization is the use of a representation which captures the
characteristics of different speakers, and the ability to identify these characteristics using only a short
adaptation signal, independent of its phonetic content and background noise. These requirements are
satisfied using a speaker-discriminative model trained on a text-independent speaker verification task.

We follow [22], which proposed a highly scalable and accurate neural network framework for speaker
verification. The network maps a sequence of log-mel spectrogram frames computed from a speech
utterance of arbitrary length, to a fixed-dimensional embedding vector, known as d-vector [20, 9]. The
network is trained to optimize a generalized end-to-end speaker verification loss, so that embeddings
of utterances from the same speaker have high cosine similarity, while those of utterances from
different speakers are far apart in the embedding space. The training dataset consists of speech audio
examples segmented into 1.6 seconds and associated speaker identity labels; no transcripts are used.

Input 40-channel log-mel spectrograms are passed to a network consisting of a stack of 3 LSTM
layers of 768 cells, each followed by a projection to 256 dimensions. The final embedding is created
by L2-normalizing the output of the top layer at the final frame. During inference, an arbitrary length
utterance is broken into 800ms windows, overlapped by 50%. The network is run independently on
each window, and the outputs are averaged and normalized to create the final utterance embedding.

Although the network is not optimized directly to learn a representation which captures speaker
characteristics relevant to synthesis, we find that training on a speaker discrimination task leads to an
embedding which is directly suitable for conditioning the synthesis network on speaker identity.

2.2 Synthesizer

We extend the recurrent sequence-to-sequence with attention Tacotron 2 architecture [15] to support
multiple speakers following a scheme similar to [8]. An embedding vector for the target speaker is
concatenated with the synthesizer encoder output at each time step. In contrast to [8], we find that
simply passing embeddings to the attention layer, as in Figure 1, converges across different speakers.

We compare two variants of this model, one which computes the embedding using the speaker
encoder, and a baseline which optimizes a fixed embedding for each speaker in the training set,
essentially learning a lookup table of speaker embeddings similar to [8, 13].

The synthesizer is trained on pairs of text transcript and target audio. At the input, we map the text to
a sequence of phonemes, which leads to faster convergence and improved pronunciation of rare words
and proper nouns. The network is trained in a transfer learning configuration, using a pretrained
speaker encoder (whose parameters are frozen) to extract a speaker embedding from the target audio,
i.e. the speaker reference signal is the same as the target speech during training. No explicit speaker
identifier labels are used during training.

Target spectrogram features are computed from 50ms windows computed with a 12.5ms step, passed
through an 80-channel mel-scale filterbank followed by log dynamic range compression. We extend
[15] by augmenting the L2 loss on the predicted spectrogram with an additional L1 loss. In practice,

1See https://google.github.io/tacotron/publications/speaker_adaptation for samples.

3

Figure 3.12: From speaker verification to multi-speaker Tacotron 2 [77]. Speaker embeddings
pre-trained on the speaker verification task are used to condition the acoustic model
on speaker identity.

Switching to the more challenging multi-speaker and multi-dialect scenario, the rea-

soning follows the work done for multi-speaker and multi-lingual models. In particular,

the first work to introduce cross-lingual synthesis with a Tacotron 2 architecture relied

on a combination of speaker and language embeddings, as shown in Figure 3.13, with

additional optimizations that are considered out of scope for this thesis. What’s impor-

tant is that Zhang et al. concatenate language embeddings in the same position as speaker

embeddings. This can be done when the acoustic model input is in the form of language-

dependent phonemes or graphemes, i.e. different input mappings are used for each lan-

guage. Instead, the usage of shared representations, such as a single set of raw characters

(as in the case of dialects), forces language (or dialect) embeddings to be concatenated to

each character embedding, before being fed to the encoder.

Learning to Speak Fluently in a Foreign Language:
Multilingual Speech Synthesis and Cross-Language Voice Cloning

Yu Zhang, Ron J. Weiss, Heiga Zen, Yonghui Wu, Zhifeng Chen, RJ Skerry-Ryan, Ye Jia,
Andrew Rosenberg, Bhuvana Ramabhadran

Google
{ngyuzh, ronw}@google.com

Abstract
We present a multispeaker, multilingual text-to-speech (TTS)
synthesis model based on Tacotron that is able to produce high
quality speech in multiple languages. Moreover, the model is
able to transfer voices across languages, e.g. synthesize fluent
Spanish speech using an English speaker’s voice, without train-
ing on any bilingual or parallel examples. Such transfer works
across distantly related languages, e.g. English and Mandarin.

Critical to achieving this result are: 1. using a phonemic in-
put representation to encourage sharing of model capacity across
languages, and 2. incorporating an adversarial loss term to en-
courage the model to disentangle its representation of speaker
identity (which is perfectly correlated with language in the train-
ing data) from the speech content. Further scaling up the model
by training on multiple speakers of each language, and incorpo-
rating an autoencoding input to help stabilize attention during
training, results in a model which can be used to consistently
synthesize intelligible speech for training speakers in all lan-
guages seen during training, and in native or foreign accents.
Index Terms: speech synthesis, end-to-end, adversarial loss

1. Introduction
Recent end-to-end neural TTS models [1–3] have been extended
to enable control of speaker identity [4–7] as well as unlabelled
speech attributes, e.g. prosody, by conditioning synthesis on la-
tent representations [8–12] in addition to text. Extending such
models to support multiple, unrelated languages is nontrivial
when using language-dependent input representations or model
components, especially when the amount of training data per lan-
guage is imbalanced. For example, there is no overlap in the text
representation between languages like Mandarin and English.
Furthermore, recordings from bilingual speakers are expensive
to collect. It is therefore most common for each speaker in the
training set to speak only one language, so speaker identity is
perfectly correlated with language. This makes it di�cult to
transfer voices across di�erent languages, a desirable feature
when the number of available training voices for a particular
language is small. Moreover, for languages with borrowed or
shared words, such as proper nouns in Spanish (ES) and English
(EN), pronunciations of the same text might be di�erent. This
adds more ambiguity when a naively trained model sometimes
generates accented speech for a particular speaker.

Zen et al. proposed a speaker and language factorization for
HMM-based parametric TTS system [13], aiming to transfer a
voice from one language to others. [14] proposed a multilingual
parametric neural TTS system, which used a unified input repre-
sentation and shared parameters across languages, however the
voices used for each language were disjoint. [15] described a sim-
ilar bilingual Chinese and English neural TTS system trained on
speech from a bilingual speaker, allowing it to synthesize speech

$GYHUVDULDO�/RVV
0HO

VSHFWURJUDP

7H[W
VHTXHQFH

5HVLGXDO�
(QFRGLQJ

7H[W�
(QFRGLQJ

'HFRGHU 0HO�
VSHFWURJUDP

,QIHUHQFH�1HWZRUN

6SHDNHU�
(PEHGGLQJ

/DQJXDJH�
(PEHGGLQJ

6SHDNHU�
&ODVVLILHU

*UDGLHQW
5HYHUVDO

6\QWKHVL]HU

7H[W�
(QFRGHU

5HVLGXDO�
(QFRGHU

Figure 1: Overview of the components of the proposed model.
Dashed lines denote sampling via reparameterization [21] dur-
ing training. The prior mean is always use during inference.

in both languages using the same voice. [16] studied learning
pronunciation from a bilingual TTS model. Most recently, [17]
presented a multilingual neural TTS model which supports voice
cloning across English, Spanish, and German. It used language-
specific text and speaker encoders, and incorporated a secondary
fine-tuning step to optimize a speaker identity-preserving loss,
ensuring that the model could output a consistent voice regard-
less of language. We also note that the sound quality is not on
par with recent neural TTS systems, potentially because of its
use of the WORLD vocoder [18] for waveform synthesis.

Our work is most similar to [19], which describes a mul-
tilingual TTS model based on Tacotron 2 [20] which uses a
Unicode encoding “byte” input representation to train a model
on one speaker of each of English, Spanish, and Mandarin. In
this paper, we evaluate di�erent input representations, scale up
the number of training speakers for each language, and extend
the model to support cross-lingual voice cloning. The model
is trained in a single stage, with no language-specific compo-
nents, and obtains naturalness on par with baseline monolingual
models. Our contributions include: (1) Evaluating the e�ect of
using di�erent text input representations in a multilingual TTS
model. (2) Introducing a per-input token speaker-adversarial
loss to enable cross-lingual voice transfer when only one train-
ing speaker is available for each language. (3) Incorporating an
explicit language embedding to the input, which enables mod-
erate control of speech accent, independent of speaker identity,
when the training data contains multiple speakers per language.

We evaluate the contribution of each component, and
demonstrate the proposed model’s ability to disentangle speak-
ers from languages and consistently synthesize high quality
speech for all speakers, despite the perfect correlation to the
original language in the training data.

2. Model Structure
We base our multilingual TTS model on Tacotron 2 [20], which
uses an attention-based sequence-to-sequence model to gener-
ate a sequence of log-mel spectrogram frames based on an input
text sequence. The architecture is illustrated in Figure 1. It

ar
X

iv
:1

90
7.

04
44

8v
2

 [c
s.C

L]
 2

4
Ju

l 2
01

9

Figure 3.13: Cross-lingual Tacotron 2 [200]. Pre-trained speaker and language embeddings are
used to enable multi-speaker cross-lingual synthesis.

In this thesis, we rely on a custom implementation of Tacotron 2, with the possibility

to condition both on speaker and dialect accent embeddings. No experiments were carried

out with the first version of Tacotron, but its description is still reported, as we consider

it to be an integral part of its successor.

3.2 Acoustic model 56

3.2.2 Evaluation

TTS systems are usually evaluated along 2 dimensions: naturalness and intelligibility.

Naturalness refers to how close the synthesized speech is to real-life speech, and intelli-

gibility refers to the ease of understanding the spoken content. Though, other dimensions

might be considered depending on the application. For example, in this thesis, we mainly

focus on accentedness, where the goal is to evaluate speech in terms of how close it

sounds to a native speaker of a specific dialect.

There are 2 main ways to evaluate TTS systems, i.e. either using subjective (or per-

ceptual) tests or through objective metrics. In the literature, the former evaluation type

is far more popular than the latter and this is because most of the objective metrics used

so far do not correlate well with human perception, as in all generative models [171].

For example, one of the standard approaches relied upon in a DL scenario is to split the

whole dataset into training and validation sets, with the latter functioning as a model

selection mechanism, i.e. the "best" model can be chosen as the one having the least

training-objective loss on this unseen validation split. Unfortunately, in the case of auto-

regressive TTS, it’s not always the case that better validation metrics imply having a

better model [116]. Hence, researchers tend to rely on visual comparisons (e.g. of the

produced mel-spectrograms) and informal listening sessions to select the best check-

points.

Formal subjective evaluations, other than informal listening, include crowd-sourced

tests, such as Mean Opinion Score (MOS) and MUltiple Stimuli with Hidden Reference

and Anchor (MUSHRA). Both tests are audio-only listening tests, where participants

evaluate unrelated, context-free utterances.

MOS is usually used to obtain an absolute number identifying the performance of a

single model. In MOS each listener is given a set of samples that have to be classified on a

scale of 1 to 5, with 1 corresponding to "bad" and 5 meaning "excellent". The evaluation

has to be preceded by a meaningful question that depends on what property of speech has

to be evaluated, e.g. "Please listen to the sample and judge using a five-point scale their

... quality/naturalness/similarity to a certain speaker". The MOS score for each sample

is then computed as the average over single ratings, while the MOS score for the model

that produced the samples is the arithmetic mean over each sample’s MOS. Assuming

each of the N samples to be rated by M different listeners, the MOS score for the model

3.2 Acoustic model 57

is computed as in Equation 3.7, with rj,i being the rating of sample i from listener j.

MOS = 1
N

N∑
i=1

∑M
j=1 rj,i

M
(3.7)

Instead, MUSHRAs are used to perform a relative comparison between multiple

models. In MUSHRA each listener is given a set of parallel examples, i.e. the same

text prompt synthesised with all the models being evaluated, along with a labelled ref-

erence, a hidden version of the reference and one or more anchors, and they all have to

be positioned on a scale of 0 to 100 (as shown in Figure 3.14). The reference is usually

the ground-truth speech (i.e. the recorded prompt) and acts as an upper bound, while the

purpose of the anchor(s) is to make the scale be closer to an "absolute scale", making sure

that minor artefacts are not rated as having very bad quality [189]. In TTS evaluations,

usually, only one anchor is used and it corresponds to speech synthesised by a baseline

model, i.e. a system which should consistently be ranked as the worst. The benefits of

MUSHRA over MOS are that it requires fewer participants to obtain statistically signif-

icant results6 and the 0-100 scale makes it possible to rate very small differences. The

main downside of MUSHRAs is that it takes a long time for listeners to complete the

entire test, thus implying greater costs to be incurred.

In the case of 2 models being evaluated, an alternative to MUSHRA is the use of

preference tests (also called A/B tests), where listeners are presented with two parallel

speech samples (one from model A and one from model B) and asked to indicate which

one has more of a certain property. In a preference test, the question would be "Which

sample do you prefer?", but it could also be "Which sample sounds more natural?" or

"Which sample sounds closer to a native Irish speaker?". The choices can be forced, i.e.

either "A" or "B", or they can include a neutral option (e.g. "no preference") when both

systems sound more or less the same. Preference tests are, on average, much more af-

fordable than MUSHRAs, but the interpretation of their results tends to be more difficult.

For what regards objective metrics, intelligibility can be measured with the aid of an

ASR model [21]. The standard procedure is the following: the text is given as input to the

TTS model being evaluated and its output is given as input to a pre-trained ASR model

that produces text from a speech representation; then, input and output texts are com-

pared to assess intelligibility. Different metrics span depending on how fine-grained the

6MUSHRAs require fewer participants than MOS because all systems are presented at the same time,
on the same samples (sentences), so that a paired t-test can be used for statistical analysis [189].

3.2 Acoustic model 58

Figure 3.14: Example of a MUSHRA test with the webMUSHRA interface [151]. C1, C2 and
C3 are the compared systems, while reference is ground-truth and anchor35 is a
baseline model.

comparison methodology is: looking at the character level gives rise to the Character Er-

ror Rate (CER) measure, comparing phonemes gives rise to Phoneme Error Rate (PER),

while word-level mismatches are summarized by the Word Error Rate (WER) metric.

The disadvantage of using an ASR model for intelligibility measures is the propagation

of errors, i.e. the quality of the chosen ASR model has a great impact on the downstream

evaluation of the TTS system.

Other approaches have been explored to predict properties such as intelligibility and

naturalness. For example, neural models have been trained to directly estimate MOS

scores for the synthesized audio. The most popular models in this field are MOSNet

[112] and its successors, such as MBNet [105] and LDNet [71]. Such models are trained

on datasets of synthesized speech and their corresponding MOS score; however, the col-

lection of such datasets for different languages and objectives is not trivial and results are

not yet on par with (or even close to) crowd-sourced evaluations.

Promising neural approaches include Fréchet Audio Distance (FAD) [81], which is an

adaptation of Fréchet Inception Distance (FID) [68] from the generative image domain

to the generative audio domain, initially proposed for music enhancement algorithms

and later used in TTS applications [12]. Kilgour et al. show that FAD correlates more

closely to human perception than signal based metrics, such as Signal to Distortion Ratio

3.3 Voice/accent conversion system 59

(SDR), cosine distance and magnitude L2 distance. Other signal-based metrics include

Perceptual Evaluation of Speech Quality (PESQ) [146], Mel-Cepstral Distortion (MCD)

[98] and many more.

Thus, despite the fact that TTS systems are ubiquitous nowadays, their evaluation it’s

still a controversial topic, as it gets approached in more or less the same way as in the late

1990s [180]. Many researchers are now studying ways to bridge the gap between human

perception and objective metrics, using techniques such as the ones explained above, but

much work still needs to be done.

3.3 Voice/accent conversion system

Conversion systems in the audio domain have the aim of transforming one or more speech

properties while keeping all the others intact. In this thesis, audio conversion systems are

used in 3 different ways: (i) to convert speaker identity, (ii) to convert dialect accent

information, while keeping speaker identity the same and (iii) to convert both speaker

identity and dialect accent information. The following sections present the main tasks

and terminology used in audio conversion systems, along with the introduction of the

main model used for conversion purposes in the pipeline shown in Figure 3.1. In terms of

evaluation metrics and techniques, we refer the reader to what has already been detailed,

as acoustic models and conversion systems share the same output space and are thus

evaluated in comparable ways.

3.3.1 Tasks and terminology

One of the most popular tasks in audio conversion systems is that of Voice Conversion.

The ultimate goal of a VC system is to convert an input utterance by a source speaker into

an output utterance by a target speaker. This means that the output of a good VC system

should be the target speaker speaking the linguistic content found in the input utterance.

Thus, a VC system should learn to disentangle speaker identity, along with its prosody

information (such as speaking rate), from linguistic content. VC systems are usually sub-

divided in many categories, one of which being parallel and non-parallel. The former

indicates a VC system where all speakers in the dataset speak the same prompts, while the

latter is used for the more generic variant of a VC system trained with data such that each

speaker can speak different input text. Another important class of VC systems is related

3.3 Voice/accent conversion system 60

Speech
representation

extraction

Speech property
extraction

Speech
representation

extraction

Speech property
extraction

Mapping function

Figure 3.15: Audio conversion system, seen as a function that maps between speech properties
in the same domain.

to the amount of targeted speakers and the overall scope of the model: a VC system is

usually indicated as x-to-y, where x and y can take values in {one, many, any}. The

x indicates which source speakers the VC system can convert from and the y indicates

which target speakers the model can convert to. If x (y) equals "one", it means that the

VC system only supports a single source (target) speaker, if x (y) equals "many", then the

VC system supports all source (target) speakers in the training set, while if x (y) equals

"any", all source (target) speakers are supported (also those that were unseen during

training). With this in mind, the simplest VC system would be a parallel one-to-one

model, while the most ambitious one would be its non-parallel any-to-any counterpart. It

has to be noted that not all literature follows the same definition in terms of x-to-y, with

some work using the terms "many" and "any" interchangeably. The last, but not least,

important class of VC systems is few-shot and zero-shot: a VC model has few-shot

capabilities if it can successfully perform conversion when only a handful of utterances

from the source or target speaker were seen during training, while a zero-shot model can

do the same even with zero utterances. So, few-shot models are subsets of zero-shot

models, meaning that a model that can perform zero-shot conversion can usually work

well in a few-shot fashion.

Another application of audio conversion systems is in the task of Accent Conver-

sion, which seeks to transform only those features of an utterance that contribute to ac-

cent while maintaining those that carry the identity of the speaker. In the literature, the

3.3 Voice/accent conversion system 61

term AC is usually used to indicate a more specific task, namely Foreign Accent Conver-

sion (FAC), where the goal is to create a new voice that has the voice identity of a given

second-language speaker but with a native accent [46]. There are multiple practical ap-

plications of FAC, such as Computer-Assisted Pronunciation Training (CAPT) [53], in

which a language learner is provided with ground truth speech of themselves speaking

with native accent in the target language: this can be very useful for the language learner

to correct pronunciation mistakes and articulation issues that are due to speaking habits

and biases towards their native language. In this thesis, we refer to AC as the more

fine-grained task of converting regional accents.

Figure 3.15 shows a general representation of audio conversion systems. Here, X∗

is a speech representation such as a mel-spectrogram and p∗ is a vector representation of

the property of speech the system aims to convert (in VC this would be speaker identity,

while in AC it would be accent). Subscripts i, j in X∗ and p∗ indicate source and target

utterances, respectively. As shown in Figure 3.15, the audio conversion system C takes

as input Xi and Xj , extracts information pi and pj and outputs a speech representation

X
(p)
i→j , i.e. C(p)(Xi, Xj) = X

(p)
i→j .

3.3.2 Architectures
AUTOVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss

5×
1 ConvN

orm
 ×3

LSTM
×

2

Full Connect

BLSTM
×2

5×
1 ConvN

orm
 ×3

LSTM
×3

1×
1 Conv

5×
1 ConvN

orm

5×
1 ConvN

orm
 ×4

U
p1

Concatenate

512 32×2 320 512 1024 80 512 80

768 256 80

%& ⋅

(a)

(b) (c)

()

(*

+()→*D
ow

n1
D

ow
n2

Last O
utput

-)→

U
p2-)←

Copy/*

+

D
econv×4

W
aveN

et

D
ow

n1

U
p1

D
ow

n2

U
p2

(d)

(e) (f)

Figure 3. AUTOVC architecture. The number above each block represents the cell/output dimension of the structure. ConvNorm denotes
convolution followed by batch normalization. BLSTM denotes bi-directional LSTM, whose white block denotes forward direction, and
grey block denotes backward direction. (a) The content encoder. The Es(·) module is of the same architecture as in (b). (b) The style
encoder. (c) The decoder. (d) The spectrogram inverter. (e) and (f) demonstrate the downsampling and upsampling of the forward and
backward outputs of the Bi-directional LSTM, using a up/downsampling factor of 3 as an example. The real up/downsampling factor is
32. The lightened feature denotes that they are removed; the arrows denote copying the feature at the arrow origin to the destination.

the loss specified in Eq. (5), we add an initial reconstruction
loss defined as

Lrecon0 = E[kX̃1!1 �X1k22], (11)

where X̃1!1 is the reciprocal of X̃1!2 in the reconstruction
case, i.e. when U2 = U1. The total loss becomes

min
Ec(·),D(·,·)

L = Lrecon + µLrecon0 + �Lcontent. (12)

Although Eq. (12) deviates from Eq. (5), on which Thm. 1
rests, we found empirically that this improves convergence
and does not harm the performance.

4.4. The Spectrogram Inverter

We apply the WaveNet vocoder as introduced in Van
Den Oord et al. (2016), which consists of four deconvo-
lution layers. In our implementation, the frame rate of the
mel-spetrogram is 62.5 Hz and the sampling rate of speech
waveform is 16 kHz. So the deconvolution layers will up-
sample the spectrogram to match the sampling rate of the
speech waveform. Then, a standard 40-layer WaveNet con-
ditioning upon the upsampled spectrogram is applied to
generate the speech waveform. We pre-trained the WaveNet
vocoder using the method described in Shen et al. (2018) on
the VCTK corpus.

5. Experiments
In this section, we will evaluate AUTOVC on many-to-many
voice conversion tasks, and empirically validate the assump-
tions of the AUTOVC framework. We strongly encourage
readers to listen to the demos4.

4https://auspicious3000.github.io/autovc-demo/

5.1. Configurations

The evaluation is performed on the VCTK corpus (Veaux
et al., 2016), which contains 44 hours of utterances from 109
speakers. Each speaker reads a different set of sentences, ex-
cept for the rainbow passage5 and the elicitation paragraph.
So the conversion setting is non-parallel. Depending on the
conversion tasks, different subsets of speakers were selected.
The data of each speaker is then partitioned into training
and test sets by 9:1. AUTOVC is trained with a batch size
of two for 100k steps, using the ADAM optimizer. The
speaker embedding is generated by feeding 10 two-second
utterances of the same speaker to the speaker encoder and
averaging the resulting embeddings. The weights in Eq. (12)
are set to � = 1, µ = 1.

We performed two subjective tests on Amazon Mechanical
Turk (MTurk)6. In the first test, called the mean opinion
score (MOS) test, the subjects are presented with converted
utterances. For each utterance, the subjects are asked to
assign a score of 1-5 on the naturalness on the converted
speech. In the second test, called the similarity test, the
subjects are presented with pairs of utterances. In each pair,
there is one converted utterance, and one utterance from the
target speaker uttering the same sentence. For each pair,
the subjects are asked to assign a score of 1-5 on the voice
similarity. We follow the design in Wester et al. (2016)
to cue the subjects to judge if the speakers are the same,
and how confident they are with their judgment. Thus the
similarity score of 5 corresponds to the same speaker with
high confidence, and 1 corresponds to different speakers

5http://web.ku.edu/ idea/readings/rainbow.htm
6https://www.mturk.com/

Figure 3.16: AutoVC architecture [142]. X1 is the source utterance and X2 is a snippet of
speech from the target speaker. The goal is to obtain a representation X̂1→2 with
the linguistic content of X1 and the speaker identity of X2.

AutoVC is the main architecture we rely on for both voice and accent conversion. Au-

toVC [142] is a an autoencoder-based VC system, working in the non-parallel many-

to-many setting, as well as the zero-shot one. The main peculiarity of AutoVC is that

3.3 Voice/accent conversion system 62

it achieves style transfer with a simple autoencoder architecture, without making use of

either sophisticated auxiliary and adversarial losses, as done in many Generative Ad-

versarial Network (GAN)-based [60] VC systems, or the maximization of a variational

lower bound of the output probability, as required by Conditional Variational Auto En-

coder (CVAE) models [86, 87].

Being an autoencoder, AutoVC is composed of two main modules, an encoder and

a decoder. The former takes care of mapping the input to a low-dimensional space,

also referred to as the latent space, while the latter attempts to reconstruct the original

input starting from its latent representation. This learning procedure is an instance of the

more general information bottleneck method [172], in which the goal is to squeeze the

information that an input signal provides about another signal through a limited set of

codewords.

AutoVC makes use of the information bottleneck method by nudging the latent

vectors to encode only linguistic content and not source speaker timbre. Then, in order

to perform the conversion, target speaker information is concatenated to the latent code

(which is assumed to only represent linguistic features) and decoded into a speech repre-

sentation. AutoVC relies on a simple, yet effective, trick to discourage the latent space to

encode speaker information, i.e. speaker embeddings are concatenated at each time-step

of the input speech representation. In this way, assuming a carefully tuned bottleneck,

the encoder is forced to lose some information and the easiest way to achieve perfect re-

construction would be to simply discard speaker information, as already supplied in the

input.

This strategy is powerful but very dependent on the chosen hidden size. When the

bottleneck is too wide, source speaker information leaks through the bottleneck and con-

verted speech may sound exactly the same as source speech. On the other hand, when the

bottleneck is too narrow, speaker information does not make its way to the latent space,

but also linguistic features might do the same and get lost, i.e. converted speech would

sound as if it was uttered by the target speaker, but it would present mumbling issues,

word skipping and other content-related errors.

AutoVC works in two different ways at train and test time. At training time, the

source speaker is the same as the target speaker and the model learns to reconstruct the

input signal. At inference time, source and target speakers are different and the output

should contain no information about the source speaker. In terms of training objectives,

3.3 Voice/accent conversion system 63

AutoVC only relies on a combination of self-reconstruction and content code reconstruc-

tion losses, as reported in Equation 3.8.

L = Lr + λLc

Lr = E[∥X
(p)
i→i − Xi∥2

2]

Lc = E[∥E(X(p)
i→i) − E(Xi)∥1]

(3.8)

In terms of architecture (reported in Figure 3.16), AutoVC’s encoder E is composed

of a sequence of convolutional blocks (convolution, BN and activation function) and a

bi-directional LSTM. The output of the last recurrent module is split into forward and

backward features, which are downsampled with the same frequency factor to obtain

two latent vectors. The concatenation of such vectors (at corresponding indices) is the

latent code associated with input speech, while the encoder output is obtained by upsam-

pling the latent code to the original time dimension, by copying forward and backward

LSTM features in their corresponding direction. AutoVC’s decoder D is also composed

of a sequence of convolutional blocks and LSTM layers (this time uni-directional), fol-

lowed by a linear projection layer to map the LSTM hidden size to the number of target

mel-frequency bins, and a final post-net, acting as a residual [152, 185]. Finally, Au-

toVC’s speaker encoder S is a pre-trained speaker embedding module. Thanks to the use

of a pre-trained speaker embedding module, AutoVC is also able to perform the zero-

shot conversion. In case the zero-shot conversion feature is not required, using one-hot

encodings of speaker indices would suffice to perform the traditional many-to-many con-

version.

In this thesis, AutoVC is adapted to work with both speaker and dialect accent, by

allowing the bottleneck to disentangle both speech properties. Thus, in order to convert

speaker identity alone, we fully reproduce the original AutoVC architecture, while for

the conversion of dialect accent we explore the possibility of conditioning AutoVC on

both speaker and dialect accent embeddings or just the latter.

3.4 Vocoder 64

3.4 Vocoder

Vocoders are modules specialized for waveform generation from a combination of lin-

guistic and acoustic features. Nowadays, vocoders have the goal of spectrogram inver-

sion, i.e. converting linear or mel-scaled spectrograms back to the waveform that origi-

nated them, thus acting as a sort of phase reconstruction stage. Given that tasks, termi-

nology and example models used in the vocoding step of a TTS system have already been

described in Chapter 2, all that’s left is to describe the main vocoder used for spectrogram

inversion purposes throughout this thesis, which is done in the following section.

3.4.1 Architectures

Mel Spectogram

Conv Layer

Upsampling [8x]
Layer

Residual stack

Upsampling [2x]
Layer

Residual stack

Conv Layer

Raw Waveform

Input sequence

Output sequence

Dilated
conv block3x

2x

2x

(a) Generator (b) Discriminator

Figure 1: MelGAN model architecture. Each upsampling layer is a transposed convolution with
kernel-size being twice of the stride (which is same as the upsampling ratio for the layer). 256x
upsampling is done in 4 stages of 8x, 8x, 2x and 2x upsampling. Each residual dilated convolution
stack has three layers with dilation 1, 3 and 9 with kernel-size 3, having a total receptive field of 27
timesteps. We use leaky-relu for activation. Each discriminator block has 4 strided convolution with
stride 4. Further details can be found in the Appendix 6.

layers are not carefully chosen. Donahue et al. (2018b) examines this for raw waveform generation
and finds that such repeated patterns lead to audible high frequency hissing noise. We solve this
problem by carefully choosing the kernel-size and stride for our deconvolutional layers as a simpler
alternative to PhaseShuffle layer introduced in Donahue et al. (2018b). Following Odena et al. (2016),
we use kernel-size as a multiple of stride. Another source of such repeated patterns, can be the dilated
convolution stack if dilation and kernel size are not chosen correctly. We make sure that the dilation
grows as a power of the kernel-size such that the receptive field of the stack looks like a fully balanced
(seeing input uniformly) and symmetric tree with kernel-size as the branching factor.

Normalization technique We noticed that the choice of normalization technique for the generator
was extremely crucial for sample quality. Popular conditional GAN architectures for image generation
(Isola et al., 2017; Wang et al., 2018b) use instance normalization (Ulyanov et al., 2016) in all the
layers of the generator. However, in the case of audio generation we found that instance normalization
washes away important important pitch information, making the audio sound metallic. We also
obtained poor results when applying spectral normalization (Miyato et al., 2018) on the generator as
suggested in Zhang et al. (2018); Park et al. (2019). We believe that the strong Lipshitz constraint on
the discriminator impacts the feature matching objective (explained in Section 3.2) used to train the
generator. Weight normalization (Salimans & Kingma, 2016) worked best out of all the available
normalization techniques since it does not limit the capacity of the discriminator or normalize the
activations. It simply reparameterizes the weight matrices by decoupling the scale of the weight
vector from the direction, to have better training dynamics. We therefore use weight normalization in
all layers of the generator.

2.2 Discriminator

Multi-Scale Architecture Following Wang et al. (2018b), we adopt a multi-scale architecture with
3 discriminators (D1, D2, D3) that have identical network structure but operate on different audio
scales. D1 operates on the scale of raw audio, whereas D2, D3 operate on raw audio downsampled
by a factor of 2 and 4 respectively. The downsampling is performed using strided average pooling
with kernel size 4. Multiple discriminators at different scales are motivated from the fact that audio
has structure at different levels. This structure has an inductive bias that each discriminator learns

4

(a) Generator.

Mel Spectogram

Conv Layer

Upsampling [8x]
Layer

Residual stack

Upsampling [2x]
Layer

Residual stack

Conv Layer

Raw Waveform

Input sequence

Output sequence

Dilated
conv block3x

2x

2x

(a) Generator

Raw Waveform
(downsampled) Conv Layer

Downsampling [4x]
Layer

Conv Layer

Conv Layer

4x

Output

Feature map

4x Feature maps

Feature map

Discriminator
BlockAvg Pool Feature maps

+ output

Discriminator
BlockAvg Pool Feature maps

+ output

Discriminator
Block

Feature maps
+ outputRaw Waveform

(b) Discriminator

Figure 1: MelGAN model architecture. Each upsampling layer is a transposed convolution with
kernel-size being twice of the stride (which is same as the upsampling ratio for the layer). 256x
upsampling is done in 4 stages of 8x, 8x, 2x and 2x upsampling. Each residual dilated convolution
stack has three layers with dilation 1, 3 and 9 with kernel-size 3, having a total receptive field of 27
timesteps. We use leaky-relu for activation. Each discriminator block has 4 strided convolution with
stride 4. Further details can be found in the Appendix 6.

layers are not carefully chosen. Donahue et al. (2018b) examines this for raw waveform generation
and finds that such repeated patterns lead to audible high frequency hissing noise. We solve this
problem by carefully choosing the kernel-size and stride for our deconvolutional layers as a simpler
alternative to PhaseShuffle layer introduced in Donahue et al. (2018b). Following Odena et al. (2016),
we use kernel-size as a multiple of stride. Another source of such repeated patterns, can be the dilated
convolution stack if dilation and kernel size are not chosen correctly. We make sure that the dilation
grows as a power of the kernel-size such that the receptive field of the stack looks like a fully balanced
(seeing input uniformly) and symmetric tree with kernel-size as the branching factor.

Normalization technique We noticed that the choice of normalization technique for the generator
was extremely crucial for sample quality. Popular conditional GAN architectures for image generation
(Isola et al., 2017; Wang et al., 2018b) use instance normalization (Ulyanov et al., 2016) in all the
layers of the generator. However, in the case of audio generation we found that instance normalization
washes away important important pitch information, making the audio sound metallic. We also
obtained poor results when applying spectral normalization (Miyato et al., 2018) on the generator as
suggested in Zhang et al. (2018); Park et al. (2019). We believe that the strong Lipshitz constraint on
the discriminator impacts the feature matching objective (explained in Section 3.2) used to train the
generator. Weight normalization (Salimans & Kingma, 2016) worked best out of all the available
normalization techniques since it does not limit the capacity of the discriminator or normalize the
activations. It simply reparameterizes the weight matrices by decoupling the scale of the weight
vector from the direction, to have better training dynamics. We therefore use weight normalization in
all layers of the generator.

2.2 Discriminator

Multi-Scale Architecture Following Wang et al. (2018b), we adopt a multi-scale architecture with
3 discriminators (D1, D2, D3) that have identical network structure but operate on different audio
scales. D1 operates on the scale of raw audio, whereas D2, D3 operate on raw audio downsampled
by a factor of 2 and 4 respectively. The downsampling is performed using strided average pooling
with kernel size 4. Multiple discriminators at different scales are motivated from the fact that audio
has structure at different levels. This structure has an inductive bias that each discriminator learns

4

(b) Discriminator.

Figure 3.17: MelGAN architecture [100]. The generator (left) is used to synthesise waveforms
as close to ground-truth as possible, in order to fool the discriminator (right).

MelGAN is the main architecture we rely on to convert mel-spectrograms to waveforms.

MelGAN [100] is the first non-autoregressive feedforward convolutional architecture to

perform audio waveform generation in a GAN setup. As opposed to WaveNet, it consists

of a generator/discriminator architecture, as shown in Figure 3.17, where the generator’s

goal is to synthesise waveforms that look as if they were sampled from the underlying

data distribution, in order to fool the discriminator.

The generator G is a CNN that takes as input a mel-scaled spectrogram and out-

puts a raw waveform, as shown in Figure 3.17a. Since spectrograms are generated using

STFT, which intuitively computes the FFT over fixed-size windows of the input wave-

form, spectrograms and waveforms have different temporal resolutions, with the former

3.4 Vocoder 65

being defined at a coarser scale. In particular, given a waveform of n samples and STFT

parameters f , h, w, which respectively indicate the window length after padding, the hop

length between consecutive windows and the window length before padding, the output

spectrogram will have the number of frames reported in Equation 3.9, assuming to apply

a padding of f−h
2 to both sides of the signal.

⌊
2n + f − h − w

h

⌋
+ 1 (3.9)

This explains the generator’s architectural choice of including fractionally strided con-

volutions to upsample the input signal. Dilated convolutions (with exponentially increas-

ing dilation rates 1, 3 and 9) are instead included to inject the inductive bias of long-range

correlation among audio time steps, thanks to their property of exponentially increasing

the receptive field with the number of layers.

The discriminator, shown in Figure 3.17b, is again a CNN, that adopts a multi-scale

architecture by which 3 discriminators (D1, D2 and D3) composed of the same building

blocks operate at different temporal resolutions. The first one works at the scale of the

generated audio, while the second and the third one downsample the signal by a factor

of 2 and 4, respectively. Moreover, authors rely on a windowing strategy, whereby the

model learns to classify between distributions of small audio chunks, instead of entire

audio sequences.

For what concerns loss functions, the hinge loss version of the GAN objective [109]

was used, as reported in Equation 3.10 and Equation 3.11.

minDk
Ex [min(0, 1 − Dk(x))] +

Es,z [min(0, 1 + Dk(G(s, z)))] , ∀k = 1, 2, 3
(3.10)

minG Es,z

[∑
k=1,2,3 −Dk(G(s, z))

]
+

λ
∑

k=1,2,3 Ex,s∼p

[∑T
i=1

1
Ni

∥D
(i)
k (x) − D

(i)
k (G(s))∥1

] (3.11)

In Equation 3.10 and Equation 3.11, x represents the raw waveform, s represents the

conditioning information (i.e. the mel-spectrogram), z represents the Gaussian noise

vector, D
(i)
k represents the i-th layer feature map output of the k-th discriminator block,

Ni denotes the number of units in each layer and λ is an hyper-parameter (λ = 10 in the

original paper). Also, the second expectation term in Equation 3.11 is a feature matching

3.5 End-to-end approach 66

objective [102], which minimizes the L1 distance between the discriminator feature maps

of real and synthetic audio.

At the time of writing, MelGAN is not anymore a SOTA model in terms of generated

speech quality, as there are other better and more recent alternatives that achieve results

closer to ground truth, but the main goal of MelGAN is to make vocoding a negligible

part of the whole TTS pipeline, in terms of speed and applicability. Regarding speed,

MelGAN can generate speech at 51.9 kHz on CPU7 and 2500 kHz8 on GPU, according

to original tests on the same hardware setup9. Regarding practical applications, MelGAN

can be used as a universal vocoder [114] as it generalizes well to unseen speakers, thus

allowing the user to skip tedious fine-tuning steps. Thus, we decide to rely on a pre-

trained version of MelGAN for such conveniences.

3.5 End-to-end approach

In this section, we introduce an end-to-end model that incorporates multi-lingual syn-

thesis and zero-shot multi-speaker TTS, that will be used as a further comparison to the

pipelines described so far. The model we are referring to is YourTTS [20], a SOTA

architecture which can synthesize voices in multiple languages and reduce data require-

ments significantly, by transferring knowledge among languages in the training set. For

example, in the paper, Casanova et al. show that they can easily introduce Brazilian Por-

tuguese to the model with a single speaker dataset by co-training with a larger English

dataset, thus enabling the possibility of making the model speak Brazilian Portuguese

with voices from the English dataset.

YourTTS is an extension of previous work from the same authors, i.e. SC-GlowTTS

[19], which relies on the Variational Inference with adversarial learning for end-to-end

Text-to-Speech (VITS) model [83] as the backbone architecture and builds on top of it.

Differently from VITS, YourTTS uses a larger text encoder and employs a separately

trained speaker encoder model, namely H/ASP [67], to compute speaker embedding vec-

tors. The speaker encoder was trained with a combination of prototypical angular [29]

and CE loss functions on the VoxCeleb2 [28] dataset. Additionally, YourTTS relies on

raw graphemes as input text, in order to support low-resource languages. Moreover, for
7Tested on only 1 CPU core.
8N kHz means that the model can generate N × 1000 raw audio samples per second.
9Authors relied on an NVIDIA GTX 1080 Ti GPU and an Intel® Core™ i9-7920X CPU @ 2.90 GHz

processor.

3.5 End-to-end approach 67

Language
Embedding

Lang IDInput Text

Char
Embedding

Transform-Based Encoder

Transformers Block

x 10

Linear
Projection

Monotonic Alignment
Search

Affine Coupling Layer

x 4

f

mp

z p

p

z

Flow-Based Decoder

HiFi-GAN Generator

Noise

Speaker
Encoder

Ref. Wav

Speaker
 Embedding

Stochastic
 Duration
Predictor

WaveNet residual blocks

Posterior Encoder

x 12

Linear
Spec.

z

d

(a) Training procedure (b) Inference procedure

Figure 1: YourTTS diagram depicting (a) training procedure and (b) inference procedure.

English: VCTK [14] dataset, which contains 44 hours of
speech and 109 speakers, sampled at 48KHz. We divided the
VCTK dataset into: train, development (containing the same
speakers as the train set) and test. For the test set, we selected 11
speakers that are neither in the development nor the training set;
following the proposal by [1] and [4], we selected 1 represen-
tative from each accent totaling 7 women and 4 men (speakers
225, 234, 238, 245, 248, 261, 294, 302, 326, 335 and 347). Fur-
thermore, in some experiments we used the subsets train-clean-

100 and train-clean-360 of the LibriTTS dataset [34] seeking to
increase the number of speakers in the training of the models.

Portuguese: TTS-Portuguese Corpus [35], a single-
speaker dataset of the Brazilian Portuguese language with
around 10 hours of speech, sampled at 48KHz. As the authors
did not use a studio, the dataset contains ambient noise. We used
the FullSubNet model [36] as denoiser and resampled the data
to 16KHz. For development we randomly selected 500 samples
and the rest of the dataset was used for training.

French: fr FR set of the M-AILABS dataset [37], which is
based on LibriVox6. It consists of 2 female (104h) and 3 male
speakers (71h) sampled at 16KHz.

To evaluate the zero-shot multi-speaker capabilities of our
model in English, we use the 11 VCTK speakers reserved for
testing. To further test its performance outside of the VCTK
domain, we select 10 speakers (5F/5M) from subset test-clean

of LibriTTS dataset [34]. For Portuguese we select samples

6https://librivox.org/

from 10 speakers (5F/5M) from the Multilingual LibriSpeech
(MLS) [33] dataset. For French, no evaluation dataset was used,
due to the reasons described in Section 4. Finally, for speaker
adaptation experiments, to mimic a more realistic setting, we
used 4 speakers from the Common Voice dataset [38].

3.3. Experimental setup

We carried out four training experiments with YourTTS:
• Experiment 1: using VCTK dataset (monolingual);
• Experiment 2: using both VCTK and TTS-Portuguese

datasets (bilingual);
• Experiment 3: using VCTK, TTS-Portuguese and M-

AILABS french datasets (trilingual);
• Experiment 4: starting with the model obtained in ex-

periment 3 we continue training with 1151 additional
English speakers from both LibriTTS partitions train-

clean-100 and train-clean-360.
To accelerate training, in every experiment, we use trans-

fer learning. In experiment 1, we start from a model trained 1M
steps on LJSpeech [39] and continue the training for 200K steps
with the VCTK dataset. However, due to the proposed changes,
some layers of the model were randomly initialized due to the
incompatibility of the shape of the weights. For experiments 2
and 3, training is done by continuing from the previous experi-
ment for approximately 140k steps, learning one language at a
time. In addition, for each of the experiments a fine-tuning was

(a) Training procedure.

Language
Embedding

Lang IDInput Text

Char
Embedding

Transform-Based Encoder

Transformers Block

x 10

Linear
Projection

Monotonic Alignment
Search

Affine Coupling Layer

x 4

f

mp

z p

p

z

Flow-Based Decoder

HiFi-GAN Generator

Noise

Speaker
Encoder

Ref. Wav

Speaker
 Embedding

Stochastic
 Duration
Predictor

WaveNet residual blocks

Posterior Encoder

x 12

Linear
Spec.

z

d

(a) Training procedure

Language
Embedding

Lang IDInput Text

Char
Embedding

Transform-Based Encoder

Transformers Block

x 10

Linear
Projection

Aligment Generation

Affine Coupling Layer

x 4

f
−1

mp

z p

p

z

Flow-Based Decoder

HiFi-GAN Generator

Ceil

Noise

Speaker
Encoder

Ref. Wav

Speaker
 Embedding

Stochastic
 Duration
Predictor

d

(b) Inference procedure

Figure 1: YourTTS diagram depicting (a) training procedure and (b) inference procedure.

English: VCTK [14] dataset, which contains 44 hours of
speech and 109 speakers, sampled at 48KHz. We divided the
VCTK dataset into: train, development (containing the same
speakers as the train set) and test. For the test set, we selected 11
speakers that are neither in the development nor the training set;
following the proposal by [1] and [4], we selected 1 represen-
tative from each accent totaling 7 women and 4 men (speakers
225, 234, 238, 245, 248, 261, 294, 302, 326, 335 and 347). Fur-
thermore, in some experiments we used the subsets train-clean-

100 and train-clean-360 of the LibriTTS dataset [34] seeking to
increase the number of speakers in the training of the models.

Portuguese: TTS-Portuguese Corpus [35], a single-
speaker dataset of the Brazilian Portuguese language with
around 10 hours of speech, sampled at 48KHz. As the authors
did not use a studio, the dataset contains ambient noise. We used
the FullSubNet model [36] as denoiser and resampled the data
to 16KHz. For development we randomly selected 500 samples
and the rest of the dataset was used for training.

French: fr FR set of the M-AILABS dataset [37], which is
based on LibriVox6. It consists of 2 female (104h) and 3 male
speakers (71h) sampled at 16KHz.

To evaluate the zero-shot multi-speaker capabilities of our
model in English, we use the 11 VCTK speakers reserved for
testing. To further test its performance outside of the VCTK
domain, we select 10 speakers (5F/5M) from subset test-clean

of LibriTTS dataset [34]. For Portuguese we select samples

6https://librivox.org/

from 10 speakers (5F/5M) from the Multilingual LibriSpeech
(MLS) [33] dataset. For French, no evaluation dataset was used,
due to the reasons described in Section 4. Finally, for speaker
adaptation experiments, to mimic a more realistic setting, we
used 4 speakers from the Common Voice dataset [38].

3.3. Experimental setup

We carried out four training experiments with YourTTS:
• Experiment 1: using VCTK dataset (monolingual);
• Experiment 2: using both VCTK and TTS-Portuguese

datasets (bilingual);
• Experiment 3: using VCTK, TTS-Portuguese and M-

AILABS french datasets (trilingual);
• Experiment 4: starting with the model obtained in ex-

periment 3 we continue training with 1151 additional
English speakers from both LibriTTS partitions train-

clean-100 and train-clean-360.
To accelerate training, in every experiment, we use trans-

fer learning. In experiment 1, we start from a model trained 1M
steps on LJSpeech [39] and continue the training for 200K steps
with the VCTK dataset. However, due to the proposed changes,
some layers of the model were randomly initialized due to the
incompatibility of the shape of the weights. For experiments 2
and 3, training is done by continuing from the previous experi-
ment for approximately 140k steps, learning one language at a
time. In addition, for each of the experiments a fine-tuning was

(b) Inference procedure.

Figure 3.18: YourTTS architecture at training and inference time [20].

multi-lingual training, a 4-dimensional trainable language embedding is concatenated

to each input character.

In terms of architecture, VITS relies on a mix of specialized optimizations, such

as adversarial learning, and modern DL modules, such as normalizing flows [91], VAEs

and Transformers [177] to achieve high-quality natural-sounding output. VITS improves

on the model it’s based on, i.e. GlowTTS [82], by replacing the duration predictor with

a stochastic duration predictor, so as to better model variability in speech, and by con-

necting a HiFi-GAN vocoder [94] to the decoder’s output through a VAE, so as to let the

model learn an intermediate representation different from traditional mel-spectrograms

and enable end-to-end training. A thorough explanation of the VITS architecture is con-

sidered out of scope for this thesis, but we encourage the reader to refer to [83] for further

details.

YourTTS during training and inference is illustrated in Figure 3.18, where ++ indi-

cates concatenation, red connections mean that no gradient will be propagated through

them, and dashed connections are optional. Also, the Hifi-GAN discriminator network is

omitted for simplicity.

3.5 End-to-end approach 68

Hence, YourTTS is a powerful architecture that solves many problems in the TTS

field, such as multi-lingual TTS (i.e. a single model for multiple languages), multi-

speaker TTS (i.e. a single model for multiple speakers), zero-shot learning (i.e. the

ability to synthesise speech with unseen speakers), speaker and language adaptation (i.e.

the ability to fine-tune pre-trained models to learn new speakers and languages), cross-

language voice transfer (i.e. transferring a voice from its original language to a different

one) and more. In this thesis, we rely on a pre-trained version of YourTTS, publicly

available through Coqui’s TTS repository10, and rely on transfer learning to adapt it to

the task of multi-dialect synthesis.

10https://github.com/coqui-ai/TTS

https://github.com/coqui-ai/TTS

CHAPTER 4

DATASET

This chapter describes all the details about data sources and data transformations that

were used for experimentation. Section 4.1 presents information about data composition

for each considered corpora, while Section 4.2 gives a detailed overview of all the pre-

processing steps applied to both text and audio. This thesis relies on single-speaker and

multi-speaker datasets to assess implementation correctness for both acoustic and voice

conversion models, while it makes use of multi-speaker multi-dialect corpora to test the

solutions described in Chapter 3.

4.1 Data resources

The speech domain (and the TTS one in particular) suffers from a lack of high-quality

open-source data. Recent projects, such as Common Voice [4], have greatly simplified

the work of many in the ASR field, given its massive scale1, but most large-scale corpora

(including Common Voice), do not meet the high bar required to build effective TTS

systems. Indeed, in order to obtain a human-like voice in the TTS setting, audio files

usually need to be studio-recorded by professional voice talent and audio needs to be

carefully cleaned, with post-processing steps such as prooflistening2.

1As of the end of July 2021, version 7.0 of the Common Voice corpus contains more than 11 k hours of
validated speech in 76 languages.

2Prooflistening is a process whereby an audio expert listens to recordings and looks for errors and
inaccuracies, such as text/audio mismatch, background noise, unclear articulation, too short or too long
pauses and so on.

4.1 Data resources 70

Some datasets containing such high-quality speech do exist in the public domain, but

most of them fall short on scale. Nevertheless, the following sections introduce the set

of corpora selected for this thesis. All datasets were analysed under the same settings; in

particular, Table 4.1 shows definitions used to report transcriptions statistics throughout

the whole chapter.

Definition

Characters A character is any symbol in the input text
Words A word is an entry of a whitespace-tokenized text
Letters A letter is a character in {[a − z], [A − Z], [0 − 9]}
Punctuation A punctuation mark is a character in !"#$%&\’()*+,-

./:;<=>?@[\\]^_‘{|}~

Table 4.1: Transcriptions statistics definitions, that clearly state what is meant by characters,
words, letters and punctuation marks.

4.1.1 LJ Speech

The LJ Speech corpus [75] is a public domain speech dataset consisting of 13 100 short

audio clips of a single American English female speaker reading passages from 7 non-

fiction books, together with corresponding transcriptions. Both text and audio are in the

public domain, with the former published between 1884 and 1964 and the latter recorded

in 2016-17 by the LibriVox project [108]. Each audio file is a single-channel 16-bit Pulse

Code Modulation (PCM) Waveform Audio File Format (WAV) file with a sample rate of

22 050 Hz, that have been segmented automatically based on silences in the original full-

length recordings (clip boundaries generally align with sentence or clause boundaries).

The text was then matched to the audio manually, and a Quality Assurance (QA) pass

was done to ensure that the text accurately matched the words spoken in the audio.

As reported in LJ Speech’s website [75], transcriptions with numbers, ordinals, and

monetary units are already expanded into full words, even though certain abbreviations

(e.g. Mr., Dr., No.) are left as-is and have to go through additional processing. Other

steps are also needed to normalize text, as further analysis of transcriptions shows that

the following non-standard characters, other than unconventional quotes, are included in

certain utterances: "à, â, è, é, ê, ü". LJ Speech’s website points out that exactly 19 of the

transcriptions contain non-ASCII characters (e.g. "raison d’être").

4.1 Data resources 71

Figure 4.1: Histogram of audio durations (in seconds) for LJ Speech recordings.

Table 4.2 shows statistics related to text transcriptions in the LJ Speech dataset, while

Figure 4.1 shows the distribution of audio snippet durations (in seconds), with the mini-

mum duration being 1.11 s, the maximum 10.10 s, the average 6.57 ± 2.19 s and the total

one 23.92 h.

In this thesis, version 1.1 of LJ Speech was used.

Min Max Mean Std Unique

Characters 5 187 98.35 34.05 88
Words 1 44 19.02 6.68 14840
Letters 4 155 80.09 27.86 62
Punctuation 0 19 2.37 1.62 15

Table 4.2: LJ Speech transcriptions statistics, computed over all ground-truth texts.

4.1.2 LibriSpeech

As LJ Speech, the LibriSpeech corpus [134] is a dataset of read American English speech

derived from audiobooks that are part of the LibriVox project [108]. Differently from LJ

Speech, it is a multi-speaker dataset that acts as a large scale successor of the volunteer-

supported speech-gathering effort VoxForge [179], which has around 100 hours of En-

glish speech and suffers from major gender and per-speaker duration imbalances.

Table 4.3 shows the various LibriSpeech data partitions freely available. In this thesis,

version train-clean-100 of LibriSpeech was used.

Further analysis of the train-clean-100 partition shows that text transcriptions are

4.1 Data resources 72

Subset Hours Per-
speaker
minutes

Female
speakers

Male
speakers

Total
speakers

dev-clean 5.4 8 20 20 40
test-clean 5.4 8 20 20 40
dev-other 5.3 10 16 17 33
test-other 5.1 10 17 16 33
train-clean-100 100.6 25 125 126 251
train-clean-360 363.6 25 439 482 921
train-clean-500 496.7 30 564 602 1166

Table 4.3: Data subsets in Librispeech. The difference between clean and other is the quality of
the audio and its corresponding transcription. The clean quality is higher than the
other.

clean, as there are no non-ASCII characters in any of the 28 539 prompts. Moreover, the

split has a total amount of 251 English speakers, with each speaker having an average of

113.70 ± 15.18 utterances and an average total duration of 1442.74 s ± 161.29 s. Thus,

the majority of speakers have only around 20 m of audio or less.

Table 4.4 shows statistics related to text transcriptions in the train-clean-100 partition

of LibriSpeech dataset, while Figure 4.2 shows the distribution of audio snippet durations

(in seconds) out of all speakers, with the minimum duration being 1.41 s, the maximum

24.53 s, the average 12.69 s ± 3.57 s and the total one 100.59 h.

(a) Distribution of audio durations over all
recordings.

(b) Distribution of per-speaker audio durations.

Figure 4.2: Histograms of audio durations (in seconds) for LibriSpeech recordings in the
train-clean-100 partition.

4.1 Data resources 73

Min Max Mean Std Unique

Characters 8 398 184.65 58.65 28
Words 2 76 35.03 11.43 32456
Letters 7 331 150.62 47.77 26
Punctuation 0 8 0.34 0.76 1

Table 4.4: LibriSpeech transcriptions statistics, computed over all ground-truth texts in the
train-clean-100 partition.

4.1.3 VCTK

The VCTK [194] corpus contains speech data uttered by 110 English speakers with

various accents, along with corresponding transcriptions. Each speaker reads about 400
sentences from the Herald Glasgow newspaper, selected so as to increase phonetic cov-

erage [178]. Some passages are the same for all speakers, such as the rainbow passage3

and the elicitation paragraph4.

All speech data was recorded in a professional studio at the University of Edinburgh,

with a sample rate of 96 kHz and quantization of 24 bits. All recordings were then con-

verted into 16 bits and downsampled to 48 kHz.

Also, some prompts are excluded from the dataset because of technical issues. In

particular, all audio recordings from speakers p280 and p315 are removed and some

recordings from p362 are also deleted, because of the lack of either text or audio files.

Further analysis of text transcriptions shows that some of the 43 873 utterances contain

non-standard characters, such as newlines and tabs.

This corpus was originally aimed for HMM-based TTS systems, but is also suitable

for DNN-based multi-speaker TTS and waveform modelling, as reported by the authors

in the official dataset website5.

Table 4.5 shows statistics related to text transcriptions in the VCTK dataset, while

Figure 4.3 shows the distribution of audio snippet durations (in seconds) out of all speak-

ers, with the minimum duration being 1.22 s, the maximum 16.56 s, the average 3.37 s ±
1.20 s and the total one 41.04 h.

The dataset has a total amount of 108 English speakers, with each speaker having

an average of 406.23 ± 50.34 utterances and an average total duration of 1367.94 s ±
3http://web.ku.edu/~idea/readings/rainbow.htm
4http://accent.gmu.edu
5https://datashare.ed.ac.uk/handle/10283/3443

http://web.ku.edu/~idea/readings/rainbow.htm
http://accent.gmu.edu
https://datashare.ed.ac.uk/handle/10283/3443

4.1 Data resources 74

(a) Distribution of audio durations over all
recordings.

(b) Distribution of per-speaker audio durations.

Figure 4.3: Histograms of audio durations (in seconds) for all VCTK recordings.

210.54 s. Thus, as in LibriSpeech, the majority of speakers have only around 20 m of

audio or less.

Min Max Mean Std Unique

Characters 10 186 39.95 19.83 62
Words 3 40 8.73 3.78 5776
Letters 6 146 31.18 16.19 52
Punctuation 0 6 1.35 0.62 7

Table 4.5: VCTK transcriptions statistics, computed over all ground-truth texts and for all
speakers.

4.1.4 SLR83

SLR83 [42] is a dataset that contains male and female transcribed high-quality audio of

British English from various dialects of the UK and Ireland. The dialects represented

in the recordings are Irish English, Midlands English, Northern English, Scottish English,

Southern English and Welsh English.

The dataset stems from a crowdsourcing initiative, with volunteers above 21 years

of age. The participants were both Google employees in London (101 in total) and stu-

dents, friends and family of collaborators at the University of Cardiff (the remaining 19
speakers).

4.1 Data resources 75

Different elicitation scripts were generated for each speaker, however, a few sen-

tences were included in all the elicitation scripts. The scripts were crafted for each di-

alect so that specific linguistic features present in that dialect could be contrasted against

other dialects, as well as capturing pronunciation variants of, for example, place names.

Line sources vary widely and include data gathered from Wikipedia [189], the rainbow

passage (the same one used in VCTK), Alice’s Adventures in Wonderland [16], lines that

are intended to be spoken by a virtual assistant and more. The following is the list of

elicitation line categories included in the dataset.

• Idiolect: lines included to differentiate the speaker-specific aspects of the accent of

a speaker from the regional accent (same lines for every speaker);

• Global English accents: lines included to reflect the phonological aspects of a wide

range of global English accents; they include, among other words, the names of the

most populated cities of the world, major airlines, the most popular US cities, and

popular English personal names;

• British Isles: lines included to differentiate between global English accents and all

British Isles accents;

• Accent region: lines included to differentiate regional accents of the British Isles

among each other.

(a) Distribution of audio durations over all
recordings.

(b) Distribution of per-speaker audio durations.

Figure 4.4: Histograms of audio durations (in seconds) for all SLR83 recordings.

The corpora contains a total of 17 877 recordings, stored at 48 kHz with a depth of

16 bits per sample. Table 4.7 shows statistics related to text transcriptions in the SLR83

4.1 Data resources 76

dataset, while Figure 4.4 shows the distribution of audio snippet durations (in seconds)

out of all speakers, with the minimum duration being 1.62 s, the maximum 20.14 s, the

average 6.30 s ± 2.23 s and the total one 31.23 h (around 10 hours less than VCTK). In-

stead, audio durations broken down by dialect are shown in Figure 4.5 and audio statistics

are summarized and presented for dialects in Table 4.6.

The dataset has a total amount of 120 British English speakers (49 female and 71
male), with each speaker having an average of 148.69 ± 5.58 utterances and an average

total duration of 936.92 s ± 128.49 s. Thus, this corpora exhibits a slightly lower average

speaker coverage than LibriSpeech and VCTK, with many speakers having only around

15 m of audio or less.

Finally, further analysis of transcriptions shows that the following non-standard char-

acters, other than anomalous dashes and quotes, are included in certain utterances: "á, è,

é, ô, ö, ü, ă", which means that further text processing is required, as observed in the LJ

Speech dataset.

Count Min Max Mean Std

Utterance 17843 1.62 20.14 6.30 2.23
Speaker 120 644.27

(mif_02484)
1384.62
(wef_12484)

936.92 128.49

Dialect 6 2576.21
(irish)

19376.55
(welsh)

18738.30 16452.43

Table 4.6: Statistics of audio durations (in seconds) broken down at the utterance, speaker and
dialect level, for all SLR83 recordings.

Min Max Mean Std Unique

Characters 9 176 79.08 32.02 76
Words 2 28 13.83 5.35 7567
Letters 8 151 66.19 27.09 62
Punctuation 0 6 0.18 0.49 2

Table 4.7: SLR83 transcriptions statistics, computed over all ground-truth texts and for all
speakers and dialects.

4.1 Data resources 77

(a) Irish speakers audio durations. (b) Midlands speakers audio durations.

(c) Northern speakers audio durations. (d) Scottish speakers audio durations.

(e) Southern speakers audio durations. (f) Welsh speakers audio durations.

Figure 4.5: Histograms of audio durations (in seconds) for all SLR83 recordings, broken down
by dialect accent.

4.1 Data resources 78

4.1.5 Others

There are also other datasets that provide information about the dialect accent of its

speakers. Some of them are in the public domain, such as Intonational Variation in En-

glish (IViE) [170] and Corpora e Lessici dell’Italiano Parlato e Scritto (CLIPS) [33],

while some others have more restrictive licenses, such as Accents of the British Isles

(ABI) (both ABI-1 [169] and ABI-2 [1]).

The IViE corpus contains recordings of nine urban dialects of English spoken in the

British Isles, as shown in Figure 4.6. Recordings of male and female speakers were made

in London, Cambridge, Cardiff, Liverpool, Bradford, Leeds, Newcastle, Belfast and

Dublin. Also, three speakers are from the ethnic minorities of bilingual Punjabi/English,

bilingual Welsh/English and Caribbean descent. This dataset was originally built for re-

search in linguistics and then adopted for ASR modelling, but its relatively low quality

in terms of audio recordings and the lack of the majority of text transcriptions makes it

unusable for TTS purposes. In particular, in its first version, only 4 hours out of the 36
total hours were labelled.

Figure 4.6: Dialects in the IViE corpus [170]. The red dots roughly indicate the location of
native speakers in the dataset.

Next, the ABI-1 corpus is a collection of speech recordings of 280 speakers sampled

throughout the British Isles, with more than 70 hours of recordings covering 13 distinct

accent regions. For each region, an average of 10 male and 10 female subjects each

recorded around 15 minutes of read speech. Also, speakers’ ages ranged from 16 to 79.

4.1 Data resources 79

Instead, the ABI-2 corpus contains 286 speakers covering 13 accent regions of the British

Isles which are not covered in the original ABI-1 corpus. Statistics are similar to ABI-1,

with ABI-2 also having 70 hours of recordings. Thus, the ABI family covers together 26
accent regions in the United Kingdom (as shown in Table 4.8), with a total of 140 hours

of speech and 566 speakers. Unfortunately, neither of the two is open source, not even

for academic purposes.

ABI-1 ABI-2

Belfast Bristol
Birmingham Caernarfon
Burnley Cardiff
Denbigh Coalville
Dublin Dudley
Elgin Edinburgh
Glasgow Hartlepool
Hull Hereford
Liverpool Leeds
Lowestoft Shrewsbury
Newcastle Southend-on-Sea
Tower Hamlets Stoke-on-Trent
Truro Yeovil

Table 4.8: Dialect accent regions in the ABI corpora. The left column indicates the location of
native speakers in the ABI-1 dataset, while the second column does the same for
speakers in ABI-2.

Another dataset that contains information on British dialect accents at the regional

level is FReiburg corpus of English Dialects (FRED) [55]. Such corpus was compiled

by the University of Freiburg during the period 2000 through 2005 and consists of 370
unique prompts, which total around 2.5 million words of text and 300 hours of speech

(excluding interviewer utterances), covering nine major dialect areas and a multitude of

locations, as shown in Figure 4.7. Even though the dataset was compiled starting from

the year 2000, recordings were collected between 1968 and 2000, with the majority of

them (40.5%) in the period ranging from 1980 to 1989. Also, speakers in the corpus

were born between 1877 and 1959, with 89% having their birthdays before 1920. Due

to the relatively low quality of audio recordings and the fact that such old recordings

may not represent the modern English language anymore, FRED is not considered as

4.1 Data resources 80

a suitable candidate to build robust TTS systems. Moreover, the full FRED corpus is

only available to researchers and (visiting) scholars at the University of Freiburg, due to

copyright restrictions. Only a 123 hours subset with 5 dialect varieties (denoted FRED-S)

is available in the public domain.

Figure 4.7: Location of informants in the FRED corpus [55]. The red dots roughly indicate the
location of native speakers in the dataset.

Finally, the last dataset taken into consideration for dialect accent modelling is CLIPS

[33]. This corpus differs from all the others as it doesn’t contain British English data, but

spoken Italian. CLIPS amounts to a total of 100 hours of transcribed speech, uniformly

balanced in terms of speaker gender, from 15 Italian cities: Bari, Bergamo, Bologna,

Cagliari, Catanzaro, Firenze, Genova, Lecce, Milano, Napoli, Palermo, Parma, Perugia,

Roma and Venezia. The corpus is sub-divided into 4 categories: radio and television

(e.g. news, interviews, talk shows), on-the-field collection (with recordings on map tasks

and spot-the-difference games), read text and phone-recorded speech. Out of the 4, only

the read text section sounds clean enough to be used for a TTS system, while the other

recordings suffer from long pauses, usage of too many filler words and people talking

over each other, especially in interviews.

Thus, all the corpora presented in this section had to be excluded for further process-

ing because of either license issues, scale or quality or a combination of them, leaving

SLR83 as the best option to model dialect accents, as introduced in Chapter 3.

4.2 Data processing 81

4.2 Data processing

As already hinted throughout the thesis, TTS systems have the need to work with clean

data. This usually means that both audio recordings and the corresponding text tran-

scriptions need to go through a sequence of pre-processing steps. Some steps are always

applied, while some others might depend on the downstream task, or may act as a form

of data augmentation and model regularization, thus becoming optional stages in the

overall data processing flow. Subsection 4.2.1 and Subsection 4.2.2 describe all the data

transformations, used for experimentation, that were applied to raw input data.

4.2.1 Text

As introduced in Section 2.3, raw input text needs to be converted to a form more suit-

able for further linguistic/acoustic processing. In this thesis, raw text is first lower-cased

and verbalized using the NeMo [99] text normalization tools [198, 199], which rely on

weighted finite-state transducers. Then, the normalized text is tokenized into words by

splitting on whitespaces, as the only considered language is English, and the last remain-

ing step is to convert text to a list of indices. An optional step right after normalization

would be to convert graphemes to phonemes. In this thesis, we mainly rely on character-

based inputs, even though an implementation of a G2P module, based on the phonemizer

[10] open-source tool, is provided6.

Figure 4.8 shows an example of a text transcription converted to integer indices,

where dashed arrows indicate optional paths, i.e. the user can decide whether or not

to transduce graphemes to phonemes.

Table 4.9 shows the input-to-grapheme and grapheme-to-input mappings, along with

the explanation of certain tokens that convey a special meaning. For example, the "_"

token is used to right-pad text indices to the maximum length in a batch, "^" and "~" are

used to mark the start and end of sentences, in order for the acoustic model to make sense

of initial and final pauses in recordings, "+" marks the end of a word and the beginning

of another one and it might be useful for the model to learn breaks within the utterance,

while "@" is a fail-safe bucket where all tokens unseen during training fall into.

6Phonemization is based on the eSpeak backend and applied with the en-GB locale, with preserved
punctuation marks and without stresses.

http://espeak.sourceforge.net/

4.2 Data processing 82

Can I have 10 $, please?

can i have 10 $, please?

Lowercase

Normalize

can i have 10 dollars , please ?

['k', 'a', 'n', '+', 'aɪ', '+', 'h', 'a', 'v', '+', 't', 'ɛ', 'n', '+', 'd', 'ɒ', 'l', 'ə', 'z', ',', 'p', 'l', 'iː', 'z?']

Phonemize

Phonemes to indices

[9, 29, 512, 51, 11, 12, 11, 194, 512, 171, 11, 23, 496,
51, 11, 24, 524, 275, 486, 160, 5, 13, 275, 12, 12, 10]

Graphemes to indices

[9, 15, 13, 26, 12, 21, 12, 20, 13, 34, 17, 12, 32, 17, 26, 12, 16,
27, 24, 24, 13, 30, 31, 12, 5, 12, 28, 24, 17, 13, 31, 17, 12, 2, 10]

can i have 10 dollars , please ?

Figure 4.8: Example of raw text to indices pre-processing. The input text is lower-cased,
normalized and possibly phonemized before being mapped to a set of integers.

For what concerns the phoneme-to-index and index-to-phoneme mapping, the IPA7

standard is followed, which is one of the most popular alphabetic systems of phonetic

notation.

4.2.2 Audio

Audio pre-processing is the most important and laborious stage of the data processing

workflow, as there are many moving parts and hyper-parameters to tweak. First of all,

there’s the need to differentiate between transforms that happen in the time domain and

the ones that need to be applied in the frequency domain. From now on, the time-domain

representation is going to be a raw waveform, while the frequency domain representation

is a spectrogram.

Given that this thesis deals with multiple independent modules, each one of them

7Some well-estabilished implementations of IPA include SAMPA and X-SAMPA, with the former only
covering part of the IPA symbols and latter being a full encoding of IPA.

4.2 Data processing 83

Index Grapheme Meaning

0 _ Padding
1 ! -
2 ? -
3 " -
4 ’ -
5 , -
6 . -
7 ; -
8 : -
9 ^ Start of sentence
10 ~ End of sentence
11 + Word boundary
12 @ Unknown
13-38 a-z -

Table 4.9: Static mapping between graphemes and integer indices.

relies on a slightly different waveform and spectrogram pre-processing workflow. Fig-

ure 4.9 depicts such differences. In particular, Figure 4.9a shows the overall waveform

flow, which is adapted for audio embedding and audio conversion modules in Figure 4.9b

and for TTS modules in Figure 4.9c. Instead, Figure 4.9d shows the spectrogram flow

shared by all modules. In the figures, bold lines indicate mandatory steps, while dashed

lines represent optional steps. Each module sketched in Figure 4.9 will be thoroughly

described in the following sections.

Time-domain pre-processing

To start off, a raw input waveform needs to be loaded, resampled to the target sample

rate (e.g. down-sampled from 48 000 Hz to 22 050 Hz), possibly down-mixed to mono

(in case the audio signal is stereo) and possibly normalized to a standard range such

as [0, 1] or [−1, 1]. The down-mixing step is usually mandatory, as all subsequent pro-

cessing assumes to work with single-channel waveforms, while normalization is optional

and dependent on the downstream task. According to Librosa [119], which is the ref-

erence library for audio and music signal analysis in Python, an input waveform w can

be normalized as in Equation 4.1, where c is usually set to µw = 1
n

∑n
i wi and ∥w∥p is

4.2 Data processing 84

Resample

Input waveform

Down-mix Norrmalize

Denoise

Remove silence

Trim silence

ChunkReverb

Output waveform

(a) Complete waveforms flow, from the raw waveform to its fully processed version.

Resample

Input waveform

Remove silence Chunk Reverb

Output waveform

(b) Audio embedding and audio conversion modules waveforms flow, in which silence removal and
chunking are key steps.

Resample

Input waveform

Trim silence

Output waveform

(c) TTS modules waveforms flow, where only resampling and silence trimming are mandatory steps.

STFT

Input waveform Mel-spectrogram

Linear to mel scale Amplitude to decibel Normalize SpecAugment

(d) Spectrograms flow, from raw waveforms to normalized and augmented mel-spectrograms.

Figure 4.9: Audio pre-processing steps. The complete waveform flow is adapted to each type of
module, while the spectrogram flow is common to all of them.

4.2 Data processing 85

the p-norm of vector w, with the most common type of norm being the infinite one, i.e.

∥w∥∞ = max w.
w − c

∥w∥p

(4.1)

Other optional steps may be carried out in the time domain, as they might enhance

the robustness or generalization abilities of the to-be-trained models. As described in

Section 4.1, many open-source speech datasets lack high-quality recordings, as most

available speech corpora are volunteer-based; thus, recordings could present some form

of background noise (such as room reverberation, hand-clapping, people talking and the

like) that is detrimental for many speech systems, such as TTS ones. To get rid of back-

ground noise, speech enhancement models can be used. One of the most effective and

easy-to-use models of such is denoiser [39], as it runs in real-time on a laptop CPU and

is capable of removing various kinds of background noise including stationary and non-

stationary noises, as well as room reverb, as suggested by empirical evidence. Figure 4.10

shows denoiser’s encoder-decoder architecture with skip-connections. For the purpose of

this thesis, the pre-trained8 version of denoiser is used.

Encoder1(Cin = 1, Cout = H)

Encoder2(Cin = H,Cout = 2H)

. . .

EncoderL(Cin = 2L−2H,Cout = 2L−1H)

L S T M
hidden size=2L−1H
2 layers

DecoderL(Cin = 2L−1H,Cout = 2L−2H)

. . .

Decoder2(Cin = 2H,Cout = H)

Decoder1(Cin = H,Cout = 1)

(a) Causal DEMUCS with the noisy speech as input on the bottom
and the clean speech as output on the top. Arrows represents U-
Net skip connections. H controls the number of channels in the
model and L its depth.

GLU(Conv1d(Cin, 2Cin,K = 1, S = 1))

ConvTr1d(Cin, Cout,K, S)

Encoderi

+

Decoderi+1 or LSTM

Output or ReLU then Decoderi−1

Relu(Conv1d(Cin, Cout,K, S))

GLU(Conv1d(Cout, 2Cout,K = 1, S = 1))

Decoderi

Input or Encoderi−1

Encoderi+1 or LSTM

(b) View of each encoder (bottom) and decoder layer (top). Arrows
are connections to other parts of the model. Cin (resp. Cout) is
the number of input channels (resp. output), K the kernel size and
S the stride.

Figure 1: Causal DEMUCS architecture on the left, with detailed representation of the encoder and decoder layers on the right. The on
the fly resampling of the input/output by a factor of U is not represented.

consists in a convolution layer with a kernel size of K and stride
of S with 2i−1H output channels, followed by a ReLU activa-
tion, a “1x1” convolution with 2iH output channels and finally
a GLU [15] activation that converts back the number of chan-
nels to 2i−1H , see Figure 1b for a visual description.

Next, a sequence modeling R network takes the latent rep-
resentation z as input and outputs a non-linear transformation
of the same size, R(z) = LSTM(z) + z, denoted as ẑ. The
LSTM network consists of 2-layers and 2L−1H hidden units.
For causal prediction, we use an unidirectional LSTM, while
for non causal models, we use a bidirectional LSTM, followed
by a linear layer to merge the both outputs.

Lastly, a decoder network D, takes as input ẑ and outputs
an estimation of clean signal D(ẑ) = ŷ. The i-th layer of
the decoder takes as input 2i−1H channels, and applies a 1x1
convolution with 2iH channels, followed by a GLU activation
function that outputs 2i−1H channels and finally a transposed
convolution with a kernel size of 8, stride of 4, and 2i−2H out-
put channels accompanied by a ReLU function. For the last
layer the output is a single channel and has no ReLU. A skip
connection connects the output of the i-th layer of the encoder
and the input of the i-th layer of the decoder, see Figure 1a.

We initialize all model parameters using the scheme pro-
posed by [16]. Finally, we noticed that upsampling the audio by
a factor U before feeding it to the encoder improves accuracy.
We downsample the output of the model by the same amount.
The resampling is done using a sinc interpolation filter [17], as
part of the end-to-end training, rather than a pre-processing step.

2.3. Objective
We use the L1 loss over the waveform together with a multi-
resolution STFT loss over the spectrogram magnitudes simi-
larly to the one proposed in [13, 14]. Formally, given y and
ŷ be the clean signal and the enhanced signal respectively. We
define the STFT loss to be the sum of the spectral convergence
(sc) loss and the magnitude loss as follows,

Lstft(y, ŷ) = Lsc(y, ŷ) + Lmag(y, ŷ)

Lsc(y, ŷ) =
‖|STFT(y)|− |STFT(ŷ)|‖F

‖|STFT(y)|‖F

Lmag(y, ŷ) =
1
T
‖ log |STFT(y)|− log |STFT(ŷ)|‖1

(1)

where ‖ · ‖F and ‖ · ‖1 are the Frobenius the L1 norms re-
spectively. We define the multi-resolution STFT loss to be the
sum of all STFT loss functions using different STFT parame-
ters. Overall we wish to minimize the following,

1
T
[‖y − ŷ‖1 +

M∑

i=1

L
(i)
stft (y, ŷ)] (2)

where M is the number of STFT losses, and each L
(i)
stft applies

the STFT loss at different resolution with number of FFT bins
∈ {512, 1024, 2048}, hop sizes ∈ {50, 120, 240}, and lastly
window lengths ∈ {240, 600, 1200}.

3. Experiments

We performed several experiments to evaluate the proposed
method against several highly competitive models. We report
objective and subjective measures on the Valentini et al. [18]
and Deep Noise Suppression (DNS) [19] benchmarks. More-
over, we run an ablation study over the augmentation and loss
functions. Finally, we assessed the usability of the enhanced
samples to improve ASR performance under noisy condi-
tions. Code and samples can be found in the following link:
https://github.com/facebookresearch/denoiser.

3.1. Implementation details

Evaluation Methods We evaluate the quality of the enhanced
speech using both objective and subjective measures. For the
objective measures we use: (i) PESQ: Perceptual evaluation
of speech quality, using the wide-band version recommended
in ITU-T P.862.2 [24] (from 0.5 to 4.5) (ii) Short-Time Objec-
tive Intelligibility (STOI) [25] (from 0 to 100) (iii) CSIG: Mean
opinion score (MOS) prediction of the signal distortion attend-
ing only to the speech signal [26] (from 1 to 5). (iv) CBAK:
MOS prediction of the intrusiveness of background noise [26]
(from 1 to 5). (v) COVL: MOS prediction of the overall ef-
fect [26] (from 1 to 5).

For the subjective measure, we conducted a MOS study as
recommended in ITU-T P.835 [27]. For that, we launched a
crowd source evaluation using the CrowdMOS package [28].
We randomly sample 100 utterances and each one was scored

Figure 4.10: Facebook’s denoiser architecture [39], composed of an encoder-decoder structure
with skip connections.

8https://github.com/facebookresearch/denoiser

https://github.com/facebookresearch/denoiser

4.2 Data processing 86

After denoising, one might want to remove silence chunks from the waveform. This

can be useful for TTS systems, as acoustic models would have a hard time trying to align

text with spectrogram frames corresponding to silence (unless special tokens are used,

such as start and end of sentence ones); in the case of TTS, empirical evidence suggests

to only trim silence at the beginning and end of waveforms, as breaks in-between sen-

tences may be helpful for the model to learn an effective pausing strategy. Other than

TTS, silence removal can also be useful for tasks such as speaker/dialect verification,

given that in such applications audio is usually chunked into small pieces that are clas-

sified individually and then aggregated to provide a single output; it’s clear that in this

case silences need to be removed from the entire audio (at the beginning, in the middle

and at the end), as classifying a silence region would simply result in a random output.

Figure 4.11 shows an example of removing silence regions for the raw input waveform

depicted in Figure 4.11a.

0 1 2 3 4
Time

0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6

Am
pl

itu
de

(a) Raw waveform.

0.0 0.5 1.0 1.5 2.0
Time

0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6

Am
pl

itu
de

(b) Waveform with silence regions removed.

Figure 4.11: Silence removal through Voice Activity Detection (VAD). Notice how the
low-amplitude regions at the beginning and end of the original waveform (above)
are removed from the output of the VAD model (below).

In this thesis, silence removal is handled through VAD models, and in particular us-

ing the pre-trained enterprise-grade Silero VAD checkpoints [168], given their efficiency

(one audio chunk of 30 ms takes around 1 ms to be processed on a single CPU thread)

and accuracy (as shown in Figure 4.12). Results in Figure 4.12 are computed on a closed-

source test-set compiled by the Silero team, with 30+ languages, 2200 utterances with

4.2 Data processing 87

an average duration of 7 seconds, coming from vastly different audio domains (calls,

user recordings and various audios sourced from the Internet). Something to keep in

mind when using Silero VAD is that, at the time of writing, only pre-trained models are

available, with no paper, dataset and code made available to the open-source community.

Figure 4.12: Silero VAD [168] test-set precision-recall curve and comparison with other VAD
models. Notice how Silero VAD is much closer to the utopia point than competing
models.

Next, as introduced above some applications might need to work with chunks of

audio, instead of the full-length waveform, or might rely on this pre-processing step for

regularization purposes. Thus, given a full length input waveform w1,...,n (s seconds

long), random chunks of different lengths might be extracted. The approach adopted in

this thesis is the following: if the input waveform exceeds a certain length t (in seconds),

then a random subset length li is chosen (i ∈ {1, . . . , k}) and random start and end indices

b and e are selected so that e − b = li, with e ∈ {0, . . . , s − li} and e ∈ {li, . . . , s}. For

example, if the waveform length exceeds 3 s, then a random chunk of random length

(selected in [1, 1.5, 2] s) is extracted.

The final step in waveform pre-processing is that of reverberation, which is kind

of the inverse process w.r.t. denoising, i.e. the goal is to make the audio sound as if it

was uttered in a different environment. This step can be very useful for speaker/dialect

verification tasks, to make models robust to noise and recognize the speaker/dialect even

in wild scenarios, unseen during training. For the purpose of reverberation, this thesis

adopts the convolution reverb approach, whereby the augmented signal is the result of

a convolution between the clean signal and noise. Noise signals are extracted from a

4.2 Data processing 88

database9 of simulated and real Room Impulse-Response (RIR)10, isotropic and point-

source noises [90]. Figure 4.13 shows an example of a simulated RIR extracted in a small

room, along with its processed version, where the main impulse is selected, the signal

power is normalized and the time axis flipped; while Figure 4.14c shows the output of

convolving the raw waveform in Figure 4.14a with the point-source noise in Figure 4.14b.

In this example, the chosen noise resembles what can be heard when listening to house-

builders using heavy machines.

Frequency-domain pre-processing

After having pre-processed data in the time domain, waveforms need to be converted

to mel-scaled spectrograms, that can be further manipulated by frequency-domain trans-

forms.

In order to perform the waveform to mel-spectrogram conversion, one needs to com-

pute the STFT transform, which returns so-called linear spectrograms speclin, as a tuple

of magnitude and phase. In order to get rid of phase, linear spectrograms are fully tran-

sitioned to the real domain as reported in Equation 4.2, where spec
(r)
lin indicates the real

part of the signal and spec
(i)
lin its imaginary counterpart.

√[
spec

(r)
lin

]2
−
[
spec

(i)
lin

]2
+ ϵ, (4.2)

Next, linear spectrograms are converted to the mel scale to obtain specmel, amplitudes

are mapped to the decibels range as 20·log10(specmel) and the resulting output is possibly

normalized as reported in Equation 4.3, where vmax represents the boundary value of the

symmetrical range [−vmax, vmax] where spectrogram magnitudes will be mapped to, and

dbmin is the minimum supported decibel value, i.e. dbmin will be mapped to −vmax.

The min and max functions serve the purpose of clipping outliers at the boundaries of

[−vmax, vmax].

min(max(2 · vmax · specmel − dbmin

−dbmin

− vmax, −vmax), vmax) (4.3)

9https://www.openslr.org/28/
10An impulse response is defined as the sound of an acoustic space. It often starts as a recording of

a short, sharp sound (the impulse) in the acoustic space in question, which excites the reverberation (the
response) in the space.

https://www.openslr.org/28/

4.2 Data processing 89

0.0 0.1 0.2 0.3 0.4 0.5
Time

0.01

0.00

0.01

0.02

0.03

Am
pl

itu
de

(a) Raw RIR, randomly extracted from the RIR database.

0.00 0.02 0.04 0.06 0.08
Time

0.1

0.0

0.1

0.2

0.3

0.4

Am
pl

itu
de

(b) Processed RIR, where the main impulse is selected and normalized and the time axis flipped.

Figure 4.13: Example of a simulated RIR extracted in a small room.

0 1 2 3 4
Time

0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6

Am
pl

itu
de

(a) Raw waveform, to be corrupted by the noisy RIR.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Time

0.075
0.050
0.025
0.000
0.025
0.050
0.075
0.100

Am
pl

itu
de

(b) Processed point-source noise, used to corrupt a clean audio signal.

0 1 2 3 4
Time

1.0

0.5

0.0

0.5

1.0

Am
pl

itu
de

(c) Result of convolving the raw waveform with the selected point-source noise.

Figure 4.14: Convolution reverb, where a raw waveform (above) is convolved with a
point-source noise (middle) to obtain a reverbed sound (below).

4.2 Data processing 90

0 1 2 3 4
Time

0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6

Am
pl

itu
de

(a) Input waveform.

0 50 100 150 200 250 300 350
Time

0

20

40

60

Fr
eq

ue
nc

y

2

1

0

1

2

3

4

(b) Output spectrogram.

Figure 4.15: Waveform to mel-spectrogram conversion, through the STFT transform.

Figure 4.15 shows an example conversion from an input waveform to the correspond-

ing normalized mel-spectrogram. Throughout the thesis, the waveform-to-spectrogram

conversion will be based on parameters listed in Table 4.10.

After obtaining mel-spectrograms, other transforms may need to be applied. As in

the time-domain, such further processing is usually introduced to perform strong reg-

ularization and allow DNN-based models to generalize well. One of the most popular

transforms in the frequency domain is SpecAugment [135], a data augmentation method

initially presented for the ASR field and later adapted for other tasks, such as speaker ver-

ification. SpecAugment is applied directly to mel-spectrograms and it consists of warping

the features, masking blocks of frequency channels, and masking blocks of time steps.

The intuition is that learned features should be robust to deformations in the time direc-

tion, partial loss of frequency information and partial loss of small segments of speech.

These kinds of dropouts in the feature domain were already proposed in other fields such

as Computer Vision, where Cutout [45] follows similar reasoning of randomly masking

image patches. About SpecAugment, the time-warping transform can be seen as apply-

ing a speed perturbation to the input signal: the only difference w.r.t. to standard speed

perturbation is that with SpecAugment it would be applied directly on the mel-scaled

spectrogram, rather than on the raw waveform. The next two steps simply deal with

4.2 Data processing 91

Parameter Value Description

nf 1024 Size of FFT
ns ⌊nf

2 ⌋ + 1 Number of bins in STFT
w 1024 Window size
h 256 Hop length
nm 80 Number of mel bins
fmin 0.0 Minimum frequency
fmax None Maximum frequency
ϵ 10−5 Clip linear spectrograms
melscale Slaney If Slaney, scale mels to have ap-

proximately constant energy per
channel

melnorm Slaney If Slaney, divide the triangular mel
weights by the width of the mel
band

pv ⌊nf −h

2 ⌋ Padding value
pm Reflect Padding mode
normalize True/False Normalize in range [−vmax, vmax]
dbmin −100 Minimum decibel level
vmax 4.0 Maximum normalized absolute

value
sr 22 050 Hz Sampling rate

Table 4.10: Waveform to mel-spectrogram conversion fixed parameters.

masking random consecutive patches of the spectrogram with a constant value. As de-

scribed in the original paper, different patches may be applied to the time and frequency

axes and multiple patches per axis may also be applied. Figure 4.16 shows an example of

a SpecAugment transform with a random time warping in [0.95, 1.05], 1 frequency mask

with maximum coverage of 35% and 1 time mask with maximum coverage of 15%.

4.2.3 Splits

The last fundamental step in data pre-processing is that of splitting. As in all ML appli-

cations, data needs to be split into disjoint training, testing and validation sets. The

training set is then used during the learning procedure and the testing set is used to assess

models’ performance on an unseen subset of data. In an ideal scenario, the training set

should cover most (if not all) of the true data distribution, so that at test time the model

4.2 Data processing 92

0 50 100 150 200 250 300 350
Time

0

20

40

60
Fr

eq
ue

nc
y

2

1

0

1

2

3

4

(a) Input spectrogram.

0 50 100 150 200 250 300 350 400
Time

0

20

40

60

Fr
eq

ue
nc

y

2

1

0

1

2

3

4

(b) Output spectrogram.

Figure 4.16: SpecAugment transform, by which frames in the input spectrogram (above) are
randomly masked on the time and frequency dimensions to obtain an augmented
spectrogram (below).

does not experience a loss in performance due to train-test time shifts. Instead, in DL the

validation set usually serves the purpose of tracking model performance throughout the

training procedure, but it can also be used to tweak the training time hyper-parameter,

using the so-called early stopping procedure, whereby training is stopped (with some

patience) when the validation error does not improve enough. This is also backed by

Geoff Hinton, one of the fathers of modern AI: Early stopping (is) beautiful free lunch.11.

In terms of data splitting, this thesis relies on the following reasoning. First of all,

a subset of speakers is selected (if the dataset is a multi-dialect one, then the subset

of speakers is taken over each dialect). Taking a subset of speakers is encouraged for

the performance of certain audio conversion modules, such as AutoVC, while for audio

embedding and TTS modules using the full set of speakers is a better alternative. Then,

the training set is taken as either a certain percentage of utterances (e.g. 95%) for each

speaker or all the utterances remaining after removing a fixed number of validation/test

samples per speaker. The former option is used for TTS modules, while the latter one

is for audio embedding and audio conversion modules. In this way, both the training set

and the validation/test ones cover all selected speakers (and dialects, if applicable) in the

dataset.

11NIPS 2015 tutorial slides, slide 63, http://www.iro.umontreal.ca/~bengioy/talks/
DL-Tutorial-NIPS2015.pdf

http://www.iro.umontreal.ca/~bengioy/talks/DL-Tutorial-NIPS2015.pdf
http://www.iro.umontreal.ca/~bengioy/talks/DL-Tutorial-NIPS2015.pdf

CHAPTER 5

EXPERIMENTS

This chapter describes experimental details about all training and evaluation procedures.

First, Section 5.1 gives an overview of the experimental setup we adopted, while Sec-

tion 5.2 provides an explanation of the common evaluation strategy carried out for all

modules in our TTS pipelines.

Then, the following sections report tests and analyses about each of its corresponding

modules introduced in Chapter 3, with more details on the specific experimental setup

needed. In particular, Section 5.3 deals with the speaker and dialect accent embedding

modules, Section 5.4 details experiments related to the acoustic model, while experiments

for the voice/accent conversion models are outlined in Section 5.5. Moreover, Section 5.6

is dedicated to the joint evaluation of the acoustic modelling and voice/accent conversion

approaches, along with results obtained with the end-to-end approach described in Sec-

tion 3.5.

Finally, the last section Section 5.7 summarizes the obtained results and provides

discussion points and ideas for future work.

5.1 Experimental setup

The accompanying code1 for this thesis was written in Python, a high-level programming

language most popular in the science domain. The following is a non-comprehensive list

1https://github.com/Wadaboa/tts-dialects

https://github.com/Wadaboa/tts-dialects

5.1 Experimental setup 94

of the libraries that were used in this project, where we only focus on the most impor-

tant ones. First, we rely on Librosa [119], an open-source package for music and audio

analysis, to compute the audio statistics reported in Chapter 4. For vector operations on

CPU, such as the calculation of cosine similarities for speaker and dialect accent embed-

ding models, we rely on NumPy [30], the de facto standard for scientific computing in

Python. The Pandas [121] library was mainly used for its DataFrame data structure, to

deal with Comma-Separated Values (CSV) files such as dataset annotations and evalua-

tion results. All plots reported in this thesis were produced using either the Matplotlib

[73] or seaborn [187] packages, thanks to their seamless integration with NumPy and

Pandas, respectively.

For the implementation and training of neural models we rely on PyTorch [136],

an open source DL framework with automatic differentiation and eager execution, and

organize our code with its PyTorch Lightning [52] wrapper. To enable fast audio trans-

forms on GPU, we use the torchaudio [195] library to load raw waveforms into PyTorch

tensors and make use of some of their highly-optimized implementations, such as mel-

spectrogram extraction. We also exploit scikit-learn [137] for training simple ML mod-

els, such as SVMs, and for the computation of certain evaluation metrics, such as ROC

and F1.

All of the training and validation processes were executed on Google Colaboratory

[61], also known as Colab, which is a platform that gives the possibility to exploit some

computational resources for free; or the GPU cluster made available by the University

of Bologna. For Colab, we always selected GPU runtimes, thanks to their Pro Plus

subscription, and most of the time we were assigned an NVIDIA Tesla P100 GPU, with

16 GB of RAM. Sometimes, we were lucky enough to work with an NVIDIA A100

with 40 GB of RAM. Instead, the university cluster is a 10-node High-Performance

Computing (HPC) cluster, where each node is equipped with an Intel Xeon quad-core

CPU with 44 GB of RAM and an NVIDIA GeForce RTX 2080 Ti graphics card. Cluster

computational resources are accessible by submitting requests to a SLURM service [76],

which is an open-source workload manager that maintains a queue of jobs and schedules

them according to a first-come-first-served rationale.

Some training runs, such as the ones executed through Colab, and all analysis of

results were carried out via Jupyter [89] notebooks, which are available in the linked

GitHub repository.

5.2 Evaluation strategy 95

Training and evaluation metrics, along with model checkpoints and results, are di-

rectly logged into an openly-accessible Weights & Biases (W&B) project2 [11]. W&B

is a free experiment tracking, dataset versioning, and model management tool.

5.2 Evaluation strategy

All evaluations in subsequent sections are performed on specific test sets that vary be-

tween tasks and will be detailed afterwards. After the test-set is built and predictions

are carried out using the model about to be evaluated, we compute module-dependent

metrics. In particular, for the speaker and dialect accent encoders, we report results in

terms of EER and minimum DCF, as explained in section Section 3.1, along with a thor-

ough analysis of the latent space. Instead, acoustic models and voice/accent conversion

systems share the same set of metrics.

Intelligibility is evaluated with a pre-trained ASR model, available through

the HuggingFace transformers library [191]. The exact model we rely on is

facebook/s2t-small-librispeech-asr [183], which is an end-to-end S2S

transformer model trained on the full LibriSpeech corpus, where it achieves a WER of

4.3 on the test-clean split and 9.0 on the test-other split. Results for intelligibility are

reported in terms of both WER and CER, along with detailed statistics for each (e.g.

number of substitutions and deletions), and computed using the jiwer3 library, without

text concatenation. We also performed some evaluations with the Silero Speech-To-Text

(STT) models4 [167], which claim to achieve a WER of 6.1 on the test-clean split

of LibriSpeech and 15.7 on its test-other split. The reason to consider Silero STT is

that authors report objective metrics on the SLR83 dataset, with a minimum WER of

9.1 for Midlands female speakers and a maximum one of 25.3 for Irish male voices.

Though, informal tests show that the previously mentioned HuggingFace model copes

with dialect accents a lot better than Silero STT models; hence, all intelligibility-related

results will be reported based on the former. Something worth pointing out is that

intelligibility error metrics could stretch beyond 100%: this is possible as WER and CER

are not bounded between 0 and 1, since a prediction could potentially return an infinite

list of words or characters, respectively.
2https://wandb.ai/wadaboa/tts-dialects
3https://github.com/jitsi/jiwer
4All tests with Silero STT models were performed on the xlarge version of their community edition

products and reported metrics refer to the EN V5 section of their quality benchmarks.

https://wandb.ai/wadaboa/tts-dialects
https://github.com/jitsi/jiwer

5.2 Evaluation strategy 96

Next, we assess naturalness using a pre-trained MOSNet [112] model, publicly

available through the speechmetrics5 library. Given that the MOS score produced by

MOSNet is a relative one, we provide a random ground-truth utterance of the speaker

being evaluated when computing such scores. We are also aware that, in the speech com-

munity, MOSNet is not regarded as the most accurate solution to estimate naturalness,

but we still rely on it for budget reasons, as running crowd-sourced tests would be too

costly. To give readers a scale of reference for MOS scores, notice that the MOS for

16 kHz natural speech is around 4.5, while the MOS scores of the current SOTA speech

synthesizers are between 4 and 4.5 and scores for non-parallel VC are in the 3.0 to 3.8
range [104, 142], depending on the type of conversion (e.g. cross-gender is usually harder

than in-gender).

The last objective metric we report is speaker similarity. To do that, we compute

the average cosine similarity between test utterances and the centroid of the speaker be-

ing evaluated, using yet another pre-trained speaker encoder, namely the Emphasized

Channel Attention, Propagation and Aggregation (ECAPA) Time-Delay Neural Network

(TDNN) model [44] present in the SpeechBrain toolkit [143]. We rely on a different

model than Resemblyzer and TitaNet so as not to bias evaluations since the speaker en-

coder in SpeechBrain is pre-trained on VoxCeleb1 [127] and VoxCeleb2 [28] and has

thus not seen any of the identities in the datasets we use. We also tested an x-vector [157]

based model from the same SpeechBrain package, but found it to consistently classify ev-

ery utterance as close to any selected speaker. The simple test we run was to measure the

cosine similarity between two utterances of the same speaker and between one utterance

of a certain speaker and pure noise, expecting the former to return a cosine similarity

close to 1 and the latter a value close to 0. What we found is that the x-vector model

considered the pure noise sample as very similar to any speaker we selected, while the

ECAPA TDNN model followed the correct reasoning, even though its cosine similarity

values tend to be very conservative.

For what concerns accentedness, we perform perceptual tests through the Mechan-

ical Turk crowd-sourcing platform [36]. We design the survey so that each worker is

presented with the job description reported in Figure 5.1 and each sample is rated on a

1 to 5 scale, where 1 means the accent in the provided sample doesn’t sound native at

all, while a mark of 5 refers to a completely native accent. Moreover, tasks could only

5https://github.com/aliutkus/speechmetrics

https://github.com/aliutkus/speechmetrics

5.3 Speaker and dialect accent embeddings 97

Mark, on a scale of 1 to 5, how much the given speech sample is close to the
displayed British regional accent (e.g. Irish)

Figure 5.1: Description of the Mechanical Turk accentedness evaluation, which is what workers
see before accepting tasks in a batch.

be carried out by workers based in Great Britain, so as to obtain meaningful evaluations

for our dialects of the British Isles. Each worker is paid 0.01 $ per assignment and we

request 10 assignments for each sample. Even though 10 ratings are probably not enough

to obtain statistically significant results, we still go for 10 to limit expenses and because

we consider this number to be enough to get an intuition regarding systems ranking.

Figure 5.2: Example task from the Mechanical Turk accentedness evaluation. The worker is
asked to evaluate how close the given sample sounds to the specified accent, on a
scale of 1 to 5.

5.3 Speaker and dialect accent embeddings

Before diving deep into the speaker and dialect accent embeddings experiments, we need

to clarify what’s the common ground between each of them. In particular, the data split-

ting procedure is the one described in Section 4.2, i.e. whenever we need to split a dataset

into training and validation utterances, we always consider all speakers/dialects in both

splits and simply assign a fixed number of utterances for each speaker/dialect to the vali-

dation set: in this way, we are able to test generalization abilities of the models in terms of

seen speakers/dialects, but unseen utterances. Further generalization in terms of unseen

5.3 Speaker and dialect accent embeddings 98

speakers is verified for some models using completely different datasets. Also, all embed-

dings are reduced from their original dimension to 2D using Uniform Manifold Approx-

imation and Projection (UMAP) [120], unless otherwise specified. For what concerns

metrics, the minimum DCF is computed using Ptarget = 0.01 and CF A = Cmiss = 1,

while both minimum DCF and EER adopt a cosine similarity backend.

In terms of hyper-parameters, all of our custom d-vector models follow specifi-

cations reported in Table 5.1, while all of our TitaNet models are trained according

to parameters in Table 5.2. Both the d-vector and TitaNet models project input mel-

spectrograms into embedding vectors of size 192. Moreover, both architectures are

trained with the Adam [85] optimizer and a learning rate of 0.001 (no scheduler or weight

decay were used). Both sets of parameters follow recommendations in the corresponding

papers.

Parameter Value

Number of LSTM layers 3
LSTM hidden size 768
Segment length 160
LSTM average True

Table 5.1: D-vector hyper-parameters.

For the TitaNet model, some more details need to be discussed, as we deviate a bit

from the original paper. In particular, using raw SGD makes the model diverge and we

thus fall back to using Adam, as described above. Then, making use of all the data

augmentation techniques described in the paper (i.e. chunking, SpecAugment, speed

perturbation and reverberation) tends to regularize the model too much (at least in our

small-scale experiments); hence, the only audio pre-processing step we apply is chunk-

ing, as introduced in Section 4.2. Also, the number of mega blocks for each model size

and the rate of dropout were missing from the original paper. Regarding the former, 17
blocks were identified for TitaNet-S, while only 10 and 5 for TitaNet-M and TitaNet-L.

Such numbers were computed by spawning 20 models for each size (S, M, and L), with

a number of mega blocks between 1 and 20. Then, the final number of mega blocks was

chosen by selecting models with the closest number of parameters to the ones reported

in the paper, for each size (6.4 M for TitaNet-S, 13.4 M for TitaNet-M and 25.3 M for

TitaNet-L). The only difference between model sizes is in the number of convolutional

5.3 Speaker and dialect accent embeddings 99

filters used (256, 512 and 1024) and the convolutional kernel sizes (3, 5, 7). Finally, the

last point to keep in mind is that our definition of mega blocks does not include the prolog

and epilog blocks so the total number of blocks is actually the number of reported mega

blocks plus 2.

Parameter Value

Model size S
Number of mega blocks 17
Attention hidden size 128
Dropout rate 0.1

Table 5.2: TitaNet hyper-parameters.

5.3.1 Speaker embeddings

In this section, we test 3 speaker embedding models, namely our custom d-vector im-

plementation, a pre-trained d-vector architecture and the TitaNet model, with the overall

goal of finding the best speaker encoder to be used as part of the pipelines described in

Chapter 3. The high-level conclusion is that in order to obtain effective embeddings,

i.e. vectors that encode semantic information about the speaker, such as its gender, tone,

average speaking rate and more, using large-scale corpora is advised, but in case such a

massive dataset is not available (e.g. in low-resource languages) or there are not enough

computational resources to train such models on so many utterances, exploring more

sophisticated architectures might help.

D-vector vs TitaNet

First of all, we test our custom implementations of the d-vector and TitaNet models,

by training both on the train-clean-100 subset of LibriSpeech (see Subsection 4.1.2 for

more details) and testing on LibriSpeech itself and the VCTK dataset (introduced in

Subsection 4.1.3), in order to assess their generalization abilities. Both models were

trained for the same number of epochs (75 in this example), using CE as loss function.

Figure 5.3 shows that training performance is comparable for both models, as they

reach similar F1 (macro) values (and the same goes for accuracy), while validation met-

rics suggest that TitaNet outperforms the d-vector model on unseen utterances, by a good

5.3 Speaker and dialect accent embeddings 100

margin. Moreover, Figure 5.3a and Figure 5.3b reveal that the d-vector model went into

a slight overfitting path, given that the validation loss curve plateaus above the training

one after about 40 epochs.

0 10 20 30 40 50 60 70
Epoch

0

1

2

3

4

5

Lo
ss

d-vector
titanet

(a) Training loss.

0 10 20 30 40 50 60 70
Epoch

0

1

2

3

4

5

Lo
ss

d-vector
titanet

(b) Validation loss.

0 10 20 30 40 50 60 70
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1

d-vector
titanet

(c) Training F1.

0 10 20 30 40 50 60 70
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1

d-vector
titanet

(d) Validation F1.

Figure 5.3: D-vector (red) vs TitaNet (blue) loss (above) and F1 (below) curves on LibriSpeech.
Results show that TitaNet outperforms the d-vector model on the unseen validation
set.

Repeated empirical tests show that our d-vector model is not even able to correctly

cluster the training data, as shown in Figure 5.4a. This could be due to the fact that the

CE loss was used for training, which does not encourage the model to form visually (and,

hopefully, semantically) meaningful clusters in the latent space, but only to discriminate

between utterances of different speakers.

5.3 Speaker and dialect accent embeddings 101

118
1624
2836
3112
3259
3526
3879
4813
6272
6437

(a) D-vector tested on
LibriSpeech.

118
1624
2836
3112
3259
3526
3879
4813
6272
6437

(b) TitaNet tested on LibriSpeech.

p244
p260
p284
p286
p288
p298
p308
p316
p341
s5

(c) TitaNet tested on VCTK.

Figure 5.4: D-vector vs TitaNet speaker embeddings trained on LibriSpeech. Analyses of the
latent spaces show that TitaNet outperforms the d-vector model on unseen utterances
of both seen and unseen speakers.

Because of the poor results obtained in this analysis, we discard further tests on our

custom d-vector model and focus on TitaNet, which instead correctly learned to form

compact clusters (as shown in Figure 5.4b) of utterances, thus reflecting the high perfor-

mance metrics obtained during training.

Moreover, we test TitaNet on VCTK by selecting a random set of 200 utterances (20
for each of 10 random speakers) and show clustering properties in Figure 5.4c. Next, we

train a linear SVM to classify a random subset of 400 VCTK utterances (4 utterances for

each of the 100 selected speakers) and we test the classifier on another random subset of

200 VCTK utterances (2 for each of the 100 speakers used in the fitting stage), to obtain

an overall accuracy of 93%. We also compute the EER and minimum DCF metrics on

the same set of VCTK utterances, giving us 9.54 and 0.80, respectively. As a reference,

in the original paper, TitaNet authors are able to achieve an EER of 1.15 and a minimum

DCF of 0.13 when testing TitaNet-S on VoxCeleb1 [127]: we attribute this gap in results

to the huge difference in the number of utterances used to compute the metrics. Beware

that these tests were carried out using the TitaNet checkpoint at 100 epochs, instead of

the one at 75 epochs mentioned above. As we can observe, the model is able to generalize

even to unseen speakers, at least for the speaker identification task.

To further test TitaNet capabilities, we repeat the same tests performed on VCTK

for the SLR83 dataset (introduced in Subsection 4.1.4), given that it’s the corpus we

rely on for the core part of the thesis, i.e. multi-dialect experiments. Figure 5.5a shows

results obtained when training TitaNet on LibriSpeech and testing it on SLR83, while

Figure 5.5b plots the same speakers and utterances using a TitaNet model trained and

5.3 Speaker and dialect accent embeddings 102

tested on SLR83. As we can see, both models obtain poor clustering properties, thus

making us reconsider the use of TitaNet as our main choice for the speaker encoder

module.

nom_06136
scm_08421
scm_09334
sof_03034
sof_05679
sof_07049
sof_08421
som_07060
wef_02484
wef_12484

(a) Trained on LibriSpeech.

nom_06136
scm_08421
scm_09334
sof_03034
sof_05679
sof_07049
sof_08421
som_07060
wef_02484
wef_12484

(b) Trained on SLR83.

Figure 5.5: TitaNet speaker embeddings tested on SLR83. Results show that, as expected, the
model trained on the SLR83 dataset achieves the best clustering properties on the
same corpus.

The conclusion of this experiment is that the main strengths of the d-vector model

seem to come from the custom GE2E loss function and the size of the dataset used to

train it, rather than the simplicity of its architecture. Instead, we observe that the scale of

TitaNet seems to be beneficial for the model to more quickly learn effective clusters in

the latent space, even with a standard CE loss and a limited number of utterances, despite

the fact that results are highly dependant on the dataset selected for testing purposes.

TitaNet vs Resemblyzer

This experiment acts as a follow-up to the conclusion of the previous experiment. The

goal is now to compare TitaNet with a d-vector model trained with GE2E loss on a

bigger dataset, to understand which one performs best on the SLR83 corpus. For this

experiment we rely on a pre-trained d-vector-based encoder, publicly available under the

name of Resemblyzer6, which is trained with GE2E loss on the massive VoxCeleb2 [28]

dataset7.
6https://github.com/resemble-ai/Resemblyzer
7VoxCeleb2 contains over 1 million utterances for 6112 celebrities, extracted from videos uploaded to

YouTube

https://github.com/resemble-ai/Resemblyzer

5.3 Speaker and dialect accent embeddings 103

Figure 5.6a shows clustering results obtained with the Resemblyzer model on SLR83.

Embeddings plotted in Figure 5.6 come from the same set of 200 utterances (20 for each

of the 10 selected speakers) used in Figure 5.5, so that a meaningful comparison with

TitaNet could be visualized. Furthermore, we compute the EER and minimum DCF using

Resemblyzer embeddings on the same subset of VCTK utterances used in the previous

section to test TitaNet, obtaining 6.70 and 0.60, respectively: this leads us to believe that

our TitaNet model actually performs quite well, even if it’s trained on a fraction of the

data used in Resemblyzer. Beware that the two reported EER and minimum DCF metrics

are comparable, given that neither of the two models is trained with VCTK and the same

set of test utterances is used to obtain such metrics.

nom_06136
scm_08421
scm_09334
sof_03034
sof_05679
sof_07049
sof_08421
som_07060
wef_02484
wef_12484

(a) UMAP projection.

nom_06136
scm_08421
scm_09334
sof_03034
sof_05679
sof_07049
sof_08421
som_07060
wef_02484
wef_12484

(b) t-SNE projection.

nom_06136
scm_08421
scm_09334
sof_03034
sof_05679
sof_07049
sof_08421
som_07060
wef_02484
wef_12484

(c) SVD projection.

Figure 5.6: Resemblyzer speaker embeddings tested on SLR83. Results show that the choice of
the 2D reduction algorithm has a noticeable effect on perceptual evaluations.

Figure 5.6 also shows the same embeddings plotted using different 2D reduction

methods: Figure 5.6a relies on UMAP, as all other embedding plots in this thesis, while

Figure 5.6b makes use of t-distributed Stochastic Neighbor Embedding (t-SNE)8 and Fig-

ure 5.6c applies the more conventional Singular Value Decomposition (SVD) reduction

technique. As we can observe, the choice of the reduction method highly influences our

perception in terms of the goodness of the embeddings. Following the literature, we settle

for UMAP, as it seems to be the method that extracts the highest amount of information

from our high-dimensional embedding spaces.

8t-SNE [117] is a tool to visualize high-dimensional data. It converts similarities between data points
to joint probabilities and tries to minimize the Kullback-Leibler divergence between the joint probabilities
of the low-dimensional embedding and the high-dimensional data. t-SNE has a cost function that is not
convex, i.e. with different initializations we can get different results [137].

5.3 Speaker and dialect accent embeddings 104

Loss function comparison

This experiment aims to understand the perceptual and objective differences obtained

when training a speaker identification/verification model using distinct loss functions.

In particular, we report results comparing a TitaNet model trained with standard CE loss

and the same model trained with the ArcFace loss (also referred to as additive angular

margin).

0 20 40 60 80 100
Epoch

0

2

4

6

8

10

Lo
ss

ce
arcface

(a) Training loss.

0 20 40 60 80 100
Epoch

0

2

4

6

8

10

Lo
ss

ce
arcface

(b) Validation loss.

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1

ce
arcface

(c) Training F1.

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

F1

ce
arcface

(d) Validation F1.

Figure 5.7: TitaNet CE (red) vs TitaNet ArcFace (blue) loss (above) and F1 (below) curves on
LibriSpeech. Results show no noticeable different between the two models.

Given that TitaNet authors originally relied on ArcFace, we adopt the same set of

hyper-parameters in our experiments, i.e. a margin m = 0.2 and a scale s = 30. It’s

worth pointing out that in the original TitaNet paper, authors report using m = 30 and

5.3 Speaker and dialect accent embeddings 105

s = 0.2, thus relying on opposite magnitudes for margin and scale w.r.t. the original

ArcFace parameters of m = 0.5 and = 64. Our experiments show that using m = 30
and s = 0.2 makes the model easily diverge; thus, we swap the margin and scale values

following [43].

Figure 5.7 report training and validation losses and F1 scores for two TitaNet models

sharing the same architectural design and dataset (LibriSpeech in this example), differing

only in the selected loss function. The plots show no noticeable differences neither in

terms of convergence speed, nor w.r.t. the reached performance levels. The two models

also produce perceptually similar results, as shown in Figure 5.8.

118
1624
2836
3112
3259
3526
3879
4813
6272
6437

(a) CE loss.

118
1624
2836
3112
3259
3526
3879
4813
6272
6437

(b) ArcFace loss.

Figure 5.8: TitaNet CE vs TitaNet ArcFace speaker embeddings on LibriSpeech. Results show
no noticeable different between the two models.

This experiment concludes that, at least in our use case, using TitaNet trained with CE

loss or ArcFace loss makes no difference, as our goal is not strictly to generalize to unseen

speakers. In such cases, we hypothesize that using ArcFace would be very beneficial,

especially for datasets containing many more speakers than the ones we relied on. This is

because the softmax operator used in CE would face a much harder discrimination task.

Our hypothesis is also backed by applications in other domains, such as face recognition,

where the use of metric learning losses starts to shine as the number of faces to recognize

grows.

5.3 Speaker and dialect accent embeddings 106

Extraction of high-level features

female
male

(a) Gender discrimination.

irish
midlands
northern
scottish
southern
welsh

(b) Dialect discrimination.

Figure 5.9: Extraction of high-level features using Resemblyzer on SLR83. Results show that
Resemblyzer embeddings encode gender information, but not regional accent.

In this experiment we aim to understand what kind of high-level features are encoded

in our speaker embeddings. The first semantic feature we look for is gender, i.e. is the

Resemblyzer model able to distinguish between male and female speakers in the SLR83

dataset? To answer this question, we randomly sample 600 utterances from SLR83,

taking 5 utterances for each male speaker (71 male speakers in total, thus 355 utterances

for the male group) and 5 utterances for each female speaker (49 female speakers in total,

thus 245 utterances for the female group). Then, we compute Resemblyzer embeddings

for each utterance, reduce them to 2D and assign colours based on gender. Figure 5.9a

shows that the model is indeed able to identify speaker gender.

The next analysis adopts the same reasoning used above for gender, but with the

objective of identifying dialect accent. To do so, we randomly sample 600 SLR83 utter-

ances, 100 for each dialect (without balancing the number of utterances for speakers in

the same dialect) and assign colours on the plot based on dialect. Figure 5.9b shows that

Resemblyzer embeddings are not able to discriminate the regional accents present in the

SLR83 dataset. We attribute this result to the fact that Resemblyzer was not specifically

trained to account for regional accents, but we expect it to correctly cluster wider accents,

such as British vs American ones. This result encourages us to use Resemblyzer as our

speaker embedding model for downstream tasks, as it already seems to disentangle the

5.3 Speaker and dialect accent embeddings 107

speaker and dialect accent information, which is a must-have property for the TTS and

voice/accent conversion models described in Chapter 3.

5.3.2 Dialect accent embeddings

In this section, we present audio embedding models trained on the dialect accent dis-

crimination task. Given the poor results obtained with our custom d-vector model for

speaker embeddings and the fact that, to the best of our knowledge, no open-source work

exists on the specific task of regional accent classification, we focus on adapting the Ti-

taNet model and propose to use it as the dialect accent encoder for the pipelines described

in Chapter 3.

First, we train a TitaNet model on the SLR83 dataset, with the same architecture and

hyper-parameters as the speaker encoders tested so far, by simply modifying its target

labels from speaker to dialect indices. As shown in Figure 5.10, the model achieves

more than 95% F1 on the validation set as early as 50 epochs, thus converging faster than

its speaker counterpart. Moreover, Figure 5.11a shows the clustering properties of the

model for all dialects in the SLR83 dataset. To give a meaningful comparison between

our TitaNet dialect encoder and the Resemblyzer speaker encoder, Figure 5.11a uses the

same utterances plotted in Figure 5.9b.

0 10 20 30 40 50
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

train
val

(a) Training and validation losses.

0 10 20 30 40 50
Epoch

0.2

0.4

0.6

0.8

1.0

F1

train
val

(b) Training and validation F1 scores.

Figure 5.10: TitaNet CE dialect embeddings metrics on SLR83. Results show good
generalization properties as soon as 50 epochs, even though validation metrics
exhibit more variability than the ones reported for speaker identification.

5.3 Speaker and dialect accent embeddings 108

irish
midlands
northern
scottish
southern
welsh

(a) Dialect discrimination.

nom_06136
scm_08421
scm_09334
sof_03034
sof_05679
sof_07049
sof_08421
som_07060
wef_02484
wef_12484

(b) Speaker discrimination.

Figure 5.11: Speaker and dialect discrimination with TitaNet dialect embeddings on SLR83.
Results show that dialect accent embeddings contain some speaker information,
given the high correlation between speaker identity and dialect accent.

Second, we replicate some of the experiments carried out for speaker embeddings and

reach the same conclusions. In particular, using loss functions different from standard CE

does not seem to help.

Finally, to understand whether or not our dialect accent embeddings are disentan-

gled from speaker information, we consider the same utterances used in Figure 5.5 and

Figure 5.6 but compute embeddings using our trained dialect accent encoder. As shown

in Figure 5.11b, speakers from the same dialect are nicely clustered together. Moreover,

for some dialects (such as the Southern one on the top right), utterances from the same

speaker do not seem to form mini-clusters within the dialect mega-cluster. Instead, for

other dialects (such as the Welsh one on the bottom right) we observe the opposite trend,

whereby speakers from the same dialect form sort of intra-clusters.

This latent space analysis leads us to believe that some speaker information is part of

the dialect accent embeddings. We hypothesise that this mix-up happens due to the high

correlation between speakers and dialects, i.e. each speaker only speaks one dialect.

Multiple approaches may be tested to further disentangle the two types of features, such

as adversarial training or multi-task learning [17]. For the former, an additional loss

term is added to the standard classification one, to discourage the classifier to encode

speaker or dialect accent information, for the dialect and speaker encoders, respectively.

For example, if the objective is to train a dialect accent classifier, the adversarial loss

5.4 Acoustic model 109

term should make sure the classifier is not able to discriminate speakers using the di-

alect accent latent representation. In this thesis, no adversarial training strategies have

been employed, but some tests have been carried out in a multi-task learning scenario.

Inspired by previous work in the multi-lingual setting [54], in our experiments a single

TitaNet model was trained in a siamese fashion to discriminate both speakers and di-

alects. In particular, the model was configured to share most of the building blocks, up

to the final bottleneck and classification layers. At that point, the model splits in 2 heads,

one for the speaker and one for the dialect accent information. In terms of losses, the

multi-task objective is the sum of speaker and dialect accent CEs. In this way, the model

is encouraged to share common representations up to the splitting point, which then en-

codes the inductive bias of making the two types of embeddings deviate from each other.

Results reveal that no noticeable improvements regarding objective metrics and disentan-

glement properties can be observed. Thus, we discard the usage of this multi-task model,

but still report it as it achieves very similar results when compared to the single speaker

and dialect accent encoders while relying on almost half the number of parameters, which

might be an important attribute to consider in resource-constrained scenarios.

5.4 Acoustic model

For what regards experiments on acoustic modelling (i.e. converting text to an inter-

mediate speech representation), we first test our custom Tacotron 2 implementation on

a single speaker dataset (LJ Speech) and report results in Subsection 5.4.1. Then, in

Subsection 5.4.2 we extend the architecture to work with multiple speakers and multiple

dialects.

All Tacotron 2 trainings share the hyper-parameters reported in Table 5.3, following

[152]. Other hyper-parameters that were changed between different training runs are the

batch size (usually set to 16 because of memory constraints), the use of speaker/dialect

embeddings and their dimensions (usually 256 for speaker embeddings and 192 for di-

alect embeddings), the use of learning rate schedules (along with their associated con-

figuration) and the reduction factor (alternated between r = 2 and r = 5). The learning

procedures were carried out using the Adam optimizer [85] with ϵ = 0.000001. More-

over, we rely on masked loss functions (for both the reconstruction and the stop token

5.4 Acoustic model 110

criteria) to avoid back-propagating through the padding values that were added to con-

struct mini-batches.

5.4.1 Single-speaker

The main objective of training a single-speaker model is to assess the correctness of our

custom implementation and understand the role played by different hyper-parameters in

terms of convergence speed and output quality. Note that all single-speaker trainings

were carried out on the LJ Speech dataset, introduced in Subsection 4.1.1.

One of the main findings from our experiments is that the attention block in Tacotron

2 brings major instabilities, both at training and at inference time. Regarding the former,

it is easy for the model to follow a wrong optimization path at the very beginning of train-

ing and never recover: this is shown by the alignment between the encoder (i.e. the text

inputs) and the decoder (i.e. the mel-spectrogram frames) not following a mostly diago-

nal (or, more generally, monotonic) path. In such an unfortunate case, the training run is

unrecoverable and a new experiment needs to be started for further evaluation. The key

factors for learning correct alignments seem to be the reduction factor and the silence

trimming pre-processing step, whereby silence regions are removed at the beginning and

end of raw waveforms, before transitioning to the frequency domain (as described in Sec-

tion 4.2). For what concerns the reduction factor, which intuitively encodes the number

of mel-spectrogram frames to output at each auto-regressive step, we found that relying

on relatively high values of r (such as r = 5) makes the model learn attention alignment

as soon as 8 K steps, but produces overly-smoothed spectrograms, while using lower

reduction factors leads to a slower alignment with better overall quality. We report an ex-

ample of such behaviour in Figure 5.12, where predictions in Figure 5.12a are produced

from a model trained for around 40 K steps and r = 2, while predictions in Figure 5.12b

are the output of a model trained for 75 K steps and r = 5. As can be observed, the

model with the lower reduction ratio generates crispier mel-spectrograms in about half

the number of training steps. Notice that both models were trained with the same hyper-

parameters, using the Noam learning rate scheduler and both predictions were performed

on the same unseen validation set, but on different utterances, and relying on the teacher

forcing scheme.

As a further example, Figure 5.13 shows a mel-spectrogram produced by our Tacotron

5.4 Acoustic model 111

Parameter Value

Learning rate 0.001
Gradient norm clip value 1.0
Symbols embedding size 512
Encoder number of convolutional layers 3
Encoder convolutions kernel size 5
Encoder recurrent unit LSTM
Encoder number of recurrent layers 1
Encoder recurrent bi-directional True
Decoder state size 1024
Decoder recurrent unit LSTM
Decoder number of recurrent layers 2
Attention hidden size 128
Attention location number of convolutional filters 32
Attention location convolutions kernel size 31
Attention sharpening False
Attention sharpening beta 1
Attention smoothing False
PreNet hidden sizes [256]
PostNet number of convolutional layers 5
PostNet hidden size 512
PostNet convolutions kernel size 5
Dropout 0.45
Reconstruction loss weight 1.0
Stop prediction loss weight 1.0

Table 5.3: Tacotron 2 hyper-parameters.

5.4 Acoustic model 112

(a) Using r = 2. (b) Using r = 5.

Figure 5.12: Predictions for Tacotron 2 trained on LJ Speech with r = 2 and r = 5. The model
with the lower reduction ratio tends to produce crispier spectrograms.

2 model trained on LJ Speech for around 200 epochs9, a reduction factor of r = 5 and a

constant learning rate of 0.001. As we can see, the mel-spectrogram is somewhat blurry

(given the fact that we used r = 5), but informal listening reveals that the vocoded speech

sounds natural, with minor quality issues, for the reported piece of text and other unseen

utterances. Something worth pointing out is that our model was not able to learn effective

stop token probabilities, meaning that the produced mel-spectrograms are longer than

they should. This is also mirrored in Figure 5.13, where the entire sentence is uttered by

frame 420, but our model keeps generating frames until the 650 frame mark.

Figure 5.13: Tacotron 2 at inference time for input text: Nice to meet you, my name is Alessio.
What’s your name instead?.

Moving to formal evaluations, we extract 100 random prompts from the "ax" sub-

set of the open-source GLUE dataset [182], which contains manually-curated entries for

fine-grained analysis of system performance on a broad range of linguistic phenomena.

This dataset is usually the benchmark for sentence understanding tasks in the NLP field,

9It took around 3 days of training on an NVIDIA RTX 2080 Ti.

5.4 Acoustic model 113

but we only use it for its high quality and for the fact that it’s publicly available. Af-

ter having extracted such random utterances, we perform predictions and evaluate them

on the speaker similarity, naturalness and intelligibility dimensions, as explained in Sec-

tion 5.2. What we observe is that intelligibility (in terms of WER and CER) appears to

be relatively low, even though the vast majority of samples sound very comprehensible

through informal listening. Something we noticed is that the voice is not completely

clean, meaning that some artefacts are produced by the neural synthesiser, and we hy-

pothesise that such artefacts tend to harm the ASR models used to compute intelligibility

metrics. To verify our assumption, we pass all samples through the speech enhance-

ment model reported in Section 4.2 and observe non-negligible improvements in terms

of clarity, which are not reflected in objective measures. Counter-intuitively, the denoised

samples achieve much lower WER and CER values than the noisy ones, even though per-

ceptual tests hint at the opposite trend. Thus, if we were to follow subjective evaluations,

speech enhancement models could also be used as part of the TTS pipeline (after the

vocoding stage) to enable an overall training time reduction. Results for both the noisy

and denoised samples are reported in Table 5.4. For reference, for both evaluations, we

compute the LJ Speech single-speaker centroid by averaging speaker embeddings over

100 ground-truth audio snippets.

Speaker similarity
(Cosine)

Naturalness
(MOS)

Intelligibility
(WER)

Intelligibility
(CER)

Noisy 52.72 ± 8.03 2.56 ± 0.21 119.20 86.01
Denoised 46.79 ± 6.52 2.76 ± 0.12 144.70 108.15

Table 5.4: Single-speaker acoustic modelling results on LJ Speech.

Using the Noam scheduler

The second experiment we perform is related to the usage of a learning rate scheduler.

The most popular scheduler for the task of acoustic modelling seems to be the Noam

scheduler, which was introduced in [177] for the task of Machine Translation (MT). The

Noam scheme is defined by a linear warmup phase for a given number of steps, followed

by an exponential decay where the learning rate decreases proportionally to the inverse

square root of the step number (scaled by the inverse square root of the dimensionality

of the model), as shown in Figure 5.14 and reported in Equation 5.1. Note that d in

5.4 Acoustic model 114

0 20000 40000 60000 80000 100000
Step

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Le
ar

ni
ng

 ra
te

Figure 5.14: Noam decay over 100 K steps with a maximum learning rate of 0.001.

Equation 5.1 corresponds to the dimensionality of the model, which can be interpreted

as the hidden size parameter which dominates the number of parameters of the model,

while t is the current number of steps and w is the number of warmup steps.

lrt+1 = d−0.5 · min{t−0.5, t · w−1.5} (5.1)

Our implementation slightly deviates from [177], as we rely on public code from

Coqui TTS that uses Equation 5.2, where d−0.5 is replaced by lrt · w0.5. Following [177],

for all experiments the number of warmup steps w is set to 4000.

lrt+1 = lrt · w0.5 · min{t−0.5, t · w−1.5} (5.2)

Unfortunately, our results indicate much slower convergence when using the Noam

scheduler, w.r.t. relying on a simple constant learning rate. Figure 5.15 shows attention

alignments extracted from different random validation utterances. In particular, the at-

tention map in Figure 5.15a is selected at around 8 K steps, while the one in Figure 5.15b

at almost 70 K steps. Repeated experiments replicate the exact same behaviour, whereby

Tacotron 2 with the Noam scheduler doesn’t learn to focus its attention correctly, even

5.4 Acoustic model 115

when trained for longer. Thus, we discard the usage of Noam for further experiments.

(a) Without Noam.

(b) With Noam.

Figure 5.15: Attention alignment for Tacotron 2 trained on LJ Speech with r = 5.

5.4.2 Multi-speaker and multi-dialect

In this section, we extend the single-speaker Tacotron 2 experiments to the multi-speaker

scenario. In order to do so, we explore conditioning Tacotron’s encoder outputs in 2
ways, i.e. either using pre-trained speaker embedding modules or by relying on learned

lookup tables, so as to let the model learn speaker representations as part of the overall

training procedure. All experiments in this section were performed with r = 5, a constant

learning rate and un-normalized spectrograms.

First, we train our multi-speaker acoustic model on the VCTK dataset and obtain

results shown in Figure 5.16. Note that this experiment relies on Resemblyzer’s speaker

embeddings and does not trim silence regions in raw waveforms as part of the data pre-

processing steps. As can be observed, acceptable alignment and predictions are produced

as early as 40 K steps. Informal listening shows that the model is able to produce intel-

ligible speech, even though it falls short on naturalness. Nevertheless, we assume that

training for longer would make the synthesis sound less robotic, thus also increasing the

perceived similarity with the selected speaker.

5.4 Acoustic model 116

(a) Attention alignment.

(b) Teacher-forced prediction.

Figure 5.16: Outputs from multi-speaker Tacotron 2 trained on VCTK.

Next, we train the same model on the SLR83 dataset. For this scenario, a multi-

tude of experiments was carried out and most of them didn’t work out as expected. For

example, we were expecting silence removal to be vital for the model to pick up align-

ment, but what we found is that, specifically for the SLR83 dataset, training the acoustic

model when starting from waveforms where small regions of silence are left as-is at the

beginning and end of utterances improves convergence speed.

Other experiments that didn’t bring quality improvements are, for example, setting

different weights for different entries in Tacotron’s loss function. Given that one of the

main issues in attention-based acoustic modelling is the trade-off between convergence

speed and quality, we hypothesise that relying on a high reduction ratio and a high re-

construction loss weight might result in the best of both worlds. In particular, we train

a multi-speaker Tacotron 2 model on SLR83, with a reduction factor r = 5 and a recon-

struction weight of 2 for both pre-residual and post-residual loss entries. Unfortunately,

the intuition does not seem to empirically hold, as no improvement in the quality of

predicted spectrograms could be observed from visual inspection.

Furthermore, we tested optimization strategies popular in the open-source speech

5.4 Acoustic model 117

community, but none of them brought good enough improvements to be included in our

standard training recipe. Some examples include using a teacher forcing scheduler and

dropping ground truth spectrogram frames as a form of regularization.

Regarding teacher forcing, lots of work has been done to deal with the train-test

mismatch auto-regressive models have to face. For example, Lamb et al. explore a GAN-

based approach, whereby a discriminator is trained to distinguish between sequences

generated using teacher forcing and scheduled sampling, while a generator is trained to

fool the discriminator, nudging the dynamics of teacher forcing and scheduled sampling

to become more similar. Our approach to a modified teacher forcing is simpler, yet

effective. Indeed, we rely on a decay mechanism for which the model slowly transitions

from a full teacher-forcing training procedure to a free-running one, thus relying more

and more on its own predictions as training goes on. Intuitively, this scheduling procedure

should be effortless, but in our experiments, we find it hard to select the best decaying

mechanism. If the decay is too fast then the model relies too early on its noisy predictions,

while if the decay is applied late in the learning phase no improvements are observed

with such scheduling behaviour. Thus, setting the right decay is not straightforward and

requires careful tuning. Hence, we exclude this technique from further experiments.

For what concerns spectrogram frames dropping [111], its main objective is to in-

crease the information gap between the teacher forcing input and target, which has been

shown to be vital for Tacotron to achieve acceptable performance. The way spectro-

gram frames dropping works is by discarding teacher forcing input frames randomly to

a certain percentage, by setting them to the global (per-speaker) mean. This technique

is supposed to boost up alignment learning a lot when the dropping rate is set to rela-

tively low values such as 0.1 or 0.2. In terms of implementation, we follow the original

open-source code10. Again, results are not satisfactory enough when testing this tech-

nique on the SLR83 dataset. Hence, as with teacher forcing scheduling, we also exclude

spectrogram frames dropping from further experiments.

The last experiment worth mentioning is about comparing the multi-speaker acous-

tic model trained with frozen speaker embeddings and one-hot encodings of speaker

indices. For the speaker embeddings, we rely on per-speaker vectors, extracted as the

centroids of all utterances from a given speaker in the training split of SLR83, while for

one-hots we simply rely on a to-be-trained per-speaker lookup table. What we observe is

10https://github.com/bfs18/tacotron2

https://github.com/bfs18/tacotron2

5.4 Acoustic model 118

that using pre-trained speaker embeddings leads to a faster alignment learning process, as

the model with one-hot encodings needs more training time to learn meaningful speaker

representations, and while it learns such representations the predicted mel-spectrograms

are more or less pure noise. We hypothesise that the one-hot model could easily become

on par with the speaker embeddings one, in terms of convergence speed, if we were to

rely on auxiliary losses, such as a simple CE to ensure that learned representations en-

code enough speaker information to be able to perform good enough classification. In

the interest of time, we leave such experiments for future work.

Finally, to reduce experimentation time and obtain faster convergence, we test a

fine-tuning strategy, whereby Tacotron 2 is pre-trained on the LJ Speech mono-speaker

dataset for a certain number of training steps, and after that training continues on the

multi-speaker SLR83 dataset, until convergence. In order to do that, when switching from

pre-training to fine-tuning, a speaker lookup table is randomly initialized to condition the

encoder on to-be-learned speaker representations. The intuition behind fine-tuning from

a mono-speaker acoustic model is that of simplifying the overall training objective. In

particular, in the pre-training stage, the model has to learn to correctly align text and au-

dio and to produce meaningful phonetic representations for a single speaker, while in the

fine-tuning stage the model has the task of generalizing what it learned in the previous

phase to new speakers. Given the relatively low-resource setting of the SLR83 dataset,

in terms of the amount of data for each speaker and dialect, we find this pre-training and

fine-tuning strategy to be effective.

Table 5.5 and Figure 5.17 report results for the multi-speaker acoustic model pre-

trained on LJ Speech and fine-tuned on SLR83 for 1.5 M steps. Both informal listening

and objective metrics reveal that produced speech is intelligible and close to the speaker

selected for synthesis, even though most voices tend to sound harsh and have major

stability issues, such as word skipping. Such results were computed on 1000 samples, 100
from each of 10 randomly selected speakers. Test speakers are representative of each

dialect since we select 1 for Irish and Welsh and 2 for each of the other dialects (Midlands,

Southern, Northern and Scottish). We only select 1 speaker for Irish and Welsh as they are

very under-represented in the dataset and we expect speakers in those dialects to perform

poorly at inference time. Something worth pointing out is that the multi-speaker model

beats the single-speaker ones introduced in Subsection 5.4.1 in terms of intelligibility

metrics, such as WER and CER: we attribute this gap to the better stop token prediction

5.4 Acoustic model 119

from the multi-speaker model, which avoids it producing utterances longer than required.

For reference, centroids for cosine similarity are computed using 100 recordings for each

speaker and the same utterances (1 per speaker) are used as reference values to compute

MOS scores.

0.0 0.1 0.2 0.3 0.4 0.5
Speaker similarity

0

20

40

60

80

100

Co
un

t

(a) Speaker similarity.

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75
MOS

0

20

40

60

80

100

120

Co
un

t

(b) MOS scores.

Figure 5.17: Tacotron 2 multi-speaker test score distributions on SLR83.

Speaker similarity
(Cosine)

Naturalness
(MOS)

Intelligibility
(WER)

Intelligibility
(CER)

26.33 ± 12.55 2.54 ± 0.23 65.88 42.18

Table 5.5: Multi-speaker acoustic modeling results on SLR83.

As we can observe, cosine similarities in Table 5.5 drop by a large margin w.r.t.

the single-speaker results presented in Subsection 5.4.1. Nevertheless, informal listen-

ing reveals that the produced speech is highly correlated with the identity of the target

speaker. Thus, we assume that other instabilities such as harshness and low naturalness

may have an impact on the measured cosine similarity values. To counteract this prob-

lem, we hypothesise that speaker similarity could be perceptually improved by relying on

auxiliary losses, such as the Speaker Consistency Loss (SCL) [193]. In the case of SCL,

a pre-trained speaker encoder is used to extract speaker embeddings from the generated

audio and ground truth, on which we maximize the cosine similarity. Formally, let ϕ be

a function outputting the embedding of a speaker, s be the cosine similarity function, α

a positive real number that controls the influence of the SCL in the final loss, and n the

batch size. Then, SCL is defined as reported in Equation 5.3, where g and h represent,

5.4 Acoustic model 120

respectively, the ground truth and the generated speaker audio.

LSCL = −α

n

n∑
i=1

s(ϕ(gi), ϕ(hi)) (5.3)

Referring back to the pipeline introduced in Chapter 3, we also experimented with

extending the multi-speaker architecture to model multiple accents. Unfortunately, mul-

tiple experiments aimed at reproducing results obtained with the multi-speaker model

described above do not lead to the same winning path. In particular, what we observe is

that the additional conditioning given by dialect accent embeddings makes the learning

problem dramatically more complex, given the number of combinations between speak-

ers and dialects the model has to cope with. Our main hypothesis is that the SLR83

corpus is simply not copious enough for Tacotron 2 to effectively deal with the additional

variability introduced by dialects. To counteract this issue, we propose a third pipeline

to model dialect accents in a TTS architecture, which should be more sample-efficient.

Figure 5.18 outlines such pipeline, which assumes to work with a mono-speaker acous-

tic model (ideally speaking neutral British English, such as RP) and performs a joint

speaker and accent conversion in a one-to-many fashion. In this way, the acoustic model

only needs to learn to deal with a single speaker, and the conversion approach would

be simplified by the one-to-many paradigm, since only the neutral speaker identity and

accent would need to be converted to all other speakers, as opposed to the many-to-many

approach where each voice can be converted to all the others available in the training set.

Experiments with this simplified pipeline are left for future work.

Voice/accent conversion

Encoder D
ec

od
er

Speaker embeddingsDialect accent
embeddings

Attentionhello there

Mel-spectrogram

Waveform

Vocoder

Autoencoder

Mel-spectrogram

Acoustic model

Figure 5.18: Acoustic model with neutral voice and a joint voice and accent conversion system.

5.5 Voice/accent conversion 121

5.5 Voice/accent conversion

Moving to the voice and accent conversion experiments, we first present the common

training setup and results obtained with AutoVC on the VCTK and SLR83 datasets, when

trained to carry out the standard VC task. As with acoustic modelling, this is done to

assess the correctness of our custom implementations and presented in Subsection 5.5.1.

Then, Subsection 5.5.2 deals with the adaptation of AutoVC to the AC case.

All AutoVC trainings share the hyper-parameters reported in Table 5.6, following

[142]. For the VC task we always rely on the pre-trained Resemblyzer speaker em-

beddings presented in Section 3.1, while for the AC task we either make use of our

custom 192-dimensional TitaNet dialect accent embeddings (trained on SLR83) or on

to-be-trained lookup tables. For both voice and accent conversion, we follow the data

splitting procedure reported in Section 4.2, after removing all silence regions from raw

waveforms, resampling to 22 050 Hz and extracting mel-spectrograms. Moreover, during

the batch creation phase, we rely on random chunking as a form of data augmentation

and regularization technique. We also extract random chunks of random lengths (either

1.5 or 2 or 3 seconds), whenever the waveform’s duration exceeds 3 seconds.

The following is a comprehensive list of differences between our workflow and that

of AutoVC’s authors11. In the data pre-processing stage, we do not limit mel-spectrogram

frequencies (which authors clip in the 90 to 7600 Hz range) and do not rely on any DSP

trick. Instead, authors first pass the raw signal through a 5th order Butterworth filter, to

remove drifting noise, and then add back controlled noise to improve model robustness,

following Equation 5.4, where w is the input waveform and r is a vector having the same

shape as w and populated with random samples from a uniform distribution over [0, 1).

0.96 · w + (r − 0.5) · 1 × 10−6 (5.4)

Moreover, authors normalize mel-spectrograms using the same reasoning explained in

Section 4.2, but they apply an asymmetric normalization in the [0, 1] range. Instead, we

skip the normalization stage and directly use the log-magnitude of mel-spectrograms.

Next, authors downsample training data (from the VCTK dataset in their case) to 16 kHz
and randomly extract 128 spectrogram frames for each forward pass (which roughly cor-

respond to 2 seconds of audio with their STFT settings), while we use a sampling rate of

11https://github.com/auspicious3000/autovc

https://github.com/auspicious3000/autovc

5.5 Voice/accent conversion 122

22 050 kHz and rely on a different number of spectrogram frames at each forward pass

(depending on the selected size of the random chunk), following [104], where authors

recommend using 192 frames when the sampling rate is 22 050 Hz, in comparison with

128 frames for 16 000 Hz samples. Furthermore, authors suggest using a batch size of

2, due to the regularization effects of small mini-batches [156], but for most trainings,

we decide to trade-off some generalization to speedup the learning phase and the overall

experimentation pipeline and pivot to a larger batch size of 16 (the same setting used in

[104]).

All training runs make use of the Adam optimizer [85] to minimize reconstruction

and content losses. As in acoustic modelling, a single representation for each speaker

and dialect accent is used as conditioning and that’s either pre-computed as the centroid

of all utterances for a certain speaker/accent, or learned through a lookup table at training

time.

Before coming up with the hyper-parameters in Table 5.6, we experiment with mul-

tiple configurations. For example, we noticed that using a learning rate higher than 0.0001
(e.g. 0.001) leads to severe overfitting, whereby the model quickly learns how to recon-

struct the input signal, but fails to correctly convert the desired speech attribute (e.g.

speaker identity). Moreover, feeding entire spectrograms to the model makes it slightly

overfit the training data, while relying on small chunks of audio seems to provide the

right amount of regularization. The main parameters that were changed between different

training runs are the bottleneck size and the downsampling factor of the encoder, which

are essential to tune to obtain meaningful conversions. In the original paper, AutoVC’s

authors rely on a bottleneck size of 64 and a downsampling factor of 16.

5.5.1 Voice conversion

In voice conversion, the goal is to morph the voice of a source speaker to that of a target

speaker, while maintaining linguistic content unchanged. To test our custom implemen-

tation of the voice conversion system, i.e. AutoVC, we first train a VC model on the

VCTK dataset, which is the same multi-speaker corpus used in [142]. For this experi-

ment, we rely on a subset of 40 speakers (out of 109 in total) from VCTK, the standard

bottleneck size of 64 and a more aggressive downsampling factor of 32 (w.r.t. the default

one of 16). Moreover, this training run was performed with the batch size of 2 suggested

by the authors, which required about 4 days of training on our modest hardware setting.

5.5 Voice/accent conversion 123

Parameter Value

Batch size 16
Learning rate 0.0001
Gradient norm clip value 2.0
Encoder number of convolutional layers 3
Encoder number of convolutional filters 512
Encoder convolutions kernel size 5
Encoder recurrent unit LSTM
Encoder number of recurrent layers 2
Decoder number of convolutional layers 3
Decoder number of convolutional filters 512
Decoder convolutions kernel size 5
Decoder recurrent unit LSTM
Decoder number of recurrent layers 3
Decoder recurrent bi-directional False
Decoder recurrent hidden size 1024
PostNet hidden size 512
PostNet number of convolutional layers 5
PostNet convolutions kernel size 5
Reconstruction loss weight 1.0
Content loss weight 1.0

Table 5.6: AutoVC hyper-parameters.

5.5 Voice/accent conversion 124

Convergence was observed at the 40 epochs mark, which equals around 65 K training

steps. In [142], the suggested amount of steps to train for in the same settings is 100 K,

even though we find it sufficient to train for less to obtain a reasonable conversion quality.

Figure 5.19 reports the progress in self-reconstruction during training. In particular,

Figure 5.19a shows that at 10 K steps the model has barely learned to recover high-level

details of the given mel-spectrograms, while in Figure 5.19b it can be observed that fine-

grained features can be reconstructed as well. Beware that the 2 reported examples in

figure 5.19 depict different utterances not because of cherry-picking but because of both

random chunking and the fact that at each training epoch a random utterance was selected

for visualization. Something else worth pointing out is that this specific training run was

carried out with no VAD pre-processing whatsoever, due to a bug in the data workflow,

that was fixed after analysing the results of this experiment. Still, we find that even

without silence removal, we are able to successfully converge on the VCTK dataset.

(a) At 10 K steps. (b) At 65 K steps.

Figure 5.19: Self-reconstruction quality of AutoVC over training on VCTK. The model quickly
learns to reconstruct target spectrograms, but slowly adapts to fine-grained details.

Instead, Figure 5.20 shows the training and validation losses throughout the learning

phase. As we can see, we are able to reach convergence with a reconstruction loss of

0.02, instead of the 0.0001 value suggested by the authors.

Before settling for 40 as the number of target speakers, we experimented with dif-

ferent values, such as using all speakers, but obtained comparatively worse conversion

results. This may seem counter-intuitive from the point of view of DL, given that we ex-

pect more data to help produce better models, but we have to keep in mind that stronger

5.5 Voice/accent conversion 125

0 10000 20000 30000 40000 50000 60000
Step

0.001

0.002

0.003

0.004

0.005

0.006

Lo
ss

(a) Training content loss.

0 10000 20000 30000 40000 50000 60000
Step

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Lo
ss

(b) Training pre-residual
reconstruction loss.

0 10000 20000 30000 40000 50000 60000
Step

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Lo
ss

(c) Training post-residual
reconstruction loss.

10000 20000 30000 40000 50000 60000
Step

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

0.0055

Lo
ss

(d) Validation content loss.

10000 20000 30000 40000 50000 60000
Step

0.040

0.045

0.050

0.055

0.060

0.065

0.070

0.075

0.080

Lo
ss

(e) Validation pre-residual
reconstruction loss.

10000 20000 30000 40000 50000 60000
Step

0.040

0.045

0.050

0.055

0.060

0.065

0.070

0.075

0.080

Lo
ss

(f) Validation post-residual
reconstruction loss.

Figure 5.20: AutoVC training and validation losses on VCTK.

5.5 Voice/accent conversion 126

generalization usually comes at the expense of longer training time. Hence, we hypoth-

esise that training for longer with all speakers should yield the same results, in terms of

conversion quality, than training for less with a subset of speakers.

To better understand the generalization ability of our VC model trained on VCTK,

we extract 1 text prompt for each of the 40 speakers in the training set and convert each

prompt to all the other 39 speakers, thus obtaining a total of 1560 utterances (39 for each

target speaker). Please note that even though text prompts and speakers were seen during

training, each combination of source prompt and target speaker was instead unseen; thus,

the test set we rely on is valid for seen-to-seen conversion. After building the test set and

having converted all utterances within, we run evaluations as explained in Section 5.2

and report distributions for speaker similarity and MOS scores in Figure 5.21, along with

naturalness and intelligibility metrics in Table 5.7 and Table 5.8. In this evaluation, the

centroid of a speaker is computed as the average embedding over 100 randomly selected

ground-truth utterances. Analysing results in Table 5.7, we can see that WER and CER

metrics are not impressive, but, in order to get a sense of such intelligibility metrics

we provide upper bounds, by computing them on a subset of ground-truth utterances,

referred to as "Reference" in Table 5.8. This is done by taking 1 prompt for each speaker

(for a total of 40 inputs), which gives us a WER of 37.31 and a CER of 9.67, meaning that

our VC system tends to lose around 30 percentage points for both intelligibility metrics

w.r.t. recordings. Beware that Table 5.7 only reports results for the test-set and not for

ground truth.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Speaker similarity

0

20

40

60

80

100

120

140

160

Co
un

t

(a) Speaker similarity over the entire test set.

2.0 2.5 3.0 3.5 4.0 4.5 5.0
MOS

0

25

50

75

100

125

150

175

Co
un

t

(b) MOS scores over the entire test set.

Figure 5.21: AutoVC voice conversion test score distributions on VCTK.

Moving to the SLR83 dataset, the best results were obtained when sticking to the

5.5 Voice/accent conversion 127

same settings used with VCTK. In particular, 40 speakers were selected (without balanc-

ing based on dialects) and a bottleneck size of 64 was used along with a downsampling

factor of 32. As with VCTK, we observe convergence when the training reconstruction

loss reaches the 0.02 mark, which happens after 110 epochs. Figure 5.22 shows examples

of mel-spectrogram self-reconstructions on the validation set at the start and towards the

end of training.

(a) At 1 K steps. (b) At 30 K steps.

Figure 5.22: Self-reconstruction quality of AutoVC over training on SLR83.

In this experiment, we rely on a batch size of 16 to speed training up and we clip

the norm of the gradient to a value of 2.0, instead of 1.0. Even though we were able to

use a bigger batch size (and still observe convergence), training still required more than

4 days. Something worth pointing out is that this experiment was executed with both

speaker and dialect accent conditioning, but we only evaluate conversion of the speaker

identity in this section and leave accent conversion evaluations for Subsection 5.5.2.

In particular, at inference time we make sure to only convert speaker information by

conditioning AutoVC on the target speaker and the source accent. It’s worth noticing

that the test set includes dialect accents unseen during training and the model is still able

to perform a successful identity conversion.

To build the SLR83 test set we extract 3 speakers for each dialect (i.e. 18 speakers in

total) and 3 utterances for each speaker (for a total of 54 utterances). Then, each utterance

is converted from the source speaker to all the target speakers, while keeping the source

dialect fixed, to get 918 utterances to run evaluations on. Results are still reported in

Table 5.7 and Table 5.8, with Figure 5.23 depicting test score distributions.

Looking closely at results in Table 5.7 and Table 5.8, we see that all metrics are

5.5 Voice/accent conversion 128

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Speaker similarity

0

20

40

60

80

100
Co

un
t

(a) Speaker similarity over the entire test set.

2.5 3.0 3.5 4.0 4.5
MOS

0

20

40

60

80

100

120

140

Co
un

t

(b) MOS scores over the entire test set.

Figure 5.23: AutoVC voice conversion test score distributions on SLR83.

comparable with VCTK results, even though they all lag a bit behind. As done for VCTK,

we compute WER and CER metrics on a subset of ground-truth utterances (1 for each of

the 17 speakers in the test-set) to obtain values of 26.97 and 8.86, respectively, meaning

that the VC process hinders intelligibility by around 50 percentage points (around 20
more than on VCTK). Something worth noticing is that, even though conversion results

are perceptually of lower quality w.r.t. the ones produced on VCTK, they are not as bad

as they might seem just by looking at the objective metrics. Indeed, what we observe

is that for speech systems the gap between such measures and human perception is very

high and little work has been done to perform automatic evaluations of these systems.

Speaker similarity
(Cosine)

Naturalness
(MOS)

Intelligibility
(WER)

Intelligibility
(CER)

VCTK 34.27 ± 13.96 3.85 ± 0.52 70.82 39.10
SLR83 24.82 ± 17.61 3.26 ± 0.48 77.28 50.30

Table 5.7: AutoVC voice conversion results.

5.5.2 Accent conversion

This section deals with extending the AutoVC architecture to the task of regional accent

conversion. To do so, we condition AutoVC’s encoder not only on speaker representa-

tions but also on dialect accent ones. Here, the intuition is that the model should discard

those pieces of information that are provided as input from the bottleneck features, thus

5.5 Voice/accent conversion 129

VCTK SLR83

Reference Test Reference Test

WER

Substitutions 97 6291 51 5981
Insertions 4 647 3 972
Deletions 2 769 4 2822
Hits 177 3821 160 3845
Incorrect 103 7707 58 9775
Total 276 10 881 215 12 648

CER

Substitutions 2840 12 879 1292 15 206
Insertions 440 3470 170 3865
Deletions 2320 5778 374 17 956
Hits 52 720 37 932 19 040 40 448
Incorrect 5600 22 127 1836 37 027
Total 57 880 56 589 20 706 73 610

Table 5.8: AutoVC voice conversion intelligibility details, in terms of the number of insertions,
deletions and substitutions carried out.

enabling text, speaker and accent disentanglement. As with VC, tuning the bottleneck

is one of the most important tasks to carry out in order to obtain meaningful conversion.

We experiment with 2 ways to perform AC: the first one is by conditioning the model

on both speaker and dialect accent embeddings, and the second one is to only condition

the model on dialect accent embeddings. For the first approach, we are able to convert

speaker s from its native dialect ds to the target dialect dt by conditioning the model on

the same source speaker s and on the target dialect dt. Instead, for the second approach

we simply condition the model on the target dialect dt. In theory, the first approach could

also be used to perform joint voice and accent conversion, but we don’t test this scenario

as it’s considered out of scope for this thesis.

Informal evaluations reveal that there is a strict trade-off between speaker and ac-

cent conversion, meaning that successful conversion of accent usually comes at the cost

of substantial speaker leakage. What we observe is that conditioning the model on ac-

cent alone makes it utter sound that’s more similar to the target accent, but the original

speaker identity gets mixed with what we believe are the identities of other speakers in the

same dialect, which results in artefacts such as unpleasant mid-sentence pitch shifting.

Instead, in our experiments, conditioning the model on both speaker and dialect accent

information leads to more consistent speaker similarities, but weaker accent conversion

5.5 Voice/accent conversion 130

capabilities.

For the first approach, we rely on the same parameters used in Subsection 5.5.1, i.e. a

bottleneck size of 64 and a downsampling factor of 32, while for the second approach we

experiment with multiple hyper-parameters and identify smaller hidden sizes to work

much better than the ones reported so far. In particular, when the model is only condi-

tioned on dialect accent we find that relying on small 8-dimensional lookup tables, 4 as

the bottleneck size and 2 as the downsampling factor results in an overall better conver-

sion.

Due to the severe speaker leakage observed in the accent-only conditioning scenario,

we only report results for the model where both target speaker and accent are control-

lable. In particular, Table 5.9 shows MOS results for accentedness obtained from a

crowd-sourcing evaluation on Mechanical Turk, while Figure 5.24 and Table 5.11 outline

speaker similarity, naturalness and intelligibility, as done with systems in the previous

sections. Given that the model was trained on a subset of speakers, we only evaluate

those dialects for which at least one speaker was present in the training set, i.e. all but

Southern and Welsh.

Evaluations for accentedness are carried out in the following way. First, we select

1 random speaker for each included dialect and sample 6 utterances from the SLR83

dataset for each speaker, resulting in 24 utterances in total. Then, we convert each ut-

terance from the source dialect to all others and further perform source-to-source dialect

conversion for 2 utterances in each dialect12, thus obtaining 80 utterances, that we ask

workers in the crowd-sourcing platform to evaluate by only judging accent and ignoring

other dimensions such as naturalness and intelligibility. Results are filtered based on a

single criterion, which is that the task duration (i.e. the amount of time the worker spent

on evaluating a sample) should be strictly higher than the audio duration: in case the task

duration is lower than the audio duration, the worker either didn’t listen to the sample in

its full length or randomly guessed one of the available answers. Results were processed

by 33 unique workers and the total number of submissions is 800 (10 for each sample).

The last row in Table 5.9 represent the mean MOS (with micro and not macro aggre-

gation) for each target dialect, while the last column represents the same but for source

dialects. Moreover, the bottom right cell of the table contains an overall score for the

12The source-to-source dialect conversion is performed to have an upper bound on MOS scores. We
could’ve used recordings in place of source-to-source conversions, but we decide to adopt a strategy similar
to copy-synthesis for the evaluation of vocoders.

5.5 Voice/accent conversion 131

system, still computed with a micro strategy13. As we can see, the best source-to-target

conversion is obtained from Northern to Midlands, while the second place is taken by

the Scottish to Midlands pair, which we actually consider to be more noteworthy than

the former given the greater linguistic distance. Unexpectedly, the Northern to Midlands

conversion achieves better results than the Midlands to Midlands one, meaning that when

the speaker with Northern accent is converted to have an accent from the Midlands, it ac-

tually sounds more native than a native Midlands speaker. Notice that this is true for

the test case we selected, but it might be that a different pool of speakers would yield

different results, depending on how strong their accent is.

Converted dialect

Original dialect Irish Midlands Northern Scottish Average

Irish 3.56 ± 1.10 2.87 ± 1.36 2.80 ± 1.18 3.18 ± 0.98 2.96 ± 1.17
Midlands 2.10 ± 1.32 3.60 ± 1.07 3.55 ± 1.15 2.85 ± 1.39 2.73 ± 1.41
Northern 2.98 ± 1.37 3.63 ± 0.98 3.70 ± 1.15 2.50 ± 1.65 3.21 ± 1.29
Scottish 3.18 ± 1.26 3.40 ± 1.22 2.96 ± 1.37 4.38 ± 0.94 3.15 ± 1.29

Average 2.66 ± 1.32 2.95 ± 1.27 2.85 ± 1.27 2.61 ± 1.14 2.77 ± 1.26

Table 5.9: AutoVC accent conversion crowd-sourced accentedness. The bottom-right cell
indicates the overall score for the system.

To further evaluate the statistical significance of results in Table 5.10, we evaluate

inter-rater reliability using the Cronbach’s alpha measure [35], which intuitively en-

codes how similar is the internal rating system of different listeners14 [113]. Other than

inter-rater reliability, another important metric to observe would be the intra-rater re-

liability, i.e. how consistent each listener is in using the 1 to 5 discrete rating system.

Unfortunately, inter-rater reliability metrics usually rely on double ratings, whereby the

same listener evaluates the same sample twice15, which we decide to exclude for bud-

get limitations. Thus, we only evaluate the inter-rater reliability and report results in

Table 5.10. As we can see, the overall reliability exceeds 0.95 for the Cronbach’s al-

pha value16, meaning that another sample of listeners would produce the same (or a very
13A macro-average computes the metric independently for each class and then takes the average, whereas

a micro average aggregates the contributions of all classes to compute the average metric.
14All listeners must rate a given speech sample in a similar way.
15A given listener must rate a specific speech sample the same way every time he or she hears it.
16For Cronbach’s alpha, internal consistency ranges between negative infinity and one. Also, the co-

efficient alpha will be negative whenever there is greater within-subject variability than between-subject
variability.

5.5 Voice/accent conversion 132

similar) mean rating score for the same speech material.

Converted dialect Cronbach’s alpha CI 95%

Irish 0.88 [0.80, 0.94]
Midlands 0.81 [0.69, 0.90]
Northern 0.88 [0.69, 0.93]
Scottish 0.93 [0.88, 0.96]
Average 0.96 [0.94, 0.98]

Table 5.10: AutoVC accent conversion crowd-sourced inter-rater reliability, as measured by
Cronbach’s alpha [35].

Finally, Table 5.11 and Figure 5.24 report measurements in terms of speaker similar-

ity, naturalness and intelligibility. As we can see, results are comparable to the VC ones

presented in Subsection 5.5.1. In particular, we observe an improvement in intelligi-

bility, where scores only drop by 25 to 30 percentage points compared to ground-truth

references, and a slight decrease in speaker similarity, which is expected given the more

complex task of accent conversion.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Speaker similarity

0

5

10

15

20

25

30

Co
un

t

(a) Speaker similarity.

2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4
MOS

0

5

10

15

20

25

Co
un

t

(b) MOS scores.

Figure 5.24: AutoVC accent conversion test score distributions on SLR83.

Speaker similarity
(Cosine)

Naturalness
(MOS)

Intelligibility
(WER)

Intelligibility
(CER)

24.07 ± 17.22 3.44 ± 0.38 56.18 30.92

Table 5.11: AutoVC accent conversion results on SLR83.

5.6 Joint TTS and voice/accent conversion 133

5.6 Joint TTS and voice/accent conversion

In this section, we evaluate results on our proposed pipeline composed of a multi-speaker

acoustic model and followed by an AC model, to enable full controllability of speaker

and dialect accent.

The first evaluation consists in stacking the multi-speaker acoustic model of Subsec-

tion 5.4.2, trained on SLR83, with the AC system of Subsection 5.5.2. What we observe

is that combining the two models leads to unintelligible speech being produced by the

whole pipeline. We attribute such unsatisfactory results to the propagation of errors of

each component to the ones at the following stages. In particular, the harshness of sound

produced by the acoustic model makes the AC system fail due to reduced accent simi-

larity between ground-truth and synthesised speech. In turn, the vocoder outputs a very

noisy signal, given the unstable mel-spectrogram predictions by the previous modules.

Thus, we hypothesise that more training iterations or other forms of careful fine-tuning

of each component would lead to valid outputs.

The second evaluation is instead related to the end-to-end approach presented in

Section 3.5. For this experiment we rely on the YourTTS checkpoint available in the

authors’ GitHub repository17, which is a VITS model pre-trained for 1 M steps on LJ

Speech and then fine-tuned gradually in the following way. First, training is resumed

for 200 K steps with the VCTK dataset to adapt the single-speaker system to a multi-

speaker one. Then, training continues for approximately 140 K steps on VCTK, TTS-

Portuguese18 [18] and M-AILABS [57] French19 datasets, in order to make the model

tri-lingual. Finally, the last training stage adds 1151 additional English speakers from

both LibriTTS partitions train-clean-100 and train-clean-360.

To adapt YourTTS to the task of accent conversion, we consider each dialect as a dis-

tinct language and fine-tune the checkpoint described above with 6 additional dialects. In

terms of hyper-parameters, we adopt the default ones provided by the Coqui TTS repos-

itory. In particular, we fine-tune for 500 K steps using a batch size of 8, after resampling

raw waveforms to 16 kHz (instead of the 22 050 Hz used so far), trimming silences and

normalizing mel-spectrograms to the [−4, 4] symmetric range. On the target text side, we

17https://github.com/edresson/yourtts
18The TTS-Portuguese corpus [18] is a single-speaker dataset of the Brazilian Portuguese language with

around 10 hours of speech, sampled at 48 KHz.
19M-AILABS [57] is a dataset based on LibriVox [108] and its French subset consists of 2 female (104 h)

and 3 male speakers (71 h) sampled at 16 KHz.

https://github.com/edresson/yourtts

5.6 Joint TTS and voice/accent conversion 134

also remove the beginning and end of sentence tokens. Such pre-processing steps were

necessary to comply with the settings used in the pre-training stage. The model is fine-

tuned with the AdamW optimizer [115] with β1 = 0.8, β2 = 0.99 and ϵ = 1×10−9, using

a weight decay of 0.01 and an initial learning rate of 0.0002 that’s annealed exponentially

by a gamma of 0.999875. Regarding the speaker information, we rely on one-hot encod-

ings of speaker indices, without any additional loss term to enforce speaker consistency.

As with speaker embeddings, dialect representations are learned using a 6×4 embedding

matrix, where 6 is the number of dialects and 4 is the dimensionality of the latent space

they’re mapped to. No layer is frozen and they are all fine-tuned on the SLR83 dataset.

Moreover, we rely on weighted random sampling to guarantee a dialect-balanced batch,

as in [20].

Given the great results obtained with this end-to-end approach, we decide to run

formal evaluations and compare them with what we obtained in Subsection 5.5.2 for

accent conversion through AutoVC. In particular, Table 5.12 reports by-dialect means

and standard deviations for the same crowd-sourced accentedness test performed in

Subsection 5.5.2. Differently from AutoVC, YourTTS is trained on the full set of dialects

and we thus report results for each of them, but only compare systems on the shared

ones. For the crowd-sourced tests, we select a super-set of the prompts used to evaluate

AutoVC, by selecting a total of 120 utterances: 18 per target dialect plus 12 for source-

to-source conversion. Then, we run a Mechanical Turk test and filter submissions based

on the same criteria used in Subsection 5.5.2: out of 1200 submissions carried out by 36
unique workers, we only exclude 7 submissions that we identify as random guesses.

This test reveals the same pattern observed in Subsection 5.5.2, whereby for some

dialects the source-to-target conversion (where the source and target dialects are dif-

ferent) achieves greater scores than the source-to-source one. For example, we see that

Midlands to Irish seems better than Irish to Irish; Irish to Northern is better than Northern

to Northern; Northern to Scottish is better than Scottish to Scottish; Northern to South-

ern, Welsh to Southern and Scottish to Southern are better than Southern to Southern; and

Scottish to Welsh and Irish to Welsh are better than Welsh to Welsh. These patterns could

be due to the way the model has learned different dialects (which mirrors how under or

over-represented each class is in the SLR83 dataset) and to the number of evaluations for

each sample.

As done in Subsection 5.5.2, we compute the Cronbach’s alpha metric as a proxy

5.6 Joint TTS and voice/accent conversion 135

Converted dialect

Original
dialect

Irish Midlands Northern Scottish Southern Welsh Average

Irish 3.56 ± 1.10 3.43 ± 1.19 3.59 ± 1.14 3.88 ± 1.22 3.38 ± 1.21 3.60 ± 1.01 3.58 ± 1.16
Midlands 4.37 ± 0.72 3.80 ± 1.32 3.35 ± 1.42 3.70 ± 1.08 3.40 ± 1.47 3.23 ± 1.43 3.64 ± 1.30
Northern 3.93 ± 1.25 3.50 ± 1.20 3.33 ± 1.35 4.30 ± 1.06 4.00 ± 0.78 3.04 ± 1.48 3.70 ± 1.22
Scottish 3.88 ± 1.02 3.53 ± 1.04 3.10 ± 1.18 4.20 ± 0.83 3.63 ± 1.09 3.98 ± 0.89 3.62 ± 1.10
Southern 3.50 ± 1.00 3.22 ± 1.25 3.25 ± 0.91 4.12 ± 0.88 3.60 ± 1.17 3.38 ± 1.15 3.57 ± 1.12
Welsh 3.83 ± 1.26 2.76 ± 1.02 3.08 ± 1.26 4.08 ± 0.99 4.00 ± 1.08 3.40 ± 0.99 3.55 ± 1.24

Average 3.92 ± 1.10 3.30 ± 1.18 3.25 ± 1.20 4.02 ± 1.03 3.67 ± 1.12 3.48 ± 1.21 3.60 ± 1.18

Table 5.12: YourTTS accent conversion crowd-sourced accentedness. The bottom-right cell
indicates the overall score for the system.

measure for inter-rater reliability and report results in Table 5.13. As we can see, there

is a strong confidence that repeating the same test with different listeners would yield

very similar results for all dialects but the Scottish one, where the degree of uncertainty

is relatively high.

Converted dialect Cronbach’s alpha CI 95%

Irish 0.85 [0.75, 0.92]
Midlands 0.95 [0.93, 0.97]
Northern 0.92 [0.87, 0.95]
Scottish 0.42 [0.07, 0.68]
Southern 0.91 [0.85, 0.95]
Welsh 0.77 [0.62, 0.88]
Average 0.95 [0.92, 0.97]

Table 5.13: YourTTS accent conversion crowd-sourced inter-rater reliability, as measured by
Cronbach’s alpha [35].

Finally, we report results in terms of speaker similarity, naturalness and intelligi-

bility in Table 5.14 and Figure 5.25. As we can see, intelligibility improves by a large

margin w.r.t. AutoVC conversions, with YourTTS only losing about 10 and 5 percentage

points, respectively for WER and CER, when compared to recordings. The same trend

can be observed in speaker similarity, with YourTTS achieving around 50 percentage

points more than AutoVC in terms of cosine similarity. As discussed above, the relation-

ship between cosine similarity and perceived speaker similarity does not seem to follow

a linear trend, in that informally comparing results obtained with AutoVC and YourTTS

5.6 Joint TTS and voice/accent conversion 136

does not show gaps as big as the ones revealed by objective metrics, even though we can

generally regard voices produced by YourTTS as of higher quality and more stable than

the ones generated by AutoVC.

0.4 0.5 0.6 0.7 0.8
Speaker similarity

0

10

20

30

40

50

60

70

Co
un

t

(a) Speaker similarity.

2.0 2.5 3.0 3.5 4.0 4.5
MOS

0

10

20

30

40

50

60

Co
un

t

(b) MOS scores.

Figure 5.25: YourTTS accent conversion test scores on SLR83.

Speaker similarity
(Cosine)

Naturalness
(MOS)

Intelligibility
(WER)

Intelligibility
(CER)

70.70 ± 9.98 3.04 ± 0.41 38.95 16.62

Table 5.14: YourTTS accent conversion results on SLR83.

As a last piece of analysis, we perform statistical tests to assess the improvements

obtained with YourTTS w.r.t. AutoVC, in terms of accentedness. To do so, we first give

a visual contrast of the solutions in Figure 5.26 and then present inferences about the

mean ratings obtained by the two systems in Table 5.15. To give an overall comparison,

we first run an independent two-sample t-test and correct for the unequal sample sizes

(given by the different number of dialects included in AutoVC and YourTTS trainings)

using the Welch-Satterthwaite equation [150, 188]. Then, we run the same tests without

Welch’s correction on MOS scores for each dialect the two systems have in common.

In all tests, we rely on the null hypothesis that the means are equal and the alternate

hypothesis that they are different, i.e. the t-values and p-values are computed w.r.t. two-

sided tests. Given that the mean scores for YourTTS in Table 5.12 are higher than scores

for AutoVC in Table 5.9 and that the difference between such scores is statistically sig-

nificant for all dialects, i.e. all t-tests have a p-value much smaller than the significance

5.6 Joint TTS and voice/accent conversion 137

level we set α = 0.05, we conclude that YourTTS is better suited for the accent con-

version task. Moreover, YourTTS beats AutoVC even when considering more dialects

(i.e. Southern and Welsh) than the ones selected for training the latter. Finally, it has to

be noted that YourTTS does not simply perform the accent conversion task, but acts as

an end-to-end system to transduce text into speech with the desired speaker and accent

attributes, which make results even more interesting given the more complex problem it

has to face.

Irish Scottish Midlands Northern
Converted dialect

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
OS

(a) MOS for AutoVC.

Midlands Scottish Northern Southern Welsh Irish
Converted dialect

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
OS

(b) MOS for YourTTS.

Figure 5.26: YourTTS vs AutoVC crowd-sourced accentedness on SLR83.

Converted dialect t-value p-value CI 95%

Irish 9.85 2.02 × 10−20 [1.01, 1.51]
Midlands 12.14 1.32 × 10−28 [1.17, 1.63]
Northern 2.68 7.67 × 10−3 [0.09, 0.6]
Scottish 3.03 2.65 × 10−3 [0.14, 0.65]
Average 14.17 7.64 × 10−43 [0.72, 0.95]

Table 5.15: YourTTS vs AutoVC accent conversion t-tests on SLR83. All tests are statistically
significant, with p-values ≪ 0.05.

5.7 Discussion of results 138

5.7 Discussion of results

The main goal of this thesis has been to understand whether or not modern TTS systems

have enough capacity to be conditioned on regional accents. In this way, synthesised

speech may be controlled on variations of a language as subtle as the within-country ones,

rather than modelling their between-country counterparts, as it’s been done so far [126,

129, 200]. To answer this question, we devise 2 TTS pipelines, based on the popular

Tacotron 2 [152] architecture, that take as input a piece of text and output a raw waveform

with the desired speaker identity and dialect accent. We also compare the intermediate

outputs of such pipelines with an adaptation of the YourTTS [20] multi-lingual model to

the multi-dialect case.

The curse of multi-stage approaches Results show that each individual component

is able to accomplish its target task when evaluated in isolation, but the combination of

modules in an end-to-end pipeline fails to deliver. This is what we believe to be one of

the greatest drawbacks of multi-stage approaches, in which the final output is produced

by a sequence of steps where each step is dependent on the previous ones. In this way,

in case one of the modules is not trained enough to closely resemble ground-truths, the

model following it would have a hard time carrying out its specific task, given the noisy

input. This, in turn, would have major negative consequences for the final output, since

it would be the result of an accumulation of errors. Standard TTS pipelines already suffer

from this issue, having at least 2 modules to be trained disjointly, i.e. the acoustic model

and the vocoder. In this work, the number of independent components amounts to as

much as 5 models, i.e. the acoustic model, the speaker and dialect accent encoders,

the vocoder and the VC/AC systems. Thus, we hypothesise that reducing the number

of independent components would be very beneficial for the final output. For example,

in case zero-shot synthesis is not a requirement, one could rely on lookup tables for

speaker/accent embeddings instead of having one encoder for each speech attribute. This

hypothesis is also backed by the far better performance of YourTTS w.r.t. our proposed

pipelines, which could be explained by the end-to-end nature of the model (other than

its more extensive pre-training phase), where a single architecture is trained for acoustic

modelling, vocoding and speaker/accent conditioning. We also propose a third pipeline,

not implemented in this work, where a single-speaker acoustic model is followed by a

more complex VC/AC system that carries out a one-to-many conversion task, from the

5.7 Discussion of results 139

single neutral speaker to all the other speaker and accents in the dataset. Obviously, this

shifts the burden from the acoustic model to the conversion system, but we believe this

is a fair move, given that the latter tends to be easier and faster to train than the former

module.

Speaker and dialect accents embeddings Moving to the specifics of speaker and di-

alect accent embedding models, we compare the well-established d-vector architecture

with the SOTA TitaNet model. Results show that the true strength of the d-vector model

comes from both its GE2E loss function and the size of the dataset used to train it. In

particular, we show that the pre-trained Resemblyzer speaker embeddings generalize far

better than our d-vector model, to both unseen utterances and unseen speakers, with the

only differences between the two being in the use of a GE2E loss (instead of standard

CE) and the scale of the training corpora. Instead, TitaNet generalizes well even when

trained with simple loss functions and a limited set of utterances, even though Resem-

blyzer tends to be more consistent across multiple tests. For the dialect accent encoder,

we only report results for the TitaNet model, given that no previous work could be found

for this classification task on the selected dataset. Our evaluations reveal that TitaNet is

able to correctly cluster together utterances belonging to the same dialect, even though

some speaker leakage is observed. We believe that better disentanglement properties

between speaker information and dialect accents could be obtained by relying on larger-

scale corpora or explicit training strategies such as adversarial losses.

About the acoustic model For what concerns the acoustic model, we first show that

we are able to obtain intelligible and natural speech in a single-speaker scenario and then

extend the model to work in a multi-speaker setting, by conditioning it on the speaker

embeddings extracted via Resemblyzer. Informal listening and subjective evaluations

reveal that we are also able to model the SLR83 dataset while controlling synthesised

speech for speaker identity. Instead, adding dialect accent conditioning on the same

acoustic model makes the number of combinations of sounds to learn too large to be

extensively covered by the SLR83 dataset, since it only has 30 h of speech.

Scale of the SLR83 dataset The SLR83 dataset suffers from severe imbalance on the

duration of recordings both speaker-wise and dialect-wise, with certain dialects such as

5.7 Discussion of results 140

Welsh and Irish being drastically under-represented. Moreover, we observed various is-

sues with recordings, such as mispronunciations and word skipping, which do not help

our attention-based TTS systems. We believe that relying on a large-scale curated cor-

pora, such as the ones in the ABI family, would lead to more satisfactory results. Specif-

ically, we hypothesise that a dataset balanced in the number of speakers per dialect and

the duration of audio per speaker is key to learning meaningful representations.

Accent conversion with AutoVC On the VC/AC side of things, we first reproduce re-

sults in the AutoVC paper, to convert speaker identity on a subset of 40 VCTK speakers

and repeat the same experiment on a subset of SLR83 speakers. Results show successful

conversion for both corpora, even though the objective metrics we measured do not seem

comparable to the ones reported in [142]. For what concerns AC, we show that AutoVC

can carry out this task for a subset of 4 dialects, even though, for some utterances, con-

verted speech either suffers from substantial speaker leakage or it does not sound like

the target accent. Other than that, we also observe that AutoVC tends to deteriorate lin-

guistic content, at least when its bottleneck is not properly tuned. We believe that more

SOTA approaches, such as VoiceMixer [104] or StarGANv2-VC [107], would largely

ameliorate such issues. Still, AutoVC achieves an overall MOS score of 2.77 ± 1.26 for

perceptual accentedness on the AC task, with conversions to Midlands and conversion

from Northern accents being the higher scoring ones, with MOS means of 2.95 and 3.21,

respectively. We want to remind the reader that an MOS score of 1 means that the speaker

does not have the evaluated accent at all, while a score of 5 equates to a completely native

accent.

Accent conversion with YourTTS Finally, we evaluate YourTTS on the end-to-end

task of TTS synthesis with fine-grained control of speaker identity and dialect accent.

In particular, we fine-tune YourTTS, pre-trained on a multi-lingual dataset, with the

multi-dialect SLR83 corpus and show that the model can adapt to variations of British

English at a regional level. In particular, we run the same crowd-sourced evaluation

carried out for AutoVC and show statistically significant improvements on both the

overall conversion, that achieves a mean MOS of 3.60 ± 1.18, and for each dialect. The

best results were obtained when converting to the Scottish and from the Northern accent,

with MOS means of 4.02 and 3.70, respectively. We can clearly see the pattern that

starting from the Northern accent results in better conversions for both AutoVC and

Conclusions 141

YourTTS, and we attribute this result to the fact that the Northern accent is one of the

most represented in the dataset.

Objective metrics vs perceptual quality Next, we’d like to stress the little correlation

we observed between objective metrics and perceptual quality. In particular, most

of the objective metrics we reported for speaker similarity and intelligibility were

not as high as expected, even though speech sounded close to the selected speaker

and definitely comprehensible by a human being. We attribute this gap to multiple

reasons, such as background noise, the acoustic model producing many more tokens

than necessary (resulting in mumbling towards the end of sentences), the VC/AC models

distorting linguistic content and the inherent noise introduced by the vocoder. All such

errors add up and contribute to overall lower scores. Still, we believe that properly

training each component for enough time would lead to much better objective metrics,

in line with perceptual quality.

To conclude, we also want to point out that most of the results reported in this

thesis could be improved by relying on more computational power: due to the

limited resources at our disposal, we were only able to carry out relatively small scale

experiments, even though most of the reported models are resource-hungry and would

benefit a lot from either some kind of distributed training procedure or simply single

GPUs with more capacity.

CONCLUSIONS

After extensive literature review and the introduction of modern components and tasks

carried out in a full TTS scenario, it is clear that most of the approaches presented so

far in the flexible TTS field focus on controlling synthesis for specific attributes, such as

speaker identity and language. Yet, none of the previous work explored the expansion of

TTS systems to model regional variations of a language, i.e. dialect accents.

To accomplish this objective, this work first identifies a suitable open-source dataset,

namely, SLR83 [42], which is a crowd-sourced high-quality speech corpus containing

over 30 h of speech in 6 different dialects of the British Isles. Then, 2 TTS pipelines

are proposed. The first one is a multi-dialect extension of the popular Tacotron 2 [152]

architecture, while the second one relies on a multi-speaker Tacotron 2 model followed

by an AC system, which is the dialect accent adaptation of the well-established AutoVC

[142] model. Both the acoustic model in the first pipeline and the AC model in the second

pipeline are conditioned on TitaNet [93] dialect embeddings to control for regional accent

in the synthesised speech. Moreover, such approaches are compared to the output of a

multi-lingual model fine-tuned for the multi-dialect case, namely YourTTS [20].

Results show that individual components can deliver on their target task, but the com-

bination of them in a full TTS pipeline does not yield the expected results. In particular,

we show that AutoVC is suitable for the task of regional accent conversion, if properly

trained and tuned for the correct bottleneck size. Moreover, the comparison of crowd-

sourced evaluations, ranking systems in terms of how close synthesised speech is to the

selected accent, reveals a statistically significant preference for the output produced by

Conclusions 143

YourTTS with respect to that of AutoVC, and informal listening strongly backs this con-

clusion.

Even though the experimental results didn’t meet our expectations regarding the end-

to-end flow in our proposed pipelines, the great results obtained with their constituents

strongly makes us believe that more careful training strategies, such as the ones adopted

with YourTTS, along with better computational resources and training times, would lead

to more positive outcomes.

To further improve each component, the following research directions could be worth

exploring. For dialect accent embeddings, we believe that training on large-scale corpora

would help and, since open-source datasets lack in this domain, fine-tuning language en-

coders on dialect discrimination could be beneficial. Moreover, focusing on the disentan-

glement between all speech attributes we aim to control for is key, and approaches relying

on adversarial training and domain adaptation, such as the ones presented in [186, 192],

seem promising. For the acoustic model, we are convinced that experimentation times

could be reduced by a large margin by switching from an attention-based model to one of

the latest TTS architectures with external duration predictors, such as FastSpeech [145],

or to smaller, more light-weight models, such as PortaSpeech [144] or neural HMMs

[122]. Finally, for the AC module, it might be worth trying to experiment with more cur-

rent models such as VoiceMixer [104] and StarGANv2-VC [107]. Also, given the great

results obtained with YourTTS, we would like to set future directions towards the use of

end-to-end models, such EATS [47] and VITS [83].

Last, we also want to highlight that the work we have done for this thesis opens up

many new research tracks. Out of them all, an interesting idea would be to adapt the voice

interpolation strategies adopted so far [95] to come up with novel regional accents, by

mixing and matching embeddings in dialect accent latent spaces. Just imagine someone

who has lived half their life in Rome and the other half in Florence: what could their

accent be?

BIBLIOGRAPHY

[1] ABI-2: The Second Accents of the British Isles Speech Corpus. http://www.

thespeechark.com/abi-2-page.html.

[2] K. Akuzawa, Y. Iwasawa, and Y. Matsuo. Expressive Speech Synthesis via Mod-

eling Expressions with Variational Autoencoder. 2019. arXiv: 1804.02135

[cs.CL].

[3] O. Angelini, A. Moinet, K. Yanagisawa, and T. Drugman. Singing Synthesis: with

a little help from my attention. 2020. arXiv: 1912.05881 [eess.AS].

[4] R. Ardila, M. Branson, K. Davis, M. Henretty, M. Kohler, J. Meyer, R. Morais, L.

Saunders, F. M. Tyers, and G. Weber. Common Voice: A Massively-Multilingual

Speech Corpus. 2020. arXiv: 1912.06670 [cs.CL].

[5] S. O. Arik et al. “Deep Voice: Real-Time Neural Text-to-Speech”. In: Proceed-

ings of the 34th International Conference on Machine Learning - Volume 70.

ICML’17. Sydney, NSW, Australia: JMLR.org, 2017, pp. 195204.

[6] S. Ö. Arik, J. Chen, K. Peng, W. Ping, and Y. Zhou. “Neural Voice Cloning with

a Few Samples”. In: CoRR abs/1802.06006 (2018). arXiv: 1802.06006. URL:

http://arxiv.org/abs/1802.06006.

[7] S. Ö. Arik, G. F. Diamos, A. Gibiansky, J. Miller, K. Peng, W. Ping, J. Raiman,

and Y. Zhou. “Deep Voice 2: Multi-Speaker Neural Text-to-Speech”. In: CoRR

abs/1705.08947 (2017). arXiv: 1705.08947. URL: http://arxiv.org/

abs/1705.08947.

http://www.thespeechark.com/abi-2-page.html
http://www.thespeechark.com/abi-2-page.html
https://arxiv.org/abs/1804.02135
https://arxiv.org/abs/1804.02135
https://arxiv.org/abs/1912.05881
https://arxiv.org/abs/1912.06670
https://arxiv.org/abs/1802.06006
http://arxiv.org/abs/1802.06006
https://arxiv.org/abs/1705.08947
http://arxiv.org/abs/1705.08947
http://arxiv.org/abs/1705.08947

Bibliography 145

[8] D. Bahdanau, K. Cho, and Y. Bengio. “Neural machine translation by jointly

learning to align and translate”. In: arXiv preprint arXiv:1409.0473 (2014). URL:

https://arxiv.org/abs/1409.0473.

[9] Y. Bengio, P. Simard, and P. Frasconi. “Learning long-term dependencies with

gradient descent is difficult”. In: IEEE Transactions on Neural Networks 5.2

(1994), pp. 157–166. DOI: 10.1109/72.279181.

[10] M. Bernard and H. Titeux. “Phonemizer: Text to Phones Transcription for Mul-

tiple Languages in Python”. In: Journal of Open Source Software 6.68 (2021),

p. 3958. DOI: 10.21105/joss.03958. URL: https://doi.org/10.

21105/joss.03958.

[11] L. Biewald. Experiment Tracking with Weights and Biases. Software available

from wandb.com. 2020. URL: https://www.wandb.com/.

[12] M. Binkowski, J. Donahue, S. Dieleman, A. Clark, E. Elsen, N. Casagrande,

L. C. Cobo, and K. Simonyan. “High Fidelity Speech Synthesis with Adversar-

ial Networks”. In: CoRR abs/1909.11646 (2019). arXiv: 1909.11646. URL:

http://arxiv.org/abs/1909.11646.

[13] D. Bourgin. numpy-ml. 2021. URL: https://numpy-ml.readthedocs.

io/en/latest/ (visited on 09/28/2021).

[14] M. M. Bronstein, J. Bruna, T. Cohen, and P. Velickovic. “Geometric Deep Learn-

ing: Grids, Groups, Graphs, Geodesics, and Gauges”. In: CoRR abs/2104.13478

(2021). arXiv: 2104.13478. URL: https://arxiv.org/abs/2104.

13478.

[15] R. Carlson. “Models of Speech Synthesis”. In: Proceedings of the National

Academy of Sciences 92 (Mar. 2002). DOI: 10.1073/pnas.92.22.9932.

[16] L. Carroll. Alices Adventures in Wonderland. Broadview Press", 2011.

[17] R. Caruana. “Multitask Learning”. In: Machine Learning 28 (July 1997). DOI:

10.1023/A:1007379606734.

[18] E. Casanova, A. C. Junior, C. Shulby, F. S. d. Oliveira, J. P. Teixeira, M. A.

Ponti, and S. Aluísio. “TTS-Portuguese Corpus: a corpus for speech synthesis

in Brazilian Portuguese”. In: Language Resources and Evaluation (2022). ISSN:

https://arxiv.org/abs/1409.0473
https://doi.org/10.1109/72.279181
https://doi.org/10.21105/joss.03958
https://doi.org/10.21105/joss.03958
https://doi.org/10.21105/joss.03958
https://www.wandb.com/
https://arxiv.org/abs/1909.11646
http://arxiv.org/abs/1909.11646
https://numpy-ml.readthedocs.io/en/latest/
https://numpy-ml.readthedocs.io/en/latest/
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2104.13478
https://doi.org/10.1073/pnas.92.22.9932
https://doi.org/10.1023/A:1007379606734

Bibliography 146

1574-0218. DOI: 10.1007/s10579-021-09570-4. URL: http://dx.

doi.org/10.1007/s10579-021-09570-4.

[19] E. Casanova, C. Shulby, E. Gölge, N. M. Müller, F. S. de Oliveira, A. C. Junior,

A. da Silva Soares, S. M. Aluisio, and M. A. Ponti. SC-GlowTTS: an Efficient

Zero-Shot Multi-Speaker Text-To-Speech Model. 2021. arXiv: 2104 . 05557

[eess.AS].

[20] E. Casanova, J. Weber, C. Shulby, A. C. Júnior, E. Gölge, and M. A. Ponti.

“YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Con-

version for everyone”. In: CoRR abs/2112.02418 (2021). arXiv: 2112.02418.

URL: https://arxiv.org/abs/2112.02418.

[21] M. Cerak, M. Rusko, and M. Trnka. “Diagnostic evaluation of synthetic speech

using speech recognition”. In: 16th International Congress on Sound and Vibra-

tion 2009, ICSV 2009 8 (Jan. 2009), pp. 5–9.

[22] M. Chen, X. Tan, B. Li, Y. Liu, T. Qin, S. Zhao, and T.-Y. Liu. AdaSpeech: Adap-

tive Text to Speech for Custom Voice. 2021. arXiv: 2103.00993 [eess.AS].

[23] Y. Chen et al. “Sample Efficient Adaptive Text-to-Speech”. In: CoRR

abs/1809.10460 (2018). arXiv: 1809 . 10460. URL: http : / / arxiv .

org/abs/1809.10460.

[24] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio. “On the Proper-

ties of Neural Machine Translation: Encoder-Decoder Approaches”. In: CoRR

abs/1409.1259 (2014). arXiv: 1409.1259. URL: http://arxiv.org/

abs/1409.1259.

[25] Y.-P. Cho, F.-R. Yang, Y.-C. Chang, C.-T. Cheng, X.-H. Wang, and Y.-W. Liu. A

Survey on Recent Deep Learning-driven Singing Voice Synthesis Systems. 2021.

arXiv: 2110.02511 [eess.AS].

[26] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio. “Attention-

Based Models for Speech Recognition”. In: CoRR abs/1506.07503 (2015). arXiv:

1506.07503. URL: http://arxiv.org/abs/1506.07503.

[27] O. K. D. M. K. W. Christopher Cieri David Graff. Fisher English Training Speech

Part 1 Transcripts. 2004. DOI: 10.35111/w4bk-9b14.

https://doi.org/10.1007/s10579-021-09570-4
http://dx.doi.org/10.1007/s10579-021-09570-4
http://dx.doi.org/10.1007/s10579-021-09570-4
https://arxiv.org/abs/2104.05557
https://arxiv.org/abs/2104.05557
https://arxiv.org/abs/2112.02418
https://arxiv.org/abs/2112.02418
https://arxiv.org/abs/2103.00993
https://arxiv.org/abs/1809.10460
http://arxiv.org/abs/1809.10460
http://arxiv.org/abs/1809.10460
https://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
https://arxiv.org/abs/2110.02511
https://arxiv.org/abs/1506.07503
http://arxiv.org/abs/1506.07503
https://doi.org/10.35111/w4bk-9b14

Bibliography 147

[28] J. S. Chung, A. Nagrani, and A. Zisserman. “VoxCeleb2: Deep Speaker Recog-

nition”. In: INTERSPEECH. 2018.

[29] J. S. Chung, J. Huh, S. Mun, M. Lee, H.-S. Heo, S. Choe, C. Ham, S. Jung, B.-J.

Lee, and I. Han. “In Defence of Metric Learning for Speaker Recognition”. In:

Interspeech 2020 (2020). DOI: 10.21437/interspeech.2020-1064.

URL: http://dx.doi.org/10.21437/Interspeech.2020-1064.

[30] T. N. community. NumPy. 2021. URL: https : / / numpy . org / doc /

stable/ (visited on 09/28/2021).

[31] T. S. community. SciPy. 2021. URL: https://docs.scipy.org/doc/

scipy/index.html (visited on 09/28/2021).

[32] E. Cooper, C.-I. Lai, Y. Yasuda, F. Fang, X. Wang, N. Chen, and J. Yamagishi.

Zero-Shot Multi-Speaker Text-To-Speech with State-of-the-art Neural Speaker

Embeddings. 2020. arXiv: 1910.10838 [eess.AS].

[33] Corpora e Lessici dell’Italiano Parlato e Scritto (CLIPS). http : / / www .

clips.unina.it/it/.

[34] M. Cotescu, T. Drugman, G. Huybrechts, J. Lorenzo-Trueba, and A. Moinet.

“Voice Conversion for Whispered Speech Synthesis”. In: CoRR abs/1912.05289

(2019). arXiv: 1912.05289. URL: http://arxiv.org/abs/1912.

05289.

[35] L. J. Cronbach. “Coefficient alpha and the internal structure of tests”. In: Psy-

chometrika 16 (1951), pp. 297–334.

[36] K. Crowston. “Amazon Mechanical Turk: A Research Tool for Organizations and

Information Systems Scholars”. In: Shaping the Future of ICT Research. Methods

and Approaches. Ed. by A. Bhattacherjee and B. Fitzgerald. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2012, pp. 210–221. ISBN: 978-3-642-35142-6.

[37] G. Cybenko. “Approximation by superpositions of a sigmoidal function”. In:

Mathematics of Control, Signals, and Systems (MCSS) 2.4 (Dec. 1989), pp. 303–

314. ISSN: 0932-4194. DOI: 10.1007/BF02551274. URL: http://dx.

doi.org/10.1007/BF02551274.

[38] A. R. Damasio. Descartes’ Error. Emotion, reason and the human brain. 1994.

https://doi.org/10.21437/interspeech.2020-1064
http://dx.doi.org/10.21437/Interspeech.2020-1064
https://numpy.org/doc/stable/
https://numpy.org/doc/stable/
https://docs.scipy.org/doc/scipy/index.html
https://docs.scipy.org/doc/scipy/index.html
https://arxiv.org/abs/1910.10838
http://www.clips.unina.it/it/
http://www.clips.unina.it/it/
https://arxiv.org/abs/1912.05289
http://arxiv.org/abs/1912.05289
http://arxiv.org/abs/1912.05289
https://doi.org/10.1007/BF02551274
http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1007/BF02551274

Bibliography 148

[39] A. Defossez, G. Synnaeve, and Y. Adi. Real Time Speech Enhancement in the

Waveform Domain. 2020. arXiv: 2006.12847 [eess.AS].

[40] M. P. Deisenroth, A. A. Faisal, and C. S. Ong. Mathematics for Machine

Learning. Cambridge University Press, 2020. URL: https : / / mml -

book.github.io/book/mml-book.pdf.

[41] A. Demarco and S. Cox. “Iterative Classification Of Regional British Accents

In I-Vector Space”. English. In: Symposium on machine learning in speech and

language processing ; Conference date: 01-09-2012 Through 30-09-2012. Sept.

2012, pp. 1–4.

[42] I. Demirsahin, O. Kjartansson, A. Gutkin, and C. Rivera. “Open-source

Multi-speaker Corpora of the English Accents in the British Isles”. In:

Proceedings of The 12th Language Resources and Evaluation Conference

(LREC). Marseille, France: European Language Resources Association

(ELRA), May 2020, pp. 6532–6541. ISBN: 979-10-95546-34-4. URL: https:

//www.aclweb.org/anthology/2020.lrec-1.804.

[43] J. Deng, J. Guo, N. Xue, and S. Zafeiriou. ArcFace: Additive Angular Margin

Loss for Deep Face Recognition. 2019. arXiv: 1801.07698 [cs.CV].

[44] B. Desplanques, J. Thienpondt, and K. Demuynck. “ECAPA-TDNN: Empha-

sized Channel Attention, Propagation and Aggregation in TDNN Based Speaker

Verification”. In: Interspeech 2020. Ed. by H. Meng, B. Xu, and T. F. Zheng.

ISCA, 2020, pp. 3830–3834.

[45] T. DeVries and G. W. Taylor. Improved Regularization of Convolutional Neural

Networks with Cutout. 2017. arXiv: 1708.04552 [cs.CV].

[46] S. Ding, G. Zhao, and R. Gutierrez-Osuna. “Accentron: Foreign accent

conversion to arbitrary non-native speakers using zero-shot learning”. In:

Computer Speech Language 72 (2022), p. 101302. ISSN: 0885-2308. DOI:

https : / / doi . org / 10 . 1016 / j . csl . 2021 . 101302. URL:

https://www.sciencedirect.com/science/article/pii/

S0885230821001029.

[47] J. Donahue, S. Dieleman, M. Binkowski, E. Elsen, and K. Simonyan. “End-

to-End Adversarial Text-to-Speech”. In: CoRR abs/2006.03575 (2020). arXiv:

2006.03575. URL: https://arxiv.org/abs/2006.03575.

https://arxiv.org/abs/2006.12847
https://mml-book.github.io/book/mml-book.pdf
https://mml-book.github.io/book/mml-book.pdf
https://www.aclweb.org/anthology/2020.lrec-1.804
https://www.aclweb.org/anthology/2020.lrec-1.804
https://arxiv.org/abs/1801.07698
https://arxiv.org/abs/1708.04552
https://doi.org/https://doi.org/10.1016/j.csl.2021.101302
https://www.sciencedirect.com/science/article/pii/S0885230821001029
https://www.sciencedirect.com/science/article/pii/S0885230821001029
https://arxiv.org/abs/2006.03575
https://arxiv.org/abs/2006.03575

Bibliography 149

[48] R. E. Donovan, M. Franz, J. S. Sorensen, and S. Roukos. “Phrase splicing and

variable substitution using the IBM trainable speech synthesis system”. In: Pro-

ceedings of the 1999 IEEE International Conference on Acoustics, Speech, and

Signal Processing, ICASSP ’99, Phoenix, Arizona, USA, March 15-19, 1999.

IEEE Computer Society, 1999, pp. 373–376. DOI: 10.1109/ICASSP.1999.

758140. URL: https://doi.org/10.1109/ICASSP.1999.758140.

[49] D. Dua and C. Graff. UCI Machine Learning Repository. 2017. URL: http:

//archive.ics.uci.edu/ml.

[50] V. Dumoulin and F. Visin. “A guide to convolution arithmetic for deep learning”.

In: ArXiv e-prints (2016). eprint: 1603.07285.

[51] J. L. Elman. “Finding structure in time”. In: Cognitive Science 14.2 (1990),

pp. 179–211. ISSN: 0364-0213. DOI: https://doi.org/10.1016/0364-

0213(90)90002- E. URL: https://www.sciencedirect.com/

science/article/pii/036402139090002E.

[52] W. e. a. Falcon. PyTorch Lightning. https : / / github . com /

PytorchLightning / pytorch - lightning. 2019. DOI: 10 . 5281 /

zenodo.3828935.

[53] D. Felps, H. Bortfeld, and R. Gutierrez-Osuna. “Foreign Accent Conversion in

Computer Assisted Pronunciation Training”. In: Speech Commun. 51.10 (2009),

pp. 920932. ISSN: 0167-6393. DOI: 10.1016/j.specom.2008.11.004.

URL: https://doi.org/10.1016/j.specom.2008.11.004.

[54] J. Fong, J. Wu, P. Agrawal, A. Gibiansky, T. Koehler, and Q. He. “Improving

Polyglot Speech Synthesis through Multi-task and Adversarial Learning”. In:

Proc. 11th ISCA Speech Synthesis Workshop (SSW 11). 2021, pp. 172–176. DOI:

10.21437/SSW.2021-30.

[55] Freiburg Corpus of English Dialects (FRED). https://www2.anglistik.

uni-freiburg.de/institut/lskortmann/FRED/.

[56] S. Furui. “Speech and Speaker Recognition Evaluation”. In: Apr. 2007, pp. 1–27.

ISBN: 978-1-4020-5816-5. DOI: 10.1007/978-1-4020-5817-2_1.

[57] M. A. I. L. GmbH. The M-AILABS speech dataset. https://www.caito.

de/2019/01/the-m-ailabs-speech-dataset/. 2017.

https://doi.org/10.1109/ICASSP.1999.758140
https://doi.org/10.1109/ICASSP.1999.758140
https://doi.org/10.1109/ICASSP.1999.758140
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
1603.07285
https://doi.org/https://doi.org/10.1016/0364-0213(90)90002-E
https://doi.org/https://doi.org/10.1016/0364-0213(90)90002-E
https://www.sciencedirect.com/science/article/pii/036402139090002E
https://www.sciencedirect.com/science/article/pii/036402139090002E
https://github.com/PytorchLightning/pytorch-lightning
https://github.com/PytorchLightning/pytorch-lightning
https://doi.org/10.5281/zenodo.3828935
https://doi.org/10.5281/zenodo.3828935
https://doi.org/10.1016/j.specom.2008.11.004
https://doi.org/10.1016/j.specom.2008.11.004
https://doi.org/10.21437/SSW.2021-30
https://www2.anglistik.uni-freiburg.de/institut/lskortmann/FRED/
https://www2.anglistik.uni-freiburg.de/institut/lskortmann/FRED/
https://doi.org/10.1007/978-1-4020-5817-2_1
https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/
https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/

Bibliography 150

[58] J. J. Godfrey and E. Holliman. Switchboard-1 Release 2. 1993. DOI:

10.35111/sw3h-rw02.

[59] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http://www.

deeplearningbook.org. MIT Press, 2016.

[60] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio. Generative Adversarial Networks. 2014. arXiv:

1406.2661 [stat.ML].

[61] Google. Colaboratory. URL: \url{https : / / colab . research .

google.com/}.

[62] D. Griffin and J. Lim. “Signal estimation from modified short-time Fourier trans-

form”. In: IEEE Transactions on Acoustics, Speech, and Signal Processing 32.2

(1984), pp. 236–243. DOI: 10.1109/TASSP.1984.1164317.

[63] W. Han, Z. Zhang, Y. Zhang, J. Yu, C.-C. Chiu, J. Qin, A. Gulati, R. Pang,

and Y. Wu. ContextNet: Improving Convolutional Neural Networks for Auto-

matic Speech Recognition with Global Context. 2020. arXiv: 2005 . 03191

[eess.AS].

[64] M. He, J. Yang, L. He, and F. K. Soong. “Multilingual Byte2Speech Models

for Scalable Low-resource Speech Synthesis”. In: CoRR abs/2103.03541 (2021).

arXiv: 2103.03541. URL: https://arxiv.org/abs/2103.03541.

[65] G. Heigold, I. Moreno, S. Bengio, and N. Shazeer. End-to-End Text-Dependent

Speaker Verification. 2015. arXiv: 1509.08062 [cs.LG].

[66] H. Hemati and D. Borth. “Using IPA-Based Tacotron for Data Efficient

Cross-Lingual Speaker Adaptation and Pronunciation Enhancement”. In:

CoRR abs/2011.06392 (2020). arXiv: 2011 . 06392. URL: https :

//arxiv.org/abs/2011.06392.

[67] H. S. Heo, B.-J. Lee, J. Huh, and J. S. Chung. Clova Baseline System for the

VoxCeleb Speaker Recognition Challenge 2020. 2020. arXiv: 2009.14153

[eess.AS].

https://doi.org/10.35111/sw3h-rw02
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1406.2661
\url{https://colab.research.google.com/}
\url{https://colab.research.google.com/}
https://doi.org/10.1109/TASSP.1984.1164317
https://arxiv.org/abs/2005.03191
https://arxiv.org/abs/2005.03191
https://arxiv.org/abs/2103.03541
https://arxiv.org/abs/2103.03541
https://arxiv.org/abs/1509.08062
https://arxiv.org/abs/2011.06392
https://arxiv.org/abs/2011.06392
https://arxiv.org/abs/2011.06392
https://arxiv.org/abs/2009.14153
https://arxiv.org/abs/2009.14153

Bibliography 151

[68] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, G. Klambauer, and S.

Hochreiter. “GANs Trained by a Two Time-Scale Update Rule Converge to a

Nash Equilibrium”. In: CoRR abs/1706.08500 (2017). arXiv: 1706.08500.

URL: http://arxiv.org/abs/1706.08500.

[69] S. Hochreiter and J. Schmidhuber. “Long short-term memory”. In: Neural com-

putation 9.8 (1997), pp. 1735–1780.

[70] J. Hu, L. Shen, and G. Sun. “Squeeze-and-Excitation Networks”. In: 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018,

pp. 7132–7141. DOI: 10.1109/CVPR.2018.00745.

[71] W. Huang, E. Cooper, J. Yamagishi, and T. Toda. “LDNet: Unified Lis-

tener Dependent Modeling in MOS Prediction for Synthetic Speech”.

In: CoRR abs/2110.09103 (2021). arXiv: 2110 . 09103. URL: https :

//arxiv.org/abs/2110.09103.

[72] A. J. Hunt and A. W. Black. “Unit selection in a concatenative speech synthesis

system using a large speech database”. In: 1996 IEEE International Conference

on Acoustics, Speech, and Signal Processing Conference Proceedings 1 (1996),

373–376 vol. 1.

[73] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in Science

& Engineering 9.3 (2007), pp. 90–95. DOI: 10.1109/MCSE.2007.55.

[74] S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift. 2015. arXiv: 1502 . 03167

[cs.LG].

[75] K. Ito and L. Johnson. The LJ Speech Dataset. https://keithito.com/

LJ-Speech-Dataset/. 2017.

[76] M. A. Jette, A. B. Yoo, and M. Grondona. “SLURM: Simple Linux Utility for

Resource Management”. In: In Lecture Notes in Computer Science: Proceedings

of Job Scheduling Strategies for Parallel Processing (JSSPP) 2003. Springer-

Verlag, 2002, pp. 44–60.

[77] Y. Jia et al. “Transfer Learning from Speaker Verification to Multispeaker Text-

To-Speech Synthesis”. In: CoRR abs/1806.04558 (2018). arXiv: 1806.04558.

URL: http://arxiv.org/abs/1806.04558.

https://arxiv.org/abs/1706.08500
http://arxiv.org/abs/1706.08500
https://doi.org/10.1109/CVPR.2018.00745
https://arxiv.org/abs/2110.09103
https://arxiv.org/abs/2110.09103
https://arxiv.org/abs/2110.09103
https://doi.org/10.1109/MCSE.2007.55
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/
https://arxiv.org/abs/1806.04558
http://arxiv.org/abs/1806.04558

Bibliography 152

[78] B. Joshi, A. Chetan, P. Madaan, P. Jain, S. Anand, Eshita, and S. Singh. An explo-

ration into Deep Learning methods for Emotional Text-to-Speech. Version v1.0.0.

June 2020. DOI: 10.5281/zenodo.3876081. URL: https://doi.org/

10.5281/zenodo.3876081.

[79] D. Jurafsky and J. H. Martin. Speech and Language Processing (3rd Edition

Draft). 2021. URL: https://web.stanford.edu/~jurafsky/slp3/.

[80] H. Kawahara. “STRAIGHT, exploitation of the other aspect of VOCODER: Per-

ceptually isomorphic decomposition of speech sounds”. In: Acoustical Science

and Technology 27.6 (2006), pp. 349–353. DOI: 10.1250/ast.27.349.

[81] K. Kilgour, M. Zuluaga, D. Roblek, and M. Sharifi. Fréchet Audio Distance:

A Metric for Evaluating Music Enhancement Algorithms. 2019. arXiv: 1812.

08466 [eess.AS].

[82] J. Kim, S. Kim, J. Kong, and S. Yoon. Glow-TTS: A Generative Flow for

Text-to-Speech via Monotonic Alignment Search. 2020. arXiv: 2005.11129

[eess.AS].

[83] J. Kim, J. Kong, and J. Son. “Conditional Variational Autoencoder with Ad-

versarial Learning for End-to-End Text-to-Speech”. In: CoRR abs/2106.06103

(2021). arXiv: 2106.06103. URL: https://arxiv.org/abs/2106.

06103.

[84] T.-H. Kim, S. Cho, S. Choi, S. Park, and S.-Y. Lee. Emotional Voice Conver-

sion using Multitask Learning with Text-to-speech. 2019. arXiv: 1911.06149

[eess.AS].

[85] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. In: 3rd

International Conference on Learning Representations, ICLR 2015, San Diego,

CA, USA, May 7-9, 2015, Conference Track Proceedings. Ed. by Y. Bengio and

Y. LeCun. 2015. URL: http://arxiv.org/abs/1412.6980.

[86] D. P. Kingma, D. J. Rezende, S. Mohamed, and M. Welling. “Semi-Supervised

Learning with Deep Generative Models”. In: CoRR abs/1406.5298 (2014). arXiv:

1406.5298. URL: http://arxiv.org/abs/1406.5298.

[87] D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. 2014. arXiv:

1312.6114 [stat.ML].

https://doi.org/10.5281/zenodo.3876081
https://doi.org/10.5281/zenodo.3876081
https://doi.org/10.5281/zenodo.3876081
https://web.stanford.edu/~jurafsky/slp3/
https://doi.org/10.1250/ast.27.349
https://arxiv.org/abs/1812.08466
https://arxiv.org/abs/1812.08466
https://arxiv.org/abs/2005.11129
https://arxiv.org/abs/2005.11129
https://arxiv.org/abs/2106.06103
https://arxiv.org/abs/2106.06103
https://arxiv.org/abs/2106.06103
https://arxiv.org/abs/1911.06149
https://arxiv.org/abs/1911.06149
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1406.5298
http://arxiv.org/abs/1406.5298
https://arxiv.org/abs/1312.6114

Bibliography 153

[88] D. H. Klatt. “Review of text-to-speech conversion for English”. In: The Journal

of the Acoustical Society of America 82.3 (1987), pp. 737–793.

[89] T. Kluyver et al. “Jupyter Notebooks – a publishing format for reproducible com-

putational workflows”. In: Positioning and Power in Academic Publishing: Play-

ers, Agents and Agendas. Ed. by F. Loizides and B. Schmidt. IOS Press. 2016,

pp. 87 –90.

[90] T. Ko, V. Peddinti, D. Povey, M. L. Seltzer, and S. Khudanpur. “A study on data

augmentation of reverberant speech for robust speech recognition”. In: 2017

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP). 2017, pp. 5220–5224. DOI: 10.1109/ICASSP.2017.7953152.

[91] I. Kobyzev, S. J. Prince, and M. A. Brubaker. “Normalizing Flows: An Introduc-

tion and Review of Current Methods”. In: IEEE Transactions on Pattern Analysis

and Machine Intelligence 43.11 (2021), pp. 39643979. ISSN: 1939-3539. DOI:

10.1109/tpami.2020.2992934. URL: http://dx.doi.org/10.

1109/TPAMI.2020.2992934.

[92] N. R. Koluguri, J. Li, V. Lavrukhin, and B. Ginsburg. SpeakerNet: 1D Depth-wise

Separable Convolutional Network for Text-Independent Speaker Recognition and

Verification. 2020. arXiv: 2010.12653 [eess.AS].

[93] N. R. Koluguri, T. Park, and B. Ginsburg. TitaNet: Neural Model for speaker

representation with 1D Depth-wise separable convolutions and global context.

2021. arXiv: 2110.04410 [eess.AS].

[94] J. Kong, J. Kim, and J. Bae. HiFi-GAN: Generative Adversarial Networks

for Efficient and High Fidelity Speech Synthesis. 2020. arXiv: 2010.05646

[cs.SD].

[95] R. Korostik, J. Latorre, S. Achanta, and Y. Stylianou. “Assessing Speaker Inter-

polation in Neural Text-to-Speech”. In: Speech and Computer. Ed. by A. Karpov

and R. Potapova. Cham: Springer International Publishing, 2021, pp. 360–371.

ISBN: 978-3-030-87802-3.

[96] B. Kortmann and E. W. Schneider, eds. A Handbook of Varieties of English:

A Multimedia Reference Tool. Volume 1: Phonology. Volume 2: Morphol-

ogy and Syntax. De Gruyter Mouton, 2008. ISBN: 9783110197181. DOI:

https://doi.org/10.1109/ICASSP.2017.7953152
https://doi.org/10.1109/tpami.2020.2992934
http://dx.doi.org/10.1109/TPAMI.2020.2992934
http://dx.doi.org/10.1109/TPAMI.2020.2992934
https://arxiv.org/abs/2010.12653
https://arxiv.org/abs/2110.04410
https://arxiv.org/abs/2010.05646
https://arxiv.org/abs/2010.05646

Bibliography 154

doi:10.1515/9783110197181. URL: https://doi.org/10.1515/

9783110197181.

[97] S. Kriman, S. Beliaev, B. Ginsburg, J. Huang, O. Kuchaiev, V. Lavrukhin, R.

Leary, J. Li, and Y. Zhang. QuartzNet: Deep Automatic Speech Recognition

with 1D Time-Channel Separable Convolutions. 2019. arXiv: 1910.10261

[eess.AS].

[98] R. Kubichek. “Mel-cepstral distance measure for objective speech quality as-

sessment”. In: Proceedings of IEEE Pacific Rim Conference on Communications

Computers and Signal Processing. Vol. 1. 1993, 125–128 vol.1. DOI: 10.1109/

PACRIM.1993.407206.

[99] O. Kuchaiev et al. “NeMo: a toolkit for building AI applications using Neu-

ral Modules”. In: CoRR abs/1909.09577 (2019). arXiv: 1909.09577. URL:

http://arxiv.org/abs/1909.09577.

[100] K. Kumar, R. Kumar, T. de Boissiere, L. Gestin, W. Z. Teoh, J. Sotelo, A. de Bre-

bisson, Y. Bengio, and A. Courville. MelGAN: Generative Adversarial Networks

for Conditional Waveform Synthesis. 2019. arXiv: 1910.06711 [eess.AS].

[101] A. Lamb, A. Goyal, Y. Zhang, S. Zhang, A. Courville, and Y. Bengio. Professor

Forcing: A New Algorithm for Training Recurrent Networks. 2016. arXiv: 1610.

09038 [stat.ML].

[102] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther. Autoencoding

beyond pixels using a learned similarity metric. 2016. arXiv: 1512.09300

[cs.LG].

[103] J. Latorre, J. Lachowicz, J. Lorenzo-Trueba, T. Merritt, T. Drugman, S. Ronanki,

and K. Viacheslav. “Effect of data reduction on sequence-to-sequence neural

TTS”. In: CoRR abs/1811.06315 (2018). arXiv: 1811.06315. URL: http:

//arxiv.org/abs/1811.06315.

[104] S.-H. Lee, J.-H. Kim, H. Chung, and S.-W. Lee. “VoiceMixer: Adversarial Voice

Style Mixup”. In: Advances in Neural Information Processing Systems. Ed. by

A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan. 2021. URL: https:

//openreview.net/forum?id=0lzmTb4LGd3F.

https://doi.org/doi:10.1515/9783110197181
https://doi.org/10.1515/9783110197181
https://doi.org/10.1515/9783110197181
https://arxiv.org/abs/1910.10261
https://arxiv.org/abs/1910.10261
https://doi.org/10.1109/PACRIM.1993.407206
https://doi.org/10.1109/PACRIM.1993.407206
https://arxiv.org/abs/1909.09577
http://arxiv.org/abs/1909.09577
https://arxiv.org/abs/1910.06711
https://arxiv.org/abs/1610.09038
https://arxiv.org/abs/1610.09038
https://arxiv.org/abs/1512.09300
https://arxiv.org/abs/1512.09300
https://arxiv.org/abs/1811.06315
http://arxiv.org/abs/1811.06315
http://arxiv.org/abs/1811.06315
https://openreview.net/forum?id=0lzmTb4LGd3F
https://openreview.net/forum?id=0lzmTb4LGd3F

Bibliography 155

[105] Y. Leng, X. Tan, S. Zhao, F. K. Soong, X. Li, and T. Qin. “MBNet: MOS

Prediction for Synthesized Speech with Mean-Bias Network”. In: CoRR

abs/2103.00110 (2021). arXiv: 2103.00110. URL: https://arxiv.org/

abs/2103.00110.

[106] T. Li, S. Yang, L. Xue, and L. Xie. Controllable Emotion Transfer For End-to-

End Speech Synthesis. 2020. arXiv: 2011.08679 [cs.SD].

[107] Y. A. Li, A. Zare, and N. Mesgarani. “StarGANv2-VC: A Diverse, Unsu-

pervised, Non-parallel Framework for Natural-Sounding Voice Conversion”.

In: CoRR abs/2107.10394 (2021). arXiv: 2107 . 10394. URL: https :

//arxiv.org/abs/2107.10394.

[108] LibriVox. https://librivox.org/.

[109] J. H. Lim and J. C. Ye. Geometric GAN. 2017. arXiv: 1705 . 02894

[stat.ML].

[110] M. Lin, Q. Chen, and S. Yan. Network In Network. 2014. arXiv: 1312.4400

[cs.NE].

[111] P. Liu, X. Wu, S. Kang, G. Li, D. Su, and D. Yu. Maximizing Mutual Information

for Tacotron. 2019. arXiv: 1909.01145 [eess.AS].

[112] C. Lo, S. Fu, W. Huang, X. Wang, J. Yamagishi, Y. Tsao, and H. Wang.

“MOSNet: Deep Learning based Objective Assessment for Voice Con-

version”. In: CoRR abs/1904.08352 (2019). arXiv: 1904 . 08352. URL:

http://arxiv.org/abs/1904.08352.

[113] P. C. Loizou. “Speech Quality Assessment”. In: Multimedia Analysis, Processing

and Communications. Ed. by W. Lin, D. Tao, J. Kacprzyk, Z. Li, E. Izquierdo,

and H. Wang. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 623–

654. ISBN: 978-3-642-19551-8. DOI: 10.1007/978-3-642-19551-8_23.

URL: https://doi.org/10.1007/978-3-642-19551-8_23.

[114] J. Lorenzo-Trueba, T. Drugman, J. Latorre, T. Merritt, B. Putrycz, R. Barra-

Chicote, A. Moinet, and V. Aggarwal. Towards achieving robust universal neural

vocoding. 2019. arXiv: 1811.06292 [eess.AS].

https://arxiv.org/abs/2103.00110
https://arxiv.org/abs/2103.00110
https://arxiv.org/abs/2103.00110
https://arxiv.org/abs/2011.08679
https://arxiv.org/abs/2107.10394
https://arxiv.org/abs/2107.10394
https://arxiv.org/abs/2107.10394
https://librivox.org/
https://arxiv.org/abs/1705.02894
https://arxiv.org/abs/1705.02894
https://arxiv.org/abs/1312.4400
https://arxiv.org/abs/1312.4400
https://arxiv.org/abs/1909.01145
https://arxiv.org/abs/1904.08352
http://arxiv.org/abs/1904.08352
https://doi.org/10.1007/978-3-642-19551-8_23
https://doi.org/10.1007/978-3-642-19551-8_23
https://arxiv.org/abs/1811.06292

Bibliography 156

[115] I. Loshchilov and F. Hutter. “Fixing Weight Decay Regularization in Adam”. In:

CoRR abs/1711.05101 (2017). arXiv: 1711.05101. URL: http://arxiv.

org/abs/1711.05101.

[116] R. Luo, X. Tan, R. Wang, T. Qin, J. Li, S. Zhao, E. Chen, and T. Liu. “Light-

Speech: Lightweight and Fast Text to Speech with Neural Architecture Search”.

In: CoRR abs/2102.04040 (2021). arXiv: 2102.04040. URL: https://

arxiv.org/abs/2102.04040.

[117] L. van der Maaten and G. Hinton. “Visualizing Data using t-SNE”. In: Journal

of Machine Learning Research 9.86 (2008), pp. 2579–2605. URL: http://

jmlr.org/papers/v9/vandermaaten08a.html.

[118] Y. Masuyama, K. Yatabe, Y. Koizumi, Y. Oikawa, and N. Harada. “Deep Griffin-

Lim Iteration”. In: CoRR abs/1903.03971 (2019). arXiv: 1903.03971. URL:

http://arxiv.org/abs/1903.03971.

[119] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg, and O.

Nieto. “librosa: Audio and music signal analysis in python”. In: Proceedings of

the 14th python in science conference. Vol. 8. 2015.

[120] L. McInnes, J. Healy, and J. Melville. UMAP: Uniform Manifold Approxima-

tion and Projection for Dimension Reduction. 2020. arXiv: 1802 . 03426

[stat.ML].

[121] Wes McKinney. “Data Structures for Statistical Computing in Python”. In: Pro-

ceedings of the 9th Python in Science Conference. Ed. by Stéfan van der Walt and

Jarrod Millman. 2010, pp. 56 –61. DOI: 10.25080/Majora-92bf1922-

00a.

[122] S. Mehta, É. Székely, J. Beskow, and G. E. Henter. “Neural HMMs are all you

need (for high-quality attention-free TTS)”. In: ArXiv abs/2108.13320 (2021).

[123] C. Miao, S. Liang, Z. Liu, M. Chen, J. Ma, S. Wang, and J. Xiao. EfficientTTS:

An Efficient and High-Quality Text-to-Speech Architecture. 2020. arXiv: 2012.

03500 [eess.AS].

[124] M. Morise. “D4C, a band-aperiodicity estimator for high-quality speech synthe-

sis”. In: Speech Communication 84 (2016), pp. 57–65. ISSN: 0167-6393. DOI:

https://doi.org/10.1016/j.specom.2016.09.001. URL:

https://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2102.04040
https://arxiv.org/abs/2102.04040
https://arxiv.org/abs/2102.04040
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://arxiv.org/abs/1903.03971
http://arxiv.org/abs/1903.03971
https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1802.03426
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://arxiv.org/abs/2012.03500
https://arxiv.org/abs/2012.03500
https://doi.org/https://doi.org/10.1016/j.specom.2016.09.001

Bibliography 157

https://www.sciencedirect.com/science/article/pii/

S0167639316300413.

[125] M. Morise, F. Yokomori, and K. Ozawa. “WORLD: A Vocoder-Based High-

Quality Speech Synthesis System for Real-Time Applications”. In: IEICE Trans-

actions on Information and Systems E99.D.7 (2016), pp. 1877–1884. DOI: 10.

1587/transinf.2015EDP7457.

[126] E. Nachmani and L. Wolf. “Unsupervised Polyglot Text To Speech”. In: CoRR

abs/1902.02263 (2019). arXiv: 1902.02263. URL: http://arxiv.org/

abs/1902.02263.

[127] A. Nagrani, J. S. Chung, and A. Zisserman. “VoxCeleb: a large-scale speaker

identification dataset”. In: INTERSPEECH. 2017.

[128] M. Najafian, S. Safavi, P. Weber, and M. Russell. “Identification of British En-

glish regional accents using fusion of i-vector and multi-accent phonotactic sys-

tems”. In: Proc. The Speaker and Language Recognition Workshop (Odyssey

2016). 2016, pp. 132–139. DOI: 10.21437/Odyssey.2016-19.

[129] T. Nekvinda and O. Duek. One Model, Many Languages: Meta-learning for Mul-

tilingual Text-to-Speech. 2020. arXiv: 2008.00768 [eess.AS].

[130] K. Okabe, T. Koshinaka, and K. Shinoda. “Attentive Statistics Pooling for

Deep Speaker Embedding”. In: Interspeech 2018 (2018). DOI: 10.21437/

interspeech.2018-993. URL: http://dx.doi.org/10.21437/

Interspeech.2018-993.

[131] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,

N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu. “WaveNet: A Generative

Model for Raw Audio”. In: CoRR abs/1609.03499 (2016). arXiv: 1609.03499.

URL: http://arxiv.org/abs/1609.03499.

[132] A. van den Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, and K.

Kavukcuoglu. “Conditional Image Generation with PixelCNN Decoders”. In:

CoRR abs/1606.05328 (2016). arXiv: 1606.05328. URL: http://arxiv.

org/abs/1606.05328.

[133] D. D. Palmer and M. A. Hearst. “Adaptive Multilingual Sentence Boundary Dis-

ambiguation”. In: Computational Linguistics 23.2 (1997), pp. 241–267. URL:

https://aclanthology.org/J97-2002.

https://www.sciencedirect.com/science/article/pii/S0167639316300413
https://www.sciencedirect.com/science/article/pii/S0167639316300413
https://doi.org/10.1587/transinf.2015EDP7457
https://doi.org/10.1587/transinf.2015EDP7457
https://arxiv.org/abs/1902.02263
http://arxiv.org/abs/1902.02263
http://arxiv.org/abs/1902.02263
https://doi.org/10.21437/Odyssey.2016-19
https://arxiv.org/abs/2008.00768
https://doi.org/10.21437/interspeech.2018-993
https://doi.org/10.21437/interspeech.2018-993
http://dx.doi.org/10.21437/Interspeech.2018-993
http://dx.doi.org/10.21437/Interspeech.2018-993
https://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1606.05328
http://arxiv.org/abs/1606.05328
http://arxiv.org/abs/1606.05328
https://aclanthology.org/J97-2002

Bibliography 158

[134] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur. “Librispeech: An ASR

corpus based on public domain audio books”. In: 2015 IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP). 2015, pp. 5206–

5210. DOI: 10.1109/ICASSP.2015.7178964.

[135] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk, and Q. V.

Le. “SpecAugment: A Simple Data Augmentation Method for Automatic Speech

Recognition”. In: Interspeech 2019 (2019). DOI: 10.21437/interspeech.

2019-2680. URL: http://dx.doi.org/10.21437/Interspeech.

2019-2680.

[136] A. Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learn-

ing Library”. In: Advances in Neural Information Processing Systems 32. Ed. by

H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-

nett. Curran Associates, Inc., 2019, pp. 8024–8035. URL: http://papers.

neurips.cc/paper/9015-pytorch-an-imperative-style-

high-performance-deep-learning-library.pdf.

[137] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of

Machine Learning Research 12 (2011), pp. 2825–2830.

[138] N. Perraudin, P. Balazs, and P. L. Søndergaard. “A fast Griffin-Lim algorithm”.

In: 2013 IEEE Workshop on Applications of Signal Processing to Audio and

Acoustics. 2013, pp. 1–4. DOI: 10.1109/WASPAA.2013.6701851.

[139] W. Ping, K. Peng, A. Gibiansky, S. Ö. Arik, A. Kannan, S. Narang, J. Raiman,

and J. Miller. “Deep Voice 3: 2000-Speaker Neural Text-to-Speech”. In: CoRR

abs/1710.07654 (2017). arXiv: 1710.07654. URL: http://arxiv.org/

abs/1710.07654.

[140] M. Przybocki and A. Martin. “NIST’s Assessment of Text Independent Speaker

Recognition Performance”. en. In: (2002).

[141] K. Qian, Y. Zhang, S. Chang, D. Cox, and M. Hasegawa-Johnson. Unsupervised

Speech Decomposition via Triple Information Bottleneck. 2021. arXiv: 2004.

11284 [eess.AS].

[142] K. Qian, Y. Zhang, S. Chang, X. Yang, and M. Hasegawa-Johnson. AUTOVC:

Zero-Shot Voice Style Transfer with Only Autoencoder Loss. 2019. arXiv: 1905.

05879 [eess.AS].

https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.21437/interspeech.2019-2680
https://doi.org/10.21437/interspeech.2019-2680
http://dx.doi.org/10.21437/Interspeech.2019-2680
http://dx.doi.org/10.21437/Interspeech.2019-2680
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109/WASPAA.2013.6701851
https://arxiv.org/abs/1710.07654
http://arxiv.org/abs/1710.07654
http://arxiv.org/abs/1710.07654
https://arxiv.org/abs/2004.11284
https://arxiv.org/abs/2004.11284
https://arxiv.org/abs/1905.05879
https://arxiv.org/abs/1905.05879

Bibliography 159

[143] M. Ravanelli et al. SpeechBrain: A General-Purpose Speech Toolkit.

arXiv:2106.04624. 2021. arXiv: 2106.04624 [eess.AS].

[144] Y. Ren, J. Liu, and Z. Zhao. “PortaSpeech: Portable and High-Quality Generative

Text-to-Speech”. In: ArXiv abs/2109.15166 (2021).

[145] Y. Ren, Y. Ruan, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T. Liu. “FastSpeech:

Fast, Robust and Controllable Text to Speech”. In: CoRR abs/1905.09263 (2019).

arXiv: 1905.09263. URL: http://arxiv.org/abs/1905.09263.

[146] A. Rix, J. Beerends, M. Hollier, and A. Hekstra. “Perceptual evaluation of

speech quality (PESQ)-a new method for speech quality assessment of telephone

networks and codecs”. In: 2001 IEEE International Conference on Acoustics,

Speech, and Signal Processing. Proceedings (Cat. No.01CH37221). Vol. 2.

2001, 749–752 vol.2. DOI: 10.1109/ICASSP.2001.941023.

[147] O. Ronneberger, P. Fischer, and T. Brox. “U-Net: Convolutional Networks for

Biomedical Image Segmentation”. In: CoRR abs/1505.04597 (2015). arXiv:

1505.04597. URL: http://arxiv.org/abs/1505.04597.

[148] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. 3rd ed.

Prentice Hall, 2010.

[149] X. S D’Arcy and M. Russell. “Experiments with the ABI (Accents of the British

Isles) Speech Corpus”. English. In: Proc. Interspeech 2008 ; Conference date:

01-01-2008. Jan. 2008, pp. 293–296.

[150] F. E. Satterthwaite. “An Approximate Distribution of Estimates of Variance Com-

ponents”. In: Biometrics Bulletin 2.6 (1946), pp. 110–114. ISSN: 00994987. URL:

http://www.jstor.org/stable/3002019.

[151] M. Schoeffler, S. Bartoschek, F.-R. Stöter, M. Roess, S. Westphal, B. Edler, and J.

Herre. “webMUSHRA A Comprehensive Framework for Web-based Listening

Tests”. In: Journal of Open Research Software 6 (Feb. 2018). DOI: 10.5334/

jors.187.

[152] J. Shen et al. “Natural TTS Synthesis by Conditioning WaveNet on Mel Spec-

trogram Predictions”. In: CoRR abs/1712.05884 (2017). arXiv: 1712.05884.

URL: http://arxiv.org/abs/1712.05884.

https://arxiv.org/abs/2106.04624
https://arxiv.org/abs/1905.09263
http://arxiv.org/abs/1905.09263
https://doi.org/10.1109/ICASSP.2001.941023
https://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
http://www.jstor.org/stable/3002019
https://doi.org/10.5334/jors.187
https://doi.org/10.5334/jors.187
https://arxiv.org/abs/1712.05884
http://arxiv.org/abs/1712.05884

Bibliography 160

[153] V. L. Shuby Deshpande Mantek Singh Chadha. Audio style transfer for accents.

2019. URL: https://shuby.de/files/11785_project.pdf.

[154] H. Silén, E. Helander, and M. Gabbouj. “Prediction of Voice Aperiodicity Based

on Spectral Representations in HMM Speech Synthesis.” In: Jan. 2011, pp. 105–

108.

[155] R. J. Skerry-Ryan, E. Battenberg, Y. Xiao, Y. Wang, D. Stanton, J. Shor, R. J.

Weiss, R. Clark, and R. A. Saurous. “Towards End-to-End Prosody Transfer for

Expressive Speech Synthesis with Tacotron”. In: CoRR abs/1803.09047 (2018).

arXiv: 1803.09047. URL: http://arxiv.org/abs/1803.09047.

[156] S. L. Smith, E. Elsen, and S. De. On the Generalization Benefit of Noise in

Stochastic Gradient Descent. 2020. arXiv: 2006.15081 [cs.LG].

[157] D. Snyder, D. Garcia-Romero, A. McCree, G. Sell, D. Povey, and S. Khudanpur.

“Spoken Language Recognition using X-vectors”. In: (2018), pp. 105–111.

[158] D. Snyder, D. Garcia-Romero, D. Povey, and S. Khudanpur. “Deep Neural Net-

work Embeddings for Text-Independent Speaker Verification”. In: Proc. Inter-

speech 2017. 2017, pp. 999–1003. DOI: 10.21437/Interspeech.2017-

620.

[159] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

“Dropout: A Simple Way to Prevent Neural Networks from Overfitting”. In: Jour-

nal of Machine Learning Research 15.56 (2014), pp. 1929–1958. URL: http:

//jmlr.org/papers/v15/srivastava14a.html.

[160] B. Story. “History of speech synthesis”. In: Jan. 2019, pp. 9–33. DOI: 10.4324/

9780429056253-2.

[161] I. Sutskever, O. Vinyals, and Q. V. Le. “Sequence to Sequence Learning with

Neural Networks”. In: CoRR abs/1409.3215 (2014). arXiv: 1409.3215. URL:

http://arxiv.org/abs/1409.3215.

[162] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V.

Vanhoucke, and A. Rabinovich. “Going Deeper with Convolutions”. In: CoRR

abs/1409.4842 (2014). arXiv: 1409.4842. URL: http://arxiv.org/

abs/1409.4842.

https://shuby.de/files/11785_project.pdf
https://arxiv.org/abs/1803.09047
http://arxiv.org/abs/1803.09047
https://arxiv.org/abs/2006.15081
https://doi.org/10.21437/Interspeech.2017-620
https://doi.org/10.21437/Interspeech.2017-620
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.4324/9780429056253-2
https://doi.org/10.4324/9780429056253-2
https://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842

Bibliography 161

[163] S. Takamichi, Y. Saito, N. Takamune, D. Kitamura, and H. Saruwatari. “Phase re-

construction from amplitude spectrograms based on von-Mises-distribution deep

neural network”. In: CoRR abs/1807.03474 (2018). arXiv: 1807.03474. URL:

http://arxiv.org/abs/1807.03474.

[164] C. Tallec and Y. Ollivier. “Can recurrent neural networks warp time?” In: CoRR

abs/1804.11188 (2018). arXiv: 1804.11188. URL: http://arxiv.org/

abs/1804.11188.

[165] X. Tan, T. Qin, F. Soong, and T.-Y. Liu. A Survey on Neural Speech Synthesis.

2021. arXiv: 2106.15561 [eess.AS].

[166] P. Taylor. Text-to-Speech Synthesis. Cambridge University Press, 2009. DOI: 10.

1017/CBO9780511816338.

[167] S. Team. Silero Models: pre-trained enterprise-grade STT / TTS models and

benchmarks. https://github.com/snakers4/silero- models.

2021.

[168] S. Team. Silero VAD: pre-trained enterprise-grade Voice Activity Detector

(VAD), Number Detector and Language Classifier. https://github.com/

snakers4/silero-vad. 2021.

[169] The Accents of the British Isles (ABI-1) Speech Corpus. http : / / www .

thespeechark.com/abi-1-page.html.

[170] The IViE Corpus - English Intonation in the British Isles. http://www.phon.

ox.ac.uk/files/apps/IViE/.

[171] L. Theis, A. van den Oord, and M. Bethge. A note on the evaluation of generative

models. 2016. arXiv: 1511.01844 [stat.ML].

[172] N. Tishby, F. C. Pereira, and W. Bialek. The information bottleneck method. 2000.

arXiv: physics/0004057 [physics.data-an].

[173] N. Tits, K. E. Haddad, and T. Dutoit. Laughter Synthesis: Combining Seq2seq

modeling with Transfer Learning. 2020. arXiv: 2008.09483 [eess.AS].

[174] H. Traunmüller. “Analytical expressions for the tonotopic sensory scale”. In:

Journal of the Acoustical Society of America 88 (1990), pp. 97–100.

https://arxiv.org/abs/1807.03474
http://arxiv.org/abs/1807.03474
https://arxiv.org/abs/1804.11188
http://arxiv.org/abs/1804.11188
http://arxiv.org/abs/1804.11188
https://arxiv.org/abs/2106.15561
https://doi.org/10.1017/CBO9780511816338
https://doi.org/10.1017/CBO9780511816338
https://github.com/snakers4/silero-models
https://github.com/snakers4/silero-vad
https://github.com/snakers4/silero-vad
http://www.thespeechark.com/abi-1-page.html
http://www.thespeechark.com/abi-1-page.html
http://www.phon.ox.ac.uk/files/apps/IViE/
http://www.phon.ox.ac.uk/files/apps/IViE/
https://arxiv.org/abs/1511.01844
https://arxiv.org/abs/physics/0004057
https://arxiv.org/abs/2008.09483

Bibliography 162

[175] T. Tu, Y. Chen, C. Yeh, and H. Lee. “End-to-end Text-to-speech for Low-resource

Languages by Cross-Lingual Transfer Learning”. In: CoRR abs/1904.06508

(2019). arXiv: 1904.06508. URL: http://arxiv.org/abs/1904.

06508.

[176] A. University. Introduction to Speech Processing - Aalto University Wiki. 2021.

URL: https://wiki.aalto.fi/display/ITSP/Introduction+

to+Speech+Processing (visited on 09/24/2021).

[177] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.

Kaiser, and I. Polosukhin. “Attention Is All You Need”. In: CoRR abs/1706.03762

(2017). arXiv: 1706.03762. URL: http://arxiv.org/abs/1706.

03762.

[178] C. Veaux, J. Yamagishi, and S. King. “The voice bank corpus: Design, collec-

tion and data analysis of a large regional accent speech database”. In: 2013 In-

ternational Conference Oriental COCOSDA held jointly with 2013 Conference

on Asian Spoken Language Research and Evaluation (O-COCOSDA/CASLRE).

2013, pp. 1–4. DOI: 10.1109/ICSDA.2013.6709856.

[179] VoxForge. http://www.voxforge.org/.

[180] P. Wagner et al. “Speech Synthesis Evaluation State-of-the-Art Assessment and

Suggestion for a Novel Research Program”. In: Proc. 10th ISCA Workshop on

Speech Synthesis (SSW 10). 2019, pp. 105–110. DOI: 10.21437/SSW.2019-

19.

[181] L. Wan, Q. Wang, A. Papir, and I. L. Moreno. Generalized End-to-End Loss for

Speaker Verification. 2020. arXiv: 1710.10467 [eess.AS].

[182] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. “GLUE:

A Multi-Task Benchmark and Analysis Platform for Natural Language Under-

standing”. In: In the Proceedings of ICLR. 2019.

[183] C. Wang, Y. Tang, X. Ma, A. Wu, D. Okhonko, and J. Pino. “fairseq S2T: Fast

Speech-to-Text Modeling with fairseq”. In: Proceedings of the 2020 Conference

of the Asian Chapter of the Association for Computational Linguistics (AACL):

System Demonstrations. 2020.

https://arxiv.org/abs/1904.06508
http://arxiv.org/abs/1904.06508
http://arxiv.org/abs/1904.06508
https://wiki.aalto.fi/display/ITSP/Introduction+to+Speech+Processing
https://wiki.aalto.fi/display/ITSP/Introduction+to+Speech+Processing
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.1109/ICSDA.2013.6709856
http://www.voxforge.org/
https://doi.org/10.21437/SSW.2019-19
https://doi.org/10.21437/SSW.2019-19
https://arxiv.org/abs/1710.10467

Bibliography 163

[184] Y. Wang, D. Stanton, Y. Zhang, R. Skerry-Ryan, E. Battenberg, J. Shor, Y. Xiao,

F. Ren, Y. Jia, and R. A. Saurous. Style Tokens: Unsupervised Style Model-

ing, Control and Transfer in End-to-End Speech Synthesis. 2018. arXiv: 1803.

09017 [cs.CL].

[185] Y. Wang et al. “Tacotron: A Fully End-to-End Text-To-Speech Synthesis

Model”. In: CoRR abs/1703.10135 (2017). arXiv: 1703 . 10135. URL:

http://arxiv.org/abs/1703.10135.

[186] Z. Wang, W. Ge, X. Wang, S. Yang, W. Gan, H. Chen, H. Li, L. Xie, and X. Li.

“Accent and Speaker Disentanglement in Many-to-many Voice Conversion”. In:

CoRR abs/2011.08609 (2020). arXiv: 2011.08609. URL: https://arxiv.

org/abs/2011.08609.

[187] M. L. Waskom. “seaborn: statistical data visualization”. In: Journal of Open

Source Software 6.60 (2021), p. 3021. DOI: 10.21105/joss.03021. URL:

https://doi.org/10.21105/joss.03021.

[188] B. L. Welch. “The Generalization of ‘Student’s’ Problem when Several Different

Population Variances are Involved”. In: Biometrika 34.1/2 (1947), pp. 28–35.

ISSN: 00063444. URL: http://www.jstor.org/stable/2332510.

[189] I. Wikimedia Foundation. Wikipedia. 2021. URL: https://en.wikipedia.

org/wiki (visited on 09/28/2021).

[190] R. J. Williams and D. Zipser. “A Learning Algorithm for Continually Running

Fully Recurrent Neural Networks”. In: Neural Computation 1.2 (1989), pp. 270–

280. DOI: 10.1162/neco.1989.1.2.270.

[191] T. Wolf et al. “HuggingFace’s Transformers: State-of-the-art Natural Language

Processing”. In: CoRR abs/1910.03771 (2019). arXiv: 1910 . 03771. URL:

http://arxiv.org/abs/1910.03771.

[192] D. Xin, T. Komatsu, S. Takamichi, and H. Saruwatari. “Disentangled Speaker

and Language Representations Using Mutual Information Minimization and Do-

main Adaptation for Cross-Lingual TTS”. In: ICASSP 2021 - 2021 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP). 2021,

pp. 6608–6612. DOI: 10.1109/ICASSP39728.2021.9414226.

https://arxiv.org/abs/1803.09017
https://arxiv.org/abs/1803.09017
https://arxiv.org/abs/1703.10135
http://arxiv.org/abs/1703.10135
https://arxiv.org/abs/2011.08609
https://arxiv.org/abs/2011.08609
https://arxiv.org/abs/2011.08609
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
http://www.jstor.org/stable/2332510
https://en.wikipedia.org/wiki
https://en.wikipedia.org/wiki
https://doi.org/10.1162/neco.1989.1.2.270
https://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://doi.org/10.1109/ICASSP39728.2021.9414226

Bibliography 164

[193] D. Xin, Y. Saito, S. Takamichi, T. Koriyama, and H. Saruwatari. “Cross-Lingual

Speaker Adaptation Using Domain Adaptation and Speaker Consistency Loss for

Text-To-Speech Synthesis”. In: Proc. Interspeech 2021. 2021, pp. 1614–1618.

DOI: 10.21437/Interspeech.2021-897.

[194] C. M. K. Yamagishi Junichi; Veaux. CSTR VCTK Corpus: English Multi-speaker

Corpus for CSTR Voice Cloning Toolkit (version 0.92). 2019. DOI: https://

doi.org/10.7488/ds/2645.

[195] Y.-Y. Yang et al. “TorchAudio: Building Blocks for Audio and Speech Process-

ing”. In: arXiv preprint arXiv:2110.15018 (2021).

[196] B. Yegnanarayana, C. d’Alessandro, and V. Darsinos. “An iterative algorithm for

decomposition of speech signals into periodic and aperiodic components”. In:

IEEE Transactions on Speech and Audio Processing 6.1 (1998), pp. 1–11. DOI:

10.1109/89.650304.

[197] F. Yu and V. Koltun. “Multi-Scale Context Aggregation by Dilated Convolu-

tions”. In: ICLR. 2016.

[198] Y. Zhang, E. Bakhturina, and B. Ginsburg. “NeMo (Inverse) Text Normalization:

From Development to Production”. In: Proc. Interspeech 2021. 2021, pp. 4857–

4859.

[199] Y. Zhang, E. Bakhturina, K. Gorman, and B. Ginsburg. “NeMo Inverse Text Nor-

malization: From Development to Production”. In: Proc. Interspeech 2021. 2021,

pp. 4468–4472. DOI: 10.21437/Interspeech.2021-1571.

[200] Y. Zhang, R. J. Weiss, H. Zen, Y. Wu, Z. Chen, R. J. Skerry-Ryan, Y. Jia, A.

Rosenberg, and B. Ramabhadran. “Learning to Speak Fluently in a Foreign Lan-

guage: Multilingual Speech Synthesis and Cross-Language Voice Cloning”. In:

CoRR abs/1907.04448 (2019). arXiv: 1907.04448. URL: http://arxiv.

org/abs/1907.04448.

https://doi.org/10.21437/Interspeech.2021-897
https://doi.org/https://doi.org/10.7488/ds/2645
https://doi.org/https://doi.org/10.7488/ds/2645
https://doi.org/10.1109/89.650304
https://doi.org/10.21437/Interspeech.2021-1571
https://arxiv.org/abs/1907.04448
http://arxiv.org/abs/1907.04448
http://arxiv.org/abs/1907.04448

	Introduction
	TTS overview
	Motivations and contributions
	Related work
	Document structure

	Background
	Learning
	Supervised learning
	Towards representation learning
	About inductive biases

	Speech
	Communication
	Phonetics
	Signal processing

	TTS
	Legacy systems
	Modern components

	Conditioning TTS on dialect accent
	Speaker and dialect accent embeddings
	Tasks and terminology
	Architectures
	Evaluation

	Acoustic model
	Architectures
	Evaluation

	Voice/accent conversion system
	Tasks and terminology
	Architectures

	Vocoder
	Architectures

	End-to-end approach

	Dataset
	Data resources
	LJ Speech
	LibriSpeech
	VCTK
	SLR83
	Others

	Data processing
	Text
	Audio
	Splits

	Experiments
	Experimental setup
	Evaluation strategy
	Speaker and dialect accent embeddings
	Speaker embeddings
	Dialect accent embeddings

	Acoustic model
	Single-speaker
	Multi-speaker and multi-dialect

	Voice/accent conversion
	Voice conversion
	Accent conversion

	Joint TTS and voice/accent conversion
	Discussion of results

	Conclusions
	Bibliography

